Improved Genetic Algorithm Based on the Cooperation of Elite and Inverse-elite
NASA Astrophysics Data System (ADS)
Kanakubo, Masaaki; Hagiwara, Masafumi
In this paper, we propose an improved genetic algorithm based on the combination of Bee system and Inverse-elitism, both are effective strategies for the improvement of GA. In the Bee system, in the beginning, each chromosome tries to find good solution individually as global search. When some chromosome is regarded as superior one, the other chromosomes try to find solution around there. However, since chromosomes for global search are generated randomly, Bee system lacks global search ability. On the other hand, in the Inverse-elitism, an inverse-elite whose gene values are reversed from the corresponding elite is produced. This strategy greatly contributes to diversification of chromosomes, but it lacks local search ability. In the proposed method, the Inverse-elitism with Pseudo-simplex method is employed for global search of Bee system in order to strengthen global search ability. In addition, it also has strong local search ability. The proposed method has synergistic effects of the three strategies. We confirmed validity and superior performance of the proposed method by computer simulations.
A Memetic Algorithm for Global Optimization of Multimodal Nonseparable Problems.
Zhang, Geng; Li, Yangmin
2016-06-01
It is a big challenging issue of avoiding falling into local optimum especially when facing high-dimensional nonseparable problems where the interdependencies among vector elements are unknown. In order to improve the performance of optimization algorithm, a novel memetic algorithm (MA) called cooperative particle swarm optimizer-modified harmony search (CPSO-MHS) is proposed in this paper, where the CPSO is used for local search and the MHS for global search. The CPSO, as a local search method, uses 1-D swarm to search each dimension separately and thus converges fast. Besides, it can obtain global optimum elements according to our experimental results and analyses. MHS implements the global search by recombining different vector elements and extracting global optimum elements. The interaction between local search and global search creates a set of local search zones, where global optimum elements reside within the search space. The CPSO-MHS algorithm is tested and compared with seven other optimization algorithms on a set of 28 standard benchmarks. Meanwhile, some MAs are also compared according to the results derived directly from their corresponding references. The experimental results demonstrate a good performance of the proposed CPSO-MHS algorithm in solving multimodal nonseparable problems.
Genetic algorithms as global random search methods
NASA Technical Reports Server (NTRS)
Peck, Charles C.; Dhawan, Atam P.
1995-01-01
Genetic algorithm behavior is described in terms of the construction and evolution of the sampling distributions over the space of candidate solutions. This novel perspective is motivated by analysis indicating that the schema theory is inadequate for completely and properly explaining genetic algorithm behavior. Based on the proposed theory, it is argued that the similarities of candidate solutions should be exploited directly, rather than encoding candidate solutions and then exploiting their similarities. Proportional selection is characterized as a global search operator, and recombination is characterized as the search process that exploits similarities. Sequential algorithms and many deletion methods are also analyzed. It is shown that by properly constraining the search breadth of recombination operators, convergence of genetic algorithms to a global optimum can be ensured.
Genetic algorithms as global random search methods
NASA Technical Reports Server (NTRS)
Peck, Charles C.; Dhawan, Atam P.
1995-01-01
Genetic algorithm behavior is described in terms of the construction and evolution of the sampling distributions over the space of candidate solutions. This novel perspective is motivated by analysis indicating that that schema theory is inadequate for completely and properly explaining genetic algorithm behavior. Based on the proposed theory, it is argued that the similarities of candidate solutions should be exploited directly, rather than encoding candidate solution and then exploiting their similarities. Proportional selection is characterized as a global search operator, and recombination is characterized as the search process that exploits similarities. Sequential algorithms and many deletion methods are also analyzed. It is shown that by properly constraining the search breadth of recombination operators, convergence of genetic algorithms to a global optimum can be ensured.
A modified conjugate gradient coefficient with inexact line search for unconstrained optimization
NASA Astrophysics Data System (ADS)
Aini, Nurul; Rivaie, Mohd; Mamat, Mustafa
2016-11-01
Conjugate gradient (CG) method is a line search algorithm mostly known for its wide application in solving unconstrained optimization problems. Its low memory requirements and global convergence properties makes it one of the most preferred method in real life application such as in engineering and business. In this paper, we present a new CG method based on AMR* and CD method for solving unconstrained optimization functions. The resulting algorithm is proven to have both the sufficient descent and global convergence properties under inexact line search. Numerical tests are conducted to assess the effectiveness of the new method in comparison to some previous CG methods. The results obtained indicate that our method is indeed superior.
Weighted Global Artificial Bee Colony Algorithm Makes Gas Sensor Deployment Efficient
Jiang, Ye; He, Ziqing; Li, Yanhai; Xu, Zhengyi; Wei, Jianming
2016-01-01
This paper proposes an improved artificial bee colony algorithm named Weighted Global ABC (WGABC) algorithm, which is designed to improve the convergence speed in the search stage of solution search equation. The new method not only considers the effect of global factors on the convergence speed in the search phase, but also provides the expression of global factor weights. Experiment on benchmark functions proved that the algorithm can improve the convergence speed greatly. We arrive at the gas diffusion concentration based on the theory of CFD and then simulate the gas diffusion model with the influence of buildings based on the algorithm. Simulation verified the effectiveness of the WGABC algorithm in improving the convergence speed in optimal deployment scheme of gas sensors. Finally, it is verified that the optimal deployment method based on WGABC algorithm can improve the monitoring efficiency of sensors greatly as compared with the conventional deployment methods. PMID:27322262
Restricted random search method based on taboo search in the multiple minima problem
NASA Astrophysics Data System (ADS)
Hong, Seung Do; Jhon, Mu Shik
1997-03-01
The restricted random search method is proposed as a simple Monte Carlo sampling method to search minima fast in the multiple minima problem. This method is based on taboo search applied recently to continuous test functions. The concept of the taboo region instead of the taboo list is used and therefore the sampling of a region near an old configuration is restricted in this method. This method is applied to 2-dimensional test functions and the argon clusters. This method is found to be a practical and efficient method to search near-global configurations of test functions and the argon clusters.
An efficient and practical approach to obtain a better optimum solution for structural optimization
NASA Astrophysics Data System (ADS)
Chen, Ting-Yu; Huang, Jyun-Hao
2013-08-01
For many structural optimization problems, it is hard or even impossible to find the global optimum solution owing to unaffordable computational cost. An alternative and practical way of thinking is thus proposed in this research to obtain an optimum design which may not be global but is better than most local optimum solutions that can be found by gradient-based search methods. The way to reach this goal is to find a smaller search space for gradient-based search methods. It is found in this research that data mining can accomplish this goal easily. The activities of classification, association and clustering in data mining are employed to reduce the original design space. For unconstrained optimization problems, the data mining activities are used to find a smaller search region which contains the global or better local solutions. For constrained optimization problems, it is used to find the feasible region or the feasible region with better objective values. Numerical examples show that the optimum solutions found in the reduced design space by sequential quadratic programming (SQP) are indeed much better than those found by SQP in the original design space. The optimum solutions found in a reduced space by SQP sometimes are even better than the solution found using a hybrid global search method with approximate structural analyses.
SGO: A fast engine for ab initio atomic structure global optimization by differential evolution
NASA Astrophysics Data System (ADS)
Chen, Zhanghui; Jia, Weile; Jiang, Xiangwei; Li, Shu-Shen; Wang, Lin-Wang
2017-10-01
As the high throughout calculations and material genome approaches become more and more popular in material science, the search for optimal ways to predict atomic global minimum structure is a high research priority. This paper presents a fast method for global search of atomic structures at ab initio level. The structures global optimization (SGO) engine consists of a high-efficiency differential evolution algorithm, accelerated local relaxation methods and a plane-wave density functional theory code running on GPU machines. The purpose is to show what can be achieved by combining the superior algorithms at the different levels of the searching scheme. SGO can search the global-minimum configurations of crystals, two-dimensional materials and quantum clusters without prior symmetry restriction in a relatively short time (half or several hours for systems with less than 25 atoms), thus making such a task a routine calculation. Comparisons with other existing methods such as minima hopping and genetic algorithm are provided. One motivation of our study is to investigate the properties of magnetic systems in different phases. The SGO engine is capable of surveying the local minima surrounding the global minimum, which provides the information for the overall energy landscape of a given system. Using this capability we have found several new configurations for testing systems, explored their energy landscape, and demonstrated that the magnetic moment of metal clusters fluctuates strongly in different local minima.
A modified three-term PRP conjugate gradient algorithm for optimization models.
Wu, Yanlin
2017-01-01
The nonlinear conjugate gradient (CG) algorithm is a very effective method for optimization, especially for large-scale problems, because of its low memory requirement and simplicity. Zhang et al. (IMA J. Numer. Anal. 26:629-649, 2006) firstly propose a three-term CG algorithm based on the well known Polak-Ribière-Polyak (PRP) formula for unconstrained optimization, where their method has the sufficient descent property without any line search technique. They proved the global convergence of the Armijo line search but this fails for the Wolfe line search technique. Inspired by their method, we will make a further study and give a modified three-term PRP CG algorithm. The presented method possesses the following features: (1) The sufficient descent property also holds without any line search technique; (2) the trust region property of the search direction is automatically satisfied; (3) the steplengh is bounded from below; (4) the global convergence will be established under the Wolfe line search. Numerical results show that the new algorithm is more effective than that of the normal method.
Global optimization methods for engineering design
NASA Technical Reports Server (NTRS)
Arora, Jasbir S.
1990-01-01
The problem is to find a global minimum for the Problem P. Necessary and sufficient conditions are available for local optimality. However, global solution can be assured only under the assumption of convexity of the problem. If the constraint set S is compact and the cost function is continuous on it, existence of a global minimum is guaranteed. However, in view of the fact that no global optimality conditions are available, a global solution can be found only by an exhaustive search to satisfy Inequality. The exhaustive search can be organized in such a way that the entire design space need not be searched for the solution. This way the computational burden is reduced somewhat. It is concluded that zooming algorithm for global optimizations appears to be a good alternative to stochastic methods. More testing is needed; a general, robust, and efficient local minimizer is required. IDESIGN was used in all numerical calculations which is based on a sequential quadratic programming algorithm, and since feasible set keeps on shrinking, a good algorithm to find an initial feasible point is required. Such algorithms need to be developed and evaluated.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Crowder, Jeff; Cornish, Neil J.; Reddinger, J. Lucas
This work presents the first application of the method of genetic algorithms (GAs) to data analysis for the Laser Interferometer Space Antenna (LISA). In the low frequency regime of the LISA band there are expected to be tens of thousands of galactic binary systems that will be emitting gravitational waves detectable by LISA. The challenge of parameter extraction of such a large number of sources in the LISA data stream requires a search method that can efficiently explore the large parameter spaces involved. As signals of many of these sources will overlap, a global search method is desired. GAs representmore » such a global search method for parameter extraction of multiple overlapping sources in the LISA data stream. We find that GAs are able to correctly extract source parameters for overlapping sources. Several optimizations of a basic GA are presented with results derived from applications of the GA searches to simulated LISA data.« less
Hartzell, S.; Liu, P.
1996-01-01
A method is presented for the simultaneous calculation of slip amplitudes and rupture times for a finite fault using a hybrid global search algorithm. The method we use combines simulated annealing with the downhill simplex method to produce a more efficient search algorithm then either of the two constituent parts. This formulation has advantages over traditional iterative or linearized approaches to the problem because it is able to escape local minima in its search through model space for the global optimum. We apply this global search method to the calculation of the rupture history for the Landers, California, earthquake. The rupture is modeled using three separate finite-fault planes to represent the three main fault segments that failed during this earthquake. Both the slip amplitude and the time of slip are calculated for a grid work of subfaults. The data used consist of digital, teleseismic P and SH body waves. Long-period, broadband, and short-period records are utilized to obtain a wideband characterization of the source. The results of the global search inversion are compared with a more traditional linear-least-squares inversion for only slip amplitudes. We use a multi-time-window linear analysis to relax the constraints on rupture time and rise time in the least-squares inversion. Both inversions produce similar slip distributions, although the linear-least-squares solution has a 10% larger moment (7.3 ?? 1026 dyne-cm compared with 6.6 ?? 1026 dyne-cm). Both inversions fit the data equally well and point out the importance of (1) using a parameterization with sufficient spatial and temporal flexibility to encompass likely complexities in the rupture process, (2) including suitable physically based constraints on the inversion to reduce instabilities in the solution, and (3) focusing on those robust rupture characteristics that rise above the details of the parameterization and data set.
A Study of Impact Point Detecting Method Based on Seismic Signal
NASA Astrophysics Data System (ADS)
Huo, Pengju; Zhang, Yu; Xu, Lina; Huang, Yong
The projectile landing position has to be determined for its recovery and range in the targeting test. In this paper, a global search method based on the velocity variance is proposed. In order to verify the applicability of this method, simulation analysis within the scope of four million square meters has been conducted in the same array structure of the commonly used linear positioning method, and MATLAB was used to compare and analyze the two methods. The compared simulation results show that the global search method based on the speed of variance has high positioning accuracy and stability, which can meet the needs of impact point location.
The Tunneling Method for Global Optimization in Multidimensional Scaling.
ERIC Educational Resources Information Center
Groenen, Patrick J. F.; Heiser, Willem J.
1996-01-01
A tunneling method for global minimization in multidimensional scaling is introduced and adjusted for multidimensional scaling with general Minkowski distances. The method alternates a local search step with a tunneling step in which a different configuration is sought with the same STRESS implementation. (SLD)
NASA Astrophysics Data System (ADS)
Newman, D. J.; Mitchell, A. E.
2015-12-01
At AGU 2014, NASA EOSDIS demonstrated a case-study of an OpenSearch framework for Earth science data discovery. That framework leverages the IDN and CWIC OpenSearch API implementations to provide seamless discovery of data through the 'two-step' discovery process as outlined by the Federation for Earth Sciences (ESIP) OpenSearch Best Practices. But how would an Earth Scientist leverage this framework and what are the benefits? Using a client that understands the OpenSearch specification and, for further clarity, the various best practices and extensions, a scientist can discovery a plethora of data not normally accessible either by traditional methods (NASA Earth Data Search, Reverb, etc) or direct methods (going to the source of the data) We will demonstrate, via the CWICSmart web client, how an earth scientist can access regional data on a regional phenomena in a uniform and aggregated manner. We will demonstrate how an earth scientist can 'globalize' their discovery. You want to find local data on 'sea surface temperature of the Indian Ocean'? We can help you with that. 'European meteorological data'? Yes. 'Brazilian rainforest satellite imagery'? That too. CWIC allows you to get earth science data in a uniform fashion from a large number of disparate, world-wide agencies. This is what we mean by Global OpenSearch.
On a numerical solving of random generated hexamatrix games
NASA Astrophysics Data System (ADS)
Orlov, Andrei; Strekalovskiy, Alexander
2016-10-01
In this paper, we develop a global search method for finding a Nash equilibrium in a hexamatrix game (polymatrix game of three players). The method, on the one hand, is based on the equivalence theorem of the problem of finding a Nash equilibrium in the game and a special mathematical optimization problem, and, on the other hand, on the usage of Global Search Theory for solving the latter problem. The efficiency of this approach is demonstrated by the results of computational testing.
Song, Zhenyuan; Guo, Tong; Fu, Xing; Hu, Xiaotang
2018-05-01
To achieve high-speed measurements using white light scanning interferometers, the scanning devices used need to have high feedback gain in closed-loop operations. However, flexure hinges induce a residual vibration that can cause a misidentification of the fringe order. The reduction of this residual vibration is crucial because the highly nonlinear distortions in interferograms lead to clearly incorrect measured profiles. Input shaping can be used to control the amplitude of the residual vibration. The conventional method uses continuous wavelet transform (CWT) to estimate parameters of the scanning device. Our proposed method extracts equivalent modal parameters using a global search algorithm. Due to its simplicity, ease of implementation, and response speed, this global search method outperforms CWT. The delay time is shortened by searching, because fewer modes are needed for the shaper. The effectiveness of the method has been confirmed by the agreement between simulated shaped responses and experimental displacement information from the capacitive sensor inside the scanning device, and the intensity profiles of the interferometer have been greatly improved. An experiment measuring the surface of a silicon wafer is also presented. The method is shown to be effective at improving the intensity profiles and recovering accurate surface topography. Finally, frequency localizations are found to be almost stable with different proportional gains, but their energy distributions change.
NASA Astrophysics Data System (ADS)
Graham, Jim; Jarnevich, Catherine S.; Simpson, Annie; Newman, Gregory J.; Stohlgren, Thomas J.
2011-06-01
Invasive species are a universal global problem, but the information to identify them, manage them, and prevent invasions is stored around the globe in a variety of formats. The Global Invasive Species Information Network is a consortium of organizations working toward providing seamless access to these disparate databases via the Internet. A distributed network of databases can be created using the Internet and a standard web service protocol. There are two options to provide this integration. First, federated searches are being proposed to allow users to search "deep" web documents such as databases for invasive species. A second method is to create a cache of data from the databases for searching. We compare these two methods, and show that federated searches will not provide the performance and flexibility required from users and a central cache of the datum are required to improve performance.
Graham, Jim; Jarnevich, Catherine S.; Simpson, Annie; Newman, Gregory J.; Stohlgren, Thomas J.
2011-01-01
Invasive species are a universal global problem, but the information to identify them, manage them, and prevent invasions is stored around the globe in a variety of formats. The Global Invasive Species Information Network is a consortium of organizations working toward providing seamless access to these disparate databases via the Internet. A distributed network of databases can be created using the Internet and a standard web service protocol. There are two options to provide this integration. First, federated searches are being proposed to allow users to search “deep” web documents such as databases for invasive species. A second method is to create a cache of data from the databases for searching. We compare these two methods, and show that federated searches will not provide the performance and flexibility required from users and a central cache of the datum are required to improve performance.
A novel global Harmony Search method based on Ant Colony Optimisation algorithm
NASA Astrophysics Data System (ADS)
Fouad, Allouani; Boukhetala, Djamel; Boudjema, Fares; Zenger, Kai; Gao, Xiao-Zhi
2016-03-01
The Global-best Harmony Search (GHS) is a stochastic optimisation algorithm recently developed, which hybridises the Harmony Search (HS) method with the concept of swarm intelligence in the particle swarm optimisation (PSO) to enhance its performance. In this article, a new optimisation algorithm called GHSACO is developed by incorporating the GHS with the Ant Colony Optimisation algorithm (ACO). Our method introduces a novel improvisation process, which is different from that of the GHS in the following aspects. (i) A modified harmony memory (HM) representation and conception. (ii) The use of a global random switching mechanism to monitor the choice between the ACO and GHS. (iii) An additional memory consideration selection rule using the ACO random proportional transition rule with a pheromone trail update mechanism. The proposed GHSACO algorithm has been applied to various benchmark functions and constrained optimisation problems. Simulation results demonstrate that it can find significantly better solutions when compared with the original HS and some of its variants.
Taboo Search: An Approach to the Multiple Minima Problem
NASA Astrophysics Data System (ADS)
Cvijovic, Djurdje; Klinowski, Jacek
1995-02-01
Described here is a method, based on Glover's taboo search for discrete functions, of solving the multiple minima problem for continuous functions. As demonstrated by model calculations, the algorithm avoids entrapment in local minima and continues the search to give a near-optimal final solution. Unlike other methods of global optimization, this procedure is generally applicable, easy to implement, derivative-free, and conceptually simple.
Stochastic search in structural optimization - Genetic algorithms and simulated annealing
NASA Technical Reports Server (NTRS)
Hajela, Prabhat
1993-01-01
An account is given of illustrative applications of genetic algorithms and simulated annealing methods in structural optimization. The advantages of such stochastic search methods over traditional mathematical programming strategies are emphasized; it is noted that these methods offer a significantly higher probability of locating the global optimum in a multimodal design space. Both genetic-search and simulated annealing can be effectively used in problems with a mix of continuous, discrete, and integer design variables.
On the Local Convergence of Pattern Search
NASA Technical Reports Server (NTRS)
Dolan, Elizabeth D.; Lewis, Robert Michael; Torczon, Virginia; Bushnell, Dennis M. (Technical Monitor)
2000-01-01
We examine the local convergence properties of pattern search methods, complementing the previously established global convergence properties for this class of algorithms. We show that the step-length control parameter which appears in the definition of pattern search algorithms provides a reliable asymptotic measure of first-order stationarity. This gives an analytical justification for a traditional stopping criterion for pattern search methods. Using this measure of first-order stationarity, we analyze the behavior of pattern search in the neighborhood of an isolated local minimizer. We show that a recognizable subsequence converges r-linearly to the minimizer.
Search of exploration opportunity for near earth objects based on analytical gradients
NASA Astrophysics Data System (ADS)
Ren, Y.; Cui, P. Y.; Luan, E. J.
2008-01-01
The problem of searching for exploration opportunity of near Earth objects is investigated. For rendezvous missions, the analytical gradients of performance index with respect to free parameters are derived by combining the calculus of variation with the theory of state-transition matrix. Then, some initial guesses are generated random in the search space, and the performance index is optimized with the guidance of analytical gradients from these initial guesses. This method not only keeps the property of global search in traditional method, but also avoids the blindness in the traditional exploration opportunity search; hence, the computing speed could be increased greatly. Furthermore, by using this method, the search precision could be controlled effectively.
NASA Astrophysics Data System (ADS)
Zhuang, Yufei; Huang, Haibin
2014-02-01
A hybrid algorithm combining particle swarm optimization (PSO) algorithm with the Legendre pseudospectral method (LPM) is proposed for solving time-optimal trajectory planning problem of underactuated spacecrafts. At the beginning phase of the searching process, an initialization generator is constructed by the PSO algorithm due to its strong global searching ability and robustness to random initial values, however, PSO algorithm has a disadvantage that its convergence rate around the global optimum is slow. Then, when the change in fitness function is smaller than a predefined value, the searching algorithm is switched to the LPM to accelerate the searching process. Thus, with the obtained solutions by the PSO algorithm as a set of proper initial guesses, the hybrid algorithm can find a global optimum more quickly and accurately. 200 Monte Carlo simulations results demonstrate that the proposed hybrid PSO-LPM algorithm has greater advantages in terms of global searching capability and convergence rate than both single PSO algorithm and LPM algorithm. Moreover, the PSO-LPM algorithm is also robust to random initial values.
Fast optimization of binary clusters using a novel dynamic lattice searching method.
Wu, Xia; Cheng, Wen
2014-09-28
Global optimization of binary clusters has been a difficult task despite of much effort and many efficient methods. Directing toward two types of elements (i.e., homotop problem) in binary clusters, two classes of virtual dynamic lattices are constructed and a modified dynamic lattice searching (DLS) method, i.e., binary DLS (BDLS) method, is developed. However, it was found that the BDLS can only be utilized for the optimization of binary clusters with small sizes because homotop problem is hard to be solved without atomic exchange operation. Therefore, the iterated local search (ILS) method is adopted to solve homotop problem and an efficient method based on the BDLS method and ILS, named as BDLS-ILS, is presented for global optimization of binary clusters. In order to assess the efficiency of the proposed method, binary Lennard-Jones clusters with up to 100 atoms are investigated. Results show that the method is proved to be efficient. Furthermore, the BDLS-ILS method is also adopted to study the geometrical structures of (AuPd)79 clusters with DFT-fit parameters of Gupta potential.
On computing the global time-optimal motions of robotic manipulators in the presence of obstacles
NASA Technical Reports Server (NTRS)
Shiller, Zvi; Dubowsky, Steven
1991-01-01
A method for computing the time-optimal motions of robotic manipulators is presented that considers the nonlinear manipulator dynamics, actuator constraints, joint limits, and obstacles. The optimization problem is reduced to a search for the time-optimal path in the n-dimensional position space. A small set of near-optimal paths is first efficiently selected from a grid, using a branch and bound search and a series of lower bound estimates on the traveling time along a given path. These paths are further optimized with a local path optimization to yield the global optimal solution. Obstacles are considered by eliminating the collision points from the tessellated space and by adding a penalty function to the motion time in the local optimization. The computational efficiency of the method stems from the reduced dimensionality of the searched spaced and from combining the grid search with a local optimization. The method is demonstrated in several examples for two- and six-degree-of-freedom manipulators with obstacles.
Hybrid Genetic Algorithm - Local Search Method for Ground-Water Management
NASA Astrophysics Data System (ADS)
Chiu, Y.; Nishikawa, T.; Martin, P.
2008-12-01
Ground-water management problems commonly are formulated as a mixed-integer, non-linear programming problem (MINLP). Relying only on conventional gradient-search methods to solve the management problem is computationally fast; however, the methods may become trapped in a local optimum. Global-optimization schemes can identify the global optimum, but the convergence is very slow when the optimal solution approaches the global optimum. In this study, we developed a hybrid optimization scheme, which includes a genetic algorithm and a gradient-search method, to solve the MINLP. The genetic algorithm identifies a near- optimal solution, and the gradient search uses the near optimum to identify the global optimum. Our methodology is applied to a conjunctive-use project in the Warren ground-water basin, California. Hi- Desert Water District (HDWD), the primary water-manager in the basin, plans to construct a wastewater treatment plant to reduce future septic-tank effluent from reaching the ground-water system. The treated wastewater instead will recharge the ground-water basin via percolation ponds as part of a larger conjunctive-use strategy, subject to State regulations (e.g. minimum distances and travel times). HDWD wishes to identify the least-cost conjunctive-use strategies that control ground-water levels, meet regulations, and identify new production-well locations. As formulated, the MINLP objective is to minimize water-delivery costs subject to constraints including pump capacities, available recharge water, water-supply demand, water-level constraints, and potential new-well locations. The methodology was demonstrated by an enumerative search of the entire feasible solution and comparing the optimum solution with results from the branch-and-bound algorithm. The results also indicate that the hybrid method identifies the global optimum within an affordable computation time. Sensitivity analyses, which include testing different recharge-rate scenarios, pond layouts, and water-supply constraints, indicate that the number of new wells is insensitive to water-supply constraints; however, pumping rates and patterns of the existing wells are sensitive. The locations of new wells are mildly sensitive to the pond layout.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartlett, Roscoe
2010-03-31
GlobiPack contains a small collection of optimization globalization algorithms. These algorithms are used by optimization and various nonlinear equation solver algorithms.Used as the line-search procedure with Newton and Quasi-Newton optimization and nonlinear equation solver methods. These are standard published 1-D line search algorithms such as are described in the book Nocedal and Wright Numerical Optimization: 2nd edition, 2006. One set of algorithms were copied and refactored from the existing open-source Trilinos package MOOCHO where the linear search code is used to globalize SQP methods. This software is generic to any mathematical optimization problem where smooth derivatives exist. There is nomore » specific connection or mention whatsoever to any specific application, period. You cannot find more general mathematical software.« less
Parameterizing sorption isotherms using a hybrid global-local fitting procedure.
Matott, L Shawn; Singh, Anshuman; Rabideau, Alan J
2017-05-01
Predictive modeling of the transport and remediation of groundwater contaminants requires an accurate description of the sorption process, which is usually provided by fitting an isotherm model to site-specific laboratory data. Commonly used calibration procedures, listed in order of increasing sophistication, include: trial-and-error, linearization, non-linear regression, global search, and hybrid global-local search. Given the considerable variability in fitting procedures applied in published isotherm studies, we investigated the importance of algorithm selection through a series of numerical experiments involving 13 previously published sorption datasets. These datasets, considered representative of state-of-the-art for isotherm experiments, had been previously analyzed using trial-and-error, linearization, or non-linear regression methods. The isotherm expressions were re-fit using a 3-stage hybrid global-local search procedure (i.e. global search using particle swarm optimization followed by Powell's derivative free local search method and Gauss-Marquardt-Levenberg non-linear regression). The re-fitted expressions were then compared to previously published fits in terms of the optimized weighted sum of squared residuals (WSSR) fitness function, the final estimated parameters, and the influence on contaminant transport predictions - where easily computed concentration-dependent contaminant retardation factors served as a surrogate measure of likely transport behavior. Results suggest that many of the previously published calibrated isotherm parameter sets were local minima. In some cases, the updated hybrid global-local search yielded order-of-magnitude reductions in the fitness function. In particular, of the candidate isotherms, the Polanyi-type models were most likely to benefit from the use of the hybrid fitting procedure. In some cases, improvements in fitness function were associated with slight (<10%) changes in parameter values, but in other cases significant (>50%) changes in parameter values were noted. Despite these differences, the influence of isotherm misspecification on contaminant transport predictions was quite variable and difficult to predict from inspection of the isotherms. Copyright © 2017 Elsevier B.V. All rights reserved.
Finding the global minimum: a fuzzy end elimination implementation
NASA Technical Reports Server (NTRS)
Keller, D. A.; Shibata, M.; Marcus, E.; Ornstein, R. L.; Rein, R.
1995-01-01
The 'fuzzy end elimination theorem' (FEE) is a mathematically proven theorem that identifies rotameric states in proteins which are incompatible with the global minimum energy conformation. While implementing the FEE we noticed two different aspects that directly affected the final results at convergence. First, the identification of a single dead-ending rotameric state can trigger a 'domino effect' that initiates the identification of additional rotameric states which become dead-ending. A recursive check for dead-ending rotameric states is therefore necessary every time a dead-ending rotameric state is identified. It is shown that, if the recursive check is omitted, it is possible to miss the identification of some dead-ending rotameric states causing a premature termination of the elimination process. Second, we examined the effects of removing dead-ending rotameric states from further considerations at different moments of time. Two different methods of rotameric state removal were examined for an order dependence. In one case, each rotamer found to be incompatible with the global minimum energy conformation was removed immediately following its identification. In the other, dead-ending rotamers were marked for deletion but retained during the search, so that they influenced the evaluation of other rotameric states. When the search was completed, all marked rotamers were removed simultaneously. In addition, to expand further the usefulness of the FEE, a novel method is presented that allows for further reduction in the remaining set of conformations at the FEE convergence. In this method, called a tree-based search, each dead-ending pair of rotamers which does not lead to the direct removal of either rotameric state is used to reduce significantly the number of remaining conformations. In the future this method can also be expanded to triplet and quadruplet sets of rotameric states. We tested our implementation of the FEE by exhaustively searching ten protein segments and found that the FEE identified the global minimum every time. For each segment, the global minimum was exhaustively searched in two different environments: (i) the segments were extracted from the protein and exhaustively searched in the absence of the surrounding residues; (ii) the segments were exhaustively searched in the presence of the remaining residues fixed at crystal structure conformations. We also evaluated the performance of the method for accurately predicting side chain conformations. We examined the influence of factors such as type and accuracy of backbone template used, and the restrictions imposed by the choice of potential function, parameterization and rotamer database. Conclusions are drawn on these results and future prospects are given.
Exploration Opportunity Search of Near-earth Objects Based on Analytical Gradients
NASA Astrophysics Data System (ADS)
Ren, Yuan; Cui, Ping-Yuan; Luan, En-Jie
2008-07-01
The problem of search of opportunity for the exploration of near-earth minor objects is investigated. For rendezvous missions, the analytical gradients of the performance index with respect to the free parameters are derived using the variational calculus and the theory of state-transition matrix. After generating randomly some initial guesses in the search space, the performance index is optimized, guided by the analytical gradients, leading to the local minimum points representing the potential launch opportunities. This method not only keeps the global-search property of the traditional method, but also avoids the blindness in the latter, thereby increasing greatly the computing speed. Furthermore, with this method, the searching precision could be controlled effectively.
Method for using global optimization to the estimation of surface-consistent residual statics
Reister, David B.; Barhen, Jacob; Oblow, Edward M.
2001-01-01
An efficient method for generating residual statics corrections to compensate for surface-consistent static time shifts in stacked seismic traces. The method includes a step of framing the residual static corrections as a global optimization problem in a parameter space. The method also includes decoupling the global optimization problem involving all seismic traces into several one-dimensional problems. The method further utilizes a Stochastic Pijavskij Tunneling search to eliminate regions in the parameter space where a global minimum is unlikely to exist so that the global minimum may be quickly discovered. The method finds the residual statics corrections by maximizing the total stack power. The stack power is a measure of seismic energy transferred from energy sources to receivers.
New hybrid conjugate gradient methods with the generalized Wolfe line search.
Xu, Xiao; Kong, Fan-Yu
2016-01-01
The conjugate gradient method was an efficient technique for solving the unconstrained optimization problem. In this paper, we made a linear combination with parameters β k of the DY method and the HS method, and putted forward the hybrid method of DY and HS. We also proposed the hybrid of FR and PRP by the same mean. Additionally, to present the two hybrid methods, we promoted the Wolfe line search respectively to compute the step size α k of the two hybrid methods. With the new Wolfe line search, the two hybrid methods had descent property and global convergence property of the two hybrid methods that can also be proved.
Solar variability: Implications for global change
NASA Technical Reports Server (NTRS)
Lean, Judith; Rind, David
1994-01-01
Solar variability is examined in search of implications for global change. The topics covered include the following: solar variation modification of global surface temperature; the significance of solar variability with respect to future climate change; and methods of reducing the uncertainty of the potential amplitude of solar variability on longer time scales.
A three-term conjugate gradient method under the strong-Wolfe line search
NASA Astrophysics Data System (ADS)
Khadijah, Wan; Rivaie, Mohd; Mamat, Mustafa
2017-08-01
Recently, numerous studies have been concerned in conjugate gradient methods for solving large-scale unconstrained optimization method. In this paper, a three-term conjugate gradient method is proposed for unconstrained optimization which always satisfies sufficient descent direction and namely as Three-Term Rivaie-Mustafa-Ismail-Leong (TTRMIL). Under standard conditions, TTRMIL method is proved to be globally convergent under strong-Wolfe line search. Finally, numerical results are provided for the purpose of comparison.
NASA Technical Reports Server (NTRS)
Lewis, Robert Michael; Torczon, Virginia
1998-01-01
We give a pattern search adaptation of an augmented Lagrangian method due to Conn, Gould, and Toint. The algorithm proceeds by successive bound constrained minimization of an augmented Lagrangian. In the pattern search adaptation we solve this subproblem approximately using a bound constrained pattern search method. The stopping criterion proposed by Conn, Gould, and Toint for the solution of this subproblem requires explicit knowledge of derivatives. Such information is presumed absent in pattern search methods; however, we show how we can replace this with a stopping criterion based on the pattern size in a way that preserves the convergence properties of the original algorithm. In this way we proceed by successive, inexact, bound constrained minimization without knowing exactly how inexact the minimization is. So far as we know, this is the first provably convergent direct search method for general nonlinear programming.
Global Optimization of Interplanetary Trajectories in the Presence of Realistic Mission Contraints
NASA Technical Reports Server (NTRS)
Hinckley, David, Jr.; Englander, Jacob; Hitt, Darren
2015-01-01
Interplanetary missions are often subject to difficult constraints, like solar phase angle upon arrival at the destination, velocity at arrival, and altitudes for flybys. Preliminary design of such missions is often conducted by solving the unconstrained problem and then filtering away solutions which do not naturally satisfy the constraints. However this can bias the search into non-advantageous regions of the solution space, so it can be better to conduct preliminary design with the full set of constraints imposed. In this work two stochastic global search methods are developed which are well suited to the constrained global interplanetary trajectory optimization problem.
Global trends in the awareness of sepsis: insights from search engine data between 2012 and 2017.
Jabaley, Craig S; Blum, James M; Groff, Robert F; O'Reilly-Shah, Vikas N
2018-01-17
Sepsis is an established global health priority with high mortality that can be curtailed through early recognition and intervention; as such, efforts to raise awareness are potentially impactful and increasingly common. We sought to characterize trends in the awareness of sepsis by examining temporal, geographic, and other changes in search engine utilization for sepsis information-seeking online. Using time series analyses and mixed descriptive methods, we retrospectively analyzed publicly available global usage data reported by Google Trends (Google, Palo Alto, CA, USA) concerning web searches for the topic of sepsis between 24 June 2012 and 24 June 2017. Google Trends reports aggregated and de-identified usage data for its search products, including interest over time, interest by region, and details concerning the popularity of related queries where applicable. Outlying epochs of search activity were identified using autoregressive integrated moving average modeling with transfer functions. We then identified awareness campaigns and news media coverage that correlated with epochs of significantly heightened search activity. A second-order autoregressive model with transfer functions was specified following preliminary outlier analysis. Nineteen significant outlying epochs above the modeled baseline were identified in the final analysis that correlated with 14 awareness and news media events. Our model demonstrated that the baseline level of search activity increased in a nonlinear fashion. A recurrent cyclic increase in search volume beginning in 2012 was observed that correlates with World Sepsis Day. Numerous other awareness and media events were correlated with outlying epochs. The average worldwide search volume for sepsis was less than that of influenza, myocardial infarction, and stroke. Analyzing aggregate search engine utilization data has promise as a mechanism to measure the impact of awareness efforts. Heightened information-seeking about sepsis occurs in close proximity to awareness events and relevant news media coverage. Future work should focus on validating this approach in other contexts and comparing its results to traditional methods of awareness campaign evaluation.
Larson, Heidi J; Wilson, Rose; Hanley, Sharon; Parys, Astrid; Paterson, Pauline
2014-01-01
In June 2013 the Japanese Ministry of Health, Labor, and Welfare (MHLW) suspended its HPV vaccination recommendation after a series of highly publicized alleged adverse events following immunization stoked public doubts about the vaccine's safety. This paper examines the global spread of the news of Japan's HPV vaccine suspension through online media, and takes a retrospective look at non-Japanese media sources that were used to support those claiming HPV vaccine injury in Japan. Methods: Two searches were conducted. One searched relevant content in an archive of Google Alerts on vaccines and vaccine preventable diseases. The second search was conducted using Google Search on January 6th 2014 and on July 18th 2014, using the keywords, “HPV vaccine Japan” and “cervical cancer vaccine Japan.” Both searches were used as Google Searches render more (and some different) results than Google Alerts. Results: Online media collected and analyzed totalled 57. Sixty 3 percent were published in the USA, 23% in Japan, 5% in the UK, 2% in France, 2% in Switzerland, 2% in the Philippines, 2% in Kenya and 2% in Denmark. The majority took a negative view of the HPV vaccine, the primary concern being vaccine safety. Discussion: The news of Japan's suspension of the HPV vaccine recommendation has traveled globally through online media and social media networks, being applauded by anti-vaccination groups but not by the global scientific community. The longer the uncertainty around the Japanese HPV vaccine recommendation persists, the further the public concerns are likely to travel. PMID:25483472
NASA Astrophysics Data System (ADS)
Wang, Liwei; Liu, Xinggao; Zhang, Zeyin
2017-02-01
An efficient primal-dual interior-point algorithm using a new non-monotone line search filter method is presented for nonlinear constrained programming, which is widely applied in engineering optimization. The new non-monotone line search technique is introduced to lead to relaxed step acceptance conditions and improved convergence performance. It can also avoid the choice of the upper bound on the memory, which brings obvious disadvantages to traditional techniques. Under mild assumptions, the global convergence of the new non-monotone line search filter method is analysed, and fast local convergence is ensured by second order corrections. The proposed algorithm is applied to the classical alkylation process optimization problem and the results illustrate its effectiveness. Some comprehensive comparisons to existing methods are also presented.
NASA Astrophysics Data System (ADS)
Huebner, Claudia S.
2016-10-01
As a consequence of fluctuations in the index of refraction of the air, atmospheric turbulence causes scintillation, spatial and temporal blurring as well as global and local image motion creating geometric distortions. To mitigate these effects many different methods have been proposed. Global as well as local motion compensation in some form or other constitutes an integral part of many software-based approaches. For the estimation of motion vectors between consecutive frames simple methods like block matching are preferable to more complex algorithms like optical flow, at least when challenged with near real-time requirements. However, the processing power of commercially available computers continues to increase rapidly and the more powerful optical flow methods have the potential to outperform standard block matching methods. Therefore, in this paper three standard optical flow algorithms, namely Horn-Schunck (HS), Lucas-Kanade (LK) and Farnebäck (FB), are tested for their suitability to be employed for local motion compensation as part of a turbulence mitigation system. Their qualitative performance is evaluated and compared with that of three standard block matching methods, namely Exhaustive Search (ES), Adaptive Rood Pattern Search (ARPS) and Correlation based Search (CS).
NASA Astrophysics Data System (ADS)
Zaouche, Abdelouahib; Dayoub, Iyad; Rouvaen, Jean Michel; Tatkeu, Charles
2008-12-01
We propose a global convergence baud-spaced blind equalization method in this paper. This method is based on the application of both generalized pattern optimization and channel surfing reinitialization. The potentially used unimodal cost function relies on higher- order statistics, and its optimization is achieved using a pattern search algorithm. Since the convergence to the global minimum is not unconditionally warranted, we make use of channel surfing reinitialization (CSR) strategy to find the right global minimum. The proposed algorithm is analyzed, and simulation results using a severe frequency selective propagation channel are given. Detailed comparisons with constant modulus algorithm (CMA) are highlighted. The proposed algorithm performances are evaluated in terms of intersymbol interference, normalized received signal constellations, and root mean square error vector magnitude. In case of nonconstant modulus input signals, our algorithm outperforms significantly CMA algorithm with full channel surfing reinitialization strategy. However, comparable performances are obtained for constant modulus signals.
Global Search Methods for Stellarator Design
NASA Astrophysics Data System (ADS)
Mynick, H. E.; Pomphrey, N.
2001-10-01
We have implemented a new variant Stellopt-DE of the stellarator optimizer Stellopt used by the NCSX team.(A. Reiman, G. Fu, S. Hirshman, D. Monticello, et al., EPS Meeting on Controlled Fusion and Plasma Physics Research, Maastricht, the Netherlands, June 14-18, 1999, (European Physical Society, Petit-Lancy, 1999).) It is based on the ``differential evolution'' (DE) algorithm,(R. Storn, K. Price, U.C. Berkeley Technical Report TR-95-012, ICSI (March, 1995).) a global search method which is far less prone than local algorithms such as the Levenberg-Marquardt method presently used in Stellopt to become trapped in local suboptimal minima of the cost function \\chi. Explorations of stellarator configuration space z to which the DE method has been applied will be presented. Additionally, an accompanying effort to understand the results of this more global exploration has found that a wide range of Quasi-Axisymmetric Stellarators (QAS) previously studied fall into a small number of classes, and we obtain maps of \\chi(z) from which one can see the relative positions of these QAS, and the reasons for the classes into which they fall.
Gong, Ang; Zhao, Xiubin; Pang, Chunlei; Duan, Rong; Wang, Yong
2015-12-02
For Global Navigation Satellite System (GNSS) single frequency, single epoch attitude determination, this paper proposes a new reliable method with baseline vector constraint. First, prior knowledge of baseline length, heading, and pitch obtained from other navigation equipment or sensors are used to reconstruct objective function rigorously. Then, searching strategy is improved. It substitutes gradually Enlarged ellipsoidal search space for non-ellipsoidal search space to ensure correct ambiguity candidates are within it and make the searching process directly be carried out by least squares ambiguity decorrelation algorithm (LAMBDA) method. For all vector candidates, some ones are further eliminated by derived approximate inequality, which accelerates the searching process. Experimental results show that compared to traditional method with only baseline length constraint, this new method can utilize a priori baseline three-dimensional knowledge to fix ambiguity reliably and achieve a high success rate. Experimental tests also verify it is not very sensitive to baseline vector error and can perform robustly when angular error is not great.
NASA Astrophysics Data System (ADS)
Knapp, Julia L. A.; Cirpka, Olaf A.
2017-06-01
The complexity of hyporheic flow paths requires reach-scale models of solute transport in streams that are flexible in their representation of the hyporheic passage. We use a model that couples advective-dispersive in-stream transport to hyporheic exchange with a shape-free distribution of hyporheic travel times. The model also accounts for two-site sorption and transformation of reactive solutes. The coefficients of the model are determined by fitting concurrent stream-tracer tests of conservative (fluorescein) and reactive (resazurin/resorufin) compounds. The flexibility of the shape-free models give rise to multiple local minima of the objective function in parameter estimation, thus requiring global-search algorithms, which is hindered by the large number of parameter values to be estimated. We present a local-in-global optimization approach, in which we use a Markov-Chain Monte Carlo method as global-search method to estimate a set of in-stream and hyporheic parameters. Nested therein, we infer the shape-free distribution of hyporheic travel times by a local Gauss-Newton method. The overall approach is independent of the initial guess and provides the joint posterior distribution of all parameters. We apply the described local-in-global optimization method to recorded tracer breakthrough curves of three consecutive stream sections, and infer section-wise hydraulic parameter distributions to analyze how hyporheic exchange processes differ between the stream sections.
Sherar, Lauren B; Sanders, James P; Sanderson, Paul W; Esliger, Dale W
2015-01-01
Background The location in which physical activity and sedentary behavior are performed can provide valuable behavioral information, both in isolation and synergistically with other areas of physical activity and sedentary behavior research. Global positioning systems (GPS) have been used in physical activity research to identify outdoor location; however, while GPS can receive signals in certain indoor environments, it is not able to provide room- or subroom-level location. On average, adults spend a high proportion of their time indoors. A measure of indoor location would, therefore, provide valuable behavioral information. Objective This systematic review sought to identify and critique technology which has been or could be used to assess the location of physical activity and sedentary behavior. Methods To identify published research papers, four electronic databases were searched using key terms built around behavior, technology, and location. To be eligible for inclusion, papers were required to be published in English and describe a wearable or portable technology or device capable of measuring location. Searches were performed up to February 4, 2015. This was supplemented by backward and forward reference searching. In an attempt to include novel devices which may not yet have made their way into the published research, searches were also performed using three Internet search engines. Specialized software was used to download search results and thus mitigate the potential pitfalls of changing search algorithms. Results A total of 188 research papers met the inclusion criteria. Global positioning systems were the most widely used location technology in the published research, followed by wearable cameras, and radio-frequency identification. Internet search engines identified 81 global positioning systems, 35 real-time locating systems, and 21 wearable cameras. Real-time locating systems determine the indoor location of a wearable tag via the known location of reference nodes. Although the type of reference node and location determination method varies between manufacturers, Wi-Fi appears to be the most popular method. Conclusions The addition of location information to existing measures of physical activity and sedentary behavior will provide important behavioral information. PMID:26245157
Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models.
Yuan, Gonglin; Duan, Xiabin; Liu, Wenjie; Wang, Xiaoliang; Cui, Zengru; Sheng, Zhou
2015-01-01
Two new PRP conjugate Algorithms are proposed in this paper based on two modified PRP conjugate gradient methods: the first algorithm is proposed for solving unconstrained optimization problems, and the second algorithm is proposed for solving nonlinear equations. The first method contains two aspects of information: function value and gradient value. The two methods both possess some good properties, as follows: 1) βk ≥ 0 2) the search direction has the trust region property without the use of any line search method 3) the search direction has sufficient descent property without the use of any line search method. Under some suitable conditions, we establish the global convergence of the two algorithms. We conduct numerical experiments to evaluate our algorithms. The numerical results indicate that the first algorithm is effective and competitive for solving unconstrained optimization problems and that the second algorithm is effective for solving large-scale nonlinear equations.
Two New PRP Conjugate Gradient Algorithms for Minimization Optimization Models
Yuan, Gonglin; Duan, Xiabin; Liu, Wenjie; Wang, Xiaoliang; Cui, Zengru; Sheng, Zhou
2015-01-01
Two new PRP conjugate Algorithms are proposed in this paper based on two modified PRP conjugate gradient methods: the first algorithm is proposed for solving unconstrained optimization problems, and the second algorithm is proposed for solving nonlinear equations. The first method contains two aspects of information: function value and gradient value. The two methods both possess some good properties, as follows: 1)β k ≥ 0 2) the search direction has the trust region property without the use of any line search method 3) the search direction has sufficient descent property without the use of any line search method. Under some suitable conditions, we establish the global convergence of the two algorithms. We conduct numerical experiments to evaluate our algorithms. The numerical results indicate that the first algorithm is effective and competitive for solving unconstrained optimization problems and that the second algorithm is effective for solving large-scale nonlinear equations. PMID:26502409
Hu, Qiyue; Peng, Zhengwei; Kostrowicki, Jaroslav; Kuki, Atsuo
2011-01-01
Pfizer Global Virtual Library (PGVL) of 10(13) readily synthesizable molecules offers a tremendous opportunity for lead optimization and scaffold hopping in drug discovery projects. However, mining into a chemical space of this size presents a challenge for the concomitant design informatics due to the fact that standard molecular similarity searches against a collection of explicit molecules cannot be utilized, since no chemical information system could create and manage more than 10(8) explicit molecules. Nevertheless, by accepting a tolerable level of false negatives in search results, we were able to bypass the need for full 10(13) enumeration and enabled the efficient similarity search and retrieval into this huge chemical space for practical usage by medicinal chemists. In this report, two search methods (LEAP1 and LEAP2) are presented. The first method uses PGVL reaction knowledge to disassemble the incoming search query molecule into a set of reactants and then uses reactant-level similarities into actual available starting materials to focus on a much smaller sub-region of the full virtual library compound space. This sub-region is then explicitly enumerated and searched via a standard similarity method using the original query molecule. The second method uses a fuzzy mapping onto candidate reactions and does not require exact disassembly of the incoming query molecule. Instead Basis Products (or capped reactants) are mapped into the query molecule and the resultant asymmetric similarity scores are used to prioritize the corresponding reactions and reactant sets. All sets of Basis Products are inherently indexed to specific reactions and specific starting materials. This again allows focusing on a much smaller sub-region for explicit enumeration and subsequent standard product-level similarity search. A set of validation studies were conducted. The results have shown that the level of false negatives for the disassembly-based method is acceptable when the query molecule can be recognized for exact disassembly, and the fuzzy reaction mapping method based on Basis Products has an even better performance in terms of lower false-negative rate because it is not limited by the requirement that the query molecule needs to be recognized by any disassembly algorithm. Both search methods have been implemented and accessed through a powerful desktop molecular design tool (see ref. (33) for details). The chapter will end with a comparison of published search methods against large virtual chemical space.
Interior search algorithm (ISA): a novel approach for global optimization.
Gandomi, Amir H
2014-07-01
This paper presents the interior search algorithm (ISA) as a novel method for solving optimization tasks. The proposed ISA is inspired by interior design and decoration. The algorithm is different from other metaheuristic algorithms and provides new insight for global optimization. The proposed method is verified using some benchmark mathematical and engineering problems commonly used in the area of optimization. ISA results are further compared with well-known optimization algorithms. The results show that the ISA is efficiently capable of solving optimization problems. The proposed algorithm can outperform the other well-known algorithms. Further, the proposed algorithm is very simple and it only has one parameter to tune. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Reinharz, Vladimir; Ponty, Yann; Waldispühl, Jérôme
2013-07-01
The design of RNA sequences folding into predefined secondary structures is a milestone for many synthetic biology and gene therapy studies. Most of the current software uses similar local search strategies (i.e. a random seed is progressively adapted to acquire the desired folding properties) and more importantly do not allow the user to control explicitly the nucleotide distribution such as the GC-content in their sequences. However, the latter is an important criterion for large-scale applications as it could presumably be used to design sequences with better transcription rates and/or structural plasticity. In this article, we introduce IncaRNAtion, a novel algorithm to design RNA sequences folding into target secondary structures with a predefined nucleotide distribution. IncaRNAtion uses a global sampling approach and weighted sampling techniques. We show that our approach is fast (i.e. running time comparable or better than local search methods), seedless (we remove the bias of the seed in local search heuristics) and successfully generates high-quality sequences (i.e. thermodynamically stable) for any GC-content. To complete this study, we develop a hybrid method combining our global sampling approach with local search strategies. Remarkably, our glocal methodology overcomes both local and global approaches for sampling sequences with a specific GC-content and target structure. IncaRNAtion is available at csb.cs.mcgill.ca/incarnation/. Supplementary data are available at Bioinformatics online.
A Guiding Evolutionary Algorithm with Greedy Strategy for Global Optimization Problems
Cao, Leilei; Xu, Lihong; Goodman, Erik D.
2016-01-01
A Guiding Evolutionary Algorithm (GEA) with greedy strategy for global optimization problems is proposed. Inspired by Particle Swarm Optimization, the Genetic Algorithm, and the Bat Algorithm, the GEA was designed to retain some advantages of each method while avoiding some disadvantages. In contrast to the usual Genetic Algorithm, each individual in GEA is crossed with the current global best one instead of a randomly selected individual. The current best individual served as a guide to attract offspring to its region of genotype space. Mutation was added to offspring according to a dynamic mutation probability. To increase the capability of exploitation, a local search mechanism was applied to new individuals according to a dynamic probability of local search. Experimental results show that GEA outperformed the other three typical global optimization algorithms with which it was compared. PMID:27293421
A Guiding Evolutionary Algorithm with Greedy Strategy for Global Optimization Problems.
Cao, Leilei; Xu, Lihong; Goodman, Erik D
2016-01-01
A Guiding Evolutionary Algorithm (GEA) with greedy strategy for global optimization problems is proposed. Inspired by Particle Swarm Optimization, the Genetic Algorithm, and the Bat Algorithm, the GEA was designed to retain some advantages of each method while avoiding some disadvantages. In contrast to the usual Genetic Algorithm, each individual in GEA is crossed with the current global best one instead of a randomly selected individual. The current best individual served as a guide to attract offspring to its region of genotype space. Mutation was added to offspring according to a dynamic mutation probability. To increase the capability of exploitation, a local search mechanism was applied to new individuals according to a dynamic probability of local search. Experimental results show that GEA outperformed the other three typical global optimization algorithms with which it was compared.
The q-G method : A q-version of the Steepest Descent method for global optimization.
Soterroni, Aline C; Galski, Roberto L; Scarabello, Marluce C; Ramos, Fernando M
2015-01-01
In this work, the q-Gradient (q-G) method, a q-version of the Steepest Descent method, is presented. The main idea behind the q-G method is the use of the negative of the q-gradient vector of the objective function as the search direction. The q-gradient vector, or simply the q-gradient, is a generalization of the classical gradient vector based on the concept of Jackson's derivative from the q-calculus. Its use provides the algorithm an effective mechanism for escaping from local minima. The q-G method reduces to the Steepest Descent method when the parameter q tends to 1. The algorithm has three free parameters and it is implemented so that the search process gradually shifts from global exploration in the beginning to local exploitation in the end. We evaluated the q-G method on 34 test functions, and compared its performance with 34 optimization algorithms, including derivative-free algorithms and the Steepest Descent method. Our results show that the q-G method is competitive and has a great potential for solving multimodal optimization problems.
Slepoy, A; Peters, M D; Thompson, A P
2007-11-30
Molecular dynamics and other molecular simulation methods rely on a potential energy function, based only on the relative coordinates of the atomic nuclei. Such a function, called a force field, approximately represents the electronic structure interactions of a condensed matter system. Developing such approximate functions and fitting their parameters remains an arduous, time-consuming process, relying on expert physical intuition. To address this problem, a functional programming methodology was developed that may enable automated discovery of entirely new force-field functional forms, while simultaneously fitting parameter values. The method uses a combination of genetic programming, Metropolis Monte Carlo importance sampling and parallel tempering, to efficiently search a large space of candidate functional forms and parameters. The methodology was tested using a nontrivial problem with a well-defined globally optimal solution: a small set of atomic configurations was generated and the energy of each configuration was calculated using the Lennard-Jones pair potential. Starting with a population of random functions, our fully automated, massively parallel implementation of the method reproducibly discovered the original Lennard-Jones pair potential by searching for several hours on 100 processors, sampling only a minuscule portion of the total search space. This result indicates that, with further improvement, the method may be suitable for unsupervised development of more accurate force fields with completely new functional forms. Copyright (c) 2007 Wiley Periodicals, Inc.
National Centers for Environmental Prediction
Organization Search Enter text Search Navigation Bar End Cap Search EMC Go Branches Global Climate and Weather / VISION | About EMC EMC > GLOBAL BRANCH > GFS > HOME Home Implementations Documentation References Products Model Guidance Performance Developers VLab GLOBAL FORECAST SYSTEM Global Data
A Novel Residual Frequency Estimation Method for GNSS Receivers.
Nguyen, Tu Thi-Thanh; La, Vinh The; Ta, Tung Hai
2018-01-04
In Global Navigation Satellite System (GNSS) receivers, residual frequency estimation methods are traditionally applied in the synchronization block to reduce the transient time from acquisition to tracking, or they are used within the frequency estimator to improve its accuracy in open-loop architectures. There are several disadvantages in the current estimation methods, including sensitivity to noise and wide search space size. This paper proposes a new residual frequency estimation method depending on differential processing. Although the complexity of the proposed method is higher than the one of traditional methods, it can lead to more accurate estimates, without increasing the size of the search space.
Gálvez, Akemi; Iglesias, Andrés; Cabellos, Luis
2014-01-01
The problem of data fitting is very important in many theoretical and applied fields. In this paper, we consider the problem of optimizing a weighted Bayesian energy functional for data fitting by using global-support approximating curves. By global-support curves we mean curves expressed as a linear combination of basis functions whose support is the whole domain of the problem, as opposed to other common approaches in CAD/CAM and computer graphics driven by piecewise functions (such as B-splines and NURBS) that provide local control of the shape of the curve. Our method applies a powerful nature-inspired metaheuristic algorithm called cuckoo search, introduced recently to solve optimization problems. A major advantage of this method is its simplicity: cuckoo search requires only two parameters, many fewer than other metaheuristic approaches, so the parameter tuning becomes a very simple task. The paper shows that this new approach can be successfully used to solve our optimization problem. To check the performance of our approach, it has been applied to five illustrative examples of different types, including open and closed 2D and 3D curves that exhibit challenging features, such as cusps and self-intersections. Our results show that the method performs pretty well, being able to solve our minimization problem in an astonishingly straightforward way. PMID:24977175
Gálvez, Akemi; Iglesias, Andrés; Cabellos, Luis
2014-01-01
The problem of data fitting is very important in many theoretical and applied fields. In this paper, we consider the problem of optimizing a weighted Bayesian energy functional for data fitting by using global-support approximating curves. By global-support curves we mean curves expressed as a linear combination of basis functions whose support is the whole domain of the problem, as opposed to other common approaches in CAD/CAM and computer graphics driven by piecewise functions (such as B-splines and NURBS) that provide local control of the shape of the curve. Our method applies a powerful nature-inspired metaheuristic algorithm called cuckoo search, introduced recently to solve optimization problems. A major advantage of this method is its simplicity: cuckoo search requires only two parameters, many fewer than other metaheuristic approaches, so the parameter tuning becomes a very simple task. The paper shows that this new approach can be successfully used to solve our optimization problem. To check the performance of our approach, it has been applied to five illustrative examples of different types, including open and closed 2D and 3D curves that exhibit challenging features, such as cusps and self-intersections. Our results show that the method performs pretty well, being able to solve our minimization problem in an astonishingly straightforward way.
Application of genetic algorithms to focal mechanism determination
NASA Astrophysics Data System (ADS)
Kobayashi, Reiji; Nakanishi, Ichiro
1994-04-01
Genetic algorithms are a new class of methods for global optimization. They resemble Monte Carlo techniques, but search for solutions more efficiently than uniform Monte Carlo sampling. In the field of geophysics, genetic algorithms have recently been used to solve some non-linear inverse problems (e.g., earthquake location, waveform inversion, migration velocity estimation). We present an application of genetic algorithms to focal mechanism determination from first-motion polarities of P-waves and apply our method to two recent large events, the Kushiro-oki earthquake of January 15, 1993 and the SW Hokkaido (Japan Sea) earthquake of July 12, 1993. Initial solution and curvature information of the objective function that gradient methods need are not required in our approach. Moreover globally optimal solutions can be efficiently obtained. Calculation of polarities based on double-couple models is the most time-consuming part of the source mechanism determination. The amount of calculations required by the method designed in this study is much less than that of previous grid search methods.
A Framework and Methodology for Navigating Disaster and Global Health in Crisis Literature
Chan, Jennifer L.; Burkle, Frederick M.
2013-01-01
Both ‘disasters’ and ‘global health in crisis’ research has dramatically grown due to the ever-increasing frequency and magnitude of crises around the world. Large volumes of peer-reviewed literature are not only a testament to the field’s value and evolution, but also present an unprecedented outpouring of seemingly unmanageable information across a wide array of crises and disciplines. Disaster medicine, health and humanitarian assistance, global health and public health disaster literature all lie within the disaster and global health in crisis literature spectrum and are increasingly accepted as multidisciplinary and transdisciplinary disciplines. Researchers, policy makers, and practitioners now face a new challenge; that of accessing this expansive literature for decision-making and exploring new areas of research. Individuals are also reaching beyond the peer-reviewed environment to grey literature using search engines like Google Scholar to access policy documents, consensus reports and conference proceedings. What is needed is a method and mechanism with which to search and retrieve relevant articles from this expansive body of literature. This manuscript presents both a framework and workable process for a diverse group of users to navigate the growing peer-reviewed and grey disaster and global health in crises literature. Methods: Disaster terms from textbooks, peer-reviewed and grey literature were used to design a framework of thematic clusters and subject matter ‘nodes’. A set of 84 terms, selected from 143 curated terms was organized within each node reflecting topics within the disaster and global health in crisis literature. Terms were crossed with one another and the term ‘disaster’. The results were formatted into tables and matrices. This process created a roadmap of search terms that could be applied to the PubMed database. Each search in the matrix or table results in a listed number of articles. This process was applied to literature from PubMed from 2005-2011. A complementary process was also applied to Google Scholar using the same framework of clusters, nodes, and terms expanding the search process to include the broader grey literature assets. Results: A framework of four thematic clusters and twelve subject matter nodes were designed to capture diverse disaster and global health in crisis-related content. From 2005-2011 there were 18,660 articles referring to the term [disaster]. Restricting the search to human research, MeSH, and English language there remained 7,736 identified articles representing an unmanageable number to adequately process for research, policy or best practices. However, using the crossed search and matrix process revealed further examples of robust realms of research in disasters, emergency medicine, EMS, public health and global health. Examples of potential gaps in current peer-reviewed disaster and global health in crisis literature were identified as mental health, elderly care, and alternate sites of care. The same framework and process was then applied to Google Scholar, specifically for topics that resulted in few PubMed search returns. When applying the same framework and process to the Google Scholar example searches retrieved unique peer-reviewed articles not identified in PubMed and documents including books, governmental documents and consensus papers. Conclusions: The proposed framework, methodology and process using four clusters, twelve nodes and a matrix and table process applied to PubMed and Google Scholar unlocks otherwise inaccessible opportunities to better navigate the massively growing body of peer-reviewed disaster and global health in crises literature. This approach will assist researchers, policy makers, and practitioners to generate future research questions, report on the overall evolution of the disaster and global health in crisis field and further guide disaster planning, prevention, preparedness, mitigation response and recovery. PMID:23591457
NASA Astrophysics Data System (ADS)
Zhang, Honghai; Abiose, Ademola K.; Campbell, Dwayne N.; Sonka, Milan; Martins, James B.; Wahle, Andreas
2010-03-01
Quantitative analysis of the left ventricular shape and motion patterns associated with left ventricular mechanical dyssynchrony (LVMD) is essential for diagnosis and treatment planning in congestive heart failure. Real-time 3D echocardiography (RT3DE) used for LVMD analysis is frequently limited by heavy speckle noise or partially incomplete data, thus a segmentation method utilizing learned global shape knowledge is beneficial. In this study, the endocardial surface of the left ventricle (LV) is segmented using a hybrid approach combining active shape model (ASM) with optimal graph search. The latter is used to achieve landmark refinement in the ASM framework. Optimal graph search translates the 3D segmentation into the detection of a minimum-cost closed set in a graph and can produce a globally optimal result. Various information-gradient, intensity distributions, and regional-property terms-are used to define the costs for the graph search. The developed method was tested on 44 RT3DE datasets acquired from 26 LVMD patients. The segmentation accuracy was assessed by surface positioning error and volume overlap measured for the whole LV as well as 16 standard LV regions. The segmentation produced very good results that were not achievable using ASM or graph search alone.
NASA Astrophysics Data System (ADS)
Roberts, B. M.; Blewitt, G.; Dailey, C.; Derevianko, A.
2018-04-01
We analyze the prospects of employing a distributed global network of precision measurement devices as a dark matter and exotic physics observatory. In particular, we consider the atomic clocks of the global positioning system (GPS), consisting of a constellation of 32 medium-Earth orbit satellites equipped with either Cs or Rb microwave clocks and a number of Earth-based receiver stations, some of which employ highly-stable H-maser atomic clocks. High-accuracy timing data is available for almost two decades. By analyzing the satellite and terrestrial atomic clock data, it is possible to search for transient signatures of exotic physics, such as "clumpy" dark matter and dark energy, effectively transforming the GPS constellation into a 50 000 km aperture sensor array. Here we characterize the noise of the GPS satellite atomic clocks, describe the search method based on Bayesian statistics, and test the method using simulated clock data. We present the projected discovery reach using our method, and demonstrate that it can surpass the existing constrains by several order of magnitude for certain models. Our method is not limited in scope to GPS or atomic clock networks, and can also be applied to other networks of precision measurement devices.
A conjugate gradient method with descent properties under strong Wolfe line search
NASA Astrophysics Data System (ADS)
Zull, N.; ‘Aini, N.; Shoid, S.; Ghani, N. H. A.; Mohamed, N. S.; Rivaie, M.; Mamat, M.
2017-09-01
The conjugate gradient (CG) method is one of the optimization methods that are often used in practical applications. The continuous and numerous studies conducted on the CG method have led to vast improvements in its convergence properties and efficiency. In this paper, a new CG method possessing the sufficient descent and global convergence properties is proposed. The efficiency of the new CG algorithm relative to the existing CG methods is evaluated by testing them all on a set of test functions using MATLAB. The tests are measured in terms of iteration numbers and CPU time under strong Wolfe line search. Overall, this new method performs efficiently and comparable to the other famous methods.
Scene Analysis: Non-Linear Spatial Filtering for Automatic Target Detection.
1982-12-01
In this thesis, a method for two-dimensional pattern recognition was developed and tested. The method included a global search scheme for candidate...test global switch TYPEO Creating negative video file only.W 11=0 12=256 13=512 14=768 GO 70 2 1 TYPE" Creating negative and horizontally flipped video...purpose was to develop a base of image processing software for the AFIT Digital Signal Processing Laboratory NOVA- ECLIPSE minicomputer system, for
Robust location of optical fiber modes via the argument principle method
NASA Astrophysics Data System (ADS)
Chen, Parry Y.; Sivan, Yonatan
2017-05-01
We implement a robust, globally convergent root search method for transcendental equations guaranteed to locate all complex roots within a specified search domain, based on Cauchy's residue theorem. Although several implementations of the argument principle already exist, ours has several advantages: it allows singularities within the search domain and branch points are not fatal to the method. Furthermore, our implementation is simple and is written in MATLAB, fulfilling the need for an easily integrated implementation which can be readily modified to accommodate the many variations of the argument principle method, each of which is suited to a different application. We apply the method to the step index fiber dispersion relation, which has become topical due to the recent proliferation of high index contrast fibers. We also find modes with permittivity as the eigenvalue, catering to recent numerical methods that expand the radiation of sources using eigenmodes.
Fong, Simon; Deb, Suash; Yang, Xin-She; Zhuang, Yan
2014-01-01
Traditional K-means clustering algorithms have the drawback of getting stuck at local optima that depend on the random values of initial centroids. Optimization algorithms have their advantages in guiding iterative computation to search for global optima while avoiding local optima. The algorithms help speed up the clustering process by converging into a global optimum early with multiple search agents in action. Inspired by nature, some contemporary optimization algorithms which include Ant, Bat, Cuckoo, Firefly, and Wolf search algorithms mimic the swarming behavior allowing them to cooperatively steer towards an optimal objective within a reasonable time. It is known that these so-called nature-inspired optimization algorithms have their own characteristics as well as pros and cons in different applications. When these algorithms are combined with K-means clustering mechanism for the sake of enhancing its clustering quality by avoiding local optima and finding global optima, the new hybrids are anticipated to produce unprecedented performance. In this paper, we report the results of our evaluation experiments on the integration of nature-inspired optimization methods into K-means algorithms. In addition to the standard evaluation metrics in evaluating clustering quality, the extended K-means algorithms that are empowered by nature-inspired optimization methods are applied on image segmentation as a case study of application scenario.
Deb, Suash; Yang, Xin-She
2014-01-01
Traditional K-means clustering algorithms have the drawback of getting stuck at local optima that depend on the random values of initial centroids. Optimization algorithms have their advantages in guiding iterative computation to search for global optima while avoiding local optima. The algorithms help speed up the clustering process by converging into a global optimum early with multiple search agents in action. Inspired by nature, some contemporary optimization algorithms which include Ant, Bat, Cuckoo, Firefly, and Wolf search algorithms mimic the swarming behavior allowing them to cooperatively steer towards an optimal objective within a reasonable time. It is known that these so-called nature-inspired optimization algorithms have their own characteristics as well as pros and cons in different applications. When these algorithms are combined with K-means clustering mechanism for the sake of enhancing its clustering quality by avoiding local optima and finding global optima, the new hybrids are anticipated to produce unprecedented performance. In this paper, we report the results of our evaluation experiments on the integration of nature-inspired optimization methods into K-means algorithms. In addition to the standard evaluation metrics in evaluating clustering quality, the extended K-means algorithms that are empowered by nature-inspired optimization methods are applied on image segmentation as a case study of application scenario. PMID:25202730
National Centers for Environmental Prediction
Organization Search Enter text Search Navigation Bar End Cap Search EMC Go Branches Global Climate and Weather / VISION | About EMC Click on a model logo to go to its home page RTOFS Global RTOFS Global RTOFS Atlantic
NASA Astrophysics Data System (ADS)
Matoza, Robin S.; Green, David N.; Le Pichon, Alexis; Shearer, Peter M.; Fee, David; Mialle, Pierrick; Ceranna, Lars
2017-04-01
We experiment with a new method to search systematically through multiyear data from the International Monitoring System (IMS) infrasound network to identify explosive volcanic eruption signals originating anywhere on Earth. Detecting, quantifying, and cataloging the global occurrence of explosive volcanism helps toward several goals in Earth sciences and has direct applications in volcanic hazard mitigation. We combine infrasound signal association across multiple stations with source location using a brute-force, grid-search, cross-bearings approach. The algorithm corrects for a background prior rate of coherent unwanted infrasound signals (clutter) in a global grid, without needing to screen array processing detection lists from individual stations prior to association. We develop the algorithm using case studies of explosive eruptions: 2008 Kasatochi, Alaska; 2009 Sarychev Peak, Kurile Islands; and 2010 Eyjafjallajökull, Iceland. We apply the method to global IMS infrasound data from 2005-2010 to construct a preliminary acoustic catalog that emphasizes sustained explosive volcanic activity (long-duration signals or sequences of impulsive transients lasting hours to days). This work represents a step toward the goal of integrating IMS infrasound data products into global volcanic eruption early warning and notification systems. Additionally, a better understanding of volcanic signal detection and location with the IMS helps improve operational event detection, discrimination, and association capabilities.
Clustering methods for the optimization of atomic cluster structure
NASA Astrophysics Data System (ADS)
Bagattini, Francesco; Schoen, Fabio; Tigli, Luca
2018-04-01
In this paper, we propose a revised global optimization method and apply it to large scale cluster conformation problems. In the 1990s, the so-called clustering methods were considered among the most efficient general purpose global optimization techniques; however, their usage has quickly declined in recent years, mainly due to the inherent difficulties of clustering approaches in large dimensional spaces. Inspired from the machine learning literature, we redesigned clustering methods in order to deal with molecular structures in a reduced feature space. Our aim is to show that by suitably choosing a good set of geometrical features coupled with a very efficient descent method, an effective optimization tool is obtained which is capable of finding, with a very high success rate, all known putative optima for medium size clusters without any prior information, both for Lennard-Jones and Morse potentials. The main result is that, beyond being a reliable approach, the proposed method, based on the idea of starting a computationally expensive deep local search only when it seems worth doing so, is capable of saving a huge amount of searches with respect to an analogous algorithm which does not employ a clustering phase. In this paper, we are not claiming the superiority of the proposed method compared to specific, refined, state-of-the-art procedures, but rather indicating a quite straightforward way to save local searches by means of a clustering scheme working in a reduced variable space, which might prove useful when included in many modern methods.
Loveday, Adam; Sherar, Lauren B; Sanders, James P; Sanderson, Paul W; Esliger, Dale W
2015-08-05
The location in which physical activity and sedentary behavior are performed can provide valuable behavioral information, both in isolation and synergistically with other areas of physical activity and sedentary behavior research. Global positioning systems (GPS) have been used in physical activity research to identify outdoor location; however, while GPS can receive signals in certain indoor environments, it is not able to provide room- or subroom-level location. On average, adults spend a high proportion of their time indoors. A measure of indoor location would, therefore, provide valuable behavioral information. This systematic review sought to identify and critique technology which has been or could be used to assess the location of physical activity and sedentary behavior. To identify published research papers, four electronic databases were searched using key terms built around behavior, technology, and location. To be eligible for inclusion, papers were required to be published in English and describe a wearable or portable technology or device capable of measuring location. Searches were performed up to February 4, 2015. This was supplemented by backward and forward reference searching. In an attempt to include novel devices which may not yet have made their way into the published research, searches were also performed using three Internet search engines. Specialized software was used to download search results and thus mitigate the potential pitfalls of changing search algorithms. A total of 188 research papers met the inclusion criteria. Global positioning systems were the most widely used location technology in the published research, followed by wearable cameras, and radio-frequency identification. Internet search engines identified 81 global positioning systems, 35 real-time locating systems, and 21 wearable cameras. Real-time locating systems determine the indoor location of a wearable tag via the known location of reference nodes. Although the type of reference node and location determination method varies between manufacturers, Wi-Fi appears to be the most popular method. The addition of location information to existing measures of physical activity and sedentary behavior will provide important behavioral information.
Texture-based approach to palmprint retrieval for personal identification
NASA Astrophysics Data System (ADS)
Li, Wenxin; Zhang, David; Xu, Z.; You, J.
2000-12-01
This paper presents a new approach to palmprint retrieval for personal identification. Three key issues in image retrieval are considered - feature selection, similarity measures and dynamic search for the best matching of the sample in the image database. We propose a texture-based method for palmprint feature representation. The concept of texture energy is introduced to define a palm print's global and local features, which are characterized with high convergence of inner-palm similarities and good dispersion of inter-palm discrimination. The search is carried out in a layered fashion: first global features are used to guide the fast selection of a small set of similar candidates from the database from the database and then local features are used to decide the final output within the candidate set. The experimental results demonstrate the effectiveness and accuracy of the proposed method.
Texture-based approach to palmprint retrieval for personal identification
NASA Astrophysics Data System (ADS)
Li, Wenxin; Zhang, David; Xu, Z.; You, J.
2001-01-01
This paper presents a new approach to palmprint retrieval for personal identification. Three key issues in image retrieval are considered - feature selection, similarity measures and dynamic search for the best matching of the sample in the image database. We propose a texture-based method for palmprint feature representation. The concept of texture energy is introduced to define a palm print's global and local features, which are characterized with high convergence of inner-palm similarities and good dispersion of inter-palm discrimination. The search is carried out in a layered fashion: first global features are used to guide the fast selection of a small set of similar candidates from the database from the database and then local features are used to decide the final output within the candidate set. The experimental results demonstrate the effectiveness and accuracy of the proposed method.
National Centers for Environmental Prediction
Organization Search Enter text Search Navigation Bar End Cap Search EMC Go Branches Global Climate and Weather Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post Products People GLOBAL CLIMATE & WEATHER MODELING Global Forecast System (GFS) products - Please see
Memoryless cooperative graph search based on the simulated annealing algorithm
NASA Astrophysics Data System (ADS)
Hou, Jian; Yan, Gang-Feng; Fan, Zhen
2011-04-01
We have studied the problem of reaching a globally optimal segment for a graph-like environment with a single or a group of autonomous mobile agents. Firstly, two efficient simulated-annealing-like algorithms are given for a single agent to solve the problem in a partially known environment and an unknown environment, respectively. It shows that under both proposed control strategies, the agent will eventually converge to a globally optimal segment with probability 1. Secondly, we use multi-agent searching to simultaneously reduce the computation complexity and accelerate convergence based on the algorithms we have given for a single agent. By exploiting graph partition, a gossip-consensus method based scheme is presented to update the key parameter—radius of the graph, ensuring that the agents spend much less time finding a globally optimal segment.
A Solution Framework for Environmental Characterization Problems
This paper describes experiences developing a grid-enabled framework for solving environmental inverse problems. The solution approach taken here couples environmental simulation models with global search methods and requires readily available computational resources of the grid ...
Essential competencies in global health research for medical trainees: A narrative review.
White, Mary T; Satterfield, Caley A; Blackard, Jason T
2017-09-01
Participation in short-term educational experiences in global health (STEGHs) among medical trainees is increasingly accompanied by interest in conducting research while abroad. Because formal training in both global health and research methods is currently under-represented in most medical curricula, trainees are often unfamiliar with the knowledge, attitudes, and skills necessary to design and conduct research successfully. This narrative review identifies essential global health research competencies for medical trainees engaged in STEGHs. The authors searched the literature using the terms global health, competency, research, research methods/process/training, scholarly project, medical student, and medical education/education. Because articles directly addressing global health research competencies for medical trainees were limited, the authors additionally drew on the broader literature addressing general research competencies and global health competencies. Articles yielded by the literature search, combined with established guidelines in research ethics and global health ethics, were used to identify six core domains and twenty discrete competencies fundamental to global health research at a level appropriate for medical trainees enrolled in STEGHs. Consideration was given to diverse research modalities, varying levels of training, and the availability of mentoring and on-site support. Research may provide important benefits to medical trainees and host partners. These competencies provide a starting point; however, circumstances at any host site may necessitate additional competencies specific to that setting. These competencies are also limited by the methodology employed in their development and the need for additional perspectives from host partners. The competencies identified outline basic knowledge, attitudes, and skills necessary for medical trainees to conduct limited global health research while participating in STEGHS. They may also be used as a basis for curriculum development, assessment, and research capacity development.
Dai-Kou type conjugate gradient methods with a line search only using gradient.
Huang, Yuanyuan; Liu, Changhe
2017-01-01
In this paper, the Dai-Kou type conjugate gradient methods are developed to solve the optimality condition of an unconstrained optimization, they only utilize gradient information and have broader application scope. Under suitable conditions, the developed methods are globally convergent. Numerical tests and comparisons with the PRP+ conjugate gradient method only using gradient show that the methods are efficient.
SASS: A symmetry adapted stochastic search algorithm exploiting site symmetry
NASA Astrophysics Data System (ADS)
Wheeler, Steven E.; Schleyer, Paul v. R.; Schaefer, Henry F.
2007-03-01
A simple symmetry adapted search algorithm (SASS) exploiting point group symmetry increases the efficiency of systematic explorations of complex quantum mechanical potential energy surfaces. In contrast to previously described stochastic approaches, which do not employ symmetry, candidate structures are generated within simple point groups, such as C2, Cs, and C2v. This facilitates efficient sampling of the 3N-6 Pople's dimensional configuration space and increases the speed and effectiveness of quantum chemical geometry optimizations. Pople's concept of framework groups [J. Am. Chem. Soc. 102, 4615 (1980)] is used to partition the configuration space into structures spanning all possible distributions of sets of symmetry equivalent atoms. This provides an efficient means of computing all structures of a given symmetry with minimum redundancy. This approach also is advantageous for generating initial structures for global optimizations via genetic algorithm and other stochastic global search techniques. Application of the SASS method is illustrated by locating 14 low-lying stationary points on the cc-pwCVDZ ROCCSD(T) potential energy surface of Li5H2. The global minimum structure is identified, along with many unique, nonintuitive, energetically favorable isomers.
A protein-dependent side-chain rotamer library.
Bhuyan, Md Shariful Islam; Gao, Xin
2011-12-14
Protein side-chain packing problem has remained one of the key open problems in bioinformatics. The three main components of protein side-chain prediction methods are a rotamer library, an energy function and a search algorithm. Rotamer libraries summarize the existing knowledge of the experimentally determined structures quantitatively. Depending on how much contextual information is encoded, there are backbone-independent rotamer libraries and backbone-dependent rotamer libraries. Backbone-independent libraries only encode sequential information, whereas backbone-dependent libraries encode both sequential and locally structural information. However, side-chain conformations are determined by spatially local information, rather than sequentially local information. Since in the side-chain prediction problem, the backbone structure is given, spatially local information should ideally be encoded into the rotamer libraries. In this paper, we propose a new type of backbone-dependent rotamer library, which encodes structural information of all the spatially neighboring residues. We call it protein-dependent rotamer libraries. Given any rotamer library and a protein backbone structure, we first model the protein structure as a Markov random field. Then the marginal distributions are estimated by the inference algorithms, without doing global optimization or search. The rotamers from the given library are then re-ranked and associated with the updated probabilities. Experimental results demonstrate that the proposed protein-dependent libraries significantly outperform the widely used backbone-dependent libraries in terms of the side-chain prediction accuracy and the rotamer ranking ability. Furthermore, without global optimization/search, the side-chain prediction power of the protein-dependent library is still comparable to the global-search-based side-chain prediction methods.
The genetic algorithm: A robust method for stress inversion
NASA Astrophysics Data System (ADS)
Thakur, Prithvi; Srivastava, Deepak C.; Gupta, Pravin K.
2017-01-01
The stress inversion of geological or geophysical observations is a nonlinear problem. In most existing methods, it is solved by linearization, under certain assumptions. These linear algorithms not only oversimplify the problem but also are vulnerable to entrapment of the solution in a local optimum. We propose the use of a nonlinear heuristic technique, the genetic algorithm, which searches the global optimum without making any linearizing assumption or simplification. The algorithm mimics the natural evolutionary processes of selection, crossover and mutation and, minimizes a composite misfit function for searching the global optimum, the fittest stress tensor. The validity and efficacy of the algorithm are demonstrated by a series of tests on synthetic and natural fault-slip observations in different tectonic settings and also in situations where the observations are noisy. It is shown that the genetic algorithm is superior to other commonly practised methods, in particular, in those tectonic settings where none of the principal stresses is directed vertically and/or the given data set is noisy.
Fast protein tertiary structure retrieval based on global surface shape similarity.
Sael, Lee; Li, Bin; La, David; Fang, Yi; Ramani, Karthik; Rustamov, Raif; Kihara, Daisuke
2008-09-01
Characterization and identification of similar tertiary structure of proteins provides rich information for investigating function and evolution. The importance of structure similarity searches is increasing as structure databases continue to expand, partly due to the structural genomics projects. A crucial drawback of conventional protein structure comparison methods, which compare structures by their main-chain orientation or the spatial arrangement of secondary structure, is that a database search is too slow to be done in real-time. Here we introduce a global surface shape representation by three-dimensional (3D) Zernike descriptors, which represent a protein structure compactly as a series expansion of 3D functions. With this simplified representation, the search speed against a few thousand structures takes less than a minute. To investigate the agreement between surface representation defined by 3D Zernike descriptor and conventional main-chain based representation, a benchmark was performed against a protein classification generated by the combinatorial extension algorithm. Despite the different representation, 3D Zernike descriptor retrieved proteins of the same conformation defined by combinatorial extension in 89.6% of the cases within the top five closest structures. The real-time protein structure search by 3D Zernike descriptor will open up new possibility of large-scale global and local protein surface shape comparison. 2008 Wiley-Liss, Inc.
Multi-Objective Community Detection Based on Memetic Algorithm
2015-01-01
Community detection has drawn a lot of attention as it can provide invaluable help in understanding the function and visualizing the structure of networks. Since single objective optimization methods have intrinsic drawbacks to identifying multiple significant community structures, some methods formulate the community detection as multi-objective problems and adopt population-based evolutionary algorithms to obtain multiple community structures. Evolutionary algorithms have strong global search ability, but have difficulty in locating local optima efficiently. In this study, in order to identify multiple significant community structures more effectively, a multi-objective memetic algorithm for community detection is proposed by combining multi-objective evolutionary algorithm with a local search procedure. The local search procedure is designed by addressing three issues. Firstly, nondominated solutions generated by evolutionary operations and solutions in dominant population are set as initial individuals for local search procedure. Then, a new direction vector named as pseudonormal vector is proposed to integrate two objective functions together to form a fitness function. Finally, a network specific local search strategy based on label propagation rule is expanded to search the local optimal solutions efficiently. The extensive experiments on both artificial and real-world networks evaluate the proposed method from three aspects. Firstly, experiments on influence of local search procedure demonstrate that the local search procedure can speed up the convergence to better partitions and make the algorithm more stable. Secondly, comparisons with a set of classic community detection methods illustrate the proposed method can find single partitions effectively. Finally, the method is applied to identify hierarchical structures of networks which are beneficial for analyzing networks in multi-resolution levels. PMID:25932646
Multi-objective community detection based on memetic algorithm.
Wu, Peng; Pan, Li
2015-01-01
Community detection has drawn a lot of attention as it can provide invaluable help in understanding the function and visualizing the structure of networks. Since single objective optimization methods have intrinsic drawbacks to identifying multiple significant community structures, some methods formulate the community detection as multi-objective problems and adopt population-based evolutionary algorithms to obtain multiple community structures. Evolutionary algorithms have strong global search ability, but have difficulty in locating local optima efficiently. In this study, in order to identify multiple significant community structures more effectively, a multi-objective memetic algorithm for community detection is proposed by combining multi-objective evolutionary algorithm with a local search procedure. The local search procedure is designed by addressing three issues. Firstly, nondominated solutions generated by evolutionary operations and solutions in dominant population are set as initial individuals for local search procedure. Then, a new direction vector named as pseudonormal vector is proposed to integrate two objective functions together to form a fitness function. Finally, a network specific local search strategy based on label propagation rule is expanded to search the local optimal solutions efficiently. The extensive experiments on both artificial and real-world networks evaluate the proposed method from three aspects. Firstly, experiments on influence of local search procedure demonstrate that the local search procedure can speed up the convergence to better partitions and make the algorithm more stable. Secondly, comparisons with a set of classic community detection methods illustrate the proposed method can find single partitions effectively. Finally, the method is applied to identify hierarchical structures of networks which are beneficial for analyzing networks in multi-resolution levels.
Load forecast method of electric vehicle charging station using SVR based on GA-PSO
NASA Astrophysics Data System (ADS)
Lu, Kuan; Sun, Wenxue; Ma, Changhui; Yang, Shenquan; Zhu, Zijian; Zhao, Pengfei; Zhao, Xin; Xu, Nan
2017-06-01
This paper presents a Support Vector Regression (SVR) method for electric vehicle (EV) charging station load forecast based on genetic algorithm (GA) and particle swarm optimization (PSO). Fuzzy C-Means (FCM) clustering is used to establish similar day samples. GA is used for global parameter searching and PSO is used for a more accurately local searching. Load forecast is then regressed using SVR. The practical load data of an EV charging station were taken to illustrate the proposed method. The result indicates an obvious improvement in the forecasting accuracy compared with SVRs based on PSO and GA exclusively.
Short-cut Methods versus Rigorous Methods for Performance-evaluation of Distillation Configurations
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ramapriya, Gautham Madenoor; Selvarajah, Ajiththaa; Jimenez Cucaita, Luis Eduardo
Here, this study demonstrates the efficacy of a short-cut method such as the Global Minimization Algorithm (GMA), that uses assumptions of ideal mixtures, constant molar overflow (CMO) and pinched columns, in pruning the search-space of distillation column configurations for zeotropic multicomponent separation, to provide a small subset of attractive configurations with low minimum heat duties. The short-cut method, due to its simplifying assumptions, is computationally efficient, yet reliable in identifying the small subset of useful configurations for further detailed process evaluation. This two-tier approach allows expedient search of the configuration space containing hundreds to thousands of candidate configurations for amore » given application.« less
Short-cut Methods versus Rigorous Methods for Performance-evaluation of Distillation Configurations
Ramapriya, Gautham Madenoor; Selvarajah, Ajiththaa; Jimenez Cucaita, Luis Eduardo; ...
2018-05-17
Here, this study demonstrates the efficacy of a short-cut method such as the Global Minimization Algorithm (GMA), that uses assumptions of ideal mixtures, constant molar overflow (CMO) and pinched columns, in pruning the search-space of distillation column configurations for zeotropic multicomponent separation, to provide a small subset of attractive configurations with low minimum heat duties. The short-cut method, due to its simplifying assumptions, is computationally efficient, yet reliable in identifying the small subset of useful configurations for further detailed process evaluation. This two-tier approach allows expedient search of the configuration space containing hundreds to thousands of candidate configurations for amore » given application.« less
A new nonlinear conjugate gradient coefficient under strong Wolfe-Powell line search
NASA Astrophysics Data System (ADS)
Mohamed, Nur Syarafina; Mamat, Mustafa; Rivaie, Mohd
2017-08-01
A nonlinear conjugate gradient method (CG) plays an important role in solving a large-scale unconstrained optimization problem. This method is widely used due to its simplicity. The method is known to possess sufficient descend condition and global convergence properties. In this paper, a new nonlinear of CG coefficient βk is presented by employing the Strong Wolfe-Powell inexact line search. The new βk performance is tested based on number of iterations and central processing unit (CPU) time by using MATLAB software with Intel Core i7-3470 CPU processor. Numerical experimental results show that the new βk converge rapidly compared to other classical CG method.
Global search in photoelectron diffraction structure determination using genetic algorithms
NASA Astrophysics Data System (ADS)
Viana, M. L.; Díez Muiño, R.; Soares, E. A.; Van Hove, M. A.; de Carvalho, V. E.
2007-11-01
Photoelectron diffraction (PED) is an experimental technique widely used to perform structural determinations of solid surfaces. Similarly to low-energy electron diffraction (LEED), structural determination by PED requires a fitting procedure between the experimental intensities and theoretical results obtained through simulations. Multiple scattering has been shown to be an effective approach for making such simulations. The quality of the fit can be quantified through the so-called R-factor. Therefore, the fitting procedure is, indeed, an R-factor minimization problem. However, the topography of the R-factor as a function of the structural and non-structural surface parameters to be determined is complex, and the task of finding the global minimum becomes tough, particularly for complex structures in which many parameters have to be adjusted. In this work we investigate the applicability of the genetic algorithm (GA) global optimization method to this problem. The GA is based on the evolution of species, and makes use of concepts such as crossover, elitism and mutation to perform the search. We show results of its application in the structural determination of three different systems: the Cu(111) surface through the use of energy-scanned experimental curves; the Ag(110)-c(2 × 2)-Sb system, in which a theory-theory fit was performed; and the Ag(111) surface for which angle-scanned experimental curves were used. We conclude that the GA is a highly efficient method to search for global minima in the optimization of the parameters that best fit the experimental photoelectron diffraction intensities to the theoretical ones.
The global Minmax k-means algorithm.
Wang, Xiaoyan; Bai, Yanping
2016-01-01
The global k -means algorithm is an incremental approach to clustering that dynamically adds one cluster center at a time through a deterministic global search procedure from suitable initial positions, and employs k -means to minimize the sum of the intra-cluster variances. However the global k -means algorithm sometimes results singleton clusters and the initial positions sometimes are bad, after a bad initialization, poor local optimal can be easily obtained by k -means algorithm. In this paper, we modified the global k -means algorithm to eliminate the singleton clusters at first, and then we apply MinMax k -means clustering error method to global k -means algorithm to overcome the effect of bad initialization, proposed the global Minmax k -means algorithm. The proposed clustering method is tested on some popular data sets and compared to the k -means algorithm, the global k -means algorithm and the MinMax k -means algorithm. The experiment results show our proposed algorithm outperforms other algorithms mentioned in the paper.
Analysis of Decentralized Variable Structure Control for Collective Search by Mobile Robots
DOE Office of Scientific and Technical Information (OSTI.GOV)
Feddema, J.; Goldsmith, S.; Robinett, R.
1998-11-04
This paper presents an analysis of a decentralized coordination strategy for organizing and controlling a team of mobile robots performing collective search. The alpha-beta coordination strategy is a family of collective search algorithms that allow teams of communicating robots to implicitly coordinate their search activities through a division of labor based on self-selected roIes. In an alpha-beta team. alpha agents are motivated to improve their status by exploring new regions of the search space. Beta a~ents are conservative, and reiy on the alpha agents to provide advanced information on favorable regions of the search space. An agent selects its currentmore » role dynamically based on its current status value relative to the current status values of the other team members. Status is determined by some function of the agent's sensor readings, and is generally a measurement of source intensity at the agent's current location. Variations on the decision rules determining alpha and beta behavior produce different versions of the algorithm that lead to different global properties. The alpha-beta strategy is based on a simple finite-state machine that implements a form of Variable Structure Control (VSC). The VSC system changes the dynamics of the collective system by abruptly switching at defined states to alternative control laws . In VSC, Lyapunov's direct method is often used to design control surfaces which guide the system to a given goal. We introduce the alpha-beta aIgorithm and present an analysis of the equilibrium point and the global stability of the alpha-beta algorithm based on Lyapunov's method.« less
Analysis of decentralized variable structure control for collective search by mobile robots
NASA Astrophysics Data System (ADS)
Goldsmith, Steven Y.; Feddema, John T.; Robinett, Rush D., III
1998-10-01
This paper presents an analysis of a decentralized coordination strategy for organizing and controlling a team of mobile robots performing collective search. The alpha- beta coordination strategy is a family of collective search algorithms that allow teams of communicating robots to implicitly coordinate their search activities through a division of labor based on self-selected roles. In an alpha- beta team, alpha agents are motivated to improve their status by exploring new regions of the search space. Beta agents are conservative, and rely on the alpha agents to provide advanced information on favorable regions of the search space. An agent selects its current role dynamically based on its current status value relative to the current status values of the other team members. Status is determined by some function of the agent's sensor readings, and is generally a measurement of source intensity at the agent's current location. Variations on the decision rules determining alpha and beta behavior produce different versions of the algorithm that lead to different global properties. The alpha-beta strategy is based on a simple finite-state machine that implements a form of Variable Structure Control (VSC). The VSC system changes the dynamics of the collective system by abruptly switching at defined states to alternative control laws. In VSC, Lyapunov's direct method is often used to design control surfaces which guide the system to a given goal. We introduce the alpha- beta algorithm and present an analysis of the equilibrium point and the global stability of the alpha-beta algorithm based on Lyapunov's method.
NASA Astrophysics Data System (ADS)
Rocha, Humberto; Dias, Joana M.; Ferreira, Brígida C.; Lopes, Maria C.
2013-05-01
Generally, the inverse planning of radiation therapy consists mainly of the fluence optimization. The beam angle optimization (BAO) in intensity-modulated radiation therapy (IMRT) consists of selecting appropriate radiation incidence directions and may influence the quality of the IMRT plans, both to enhance better organ sparing and to improve tumor coverage. However, in clinical practice, most of the time, beam directions continue to be manually selected by the treatment planner without objective and rigorous criteria. The goal of this paper is to introduce a novel approach that uses beam’s-eye-view dose ray tracing metrics within a pattern search method framework in the optimization of the highly non-convex BAO problem. Pattern search methods are derivative-free optimization methods that require a few function evaluations to progress and converge and have the ability to better avoid local entrapment. The pattern search method framework is composed of a search step and a poll step at each iteration. The poll step performs a local search in a mesh neighborhood and ensures the convergence to a local minimizer or stationary point. The search step provides the flexibility for a global search since it allows searches away from the neighborhood of the current iterate. Beam’s-eye-view dose metrics assign a score to each radiation beam direction and can be used within the pattern search framework furnishing a priori knowledge of the problem so that directions with larger dosimetric scores are tested first. A set of clinical cases of head-and-neck tumors treated at the Portuguese Institute of Oncology of Coimbra is used to discuss the potential of this approach in the optimization of the BAO problem.
NASA Astrophysics Data System (ADS)
Wang, Geng; Zhou, Kexin; Zhang, Yeming
2018-04-01
The widely used Bouc-Wen hysteresis model can be utilized to accurately simulate the voltage-displacement curves of piezoelectric actuators. In order to identify the unknown parameters of the Bouc-Wen model, an improved artificial bee colony (IABC) algorithm is proposed in this paper. A guiding strategy for searching the current optimal position of the food source is proposed in the method, which can help balance the local search ability and global exploitation capability. And the formula for the scout bees to search for the food source is modified to increase the convergence speed. Some experiments were conducted to verify the effectiveness of the IABC algorithm. The results show that the identified hysteresis model agreed well with the actual actuator response. Moreover, the identification results were compared with the standard particle swarm optimization (PSO) method, and it can be seen that the search performance in convergence rate of the IABC algorithm is better than that of the standard PSO method.
Structures of Aln (n= 27, 28, 29, and 30) clusters with double-tetrahedron structures
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhang, W.; Lu, W. C.; Sun, J.
2008-01-31
Global search for lowest-energy structures of neutral aluminum clusters Al{sub n} (n = 27, 28, 29 and 30) was performed using a genetic algorithm (GA) coupled with a tight-binding (TB) method. Structural candidates obtained from our GA search were further optimized with first-principles calculations. It is found that the medium-sized aluminum clusters Al{sub 27} to Al{sub 30} favor double-tetrahedron structures.
Improved hybrid optimization algorithm for 3D protein structure prediction.
Zhou, Changjun; Hou, Caixia; Wei, Xiaopeng; Zhang, Qiang
2014-07-01
A new improved hybrid optimization algorithm - PGATS algorithm, which is based on toy off-lattice model, is presented for dealing with three-dimensional protein structure prediction problems. The algorithm combines the particle swarm optimization (PSO), genetic algorithm (GA), and tabu search (TS) algorithms. Otherwise, we also take some different improved strategies. The factor of stochastic disturbance is joined in the particle swarm optimization to improve the search ability; the operations of crossover and mutation that are in the genetic algorithm are changed to a kind of random liner method; at last tabu search algorithm is improved by appending a mutation operator. Through the combination of a variety of strategies and algorithms, the protein structure prediction (PSP) in a 3D off-lattice model is achieved. The PSP problem is an NP-hard problem, but the problem can be attributed to a global optimization problem of multi-extremum and multi-parameters. This is the theoretical principle of the hybrid optimization algorithm that is proposed in this paper. The algorithm combines local search and global search, which overcomes the shortcoming of a single algorithm, giving full play to the advantage of each algorithm. In the current universal standard sequences, Fibonacci sequences and real protein sequences are certified. Experiments show that the proposed new method outperforms single algorithms on the accuracy of calculating the protein sequence energy value, which is proved to be an effective way to predict the structure of proteins.
Takeuchi, Hiroshi
2018-05-08
Since searching for the global minimum on the potential energy surface of a cluster is very difficult, many geometry optimization methods have been proposed, in which initial geometries are randomly generated and subsequently improved with different algorithms. In this study, a size-guided multi-seed heuristic method is developed and applied to benzene clusters. It produces initial configurations of the cluster with n molecules from the lowest-energy configurations of the cluster with n - 1 molecules (seeds). The initial geometries are further optimized with the geometrical perturbations previously used for molecular clusters. These steps are repeated until the size n satisfies a predefined one. The method locates putative global minima of benzene clusters with up to 65 molecules. The performance of the method is discussed using the computational cost, rates to locate the global minima, and energies of initial geometries. © 2018 Wiley Periodicals, Inc. © 2018 Wiley Periodicals, Inc.
NASA Astrophysics Data System (ADS)
Mo, Shaoxing; Lu, Dan; Shi, Xiaoqing; Zhang, Guannan; Ye, Ming; Wu, Jianfeng; Wu, Jichun
2017-12-01
Global sensitivity analysis (GSA) and uncertainty quantification (UQ) for groundwater modeling are challenging because of the model complexity and significant computational requirements. To reduce the massive computational cost, a cheap-to-evaluate surrogate model is usually constructed to approximate and replace the expensive groundwater models in the GSA and UQ. Constructing an accurate surrogate requires actual model simulations on a number of parameter samples. Thus, a robust experimental design strategy is desired to locate informative samples so as to reduce the computational cost in surrogate construction and consequently to improve the efficiency in the GSA and UQ. In this study, we develop a Taylor expansion-based adaptive design (TEAD) that aims to build an accurate global surrogate model with a small training sample size. TEAD defines a novel hybrid score function to search informative samples, and a robust stopping criterion to terminate the sample search that guarantees the resulted approximation errors satisfy the desired accuracy. The good performance of TEAD in building global surrogate models is demonstrated in seven analytical functions with different dimensionality and complexity in comparison to two widely used experimental design methods. The application of the TEAD-based surrogate method in two groundwater models shows that the TEAD design can effectively improve the computational efficiency of GSA and UQ for groundwater modeling.
An effective hybrid firefly algorithm with harmony search for global numerical optimization.
Guo, Lihong; Wang, Gai-Ge; Wang, Heqi; Wang, Dinan
2013-01-01
A hybrid metaheuristic approach by hybridizing harmony search (HS) and firefly algorithm (FA), namely, HS/FA, is proposed to solve function optimization. In HS/FA, the exploration of HS and the exploitation of FA are fully exerted, so HS/FA has a faster convergence speed than HS and FA. Also, top fireflies scheme is introduced to reduce running time, and HS is utilized to mutate between fireflies when updating fireflies. The HS/FA method is verified by various benchmarks. From the experiments, the implementation of HS/FA is better than the standard FA and other eight optimization methods.
Ringed Seal Search for Global Optimization via a Sensitive Search Model.
Saadi, Younes; Yanto, Iwan Tri Riyadi; Herawan, Tutut; Balakrishnan, Vimala; Chiroma, Haruna; Risnumawan, Anhar
2016-01-01
The efficiency of a metaheuristic algorithm for global optimization is based on its ability to search and find the global optimum. However, a good search often requires to be balanced between exploration and exploitation of the search space. In this paper, a new metaheuristic algorithm called Ringed Seal Search (RSS) is introduced. It is inspired by the natural behavior of the seal pup. This algorithm mimics the seal pup movement behavior and its ability to search and choose the best lair to escape predators. The scenario starts once the seal mother gives birth to a new pup in a birthing lair that is constructed for this purpose. The seal pup strategy consists of searching and selecting the best lair by performing a random walk to find a new lair. Affected by the sensitive nature of seals against external noise emitted by predators, the random walk of the seal pup takes two different search states, normal state and urgent state. In the normal state, the pup performs an intensive search between closely adjacent lairs; this movement is modeled via a Brownian walk. In an urgent state, the pup leaves the proximity area and performs an extensive search to find a new lair from sparse targets; this movement is modeled via a Levy walk. The switch between these two states is realized by the random noise emitted by predators. The algorithm keeps switching between normal and urgent states until the global optimum is reached. Tests and validations were performed using fifteen benchmark test functions to compare the performance of RSS with other baseline algorithms. The results show that RSS is more efficient than Genetic Algorithm, Particles Swarm Optimization and Cuckoo Search in terms of convergence rate to the global optimum. The RSS shows an improvement in terms of balance between exploration (extensive) and exploitation (intensive) of the search space. The RSS can efficiently mimic seal pups behavior to find best lair and provide a new algorithm to be used in global optimization problems.
NASA Astrophysics Data System (ADS)
Leiserson, Mark D. M.; Tatar, Diana; Cowen, Lenore J.; Hescott, Benjamin J.
A new method based on a mathematically natural local search framework for max cut is developed to uncover functionally coherent module and BPM motifs in high-throughput genetic interaction data. Unlike previous methods which also consider physical protein-protein interaction data, our method utilizes genetic interaction data only; this becomes increasingly important as high-throughput genetic interaction data is becoming available in settings where less is known about physical interaction data. We compare modules and BPMs obtained to previous methods and across different datasets. Despite needing no physical interaction information, the BPMs produced by our method are competitive with previous methods. Biological findings include a suggested global role for the prefoldin complex and a SWR subcomplex in pathway buffering in the budding yeast interactome.
Leiserson, Mark D M; Tatar, Diana; Cowen, Lenore J; Hescott, Benjamin J
2011-11-01
A new method based on a mathematically natural local search framework for max cut is developed to uncover functionally coherent module and BPM motifs in high-throughput genetic interaction data. Unlike previous methods, which also consider physical protein-protein interaction data, our method utilizes genetic interaction data only; this becomes increasingly important as high-throughput genetic interaction data is becoming available in settings where less is known about physical interaction data. We compare modules and BPMs obtained to previous methods and across different datasets. Despite needing no physical interaction information, the BPMs produced by our method are competitive with previous methods. Biological findings include a suggested global role for the prefoldin complex and a SWR subcomplex in pathway buffering in the budding yeast interactome.
NASA Astrophysics Data System (ADS)
Peng, Qi; Guan, Weipeng; Wu, Yuxiang; Cai, Ye; Xie, Canyu; Wang, Pengfei
2018-01-01
This paper proposes a three-dimensional (3-D) high-precision indoor positioning strategy using Tabu search based on visible light communication. Tabu search is a powerful global optimization algorithm, and the 3-D indoor positioning can be transformed into an optimal solution problem. Therefore, in the 3-D indoor positioning, the optimal receiver coordinate can be obtained by the Tabu search algorithm. For all we know, this is the first time the Tabu search algorithm is applied to visible light positioning. Each light-emitting diode (LED) in the system broadcasts a unique identity (ID) and transmits the ID information. When the receiver detects optical signals with ID information from different LEDs, using the global optimization of the Tabu search algorithm, the 3-D high-precision indoor positioning can be realized when the fitness value meets certain conditions. Simulation results show that the average positioning error is 0.79 cm, and the maximum error is 5.88 cm. The extended experiment of trajectory tracking also shows that 95.05% positioning errors are below 1.428 cm. It can be concluded from the data that the 3-D indoor positioning based on the Tabu search algorithm achieves the requirements of centimeter level indoor positioning. The algorithm used in indoor positioning is very effective and practical and is superior to other existing methods for visible light indoor positioning.
A framework and methodology for navigating disaster and global health in crisis literature.
Chan, Jennifer L; Burkle, Frederick M
2013-04-04
Both 'disasters' and 'global health in crisis' research has dramatically grown due to the ever-increasing frequency and magnitude of crises around the world. Large volumes of peer-reviewed literature are not only a testament to the field's value and evolution, but also present an unprecedented outpouring of seemingly unmanageable information across a wide array of crises and disciplines. Disaster medicine, health and humanitarian assistance, global health and public health disaster literature all lie within the disaster and global health in crisis literature spectrum and are increasingly accepted as multidisciplinary and transdisciplinary disciplines. Researchers, policy makers, and practitioners now face a new challenge; that of accessing this expansive literature for decision-making and exploring new areas of research. Individuals are also reaching beyond the peer-reviewed environment to grey literature using search engines like Google Scholar to access policy documents, consensus reports and conference proceedings. What is needed is a method and mechanism with which to search and retrieve relevant articles from this expansive body of literature. This manuscript presents both a framework and workable process for a diverse group of users to navigate the growing peer-reviewed and grey disaster and global health in crises literature. Disaster terms from textbooks, peer-reviewed and grey literature were used to design a framework of thematic clusters and subject matter 'nodes'. A set of 84 terms, selected from 143 curated terms was organized within each node reflecting topics within the disaster and global health in crisis literature. Terms were crossed with one another and the term 'disaster'. The results were formatted into tables and matrices. This process created a roadmap of search terms that could be applied to the PubMed database. Each search in the matrix or table results in a listed number of articles. This process was applied to literature from PubMed from 2005-2011. A complementary process was also applied to Google Scholar using the same framework of clusters, nodes, and terms expanding the search process to include the broader grey literature assets. A framework of four thematic clusters and twelve subject matter nodes were designed to capture diverse disaster and global health in crisis-related content. From 2005-2011 there were 18,660 articles referring to the term [disaster]. Restricting the search to human research, MeSH, and English language there remained 7,736 identified articles representing an unmanageable number to adequately process for research, policy or best practices. However, using the crossed search and matrix process revealed further examples of robust realms of research in disasters, emergency medicine, EMS, public health and global health. Examples of potential gaps in current peer-reviewed disaster and global health in crisis literature were identified as mental health, elderly care, and alternate sites of care. The same framework and process was then applied to Google Scholar, specifically for topics that resulted in few PubMed search returns. When applying the same framework and process to the Google Scholar example searches retrieved unique peer-reviewed articles not identified in PubMed and documents including books, governmental documents and consensus papers. The proposed framework, methodology and process using four clusters, twelve nodes and a matrix and table process applied to PubMed and Google Scholar unlocks otherwise inaccessible opportunities to better navigate the massively growing body of peer-reviewed disaster and global health in crises literature. This approach will assist researchers, policy makers, and practitioners to generate future research questions, report on the overall evolution of the disaster and global health in crisis field and further guide disaster planning, prevention, preparedness, mitigation response and recovery.
Li, Xiangrong; Zhao, Xupei; Duan, Xiabin; Wang, Xiaoliang
2015-01-01
It is generally acknowledged that the conjugate gradient (CG) method achieves global convergence—with at most a linear convergence rate—because CG formulas are generated by linear approximations of the objective functions. The quadratically convergent results are very limited. We introduce a new PRP method in which the restart strategy is also used. Moreover, the method we developed includes not only n-step quadratic convergence but also both the function value information and gradient value information. In this paper, we will show that the new PRP method (with either the Armijo line search or the Wolfe line search) is both linearly and quadratically convergent. The numerical experiments demonstrate that the new PRP algorithm is competitive with the normal CG method. PMID:26381742
Li, Xiangrong; Zhao, Xupei; Duan, Xiabin; Wang, Xiaoliang
2015-01-01
It is generally acknowledged that the conjugate gradient (CG) method achieves global convergence--with at most a linear convergence rate--because CG formulas are generated by linear approximations of the objective functions. The quadratically convergent results are very limited. We introduce a new PRP method in which the restart strategy is also used. Moreover, the method we developed includes not only n-step quadratic convergence but also both the function value information and gradient value information. In this paper, we will show that the new PRP method (with either the Armijo line search or the Wolfe line search) is both linearly and quadratically convergent. The numerical experiments demonstrate that the new PRP algorithm is competitive with the normal CG method.
Song, Qi; Wu, Xiaodong; Liu, Yunlong; Smith, Mark; Buatti, John; Sonka, Milan
2009-01-01
We present a novel method for globally optimal surface segmentation of multiple mutually interacting objects, incorporating both edge and shape knowledge in a 3-D graph-theoretic approach. Hard surface interacting constraints are enforced in the interacting regions, preserving the geometric relationship of those partially interacting surfaces. The soft smoothness a priori shape compliance is introduced into the energy functional to provide shape guidance. The globally optimal surfaces can be simultaneously achieved by solving a maximum flow problem based on an arc-weighted graph representation. Representing the segmentation problem in an arc-weighted graph, one can incorporate a wider spectrum of constraints into the formulation, thus increasing segmentation accuracy and robustness in volumetric image data. To the best of our knowledge, our method is the first attempt to introduce the arc-weighted graph representation into the graph-searching approach for simultaneous segmentation of multiple partially interacting objects, which admits a globally optimal solution in a low-order polynomial time. Our new approach was applied to the simultaneous surface detection of bladder and prostate. The result was quite encouraging in spite of the low saliency of the bladder and prostate in CT images.
Multi-fidelity and multi-disciplinary design optimization of supersonic business jets
NASA Astrophysics Data System (ADS)
Choi, Seongim
Supersonic jets have been drawing great attention after the end of service for the Concorde was announced on April of 2003. It is believed, however, that civilian supersonic aircraft may make a viable return in the business jet market. This thesis focuses on the design optimization of feasible supersonic business jet configurations. Preliminary design techniques for mitigation of ground sonic boom are investigated while ensuring that all relevant disciplinary constraints are satisfied (including aerodynamic performance, propulsion, stability & control and structures.) In order to achieve reasonable confidence in the resulting designs, high-fidelity simulations are required, making the entire design process both expensive and complex. In order to minimize the computational cost, surrogate/approximate models are constructed using a hierarchy of different fidelity analysis tools including PASS, A502/Panair and Euler/NS codes. Direct search methods such as Genetic Algorithms (GAs) and a nonlinear SIMPLEX are employed to designs in searches of large and noisy design spaces. A local gradient-based search method can be combined with these global search methods for small modifications of candidate optimum designs. The Mesh Adaptive Direct Search (MADS) method can also be used to explore the design space using a solution-adaptive grid refinement approach. These hybrid approaches, both in search methodology and surrogate model construction, are shown to result in designs with reductions in sonic boom and improved aerodynamic performance.
Public health preparedness for the impact of global warming on human health.
Wassel, John J
2009-01-01
To assess the changes in weather and weather-associated disturbances related to global warming; the impact on human health of these changes; and the public health preparedness mandated by this impact. Qualitative review of the literature. Articles will be obtained by searching PubMed database, Google, and Google Scholar search engines using terms such as "global warming," "climate change," "human health," "public health," and "preparedness." Sixty-seven journal articles were reviewed. The projections and signs of global environmental changes are worrisome, and there are reasons to believe that related information may have been conservatively interpreted and presented in the recent past. Although the challenges are great, there are many opportunities for devising beneficial solutions at individual, community, and global levels. It is essential for public health professionals to become involved in advocating for change at all of these levels, as well as through professional organizations. We must begin "greening" our own lives and clinical practice, and start talking about these issues with patients. As we build walkable neighborhoods, change methods of energy production, and make water use and food production and distribution more sustainable, the benefits to improved air quality, a stabilized climate, social support, and individual and community health will be dramatic.
Fast correspondences search in anatomical trees
NASA Astrophysics Data System (ADS)
dos Santos, Thiago R.; Gergel, Ingmar; Meinzer, Hans-Peter; Maier-Hein, Lena
2010-03-01
Registration of multiple medical images commonly comprises the steps feature extraction, correspondences search and transformation computation. In this paper, we present a new method for a fast and pose independent search of correspondences using as features anatomical trees such as the bronchial system in the lungs or the vessel system in the liver. Our approach scores the similarities between the trees' nodes (bifurcations) taking into account both, topological properties extracted from their graph representations and anatomical properties extracted from the trees themselves. The node assignment maximizes the global similarity (sum of the scores of each pair of assigned nodes), assuring that the matches are distributed throughout the trees. Furthermore, the proposed method is able to deal with distortions in the data, such as noise, motion, artifacts, and problems associated with the extraction method, such as missing or false branches. According to an evaluation on swine lung data sets, the method requires less than one second on average to compute the matching and yields a high rate of correct matches compared to state of the art work.
Chapman, Simon
2010-01-01
Background The World Health Organization Framework Convention on Tobacco Control (WHO FCTC) bans all forms of tobacco advertising, promotion and sponsorship. The comprehensiveness of this ban has yet to be tested by online social networking media such as Facebook. In this paper, the activities of employees of the transnational tobacco company, British American Tobacco, (BAT) on Facebook and the type of content associated with two globally popular BAT brands (Dunhill and Lucky Strike) are mapped. Methods BAT employees on Facebook were identified and then the term ‘British American Tobacco’ was searched for in the Facebook search engine and results recorded, including titles, descriptions, names and the number of Facebook participants involved for each search result. To further detail any potential promotional activities, a search for two of BAT's global brands, ‘Dunhill’ and ‘Lucky Strike’, was conducted. Results Each of the 3 search terms generated more than 500 items across a variety of Facebook subsections. Discussion Some BAT employees are energetically promoting BAT and BAT brands on Facebook through joining and administrating groups, joining pages as fans and posting photographs of BAT events, products and promotional items. BAT employees undertaking these actions are from countries that have ratified the WHO FCTC, which requires signatories to ban all forms of tobacco advertising, including online and crossborder exposure from countries that are not enforcing advertising restrictions. The results of the present research could be used to test the comprehensiveness of the advertising ban by requesting that governments mandate the removal of this promotional material from Facebook. PMID:20395406
NASA Astrophysics Data System (ADS)
Guang, Chen; Qibo, Feng; Keqin, Ding; Zhan, Gao
2017-10-01
A subpixel displacement measurement method based on the combination of particle swarm optimization (PSO) and gradient algorithm (GA) was proposed for accuracy and speed optimization in GA, which is a subpixel displacement measurement method better applied in engineering practice. An initial integer-pixel value was obtained according to the global searching ability of PSO, and then gradient operators were adopted for a subpixel displacement search. A comparison was made between this method and GA by simulated speckle images and rigid-body displacement in metal specimens. The results showed that the computational accuracy of the combination of PSO and GA method reached 0.1 pixel in the simulated speckle images, or even 0.01 pixels in the metal specimen. Also, computational efficiency and the antinoise performance of the improved method were markedly enhanced.
Leiserson, Mark D.M.; Tatar, Diana; Cowen, Lenore J.
2011-01-01
Abstract A new method based on a mathematically natural local search framework for max cut is developed to uncover functionally coherent module and BPM motifs in high-throughput genetic interaction data. Unlike previous methods, which also consider physical protein-protein interaction data, our method utilizes genetic interaction data only; this becomes increasingly important as high-throughput genetic interaction data is becoming available in settings where less is known about physical interaction data. We compare modules and BPMs obtained to previous methods and across different datasets. Despite needing no physical interaction information, the BPMs produced by our method are competitive with previous methods. Biological findings include a suggested global role for the prefoldin complex and a SWR subcomplex in pathway buffering in the budding yeast interactome. PMID:21882903
Shape regularized active contour based on dynamic programming for anatomical structure segmentation
NASA Astrophysics Data System (ADS)
Yu, Tianli; Luo, Jiebo; Singhal, Amit; Ahuja, Narendra
2005-04-01
We present a method to incorporate nonlinear shape prior constraints into segmenting different anatomical structures in medical images. Kernel space density estimation (KSDE) is used to derive the nonlinear shape statistics and enable building a single model for a class of objects with nonlinearly varying shapes. The object contour is coerced by image-based energy into the correct shape sub-distribution (e.g., left or right lung), without the need for model selection. In contrast to an earlier algorithm that uses a local gradient-descent search (susceptible to local minima), we propose an algorithm that iterates between dynamic programming (DP) and shape regularization. DP is capable of finding an optimal contour in the search space that maximizes a cost function related to the difference between the interior and exterior of the object. To enforce the nonlinear shape prior, we propose two shape regularization methods, global and local regularization. Global regularization is applied after each DP search to move the entire shape vector in the shape space in a gradient descent fashion to the position of probable shapes learned from training. The regularized shape is used as the starting shape for the next iteration. Local regularization is accomplished through modifying the search space of the DP. The modified search space only allows a certain amount of deformation of the local shape from the starting shape. Both regularization methods ensure the consistency between the resulted shape with the training shapes, while still preserving DP"s ability to search over a large range and avoid local minima. Our algorithm was applied to two different segmentation tasks for radiographic images: lung field and clavicle segmentation. Both applications have shown that our method is effective and versatile in segmenting various anatomical structures under prior shape constraints; and it is robust to noise and local minima caused by clutter (e.g., blood vessels) and other similar structures (e.g., ribs). We believe that the proposed algorithm represents a major step in the paradigm shift to object segmentation under nonlinear shape constraints.
Ringed Seal Search for Global Optimization via a Sensitive Search Model
Saadi, Younes; Yanto, Iwan Tri Riyadi; Herawan, Tutut; Balakrishnan, Vimala; Chiroma, Haruna; Risnumawan, Anhar
2016-01-01
The efficiency of a metaheuristic algorithm for global optimization is based on its ability to search and find the global optimum. However, a good search often requires to be balanced between exploration and exploitation of the search space. In this paper, a new metaheuristic algorithm called Ringed Seal Search (RSS) is introduced. It is inspired by the natural behavior of the seal pup. This algorithm mimics the seal pup movement behavior and its ability to search and choose the best lair to escape predators. The scenario starts once the seal mother gives birth to a new pup in a birthing lair that is constructed for this purpose. The seal pup strategy consists of searching and selecting the best lair by performing a random walk to find a new lair. Affected by the sensitive nature of seals against external noise emitted by predators, the random walk of the seal pup takes two different search states, normal state and urgent state. In the normal state, the pup performs an intensive search between closely adjacent lairs; this movement is modeled via a Brownian walk. In an urgent state, the pup leaves the proximity area and performs an extensive search to find a new lair from sparse targets; this movement is modeled via a Levy walk. The switch between these two states is realized by the random noise emitted by predators. The algorithm keeps switching between normal and urgent states until the global optimum is reached. Tests and validations were performed using fifteen benchmark test functions to compare the performance of RSS with other baseline algorithms. The results show that RSS is more efficient than Genetic Algorithm, Particles Swarm Optimization and Cuckoo Search in terms of convergence rate to the global optimum. The RSS shows an improvement in terms of balance between exploration (extensive) and exploitation (intensive) of the search space. The RSS can efficiently mimic seal pups behavior to find best lair and provide a new algorithm to be used in global optimization problems. PMID:26790131
Adaptive cockroach swarm algorithm
NASA Astrophysics Data System (ADS)
Obagbuwa, Ibidun C.; Abidoye, Ademola P.
2017-07-01
An adaptive cockroach swarm optimization (ACSO) algorithm is proposed in this paper to strengthen the existing cockroach swarm optimization (CSO) algorithm. The ruthless component of CSO algorithm is modified by the employment of blend crossover predator-prey evolution method which helps algorithm prevent any possible population collapse, maintain population diversity and create adaptive search in each iteration. The performance of the proposed algorithm on 16 global optimization benchmark function problems was evaluated and compared with the existing CSO, cuckoo search, differential evolution, particle swarm optimization and artificial bee colony algorithms.
NASA Astrophysics Data System (ADS)
Cheng, Longjiu; Cai, Wensheng; Shao, Xueguang
2005-03-01
An energy-based perturbation and a new idea of taboo strategy are proposed for structural optimization and applied in a benchmark problem, i.e., the optimization of Lennard-Jones (LJ) clusters. It is proved that the energy-based perturbation is much better than the traditional random perturbation both in convergence speed and searching ability when it is combined with a simple greedy method. By tabooing the most wide-spread funnel instead of the visited solutions, the hit rate of other funnels can be significantly improved. Global minima of (LJ) clusters up to 200 atoms are found with high efficiency.
An Effective Hybrid Firefly Algorithm with Harmony Search for Global Numerical Optimization
Guo, Lihong; Wang, Gai-Ge; Wang, Heqi; Wang, Dinan
2013-01-01
A hybrid metaheuristic approach by hybridizing harmony search (HS) and firefly algorithm (FA), namely, HS/FA, is proposed to solve function optimization. In HS/FA, the exploration of HS and the exploitation of FA are fully exerted, so HS/FA has a faster convergence speed than HS and FA. Also, top fireflies scheme is introduced to reduce running time, and HS is utilized to mutate between fireflies when updating fireflies. The HS/FA method is verified by various benchmarks. From the experiments, the implementation of HS/FA is better than the standard FA and other eight optimization methods. PMID:24348137
Trust regions in Kriging-based optimization with expected improvement
NASA Astrophysics Data System (ADS)
Regis, Rommel G.
2016-06-01
The Kriging-based Efficient Global Optimization (EGO) method works well on many expensive black-box optimization problems. However, it does not seem to perform well on problems with steep and narrow global minimum basins and on high-dimensional problems. This article develops a new Kriging-based optimization method called TRIKE (Trust Region Implementation in Kriging-based optimization with Expected improvement) that implements a trust-region-like approach where each iterate is obtained by maximizing an Expected Improvement (EI) function within some trust region. This trust region is adjusted depending on the ratio of the actual improvement to the EI. This article also develops the Kriging-based CYCLONE (CYClic Local search in OptimizatioN using Expected improvement) method that uses a cyclic pattern to determine the search regions where the EI is maximized. TRIKE and CYCLONE are compared with EGO on 28 test problems with up to 32 dimensions and on a 36-dimensional groundwater bioremediation application in appendices supplied as an online supplement available at http://dx.doi.org/10.1080/0305215X.2015.1082350. The results show that both algorithms yield substantial improvements over EGO and they are competitive with a radial basis function method.
NASA Astrophysics Data System (ADS)
Chu, J.; Zhang, C.; Fu, G.; Li, Y.; Zhou, H.
2015-08-01
This study investigates the effectiveness of a sensitivity-informed method for multi-objective operation of reservoir systems, which uses global sensitivity analysis as a screening tool to reduce computational demands. Sobol's method is used to screen insensitive decision variables and guide the formulation of the optimization problems with a significantly reduced number of decision variables. This sensitivity-informed method dramatically reduces the computational demands required for attaining high-quality approximations of optimal trade-off relationships between conflicting design objectives. The search results obtained from the reduced complexity multi-objective reservoir operation problems are then used to pre-condition the full search of the original optimization problem. In two case studies, the Dahuofang reservoir and the inter-basin multi-reservoir system in Liaoning province, China, sensitivity analysis results show that reservoir performance is strongly controlled by a small proportion of decision variables. Sensitivity-informed dimension reduction and pre-conditioning are evaluated in their ability to improve the efficiency and effectiveness of multi-objective evolutionary optimization. Overall, this study illustrates the efficiency and effectiveness of the sensitivity-informed method and the use of global sensitivity analysis to inform dimension reduction of optimization problems when solving complex multi-objective reservoir operation problems.
NASA Astrophysics Data System (ADS)
Imada, Keita; Nakamura, Katsuhiko
This paper describes recent improvements to Synapse system for incremental learning of general context-free grammars (CFGs) and definite clause grammars (DCGs) from positive and negative sample strings. An important feature of our approach is incremental learning, which is realized by a rule generation mechanism called “bridging” based on bottom-up parsing for positive samples and the search for rule sets. The sizes of rule sets and the computation time depend on the search strategies. In addition to the global search for synthesizing minimal rule sets and serial search, another method for synthesizing semi-optimum rule sets, we incorporate beam search to the system for synthesizing semi-minimal rule sets. The paper shows several experimental results on learning CFGs and DCGs, and we analyze the sizes of rule sets and the computation time.
A global reaction route mapping-based kinetic Monte Carlo algorithm
NASA Astrophysics Data System (ADS)
Mitchell, Izaac; Irle, Stephan; Page, Alister J.
2016-07-01
We propose a new on-the-fly kinetic Monte Carlo (KMC) method that is based on exhaustive potential energy surface searching carried out with the global reaction route mapping (GRRM) algorithm. Starting from any given equilibrium state, this GRRM-KMC algorithm performs a one-step GRRM search to identify all surrounding transition states. Intrinsic reaction coordinate pathways are then calculated to identify potential subsequent equilibrium states. Harmonic transition state theory is used to calculate rate constants for all potential pathways, before a standard KMC accept/reject selection is performed. The selected pathway is then used to propagate the system forward in time, which is calculated on the basis of 1st order kinetics. The GRRM-KMC algorithm is validated here in two challenging contexts: intramolecular proton transfer in malonaldehyde and surface carbon diffusion on an iron nanoparticle. We demonstrate that in both cases the GRRM-KMC method is capable of reproducing the 1st order kinetics observed during independent quantum chemical molecular dynamics simulations using the density-functional tight-binding potential.
A global reaction route mapping-based kinetic Monte Carlo algorithm.
Mitchell, Izaac; Irle, Stephan; Page, Alister J
2016-07-14
We propose a new on-the-fly kinetic Monte Carlo (KMC) method that is based on exhaustive potential energy surface searching carried out with the global reaction route mapping (GRRM) algorithm. Starting from any given equilibrium state, this GRRM-KMC algorithm performs a one-step GRRM search to identify all surrounding transition states. Intrinsic reaction coordinate pathways are then calculated to identify potential subsequent equilibrium states. Harmonic transition state theory is used to calculate rate constants for all potential pathways, before a standard KMC accept/reject selection is performed. The selected pathway is then used to propagate the system forward in time, which is calculated on the basis of 1st order kinetics. The GRRM-KMC algorithm is validated here in two challenging contexts: intramolecular proton transfer in malonaldehyde and surface carbon diffusion on an iron nanoparticle. We demonstrate that in both cases the GRRM-KMC method is capable of reproducing the 1st order kinetics observed during independent quantum chemical molecular dynamics simulations using the density-functional tight-binding potential.
Eysenbach, G.; Kohler, Ch.
2003-01-01
While health information is often said to be the most sought after information on the web, empirical data on the actual frequency of health-related searches on the web are missing. In the present study we aimed to determine the prevalence of health-related searches on the web by analyzing search terms entered by people into popular search engines. We also made some preliminary attempts in qualitatively describing and classifying these searches. Occasional difficulties in determining what constitutes a “health-related” search led us to propose and validate a simple method to automatically classify a search string as “health-related”. This method is based on determining the proportion of pages on the web containing the search string and the word “health”, as a proportion of the total number of pages with the search string alone. Using human codings as gold standard we plotted a ROC curve and determined empirically that if this “co-occurance rate” is larger than 35%, the search string can be said to be health-related (sensitivity: 85.2%, specificity 80.4%). The results of our “human” codings of search queries determined that about 4.5% of all searches are “health-related”. We estimate that globally a minimum of 6.75 Million health-related searches are being conducted on the web every day, which is roughly the same number of searches that have been conducted on the NLM Medlars system in 1996 in a full year. PMID:14728167
Das, Swagatam; Biswas, Subhodip; Panigrahi, Bijaya K; Kundu, Souvik; Basu, Debabrota
2014-10-01
This paper presents a novel search metaheuristic inspired from the physical interpretation of the optic flow of information in honeybees about the spatial surroundings that help them orient themselves and navigate through search space while foraging. The interpreted behavior combined with the minimal foraging is simulated by the artificial bee colony algorithm to develop a robust search technique that exhibits elevated performance in multidimensional objective space. Through detailed experimental study and rigorous analysis, we highlight the statistical superiority enjoyed by our algorithm over a wide variety of functions as compared to some highly competitive state-of-the-art methods.
Mo, Shaoxing; Lu, Dan; Shi, Xiaoqing; ...
2017-12-27
Global sensitivity analysis (GSA) and uncertainty quantification (UQ) for groundwater modeling are challenging because of the model complexity and significant computational requirements. To reduce the massive computational cost, a cheap-to-evaluate surrogate model is usually constructed to approximate and replace the expensive groundwater models in the GSA and UQ. Constructing an accurate surrogate requires actual model simulations on a number of parameter samples. Thus, a robust experimental design strategy is desired to locate informative samples so as to reduce the computational cost in surrogate construction and consequently to improve the efficiency in the GSA and UQ. In this study, we developmore » a Taylor expansion-based adaptive design (TEAD) that aims to build an accurate global surrogate model with a small training sample size. TEAD defines a novel hybrid score function to search informative samples, and a robust stopping criterion to terminate the sample search that guarantees the resulted approximation errors satisfy the desired accuracy. The good performance of TEAD in building global surrogate models is demonstrated in seven analytical functions with different dimensionality and complexity in comparison to two widely used experimental design methods. The application of the TEAD-based surrogate method in two groundwater models shows that the TEAD design can effectively improve the computational efficiency of GSA and UQ for groundwater modeling.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mo, Shaoxing; Lu, Dan; Shi, Xiaoqing
Global sensitivity analysis (GSA) and uncertainty quantification (UQ) for groundwater modeling are challenging because of the model complexity and significant computational requirements. To reduce the massive computational cost, a cheap-to-evaluate surrogate model is usually constructed to approximate and replace the expensive groundwater models in the GSA and UQ. Constructing an accurate surrogate requires actual model simulations on a number of parameter samples. Thus, a robust experimental design strategy is desired to locate informative samples so as to reduce the computational cost in surrogate construction and consequently to improve the efficiency in the GSA and UQ. In this study, we developmore » a Taylor expansion-based adaptive design (TEAD) that aims to build an accurate global surrogate model with a small training sample size. TEAD defines a novel hybrid score function to search informative samples, and a robust stopping criterion to terminate the sample search that guarantees the resulted approximation errors satisfy the desired accuracy. The good performance of TEAD in building global surrogate models is demonstrated in seven analytical functions with different dimensionality and complexity in comparison to two widely used experimental design methods. The application of the TEAD-based surrogate method in two groundwater models shows that the TEAD design can effectively improve the computational efficiency of GSA and UQ for groundwater modeling.« less
Firefly Algorithm for Structural Search.
Avendaño-Franco, Guillermo; Romero, Aldo H
2016-07-12
The problem of computational structure prediction of materials is approached using the firefly (FF) algorithm. Starting from the chemical composition and optionally using prior knowledge of similar structures, the FF method is able to predict not only known stable structures but also a variety of novel competitive metastable structures. This article focuses on the strengths and limitations of the algorithm as a multimodal global searcher. The algorithm has been implemented in software package PyChemia ( https://github.com/MaterialsDiscovery/PyChemia ), an open source python library for materials analysis. We present applications of the method to van der Waals clusters and crystal structures. The FF method is shown to be competitive when compared to other population-based global searchers.
Optimizing human activity patterns using global sensitivity analysis.
Fairchild, Geoffrey; Hickmann, Kyle S; Mniszewski, Susan M; Del Valle, Sara Y; Hyman, James M
2014-12-01
Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule's regularity for a population. We show how to tune an activity's regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimization problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. We use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations.
Optimizing human activity patterns using global sensitivity analysis
Hickmann, Kyle S.; Mniszewski, Susan M.; Del Valle, Sara Y.; Hyman, James M.
2014-01-01
Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule’s regularity for a population. We show how to tune an activity’s regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimization problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. We use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations. PMID:25580080
Optimizing human activity patterns using global sensitivity analysis
Fairchild, Geoffrey; Hickmann, Kyle S.; Mniszewski, Susan M.; ...
2013-12-10
Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule’s regularity for a population. We show how to tune an activity’s regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimizationmore » problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. Here we use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Finally, though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations.« less
Hybrid DFP-CG method for solving unconstrained optimization problems
NASA Astrophysics Data System (ADS)
Osman, Wan Farah Hanan Wan; Asrul Hery Ibrahim, Mohd; Mamat, Mustafa
2017-09-01
The conjugate gradient (CG) method and quasi-Newton method are both well known method for solving unconstrained optimization method. In this paper, we proposed a new method by combining the search direction between conjugate gradient method and quasi-Newton method based on BFGS-CG method developed by Ibrahim et al. The Davidon-Fletcher-Powell (DFP) update formula is used as an approximation of Hessian for this new hybrid algorithm. Numerical result showed that the new algorithm perform well than the ordinary DFP method and proven to posses both sufficient descent and global convergence properties.
Li, Jinyan; Fong, Simon; Wong, Raymond K; Millham, Richard; Wong, Kelvin K L
2017-06-28
Due to the high-dimensional characteristics of dataset, we propose a new method based on the Wolf Search Algorithm (WSA) for optimising the feature selection problem. The proposed approach uses the natural strategy established by Charles Darwin; that is, 'It is not the strongest of the species that survives, but the most adaptable'. This means that in the evolution of a swarm, the elitists are motivated to quickly obtain more and better resources. The memory function helps the proposed method to avoid repeat searches for the worst position in order to enhance the effectiveness of the search, while the binary strategy simplifies the feature selection problem into a similar problem of function optimisation. Furthermore, the wrapper strategy gathers these strengthened wolves with the classifier of extreme learning machine to find a sub-dataset with a reasonable number of features that offers the maximum correctness of global classification models. The experimental results from the six public high-dimensional bioinformatics datasets tested demonstrate that the proposed method can best some of the conventional feature selection methods up to 29% in classification accuracy, and outperform previous WSAs by up to 99.81% in computational time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, W.E.
1999-02-10
Evolutionary programs (EPs) and evolutionary pattern search algorithms (EPSAS) are two general classes of evolutionary methods for optimizing on continuous domains. The relative performance of these methods has been evaluated on standard global optimization test functions, and these results suggest that EPSAs more robustly converge to near-optimal solutions than EPs. In this paper we evaluate the relative performance of EPSAs and EPs on a real-world application: flexible ligand binding in the Autodock docking software. We compare the performance of these methods on a suite of docking test problems. Our results confirm that EPSAs and EPs have comparable performance, and theymore » suggest that EPSAs may be more robust on larger, more complex problems.« less
A Novel Harmony Search Algorithm Based on Teaching-Learning Strategies for 0-1 Knapsack Problems
Tuo, Shouheng; Yong, Longquan; Deng, Fang'an
2014-01-01
To enhance the performance of harmony search (HS) algorithm on solving the discrete optimization problems, this paper proposes a novel harmony search algorithm based on teaching-learning (HSTL) strategies to solve 0-1 knapsack problems. In the HSTL algorithm, firstly, a method is presented to adjust dimension dynamically for selected harmony vector in optimization procedure. In addition, four strategies (harmony memory consideration, teaching-learning strategy, local pitch adjusting, and random mutation) are employed to improve the performance of HS algorithm. Another improvement in HSTL method is that the dynamic strategies are adopted to change the parameters, which maintains the proper balance effectively between global exploration power and local exploitation power. Finally, simulation experiments with 13 knapsack problems show that the HSTL algorithm can be an efficient alternative for solving 0-1 knapsack problems. PMID:24574905
A novel harmony search algorithm based on teaching-learning strategies for 0-1 knapsack problems.
Tuo, Shouheng; Yong, Longquan; Deng, Fang'an
2014-01-01
To enhance the performance of harmony search (HS) algorithm on solving the discrete optimization problems, this paper proposes a novel harmony search algorithm based on teaching-learning (HSTL) strategies to solve 0-1 knapsack problems. In the HSTL algorithm, firstly, a method is presented to adjust dimension dynamically for selected harmony vector in optimization procedure. In addition, four strategies (harmony memory consideration, teaching-learning strategy, local pitch adjusting, and random mutation) are employed to improve the performance of HS algorithm. Another improvement in HSTL method is that the dynamic strategies are adopted to change the parameters, which maintains the proper balance effectively between global exploration power and local exploitation power. Finally, simulation experiments with 13 knapsack problems show that the HSTL algorithm can be an efficient alternative for solving 0-1 knapsack problems.
Global Search Capabilities of Indirect Methods for Impulsive Transfers
NASA Astrophysics Data System (ADS)
Shen, Hong-Xin; Casalino, Lorenzo; Luo, Ya-Zhong
2015-09-01
An optimization method which combines an indirect method with homotopic approach is proposed and applied to impulsive trajectories. Minimum-fuel, multiple-impulse solutions, with either fixed or open time are obtained. The homotopic approach at hand is relatively straightforward to implement and does not require an initial guess of adjoints, unlike previous adjoints estimation methods. A multiple-revolution Lambert solver is used to find multiple starting solutions for the homotopic procedure; this approach can guarantee to obtain multiple local solutions without relying on the user's intuition, thus efficiently exploring the solution space to find the global optimum. The indirect/homotopic approach proves to be quite effective and efficient in finding optimal solutions, and outperforms the joint use of evolutionary algorithms and deterministic methods in the test cases.
Collinearity Impairs Local Element Visual Search
ERIC Educational Resources Information Center
Jingling, Li; Tseng, Chia-Huei
2013-01-01
In visual searches, stimuli following the law of good continuity attract attention to the global structure and receive attentional priority. Also, targets that have unique features are of high feature contrast and capture attention in visual search. We report on a salient global structure combined with a high orientation contrast to the…
Control strategy of grid-connected photovoltaic generation system based on GMPPT method
NASA Astrophysics Data System (ADS)
Wang, Zhongfeng; Zhang, Xuyang; Hu, Bo; Liu, Jun; Li, Ligang; Gu, Yongqiang; Zhou, Bowen
2018-02-01
There are multiple local maximum power points when photovoltaic (PV) array runs under partial shading condition (PSC).However, the traditional maximum power point tracking (MPPT) algorithm might be easily trapped in local maximum power points (MPPs) and cannot find the global maximum power point (GMPP). To solve such problem, a global maximum power point tracking method (GMPPT) is improved, combined with traditional MPPT method and particle swarm optimization (PSO) algorithm. Under different operating conditions of PV cells, different tracking algorithms are used. When the environment changes, the improved PSO algorithm is adopted to realize the global optimal search, and the variable step incremental conductance (INC) method is adopted to achieve MPPT in optimal local location. Based on the simulation model of the PV grid system built in Matlab/Simulink, comparative analysis of the tracking effect of MPPT by the proposed control algorithm and the traditional MPPT method under the uniform solar condition and PSC, validate the correctness, feasibility and effectiveness of the proposed control strategy.
An Improved Hybrid Encoding Cuckoo Search Algorithm for 0-1 Knapsack Problems
Feng, Yanhong; Jia, Ke; He, Yichao
2014-01-01
Cuckoo search (CS) is a new robust swarm intelligence method that is based on the brood parasitism of some cuckoo species. In this paper, an improved hybrid encoding cuckoo search algorithm (ICS) with greedy strategy is put forward for solving 0-1 knapsack problems. First of all, for solving binary optimization problem with ICS, based on the idea of individual hybrid encoding, the cuckoo search over a continuous space is transformed into the synchronous evolution search over discrete space. Subsequently, the concept of confidence interval (CI) is introduced; hence, the new position updating is designed and genetic mutation with a small probability is introduced. The former enables the population to move towards the global best solution rapidly in every generation, and the latter can effectively prevent the ICS from trapping into the local optimum. Furthermore, the greedy transform method is used to repair the infeasible solution and optimize the feasible solution. Experiments with a large number of KP instances show the effectiveness of the proposed algorithm and its ability to achieve good quality solutions. PMID:24527026
Chiroma, Haruna; Abdul-kareem, Sameem; Khan, Abdullah; Nawi, Nazri Mohd.; Gital, Abdulsalam Ya’u; Shuib, Liyana; Abubakar, Adamu I.; Rahman, Muhammad Zubair; Herawan, Tutut
2015-01-01
Background Global warming is attracting attention from policy makers due to its impacts such as floods, extreme weather, increases in temperature by 0.7°C, heat waves, storms, etc. These disasters result in loss of human life and billions of dollars in property. Global warming is believed to be caused by the emissions of greenhouse gases due to human activities including the emissions of carbon dioxide (CO2) from petroleum consumption. Limitations of the previous methods of predicting CO2 emissions and lack of work on the prediction of the Organization of the Petroleum Exporting Countries (OPEC) CO2 emissions from petroleum consumption have motivated this research. Methods/Findings The OPEC CO2 emissions data were collected from the Energy Information Administration. Artificial Neural Network (ANN) adaptability and performance motivated its choice for this study. To improve effectiveness of the ANN, the cuckoo search algorithm was hybridised with accelerated particle swarm optimisation for training the ANN to build a model for the prediction of OPEC CO2 emissions. The proposed model predicts OPEC CO2 emissions for 3, 6, 9, 12 and 16 years with an improved accuracy and speed over the state-of-the-art methods. Conclusion An accurate prediction of OPEC CO2 emissions can serve as a reference point for propagating the reorganisation of economic development in OPEC member countries with the view of reducing CO2 emissions to Kyoto benchmarks—hence, reducing global warming. The policy implications are discussed in the paper. PMID:26305483
Improved Ant Algorithms for Software Testing Cases Generation
Yang, Shunkun; Xu, Jiaqi
2014-01-01
Existing ant colony optimization (ACO) for software testing cases generation is a very popular domain in software testing engineering. However, the traditional ACO has flaws, as early search pheromone is relatively scarce, search efficiency is low, search model is too simple, positive feedback mechanism is easy to porduce the phenomenon of stagnation and precocity. This paper introduces improved ACO for software testing cases generation: improved local pheromone update strategy for ant colony optimization, improved pheromone volatilization coefficient for ant colony optimization (IPVACO), and improved the global path pheromone update strategy for ant colony optimization (IGPACO). At last, we put forward a comprehensive improved ant colony optimization (ACIACO), which is based on all the above three methods. The proposed technique will be compared with random algorithm (RND) and genetic algorithm (GA) in terms of both efficiency and coverage. The results indicate that the improved method can effectively improve the search efficiency, restrain precocity, promote case coverage, and reduce the number of iterations. PMID:24883391
Electroencephalography epilepsy classifications using hybrid cuckoo search and neural network
NASA Astrophysics Data System (ADS)
Pratiwi, A. B.; Damayanti, A.; Miswanto
2017-07-01
Epilepsy is a condition that affects the brain and causes repeated seizures. This seizure is episodes that can vary and nearly undetectable to long periods of vigorous shaking or brain contractions. Epilepsy often can be confirmed with an electrocephalography (EEG). Neural Networks has been used in biomedic signal analysis, it has successfully classified the biomedic signal, such as EEG signal. In this paper, a hybrid cuckoo search and neural network are used to recognize EEG signal for epilepsy classifications. The weight of the multilayer perceptron is optimized by the cuckoo search algorithm based on its error. The aim of this methods is making the network faster to obtained the local or global optimal then the process of classification become more accurate. Based on the comparison results with the traditional multilayer perceptron, the hybrid cuckoo search and multilayer perceptron provides better performance in term of error convergence and accuracy. The purpose methods give MSE 0.001 and accuracy 90.0 %.
Application of artificial intelligence to search ground-state geometry of clusters
NASA Astrophysics Data System (ADS)
Lemes, Maurício Ruv; Marim, L. R.; dal Pino, A.
2002-08-01
We introduce a global optimization procedure, the neural-assisted genetic algorithm (NAGA). It combines the power of an artificial neural network (ANN) with the versatility of the genetic algorithm. This method is suitable to solve optimization problems that depend on some kind of heuristics to limit the search space. If a reasonable amount of data is available, the ANN can ``understand'' the problem and provide the genetic algorithm with a selected population of elements that will speed up the search for the optimum solution. We tested the method in a search for the ground-state geometry of silicon clusters. We trained the ANN with information about the geometry and energetics of small silicon clusters. Next, the ANN learned how to restrict the configurational space for larger silicon clusters. For Si10 and Si20, we noticed that the NAGA is at least three times faster than the ``pure'' genetic algorithm. As the size of the cluster increases, it is expected that the gain in terms of time will increase as well.
Heuristic approach to image registration
NASA Astrophysics Data System (ADS)
Gertner, Izidor; Maslov, Igor V.
2000-08-01
Image registration, i.e. correct mapping of images obtained from different sensor readings onto common reference frame, is a critical part of multi-sensor ATR/AOR systems based on readings from different types of sensors. In order to fuse two different sensor readings of the same object, the readings have to be put into a common coordinate system. This task can be formulated as optimization problem in a space of all possible affine transformations of an image. In this paper, a combination of heuristic methods is explored to register gray- scale images. The modification of Genetic Algorithm is used as the first step in global search for optimal transformation. It covers the entire search space with (randomly or heuristically) scattered probe points and helps significantly reduce the search space to a subspace of potentially most successful transformations. Due to its discrete character, however, Genetic Algorithm in general can not converge while coming close to the optimum. Its termination point can be specified either as some predefined number of generations or as achievement of a certain acceptable convergence level. To refine the search, potential optimal subspaces are searched using more delicate and efficient for local search Taboo and Simulated Annealing methods.
Fast online and index-based algorithms for approximate search of RNA sequence-structure patterns
2013-01-01
Background It is well known that the search for homologous RNAs is more effective if both sequence and structure information is incorporated into the search. However, current tools for searching with RNA sequence-structure patterns cannot fully handle mutations occurring on both these levels or are simply not fast enough for searching large sequence databases because of the high computational costs of the underlying sequence-structure alignment problem. Results We present new fast index-based and online algorithms for approximate matching of RNA sequence-structure patterns supporting a full set of edit operations on single bases and base pairs. Our methods efficiently compute semi-global alignments of structural RNA patterns and substrings of the target sequence whose costs satisfy a user-defined sequence-structure edit distance threshold. For this purpose, we introduce a new computing scheme to optimally reuse the entries of the required dynamic programming matrices for all substrings and combine it with a technique for avoiding the alignment computation of non-matching substrings. Our new index-based methods exploit suffix arrays preprocessed from the target database and achieve running times that are sublinear in the size of the searched sequences. To support the description of RNA molecules that fold into complex secondary structures with multiple ordered sequence-structure patterns, we use fast algorithms for the local or global chaining of approximate sequence-structure pattern matches. The chaining step removes spurious matches from the set of intermediate results, in particular of patterns with little specificity. In benchmark experiments on the Rfam database, our improved online algorithm is faster than the best previous method by up to factor 45. Our best new index-based algorithm achieves a speedup of factor 560. Conclusions The presented methods achieve considerable speedups compared to the best previous method. This, together with the expected sublinear running time of the presented index-based algorithms, allows for the first time approximate matching of RNA sequence-structure patterns in large sequence databases. Beyond the algorithmic contributions, we provide with RaligNAtor a robust and well documented open-source software package implementing the algorithms presented in this manuscript. The RaligNAtor software is available at http://www.zbh.uni-hamburg.de/ralignator. PMID:23865810
3D/2D image registration using weighted histogram of gradient directions
NASA Astrophysics Data System (ADS)
Ghafurian, Soheil; Hacihaliloglu, Ilker; Metaxas, Dimitris N.; Tan, Virak; Li, Kang
2015-03-01
Three dimensional (3D) to two dimensional (2D) image registration is crucial in many medical applications such as image-guided evaluation of musculoskeletal disorders. One of the key problems is to estimate the 3D CT- reconstructed bone model positions (translation and rotation) which maximize the similarity between the digitally reconstructed radiographs (DRRs) and the 2D fluoroscopic images using a registration method. This problem is computational-intensive due to a large search space and the complicated DRR generation process. Also, finding a similarity measure which converges to the global optimum instead of local optima adds to the challenge. To circumvent these issues, most existing registration methods need a manual initialization, which requires user interaction and is prone to human error. In this paper, we introduce a novel feature-based registration method using the weighted histogram of gradient directions of images. This method simplifies the computation by searching the parameter space (rotation and translation) sequentially rather than simultaneously. In our numeric simulation experiments, the proposed registration algorithm was able to achieve sub-millimeter and sub-degree accuracies. Moreover, our method is robust to the initial guess. It can tolerate up to +/-90°rotation offset from the global optimal solution, which minimizes the need for human interaction to initialize the algorithm.
Improving Robot Locomotion Through Learning Methods for Expensive Black-Box Systems
2013-11-01
development of a class of “gradient free” optimization techniques; these include local approaches, such as a Nelder- Mead simplex search (c.f. [73]), and global...1Note that this simple method differs from the Nelder Mead constrained nonlinear optimization method [73]. 39 the Non-dominated Sorting Genetic Algorithm...Kober, and Jan Peters. Model-free inverse reinforcement learning. In International Conference on Artificial Intelligence and Statistics, 2011. [12] George
A Globally Optimal Particle Tracking Technique for Stereo Imaging Velocimetry Experiments
NASA Technical Reports Server (NTRS)
McDowell, Mark
2008-01-01
An important phase of any Stereo Imaging Velocimetry experiment is particle tracking. Particle tracking seeks to identify and characterize the motion of individual particles entrained in a fluid or air experiment. We analyze a cylindrical chamber filled with water and seeded with density-matched particles. In every four-frame sequence, we identify a particle track by assigning a unique track label for each camera image. The conventional approach to particle tracking is to use an exhaustive tree-search method utilizing greedy algorithms to reduce search times. However, these types of algorithms are not optimal due to a cascade effect of incorrect decisions upon adjacent tracks. We examine the use of a guided evolutionary neural net with simulated annealing to arrive at a globally optimal assignment of tracks. The net is guided both by the minimization of the search space through the use of prior limiting assumptions about valid tracks and by a strategy which seeks to avoid high-energy intermediate states which can trap the net in a local minimum. A stochastic search algorithm is used in place of back-propagation of error to further reduce the chance of being trapped in an energy well. Global optimization is achieved by minimizing an objective function, which includes both track smoothness and particle-image utilization parameters. In this paper we describe our model and present our experimental results. We compare our results with a nonoptimizing, predictive tracker and obtain an average increase in valid track yield of 27 percent
A trust region-based approach to optimize triple response systems
NASA Astrophysics Data System (ADS)
Fan, Shu-Kai S.; Fan, Chihhao; Huang, Chia-Fen
2014-05-01
This article presents a new computing procedure for the global optimization of the triple response system (TRS) where the response functions are non-convex quadratics and the input factors satisfy a radial constrained region of interest. The TRS arising from response surface modelling can be approximated using a nonlinear mathematical program that considers one primary objective function and two secondary constraint functions. An optimization algorithm named the triple response surface algorithm (TRSALG) is proposed to determine the global optimum for the non-degenerate TRS. In TRSALG, the Lagrange multipliers of the secondary functions are determined using the Hooke-Jeeves search method and the Lagrange multiplier of the radial constraint is located using the trust region method within the global optimality space. The proposed algorithm is illustrated in terms of three examples appearing in the quality-control literature. The results of TRSALG compared to a gradient-based method are also presented.
Global optimization algorithm for heat exchanger networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quesada, I.; Grossmann, I.E.
This paper deals with the global optimization of heat exchanger networks with fixed topology. It is shown that if linear area cost functions are assumed, as well as arithmetic mean driving force temperature differences in networks with isothermal mixing, the corresponding nonlinear programming (NLP) optimization problem involves linear constraints and a sum of linear fractional functions in the objective which are nonconvex. A rigorous algorithm is proposed that is based on a convex NLP underestimator that involves linear and nonlinear estimators for fractional and bilinear terms which provide a tight lower bound to the global optimum. This NLP problem ismore » used within a spatial branch and bound method for which branching rules are given. Basic properties of the proposed method are presented, and its application is illustrated with several example problems. The results show that the proposed method only requires few nodes in the branch and bound search.« less
Tamura, Koichi; Hayashi, Shigehiko
2015-07-14
Molecular functions of proteins are often fulfilled by global conformational changes that couple with local events such as the binding of ligand molecules. High molecular complexity of proteins has, however, been an obstacle to obtain an atomistic view of the global conformational transitions, imposing a limitation on the mechanistic understanding of the functional processes. In this study, we developed a new method of molecular dynamics (MD) simulation called the linear response path following (LRPF) to simulate a protein's global conformational changes upon ligand binding. The method introduces a biasing force based on a linear response theory, which determines a local reaction coordinate in the configuration space that represents linear coupling between local events of ligand binding and global conformational changes and thus provides one with fully atomistic models undergoing large conformational changes without knowledge of a target structure. The overall transition process involving nonlinear conformational changes is simulated through iterative cycles consisting of a biased MD simulation with an updated linear response force and a following unbiased MD simulation for relaxation. We applied the method to the simulation of global conformational changes of the yeast calmodulin N-terminal domain and successfully searched out the end conformation. The atomistically detailed trajectories revealed a sequence of molecular events that properly lead to the global conformational changes and identified key steps of local-global coupling that induce the conformational transitions. The LRPF method provides one with a powerful means to model conformational changes of proteins such as motors and transporters where local-global coupling plays a pivotal role in their functional processes.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quock, D. E. R.; Cianciarulo, M. B.; APS Engineering Support Division
2007-01-01
The Integrated Relational Model of Installed Systems (IRMIS) is a relational database tool that has been implemented at the Advanced Photon Source to maintain an updated account of approximately 600 control system software applications, 400,000 process variables, and 30,000 control system hardware components. To effectively display this large amount of control system information to operators and engineers, IRMIS was initially built with nine Web-based viewers: Applications Organizing Index, IOC, PLC, Component Type, Installed Components, Network, Controls Spares, Process Variables, and Cables. However, since each viewer is designed to provide details from only one major category of the control system, themore » necessity for a one-stop global search tool for the entire database became apparent. The user requirements for extremely fast database search time and ease of navigation through search results led to the choice of Asynchronous JavaScript and XML (AJAX) technology in the implementation of the IRMIS global search tool. Unique features of the global search tool include a two-tier level of displayed search results, and a database data integrity validation and reporting mechanism.« less
NASA Astrophysics Data System (ADS)
Sun, Feng-Rong; Wang, Xiao-Jing; Wu, Qiang; Yao, Gui-Hua; Zhang, Yun
2013-01-01
Left ventricular (LV) torsion is a sensitive and global index of LV systolic and diastolic function, but how to noninvasively measure it is challenging. Two-dimensional echocardiography and the block-matching based speckle tracking method were used to measure LV torsion. Main advantages of the proposed method over the previous ones are summarized as follows: (1) The method is automatic, except for manually selecting some endocardium points on the end-diastolic frame in initialization step. (2) The diamond search strategy is applied, with a spatial smoothness constraint introduced into the sum of absolute differences matching criterion; and the reference frame during the search is determined adaptively. (3) The method is capable of removing abnormal measurement data automatically. The proposed method was validated against that using Doppler tissue imaging and some preliminary clinical experimental studies were presented to illustrate clinical values of the proposed method.
Visual Search in ASD: Instructed versus Spontaneous Local and Global Processing
ERIC Educational Resources Information Center
Van der Hallen, Ruth; Evers, Kris; Boets, Bart; Steyaert, Jean; Noens, Ilse; Wagemans, Johan
2016-01-01
Visual search has been used extensively to investigate differences in mid-level visual processing between individuals with ASD and TD individuals. The current study employed two visual search paradigms with Gaborized stimuli to assess the impact of task distractors (Experiment 1) and task instruction (Experiment 2) on local-global visual…
Global Statistical Learning in a Visual Search Task
ERIC Educational Resources Information Center
Jones, John L.; Kaschak, Michael P.
2012-01-01
Locating a target in a visual search task is facilitated when the target location is repeated on successive trials. Global statistical properties also influence visual search, but have often been confounded with local regularities (i.e., target location repetition). In two experiments, target locations were not repeated for four successive trials,…
From molecule to solid: The prediction of organic crystal structures
NASA Astrophysics Data System (ADS)
Dzyabchenko, A. V.
2008-10-01
A method for predicting the structure of a molecular crystal based on the systematic search for a global potential energy minimum is considered. The method takes into account unequal occurrences of the structural classes of organic crystals and symmetry of the multidimensional configuration space. The programs of global minimization PMC, comparison of crystal structures CRYCOM, and approximation to the distributions of the electrostatic potentials of molecules FitMEP are presented as tools for numerically solving the problem. Examples of predicted structures substantiated experimentally and the experience of author’s participation in international tests of crystal structure prediction organized by the Cambridge Crystallographic Data Center (Cambridge, UK) are considered.
NASA Astrophysics Data System (ADS)
Ivashkin, V. V.; Krylov, I. V.
2015-09-01
A method to optimize the flight trajectories to the asteroid Apophis that allows reliably to form a set of Pontryagin extremals for various boundary conditions of the flight, as well as effectively to search for a global problem optimum amongst its elements, is developed.
Glick, Meir; Rayan, Anwar; Goldblum, Amiram
2002-01-01
The problem of global optimization is pivotal in a variety of scientific fields. Here, we present a robust stochastic search method that is able to find the global minimum for a given cost function, as well as, in most cases, any number of best solutions for very large combinatorial “explosive” systems. The algorithm iteratively eliminates variable values that contribute consistently to the highest end of a cost function's spectrum of values for the full system. Values that have not been eliminated are retained for a full, exhaustive search, allowing the creation of an ordered population of best solutions, which includes the global minimum. We demonstrate the ability of the algorithm to explore the conformational space of side chains in eight proteins, with 54 to 263 residues, to reproduce a population of their low energy conformations. The 1,000 lowest energy solutions are identical in the stochastic (with two different seed numbers) and full, exhaustive searches for six of eight proteins. The others retain the lowest 141 and 213 (of 1,000) conformations, depending on the seed number, and the maximal difference between stochastic and exhaustive is only about 0.15 Kcal/mol. The energy gap between the lowest and highest of the 1,000 low-energy conformers in eight proteins is between 0.55 and 3.64 Kcal/mol. This algorithm offers real opportunities for solving problems of high complexity in structural biology and in other fields of science and technology. PMID:11792838
Exposure to Organic Solvents Used in Dry Cleaning Reduces Low and High Level Visual Function
Jiménez Barbosa, Ingrid Astrid
2015-01-01
Purpose To investigate whether exposure to occupational levels of organic solvents in the dry cleaning industry is associated with neurotoxic symptoms and visual deficits in the perception of basic visual features such as luminance contrast and colour, higher level processing of global motion and form (Experiment 1), and cognitive function as measured in a visual search task (Experiment 2). Methods The Q16 neurotoxic questionnaire, a commonly used measure of neurotoxicity (by the World Health Organization), was administered to assess the neurotoxic status of a group of 33 dry cleaners exposed to occupational levels of organic solvents (OS) and 35 age-matched non dry-cleaners who had never worked in the dry cleaning industry. In Experiment 1, to assess visual function, contrast sensitivity, colour/hue discrimination (Munsell Hue 100 test), global motion and form thresholds were assessed using computerised psychophysical tests. Sensitivity to global motion or form structure was quantified by varying the pattern coherence of global dot motion (GDM) and Glass pattern (oriented dot pairs) respectively (i.e., the percentage of dots/dot pairs that contribute to the perception of global structure). In Experiment 2, a letter visual-search task was used to measure reaction times (as a function of the number of elements: 4, 8, 16, 32, 64 and 100) in both parallel and serial search conditions. Results Dry cleaners exposed to organic solvents had significantly higher scores on the Q16 compared to non dry-cleaners indicating that dry cleaners experienced more neurotoxic symptoms on average. The contrast sensitivity function for dry cleaners was significantly lower at all spatial frequencies relative to non dry-cleaners, which is consistent with previous studies. Poorer colour discrimination performance was also noted in dry cleaners than non dry-cleaners, particularly along the blue/yellow axis. In a new finding, we report that global form and motion thresholds for dry cleaners were also significantly higher and almost double than that obtained from non dry-cleaners. However, reaction time performance on both parallel and serial visual search was not different between dry cleaners and non dry-cleaners. Conclusions Exposure to occupational levels of organic solvents is associated with neurotoxicity which is in turn associated with both low level deficits (such as the perception of contrast and discrimination of colour) and high level visual deficits such as the perception of global form and motion, but not visual search performance. The latter finding indicates that the deficits in visual function are unlikely to be due to changes in general cognitive performance. PMID:25933026
In Search of Easy-to-Use Methods for Calibrating ADCP's for Velocity and Discharge Measurements
Oberg, K.; ,
2002-01-01
A cost-effective procedure for calibrating acoustic Doppler current profilers (ADCP) in the field was presented. The advantages and disadvantages of various methods which are used for calibrating ADCP were discussed. The proposed method requires the use of differential global positioning system (DGPS) with sub-meter accuracy and standard software for collecting ADCP data. The method involves traversing a long (400-800 meter) course at a constant compass heading and speed, while collecting simultaneous DGPS and ADCP data.
The effects of variable biome distribution on global climate.
Noever, D A; Brittain, A; Matsos, H C; Baskaran, S; Obenhuber, D
1996-01-01
In projecting climatic adjustments to anthropogenically elevated atmospheric carbon dioxide, most global climate models fix biome distribution to current geographic conditions. Previous biome maps either remain unchanging or shift without taking into account climatic feedbacks such as radiation and temperature. We develop a model that examines the albedo-related effects of biome distribution on global temperature. The model was tested on historical biome changes since 1860 and the results fit both the observed temperature trend and order of magnitude change. The model is then used to generate an optimized future biome distribution that minimizes projected greenhouse effects on global temperature. Because of the complexity of this combinatorial search, an artificial intelligence method, the genetic algorithm, was employed. The method is to adjust biome areas subject to a constant global temperature and total surface area constraint. For regulating global temperature, oceans are found to dominate continental biomes. Algal beds are significant radiative levers as are other carbon intensive biomes including estuaries and tropical deciduous forests. To hold global temperature constant over the next 70 years this simulation requires that deserts decrease and forested areas increase. The effect of biome change on global temperature is revealed as a significant forecasting factor.
An experimental study of search in global social networks.
Dodds, Peter Sheridan; Muhamad, Roby; Watts, Duncan J
2003-08-08
We report on a global social-search experiment in which more than 60,000 e-mail users attempted to reach one of 18 target persons in 13 countries by forwarding messages to acquaintances. We find that successful social search is conducted primarily through intermediate to weak strength ties, does not require highly connected "hubs" to succeed, and, in contrast to unsuccessful social search, disproportionately relies on professional relationships. By accounting for the attrition of message chains, we estimate that social searches can reach their targets in a median of five to seven steps, depending on the separation of source and target, although small variations in chain lengths and participation rates generate large differences in target reachability. We conclude that although global social networks are, in principle, searchable, actual success depends sensitively on individual incentives.
Nonlinear Rayleigh wave inversion based on the shuffled frog-leaping algorithm
NASA Astrophysics Data System (ADS)
Sun, Cheng-Yu; Wang, Yan-Yan; Wu, Dun-Shi; Qin, Xiao-Jun
2017-12-01
At present, near-surface shear wave velocities are mainly calculated through Rayleigh wave dispersion-curve inversions in engineering surface investigations, but the required calculations pose a highly nonlinear global optimization problem. In order to alleviate the risk of falling into a local optimal solution, this paper introduces a new global optimization method, the shuffle frog-leaping algorithm (SFLA), into the Rayleigh wave dispersion-curve inversion process. SFLA is a swarm-intelligence-based algorithm that simulates a group of frogs searching for food. It uses a few parameters, achieves rapid convergence, and is capability of effective global searching. In order to test the reliability and calculation performance of SFLA, noise-free and noisy synthetic datasets were inverted. We conducted a comparative analysis with other established algorithms using the noise-free dataset, and then tested the ability of SFLA to cope with data noise. Finally, we inverted a real-world example to examine the applicability of SFLA. Results from both synthetic and field data demonstrated the effectiveness of SFLA in the interpretation of Rayleigh wave dispersion curves. We found that SFLA is superior to the established methods in terms of both reliability and computational efficiency, so it offers great potential to improve our ability to solve geophysical inversion problems.
Mobile Visual Search Based on Histogram Matching and Zone Weight Learning
NASA Astrophysics Data System (ADS)
Zhu, Chuang; Tao, Li; Yang, Fan; Lu, Tao; Jia, Huizhu; Xie, Xiaodong
2018-01-01
In this paper, we propose a novel image retrieval algorithm for mobile visual search. At first, a short visual codebook is generated based on the descriptor database to represent the statistical information of the dataset. Then, an accurate local descriptor similarity score is computed by merging the tf-idf weighted histogram matching and the weighting strategy in compact descriptors for visual search (CDVS). At last, both the global descriptor matching score and the local descriptor similarity score are summed up to rerank the retrieval results according to the learned zone weights. The results show that the proposed approach outperforms the state-of-the-art image retrieval method in CDVS.
Future trends in global blindness
Resnikoff, Serge; Keys, Tricia U
2012-01-01
The objective of this review is to discuss the available data on the prevalence and causes of global blindness, and some of the associated trends and limitations seen. A literature search was conducted using the terms “global AND blindness” and “global AND vision AND impairment”, resulting in seven appropriate articles for this review. Since 1990 the estimate of global prevalence of blindness has gradually decreased when considering the best corrected visual acuity definition: 0.71% in 1990, 0.59% in 2002, and 0.55% in 2010, corresponding to a 0.73% reduction per year over the 2002–2010 period. Significant limitations were found in the comparability between the global estimates in prevalence or causes of blindness or visual impairment. These limitations arise from various factors such as uncertainties about the true cause of the impairment, the use of different definitions and methods, and the absence of data from a number of geographical areas, leading to various extrapolation methods, which in turn seriously limit comparability. Seminal to this discussion on limitations in the comparability of studies and data, is that blindness has historically been defined using best corrected visual acuity. PMID:22944747
A novel artificial bee colony algorithm based on modified search equation and orthogonal learning.
Gao, Wei-feng; Liu, San-yang; Huang, Ling-ling
2013-06-01
The artificial bee colony (ABC) algorithm is a relatively new optimization technique which has been shown to be competitive to other population-based algorithms. However, ABC has an insufficiency regarding its solution search equation, which is good at exploration but poor at exploitation. To address this concerning issue, we first propose an improved ABC method called as CABC where a modified search equation is applied to generate a candidate solution to improve the search ability of ABC. Furthermore, we use the orthogonal experimental design (OED) to form an orthogonal learning (OL) strategy for variant ABCs to discover more useful information from the search experiences. Owing to OED's good character of sampling a small number of well representative combinations for testing, the OL strategy can construct a more promising and efficient candidate solution. In this paper, the OL strategy is applied to three versions of ABC, i.e., the standard ABC, global-best-guided ABC (GABC), and CABC, which yields OABC, OGABC, and OCABC, respectively. The experimental results on a set of 22 benchmark functions demonstrate the effectiveness and efficiency of the modified search equation and the OL strategy. The comparisons with some other ABCs and several state-of-the-art algorithms show that the proposed algorithms significantly improve the performance of ABC. Moreover, OCABC offers the highest solution quality, fastest global convergence, and strongest robustness among all the contenders on almost all the test functions.
Fateen, Seif-Eddeen K.; Bonilla-Petriciolet, Adrian
2014-01-01
The search for reliable and efficient global optimization algorithms for solving phase stability and phase equilibrium problems in applied thermodynamics is an ongoing area of research. In this study, we evaluated and compared the reliability and efficiency of eight selected nature-inspired metaheuristic algorithms for solving difficult phase stability and phase equilibrium problems. These algorithms are the cuckoo search (CS), intelligent firefly (IFA), bat (BA), artificial bee colony (ABC), MAKHA, a hybrid between monkey algorithm and krill herd algorithm, covariance matrix adaptation evolution strategy (CMAES), magnetic charged system search (MCSS), and bare bones particle swarm optimization (BBPSO). The results clearly showed that CS is the most reliable of all methods as it successfully solved all thermodynamic problems tested in this study. CS proved to be a promising nature-inspired optimization method to perform applied thermodynamic calculations for process design. PMID:24967430
Fateen, Seif-Eddeen K; Bonilla-Petriciolet, Adrian
2014-01-01
The search for reliable and efficient global optimization algorithms for solving phase stability and phase equilibrium problems in applied thermodynamics is an ongoing area of research. In this study, we evaluated and compared the reliability and efficiency of eight selected nature-inspired metaheuristic algorithms for solving difficult phase stability and phase equilibrium problems. These algorithms are the cuckoo search (CS), intelligent firefly (IFA), bat (BA), artificial bee colony (ABC), MAKHA, a hybrid between monkey algorithm and krill herd algorithm, covariance matrix adaptation evolution strategy (CMAES), magnetic charged system search (MCSS), and bare bones particle swarm optimization (BBPSO). The results clearly showed that CS is the most reliable of all methods as it successfully solved all thermodynamic problems tested in this study. CS proved to be a promising nature-inspired optimization method to perform applied thermodynamic calculations for process design.
Global health training among U.S. residency specialties: a systematic literature review
Hau, Duncan K.; Smart, Luke R.; DiPace, Jennifer I.; Peck, Robert N.
2017-01-01
ABSTRACT Background: Interest in global health training during residency is increasing. Global health knowledge is also becoming essential for health-care delivery today. Many U.S. residency programs have been incorporating global health training opportunities for their residents. We performed a systematic literature review to evaluate global health training opportunities and challenges among U.S. residency specialties. Methods: We searched PubMed from its earliest dates until October 2015. Articles included were survey results of U.S. program directors on global health training opportunities, and web-based searches of U.S. residency program websites on global health training opportunities. Data extracted included percentage of residency programs offering global health training within a specialty and challenges encountered. Results: Studies were found for twelve U.S. residency specialties. Of the survey based studies, the specialties with the highest percentage of their residency programs offering global health training were preventive medicine (83%), emergency medicine (74%), and surgery (71%); and the lowest were orthopaedic surgery (26%), obstetrics and gynecology (28%), and plastic surgery (41%). Of the web-based studies, the specialties with the highest percentage of their residency programs offering global health training were emergency medicine (41%), pediatrics (33%), and family medicine (22%); and the lowest were psychiatry (9%), obstetrics and gynecology (17%), and surgery (18%). The most common challenges were lack of funding, lack of international partnerships, lack of supervision, and scheduling. Conclusion: Among U.S. residency specialties, there are wide disparities for global health training. In general, there are few opportunities in psychiatry and surgical residency specialties, and greater opportunities among medical residency specialties. Further emphasis should be made to scale-up opportunities for psychiatry and surgical residency specialties. PMID:28178918
Estimating the global prevalence of transthyretin familial amyloid polyneuropathy
Waddington‐Cruz, Márcia; Botteman, Marc F.; Carter, John A.; Chopra, Avijeet S.; Hopps, Markay; Stewart, Michelle; Fallet, Shari; Amass, Leslie
2018-01-01
ABSTRACT Introduction: This study sought to estimate the global prevalence of transthyretin familial amyloid polyneuropathy (ATTR‐FAP). Methods: Prevalence estimates and information supporting prevalence calculations was extracted from records yielded by reference‐database searches (2005–2016), conference proceedings, and nonpeer reviewed sources. Prevalence was calculated as prevalence rate multiplied by general population size, then extrapolated to countries without prevalence estimates but with reported cases. Results: Searches returned 3,006 records; 1,001 were fully assessed and 10 retained, yielding prevalence for 10 “core” countries, then extrapolated to 32 additional countries. ATTR‐FAP prevalence in core countries, extrapolated countries, and globally was 3,762 (range 3639–3884), 6424 (range, 1,887–34,584), and 10,186 (range, 5,526–38,468) persons, respectively. Discussion: The mid global prevalence estimate (10,186) approximates the maximum commonly accepted estimate (5,000–10,000). The upper limit (38,468) implies potentially higher prevalence. These estimates should be interpreted carefully because contributing evidence was heterogeneous and carried an overall moderate risk of bias. This highlights the requirement for increasing rare‐disease epidemiological assessment and clinician awareness. Muscle Nerve 57: 829–837, 2018 PMID:29211930
NASA Astrophysics Data System (ADS)
Masuda, Kazuaki; Aiyoshi, Eitaro
We propose a method for solving optimal price decision problems for simultaneous multi-article auctions. An auction problem, originally formulated as a combinatorial problem, determines both every seller's whether or not to sell his/her article and every buyer's which article(s) to buy, so that the total utility of buyers and sellers will be maximized. Due to the duality theory, we transform it equivalently into a dual problem in which Lagrange multipliers are interpreted as articles' transaction price. As the dual problem is a continuous optimization problem with respect to the multipliers (i.e., the transaction prices), we propose a numerical method to solve it by applying heuristic global search methods. In this paper, Particle Swarm Optimization (PSO) is used to solve the dual problem, and experimental results are presented to show the validity of the proposed method.
NASA Astrophysics Data System (ADS)
Chu, J. G.; Zhang, C.; Fu, G. T.; Li, Y.; Zhou, H. C.
2015-04-01
This study investigates the effectiveness of a sensitivity-informed method for multi-objective operation of reservoir systems, which uses global sensitivity analysis as a screening tool to reduce the computational demands. Sobol's method is used to screen insensitive decision variables and guide the formulation of the optimization problems with a significantly reduced number of decision variables. This sensitivity-informed problem decomposition dramatically reduces the computational demands required for attaining high quality approximations of optimal tradeoff relationships between conflicting design objectives. The search results obtained from the reduced complexity multi-objective reservoir operation problems are then used to pre-condition the full search of the original optimization problem. In two case studies, the Dahuofang reservoir and the inter-basin multi-reservoir system in Liaoning province, China, sensitivity analysis results show that reservoir performance is strongly controlled by a small proportion of decision variables. Sensitivity-informed problem decomposition and pre-conditioning are evaluated in their ability to improve the efficiency and effectiveness of multi-objective evolutionary optimization. Overall, this study illustrates the efficiency and effectiveness of the sensitivity-informed method and the use of global sensitivity analysis to inform problem decomposition when solving the complex multi-objective reservoir operation problems.
Hao, Xiao-Hu; Zhang, Gui-Jun; Zhou, Xiao-Gen; Yu, Xu-Feng
2016-01-01
To address the searching problem of protein conformational space in ab-initio protein structure prediction, a novel method using abstract convex underestimation (ACUE) based on the framework of evolutionary algorithm was proposed. Computing such conformations, essential to associate structural and functional information with gene sequences, is challenging due to the high-dimensionality and rugged energy surface of the protein conformational space. As a consequence, the dimension of protein conformational space should be reduced to a proper level. In this paper, the high-dimensionality original conformational space was converted into feature space whose dimension is considerably reduced by feature extraction technique. And, the underestimate space could be constructed according to abstract convex theory. Thus, the entropy effect caused by searching in the high-dimensionality conformational space could be avoided through such conversion. The tight lower bound estimate information was obtained to guide the searching direction, and the invalid searching area in which the global optimal solution is not located could be eliminated in advance. Moreover, instead of expensively calculating the energy of conformations in the original conformational space, the estimate value is employed to judge if the conformation is worth exploring to reduce the evaluation time, thereby making computational cost lower and the searching process more efficient. Additionally, fragment assembly and the Monte Carlo method are combined to generate a series of metastable conformations by sampling in the conformational space. The proposed method provides a novel technique to solve the searching problem of protein conformational space. Twenty small-to-medium structurally diverse proteins were tested, and the proposed ACUE method was compared with It Fix, HEA, Rosetta and the developed method LEDE without underestimate information. Test results show that the ACUE method can more rapidly and more efficiently obtain the near-native protein structure.
An MPI + $X$ implementation of contact global search using Kokkos
Hansen, Glen A.; Xavier, Patrick G.; Mish, Sam P.; ...
2015-10-05
This paper describes an approach that seeks to parallelize the spatial search associated with computational contact mechanics. In contact mechanics, the purpose of the spatial search is to find “nearest neighbors,” which is the prelude to an imprinting search that resolves the interactions between the external surfaces of contacting bodies. In particular, we are interested in the contact global search portion of the spatial search associated with this operation on domain-decomposition-based meshes. Specifically, we describe an implementation that combines standard domain-decomposition-based MPI-parallel spatial search with thread-level parallelism (MPI-X) available on advanced computer architectures (those with GPU coprocessors). Our goal ismore » to demonstrate the efficacy of the MPI-X paradigm in the overall contact search. Standard MPI-parallel implementations typically use a domain decomposition of the external surfaces of bodies within the domain in an attempt to efficiently distribute computational work. This decomposition may or may not be the same as the volume decomposition associated with the host physics. The parallel contact global search phase is then employed to find and distribute surface entities (nodes and faces) that are needed to compute contact constraints between entities owned by different MPI ranks without further inter-rank communication. Key steps of the contact global search include computing bounding boxes, building surface entity (node and face) search trees and finding and distributing entities required to complete on-rank (local) spatial searches. To enable source-code portability and performance across a variety of different computer architectures, we implemented the algorithm using the Kokkos hardware abstraction library. While we targeted development towards machines with a GPU accelerator per MPI rank, we also report performance results for OpenMP with a conventional multi-core compute node per rank. Results here demonstrate a 47 % decrease in the time spent within the global search algorithm, comparing the reference ACME algorithm with the GPU implementation, on an 18M face problem using four MPI ranks. As a result, while further work remains to maximize performance on the GPU, this result illustrates the potential of the proposed implementation.« less
Chiroma, Haruna; Abdul-kareem, Sameem; Khan, Abdullah; Nawi, Nazri Mohd; Gital, Abdulsalam Ya'u; Shuib, Liyana; Abubakar, Adamu I; Rahman, Muhammad Zubair; Herawan, Tutut
2015-01-01
Global warming is attracting attention from policy makers due to its impacts such as floods, extreme weather, increases in temperature by 0.7°C, heat waves, storms, etc. These disasters result in loss of human life and billions of dollars in property. Global warming is believed to be caused by the emissions of greenhouse gases due to human activities including the emissions of carbon dioxide (CO2) from petroleum consumption. Limitations of the previous methods of predicting CO2 emissions and lack of work on the prediction of the Organization of the Petroleum Exporting Countries (OPEC) CO2 emissions from petroleum consumption have motivated this research. The OPEC CO2 emissions data were collected from the Energy Information Administration. Artificial Neural Network (ANN) adaptability and performance motivated its choice for this study. To improve effectiveness of the ANN, the cuckoo search algorithm was hybridised with accelerated particle swarm optimisation for training the ANN to build a model for the prediction of OPEC CO2 emissions. The proposed model predicts OPEC CO2 emissions for 3, 6, 9, 12 and 16 years with an improved accuracy and speed over the state-of-the-art methods. An accurate prediction of OPEC CO2 emissions can serve as a reference point for propagating the reorganisation of economic development in OPEC member countries with the view of reducing CO2 emissions to Kyoto benchmarks--hence, reducing global warming. The policy implications are discussed in the paper.
Image Processing for Educators in Global Hands-On Universe
NASA Astrophysics Data System (ADS)
Miller, J. P.; Pennypacker, C. R.; White, G. L.
2006-08-01
A method of image processing to find time-varying objects is being developed for the National Virtual Observatory as part of Global Hands-On Universe(tm) (Lawrence Hall of Science; University of California, Berkeley). Objects that vary in space or time are of prime importance in modern astronomy and astrophysics. Such objects include active galactic nuclei, variable stars, supernovae, or moving objects across a field of view such as an asteroid, comet, or extrasolar planet transiting its parent star. The search for these objects is undertaken by acquiring an image of the region of the sky where they occur followed by a second image taken at a later time. Ideally, both images are taken with the same telescope using the same filter and charge-coupled device. The two images are aligned and subtracted with the subtracted image revealing any changes in light during the time period between the two images. We have used a method of Christophe Alard using the image processing software IDL Version 6.2 (Research Systems, Inc.) with the exception of the background correction, which is done on the two images prior to the subtraction. Testing has been extensive, using images provided by a number of National Virtual Observatory and collaborating projects. They include the Supernovae Trace Cosmic Expansion (Cerro Tololo Inter-American Observatory), Supernovae/ Acceleration Program (Lawrence Berkeley National Laboratory), Lowell Observatory Near-Earth Object Search (Lowell Observatory), and the Centre National de la Recherche Scientifique (Paris, France). Further testing has been done with students, including a May 2006 two week program at the Lawrence Berkeley National Laboratory. Students from Hardin-Simmons University (Abilene, TX) and Jackson State University (Jackson, MS) used the subtraction method to analyze images from the Cerro Tololo Inter-American Observatory (CTIO) searching for new asteroids and Kuiper Belt objects. In October 2006 students from five U.S. high schools will use the subtraction method in an asteroid search campaign using CTIO images with 7-day follow-up images to be provided by the Las Cumbres Observatory (Santa Barbara, CA). During the Spring 2006 semester, students from Cape Fear High School used the method to search for near-Earth objects and supernovae. Using images from the Astronomical Research Institute (Charleston, IL) the method contributed to the original discovery of two supernovae, SN 2006al and SN 2006bi.
Fundamental resource-allocating model in colleges and universities based on Immune Clone Algorithms
NASA Astrophysics Data System (ADS)
Ye, Mengdie
2017-05-01
In this thesis we will seek the combination of antibodies and antigens converted from the optimal course arrangement and make an analogy with Immune Clone Algorithms. According to the character of the Algorithms, we apply clone, clone gene and clone selection to arrange courses. Clone operator can combine evolutionary search and random search, global search and local search. By cloning and clone mutating candidate solutions, we can find the global optimal solution quickly.
Global Image Dissimilarity in Macaque Inferotemporal Cortex Predicts Human Visual Search Efficiency
Sripati, Arun P.; Olson, Carl R.
2010-01-01
Finding a target in a visual scene can be easy or difficult depending on the nature of the distractors. Research in humans has suggested that search is more difficult the more similar the target and distractors are to each other. However, it has not yielded an objective definition of similarity. We hypothesized that visual search performance depends on similarity as determined by the degree to which two images elicit overlapping patterns of neuronal activity in visual cortex. To test this idea, we recorded from neurons in monkey inferotemporal cortex (IT) and assessed visual search performance in humans using pairs of images formed from the same local features in different global arrangements. The ability of IT neurons to discriminate between two images was strongly predictive of the ability of humans to discriminate between them during visual search, accounting overall for 90% of the variance in human performance. A simple physical measure of global similarity – the degree of overlap between the coarse footprints of a pair of images – largely explains both the neuronal and the behavioral results. To explain the relation between population activity and search behavior, we propose a model in which the efficiency of global oddball search depends on contrast-enhancing lateral interactions in high-order visual cortex. PMID:20107054
Wang, Shuaiqun; Aorigele; Kong, Wei; Zeng, Weiming; Hong, Xiaomin
2016-01-01
Gene expression data composed of thousands of genes play an important role in classification platforms and disease diagnosis. Hence, it is vital to select a small subset of salient features over a large number of gene expression data. Lately, many researchers devote themselves to feature selection using diverse computational intelligence methods. However, in the progress of selecting informative genes, many computational methods face difficulties in selecting small subsets for cancer classification due to the huge number of genes (high dimension) compared to the small number of samples, noisy genes, and irrelevant genes. In this paper, we propose a new hybrid algorithm HICATS incorporating imperialist competition algorithm (ICA) which performs global search and tabu search (TS) that conducts fine-tuned search. In order to verify the performance of the proposed algorithm HICATS, we have tested it on 10 well-known benchmark gene expression classification datasets with dimensions varying from 2308 to 12600. The performance of our proposed method proved to be superior to other related works including the conventional version of binary optimization algorithm in terms of classification accuracy and the number of selected genes.
Aorigele; Zeng, Weiming; Hong, Xiaomin
2016-01-01
Gene expression data composed of thousands of genes play an important role in classification platforms and disease diagnosis. Hence, it is vital to select a small subset of salient features over a large number of gene expression data. Lately, many researchers devote themselves to feature selection using diverse computational intelligence methods. However, in the progress of selecting informative genes, many computational methods face difficulties in selecting small subsets for cancer classification due to the huge number of genes (high dimension) compared to the small number of samples, noisy genes, and irrelevant genes. In this paper, we propose a new hybrid algorithm HICATS incorporating imperialist competition algorithm (ICA) which performs global search and tabu search (TS) that conducts fine-tuned search. In order to verify the performance of the proposed algorithm HICATS, we have tested it on 10 well-known benchmark gene expression classification datasets with dimensions varying from 2308 to 12600. The performance of our proposed method proved to be superior to other related works including the conventional version of binary optimization algorithm in terms of classification accuracy and the number of selected genes. PMID:27579323
Identification and analysis of multigene families by comparison of exon fingerprints.
Brown, N P; Whittaker, A J; Newell, W R; Rawlings, C J; Beck, S
1995-06-02
Gene families are often recognised by sequence homology using similarity searching to find relationships, however, genomic sequence data provides gene architectural information not used by conventional search methods. In particular, intron positions and phases are expected to be relatively conserved features, because mis-splicing and reading frame shifts should be selected against. A fast search technique capable of detecting possible weak sequence homologies apparent at the intron/exon level of gene organization is presented for comparing spliceosomal genes and gene fragments. FINEX compares strings of exons delimited by intron/exon boundary positions and intron phases (exon fingerprint) using a global dynamic programming algorithm with a combined intron phase identity and exon size dissimilarity score. Exon fingerprints are typically two orders of magnitude smaller than their nucleic acid sequence counterparts giving rise to fast search times: a ranked search against a library of 6755 fingerprints for a typical three exon fingerprint completes in under 30 seconds on an ordinary workstation, while a worst case largest fingerprint of 52 exons completes in just over one minute. The short "sequence" length of exon fingerprints in comparisons is compensated for by the large exon alphabet compounded of intron phase types and a wide range of exon sizes, the latter contributing the most information to alignments. FINEX performs better in some searches than conventional methods, finding matches with similar exon organization, but low sequence homology. A search using a human serum albumin finds all members of the multigene family in the FINEX database at the top of the search ranking, despite very low amino acid percentage identities between family members. The method should complement conventional sequence searching and alignment techniques, offering a means of identifying otherwise hard to detect homologies where genomic data are available.
Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei
2015-01-01
Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper. PMID:25784928
Ye, Zhiwei; Wang, Mingwei; Hu, Zhengbing; Liu, Wei
2015-01-01
Image enhancement is an important procedure of image processing and analysis. This paper presents a new technique using a modified measure and blending of cuckoo search and particle swarm optimization (CS-PSO) for low contrast images to enhance image adaptively. In this way, contrast enhancement is obtained by global transformation of the input intensities; it employs incomplete Beta function as the transformation function and a novel criterion for measuring image quality considering three factors which are threshold, entropy value, and gray-level probability density of the image. The enhancement process is a nonlinear optimization problem with several constraints. CS-PSO is utilized to maximize the objective fitness criterion in order to enhance the contrast and detail in an image by adapting the parameters of a novel extension to a local enhancement technique. The performance of the proposed method has been compared with other existing techniques such as linear contrast stretching, histogram equalization, and evolutionary computing based image enhancement methods like backtracking search algorithm, differential search algorithm, genetic algorithm, and particle swarm optimization in terms of processing time and image quality. Experimental results demonstrate that the proposed method is robust and adaptive and exhibits the better performance than other methods involved in the paper.
Software Assessment of the Global Force Management (GFM) Search Capability Study
2017-02-01
Study by Timothy Hanratty, Mark Mittrick, Alex Vertlieb, and Frederick Brundick Approved for public release; distribution...Army Research Laboratory Software Assessment of the Global Force Management (GFM) Search Capability Study by Timothy Hanratty, Mark Mittrick...Force Management (GFM) Search Capability Study 5a. CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) Timothy
Worldwide Behavioral Research on Major Global Causes of Mortality
ERIC Educational Resources Information Center
Dal-Re, Rafael
2011-01-01
Background: Researchers willing to publish their interventional studies' results must register their studies before starting enrollment. This study aimed to describe all "open" (i.e., recruiting or not yet recruiting) behavioral studies in 16 of 20 top worldwide leading causes of death. Method: Search on Clinicaltrials.gov database (March 2010).…
A global reaction route mapping-based kinetic Monte Carlo algorithm
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mitchell, Izaac; Page, Alister J., E-mail: sirle@chem.nagoya-u.ac.jp, E-mail: alister.page@newcastle.edu.au; Irle, Stephan, E-mail: sirle@chem.nagoya-u.ac.jp, E-mail: alister.page@newcastle.edu.au
2016-07-14
We propose a new on-the-fly kinetic Monte Carlo (KMC) method that is based on exhaustive potential energy surface searching carried out with the global reaction route mapping (GRRM) algorithm. Starting from any given equilibrium state, this GRRM-KMC algorithm performs a one-step GRRM search to identify all surrounding transition states. Intrinsic reaction coordinate pathways are then calculated to identify potential subsequent equilibrium states. Harmonic transition state theory is used to calculate rate constants for all potential pathways, before a standard KMC accept/reject selection is performed. The selected pathway is then used to propagate the system forward in time, which is calculatedmore » on the basis of 1st order kinetics. The GRRM-KMC algorithm is validated here in two challenging contexts: intramolecular proton transfer in malonaldehyde and surface carbon diffusion on an iron nanoparticle. We demonstrate that in both cases the GRRM-KMC method is capable of reproducing the 1st order kinetics observed during independent quantum chemical molecular dynamics simulations using the density-functional tight-binding potential.« less
Broadcasting satellite service synthesis using gradient and cyclic coordinate search procedures
NASA Technical Reports Server (NTRS)
Reilly, C. H.; Mount-Campbell, C. A.; Gonsalvez, D. J.; Martin, C. H.; Levis, C. A.; Wang, C. W.
1986-01-01
Two search techniques are considered for solving satellite synthesis problems. Neither is likely to find a globally optimal solution. In order to determine which method performs better and what factors affect their performance, we design an experiment and solve the same problem under a variety of starting solution configuration-algorithm combinations. Since there is no randomization in the experiment, we present results of practical, rather than statistical, significance. Our implementation of a cyclic coordinate search procedure clearly finds better synthesis solutions than our implementation of a gradient search procedure does with our objective of maximizing the minimum C/I ratio computed at test points on the perimeters of the intended service areas. The length of the available orbital arc and the configuration of the starting solution are shown to affect the quality of the solutions found.
Broadcasting satellite service synthesis using gradient and cyclic coordinate search procedures
NASA Technical Reports Server (NTRS)
Reilly, C. H.; Mount-Campbell, C. A.; Gonsalvez, D. J.; Martin, C. H.; Levis, C. A.
1986-01-01
Two search techniques are considered for solving satellite synthesis problems. Neither is likely to find a globally optimal solution. In order to determine which method performs better and what factors affect their performance, an experiment is designed and the same problem is solved under a variety of starting solution configuration-algorithm combinations. Since there is no randomization in the experiment, results of practical, rather than statistical, significance are presented. Implementation of a cyclic coordinate search procedure clearly finds better synthesis solutions than implementation of a gradient search procedure does with the objective of maximizing the minimum C/I ratio computed at test points on the perimeters of the intended service areas. The length of the available orbital arc and the configuration of the starting solution are shown to affect the quality of the solutions found.
A dynamic fuzzy genetic algorithm for natural image segmentation using adaptive mean shift
NASA Astrophysics Data System (ADS)
Arfan Jaffar, M.
2017-01-01
In this paper, a colour image segmentation approach based on hybridisation of adaptive mean shift (AMS), fuzzy c-mean and genetic algorithms (GAs) is presented. Image segmentation is the perceptual faction of pixels based on some likeness measure. GA with fuzzy behaviour is adapted to maximise the fuzzy separation and minimise the global compactness among the clusters or segments in spatial fuzzy c-mean (sFCM). It adds diversity to the search process to find the global optima. A simple fusion method has been used to combine the clusters to overcome the problem of over segmentation. The results show that our technique outperforms state-of-the-art methods.
Robust hashing with local models for approximate similarity search.
Song, Jingkuan; Yang, Yi; Li, Xuelong; Huang, Zi; Yang, Yang
2014-07-01
Similarity search plays an important role in many applications involving high-dimensional data. Due to the known dimensionality curse, the performance of most existing indexing structures degrades quickly as the feature dimensionality increases. Hashing methods, such as locality sensitive hashing (LSH) and its variants, have been widely used to achieve fast approximate similarity search by trading search quality for efficiency. However, most existing hashing methods make use of randomized algorithms to generate hash codes without considering the specific structural information in the data. In this paper, we propose a novel hashing method, namely, robust hashing with local models (RHLM), which learns a set of robust hash functions to map the high-dimensional data points into binary hash codes by effectively utilizing local structural information. In RHLM, for each individual data point in the training dataset, a local hashing model is learned and used to predict the hash codes of its neighboring data points. The local models from all the data points are globally aligned so that an optimal hash code can be assigned to each data point. After obtaining the hash codes of all the training data points, we design a robust method by employing l2,1 -norm minimization on the loss function to learn effective hash functions, which are then used to map each database point into its hash code. Given a query data point, the search process first maps it into the query hash code by the hash functions and then explores the buckets, which have similar hash codes to the query hash code. Extensive experimental results conducted on real-life datasets show that the proposed RHLM outperforms the state-of-the-art methods in terms of search quality and efficiency.
Adaptive feature selection using v-shaped binary particle swarm optimization.
Teng, Xuyang; Dong, Hongbin; Zhou, Xiurong
2017-01-01
Feature selection is an important preprocessing method in machine learning and data mining. This process can be used not only to reduce the amount of data to be analyzed but also to build models with stronger interpretability based on fewer features. Traditional feature selection methods evaluate the dependency and redundancy of features separately, which leads to a lack of measurement of their combined effect. Moreover, a greedy search considers only the optimization of the current round and thus cannot be a global search. To evaluate the combined effect of different subsets in the entire feature space, an adaptive feature selection method based on V-shaped binary particle swarm optimization is proposed. In this method, the fitness function is constructed using the correlation information entropy. Feature subsets are regarded as individuals in a population, and the feature space is searched using V-shaped binary particle swarm optimization. The above procedure overcomes the hard constraint on the number of features, enables the combined evaluation of each subset as a whole, and improves the search ability of conventional binary particle swarm optimization. The proposed algorithm is an adaptive method with respect to the number of feature subsets. The experimental results show the advantages of optimizing the feature subsets using the V-shaped transfer function and confirm the effectiveness and efficiency of the feature subsets obtained under different classifiers.
Adaptive feature selection using v-shaped binary particle swarm optimization
Dong, Hongbin; Zhou, Xiurong
2017-01-01
Feature selection is an important preprocessing method in machine learning and data mining. This process can be used not only to reduce the amount of data to be analyzed but also to build models with stronger interpretability based on fewer features. Traditional feature selection methods evaluate the dependency and redundancy of features separately, which leads to a lack of measurement of their combined effect. Moreover, a greedy search considers only the optimization of the current round and thus cannot be a global search. To evaluate the combined effect of different subsets in the entire feature space, an adaptive feature selection method based on V-shaped binary particle swarm optimization is proposed. In this method, the fitness function is constructed using the correlation information entropy. Feature subsets are regarded as individuals in a population, and the feature space is searched using V-shaped binary particle swarm optimization. The above procedure overcomes the hard constraint on the number of features, enables the combined evaluation of each subset as a whole, and improves the search ability of conventional binary particle swarm optimization. The proposed algorithm is an adaptive method with respect to the number of feature subsets. The experimental results show the advantages of optimizing the feature subsets using the V-shaped transfer function and confirm the effectiveness and efficiency of the feature subsets obtained under different classifiers. PMID:28358850
A cooperative strategy for parameter estimation in large scale systems biology models.
Villaverde, Alejandro F; Egea, Jose A; Banga, Julio R
2012-06-22
Mathematical models play a key role in systems biology: they summarize the currently available knowledge in a way that allows to make experimentally verifiable predictions. Model calibration consists of finding the parameters that give the best fit to a set of experimental data, which entails minimizing a cost function that measures the goodness of this fit. Most mathematical models in systems biology present three characteristics which make this problem very difficult to solve: they are highly non-linear, they have a large number of parameters to be estimated, and the information content of the available experimental data is frequently scarce. Hence, there is a need for global optimization methods capable of solving this problem efficiently. A new approach for parameter estimation of large scale models, called Cooperative Enhanced Scatter Search (CeSS), is presented. Its key feature is the cooperation between different programs ("threads") that run in parallel in different processors. Each thread implements a state of the art metaheuristic, the enhanced Scatter Search algorithm (eSS). Cooperation, meaning information sharing between threads, modifies the systemic properties of the algorithm and allows to speed up performance. Two parameter estimation problems involving models related with the central carbon metabolism of E. coli which include different regulatory levels (metabolic and transcriptional) are used as case studies. The performance and capabilities of the method are also evaluated using benchmark problems of large-scale global optimization, with excellent results. The cooperative CeSS strategy is a general purpose technique that can be applied to any model calibration problem. Its capability has been demonstrated by calibrating two large-scale models of different characteristics, improving the performance of previously existing methods in both cases. The cooperative metaheuristic presented here can be easily extended to incorporate other global and local search solvers and specific structural information for particular classes of problems.
A cooperative strategy for parameter estimation in large scale systems biology models
2012-01-01
Background Mathematical models play a key role in systems biology: they summarize the currently available knowledge in a way that allows to make experimentally verifiable predictions. Model calibration consists of finding the parameters that give the best fit to a set of experimental data, which entails minimizing a cost function that measures the goodness of this fit. Most mathematical models in systems biology present three characteristics which make this problem very difficult to solve: they are highly non-linear, they have a large number of parameters to be estimated, and the information content of the available experimental data is frequently scarce. Hence, there is a need for global optimization methods capable of solving this problem efficiently. Results A new approach for parameter estimation of large scale models, called Cooperative Enhanced Scatter Search (CeSS), is presented. Its key feature is the cooperation between different programs (“threads”) that run in parallel in different processors. Each thread implements a state of the art metaheuristic, the enhanced Scatter Search algorithm (eSS). Cooperation, meaning information sharing between threads, modifies the systemic properties of the algorithm and allows to speed up performance. Two parameter estimation problems involving models related with the central carbon metabolism of E. coli which include different regulatory levels (metabolic and transcriptional) are used as case studies. The performance and capabilities of the method are also evaluated using benchmark problems of large-scale global optimization, with excellent results. Conclusions The cooperative CeSS strategy is a general purpose technique that can be applied to any model calibration problem. Its capability has been demonstrated by calibrating two large-scale models of different characteristics, improving the performance of previously existing methods in both cases. The cooperative metaheuristic presented here can be easily extended to incorporate other global and local search solvers and specific structural information for particular classes of problems. PMID:22727112
A feasible DY conjugate gradient method for linear equality constraints
NASA Astrophysics Data System (ADS)
LI, Can
2017-09-01
In this paper, we propose a feasible conjugate gradient method for solving linear equality constrained optimization problem. The method is an extension of the Dai-Yuan conjugate gradient method proposed by Dai and Yuan to linear equality constrained optimization problem. It can be applied to solve large linear equality constrained problem due to lower storage requirement. An attractive property of the method is that the generated direction is always feasible and descent direction. Under mild conditions, the global convergence of the proposed method with exact line search is established. Numerical experiments are also given which show the efficiency of the method.
Electronic neural networks for global optimization
NASA Technical Reports Server (NTRS)
Thakoor, A. P.; Moopenn, A. W.; Eberhardt, S.
1990-01-01
An electronic neural network with feedback architecture, implemented in analog custom VLSI is described. Its application to problems of global optimization for dynamic assignment is discussed. The convergence properties of the neural network hardware are compared with computer simulation results. The neural network's ability to provide optimal or near optimal solutions within only a few neuron time constants, a speed enhancement of several orders of magnitude over conventional search methods, is demonstrated. The effect of noise on the circuit dynamics and the convergence behavior of the neural network hardware is also examined.
Aerodynamic Shape Optimization Using Hybridized Differential Evolution
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.
2003-01-01
An aerodynamic shape optimization method that uses an evolutionary algorithm known at Differential Evolution (DE) in conjunction with various hybridization strategies is described. DE is a simple and robust evolutionary strategy that has been proven effective in determining the global optimum for several difficult optimization problems. Various hybridization strategies for DE are explored, including the use of neural networks as well as traditional local search methods. A Navier-Stokes solver is used to evaluate the various intermediate designs and provide inputs to the hybrid DE optimizer. The method is implemented on distributed parallel computers so that new designs can be obtained within reasonable turnaround times. Results are presented for the inverse design of a turbine airfoil from a modern jet engine. (The final paper will include at least one other aerodynamic design application). The capability of the method to search large design spaces and obtain the optimal airfoils in an automatic fashion is demonstrated.
Improved segmentation of abnormal cervical nuclei using a graph-search based approach
NASA Astrophysics Data System (ADS)
Zhang, Ling; Liu, Shaoxiong; Wang, Tianfu; Chen, Siping; Sonka, Milan
2015-03-01
Reliable segmentation of abnormal nuclei in cervical cytology is of paramount importance in automation-assisted screening techniques. This paper presents a general method for improving the segmentation of abnormal nuclei using a graph-search based approach. More specifically, the proposed method focuses on the improvement of coarse (initial) segmentation. The improvement relies on a transform that maps round-like border in the Cartesian coordinate system into lines in the polar coordinate system. The costs consisting of nucleus-specific edge and region information are assigned to the nodes. The globally optimal path in the constructed graph is then identified by dynamic programming. We have tested the proposed method on abnormal nuclei from two cervical cell image datasets, Herlev and H and E stained liquid-based cytology (HELBC), and the comparative experiments with recent state-of-the-art approaches demonstrate the superior performance of the proposed method.
The effects of variable biome distribution on global climate
DOE Office of Scientific and Technical Information (OSTI.GOV)
Noever, D.A.; Brittain, A.; Matsos, H.C.
1996-12-31
In projecting climatic adjustments to anthropogenically elevated atmospheric carbon dioxide, most global climate models fix biome distribution to current geographic conditions. The authors develop a model that examines the albedo-related effects of biome distribution on global temperature. The model was tested on historical biome changes since 1860 and the results fit both the observed trend and order of magnitude change in global temperature. Once backtested in this way on historical data, the model is then used to generate an optimized future biome distribution which minimizes projected greenhouse effects on global temperature. Because of the complexity of this combinatorial search anmore » artificial intelligence method, the genetic algorithm, was employed. The genetic algorithm assigns various biome distributions to the planet, then adjusts their percentage area and albedo effects to regulate or moderate temperature changes.« less
NASA Astrophysics Data System (ADS)
Xu, Shuo; Ji, Ze; Truong Pham, Duc; Yu, Fan
2011-11-01
The simultaneous mission assignment and home allocation for hospital service robots studied is a Multidimensional Assignment Problem (MAP) with multiobjectives and multiconstraints. A population-based metaheuristic, the Binary Bees Algorithm (BBA), is proposed to optimize this NP-hard problem. Inspired by the foraging mechanism of honeybees, the BBA's most important feature is an explicit functional partitioning between global search and local search for exploration and exploitation, respectively. Its key parts consist of adaptive global search, three-step elitism selection (constraint handling, non-dominated solutions selection, and diversity preservation), and elites-centred local search within a Hamming neighbourhood. Two comparative experiments were conducted to investigate its single objective optimization, optimization effectiveness (indexed by the S-metric and C-metric) and optimization efficiency (indexed by computational burden and CPU time) in detail. The BBA outperformed its competitors in almost all the quantitative indices. Hence, the above overall scheme, and particularly the searching history-adapted global search strategy was validated.
'Sciencenet'--towards a global search and share engine for all scientific knowledge.
Lütjohann, Dominic S; Shah, Asmi H; Christen, Michael P; Richter, Florian; Knese, Karsten; Liebel, Urban
2011-06-15
Modern biological experiments create vast amounts of data which are geographically distributed. These datasets consist of petabytes of raw data and billions of documents. Yet to the best of our knowledge, a search engine technology that searches and cross-links all different data types in life sciences does not exist. We have developed a prototype distributed scientific search engine technology, 'Sciencenet', which facilitates rapid searching over this large data space. By 'bringing the search engine to the data', we do not require server farms. This platform also allows users to contribute to the search index and publish their large-scale data to support e-Science. Furthermore, a community-driven method guarantees that only scientific content is crawled and presented. Our peer-to-peer approach is sufficiently scalable for the science web without performance or capacity tradeoff. The free to use search portal web page and the downloadable client are accessible at: http://sciencenet.kit.edu. The web portal for index administration is implemented in ASP.NET, the 'AskMe' experiment publisher is written in Python 2.7, and the backend 'YaCy' search engine is based on Java 1.6.
Deep first formal concept search.
Zhang, Tao; Li, Hui; Hong, Wenxue; Yuan, Xiamei; Wei, Xinyu
2014-01-01
The calculation of formal concepts is a very important part in the theory of formal concept analysis (FCA); however, within the framework of FCA, computing all formal concepts is the main challenge because of its exponential complexity and difficulty in visualizing the calculating process. With the basic idea of Depth First Search, this paper presents a visualization algorithm by the attribute topology of formal context. Limited by the constraints and calculation rules, all concepts are achieved by the visualization global formal concepts searching, based on the topology degenerated with the fixed start and end points, without repetition and omission. This method makes the calculation of formal concepts precise and easy to operate and reflects the integrity of the algorithm, which enables it to be suitable for visualization analysis.
A practical globalization of one-shot optimization for optimal design of tokamak divertors
NASA Astrophysics Data System (ADS)
Blommaert, Maarten; Dekeyser, Wouter; Baelmans, Martine; Gauger, Nicolas R.; Reiter, Detlev
2017-01-01
In past studies, nested optimization methods were successfully applied to design of the magnetic divertor configuration in nuclear fusion reactors. In this paper, so-called one-shot optimization methods are pursued. Due to convergence issues, a globalization strategy for the one-shot solver is sought. Whereas Griewank introduced a globalization strategy using a doubly augmented Lagrangian function that includes primal and adjoint residuals, its practical usability is limited by the necessity of second order derivatives and expensive line search iterations. In this paper, a practical alternative is offered that avoids these drawbacks by using a regular augmented Lagrangian merit function that penalizes only state residuals. Additionally, robust rank-two Hessian estimation is achieved by adaptation of Powell's damped BFGS update rule. The application of the novel one-shot approach to magnetic divertor design is considered in detail. For this purpose, the approach is adapted to be complementary with practical in parts adjoint sensitivities. Using the globalization strategy, stable convergence of the one-shot approach is achieved.
Approach to identifying pollutant source and matching flow field
NASA Astrophysics Data System (ADS)
Liping, Pang; Yu, Zhang; Hongquan, Qu; Tao, Hu; Wei, Wang
2013-07-01
Accidental pollution events often threaten people's health and lives, and it is necessary to identify a pollutant source rapidly so that prompt actions can be taken to prevent the spread of pollution. But this identification process is one of the difficulties in the inverse problem areas. This paper carries out some studies on this issue. An approach using single sensor information with noise was developed to identify a sudden continuous emission trace pollutant source in a steady velocity field. This approach first compares the characteristic distance of the measured concentration sequence to the multiple hypothetical measured concentration sequences at the sensor position, which are obtained based on a source-three-parameter multiple hypotheses. Then we realize the source identification by globally searching the optimal values with the objective function of the maximum location probability. Considering the large amount of computation load resulting from this global searching, a local fine-mesh source search method based on priori coarse-mesh location probabilities is further used to improve the efficiency of identification. Studies have shown that the flow field has a very important influence on the source identification. Therefore, we also discuss the impact of non-matching flow fields with estimation deviation on identification. Based on this analysis, a method for matching accurate flow field is presented to improve the accuracy of identification. In order to verify the practical application of the above method, an experimental system simulating a sudden pollution process in a steady flow field was set up and some experiments were conducted when the diffusion coefficient was known. The studies showed that the three parameters (position, emission strength and initial emission time) of the pollutant source in the experiment can be estimated by using the method for matching flow field and source identification.
Torres, Jaume; Briggs, John A G; Arkin, Isaiah T
2002-01-01
Molecular interactions between transmembrane alpha-helices can be explored using global searching molecular dynamics simulations (GSMDS), a method that produces a group of probable low energy structures. We have shown previously that the correct model in various homooligomers is always located at the bottom of one of various possible energy basins. Unfortunately, the correct model is not necessarily the one with the lowest energy according to the computational protocol, which has resulted in overlooking of this parameter in favor of experimental data. In an attempt to use energetic considerations in the aforementioned analysis, we used global searching molecular dynamics simulations on three homooligomers of different sizes, the structures of which are known. As expected, our results show that even when the conformational space searched includes the correct structure, taking together simulations using both left and right handedness, the correct model does not necessarily have the lowest energy. However, for the models derived from the simulation that uses the correct handedness, the lowest energy model is always at, or very close to, the correct orientation. We hypothesize that this should also be true when simulations are performed using homologous sequences, and consequently lowest energy models with the right handedness should produce a cluster around a certain orientation. In contrast, using the wrong handedness the lowest energy structures for each sequence should appear at many different orientations. The rationale behind this is that, although more than one energy basin may exist, basins that do not contain the correct model will shift or disappear because they will be destabilized by at least one conservative (i.e. silent) mutation, whereas the basin containing the correct model will remain. This not only allows one to point to the possible handedness of the bundle, but can be used to overcome ambiguities arising from the use of homologous sequences in the analysis of global searching molecular dynamics simulations. In addition, because clustering of lowest energy models arising from homologous sequences only happens when the estimation of the helix tilt is correct, it may provide a validation for the helix tilt estimate. PMID:12023229
A modified form of conjugate gradient method for unconstrained optimization problems
NASA Astrophysics Data System (ADS)
Ghani, Nur Hamizah Abdul; Rivaie, Mohd.; Mamat, Mustafa
2016-06-01
Conjugate gradient (CG) methods have been recognized as an interesting technique to solve optimization problems, due to the numerical efficiency, simplicity and low memory requirements. In this paper, we propose a new CG method based on the study of Rivaie et al. [7] (Comparative study of conjugate gradient coefficient for unconstrained Optimization, Aus. J. Bas. Appl. Sci. 5(2011) 947-951). Then, we show that our method satisfies sufficient descent condition and converges globally with exact line search. Numerical results show that our proposed method is efficient for given standard test problems, compare to other existing CG methods.
ERIC Educational Resources Information Center
Almeida, Renita A.; Dickinson, J. Edwin; Maybery, Murray T.; Badcock, Johanna C.; Badcock, David R.
2013-01-01
Relative to low scorers, high scorers on the Autism-Spectrum Quotient (AQ) show enhanced performance on the Embedded Figures Test and the Radial Frequency search task (RFST), which has been attributed to both enhanced local processing and differences in combining global percepts. We investigate the role of local and global processing further using…
NASA Astrophysics Data System (ADS)
Rocha, Ana Maria A. C.; Costa, M. Fernanda P.; Fernandes, Edite M. G. P.
2016-12-01
This article presents a shifted hyperbolic penalty function and proposes an augmented Lagrangian-based algorithm for non-convex constrained global optimization problems. Convergence to an ?-global minimizer is proved. At each iteration k, the algorithm requires the ?-global minimization of a bound constrained optimization subproblem, where ?. The subproblems are solved by a stochastic population-based metaheuristic that relies on the artificial fish swarm paradigm and a two-swarm strategy. To enhance the speed of convergence, the algorithm invokes the Nelder-Mead local search with a dynamically defined probability. Numerical experiments with benchmark functions and engineering design problems are presented. The results show that the proposed shifted hyperbolic augmented Lagrangian compares favorably with other deterministic and stochastic penalty-based methods.
Ruan, Hang; Li, Jian; Zhang, Lei; Long, Teng
2015-01-01
For vehicle positioning with Global Navigation Satellite System (GNSS) in urban areas, open-loop tracking shows better performance because of its high sensitivity and superior robustness against multipath. However, no previous study has focused on the effects of the code search grid size on the code phase measurement accuracy of open-loop tracking. Traditional open-loop tracking methods are performed by the batch correlators with fixed correlation space. The code search grid size, which is the correlation space, is a constant empirical value and the code phase measuring accuracy will be largely degraded due to the improper grid size, especially when the signal carrier-to-noise density ratio (C/N0) varies. In this study, the Adaptive Correlation Space Adjusted Open-Loop Tracking Approach (ACSA-OLTA) is proposed to improve the code phase measurement dependent pseudo range accuracy. In ACSA-OLTA, the correlation space is adjusted according to the signal C/N0. The novel Equivalent Weighted Pseudo Range Error (EWPRE) is raised to obtain the optimal code search grid sizes for different C/N0. The code phase measuring errors of different measurement calculation methods are analyzed for the first time. The measurement calculation strategy of ACSA-OLTA is derived from the analysis to further improve the accuracy but reduce the correlator consumption. Performance simulation and real tests confirm that the pseudo range and positioning accuracy of ASCA-OLTA are better than the traditional open-loop tracking methods in the usual scenarios of urban area. PMID:26343683
NASA Astrophysics Data System (ADS)
Fan, Tian-E.; Shao, Gui-Fang; Ji, Qing-Shuang; Zheng, Ji-Wen; Liu, Tun-dong; Wen, Yu-Hua
2016-11-01
Theoretically, the determination of the structure of a cluster is to search the global minimum on its potential energy surface. The global minimization problem is often nondeterministic-polynomial-time (NP) hard and the number of local minima grows exponentially with the cluster size. In this article, a multi-populations multi-strategies differential evolution algorithm has been proposed to search the globally stable structure of Fe and Cr nanoclusters. The algorithm combines a multi-populations differential evolution with an elite pool scheme to keep the diversity of the solutions and avoid prematurely trapping into local optima. Moreover, multi-strategies such as growing method in initialization and three differential strategies in mutation are introduced to improve the convergence speed and lower the computational cost. The accuracy and effectiveness of our algorithm have been verified by comparing the results of Fe clusters with Cambridge Cluster Database. Meanwhile, the performance of our algorithm has been analyzed by comparing the convergence rate and energy evaluations with the classical DE algorithm. The multi-populations, multi-strategies mutation and growing method in initialization in our algorithm have been considered respectively. Furthermore, the structural growth pattern of Cr clusters has been predicted by this algorithm. The results show that the lowest-energy structure of Cr clusters contains many icosahedra, and the number of the icosahedral rings rises with increasing size.
NASA Astrophysics Data System (ADS)
Protopopescu, V.; D'Helon, C.; Barhen, J.
2003-06-01
A constant-time solution of the continuous global optimization problem (GOP) is obtained by using an ensemble algorithm. We show that under certain assumptions, the solution can be guaranteed by mapping the GOP onto a discrete unsorted search problem, whereupon Brüschweiler's ensemble search algorithm is applied. For adequate sensitivities of the measurement technique, the query complexity of the ensemble search algorithm depends linearly on the size of the function's domain. Advantages and limitations of an eventual NMR implementation are discussed.
NASA Technical Reports Server (NTRS)
Sellers, Piers
2012-01-01
Model results will be reviewed to assess different methods for bounding the terrestrial role in the global carbon cycle. It is proposed that a series of climate model runs could be scoped that would tighten the limits on the "missing sink" of terrestrial carbon and could also direct future satellite image analyses to search for its geographical location and understand its seasonal dynamics.
Zhong, Shangping; Chen, Tianshun; He, Fengying; Niu, Yuzhen
2014-09-01
For a practical pattern classification task solved by kernel methods, the computing time is mainly spent on kernel learning (or training). However, the current kernel learning approaches are based on local optimization techniques, and hard to have good time performances, especially for large datasets. Thus the existing algorithms cannot be easily extended to large-scale tasks. In this paper, we present a fast Gaussian kernel learning method by solving a specially structured global optimization (SSGO) problem. We optimize the Gaussian kernel function by using the formulated kernel target alignment criterion, which is a difference of increasing (d.i.) functions. Through using a power-transformation based convexification method, the objective criterion can be represented as a difference of convex (d.c.) functions with a fixed power-transformation parameter. And the objective programming problem can then be converted to a SSGO problem: globally minimizing a concave function over a convex set. The SSGO problem is classical and has good solvability. Thus, to find the global optimal solution efficiently, we can adopt the improved Hoffman's outer approximation method, which need not repeat the searching procedure with different starting points to locate the best local minimum. Also, the proposed method can be proven to converge to the global solution for any classification task. We evaluate the proposed method on twenty benchmark datasets, and compare it with four other Gaussian kernel learning methods. Experimental results show that the proposed method stably achieves both good time-efficiency performance and good classification performance. Copyright © 2014 Elsevier Ltd. All rights reserved.
Adversarial search by evolutionary computation.
Hong, T P; Huang, K Y; Lin, W Y
2001-01-01
In this paper, we consider the problem of finding good next moves in two-player games. Traditional search algorithms, such as minimax and alpha-beta pruning, suffer great temporal and spatial expansion when exploring deeply into search trees to find better next moves. The evolution of genetic algorithms with the ability to find global or near global optima in limited time seems promising, but they are inept at finding compound optima, such as the minimax in a game-search tree. We thus propose a new genetic algorithm-based approach that can find a good next move by reserving the board evaluation values of new offspring in a partial game-search tree. Experiments show that solution accuracy and search speed are greatly improved by our algorithm.
NASA Technical Reports Server (NTRS)
Englander, Arnold C.; Englander, Jacob A.
2017-01-01
Interplanetary trajectory optimization problems are highly complex and are characterized by a large number of decision variables and equality and inequality constraints as well as many locally optimal solutions. Stochastic global search techniques, coupled with a large-scale NLP solver, have been shown to solve such problems but are inadequately robust when the problem constraints become very complex. In this work, we present a novel search algorithm that takes advantage of the fact that equality constraints effectively collapse the solution space to lower dimensionality. This new approach walks the filament'' of feasibility to efficiently find the global optimal solution.
Navigating 3D electron microscopy maps with EM-SURFER.
Esquivel-Rodríguez, Juan; Xiong, Yi; Han, Xusi; Guang, Shuomeng; Christoffer, Charles; Kihara, Daisuke
2015-05-30
The Electron Microscopy DataBank (EMDB) is growing rapidly, accumulating biological structural data obtained mainly by electron microscopy and tomography, which are emerging techniques for determining large biomolecular complex and subcellular structures. Together with the Protein Data Bank (PDB), EMDB is becoming a fundamental resource of the tertiary structures of biological macromolecules. To take full advantage of this indispensable resource, the ability to search the database by structural similarity is essential. However, unlike high-resolution structures stored in PDB, methods for comparing low-resolution electron microscopy (EM) density maps in EMDB are not well established. We developed a computational method for efficiently searching low-resolution EM maps. The method uses a compact fingerprint representation of EM maps based on the 3D Zernike descriptor, which is derived from a mathematical series expansion for EM maps that are considered as 3D functions. The method is implemented in a web server named EM-SURFER, which allows users to search against the entire EMDB in real-time. EM-SURFER compares the global shapes of EM maps. Examples of search results from different types of query structures are discussed. We developed EM-SURFER, which retrieves structurally relevant matches for query EM maps from EMDB within seconds. The unique capability of EM-SURFER to detect 3D shape similarity of low-resolution EM maps should prove invaluable in structural biology.
A Hybrid Search Algorithm for Swarm Robots Searching in an Unknown Environment
Li, Shoutao; Li, Lina; Lee, Gordon; Zhang, Hao
2014-01-01
This paper proposes a novel method to improve the efficiency of a swarm of robots searching in an unknown environment. The approach focuses on the process of feeding and individual coordination characteristics inspired by the foraging behavior in nature. A predatory strategy was used for searching; hence, this hybrid approach integrated a random search technique with a dynamic particle swarm optimization (DPSO) search algorithm. If a search robot could not find any target information, it used a random search algorithm for a global search. If the robot found any target information in a region, the DPSO search algorithm was used for a local search. This particle swarm optimization search algorithm is dynamic as all the parameters in the algorithm are refreshed synchronously through a communication mechanism until the robots find the target position, after which, the robots fall back to a random searching mode. Thus, in this searching strategy, the robots alternated between two searching algorithms until the whole area was covered. During the searching process, the robots used a local communication mechanism to share map information and DPSO parameters to reduce the communication burden and overcome hardware limitations. If the search area is very large, search efficiency may be greatly reduced if only one robot searches an entire region given the limited resources available and time constraints. In this research we divided the entire search area into several subregions, selected a target utility function to determine which subregion should be initially searched and thereby reduced the residence time of the target to improve search efficiency. PMID:25386855
A hybrid search algorithm for swarm robots searching in an unknown environment.
Li, Shoutao; Li, Lina; Lee, Gordon; Zhang, Hao
2014-01-01
This paper proposes a novel method to improve the efficiency of a swarm of robots searching in an unknown environment. The approach focuses on the process of feeding and individual coordination characteristics inspired by the foraging behavior in nature. A predatory strategy was used for searching; hence, this hybrid approach integrated a random search technique with a dynamic particle swarm optimization (DPSO) search algorithm. If a search robot could not find any target information, it used a random search algorithm for a global search. If the robot found any target information in a region, the DPSO search algorithm was used for a local search. This particle swarm optimization search algorithm is dynamic as all the parameters in the algorithm are refreshed synchronously through a communication mechanism until the robots find the target position, after which, the robots fall back to a random searching mode. Thus, in this searching strategy, the robots alternated between two searching algorithms until the whole area was covered. During the searching process, the robots used a local communication mechanism to share map information and DPSO parameters to reduce the communication burden and overcome hardware limitations. If the search area is very large, search efficiency may be greatly reduced if only one robot searches an entire region given the limited resources available and time constraints. In this research we divided the entire search area into several subregions, selected a target utility function to determine which subregion should be initially searched and thereby reduced the residence time of the target to improve search efficiency.
The global burden of fatal self-poisoning with pesticides 2006-15: Systematic review.
Mew, Emma J; Padmanathan, Prianka; Konradsen, Flemming; Eddleston, Michael; Chang, Shu-Sen; Phillips, Michael R; Gunnell, David
2017-09-01
Agricultural pesticide poisoning is a major contributor to the global burden of suicide. Over the last decade there has been a marked decrease in the incidence of suicide worldwide. It is unclear whether pesticide poisoning still plays a significant role in the global incidence of suicide. WHO method-specific suicide data were supplemented by a systematic review of the literature between 2006 and 2015, including searches of thirteen electronic databases and Google, citation searching and a review of reference lists and personal collections. Our primary outcome was the proportion of total suicides due to pesticide poisoning. Weighted estimates were calculated for seven WHO regional and income strata. We identified data from 108 countries (102 from WHO data, 6 from the literature). A conservative estimate based on these data indicates that there were approximately 110,000 pesticide self-poisoning deaths each year from 2010 to 2014, comprising 13.7% of all global suicides. A sensitivity analysis accounting for under-reporting of suicides in India resulted in an increased estimate of 168,000 pesticide self-poisoning deaths annually, that is, 19.7% of global suicides. The proportion of suicides due to pesticide self-poisoning varies considerably between regions, from 0.9% in low- and middle-income countries in the European region to 48.3% in low- and middle-income countries in the Western Pacific region. High quality method-specific suicide data were unavailable for a number of the most populous countries, particularly in the African and Eastern Mediterranean regions. It is likely we have underestimated incidence in these regions. There appears to have been a substantial decline in fatal pesticide self-poisoning in recent years, largely driven by a reduction in overall suicide rates in China. Nonetheless, pesticide self-poisoning remains a major public health challenge, accounting for at least one-in-seven suicides globally. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.
A Hybrid alldifferent-Tabu Search Algorithm for Solving Sudoku Puzzles
Crawford, Broderick; Paredes, Fernando; Norero, Enrique
2015-01-01
The Sudoku problem is a well-known logic-based puzzle of combinatorial number-placement. It consists in filling a n 2 × n 2 grid, composed of n columns, n rows, and n subgrids, each one containing distinct integers from 1 to n 2. Such a puzzle belongs to the NP-complete collection of problems, to which there exist diverse exact and approximate methods able to solve it. In this paper, we propose a new hybrid algorithm that smartly combines a classic tabu search procedure with the alldifferent global constraint from the constraint programming world. The alldifferent constraint is known to be efficient for domain filtering in the presence of constraints that must be pairwise different, which are exactly the kind of constraints that Sudokus own. This ability clearly alleviates the work of the tabu search, resulting in a faster and more robust approach for solving Sudokus. We illustrate interesting experimental results where our proposed algorithm outperforms the best results previously reported by hybrids and approximate methods. PMID:26078751
A Hybrid alldifferent-Tabu Search Algorithm for Solving Sudoku Puzzles.
Soto, Ricardo; Crawford, Broderick; Galleguillos, Cristian; Paredes, Fernando; Norero, Enrique
2015-01-01
The Sudoku problem is a well-known logic-based puzzle of combinatorial number-placement. It consists in filling a n(2) × n(2) grid, composed of n columns, n rows, and n subgrids, each one containing distinct integers from 1 to n(2). Such a puzzle belongs to the NP-complete collection of problems, to which there exist diverse exact and approximate methods able to solve it. In this paper, we propose a new hybrid algorithm that smartly combines a classic tabu search procedure with the alldifferent global constraint from the constraint programming world. The alldifferent constraint is known to be efficient for domain filtering in the presence of constraints that must be pairwise different, which are exactly the kind of constraints that Sudokus own. This ability clearly alleviates the work of the tabu search, resulting in a faster and more robust approach for solving Sudokus. We illustrate interesting experimental results where our proposed algorithm outperforms the best results previously reported by hybrids and approximate methods.
Combining local and global limitations of visual search.
Põder, Endel
2017-04-01
There are different opinions about the roles of local interactions and central processing capacity in visual search. This study attempts to clarify the problem using a new version of relevant set cueing. A central precue indicates two symmetrical segments (that may contain a target object) within a circular array of objects presented briefly around the fixation point. The number of objects in the relevant segments, and density of objects in the array were varied independently. Three types of search experiments were run: (a) search for a simple visual feature (color, size, and orientation); (b) conjunctions of simple features; and (c) spatial configuration of simple features (rotated Ts). For spatial configuration stimuli, the results were consistent with a fixed global processing capacity and standard crowding zones. For simple features and their conjunctions, the results were different, dependent on the features involved. While color search exhibits virtually no capacity limits or crowding, search for an orientation target was limited by both. Results for conjunctions of features can be partly explained by the results from the respective features. This study shows that visual search is limited by both local interference and global capacity, and the limitations are different for different visual features.
Finite-difference solution of the compressible stability eigenvalue problem
NASA Technical Reports Server (NTRS)
Malik, M. R.
1982-01-01
A compressible stability analysis computer code is developed. The code uses a matrix finite difference method for local eigenvalue solution when a good guess for the eigenvalue is available and is significantly more computationally efficient than the commonly used initial value approach. The local eigenvalue search procedure also results in eigenfunctions and, at little extra work, group velocities. A globally convergent eigenvalue procedure is also developed which may be used when no guess for the eigenvalue is available. The global problem is formulated in such a way that no unstable spurious modes appear so that the method is suitable for use in a black box stability code. Sample stability calculations are presented for the boundary layer profiles of a Laminar Flow Control (LFC) swept wing.
Neural-network-assisted genetic algorithm applied to silicon clusters
NASA Astrophysics Data System (ADS)
Marim, L. R.; Lemes, M. R.; dal Pino, A.
2003-03-01
Recently, a new optimization procedure that combines the power of artificial neural-networks with the versatility of the genetic algorithm (GA) was introduced. This method, called neural-network-assisted genetic algorithm (NAGA), uses a neural network to restrict the search space and it is expected to speed up the solution of global optimization problems if some previous information is available. In this paper, we have tested NAGA to determine the ground-state geometry of Sin (10⩽n⩽15) according to a tight-binding total-energy method. Our results indicate that NAGA was able to find the desired global minimum of the potential energy for all the test cases and it was at least ten times faster than pure genetic algorithm.
The Global Evidence Mapping Initiative: Scoping research in broad topic areas
2011-01-01
Background Evidence mapping describes the quantity, design and characteristics of research in broad topic areas, in contrast to systematic reviews, which usually address narrowly-focused research questions. The breadth of evidence mapping helps to identify evidence gaps, and may guide future research efforts. The Global Evidence Mapping (GEM) Initiative was established in 2007 to create evidence maps providing an overview of existing research in Traumatic Brain Injury (TBI) and Spinal Cord Injury (SCI). Methods The GEM evidence mapping method involved three core tasks: 1. Setting the boundaries and context of the map: Definitions for the fields of TBI and SCI were clarified, the prehospital, acute inhospital and rehabilitation phases of care were delineated and relevant stakeholders (patients, carers, clinicians, researchers and policymakers) who could contribute to the mapping were identified. Researchable clinical questions were developed through consultation with key stakeholders and a broad literature search. 2. Searching for and selection of relevant studies: Evidence search and selection involved development of specific search strategies, development of inclusion and exclusion criteria, searching of relevant databases and independent screening and selection by two researchers. 3. Reporting on yield and study characteristics: Data extraction was performed at two levels - 'interventions and study design' and 'detailed study characteristics'. The evidence map and commentary reflected the depth of data extraction. Results One hundred and twenty-nine researchable clinical questions in TBI and SCI were identified. These questions were then prioritised into high (n = 60) and low (n = 69) importance by the stakeholders involved in question development. Since 2007, 58 263 abstracts have been screened, 3 731 full text articles have been reviewed and 1 644 relevant neurotrauma publications have been mapped, covering fifty-three high priority questions. Conclusions GEM Initiative evidence maps have a broad range of potential end-users including funding agencies, researchers and clinicians. Evidence mapping is at least as resource-intensive as systematic reviewing. The GEM Initiative has made advancements in evidence mapping, most notably in the area of question development and prioritisation. Evidence mapping complements other review methods for describing existing research, informing future research efforts, and addressing evidence gaps. PMID:21682870
Parallel Computational Protein Design.
Zhou, Yichao; Donald, Bruce R; Zeng, Jianyang
2017-01-01
Computational structure-based protein design (CSPD) is an important problem in computational biology, which aims to design or improve a prescribed protein function based on a protein structure template. It provides a practical tool for real-world protein engineering applications. A popular CSPD method that guarantees to find the global minimum energy solution (GMEC) is to combine both dead-end elimination (DEE) and A* tree search algorithms. However, in this framework, the A* search algorithm can run in exponential time in the worst case, which may become the computation bottleneck of large-scale computational protein design process. To address this issue, we extend and add a new module to the OSPREY program that was previously developed in the Donald lab (Gainza et al., Methods Enzymol 523:87, 2013) to implement a GPU-based massively parallel A* algorithm for improving protein design pipeline. By exploiting the modern GPU computational framework and optimizing the computation of the heuristic function for A* search, our new program, called gOSPREY, can provide up to four orders of magnitude speedups in large protein design cases with a small memory overhead comparing to the traditional A* search algorithm implementation, while still guaranteeing the optimality. In addition, gOSPREY can be configured to run in a bounded-memory mode to tackle the problems in which the conformation space is too large and the global optimal solution cannot be computed previously. Furthermore, the GPU-based A* algorithm implemented in the gOSPREY program can be combined with the state-of-the-art rotamer pruning algorithms such as iMinDEE (Gainza et al., PLoS Comput Biol 8:e1002335, 2012) and DEEPer (Hallen et al., Proteins 81:18-39, 2013) to also consider continuous backbone and side-chain flexibility.
Global approaches to regulating electronic cigarettes
Kennedy, Ryan David; Awopegba, Ayodeji; De León, Elaine; Cohen, Joanna E
2017-01-01
Objectives Classify and describe the policy approaches used by countries to regulate e-cigarettes. Methods National policies regulating e-cigarettes were identified by (1) conducting web searches on Ministry of Health websites, and (2) broad web searches. The mechanisms used to regulate e-cigarettes were classified as new/amended laws, or existing laws. The policy domains identified include restrictions or prohibitions on product: sale, manufacturing, importation, distribution, use, product design including e-liquid ingredients, advertising/promotion/sponsorship, trademarks, and regulation requiring: taxation, health warning labels and child-safety standards. The classification of the policy was reviewed by a country expert. Results The search identified 68 countries that regulate e-cigarettes: 22 countries regulate e-cigarettes using existing regulations; 25 countries enacted new policies to regulate e-cigarettes; 7 countries made amendments to existing legislation; 14 countries use a combination of new/amended and existing regulation. Common policies include a minimum-age-of-purchase, indoor-use (vape-free public places) bans and marketing restrictions. Few countries are applying a tax to e-cigarettes. Conclusions A range of regulatory approaches are being applied to e-cigarettes globally; many countries regulate e-cigarettes using legislation not written for e-cigarettes. PMID:27903958
Larson, Heidi J; Wilson, Rose; Hanley, Sharon; Parys, Astrid; Paterson, Pauline
2014-01-01
In June 2013 the Japanese Ministry of Health, Labor, and Welfare (MHLW) suspended its HPV vaccination recommendation after a series of highly publicized alleged adverse events following immunization stoked public doubts about the vaccine's safety. This paper examines the global spread of the news of Japan's HPV vaccine suspension through online media, and takes a retrospective look at non-Japanese media sources that were used to support those claiming HPV vaccine injury in Japan. Two searches were conducted. One searched relevant content in an archive of Google Alerts on vaccines and vaccine preventable diseases. The second search was conducted using Google Search on January 6th 2014 and on July 18th 2014, using the keywords, "HPV vaccine Japan" and "cervical cancer vaccine Japan." Both searches were used as Google Searches render more (and some different) results than Google Alerts. Online media collected and analyzed totalled 57. Sixty 3 percent were published in the USA, 23% in Japan, 5% in the UK, 2% in France, 2% in Switzerland, 2% in the Philippines, 2% in Kenya and 2% in Denmark. The majority took a negative view of the HPV vaccine, the primary concern being vaccine safety. The news of Japan's suspension of the HPV vaccine recommendation has traveled globally through online media and social media networks, being applauded by anti-vaccination groups but not by the global scientific community. The longer the uncertainty around the Japanese HPV vaccine recommendation persists, the further the public concerns are likely to travel.
A quasi-Newton algorithm for large-scale nonlinear equations.
Huang, Linghua
2017-01-01
In this paper, the algorithm for large-scale nonlinear equations is designed by the following steps: (i) a conjugate gradient (CG) algorithm is designed as a sub-algorithm to obtain the initial points of the main algorithm, where the sub-algorithm's initial point does not have any restrictions; (ii) a quasi-Newton algorithm with the initial points given by sub-algorithm is defined as main algorithm, where a new nonmonotone line search technique is presented to get the step length [Formula: see text]. The given nonmonotone line search technique can avoid computing the Jacobian matrix. The global convergence and the [Formula: see text]-order convergent rate of the main algorithm are established under suitable conditions. Numerical results show that the proposed method is competitive with a similar method for large-scale problems.
Mixed methods systematic review exploring mentorship outcomes in nursing academia.
Nowell, Lorelli; Norris, Jill M; Mrklas, Kelly; White, Deborah E
2017-03-01
The aim of this study was to report on a mixed methods systematic review that critically examines the evidence for mentorship in nursing academia. Nursing education institutions globally have issued calls for mentorship. There is emerging evidence to support the value of mentorship in other disciplines, but the extant state of the evidence in nursing academia is not known. A comprehensive review of the evidence is required. A mixed methods systematic review. Five databases (MEDLINE, CINAHL, EMBASE, ERIC, PsycINFO) were searched using an a priori search strategy from inception to 2 November 2015 to identify quantitative, qualitative and mixed methods studies. Grey literature searches were also conducted in electronic databases (ProQuest Dissertations and Theses, Index to Theses) and mentorship conference proceedings and by hand searching the reference lists of eligible studies. Study quality was assessed prior to inclusion using standardized critical appraisal instruments from the Joanna Briggs Institute. A convergent qualitative synthesis design was used where results from qualitative, quantitative and mixed methods studies were transformed into qualitative findings. Mentorship outcomes were mapped to a theory-informed framework. Thirty-four studies were included in this review, from the 3001 records initially retrieved. In general, mentorship had a positive impact on behavioural, career, attitudinal, relational and motivational outcomes; however, the methodological quality of studies was weak. This review can inform the objectives of mentorship interventions and contribute to a more rigorous approach to studies that assess mentorship outcomes. © 2016 John Wiley & Sons Ltd.
NASA Technical Reports Server (NTRS)
Wheeler, Ward C.
2003-01-01
A method to align sequence data based on parsimonious synapomorphy schemes generated by direct optimization (DO; earlier termed optimization alignment) is proposed. DO directly diagnoses sequence data on cladograms without an intervening multiple-alignment step, thereby creating topology-specific, dynamic homology statements. Hence, no multiple-alignment is required to generate cladograms. Unlike general and globally optimal multiple-alignment procedures, the method described here, implied alignment (IA), takes these dynamic homologies and traces them back through a single cladogram, linking the unaligned sequence positions in the terminal taxa via DO transformation series. These "lines of correspondence" link ancestor-descendent states and, when displayed as linearly arrayed columns without hypothetical ancestors, are largely indistinguishable from standard multiple alignment. Since this method is based on synapomorphy, the treatment of certain classes of insertion-deletion (indel) events may be different from that of other alignment procedures. As with all alignment methods, results are dependent on parameter assumptions such as indel cost and transversion:transition ratios. Such an IA could be used as a basis for phylogenetic search, but this would be questionable since the homologies derived from the implied alignment depend on its natal cladogram and any variance, between DO and IA + Search, due to heuristic approach. The utility of this procedure in heuristic cladogram searches using DO and the improvement of heuristic cladogram cost calculations are discussed. c2003 The Willi Hennig Society. Published by Elsevier Science (USA). All rights reserved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wang Yan; Mohanty, Soumya D.; Center for Gravitational Wave Astronomy, Department of Physics and Astronomy, University of Texas at Brownsville, 80 Fort Brown, Brownsville, Texas 78520
2010-03-15
The detection and estimation of gravitational wave signals belonging to a parameterized family of waveforms requires, in general, the numerical maximization of a data-dependent function of the signal parameters. Because of noise in the data, the function to be maximized is often highly multimodal with numerous local maxima. Searching for the global maximum then becomes computationally expensive, which in turn can limit the scientific scope of the search. Stochastic optimization is one possible approach to reducing computational costs in such applications. We report results from a first investigation of the particle swarm optimization method in this context. The method ismore » applied to a test bed motivated by the problem of detection and estimation of a binary inspiral signal. Our results show that particle swarm optimization works well in the presence of high multimodality, making it a viable candidate method for further applications in gravitational wave data analysis.« less
A global sampling approach to designing and reengineering RNA secondary structures.
Levin, Alex; Lis, Mieszko; Ponty, Yann; O'Donnell, Charles W; Devadas, Srinivas; Berger, Bonnie; Waldispühl, Jérôme
2012-11-01
The development of algorithms for designing artificial RNA sequences that fold into specific secondary structures has many potential biomedical and synthetic biology applications. To date, this problem remains computationally difficult, and current strategies to address it resort to heuristics and stochastic search techniques. The most popular methods consist of two steps: First a random seed sequence is generated; next, this seed is progressively modified (i.e. mutated) to adopt the desired folding properties. Although computationally inexpensive, this approach raises several questions such as (i) the influence of the seed; and (ii) the efficiency of single-path directed searches that may be affected by energy barriers in the mutational landscape. In this article, we present RNA-ensign, a novel paradigm for RNA design. Instead of taking a progressive adaptive walk driven by local search criteria, we use an efficient global sampling algorithm to examine large regions of the mutational landscape under structural and thermodynamical constraints until a solution is found. When considering the influence of the seeds and the target secondary structures, our results show that, compared to single-path directed searches, our approach is more robust, succeeds more often and generates more thermodynamically stable sequences. An ensemble approach to RNA design is thus well worth pursuing as a complement to existing approaches. RNA-ensign is available at http://csb.cs.mcgill.ca/RNAensign.
A global sampling approach to designing and reengineering RNA secondary structures
Levin, Alex; Lis, Mieszko; Ponty, Yann; O’Donnell, Charles W.; Devadas, Srinivas; Berger, Bonnie; Waldispühl, Jérôme
2012-01-01
The development of algorithms for designing artificial RNA sequences that fold into specific secondary structures has many potential biomedical and synthetic biology applications. To date, this problem remains computationally difficult, and current strategies to address it resort to heuristics and stochastic search techniques. The most popular methods consist of two steps: First a random seed sequence is generated; next, this seed is progressively modified (i.e. mutated) to adopt the desired folding properties. Although computationally inexpensive, this approach raises several questions such as (i) the influence of the seed; and (ii) the efficiency of single-path directed searches that may be affected by energy barriers in the mutational landscape. In this article, we present RNA-ensign, a novel paradigm for RNA design. Instead of taking a progressive adaptive walk driven by local search criteria, we use an efficient global sampling algorithm to examine large regions of the mutational landscape under structural and thermodynamical constraints until a solution is found. When considering the influence of the seeds and the target secondary structures, our results show that, compared to single-path directed searches, our approach is more robust, succeeds more often and generates more thermodynamically stable sequences. An ensemble approach to RNA design is thus well worth pursuing as a complement to existing approaches. RNA-ensign is available at http://csb.cs.mcgill.ca/RNAensign. PMID:22941632
Yu, Yi; Hu, Binqi; Liu, Xinglong
2018-01-01
The dispatching of hydro-thermal system is a nonlinear programming problem with multiple constraints and high dimensions and the solution techniques of the model have been a hotspot in research. Based on the advantage of that the artificial bee colony algorithm (ABC) can efficiently solve the high-dimensional problem, an improved artificial bee colony algorithm has been proposed to solve DHTS problem in this paper. The improvements of the proposed algorithm include two aspects. On one hand, local search can be guided in efficiency by the information of the global optimal solution and its gradient in each generation. The global optimal solution improves the search efficiency of the algorithm but loses diversity, while the gradient can weaken the loss of diversity caused by the global optimal solution. On the other hand, inspired by genetic algorithm, the nectar resource which has not been updated in limit generation is transformed to a new one by using selection, crossover and mutation, which can ensure individual diversity and make full use of prior information for improving the global search ability of the algorithm. The two improvements of ABC algorithm are proved to be effective via a classical numeral example at last. Among which the genetic operator for the promotion of the ABC algorithm’s performance is significant. The results are also compared with those of other state-of-the-art algorithms, the enhanced ABC algorithm has general advantages in minimum cost, average cost and maximum cost which shows its usability and effectiveness. The achievements in this paper provide a new method for solving the DHTS problems, and also offer a novel reference for the improvement of mechanism and the application of algorithms. PMID:29324743
Yu, Yi; Wu, Yonggang; Hu, Binqi; Liu, Xinglong
2018-01-01
The dispatching of hydro-thermal system is a nonlinear programming problem with multiple constraints and high dimensions and the solution techniques of the model have been a hotspot in research. Based on the advantage of that the artificial bee colony algorithm (ABC) can efficiently solve the high-dimensional problem, an improved artificial bee colony algorithm has been proposed to solve DHTS problem in this paper. The improvements of the proposed algorithm include two aspects. On one hand, local search can be guided in efficiency by the information of the global optimal solution and its gradient in each generation. The global optimal solution improves the search efficiency of the algorithm but loses diversity, while the gradient can weaken the loss of diversity caused by the global optimal solution. On the other hand, inspired by genetic algorithm, the nectar resource which has not been updated in limit generation is transformed to a new one by using selection, crossover and mutation, which can ensure individual diversity and make full use of prior information for improving the global search ability of the algorithm. The two improvements of ABC algorithm are proved to be effective via a classical numeral example at last. Among which the genetic operator for the promotion of the ABC algorithm's performance is significant. The results are also compared with those of other state-of-the-art algorithms, the enhanced ABC algorithm has general advantages in minimum cost, average cost and maximum cost which shows its usability and effectiveness. The achievements in this paper provide a new method for solving the DHTS problems, and also offer a novel reference for the improvement of mechanism and the application of algorithms.
Language Preferences on Websites and in Google Searches for Human Health and Food Information
Singh, Punam Mony; Wight, Carly A; Sercinoglu, Olcan; Wilson, David C; Boytsov, Artem
2007-01-01
Background While it is known that the majority of pages on the World Wide Web are in English, little is known about the preferred language of users searching for health information online. Objectives (1) To help global and domestic publishers, for example health and food agencies, to determine the need for translation of online information from English into local languages. (2) To help these agencies determine which language(s) they should select when publishing information online in target nations and for target subpopulations within nations. Methods To estimate the percentage of Web publishers that translate their health and food websites, we measured the frequency at which domain names retrieved by Google overlap for language translations of the same health-related search term. To quantify language choice of searchers from different countries, Google provided estimates of the rate at which its search engine was queried in six languages relative to English for the terms “avian flu,” “tuberculosis,” “schizophrenia,” and “maize” (corn) from January 2004 to April 2006. The estimate was based on a 20% sample of all Google queries from 227 nations. Results We estimate that 80%-90% of health- and food-related institutions do not translate their websites into multiple languages, even when the information concerns pandemic disease such as avian influenza. Although Internet users are often well-educated, there was a strong preference for searching for health and food information in the local language, rather than English. For “avian flu,” we found that only 1% of searches in non-English-speaking nations were in English, whereas for “tuberculosis” or “schizophrenia,” about 4%-40% of searches in non-English countries employed English. A subset of searches for health information presumably originating from immigrants occurred in their native tongue, not the language of the adopted country. However, Spanish-language online searches for “avian flu,” “schizophrenia,” and “maize/corn” in the United States occurred at only <1% of the English search rate, although the US online Hispanic population constitutes 12% of the total US online population. Sub-Saharan Africa and Bangladesh searches for health information occurred in unexpected languages, perhaps reflecting the presence of aid workers and the global migration of Internet users, respectively. In Latin America, indigenous-language search terms were often used rather than Spanish. Conclusions (1) Based on the strong preference for searching the Internet for health information in the local language, indigenous language, or immigrant language of origin, global and domestic health and food agencies should continue their efforts to translate their institutional websites into more languages. (2) We have provided linguistic online search pattern data to help health and food agencies better select languages for targeted website publishing. PMID:17613488
Cross Validation Through Two-Dimensional Solution Surface for Cost-Sensitive SVM.
Gu, Bin; Sheng, Victor S; Tay, Keng Yeow; Romano, Walter; Li, Shuo
2017-06-01
Model selection plays an important role in cost-sensitive SVM (CS-SVM). It has been proven that the global minimum cross validation (CV) error can be efficiently computed based on the solution path for one parameter learning problems. However, it is a challenge to obtain the global minimum CV error for CS-SVM based on one-dimensional solution path and traditional grid search, because CS-SVM is with two regularization parameters. In this paper, we propose a solution and error surfaces based CV approach (CV-SES). More specifically, we first compute a two-dimensional solution surface for CS-SVM based on a bi-parameter space partition algorithm, which can fit solutions of CS-SVM for all values of both regularization parameters. Then, we compute a two-dimensional validation error surface for each CV fold, which can fit validation errors of CS-SVM for all values of both regularization parameters. Finally, we obtain the CV error surface by superposing K validation error surfaces, which can find the global minimum CV error of CS-SVM. Experiments are conducted on seven datasets for cost sensitive learning and on four datasets for imbalanced learning. Experimental results not only show that our proposed CV-SES has a better generalization ability than CS-SVM with various hybrids between grid search and solution path methods, and than recent proposed cost-sensitive hinge loss SVM with three-dimensional grid search, but also show that CV-SES uses less running time.
2017-01-01
Background In many Western countries, after a motor vehicle collision, those involved seek health care for the assessment of injuries and for insurance documentation purposes. In contrast, in many less wealthy countries, there may be limited access to care and no insurance or compensation system. Objective The purpose of this infodemiology study was to investigate the global pattern of evolving Internet usage in countries with and without insurance and the corresponding compensation systems for whiplash injury. Methods We used the Internet search engine analytics via Google Trends to study the health information-seeking behavior concerning whiplash injury at national population levels in Europe. Results We found that the search for “whiplash” is strikingly and consistently often associated with the search for “compensation” in countries or cultures with a tort system. Frequent or traumatic painful injuries; diseases or disorders such as arthritis, headache, radius, and hip fracture; depressive disorders; and fibromyalgia were not associated similarly with searches on “compensation.” Conclusions In this study, we present evidence from the evolving viewpoint of naturalistic Internet search engine analytics that the expectations for receiving compensation may influence Internet search behavior in relation to whiplash injury. PMID:28347974
Searching in clutter : visual attention strategies of expert pilots
DOT National Transportation Integrated Search
2012-10-22
Clutter can slow visual search. However, experts may develop attention strategies that alleviate the effects of clutter on search performance. In the current study we examined the effects of global and local clutter on visual search performance and a...
I H, Monrad Aas
2014-11-01
Global Assessment of Functioning (GAF) is an assessment instrument that is known worldwide. It is widely used for rating the severity of illness. Results from evaluations in psychiatry should characterize the patients. Rating of GAF is based on collected information. The aim of the study is to identify the factors involved in collecting information that is relevant for rating GAF, and gaps in knowledge where it is likely that further development would play a role for improved scoring. A literature search was conducted with a combination of thorough hand search and search in the bibliographic databases PubMed, PsycINFO, Google Scholar, and Campbell Collaboration Library of Systematic Reviews. Collection of information for rating GAF depends on two fundamental factors: the sources of information and the methods for information collection. Sources of information are patients, informants, health personnel, medical records, letters of referral and police records about violence and substance abuse. Methods for information collection include the many different types of interview - unstructured, semi-structured, structured, interviews for Axis I and II disorders, semistructured interviews for rating GAF, and interviews of informants - as well as instruments for rating symptoms and functioning, and observation. The different sources of information, and methods for collection, frequently result in inconsistencies in the information collected. The variation in collected information, and lack of a generally accepted algorithm for combining collected information, is likely to be important for rated GAF values, but there is a fundamental lack of knowledge about the degree of importance. Research to improve GAF has not reached a high level. Rated GAF values are likely to be influenced by both the sources of information used and the methods employed for information collection, but the lack of research-based information about these influences is fundamental. Further development of GAF is feasible and proposals for this are presented.
Suzuki, Hirofumi; Kawabata, Takeshi; Nakamura, Haruki
2016-02-15
Omokage search is a service to search the global shape similarity of biological macromolecules and their assemblies, in both the Protein Data Bank (PDB) and Electron Microscopy Data Bank (EMDB). The server compares global shapes of assemblies independent of sequence order and number of subunits. As a search query, the user inputs a structure ID (PDB ID or EMDB ID) or uploads an atomic model or 3D density map to the server. The search is performed usually within 1 min, using one-dimensional profiles (incremental distance rank profiles) to characterize the shapes. Using the gmfit (Gaussian mixture model fitting) program, the found structures are fitted onto the query structure and their superimposed structures are displayed on the Web browser. Our service provides new structural perspectives to life science researchers. Omokage search is freely accessible at http://pdbj.org/omokage/. © The Author 2015. Published by Oxford University Press.
Comparison of tests for spatial heterogeneity on data with global clustering patterns and outliers
Jackson, Monica C; Huang, Lan; Luo, Jun; Hachey, Mark; Feuer, Eric
2009-01-01
Background The ability to evaluate geographic heterogeneity of cancer incidence and mortality is important in cancer surveillance. Many statistical methods for evaluating global clustering and local cluster patterns are developed and have been examined by many simulation studies. However, the performance of these methods on two extreme cases (global clustering evaluation and local anomaly (outlier) detection) has not been thoroughly investigated. Methods We compare methods for global clustering evaluation including Tango's Index, Moran's I, and Oden's I*pop; and cluster detection methods such as local Moran's I and SaTScan elliptic version on simulated count data that mimic global clustering patterns and outliers for cancer cases in the continental United States. We examine the power and precision of the selected methods in the purely spatial analysis. We illustrate Tango's MEET and SaTScan elliptic version on a 1987-2004 HIV and a 1950-1969 lung cancer mortality data in the United States. Results For simulated data with outlier patterns, Tango's MEET, Moran's I and I*pop had powers less than 0.2, and SaTScan had powers around 0.97. For simulated data with global clustering patterns, Tango's MEET and I*pop (with 50% of total population as the maximum search window) had powers close to 1. SaTScan had powers around 0.7-0.8 and Moran's I has powers around 0.2-0.3. In the real data example, Tango's MEET indicated the existence of global clustering patterns in both the HIV and lung cancer mortality data. SaTScan found a large cluster for HIV mortality rates, which is consistent with the finding from Tango's MEET. SaTScan also found clusters and outliers in the lung cancer mortality data. Conclusion SaTScan elliptic version is more efficient for outlier detection compared with the other methods evaluated in this article. Tango's MEET and Oden's I*pop perform best in global clustering scenarios among the selected methods. The use of SaTScan for data with global clustering patterns should be used with caution since SatScan may reveal an incorrect spatial pattern even though it has enough power to reject a null hypothesis of homogeneous relative risk. Tango's method should be used for global clustering evaluation instead of SaTScan. PMID:19822013
Förster, Jens
2009-02-01
Nine studies showed a bidirectional link (a) between a global processing style and generation of similarities and (b) between a local processing style and generation of dissimilarities. In Experiments 1-4, participants were primed with global versus local perception styles and then asked to work on an allegedly unrelated generation task. Across materials, participants generated more similarities than dissimilarities after global priming, whereas for participants with local priming, the opposite was true. Experiments 5-6 demonstrated a bidirectional link whereby participants who were first instructed to search for similarities attended more to the gestalt of a stimulus than to its details, whereas the reverse was true for those who were initially instructed to search for dissimilarities. Because important psychological variables are correlated with processing styles, in Experiments 7-9, temporal distance, a promotion focus, and high power were predicted and shown to enhance the search for similarities, whereas temporal proximity, a prevention focus, and low power enhanced the search for dissimilarities. (PsycINFO Database Record (c) 2009 APA, all rights reserved).
A practical globalization of one-shot optimization for optimal design of tokamak divertors
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blommaert, Maarten, E-mail: maarten.blommaert@kuleuven.be; Dekeyser, Wouter; Baelmans, Martine
In past studies, nested optimization methods were successfully applied to design of the magnetic divertor configuration in nuclear fusion reactors. In this paper, so-called one-shot optimization methods are pursued. Due to convergence issues, a globalization strategy for the one-shot solver is sought. Whereas Griewank introduced a globalization strategy using a doubly augmented Lagrangian function that includes primal and adjoint residuals, its practical usability is limited by the necessity of second order derivatives and expensive line search iterations. In this paper, a practical alternative is offered that avoids these drawbacks by using a regular augmented Lagrangian merit function that penalizes onlymore » state residuals. Additionally, robust rank-two Hessian estimation is achieved by adaptation of Powell's damped BFGS update rule. The application of the novel one-shot approach to magnetic divertor design is considered in detail. For this purpose, the approach is adapted to be complementary with practical in parts adjoint sensitivities. Using the globalization strategy, stable convergence of the one-shot approach is achieved.« less
Cogo, Elise; Sampson, Margaret; Ajiferuke, Isola; Manheimer, Eric; Campbell, Kaitryn; Daniel, Raymond; Moher, David
2011-01-01
This project aims to assess the utility of bibliographic databases beyond the three major ones (MEDLINE, EMBASE and Cochrane CENTRAL) for finding controlled trials of complementary and alternative medicine (CAM). Fifteen databases were searched to identify controlled clinical trials (CCTs) of CAM not also indexed in MEDLINE. Searches were conducted in May 2006 using the revised Cochrane highly sensitive search strategy (HSSS) and the PubMed CAM Subset. Yield of CAM trials per 100 records was determined, and databases were compared over a standardized period (2005). The Acudoc2 RCT, Acubriefs, Index to Chiropractic Literature (ICL) and Hom-Inform databases had the highest concentrations of non-MEDLINE records, with more than 100 non-MEDLINE records per 500. Other productive databases had ratios between 500 and 1500 records to 100 non-MEDLINE records—these were AMED, MANTIS, PsycINFO, CINAHL, Global Health and Alt HealthWatch. Five databases were found to be unproductive: AGRICOLA, CAIRSS, Datadiwan, Herb Research Foundation and IBIDS. Acudoc2 RCT yielded 100 CAM trials in the most recent 100 records screened. Acubriefs, AMED, Hom-Inform, MANTIS, PsycINFO and CINAHL had more than 25 CAM trials per 100 records screened. Global Health, ICL and Alt HealthWatch were below 25 in yield. There were 255 non-MEDLINE trials from eight databases in 2005, with only 10% indexed in more than one database. Yield varied greatly between databases; the most productive databases from both sampling methods were Acubriefs, Acudoc2 RCT, AMED and CINAHL. Low overlap between databases indicates comprehensive CAM literature searches will require multiple databases. PMID:19468052
Cogo, Elise; Sampson, Margaret; Ajiferuke, Isola; Manheimer, Eric; Campbell, Kaitryn; Daniel, Raymond; Moher, David
2011-01-01
This project aims to assess the utility of bibliographic databases beyond the three major ones (MEDLINE, EMBASE and Cochrane CENTRAL) for finding controlled trials of complementary and alternative medicine (CAM). Fifteen databases were searched to identify controlled clinical trials (CCTs) of CAM not also indexed in MEDLINE. Searches were conducted in May 2006 using the revised Cochrane highly sensitive search strategy (HSSS) and the PubMed CAM Subset. Yield of CAM trials per 100 records was determined, and databases were compared over a standardized period (2005). The Acudoc2 RCT, Acubriefs, Index to Chiropractic Literature (ICL) and Hom-Inform databases had the highest concentrations of non-MEDLINE records, with more than 100 non-MEDLINE records per 500. Other productive databases had ratios between 500 and 1500 records to 100 non-MEDLINE records-these were AMED, MANTIS, PsycINFO, CINAHL, Global Health and Alt HealthWatch. Five databases were found to be unproductive: AGRICOLA, CAIRSS, Datadiwan, Herb Research Foundation and IBIDS. Acudoc2 RCT yielded 100 CAM trials in the most recent 100 records screened. Acubriefs, AMED, Hom-Inform, MANTIS, PsycINFO and CINAHL had more than 25 CAM trials per 100 records screened. Global Health, ICL and Alt HealthWatch were below 25 in yield. There were 255 non-MEDLINE trials from eight databases in 2005, with only 10% indexed in more than one database. Yield varied greatly between databases; the most productive databases from both sampling methods were Acubriefs, Acudoc2 RCT, AMED and CINAHL. Low overlap between databases indicates comprehensive CAM literature searches will require multiple databases.
Shareef, Hussain; Mohamed, Azah
2017-01-01
The electric vehicle (EV) is considered a premium solution to global warming and various types of pollution. Nonetheless, a key concern is the recharging of EV batteries. Therefore, this study proposes a novel approach that considers the costs of transportation loss, buildup, and substation energy loss and that incorporates harmonic power loss into optimal rapid charging station (RCS) planning. A novel optimization technique, called binary lightning search algorithm (BLSA), is proposed to solve the optimization problem. BLSA is also applied to a conventional RCS planning method. A comprehensive analysis is conducted to assess the performance of the two RCS planning methods by using the IEEE 34-bus test system as the power grid. The comparative studies show that the proposed BLSA is better than other optimization techniques. The daily total cost in RCS planning of the proposed method, including harmonic power loss, decreases by 10% compared with that of the conventional method. PMID:29220396
Islam, Md Mainul; Shareef, Hussain; Mohamed, Azah
2017-01-01
The electric vehicle (EV) is considered a premium solution to global warming and various types of pollution. Nonetheless, a key concern is the recharging of EV batteries. Therefore, this study proposes a novel approach that considers the costs of transportation loss, buildup, and substation energy loss and that incorporates harmonic power loss into optimal rapid charging station (RCS) planning. A novel optimization technique, called binary lightning search algorithm (BLSA), is proposed to solve the optimization problem. BLSA is also applied to a conventional RCS planning method. A comprehensive analysis is conducted to assess the performance of the two RCS planning methods by using the IEEE 34-bus test system as the power grid. The comparative studies show that the proposed BLSA is better than other optimization techniques. The daily total cost in RCS planning of the proposed method, including harmonic power loss, decreases by 10% compared with that of the conventional method.
Contextual cueing by global features
Kunar, Melina A.; Flusberg, Stephen J.; Wolfe, Jeremy M.
2008-01-01
In visual search tasks, attention can be guided to a target item, appearing amidst distractors, on the basis of simple features (e.g. find the red letter among green). Chun and Jiang’s (1998) “contextual cueing” effect shows that RTs are also speeded if the spatial configuration of items in a scene is repeated over time. In these studies we ask if global properties of the scene can speed search (e.g. if the display is mostly red, then the target is at location X). In Experiment 1a, the overall background color of the display predicted the target location. Here the predictive color could appear 0, 400 or 800 msec in advance of the search array. Mean RTs are faster in predictive than in non-predictive conditions. However, there is little improvement in search slopes. The global color cue did not improve search efficiency. Experiments 1b-1f replicate this effect using different predictive properties (e.g. background orientation/texture, stimuli color etc.). The results show a strong RT effect of predictive background but (at best) only a weak improvement in search efficiency. A strong improvement in efficiency was found, however, when the informative background was presented 1500 msec prior to the onset of the search stimuli and when observers were given explicit instructions to use the cue (Experiment 2). PMID:17355043
Egea, Jose A; Henriques, David; Cokelaer, Thomas; Villaverde, Alejandro F; MacNamara, Aidan; Danciu, Diana-Patricia; Banga, Julio R; Saez-Rodriguez, Julio
2014-05-10
Optimization is the key to solving many problems in computational biology. Global optimization methods, which provide a robust methodology, and metaheuristics in particular have proven to be the most efficient methods for many applications. Despite their utility, there is a limited availability of metaheuristic tools. We present MEIGO, an R and Matlab optimization toolbox (also available in Python via a wrapper of the R version), that implements metaheuristics capable of solving diverse problems arising in systems biology and bioinformatics. The toolbox includes the enhanced scatter search method (eSS) for continuous nonlinear programming (cNLP) and mixed-integer programming (MINLP) problems, and variable neighborhood search (VNS) for Integer Programming (IP) problems. Additionally, the R version includes BayesFit for parameter estimation by Bayesian inference. The eSS and VNS methods can be run on a single-thread or in parallel using a cooperative strategy. The code is supplied under GPLv3 and is available at http://www.iim.csic.es/~gingproc/meigo.html. Documentation and examples are included. The R package has been submitted to BioConductor. We evaluate MEIGO against optimization benchmarks, and illustrate its applicability to a series of case studies in bioinformatics and systems biology where it outperforms other state-of-the-art methods. MEIGO provides a free, open-source platform for optimization that can be applied to multiple domains of systems biology and bioinformatics. It includes efficient state of the art metaheuristics, and its open and modular structure allows the addition of further methods.
2014-01-01
Background Optimization is the key to solving many problems in computational biology. Global optimization methods, which provide a robust methodology, and metaheuristics in particular have proven to be the most efficient methods for many applications. Despite their utility, there is a limited availability of metaheuristic tools. Results We present MEIGO, an R and Matlab optimization toolbox (also available in Python via a wrapper of the R version), that implements metaheuristics capable of solving diverse problems arising in systems biology and bioinformatics. The toolbox includes the enhanced scatter search method (eSS) for continuous nonlinear programming (cNLP) and mixed-integer programming (MINLP) problems, and variable neighborhood search (VNS) for Integer Programming (IP) problems. Additionally, the R version includes BayesFit for parameter estimation by Bayesian inference. The eSS and VNS methods can be run on a single-thread or in parallel using a cooperative strategy. The code is supplied under GPLv3 and is available at http://www.iim.csic.es/~gingproc/meigo.html. Documentation and examples are included. The R package has been submitted to BioConductor. We evaluate MEIGO against optimization benchmarks, and illustrate its applicability to a series of case studies in bioinformatics and systems biology where it outperforms other state-of-the-art methods. Conclusions MEIGO provides a free, open-source platform for optimization that can be applied to multiple domains of systems biology and bioinformatics. It includes efficient state of the art metaheuristics, and its open and modular structure allows the addition of further methods. PMID:24885957
A global optimization algorithm inspired in the behavior of selfish herds.
Fausto, Fernando; Cuevas, Erik; Valdivia, Arturo; González, Adrián
2017-10-01
In this paper, a novel swarm optimization algorithm called the Selfish Herd Optimizer (SHO) is proposed for solving global optimization problems. SHO is based on the simulation of the widely observed selfish herd behavior manifested by individuals within a herd of animals subjected to some form of predation risk. In SHO, individuals emulate the predatory interactions between groups of prey and predators by two types of search agents: the members of a selfish herd (the prey) and a pack of hungry predators. Depending on their classification as either a prey or a predator, each individual is conducted by a set of unique evolutionary operators inspired by such prey-predator relationship. These unique traits allow SHO to improve the balance between exploration and exploitation without altering the population size. To illustrate the proficiency and robustness of the proposed method, it is compared to other well-known evolutionary optimization approaches such as Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Firefly Algorithm (FA), Differential Evolution (DE), Genetic Algorithms (GA), Crow Search Algorithm (CSA), Dragonfly Algorithm (DA), Moth-flame Optimization Algorithm (MOA) and Sine Cosine Algorithm (SCA). The comparison examines several standard benchmark functions, commonly considered within the literature of evolutionary algorithms. The experimental results show the remarkable performance of our proposed approach against those of the other compared methods, and as such SHO is proven to be an excellent alternative to solve global optimization problems. Copyright © 2017 Elsevier B.V. All rights reserved.
Particle Swarm Optimization With Interswarm Interactive Learning Strategy.
Qin, Quande; Cheng, Shi; Zhang, Qingyu; Li, Li; Shi, Yuhui
2016-10-01
The learning strategy in the canonical particle swarm optimization (PSO) algorithm is often blamed for being the primary reason for loss of diversity. Population diversity maintenance is crucial for preventing particles from being stuck into local optima. In this paper, we present an improved PSO algorithm with an interswarm interactive learning strategy (IILPSO) by overcoming the drawbacks of the canonical PSO algorithm's learning strategy. IILPSO is inspired by the phenomenon in human society that the interactive learning behavior takes place among different groups. Particles in IILPSO are divided into two swarms. The interswarm interactive learning (IIL) behavior is triggered when the best particle's fitness value of both the swarms does not improve for a certain number of iterations. According to the best particle's fitness value of each swarm, the softmax method and roulette method are used to determine the roles of the two swarms as the learning swarm and the learned swarm. In addition, the velocity mutation operator and global best vibration strategy are used to improve the algorithm's global search capability. The IIL strategy is applied to PSO with global star and local ring structures, which are termed as IILPSO-G and IILPSO-L algorithm, respectively. Numerical experiments are conducted to compare the proposed algorithms with eight popular PSO variants. From the experimental results, IILPSO demonstrates the good performance in terms of solution accuracy, convergence speed, and reliability. Finally, the variations of the population diversity in the entire search process provide an explanation why IILPSO performs effectively.
Clark, Megan; Raffray, Marie; Hendricks, Kristin; Gagnon, Anita J
2016-05-01
Nurses are learning and practicing in an increasingly global world. Both nursing schools and nursing students are seeking guidance as they integrate global health into their learning and teaching. This systematic review is intended to identify the most common global and public health core competencies found in the literature and better inform schools of nursing wishing to include global health content in their curricula. Systematic review. An online search of CINAHL and Medline databases, as well as, inclusion of pertinent gray literature was conducted for articles published before 2013. Relevant literature for global health (GH) and public and community health (PH/CH) competencies was reviewed to determine recommendations of both competencies using a combination of search terms. Studies must have addressed competencies as defined in the literature and must have been pertinent to GH or PH/CH. The databases were systematically searched and after reading the full content of the included studies, key concepts were extracted and synthesized. Twenty-five studies were identified and resulted in a list of 14 global health core competencies. These competencies are applicable to a variety of health disciplines, but particularly can inform the efforts of nursing schools to integrate global health concepts into their curricula. Copyright © 2016 Elsevier Ltd. All rights reserved.
Gradient gravitational search: An efficient metaheuristic algorithm for global optimization.
Dash, Tirtharaj; Sahu, Prabhat K
2015-05-30
The adaptation of novel techniques developed in the field of computational chemistry to solve the concerned problems for large and flexible molecules is taking the center stage with regard to efficient algorithm, computational cost and accuracy. In this article, the gradient-based gravitational search (GGS) algorithm, using analytical gradients for a fast minimization to the next local minimum has been reported. Its efficiency as metaheuristic approach has also been compared with Gradient Tabu Search and others like: Gravitational Search, Cuckoo Search, and Back Tracking Search algorithms for global optimization. Moreover, the GGS approach has also been applied to computational chemistry problems for finding the minimal value potential energy of two-dimensional and three-dimensional off-lattice protein models. The simulation results reveal the relative stability and physical accuracy of protein models with efficient computational cost. © 2015 Wiley Periodicals, Inc.
Adaptive photoacoustic imaging quality optimization with EMD and reconstruction
NASA Astrophysics Data System (ADS)
Guo, Chengwen; Ding, Yao; Yuan, Jie; Xu, Guan; Wang, Xueding; Carson, Paul L.
2016-10-01
Biomedical photoacoustic (PA) signal is characterized with extremely low signal to noise ratio which will yield significant artifacts in photoacoustic tomography (PAT) images. Since PA signals acquired by ultrasound transducers are non-linear and non-stationary, traditional data analysis methods such as Fourier and wavelet method cannot give useful information for further research. In this paper, we introduce an adaptive method to improve the quality of PA imaging based on empirical mode decomposition (EMD) and reconstruction. Data acquired by ultrasound transducers are adaptively decomposed into several intrinsic mode functions (IMFs) after a sifting pre-process. Since noise is randomly distributed in different IMFs, depressing IMFs with more noise while enhancing IMFs with less noise can effectively enhance the quality of reconstructed PAT images. However, searching optimal parameters by means of brute force searching algorithms will cost too much time, which prevent this method from practical use. To find parameters within reasonable time, heuristic algorithms, which are designed for finding good solutions more efficiently when traditional methods are too slow, are adopted in our method. Two of the heuristic algorithms, Simulated Annealing Algorithm, a probabilistic method to approximate the global optimal solution, and Artificial Bee Colony Algorithm, an optimization method inspired by the foraging behavior of bee swarm, are selected to search optimal parameters of IMFs in this paper. The effectiveness of our proposed method is proved both on simulated data and PA signals from real biomedical tissue, which might bear the potential for future clinical PA imaging de-noising.
Using a derivative-free optimization method for multiple solutions of inverse transport problems
Armstrong, Jerawan C.; Favorite, Jeffrey A.
2016-01-14
Identifying unknown components of an object that emits radiation is an important problem for national and global security. Radiation signatures measured from an object of interest can be used to infer object parameter values that are not known. This problem is called an inverse transport problem. An inverse transport problem may have multiple solutions and the most widely used approach for its solution is an iterative optimization method. This paper proposes a stochastic derivative-free global optimization algorithm to find multiple solutions of inverse transport problems. The algorithm is an extension of a multilevel single linkage (MLSL) method where a meshmore » adaptive direct search (MADS) algorithm is incorporated into the local phase. Furthermore, numerical test cases using uncollided fluxes of discrete gamma-ray lines are presented to show the performance of this new algorithm.« less
BCD Beam Search: considering suboptimal partial solutions in Bad Clade Deletion supertrees.
Fleischauer, Markus; Böcker, Sebastian
2018-01-01
Supertree methods enable the reconstruction of large phylogenies. The supertree problem can be formalized in different ways in order to cope with contradictory information in the input. Some supertree methods are based on encoding the input trees in a matrix; other methods try to find minimum cuts in some graph. Recently, we introduced Bad Clade Deletion (BCD) supertrees which combines the graph-based computation of minimum cuts with optimizing a global objective function on the matrix representation of the input trees. The BCD supertree method has guaranteed polynomial running time and is very swift in practice. The quality of reconstructed supertrees was superior to matrix representation with parsimony (MRP) and usually on par with SuperFine for simulated data; but particularly for biological data, quality of BCD supertrees could not keep up with SuperFine supertrees. Here, we present a beam search extension for the BCD algorithm that keeps alive a constant number of partial solutions in each top-down iteration phase. The guaranteed worst-case running time of the new algorithm is still polynomial in the size of the input. We present an exact and a randomized subroutine to generate suboptimal partial solutions. Both beam search approaches consistently improve supertree quality on all evaluated datasets when keeping 25 suboptimal solutions alive. Supertree quality of the BCD Beam Search algorithm is on par with MRP and SuperFine even for biological data. This is the best performance of a polynomial-time supertree algorithm reported so far.
Desertification. (Latest citations from the Biobusiness database). Published Search
DOE Office of Scientific and Technical Information (OSTI.GOV)
Not Available
1993-09-01
The bibliography contains citations concerning desertification. Citations reference satellite monitoring; methods to halt or reverse desertification; and international treaties and national policies to stop desertification. Desertification causes, including cattle overgrazing, salinization, deforestation, and soil erosion, are discussed. Analyses of how desertification contributes to global warming and famine are described. (Contains a minimum of 54 citations and includes a subject term index and title list.)
Comparison of tests for spatial heterogeneity on data with global clustering patterns and outliers.
Jackson, Monica C; Huang, Lan; Luo, Jun; Hachey, Mark; Feuer, Eric
2009-10-12
The ability to evaluate geographic heterogeneity of cancer incidence and mortality is important in cancer surveillance. Many statistical methods for evaluating global clustering and local cluster patterns are developed and have been examined by many simulation studies. However, the performance of these methods on two extreme cases (global clustering evaluation and local anomaly (outlier) detection) has not been thoroughly investigated. We compare methods for global clustering evaluation including Tango's Index, Moran's I, and Oden's I*(pop); and cluster detection methods such as local Moran's I and SaTScan elliptic version on simulated count data that mimic global clustering patterns and outliers for cancer cases in the continental United States. We examine the power and precision of the selected methods in the purely spatial analysis. We illustrate Tango's MEET and SaTScan elliptic version on a 1987-2004 HIV and a 1950-1969 lung cancer mortality data in the United States. For simulated data with outlier patterns, Tango's MEET, Moran's I and I*(pop) had powers less than 0.2, and SaTScan had powers around 0.97. For simulated data with global clustering patterns, Tango's MEET and I*(pop) (with 50% of total population as the maximum search window) had powers close to 1. SaTScan had powers around 0.7-0.8 and Moran's I has powers around 0.2-0.3. In the real data example, Tango's MEET indicated the existence of global clustering patterns in both the HIV and lung cancer mortality data. SaTScan found a large cluster for HIV mortality rates, which is consistent with the finding from Tango's MEET. SaTScan also found clusters and outliers in the lung cancer mortality data. SaTScan elliptic version is more efficient for outlier detection compared with the other methods evaluated in this article. Tango's MEET and Oden's I*(pop) perform best in global clustering scenarios among the selected methods. The use of SaTScan for data with global clustering patterns should be used with caution since SatScan may reveal an incorrect spatial pattern even though it has enough power to reject a null hypothesis of homogeneous relative risk. Tango's method should be used for global clustering evaluation instead of SaTScan.
Aerodynamic Optimization of Rocket Control Surface Geometry Using Cartesian Methods and CAD Geometry
NASA Technical Reports Server (NTRS)
Nelson, Andrea; Aftosmis, Michael J.; Nemec, Marian; Pulliam, Thomas H.
2004-01-01
Aerodynamic design is an iterative process involving geometry manipulation and complex computational analysis subject to physical constraints and aerodynamic objectives. A design cycle consists of first establishing the performance of a baseline design, which is usually created with low-fidelity engineering tools, and then progressively optimizing the design to maximize its performance. Optimization techniques have evolved from relying exclusively on designer intuition and insight in traditional trial and error methods, to sophisticated local and global search methods. Recent attempts at automating the search through a large design space with formal optimization methods include both database driven and direct evaluation schemes. Databases are being used in conjunction with surrogate and neural network models as a basis on which to run optimization algorithms. Optimization algorithms are also being driven by the direct evaluation of objectives and constraints using high-fidelity simulations. Surrogate methods use data points obtained from simulations, and possibly gradients evaluated at the data points, to create mathematical approximations of a database. Neural network models work in a similar fashion, using a number of high-fidelity database calculations as training iterations to create a database model. Optimal designs are obtained by coupling an optimization algorithm to the database model. Evaluation of the current best design then gives either a new local optima and/or increases the fidelity of the approximation model for the next iteration. Surrogate methods have also been developed that iterate on the selection of data points to decrease the uncertainty of the approximation model prior to searching for an optimal design. The database approximation models for each of these cases, however, become computationally expensive with increase in dimensionality. Thus the method of using optimization algorithms to search a database model becomes problematic as the number of design variables is increased.
Visual Search in ASD: Instructed Versus Spontaneous Local and Global Processing.
Van der Hallen, Ruth; Evers, Kris; Boets, Bart; Steyaert, Jean; Noens, Ilse; Wagemans, Johan
2016-09-01
Visual search has been used extensively to investigate differences in mid-level visual processing between individuals with ASD and TD individuals. The current study employed two visual search paradigms with Gaborized stimuli to assess the impact of task distractors (Experiment 1) and task instruction (Experiment 2) on local-global visual processing in ASD versus TD children. Experiment 1 revealed both groups to be equally sensitive to the absence or presence of a distractor, regardless of the type of target or type of distractor. Experiment 2 revealed a differential effect of task instruction for ASD compared to TD, regardless of the type of target. Taken together, these results stress the importance of task factors in the study of local-global visual processing in ASD.
NASA Astrophysics Data System (ADS)
Hew, Y. M.; Linscott, I.; Close, S.
2015-12-01
Meteoroids and orbital debris, collectively referred to as hypervelocity impactors, travel between 7 and 72 km/s in free space. Upon their impact onto the spacecraft, the energy conversion from kinetic to ionization/vaporization occurs within a very brief timescale and results in a small and dense expanding plasma with a very strong optical flash. The radio frequency (RF) emission produced by this plasma can potentially lead to electrical anomalies within the spacecraft. In addition, space weather, such as solar activity and background plasma, can establish spacecraft conditions which can exaggerate the damages done by these impacts. During the impact, a very strong impact flash will be generated. Through the studying of this emission spectrum of the impact, we hope to study the impact generated gas cloud/plasma properties. The impact flash emitted from a ground-based hypervelocity impact test is long expected by many scientists to contain the characteristics of the impact generated plasma, such as plasma temperature and density. This paper presents a method for the time-resolved plasma temperature estimation using three-color visible band photometry data with a global pattern search optimization method. The equilibrium temperature of the plasma can be estimated using an optical model which accounts for both the line emission and continuum emission from the plasma. Using a global pattern search based optimizer, the model can isolate the contribution of the continuum emission versus the line emission from the plasma. The plasma temperature can thus be estimated. Prior to the optimization step, a Gaussian process is also applied to extract the optical emission signal out of the noisy background. The resultant temperature and line-to-continuum emission weighting factor are consistent with the spectrum of the impactor material and current literature.
Guillaume, Y C; Peyrin, E
2000-03-06
A chemometric methodology is proposed to study the separation of seven p-hydroxybenzoic esters in reversed phase liquid chromatography (RPLC). Fifteen experiments were found to be necessary to find a mathematical model which linked a novel chromatographic response function (CRF) with the column temperature, the water fraction in the mobile phase and its flow rate. The CRF optimum was determined using a new algorithm based on Glover's taboo search (TS). A flow-rate of 0.9 ml min(-1) with a water fraction of 0.64 in the ACN-water mixture and a column temperature of 10 degrees C gave the most efficient separation conditions. The usefulness of TS was compared with the pure random search (PRS) and simplex search (SS). As demonstrated by calculations, the algorithm avoids entrapment in local minima and continues the search to give a near-optimal final solution. Unlike other methods of global optimisation, this procedure is generally applicable, easy to implement, derivative free, conceptually simple and could be used in the future for much more complex optimisation problems.
Evolutionary pattern search algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, W.E.
1995-09-19
This paper defines a class of evolutionary algorithms called evolutionary pattern search algorithms (EPSAs) and analyzes their convergence properties. This class of algorithms is closely related to evolutionary programming, evolutionary strategie and real-coded genetic algorithms. EPSAs are self-adapting systems that modify the step size of the mutation operator in response to the success of previous optimization steps. The rule used to adapt the step size can be used to provide a stationary point convergence theory for EPSAs on any continuous function. This convergence theory is based on an extension of the convergence theory for generalized pattern search methods. An experimentalmore » analysis of the performance of EPSAs demonstrates that these algorithms can perform a level of global search that is comparable to that of canonical EAs. We also describe a stopping rule for EPSAs, which reliably terminated near stationary points in our experiments. This is the first stopping rule for any class of EAs that can terminate at a given distance from stationary points.« less
Eczema, Atopic Dermatitis, or Atopic Eczema: Analysis of Global Search Engine Trends.
Xu, Shuai; Thyssen, Jacob P; Paller, Amy S; Silverberg, Jonathan I
The lack of standardized nomenclature for atopic dermatitis (AD) creates challenges for scientific communication, patient education, and advocacy. We sought to determine the relative popularity of the terms eczema, AD, and atopic eczema (AE) using global search engine volumes. A retrospective analysis of average monthly search volumes from 2014 to 2016 of Google, Bing/Yahoo, and Baidu was performed for eczema, AD, and AE in English and 37 other languages. Google Trends was used to determine the relative search popularity of each term from 2006 to 2016 in English and the top foreign languages, German, Turkish, Russian, and Japanese. Overall, eczema accounted for 1.5 million monthly searches (84%) compared with 247 000 searches for AD (14%) and 44 000 searches for AE (2%). For English language, eczema accounted for 93% of searches compared with 6% for AD and 1% for AE. Search popularity for eczema increased from 2006 to 2016 but remained stable for AD and AE. Given the ambiguity of the term eczema, we recommend the universal use of the next most popular term, AD.
Global polar geospatial information service retrieval based on search engine and ontology reasoning
Chen, Nengcheng; E, Dongcheng; Di, Liping; Gong, Jianya; Chen, Zeqiang
2007-01-01
In order to improve the access precision of polar geospatial information service on web, a new methodology for retrieving global spatial information services based on geospatial service search and ontology reasoning is proposed, the geospatial service search is implemented to find the coarse service from web, the ontology reasoning is designed to find the refined service from the coarse service. The proposed framework includes standardized distributed geospatial web services, a geospatial service search engine, an extended UDDI registry, and a multi-protocol geospatial information service client. Some key technologies addressed include service discovery based on search engine and service ontology modeling and reasoning in the Antarctic geospatial context. Finally, an Antarctica multi protocol OWS portal prototype based on the proposed methodology is introduced.
Sang, Jun; Zhao, Jun; Xiang, Zhili; Cai, Bin; Xiang, Hong
2015-08-05
Gyrator transform has been widely used for image encryption recently. For gyrator transform-based image encryption, the rotation angle used in the gyrator transform is one of the secret keys. In this paper, by analyzing the properties of the gyrator transform, an improved particle swarm optimization (PSO) algorithm was proposed to search the rotation angle in a single gyrator transform. Since the gyrator transform is continuous, it is time-consuming to exhaustedly search the rotation angle, even considering the data precision in a computer. Therefore, a computational intelligence-based search may be an alternative choice. Considering the properties of severe local convergence and obvious global fluctuations of the gyrator transform, an improved PSO algorithm was proposed to be suitable for such situations. The experimental results demonstrated that the proposed improved PSO algorithm can significantly improve the efficiency of searching the rotation angle in a single gyrator transform. Since gyrator transform is the foundation of image encryption in gyrator transform domains, the research on the method of searching the rotation angle in a single gyrator transform is useful for further study on the security of such image encryption algorithms.
Woo, Hae Dong; Kim, Jeongseon
2012-01-01
Good biomarkers for early detection of cancer lead to better prognosis. However, harvesting tumor tissue is invasive and cannot be routinely performed. Global DNA methylation of peripheral blood leukocyte DNA was evaluated as a biomarker for cancer risk. We performed a meta-analysis to estimate overall cancer risk according to global DNA hypomethylation levels among studies with various cancer types and analytical methods used to measure DNA methylation. Studies were systemically searched via PubMed with no language limitation up to July 2011. Summary estimates were calculated using a fixed effects model. The subgroup analyses by experimental methods to determine DNA methylation level were performed due to heterogeneity within the selected studies (p<0.001, I(2): 80%). Heterogeneity was not found in the subgroup of %5-mC (p = 0.393, I(2): 0%) and LINE-1 used same target sequence (p = 0.097, I(2): 49%), whereas considerable variance remained in LINE-1 (p<0.001, I(2): 80%) and bladder cancer studies (p = 0.016, I(2): 76%). These results suggest that experimental methods used to quantify global DNA methylation levels are important factors in the association study between hypomethylation levels and cancer risk. Overall, cancer risks of the group with the lowest DNA methylation levels were significantly higher compared to the group with the highest methylation levels [OR (95% CI): 1.48 (1.28-1.70)]. Global DNA hypomethylation in peripheral blood leukocytes may be a suitable biomarker for cancer risk. However, the association between global DNA methylation and cancer risk may be different based on experimental methods, and region of DNA targeted for measuring global hypomethylation levels as well as the cancer type. Therefore, it is important to select a precise and accurate surrogate marker for global DNA methylation levels in the association studies between global DNA methylation levels in peripheral leukocyte and cancer risk.
Detecting binary neutron star systems with spin in advanced gravitational-wave detectors
NASA Astrophysics Data System (ADS)
Brown, Duncan A.; Harry, Ian; Lundgren, Andrew; Nitz, Alexander H.
2012-10-01
The detection of gravitational waves from binary neutron stars is a major goal of the gravitational-wave observatories Advanced LIGO and Advanced Virgo. Previous searches for binary neutron stars with LIGO and Virgo neglected the component stars’ angular momentum (spin). We demonstrate that neglecting spin in matched-filter searches causes advanced detectors to lose more than 3% of the possible signal-to-noise ratio for 59% (6%) of sources, assuming that neutron star dimensionless spins, cJ/GM2, are uniformly distributed with magnitudes between 0 and 0.4 (0.05) and that the neutron stars have isotropically distributed spin orientations. We present a new method for constructing template banks for gravitational-wave searches for systems with spin. We present a new metric in a parameter space in which the template placement metric is globally flat. This new method can create template banks of signals with nonzero spins that are (anti-)aligned with the orbital angular momentum. We show that this search loses more than 3% of the maximum signal-to-noise for only 9% (0.2%) of binary neutron star sources with dimensionless spins between 0 and 0.4 (0.05) and isotropic spin orientations. Use of this template bank will prevent selection bias in gravitational-wave searches and allow a more accurate exploration of the distribution of spins in binary neutron stars.
ERIC Educational Resources Information Center
Rochkind, Jonathan
2007-01-01
The ability to search and receive results in more than one database through a single interface--or metasearch--is something many users want. Google Scholar--the search engine of specifically scholarly content--and library metasearch products like Ex Libris's MetaLib, Serials Solution's Central Search, WebFeat, and products based on MuseGlobal used…
Tuo, Shouheng; Yong, Longquan; Deng, Fang’an; Li, Yanhai; Lin, Yong; Lu, Qiuju
2017-01-01
Harmony Search (HS) and Teaching-Learning-Based Optimization (TLBO) as new swarm intelligent optimization algorithms have received much attention in recent years. Both of them have shown outstanding performance for solving NP-Hard optimization problems. However, they also suffer dramatic performance degradation for some complex high-dimensional optimization problems. Through a lot of experiments, we find that the HS and TLBO have strong complementarity each other. The HS has strong global exploration power but low convergence speed. Reversely, the TLBO has much fast convergence speed but it is easily trapped into local search. In this work, we propose a hybrid search algorithm named HSTLBO that merges the two algorithms together for synergistically solving complex optimization problems using a self-adaptive selection strategy. In the HSTLBO, both HS and TLBO are modified with the aim of balancing the global exploration and exploitation abilities, where the HS aims mainly to explore the unknown regions and the TLBO aims to rapidly exploit high-precision solutions in the known regions. Our experimental results demonstrate better performance and faster speed than five state-of-the-art HS variants and show better exploration power than five good TLBO variants with similar run time, which illustrates that our method is promising in solving complex high-dimensional optimization problems. The experiment on portfolio optimization problems also demonstrate that the HSTLBO is effective in solving complex read-world application. PMID:28403224
Tuo, Shouheng; Yong, Longquan; Deng, Fang'an; Li, Yanhai; Lin, Yong; Lu, Qiuju
2017-01-01
Harmony Search (HS) and Teaching-Learning-Based Optimization (TLBO) as new swarm intelligent optimization algorithms have received much attention in recent years. Both of them have shown outstanding performance for solving NP-Hard optimization problems. However, they also suffer dramatic performance degradation for some complex high-dimensional optimization problems. Through a lot of experiments, we find that the HS and TLBO have strong complementarity each other. The HS has strong global exploration power but low convergence speed. Reversely, the TLBO has much fast convergence speed but it is easily trapped into local search. In this work, we propose a hybrid search algorithm named HSTLBO that merges the two algorithms together for synergistically solving complex optimization problems using a self-adaptive selection strategy. In the HSTLBO, both HS and TLBO are modified with the aim of balancing the global exploration and exploitation abilities, where the HS aims mainly to explore the unknown regions and the TLBO aims to rapidly exploit high-precision solutions in the known regions. Our experimental results demonstrate better performance and faster speed than five state-of-the-art HS variants and show better exploration power than five good TLBO variants with similar run time, which illustrates that our method is promising in solving complex high-dimensional optimization problems. The experiment on portfolio optimization problems also demonstrate that the HSTLBO is effective in solving complex read-world application.
‘Sciencenet’—towards a global search and share engine for all scientific knowledge
Lütjohann, Dominic S.; Shah, Asmi H.; Christen, Michael P.; Richter, Florian; Knese, Karsten; Liebel, Urban
2011-01-01
Summary: Modern biological experiments create vast amounts of data which are geographically distributed. These datasets consist of petabytes of raw data and billions of documents. Yet to the best of our knowledge, a search engine technology that searches and cross-links all different data types in life sciences does not exist. We have developed a prototype distributed scientific search engine technology, ‘Sciencenet’, which facilitates rapid searching over this large data space. By ‘bringing the search engine to the data’, we do not require server farms. This platform also allows users to contribute to the search index and publish their large-scale data to support e-Science. Furthermore, a community-driven method guarantees that only scientific content is crawled and presented. Our peer-to-peer approach is sufficiently scalable for the science web without performance or capacity tradeoff. Availability and Implementation: The free to use search portal web page and the downloadable client are accessible at: http://sciencenet.kit.edu. The web portal for index administration is implemented in ASP.NET, the ‘AskMe’ experiment publisher is written in Python 2.7, and the backend ‘YaCy’ search engine is based on Java 1.6. Contact: urban.liebel@kit.edu Supplementary Material: Detailed instructions and descriptions can be found on the project homepage: http://sciencenet.kit.edu. PMID:21493657
NASA Astrophysics Data System (ADS)
Yoo, S.; Zeng, X. C.
2006-05-01
We performed a constrained search for the geometries of low-lying neutral germanium clusters GeN in the size range of 21⩽N⩽29. The basin-hopping global optimization method is employed for the search. The potential-energy surface is computed based on the plane-wave pseudopotential density functional theory. A new series of low-lying clusters is found on the basis of several generic structural motifs identified previously for silicon clusters [S. Yoo and X. C. Zeng, J. Chem. Phys. 124, 054304 (2006)] as well as for smaller-sized germanium clusters [S. Bulusu et al., J. Chem. Phys. 122, 164305 (2005)]. Among the generic motifs examined, we found that two motifs stand out in producing most low-lying clusters, namely, the six/nine motif, a puckered-hexagonal-ring Ge6 unit attached to a tricapped trigonal prism Ge9, and the six/ten motif, a puckered-hexagonal-ring Ge6 unit attached to a bicapped antiprism Ge10. The low-lying clusters obtained are all prolate in shape and their energies are appreciably lower than the near-spherical low-energy clusters. This result is consistent with the ion-mobility measurement in that medium-sized germanium clusters detected are all prolate in shape until the size N ˜65.
Harmonize input selection for sediment transport prediction
NASA Astrophysics Data System (ADS)
Afan, Haitham Abdulmohsin; Keshtegar, Behrooz; Mohtar, Wan Hanna Melini Wan; El-Shafie, Ahmed
2017-09-01
In this paper, three modeling approaches using a Neural Network (NN), Response Surface Method (RSM) and response surface method basis Global Harmony Search (GHS) are applied to predict the daily time series suspended sediment load. Generally, the input variables for forecasting the suspended sediment load are manually selected based on the maximum correlations of input variables in the modeling approaches based on NN and RSM. The RSM is improved to select the input variables by using the errors terms of training data based on the GHS, namely as response surface method and global harmony search (RSM-GHS) modeling method. The second-order polynomial function with cross terms is applied to calibrate the time series suspended sediment load with three, four and five input variables in the proposed RSM-GHS. The linear, square and cross corrections of twenty input variables of antecedent values of suspended sediment load and water discharge are investigated to achieve the best predictions of the RSM based on the GHS method. The performances of the NN, RSM and proposed RSM-GHS including both accuracy and simplicity are compared through several comparative predicted and error statistics. The results illustrated that the proposed RSM-GHS is as uncomplicated as the RSM but performed better, where fewer errors and better correlation was observed (R = 0.95, MAE = 18.09 (ton/day), RMSE = 25.16 (ton/day)) compared to the ANN (R = 0.91, MAE = 20.17 (ton/day), RMSE = 33.09 (ton/day)) and RSM (R = 0.91, MAE = 20.06 (ton/day), RMSE = 31.92 (ton/day)) for all types of input variables.
A strategy to find minimal energy nanocluster structures.
Rogan, José; Varas, Alejandro; Valdivia, Juan Alejandro; Kiwi, Miguel
2013-11-05
An unbiased strategy to search for the global and local minimal energy structures of free standing nanoclusters is presented. Our objectives are twofold: to find a diverse set of low lying local minima, as well as the global minimum. To do so, we use massively the fast inertial relaxation engine algorithm as an efficient local minimizer. This procedure turns out to be quite efficient to reach the global minimum, and also most of the local minima. We test the method with the Lennard-Jones (LJ) potential, for which an abundant literature does exist, and obtain novel results, which include a new local minimum for LJ13 , 10 new local minima for LJ14 , and thousands of new local minima for 15≤N≤65. Insights on how to choose the initial configurations, analyzing the effectiveness of the method in reaching low-energy structures, including the global minimum, are developed as a function of the number of atoms of the cluster. Also, a novel characterization of the potential energy surface, analyzing properties of the local minima basins, is provided. The procedure constitutes a promising tool to generate a diverse set of cluster conformations, both two- and three-dimensional, that can be used as an input for refinement by means of ab initio methods. Copyright © 2013 Wiley Periodicals, Inc.
Protein homology model refinement by large-scale energy optimization.
Park, Hahnbeom; Ovchinnikov, Sergey; Kim, David E; DiMaio, Frank; Baker, David
2018-03-20
Proteins fold to their lowest free-energy structures, and hence the most straightforward way to increase the accuracy of a partially incorrect protein structure model is to search for the lowest-energy nearby structure. This direct approach has met with little success for two reasons: first, energy function inaccuracies can lead to false energy minima, resulting in model degradation rather than improvement; and second, even with an accurate energy function, the search problem is formidable because the energy only drops considerably in the immediate vicinity of the global minimum, and there are a very large number of degrees of freedom. Here we describe a large-scale energy optimization-based refinement method that incorporates advances in both search and energy function accuracy that can substantially improve the accuracy of low-resolution homology models. The method refined low-resolution homology models into correct folds for 50 of 84 diverse protein families and generated improved models in recent blind structure prediction experiments. Analyses of the basis for these improvements reveal contributions from both the improvements in conformational sampling techniques and the energy function.
NASA Technical Reports Server (NTRS)
Rash, James L.
2010-01-01
NASA's space data-communications infrastructure, the Space Network and the Ground Network, provide scheduled (as well as some limited types of unscheduled) data-communications services to user spacecraft via orbiting relay satellites and ground stations. An implementation of the methods and algorithms disclosed herein will be a system that produces globally optimized schedules with not only optimized service delivery by the space data-communications infrastructure but also optimized satisfaction of all user requirements and prescribed constraints, including radio frequency interference (RFI) constraints. Evolutionary search, a class of probabilistic strategies for searching large solution spaces, constitutes the essential technology in this disclosure. Also disclosed are methods and algorithms for optimizing the execution efficiency of the schedule-generation algorithm itself. The scheduling methods and algorithms as presented are adaptable to accommodate the complexity of scheduling the civilian and/or military data-communications infrastructure. Finally, the problem itself, and the methods and algorithms, are generalized and specified formally, with applicability to a very broad class of combinatorial optimization problems.
Detecting and Cataloging Global Explosive Volcanism Using the IMS Infrasound Network
NASA Astrophysics Data System (ADS)
Matoza, R. S.; Green, D. N.; LE Pichon, A.; Fee, D.; Shearer, P. M.; Mialle, P.; Ceranna, L.
2015-12-01
Explosive volcanic eruptions are among the most powerful sources of infrasound observed on earth, with recordings routinely made at ranges of hundreds to thousands of kilometers. These eruptions can also inject large volumes of ash into heavily travelled aviation corridors, thus posing a significant societal and economic hazard. Detecting and counting the global occurrence of explosive volcanism helps with progress toward several goals in earth sciences and has direct applications in volcanic hazard mitigation. This project aims to build a quantitative catalog of global explosive volcanic activity using the International Monitoring System (IMS) infrasound network. We are developing methodologies to search systematically through IMS infrasound array detection bulletins to identify signals of volcanic origin. We combine infrasound signal association and source location using a brute-force, grid-search, cross-bearings approach. The algorithm corrects for a background prior rate of coherent infrasound signals in a global grid. When volcanic signals are identified, we extract metrics such as location, origin time, acoustic intensity, signal duration, and frequency content, compiling the results into a catalog. We are testing and validating our method on several well-known case studies, including the 2009 eruption of Sarychev Peak, Kuriles, the 2010 eruption of Eyjafjallajökull, Iceland, and the 2015 eruption of Calbuco, Chile. This work represents a step toward the goal of integrating IMS data products into global volcanic eruption early warning and notification systems. Additionally, a better characterization of volcanic signal detection helps improve understanding of operational event detection, discrimination, and association capabilities of the IMS network.
On multiple crack identification by ultrasonic scanning
NASA Astrophysics Data System (ADS)
Brigante, M.; Sumbatyan, M. A.
2018-04-01
The present work develops an approach which reduces operator equations arising in the engineering problems to the problem of minimizing the discrepancy functional. For this minimization, an algorithm of random global search is proposed, which is allied to some genetic algorithms. The efficiency of the method is demonstrated by the solving problem of simultaneous identification of several linear cracks forming an array in an elastic medium by using the circular Ultrasonic scanning.
Zhang, H H; Gao, S; Chen, W; Shi, L; D'Souza, W D; Meyer, R R
2013-03-21
An important element of radiation treatment planning for cancer therapy is the selection of beam angles (out of all possible coplanar and non-coplanar angles in relation to the patient) in order to maximize the delivery of radiation to the tumor site and minimize radiation damage to nearby organs-at-risk. This category of combinatorial optimization problem is particularly difficult because direct evaluation of the quality of treatment corresponding to any proposed selection of beams requires the solution of a large-scale dose optimization problem involving many thousands of variables that represent doses delivered to volume elements (voxels) in the patient. However, if the quality of angle sets can be accurately estimated without expensive computation, a large number of angle sets can be considered, increasing the likelihood of identifying a very high quality set. Using a computationally efficient surrogate beam set evaluation procedure based on single-beam data extracted from plans employing equallyspaced beams (eplans), we have developed a global search metaheuristic process based on the nested partitions framework for this combinatorial optimization problem. The surrogate scoring mechanism allows us to assess thousands of beam set samples within a clinically acceptable time frame. Tests on difficult clinical cases demonstrate that the beam sets obtained via our method are of superior quality.
Zhang, H H; Gao, S; Chen, W; Shi, L; D’Souza, W D; Meyer, R R
2013-01-01
An important element of radiation treatment planning for cancer therapy is the selection of beam angles (out of all possible coplanar and non-coplanar angles in relation to the patient) in order to maximize the delivery of radiation to the tumor site and minimize radiation damage to nearby organs-at-risk. This category of combinatorial optimization problem is particularly difficult because direct evaluation of the quality of treatment corresponding to any proposed selection of beams requires the solution of a large-scale dose optimization problem involving many thousands of variables that represent doses delivered to volume elements (voxels) in the patient. However, if the quality of angle sets can be accurately estimated without expensive computation, a large number of angle sets can be considered, increasing the likelihood of identifying a very high quality set. Using a computationally efficient surrogate beam set evaluation procedure based on single-beam data extracted from plans employing equally-spaced beams (eplans), we have developed a global search metaheuristic process based on the Nested Partitions framework for this combinatorial optimization problem. The surrogate scoring mechanism allows us to assess thousands of beam set samples within a clinically acceptable time frame. Tests on difficult clinical cases demonstrate that the beam sets obtained via our method are superior quality. PMID:23459411
Global optimization of additive potential energy functions: Predicting binary Lennard-Jones clusters
NASA Astrophysics Data System (ADS)
Kolossváry, István; Bowers, Kevin J.
2010-11-01
We present a method for minimizing additive potential-energy functions. Our hidden-force algorithm can be described as an intricate multiplayer tug-of-war game in which teams try to break an impasse by randomly assigning some players to drop their ropes while the others are still tugging until a partial impasse is reached, then, instructing the dropouts to resume tugging, for all teams to come to a new overall impasse. Utilizing our algorithm in a non-Markovian parallel Monte Carlo search, we found 17 new putative global minima for binary Lennard-Jones clusters in the size range of 90-100 particles. The method is efficient enough that an unbiased search was possible; no potential-energy surface symmetries were exploited. All new minima are comprised of three nested polyicosahedral or polytetrahedral shells when viewed as a nested set of Connolly surfaces (though the shell structure has previously gone unscrutinized, known minima are often qualitatively similar). Unlike known minima, in which the outer and inner shells are comprised of the larger and smaller atoms, respectively, in 13 of the new minima, the atoms are not as clearly separated by size. Furthermore, while some known minima have inner shells stabilized by larger atoms, four of the new minima have outer shells stabilized by smaller atoms.
Efficient Generation of Dancing Animation Synchronizing with Music Based on Meta Motion Graphs
NASA Astrophysics Data System (ADS)
Xu, Jianfeng; Takagi, Koichi; Sakazawa, Shigeyuki
This paper presents a system for automatic generation of dancing animation that is synchronized with a piece of music by re-using motion capture data. Basically, the dancing motion is synthesized according to the rhythm and intensity features of music. For this purpose, we propose a novel meta motion graph structure to embed the necessary features including both rhythm and intensity, which is constructed on the motion capture database beforehand. In this paper, we consider two scenarios for non-streaming music and streaming music, where global search and local search are required respectively. In the case of the former, once a piece of music is input, the efficient dynamic programming algorithm can be employed to globally search a best path in the meta motion graph, where an objective function is properly designed by measuring the quality of beat synchronization, intensity matching, and motion smoothness. In the case of the latter, the input music is stored in a buffer in a streaming mode, then an efficient search method is presented for a certain amount of music data (called a segment) in the buffer with the same objective function, resulting in a segment-based search approach. For streaming applications, we define an additional property in the above meta motion graph to deal with the unpredictable future music, which guarantees that there is some motion to match the unknown remaining music. A user study with totally 60 subjects demonstrates that our system outperforms the stat-of-the-art techniques in both scenarios. Furthermore, our system improves the synthesis speed greatly (maximal speedup is more than 500 times), which is essential for mobile applications. We have implemented our system on commercially available smart phones and confirmed that it works well on these mobile phones.
Recursive Branching Simulated Annealing Algorithm
NASA Technical Reports Server (NTRS)
Bolcar, Matthew; Smith, J. Scott; Aronstein, David
2012-01-01
This innovation is a variation of a simulated-annealing optimization algorithm that uses a recursive-branching structure to parallelize the search of a parameter space for the globally optimal solution to an objective. The algorithm has been demonstrated to be more effective at searching a parameter space than traditional simulated-annealing methods for a particular problem of interest, and it can readily be applied to a wide variety of optimization problems, including those with a parameter space having both discrete-value parameters (combinatorial) and continuous-variable parameters. It can take the place of a conventional simulated- annealing, Monte-Carlo, or random- walk algorithm. In a conventional simulated-annealing (SA) algorithm, a starting configuration is randomly selected within the parameter space. The algorithm randomly selects another configuration from the parameter space and evaluates the objective function for that configuration. If the objective function value is better than the previous value, the new configuration is adopted as the new point of interest in the parameter space. If the objective function value is worse than the previous value, the new configuration may be adopted, with a probability determined by a temperature parameter, used in analogy to annealing in metals. As the optimization continues, the region of the parameter space from which new configurations can be selected shrinks, and in conjunction with lowering the annealing temperature (and thus lowering the probability for adopting configurations in parameter space with worse objective functions), the algorithm can converge on the globally optimal configuration. The Recursive Branching Simulated Annealing (RBSA) algorithm shares some features with the SA algorithm, notably including the basic principles that a starting configuration is randomly selected from within the parameter space, the algorithm tests other configurations with the goal of finding the globally optimal solution, and the region from which new configurations can be selected shrinks as the search continues. The key difference between these algorithms is that in the SA algorithm, a single path, or trajectory, is taken in parameter space, from the starting point to the globally optimal solution, while in the RBSA algorithm, many trajectories are taken; by exploring multiple regions of the parameter space simultaneously, the algorithm has been shown to converge on the globally optimal solution about an order of magnitude faster than when using conventional algorithms. Novel features of the RBSA algorithm include: 1. More efficient searching of the parameter space due to the branching structure, in which multiple random configurations are generated and multiple promising regions of the parameter space are explored; 2. The implementation of a trust region for each parameter in the parameter space, which provides a natural way of enforcing upper- and lower-bound constraints on the parameters; and 3. The optional use of a constrained gradient- search optimization, performed on the continuous variables around each branch s configuration in parameter space to improve search efficiency by allowing for fast fine-tuning of the continuous variables within the trust region at that configuration point.
NASA Astrophysics Data System (ADS)
Weerathunga, Thilina Shihan
2017-08-01
Gravitational waves are a fundamental prediction of Einstein's General Theory of Relativity. The first experimental proof of their existence was provided by the Nobel Prize winning discovery by Taylor and Hulse of orbital decay in a binary pulsar system. The first detection of gravitational waves incident on earth from an astrophysical source was announced in 2016 by the LIGO Scientific Collaboration, launching the new era of gravitational wave (GW) astronomy. The signal detected was from the merger of two black holes, which is an example of sources called Compact Binary Coalescences (CBCs). Data analysis strategies used in the search for CBC signals are derivatives of the Maximum-Likelihood (ML) method. The ML method applied to data from a network of geographically distributed GW detectors--called fully coherent network analysis--is currently the best approach for estimating source location and GW polarization waveforms. However, in the case of CBCs, especially for lower mass systems (O(1M solar masses)) such as double neutron star binaries, fully coherent network analysis is computationally expensive. The ML method requires locating the global maximum of the likelihood function over a nine dimensional parameter space, where the computation of the likelihood at each point requires correlations involving O(104) to O(106) samples between the data and the corresponding candidate signal waveform template. Approximations, such as semi-coherent coincidence searches, are currently used to circumvent the computational barrier but incur a concomitant loss in sensitivity. We explored the effectiveness of Particle Swarm Optimization (PSO), a well-known algorithm in the field of swarm intelligence, in addressing the fully coherent network analysis problem. As an example, we used a four-detector network consisting of the two LIGO detectors at Hanford and Livingston, Virgo and Kagra, all having initial LIGO noise power spectral densities, and show that PSO can locate the global maximum with less than 240,000 likelihood evaluations for a component mass range of 1.0 to 10.0 solar masses at a realistic coherent network signal to noise ratio of 9.0. Our results show that PSO can successfully deliver a fully-coherent all-sky search with < (1/10 ) the number of likelihood evaluations needed for a grid-based search. Used as a follow-up step, the savings in the number of likelihood evaluations may also reduce latency in obtaining ML estimates of source parameters in semi-coherent searches.
Dynamic Search and Working Memory in Social Recall
ERIC Educational Resources Information Center
Hills, Thomas T.; Pachur, Thorsten
2012-01-01
What are the mechanisms underlying search in social memory (e.g., remembering the people one knows)? Do the search mechanisms involve dynamic local-to-global transitions similar to semantic search, and are these transitions governed by the general control of attention, associated with working memory span? To find out, we asked participants to…
NASA Astrophysics Data System (ADS)
Keshta, H. E.; Ali, A. A.; Saied, E. M.; Bendary, F. M.
2016-10-01
Large-scale integration of wind turbine generators (WTGs) may have significant impacts on power system operation with respect to system frequency and bus voltages. This paper studies the effect of Static Var Compensator (SVC) connected to wind energy conversion system (WECS) on voltage profile and the power generated from the induction generator (IG) in wind farm. Also paper presents, a dynamic reactive power compensation using Static Var Compensator (SVC) at the a point of interconnection of wind farm while static compensation (Fixed Capacitor Bank) is unable to prevent voltage collapse. Moreover, this paper shows that using advanced optimization techniques based on artificial intelligence (AI) such as Harmony Search Algorithm (HS) and Self-Adaptive Global Harmony Search Algorithm (SGHS) instead of a Conventional Control Method to tune the parameters of PI controller for SVC and pitch angle. Also paper illustrates that the performance of the system with controllers based on AI is improved under different operating conditions. MATLAB/Simulink based simulation is utilized to demonstrate the application of SVC in wind farm integration. It is also carried out to investigate the enhancement in performance of the WECS achieved with a PI Controller tuned by Harmony Search Algorithm as compared to a Conventional Control Method.
NASA Technical Reports Server (NTRS)
Powell, John D.; Owens, David; Menzies, Tim
2004-01-01
The difficulty of how to test large systems, such as the one on board a NASA robotic remote explorer (RRE) vehicle, is fundamentally a search issue: the global state space representing all possible has yet to be solved, even after many decades of work. Randomized algorithms have been known to outperform their deterministic counterparts for search problems representing a wide range of applications. In the case study presented here, the LURCH randomized algorithm proved to be adequate to the task of testing a NASA RRE vehicle. LURCH found all the errors found by an earlier analysis of a more complete method (SPIN). Our empirical results are that LURCH can scale to much larger models than standard model checkers like SMV and SPIN. Further, the LURCH analysis was simpler than the SPIN analysis. The simplicity and scalability of LURCH are two compelling reasons for experimenting further with this tool.
Optimization of Stereo Matching in 3D Reconstruction Based on Binocular Vision
NASA Astrophysics Data System (ADS)
Gai, Qiyang
2018-01-01
Stereo matching is one of the key steps of 3D reconstruction based on binocular vision. In order to improve the convergence speed and accuracy in 3D reconstruction based on binocular vision, this paper adopts the combination method of polar constraint and ant colony algorithm. By using the line constraint to reduce the search range, an ant colony algorithm is used to optimize the stereo matching feature search function in the proposed search range. Through the establishment of the stereo matching optimization process analysis model of ant colony algorithm, the global optimization solution of stereo matching in 3D reconstruction based on binocular vision system is realized. The simulation results show that by the combining the advantage of polar constraint and ant colony algorithm, the stereo matching range of 3D reconstruction based on binocular vision is simplified, and the convergence speed and accuracy of this stereo matching process are improved.
Automated parameterization of intermolecular pair potentials using global optimization techniques
NASA Astrophysics Data System (ADS)
Krämer, Andreas; Hülsmann, Marco; Köddermann, Thorsten; Reith, Dirk
2014-12-01
In this work, different global optimization techniques are assessed for the automated development of molecular force fields, as used in molecular dynamics and Monte Carlo simulations. The quest of finding suitable force field parameters is treated as a mathematical minimization problem. Intricate problem characteristics such as extremely costly and even abortive simulations, noisy simulation results, and especially multiple local minima naturally lead to the use of sophisticated global optimization algorithms. Five diverse algorithms (pure random search, recursive random search, CMA-ES, differential evolution, and taboo search) are compared to our own tailor-made solution named CoSMoS. CoSMoS is an automated workflow. It models the parameters' influence on the simulation observables to detect a globally optimal set of parameters. It is shown how and why this approach is superior to other algorithms. Applied to suitable test functions and simulations for phosgene, CoSMoS effectively reduces the number of required simulations and real time for the optimization task.
Vernon, Ian; Liu, Junli; Goldstein, Michael; Rowe, James; Topping, Jen; Lindsey, Keith
2018-01-02
Many mathematical models have now been employed across every area of systems biology. These models increasingly involve large numbers of unknown parameters, have complex structure which can result in substantial evaluation time relative to the needs of the analysis, and need to be compared to observed data of various forms. The correct analysis of such models usually requires a global parameter search, over a high dimensional parameter space, that incorporates and respects the most important sources of uncertainty. This can be an extremely difficult task, but it is essential for any meaningful inference or prediction to be made about any biological system. It hence represents a fundamental challenge for the whole of systems biology. Bayesian statistical methodology for the uncertainty analysis of complex models is introduced, which is designed to address the high dimensional global parameter search problem. Bayesian emulators that mimic the systems biology model but which are extremely fast to evaluate are embeded within an iterative history match: an efficient method to search high dimensional spaces within a more formal statistical setting, while incorporating major sources of uncertainty. The approach is demonstrated via application to a model of hormonal crosstalk in Arabidopsis root development, which has 32 rate parameters, for which we identify the sets of rate parameter values that lead to acceptable matches between model output and observed trend data. The multiple insights into the model's structure that this analysis provides are discussed. The methodology is applied to a second related model, and the biological consequences of the resulting comparison, including the evaluation of gene functions, are described. Bayesian uncertainty analysis for complex models using both emulators and history matching is shown to be a powerful technique that can greatly aid the study of a large class of systems biology models. It both provides insight into model behaviour and identifies the sets of rate parameters of interest.
NASA Astrophysics Data System (ADS)
Aungkulanon, P.; Luangpaiboon, P.
2010-10-01
Nowadays, the engineering problem systems are large and complicated. An effective finite sequence of instructions for solving these problems can be categorised into optimisation and meta-heuristic algorithms. Though the best decision variable levels from some sets of available alternatives cannot be done, meta-heuristics is an alternative for experience-based techniques that rapidly help in problem solving, learning and discovery in the hope of obtaining a more efficient or more robust procedure. All meta-heuristics provide auxiliary procedures in terms of their own tooled box functions. It has been shown that the effectiveness of all meta-heuristics depends almost exclusively on these auxiliary functions. In fact, the auxiliary procedure from one can be implemented into other meta-heuristics. Well-known meta-heuristics of harmony search (HSA) and shuffled frog-leaping algorithms (SFLA) are compared with their hybridisations. HSA is used to produce a near optimal solution under a consideration of the perfect state of harmony of the improvisation process of musicians. A meta-heuristic of the SFLA, based on a population, is a cooperative search metaphor inspired by natural memetics. It includes elements of local search and global information exchange. This study presents solution procedures via constrained and unconstrained problems with different natures of single and multi peak surfaces including a curved ridge surface. Both meta-heuristics are modified via variable neighbourhood search method (VNSM) philosophy including a modified simplex method (MSM). The basic idea is the change of neighbourhoods during searching for a better solution. The hybridisations proceed by a descent method to a local minimum exploring then, systematically or at random, increasingly distant neighbourhoods of this local solution. The results show that the variant of HSA with VNSM and MSM seems to be better in terms of the mean and variance of design points and yields.
Systematic Review and Consensus Guidelines for Environmental Sampling of Burkholderia pseudomallei
Limmathurotsakul, Direk; Dance, David A. B.; Wuthiekanun, Vanaporn; Kaestli, Mirjam; Mayo, Mark; Warner, Jeffrey; Wagner, David M.; Tuanyok, Apichai; Wertheim, Heiman; Yoke Cheng, Tan; Mukhopadhyay, Chiranjay; Puthucheary, Savithiri; Day, Nicholas P. J.; Steinmetz, Ivo; Currie, Bart J.; Peacock, Sharon J.
2013-01-01
Background Burkholderia pseudomallei, a Tier 1 Select Agent and the cause of melioidosis, is a Gram-negative bacillus present in the environment in many tropical countries. Defining the global pattern of B. pseudomallei distribution underpins efforts to prevent infection, and is dependent upon robust environmental sampling methodology. Our objective was to review the literature on the detection of environmental B. pseudomallei, update the risk map for melioidosis, and propose international consensus guidelines for soil sampling. Methods/Principal Findings An international working party (Detection of Environmental Burkholderia pseudomallei Working Party (DEBWorP)) was formed during the VIth World Melioidosis Congress in 2010. PubMed (January 1912 to December 2011) was searched using the following MeSH terms: pseudomallei or melioidosis. Bibliographies were hand-searched for secondary references. The reported geographical distribution of B. pseudomallei in the environment was mapped and categorized as definite, probable, or possible. The methodology used for detecting environmental B. pseudomallei was extracted and collated. We found that global coverage was patchy, with a lack of studies in many areas where melioidosis is suspected to occur. The sampling strategies and bacterial identification methods used were highly variable, and not all were robust. We developed consensus guidelines with the goals of reducing the probability of false-negative results, and the provision of affordable and ‘low-tech’ methodology that is applicable in both developed and developing countries. Conclusions/Significance The proposed consensus guidelines provide the basis for the development of an accurate and comprehensive global map of environmental B. pseudomallei. PMID:23556010
Expedite random structure searching using objects from Wyckoff positions
NASA Astrophysics Data System (ADS)
Wang, Shu-Wei; Hsing, Cheng-Rong; Wei, Ching-Ming
2018-02-01
Random structure searching has been proved to be a powerful approach to search and find the global minimum and the metastable structures. A true random sampling is in principle needed yet it would be highly time-consuming and/or practically impossible to find the global minimum for the complicated systems in their high-dimensional configuration space. Thus the implementations of reasonable constraints, such as adopting system symmetries to reduce the independent dimension in structural space and/or imposing chemical information to reach and relax into low-energy regions, are the most essential issues in the approach. In this paper, we propose the concept of "object" which is either an atom or composed of a set of atoms (such as molecules or carbonates) carrying a symmetry defined by one of the Wyckoff positions of space group and through this process it allows the searching of global minimum for a complicated system to be confined in a greatly reduced structural space and becomes accessible in practice. We examined several representative materials, including Cd3As2 crystal, solid methanol, high-pressure carbonates (FeCO3), and Si(111)-7 × 7 reconstructed surface, to demonstrate the power and the advantages of using "object" concept in random structure searching.
A new effective operator for the hybrid algorithm for solving global optimisation problems
NASA Astrophysics Data System (ADS)
Duc, Le Anh; Li, Kenli; Nguyen, Tien Trong; Yen, Vu Minh; Truong, Tung Khac
2018-04-01
Hybrid algorithms have been recently used to solve complex single-objective optimisation problems. The ultimate goal is to find an optimised global solution by using these algorithms. Based on the existing algorithms (HP_CRO, PSO, RCCRO), this study proposes a new hybrid algorithm called MPC (Mean-PSO-CRO), which utilises a new Mean-Search Operator. By employing this new operator, the proposed algorithm improves the search ability on areas of the solution space that the other operators of previous algorithms do not explore. Specifically, the Mean-Search Operator helps find the better solutions in comparison with other algorithms. Moreover, the authors have proposed two parameters for balancing local and global search and between various types of local search, as well. In addition, three versions of this operator, which use different constraints, are introduced. The experimental results on 23 benchmark functions, which are used in previous works, show that our framework can find better optimal or close-to-optimal solutions with faster convergence speed for most of the benchmark functions, especially the high-dimensional functions. Thus, the proposed algorithm is more effective in solving single-objective optimisation problems than the other existing algorithms.
3D Protein structure prediction with genetic tabu search algorithm
2010-01-01
Background Protein structure prediction (PSP) has important applications in different fields, such as drug design, disease prediction, and so on. In protein structure prediction, there are two important issues. The first one is the design of the structure model and the second one is the design of the optimization technology. Because of the complexity of the realistic protein structure, the structure model adopted in this paper is a simplified model, which is called off-lattice AB model. After the structure model is assumed, optimization technology is needed for searching the best conformation of a protein sequence based on the assumed structure model. However, PSP is an NP-hard problem even if the simplest model is assumed. Thus, many algorithms have been developed to solve the global optimization problem. In this paper, a hybrid algorithm, which combines genetic algorithm (GA) and tabu search (TS) algorithm, is developed to complete this task. Results In order to develop an efficient optimization algorithm, several improved strategies are developed for the proposed genetic tabu search algorithm. The combined use of these strategies can improve the efficiency of the algorithm. In these strategies, tabu search introduced into the crossover and mutation operators can improve the local search capability, the adoption of variable population size strategy can maintain the diversity of the population, and the ranking selection strategy can improve the possibility of an individual with low energy value entering into next generation. Experiments are performed with Fibonacci sequences and real protein sequences. Experimental results show that the lowest energy obtained by the proposed GATS algorithm is lower than that obtained by previous methods. Conclusions The hybrid algorithm has the advantages from both genetic algorithm and tabu search algorithm. It makes use of the advantage of multiple search points in genetic algorithm, and can overcome poor hill-climbing capability in the conventional genetic algorithm by using the flexible memory functions of TS. Compared with some previous algorithms, GATS algorithm has better performance in global optimization and can predict 3D protein structure more effectively. PMID:20522256
NASA Astrophysics Data System (ADS)
Campo, Lorenzo; Castelli, Fabio; Caparrini, Francesca
2010-05-01
The modern distributed hydrological models allow the representation of the different surface and subsurface phenomena with great accuracy and high spatial and temporal resolution. Such complexity requires, in general, an equally accurate parametrization. A number of approaches have been followed in this respect, from simple local search method (like Nelder-Mead algorithm), that minimize a cost function representing some distance between model's output and available measures, to more complex approaches like dynamic filters (such as the Ensemble Kalman Filter) that carry on an assimilation of the observations. In this work the first approach was followed in order to compare the performances of three different direct search algorithms on the calibration of a distributed hydrological balance model. The direct search family can be defined as that category of algorithms that make no use of derivatives of the cost function (that is, in general, a black box) and comprehend a large number of possible approaches. The main benefit of this class of methods is that they don't require changes in the implementation of the numerical codes to be calibrated. The first algorithm is the classical Nelder-Mead, often used in many applications and utilized as reference. The second algorithm is a GSS (Generating Set Search) algorithm, built in order to guarantee the conditions of global convergence and suitable for a parallel and multi-start implementation, here presented. The third one is the EGO algorithm (Efficient Global Optimization), that is particularly suitable to calibrate black box cost functions that require expensive computational resource (like an hydrological simulation). EGO minimizes the number of evaluations of the cost function balancing the need to minimize a response surface that approximates the problem and the need to improve the approximation sampling where prediction error may be high. The hydrological model to be calibrated was MOBIDIC, a complete balance distributed model developed at the Department of Civil and Environmental Engineering of the University of Florence. Discussion on the comparisons between the effectiveness of the different algorithms on different cases of study on Central Italy basins is provided.
The Global Evidence Mapping Initiative: scoping research in broad topic areas.
Bragge, Peter; Clavisi, Ornella; Turner, Tari; Tavender, Emma; Collie, Alex; Gruen, Russell L
2011-06-17
Evidence mapping describes the quantity, design and characteristics of research in broad topic areas, in contrast to systematic reviews, which usually address narrowly-focused research questions. The breadth of evidence mapping helps to identify evidence gaps, and may guide future research efforts. The Global Evidence Mapping (GEM) Initiative was established in 2007 to create evidence maps providing an overview of existing research in Traumatic Brain Injury (TBI) and Spinal Cord Injury (SCI). The GEM evidence mapping method involved three core tasks:1. Setting the boundaries and context of the map: Definitions for the fields of TBI and SCI were clarified, the prehospital, acute inhospital and rehabilitation phases of care were delineated and relevant stakeholders (patients, carers, clinicians, researchers and policymakers) who could contribute to the mapping were identified. Researchable clinical questions were developed through consultation with key stakeholders and a broad literature search. 2. Searching for and selection of relevant studies: Evidence search and selection involved development of specific search strategies, development of inclusion and exclusion criteria, searching of relevant databases and independent screening and selection by two researchers. 3. Reporting on yield and study characteristics: Data extraction was performed at two levels - 'interventions and study design' and 'detailed study characteristics'. The evidence map and commentary reflected the depth of data extraction. One hundred and twenty-nine researchable clinical questions in TBI and SCI were identified. These questions were then prioritised into high (n = 60) and low (n = 69) importance by the stakeholders involved in question development. Since 2007, 58 263 abstracts have been screened, 3 731 full text articles have been reviewed and 1 644 relevant neurotrauma publications have been mapped, covering fifty-three high priority questions. GEM Initiative evidence maps have a broad range of potential end-users including funding agencies, researchers and clinicians. Evidence mapping is at least as resource-intensive as systematic reviewing. The GEM Initiative has made advancements in evidence mapping, most notably in the area of question development and prioritisation. Evidence mapping complements other review methods for describing existing research, informing future research efforts, and addressing evidence gaps.
Coordinating Multi-Rover Systems: Evaluation Functions for Dynamic and Noisy Environments
NASA Technical Reports Server (NTRS)
Turner, Kagan; Agogino, Adrian
2005-01-01
This paper addresses the evolution of control strategies for a collective: a set of entities that collectively strives to maximize a global evaluation function that rates the performance of the full system. Directly addressing such problems by having a population of collectives and applying the evolutionary algorithm to that population is appealing, but the search space is prohibitively large in most cases. Instead, we focus on evolving control policies for each member of the collective. The fundamental issue in this approach is how to create an evaluation function for each member of the collective that is both aligned with the global evaluation function and is sensitive to the fitness changes of the member, while relatively insensitive to the fitness changes of other members. We show how to construct evaluation functions in dynamic, noisy and communication-limited collective environments. On a rover coordination problem, a control policy evolved using aligned and member-sensitive evaluations outperfoms global evaluation methods by up to 400%. More notably, in the presence of a larger number of rovers or rovers with noisy and communication limited sensors, the proposed method outperforms global evaluation by a higher percentage than in noise-free conditions with a small number of rovers.
GMDD: a database of GMO detection methods.
Dong, Wei; Yang, Litao; Shen, Kailin; Kim, Banghyun; Kleter, Gijs A; Marvin, Hans J P; Guo, Rong; Liang, Wanqi; Zhang, Dabing
2008-06-04
Since more than one hundred events of genetically modified organisms (GMOs) have been developed and approved for commercialization in global area, the GMO analysis methods are essential for the enforcement of GMO labelling regulations. Protein and nucleic acid-based detection techniques have been developed and utilized for GMOs identification and quantification. However, the information for harmonization and standardization of GMO analysis methods at global level is needed. GMO Detection method Database (GMDD) has collected almost all the previous developed and reported GMOs detection methods, which have been grouped by different strategies (screen-, gene-, construct-, and event-specific), and also provide a user-friendly search service of the detection methods by GMO event name, exogenous gene, or protein information, etc. In this database, users can obtain the sequences of exogenous integration, which will facilitate PCR primers and probes design. Also the information on endogenous genes, certified reference materials, reference molecules, and the validation status of developed methods is included in this database. Furthermore, registered users can also submit new detection methods and sequences to this database, and the newly submitted information will be released soon after being checked. GMDD contains comprehensive information of GMO detection methods. The database will make the GMOs analysis much easier.
Guidelines on the irritable bowel syndrome: mechanisms and practical management
Spiller, R; Aziz, Q; Creed, F; Emmanuel, A; Houghton, L; Hungin, P; Jones, R; Kumar, D; Rubin, G; Trudgill, N; Whorwell, P
2007-01-01
Background IBS affects 5–11% of the population of most countries. Prevalence peaks in the third and fourth decades, with a female predominance. Aim To provide a guide for the assessment and management of adult patients with irritable bowel syndrome. Methods Members of the Clinical Services Committee of The British Society of Gastroenterology were allocated particular areas to produce review documents. Literature searching included systematic searches using electronic databases such as Pubmed, EMBASE, MEDLINE, Web of Science, and Cochrane databases and extensive personal reference databases. Results Patients can usefully be classified by predominant bowel habit. Few investigations are needed except when diarrhoea is a prominent feature. Alarm features may warrant further investigation. Adverse psychological features and somatisation are often present. Ascertaining the patients' concerns and explaining symptoms in simple terms improves outcome. IBS is a heterogeneous condition with a range of treatments, each of which benefits a small proportion of patients. Treatment of associated anxiety and depression often improves bowel and other symptoms. Randomised placebo controlled trials show benefit as follows: cognitive behavioural therapy and psychodynamic interpersonal therapy improve coping; hypnotherapy benefits global symptoms in otherwise refractory patients; antispasmodics and tricyclic antidepressants improve pain; ispaghula improves pain and bowel habit; 5‐HT3 antagonists improve global symptoms, diarrhoea, and pain but may rarely cause unexplained colitis; 5‐HT4 agonists improve global symptoms, constipation, and bloating; selective serotonin reuptake inhibitors improve global symptoms. Conclusions Better ways of identifying which patients will respond to specific treatments are urgently needed. PMID:17488783
A scoping review of malaria forecasting: past work and future directions
Zinszer, Kate; Verma, Aman D; Charland, Katia; Brewer, Timothy F; Brownstein, John S; Sun, Zhuoyu; Buckeridge, David L
2012-01-01
Objectives There is a growing body of literature on malaria forecasting methods and the objective of our review is to identify and assess methods, including predictors, used to forecast malaria. Design Scoping review. Two independent reviewers searched information sources, assessed studies for inclusion and extracted data from each study. Information sources Search strategies were developed and the following databases were searched: CAB Abstracts, EMBASE, Global Health, MEDLINE, ProQuest Dissertations & Theses and Web of Science. Key journals and websites were also manually searched. Eligibility criteria for included studies We included studies that forecasted incidence, prevalence or epidemics of malaria over time. A description of the forecasting model and an assessment of the forecast accuracy of the model were requirements for inclusion. Studies were restricted to human populations and to autochthonous transmission settings. Results We identified 29 different studies that met our inclusion criteria for this review. The forecasting approaches included statistical modelling, mathematical modelling and machine learning methods. Climate-related predictors were used consistently in forecasting models, with the most common predictors being rainfall, relative humidity, temperature and the normalised difference vegetation index. Model evaluation was typically based on a reserved portion of data and accuracy was measured in a variety of ways including mean-squared error and correlation coefficients. We could not compare the forecast accuracy of models from the different studies as the evaluation measures differed across the studies. Conclusions Applying different forecasting methods to the same data, exploring the predictive ability of non-environmental variables, including transmission reducing interventions and using common forecast accuracy measures will allow malaria researchers to compare and improve models and methods, which should improve the quality of malaria forecasting. PMID:23180505
Measuring Search Efficiency in Complex Visual Search Tasks: Global and Local Clutter
ERIC Educational Resources Information Center
Beck, Melissa R.; Lohrenz, Maura C.; Trafton, J. Gregory
2010-01-01
Set size and crowding affect search efficiency by limiting attention for recognition and attention against competition; however, these factors can be difficult to quantify in complex search tasks. The current experiments use a quantitative measure of the amount and variability of visual information (i.e., clutter) in highly complex stimuli (i.e.,…
Research of converter transformer fault diagnosis based on improved PSO-BP algorithm
NASA Astrophysics Data System (ADS)
Long, Qi; Guo, Shuyong; Li, Qing; Sun, Yong; Li, Yi; Fan, Youping
2017-09-01
To overcome those disadvantages that BP (Back Propagation) neural network and conventional Particle Swarm Optimization (PSO) converge at the global best particle repeatedly in early stage and is easy trapped in local optima and with low diagnosis accuracy when being applied in converter transformer fault diagnosis, we come up with the improved PSO-BP neural network to improve the accuracy rate. This algorithm improves the inertia weight Equation by using the attenuation strategy based on concave function to avoid the premature convergence of PSO algorithm and Time-Varying Acceleration Coefficient (TVAC) strategy was adopted to balance the local search and global search ability. At last the simulation results prove that the proposed approach has a better ability in optimizing BP neural network in terms of network output error, global searching performance and diagnosis accuracy.
Optimal correction and design parameter search by modern methods of rigorous global optimization
NASA Astrophysics Data System (ADS)
Makino, K.; Berz, M.
2011-07-01
Frequently the design of schemes for correction of aberrations or the determination of possible operating ranges for beamlines and cells in synchrotrons exhibit multitudes of possibilities for their correction, usually appearing in disconnected regions of parameter space which cannot be directly qualified by analytical means. In such cases, frequently an abundance of optimization runs are carried out, each of which determines a local minimum depending on the specific chosen initial conditions. Practical solutions are then obtained through an often extended interplay of experienced manual adjustment of certain suitable parameters and local searches by varying other parameters. However, in a formal sense this problem can be viewed as a global optimization problem, i.e. the determination of all solutions within a certain range of parameters that lead to a specific optimum. For example, it may be of interest to find all possible settings of multiple quadrupoles that can achieve imaging; or to find ahead of time all possible settings that achieve a particular tune; or to find all possible manners to adjust nonlinear parameters to achieve correction of high order aberrations. These tasks can easily be phrased in terms of such an optimization problem; but while mathematically this formulation is often straightforward, it has been common belief that it is of limited practical value since the resulting optimization problem cannot usually be solved. However, recent significant advances in modern methods of rigorous global optimization make these methods feasible for optics design for the first time. The key ideas of the method lie in an interplay of rigorous local underestimators of the objective functions, and by using the underestimators to rigorously iteratively eliminate regions that lie above already known upper bounds of the minima, in what is commonly known as a branch-and-bound approach. Recent enhancements of the Differential Algebraic methods used in particle optics for the computation of aberrations allow the determination of particularly sharp underestimators for large regions. As a consequence, the subsequent progressive pruning of the allowed search space as part of the optimization progresses is carried out particularly effectively. The end result is the rigorous determination of the single or multiple optimal solutions of the parameter optimization, regardless of their location, their number, and the starting values of optimization. The methods are particularly powerful if executed in interplay with genetic optimizers generating their new populations within the currently active unpruned space. Their current best guess provides rigorous upper bounds of the minima, which can then beneficially be used for better pruning. Examples of the method and its performance will be presented, including the determination of all operating points of desired tunes or chromaticities, etc. in storage ring lattices.
Autonomous Modelling of X-ray Spectra Using Robust Global Optimization Methods
NASA Astrophysics Data System (ADS)
Rogers, Adam; Safi-Harb, Samar; Fiege, Jason
2015-08-01
The standard approach to model fitting in X-ray astronomy is by means of local optimization methods. However, these local optimizers suffer from a number of problems, such as a tendency for the fit parameters to become trapped in local minima, and can require an involved process of detailed user intervention to guide them through the optimization process. In this work we introduce a general GUI-driven global optimization method for fitting models to X-ray data, written in MATLAB, which searches for optimal models with minimal user interaction. We directly interface with the commonly used XSPEC libraries to access the full complement of pre-existing spectral models that describe a wide range of physics appropriate for modelling astrophysical sources, including supernova remnants and compact objects. Our algorithm is powered by the Ferret genetic algorithm and Locust particle swarm optimizer from the Qubist Global Optimization Toolbox, which are robust at finding families of solutions and identifying degeneracies. This technique will be particularly instrumental for multi-parameter models and high-fidelity data. In this presentation, we provide details of the code and use our techniques to analyze X-ray data obtained from a variety of astrophysical sources.
Seismic waveform inversion best practices: regional, global and exploration test cases
NASA Astrophysics Data System (ADS)
Modrak, Ryan; Tromp, Jeroen
2016-09-01
Reaching the global minimum of a waveform misfit function requires careful choices about the nonlinear optimization, preconditioning and regularization methods underlying an inversion. Because waveform inversion problems are susceptible to erratic convergence associated with strong nonlinearity, one or two test cases are not enough to reliably inform such decisions. We identify best practices, instead, using four seismic near-surface problems, one regional problem and two global problems. To make meaningful quantitative comparisons between methods, we carry out hundreds of inversions, varying one aspect of the implementation at a time. Comparing nonlinear optimization algorithms, we find that limited-memory BFGS provides computational savings over nonlinear conjugate gradient methods in a wide range of test cases. Comparing preconditioners, we show that a new diagonal scaling derived from the adjoint of the forward operator provides better performance than two conventional preconditioning schemes. Comparing regularization strategies, we find that projection, convolution, Tikhonov regularization and total variation regularization are effective in different contexts. Besides questions of one strategy or another, reliability and efficiency in waveform inversion depend on close numerical attention and care. Implementation details involving the line search and restart conditions have a strong effect on computational cost, regardless of the chosen nonlinear optimization algorithm.
Mechanisms of Age-Related Decline in Memory Search Across the Adult Life Span
Hills, Thomas T.; Mata, Rui; Wilke, Andreas; Samanez-Larkin, Gregory R.
2013-01-01
Three alternative mechanisms for age-related decline in memory search have been proposed, which result from either reduced processing speed (global slowing hypothesis), overpersistence on categories (cluster-switching hypothesis), or the inability to maintain focus on local cues related to a decline in working memory (cue-maintenance hypothesis). We investigated these 3 hypotheses by formally modeling the semantic recall patterns of 185 adults between 27 to 99 years of age in the animal fluency task (Thurstone, 1938). The results indicate that people switch between global frequency-based retrieval cues and local item-based retrieval cues to navigate their semantic memory. Contrary to the global slowing hypothesis that predicts no qualitative differences in dynamic search processes and the cluster-switching hypothesis that predicts reduced switching between retrieval cues, the results indicate that as people age, they tend to switch more often between local and global cues per item recalled, supporting the cue-maintenance hypothesis. Additional support for the cue-maintenance hypothesis is provided by a negative correlation between switching and digit span scores and between switching and total items recalled, which suggests that cognitive control may be involved in cue maintenance and the effective search of memory. Overall, the results are consistent with age-related decline in memory search being a consequence of reduced cognitive control, consistent with models suggesting that working memory is related to goal perseveration and the ability to inhibit distracting information. PMID:23586941
Scheres, L J J; Lijfering, W M; Middeldorp, S; Cannegieter, S C
2016-12-01
Essentials In 2014, World Thrombosis Day (WTD) was initiated to increase global awareness of thrombosis. Google Trends can be used freely to monitor digital information seeking behavior. We used Google Trends data to assess the impact of WTD on internet searches on venous thrombosis. The WTD period was associated with more searches on thrombosis compared to control periods. Background World Thrombosis Day (WTD) was launched in 2014 and is to be held every year to increase global awareness of venous thrombosis. Measuring the impact of health awareness days is challenging; however, use of internet-based data seems promising. Methods Google Trends data were used to quantify digital searches for 'venous thrombosis' worldwide and 'trombose' in the Netherlands. The relative search volume (RSV), which is the proportion of the term of interest amongst all Google searches for a specific region and timeframe was used. Mean differences for 4 weeks surrounding WTD (period of interest) and the remaining weeks of the year (control period) were estimated with 95% confidence intervals (95% CI). This was done for 2014, 2015 and 2009-2013 (control years). Results and discussion Mean differences in RSV for worldwide searches were 2.9 (95% CI, -8.2, 14.1) in 2014 and 10.5 (95% CI, 0.4, 20.5) in 2015. These figures were 15.3 (95% CI, 4.7, 25.8) and 15.9 (95% CI, 7.8, 24.1) for the Netherlands, respectively. Relatively, this corresponds to an increase in RSV of 3.9% and 13.9% for 2014 and 2015 worldwide and a 21.9% and 23.3% increase for 2014 and 2015 in the Netherlands. There was one control year with an increase in RSV in the WTD period. Conclusion In 2014 and 2015 WTD was associated with an increase in digital information seeking on venous thrombosis worldwide. This association was more pronounced in 2015 than in 2014. © 2016 International Society on Thrombosis and Haemostasis.
Moy, Kyle; Li, Weiyu; Tran, Huu Phuoc; Simonis, Valerie; Story, Evan; Brandon, Christopher; Furst, Jacob; Raicu, Daniela; Kim, Hongkyun
2015-01-01
The nematode Caenorhabditis elegans provides a unique opportunity to interrogate the neural basis of behavior at single neuron resolution. In C. elegans, neural circuits that control behaviors can be formulated based on its complete neural connection map, and easily assessed by applying advanced genetic tools that allow for modulation in the activity of specific neurons. Importantly, C. elegans exhibits several elaborate behaviors that can be empirically quantified and analyzed, thus providing a means to assess the contribution of specific neural circuits to behavioral output. Particularly, locomotory behavior can be recorded and analyzed with computational and mathematical tools. Here, we describe a robust single worm-tracking system, which is based on the open-source Python programming language, and an analysis system, which implements path-related algorithms. Our tracking system was designed to accommodate worms that explore a large area with frequent turns and reversals at high speeds. As a proof of principle, we used our tracker to record the movements of wild-type animals that were freshly removed from abundant bacterial food, and determined how wild-type animals change locomotory behavior over a long period of time. Consistent with previous findings, we observed that wild-type animals show a transition from area-restricted local search to global search over time. Intriguingly, we found that wild-type animals initially exhibit short, random movements interrupted by infrequent long trajectories. This movement pattern often coincides with local/global search behavior, and visually resembles Lévy flight search, a search behavior conserved across species. Our mathematical analysis showed that while most of the animals exhibited Brownian walks, approximately 20% of the animals exhibited Lévy flights, indicating that C. elegans can use Lévy flights for efficient food search. In summary, our tracker and analysis software will help analyze the neural basis of the alteration and transition of C. elegans locomotory behavior in a food-deprived condition. PMID:26713869
Earthquake mechanisms from linear-programming inversion of seismic-wave amplitude ratios
Julian, B.R.; Foulger, G.R.
1996-01-01
The amplitudes of radiated seismic waves contain far more information about earthquake source mechanisms than do first-motion polarities, but amplitudes are severely distorted by the effects of heterogeneity in the Earth. This distortion can be reduced greatly by using the ratios of amplitudes of appropriately chosen seismic phases, rather than simple amplitudes, but existing methods for inverting amplitude ratios are severely nonlinear and require computationally intensive searching methods to ensure that solutions are globally optimal. Searching methods are particularly costly if general (moment tensor) mechanisms are allowed. Efficient linear-programming methods, which do not suffer from these problems, have previously been applied to inverting polarities and wave amplitudes. We extend these methods to amplitude ratios, in which formulation on inequality constraint for an amplitude ratio takes the same mathematical form as a polarity observation. Three-component digital data for an earthquake at the Hengill-Grensdalur geothermal area in southwestern Iceland illustrate the power of the method. Polarities of P, SH, and SV waves, unusually well distributed on the focal sphere, cannot distinguish between diverse mechanisms, including a double couple. Amplitude ratios, on the other hand, clearly rule out the double-couple solution and require a large explosive isotropic component.
Cross, D B; Ashton, N G; Norris, R M; White, H D
1991-04-01
In a trial of streptokinase versus recombinant tissue-type plasminogen activator (rt-PA) for a first myocardial infarction, 270 patients were randomized. Regional left ventricular function was assessed in 214 patients at 3 weeks. The infarct-related artery was the left anterior descending artery in 78 patients, the right coronary artery in 122 and a dominant left circumflex artery in 14. Analysis was by the centerline method with a novel correction for the area of myocardium at risk, whereby the search region was determined by the anatomic distribution of the infarct-related artery. Infarct-artery patency at 3 weeks was 73% in the streptokinase group and 71% in the rt-PA group. Global left ventricular function did not differ between the two groups. Mean chord motion (+/- SD) in the most hypokinetic half of the defined search region was similar in the streptokinase and rt-PA groups (-2.4 +/- 1.5 versus -2.3 +/- 1.3, p = 0.63). There were no differences in hyperkinesia of the noninfarct zone. Compared with conventional centerline analysis, regional wall motion in the defined area at risk was significantly more abnormal. The two methods correlated strongly, however (r = 0.99, p less than 0.0001), and both methods produced similar overall results. Patients with a patent infarct-related artery and those with an occluded artery at the time of catheterization had similar levels of global function (ejection fraction 58 +/- 12% versus 57 +/- 12%, p = 0.58).(ABSTRACT TRUNCATED AT 250 WORDS)
An efficient algorithm for global periodic orbits generation near irregular-shaped asteroids
NASA Astrophysics Data System (ADS)
Shang, Haibin; Wu, Xiaoyu; Ren, Yuan; Shan, Jinjun
2017-07-01
Periodic orbits (POs) play an important role in understanding dynamical behaviors around natural celestial bodies. In this study, an efficient algorithm was presented to generate the global POs around irregular-shaped uniformly rotating asteroids. The algorithm was performed in three steps, namely global search, local refinement, and model continuation. First, a mascon model with a low number of particles and optimized mass distribution was constructed to remodel the exterior gravitational potential of the asteroid. Using this model, a multi-start differential evolution enhanced with a deflection strategy with strong global exploration and bypassing abilities was adopted. This algorithm can be regarded as a search engine to find multiple globally optimal regions in which potential POs were located. This was followed by applying a differential correction to locally refine global search solutions and generate the accurate POs in the mascon model in which an analytical Jacobian matrix was derived to improve convergence. Finally, the concept of numerical model continuation was introduced and used to convert the POs from the mascon model into a high-fidelity polyhedron model by sequentially correcting the initial states. The efficiency of the proposed algorithm was substantiated by computing the global POs around an elongated shoe-shaped asteroid 433 Eros. Various global POs with different topological structures in the configuration space were successfully located. Specifically, the proposed algorithm was generic and could be conveniently extended to explore periodic motions in other gravitational systems.
The neurobiology of addiction: the perspective from magnetic resonance imaging present and future
Nestor, Liam J.
2016-01-01
Abstract Background and Aims Addiction is associated with severe economic and social consequences and personal tragedies, the scientific exploration of which draws upon investigations at the molecular, cellular and systems levels with a wide variety of technologies. Magnetic resonance imaging (MRI) has been key to mapping effects observed at the microscopic and mesoscopic scales. The range of measurements from this apparatus has opened new avenues linking neurobiology to behaviour. This review considers the role of MRI in addiction research, and what future technological improvements might offer. Methods A hermeneutic strategy supplemented by an expansive, systematic search of PubMed, Scopus and Web of Science databases, covering from database inception to October 2015, with a conjunction of search terms relevant to addiction and MRI. Formal meta‐analyses were prioritized. Results Results from methods that probe brain structure and function suggest frontostriatal circuitry disturbances within specific cognitive domains, some of which predict drug relapse and treatment response. New methods of processing imaging data are opening opportunities for understanding the role of cerebral vasculature, a global view of brain communication and the complex topology of the cortical surface and drug action. Future technological advances include increases in MRI field strength, with concomitant improvements in image quality. Conclusions The magnetic resonance imaging literature provides a limited but convergent picture of the neurobiology of addiction as global changes to brain structure and functional disturbances to frontostriatal circuitry, accompanied by changes in anterior white matter. PMID:27452960
NASA Astrophysics Data System (ADS)
Guo, Ning; Yang, Zhichun; Wang, Le; Ouyang, Yan; Zhang, Xinping
2018-05-01
Aiming at providing a precise dynamic structural finite element (FE) model for dynamic strength evaluation in addition to dynamic analysis. A dynamic FE model updating method is presented to correct the uncertain parameters of the FE model of a structure using strain mode shapes and natural frequencies. The strain mode shape, which is sensitive to local changes in structure, is used instead of the displacement mode for enhancing model updating. The coordinate strain modal assurance criterion is developed to evaluate the correlation level at each coordinate over the experimental and the analytical strain mode shapes. Moreover, the natural frequencies which provide the global information of the structure are used to guarantee the accuracy of modal properties of the global model. Then, the weighted summation of the natural frequency residual and the coordinate strain modal assurance criterion residual is used as the objective function in the proposed dynamic FE model updating procedure. The hybrid genetic/pattern-search optimization algorithm is adopted to perform the dynamic FE model updating procedure. Numerical simulation and model updating experiment for a clamped-clamped beam are performed to validate the feasibility and effectiveness of the present method. The results show that the proposed method can be used to update the uncertain parameters with good robustness. And the updated dynamic FE model of the beam structure, which can correctly predict both the natural frequencies and the local dynamic strains, is reliable for the following dynamic analysis and dynamic strength evaluation.
Global Emergency Medicine: A review of the literature from 2017.
Becker, Torben K; Trehan, Indi; Hayward, Alison Schroth; Hexom, Braden J; Kivlehan, Sean M; Lunney, Kevin M; Modi, Payal; Osei-Ampofo, Maxwell; Pousson, Amelia; Cho, Daniel K; Levine, Adam C
2018-05-23
The Global Emergency Medicine Literature Review (GEMLR) conducts an annual search of peer-reviewed and gray literature relevant to global emergency medicine (EM) to identify, review, and disseminate the most important new research in this field to a global audience of academics and clinical practitioners. This year, 17,722 articles written in three languages were identified by our electronic search. These articles were distributed among 20 reviewers for initial screening based on their relevance to the field of global EM. Another two reviewers searched the gray literature, yielding an additional 11 articles. All articles that were deemed appropriate by at least one reviewer and approved by their editor underwent formal scoring of overall quality and importance. Two independent reviewers scored all articles. A total of 848 articles met our inclusion criteria and underwent full review. 63% were categorized as emergency care in resource-limited settings, 23% as disaster and humanitarian response, and 14% as emergency medicine development. 21 articles received scores of 18.5 or higher out of a maximum score 20 and were selected for formal summary and critique. Inter-rater reliability testing between reviewers revealed a Cohen's Kappa of 0.344. In 2017, the total number of articles identified by our search continued to increase. Studies and reviews with a focus on infectious diseases, pediatrics, and trauma represented the majority of top-scoring articles. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.
The Search for Wolf-Rayet Stars in IC10
NASA Astrophysics Data System (ADS)
Tehrani, Katie; Crowther, Paul; Archer, Isabelle
2017-11-01
We present a deep imaging and spectroscopic survey of the Local Group starburst galaxy IC10 using Gemini North/GMOS to unveil the global Wolf-Rayet population. It has previously been suggested that for IC10 to follow the WC/WN versus metallicity dependence seen in other Local Group galaxies, a large WN population must remain undiscovered. Our search revealed 3 new WN stars, and 5 candidates awaiting confirmation, providing little evidence to support this claim. We also compute an updated nebular derived metallicity of log(O/H)+12=8.40 +/- 0.04 for the galaxy using the direct method. Inspection of IC10 WR average line luminosities show these stars are more similar to their LMC, rather than SMC counterparts.
National Centers for Environmental Prediction
Organization Search Enter text Search Navigation Bar End Cap Search EMC Go Branches Global Climate and Weather Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post Model Configuration Collaborators Documentation and Code FAQ Operational Change Log Parallel Experiment
Jawoniyi, Oluwafunmilayo; Gormley, Kevin; McGleenan, Emma; Noble, Helen Rose
2018-03-01
To examine the role of healthcare professionals in the organ donation and transplantation process. Globally, there remains a perennial disequilibrium between organ donation and organ transplantation. Several factors account for this disequilibrium; however, as healthcare professionals are not only strategically positioned as the primary intermediaries between organ donors and transplant recipients, but also professionally situated as the implementers of organ donation and transplantation processes, they are often blamed for the global organ shortage. Mixed-method systematic review using the Preferred Reporting Items for Systematic review and Meta-Analysis Protocols 2015 checklist. Databases were searched including CINAHL, MEDLINE, Web of Science and EMBASE using the search terms "organ donation," "healthcare professionals," "awareness" and "roles" to retrieve relevant publications. Thirteen publications met the inclusion criteria. The global organ shortage is neither contingent upon unavailability of suitable organs nor exclusively dependent upon healthcare professionals. Instead, the existence of disequilibrium between organ donation and transplantation is necessitated by a web of factors. These include the following: healthcare professionals' attitudes towards, and experience of, the organ donation and transplantation process, underpinned by professional education, specialist clinical area and duration of professional practice; conflicts of interests; ethical dilemmas; altruistic values towards organ donation; and varied organ donation legislations in different legal jurisdictions. This review maintains that if this web of factors is to be adequately addressed by healthcare systems in different global and legal jurisdictions, there should be sufficient organs voluntarily donated to meet all transplantation needs. There is a suggestion that healthcare professionals partly account for the global shortage in organ donation, but there is a need to examine how healthcare professionals' roles, knowledge, awareness, skills and competencies might impact upon the organ donation and transplantation process. © 2017 John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
LI, T., II; Wu, P.; Steffen, H.; Wang, H.
2017-12-01
The global ice history model ICE-6G_C was constructed based on the laterally homogeneous earth model VM5a. The combined model of glacial isostatic adjustment (GIA) called ICE-6G_C (VM5a) fits global observations of GIA simultaneously well. However, seismic and geological observations clearly show that the Earth's mantle is laterally heterogeneous. Our aim therefore is to search for the best laterally heterogeneous viscosity models with ICE-6G_C ice history that is able to fit the global relative sea-level (RSL) data, the peak uplift rates (from GNSS) and peak g-dot rates (from the GRACE satellite mission) in Laurentia and Fennoscandia simultaneously. The Coupled Laplace-Finite Element Method is used to compute gravitationally self-consistent sea levels with time dependent coastlines and rotational feedback in addition to changes in deformation, gravity and the state of stress. As a start, the VM5a Earth model is used as the radial background viscosity structure but other radial background viscosity models will also be investigated. Lateral mantle viscosity structure is obtained by the superposition of the radial background viscosity and the lateral viscosity perturbations logarithmically. The latter is inferred from a seismic tomography model using a scaling relationship that takes into account the effects of anharmonicity, anelasticity and non-thermal effects. We will show that several laterally heterogeneous mantle viscosity models can fit the global sea level, GPS and GRACE data better than laterally homogeneous models, provided that the scaling relationship for mantle heterogeneity under northern Europe is allowed to be different from that under Laurentia. In addition, the effects of laterally heterogeneous lithosphere, as inferred from seismic tomography, and the lateral changes in sub-lithospheric properties will also be presented.
Futamura, Masaki; Leshem, Yael A; Thomas, Kim S; Nankervis, Helen; Williams, Hywel C; Simpson, Eric L
2016-02-01
Investigators often use global assessments to provide a snapshot of overall disease severity in dermatologic clinical trials. Although easy to perform, the frequency of use and standardization of global assessments in studies of atopic dermatitis (AD) is unclear. We sought to assess the frequency, definitions, and methods of analysis of Investigator Global Assessment in randomized controlled trials of AD. We conducted a systematic review using all published randomized controlled trials of AD treatments in the Global Resource of Eczema Trials database (2000-2014). We determined the frequency of global scales application and defining features. Among 317 trials identified, 101 trials (32%) used an investigator-performed global assessment as an outcome measure. There was large variability in global assessments between studies in nomenclature, scale size, definitions, outcome description, and analysis. Both static and dynamic scales were identified that ranged from 4- to 7-point scales. North American studies used global assessments more commonly than studies from other countries. The search was restricted to the Global Resource of Eczema Trials database. Global assessments are used frequently in studies of AD, but their complete lack of standardized definitions and implementation preclude any meaningful comparisons between studies, which in turn impedes data synthesis to inform clinical decision-making. Standardization is urgently required. Copyright © 2015. Published by Elsevier Inc.
Global and local "teachable moments": The role of Nobel Prize and national pride.
Baram-Tsabari, Ayelet; Segev, Elad
2018-05-01
This study examined to what extent Nobel Prize announcements and awards trigger global and local searches or "teachable moments" related to the laureates and their discoveries. We examined the longitudinal trends in Google searches for the names and discoveries of Nobel laureates from 2012 to 2017. The findings show that Nobel Prize events clearly trigger more searches for laureates, but also for their respective discoveries. We suggest that fascination with the Nobel prize creates a teachable moment not only for the underlying science, but also about the nature of science. Locality also emerged as playing a significant role in intensifying interest.
Inversion of Surface Wave Phase Velocities for Radial Anisotropy to an Depth of 1200 km
NASA Astrophysics Data System (ADS)
Xing, Z.; Beghein, C.; Yuan, K.
2012-12-01
This study aims to evaluate three dimensional radial anisotropy to an depth of 1200 km. Radial anisotropy describes the difference in velocity between horizontally polarized Rayleigh waves and vertically polarized Love waves. Its presence in the uppermost 200 km mantle has well been documented by different groups, and has been regarded as an indicator of mantle convection which aligns the intrinsically anisotropic minerals, largely olivine, to form large scale anisotropy. However, there is no global agreement on whether anisotropy exists in the region below 200 km. Recent models also associate a fast vertically polarized shear wave with vertical upwelling mantle flow. The data used in this study is the globally isotropic phase velocity models of fundamental and higher mode Love and Rayleigh waves (Visser, 2008). The inclusion of higher mode surface wave phase velocity provides sensitivities to structure at depth that extends to below the transition zone. While the data is the same as used by Visser (2008), a quite different parameterization is applied. All the six parameters - five elastic parameters A, C, F, L, N and density - are now regarded as independent, which rules out possible biased conclusions induced by scaling relation method used in several previous studies to reduce the number of parameters partly due to limited computing resources. The data need to be modified by crustal corrections (Crust2.0) as we want to look at the mantle structure only. We do this by eliminating the perturbation in surface wave phase velocity caused by the difference in crustal structure with respect to the referent model PREM. Sambridge's Neighborhood Algorithm is used to search the parameter space. The introduction of such a direct search technique pales the traditional inversion method, which requires regularization or some unnecessary priori restriction on the model space. On the contrary, the new method will search the full model space, providing probability density function of each anisotropic parameter and the corresponding resolution.
A global optimization algorithm for protein surface alignment
2010-01-01
Background A relevant problem in drug design is the comparison and recognition of protein binding sites. Binding sites recognition is generally based on geometry often combined with physico-chemical properties of the site since the conformation, size and chemical composition of the protein surface are all relevant for the interaction with a specific ligand. Several matching strategies have been designed for the recognition of protein-ligand binding sites and of protein-protein interfaces but the problem cannot be considered solved. Results In this paper we propose a new method for local structural alignment of protein surfaces based on continuous global optimization techniques. Given the three-dimensional structures of two proteins, the method finds the isometric transformation (rotation plus translation) that best superimposes active regions of two structures. We draw our inspiration from the well-known Iterative Closest Point (ICP) method for three-dimensional (3D) shapes registration. Our main contribution is in the adoption of a controlled random search as a more efficient global optimization approach along with a new dissimilarity measure. The reported computational experience and comparison show viability of the proposed approach. Conclusions Our method performs well to detect similarity in binding sites when this in fact exists. In the future we plan to do a more comprehensive evaluation of the method by considering large datasets of non-redundant proteins and applying a clustering technique to the results of all comparisons to classify binding sites. PMID:20920230
Global Search Trends of Oral Problems using Google Trends from 2004 to 2016: An Exploratory Analysis
Patthi, Basavaraj; Singla, Ashish; Gupta, Ritu; Prasad, Monika; Ali, Irfan; Dhama, Kuldeep; Niraj, Lav Kumar
2017-01-01
Introduction Oral diseases are pandemic cause of morbidity with widespread geographic distribution. This technology based era has brought about easy knowledge transfer than traditional dependency on information obtained from family doctors. Hence, harvesting this system of trends can aid in oral disease quantification. Aim To conduct an exploratory analysis of the changes in internet search volumes of oral diseases by using Google Trends© (GT©). Materials and Methods GT© were utilized to provide real world facts based on search terms related to categories, interest by region and interest over time. Time period chosen was from January 2004 to December 2016. Five different search terms were explored and compared based on the highest relative search volumes along with comma separated value files to obtain an insight into highest search traffic. Results The search volume measured over the time span noted the term “Dental caries” to be the most searched in Japan, “Gingivitis” in Jordan, “Oral Cancer” in Taiwan, “No Teeth” in Australia, “HIV symptoms” in Zimbabwe, “Broken Teeth” in United Kingdom, “Cleft palate” in Philippines, “Toothache” in Indonesia and the comparison of top five searched terms provided the “Gingivitis” with highest search volume. Conclusion The results from the present study offers an insight into a competent tool that can analyse and compare oral diseases over time. The trend research platform can be used on emerging diseases and their drift in geographic population with great acumen. This tool can be utilized in forecasting, modulating marketing strategies and planning disability limitation techniques. PMID:29207825
Optimal Foraging in Semantic Memory
ERIC Educational Resources Information Center
Hills, Thomas T.; Jones, Michael N.; Todd, Peter M.
2012-01-01
Do humans search in memory using dynamic local-to-global search strategies similar to those that animals use to forage between patches in space? If so, do their dynamic memory search policies correspond to optimal foraging strategies seen for spatial foraging? Results from a number of fields suggest these possibilities, including the shared…
National Centers for Environmental Prediction
Organization Search Enter text Search Navigation Bar End Cap Search EMC Go Branches Global Climate and Weather Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post Configuration Collaborators Documentation and Code FAQ Operational Change Log Parallel Experiment Change Log
National Centers for Environmental Prediction
Organization Search Enter text Search Navigation Bar End Cap Search EMC Go Branches Global Climate and Weather Modeling Mesoscale Modeling Marine Modeling and Analysis Teams Climate Data Assimilation Ensembles and Post Collaborators Documentation and Code FAQ Operational Change Log Parallel Experiment Change Log Contacts
Tug-of-war between classical and multicenter bonds in H-(Be)n-H species
NASA Astrophysics Data System (ADS)
Lundell, Katie A.; Boldyrev, Alexander I.
2018-05-01
Quantum chemical calculations were performed for beryllium homocatenated compounds [H-(Be)n-H]. Global minimum structures were found using machine searches (Coalescence Kick method) with density functional theory. Chemical bonding analysis was performed with the Adaptive Natural Density Partitioning method. It was found that H-(Be)2-H and H-(Be)3-H clusters are linear with classical two-center two-electron bonds, while for n > 3, three-dimensional structures are more stable with multicenter bonding. Thus, at n = 4, multicenter bonding wins the tug-of-war vs. the classical bonding.
Taming Many-Parameter BSM Models with Bayesian Neural Networks
NASA Astrophysics Data System (ADS)
Kuchera, M. P.; Karbo, A.; Prosper, H. B.; Sanchez, A.; Taylor, J. Z.
2017-09-01
The search for physics Beyond the Standard Model (BSM) is a major focus of large-scale high energy physics experiments. One method is to look for specific deviations from the Standard Model that are predicted by BSM models. In cases where the model has a large number of free parameters, standard search methods become intractable due to computation time. This talk presents results using Bayesian Neural Networks, a supervised machine learning method, to enable the study of higher-dimensional models. The popular phenomenological Minimal Supersymmetric Standard Model was studied as an example of the feasibility and usefulness of this method. Graphics Processing Units (GPUs) are used to expedite the calculations. Cross-section predictions for 13 TeV proton collisions will be presented. My participation in the Conference Experience for Undergraduates (CEU) in 2004-2006 exposed me to the national and global significance of cutting-edge research. At the 2005 CEU, I presented work from the previous summer's SULI internship at Lawrence Berkeley Laboratory, where I learned to program while working on the Majorana Project. That work inspired me to follow a similar research path, which led me to my current work on computational methods applied to BSM physics.
Du, Shouqiang; Chen, Miao
2018-01-01
We consider a kind of nonsmooth optimization problems with [Formula: see text]-norm minimization, which has many applications in compressed sensing, signal reconstruction, and the related engineering problems. Using smoothing approximate techniques, this kind of nonsmooth optimization problem can be transformed into a general unconstrained optimization problem, which can be solved by the proposed smoothing modified three-term conjugate gradient method. The smoothing modified three-term conjugate gradient method is based on Polak-Ribière-Polyak conjugate gradient method. For the Polak-Ribière-Polyak conjugate gradient method has good numerical properties, the proposed method possesses the sufficient descent property without any line searches, and it is also proved to be globally convergent. Finally, the numerical experiments show the efficiency of the proposed method.
Global Health Training in U.S. Graduate Psychiatric Education
Tsai, Alexander; Fricchione, Gregory; Walensky, Rochelle; Ng, Courtney; Bangsberg, David; Kerry, Vanessa
2014-01-01
Objective Global health training opportunities have figured prominently into medical students’ residency program choices across a range of clinical specialties. To date, however, the national scope of global mental health education has not heretofore been systematically assessed. We therefore sought to characterize the distribution of global health training opportunities in U.S. graduate psychiatric education. Methods We examined the web pages of all U.S. psychiatry residency training programs, along with search results from a systematic Google query designed to identify global health training opportunities. Results Of the 183 accredited U.S. psychiatry residency programs, we identified 17 programs (9.3%) offering 28 global health training opportunities in 64 countries. Ten psychiatry residency programs offered their residents opportunities to participate in one or more elective-based rotations, eight offered research activities, and six offered extended field-based training. Most global health training opportunities occurred within the context of externally administered, institution-wide initiatives generally available to residents from a range of clinical specialties, rather than within internally administered departmental initiatives specifically tailored for psychiatry residents. Conclusions There are relatively few global health training opportunities in U.S. graduate psychiatric education. These activities have a clear role in enhancing mastery of Accreditation Council for Graduate Medical Education core competencies, but important challenges related to program funding and evaluation remain. PMID:24664609
Accelerating atomic structure search with cluster regularization
NASA Astrophysics Data System (ADS)
Sørensen, K. H.; Jørgensen, M. S.; Bruix, A.; Hammer, B.
2018-06-01
We present a method for accelerating the global structure optimization of atomic compounds. The method is demonstrated to speed up the finding of the anatase TiO2(001)-(1 × 4) surface reconstruction within a density functional tight-binding theory framework using an evolutionary algorithm. As a key element of the method, we use unsupervised machine learning techniques to categorize atoms present in a diverse set of partially disordered surface structures into clusters of atoms having similar local atomic environments. Analysis of more than 1000 different structures shows that the total energy of the structures correlates with the summed distances of the atomic environments to their respective cluster centers in feature space, where the sum runs over all atoms in each structure. Our method is formulated as a gradient based minimization of this summed cluster distance for a given structure and alternates with a standard gradient based energy minimization. While the latter minimization ensures local relaxation within a given energy basin, the former enables escapes from meta-stable basins and hence increases the overall performance of the global optimization.
Guo, Y C; Wang, H; Wu, H P; Zhang, M Q
2015-12-21
Aimed to address the defects of the large mean square error (MSE), and the slow convergence speed in equalizing the multi-modulus signals of the constant modulus algorithm (CMA), a multi-modulus algorithm (MMA) based on global artificial fish swarm (GAFS) intelligent optimization of DNA encoding sequences (GAFS-DNA-MMA) was proposed. To improve the convergence rate and reduce the MSE, this proposed algorithm adopted an encoding method based on DNA nucleotide chains to provide a possible solution to the problem. Furthermore, the GAFS algorithm, with its fast convergence and global search ability, was used to find the best sequence. The real and imaginary parts of the initial optimal weight vector of MMA were obtained through DNA coding of the best sequence. The simulation results show that the proposed algorithm has a faster convergence speed and smaller MSE in comparison with the CMA, the MMA, and the AFS-DNA-MMA.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Blumenhagen, Ralph; /Munich, Max Planck Inst.; Grimm, Thomas W.
2010-08-26
We construct global F-theory GUT models on del Pezzo surfaces in compact Calabi-Yau fourfolds realized as complete intersections of two hypersurface constraints. The intersections of the GUT brane and the flavour branes as well as the gauge flux are described by the spectral cover construction. We consider a split S[U(4) x U(1){sub X}] spectral cover, which allows for the phenomenologically relevant Yukawa couplings and GUT breaking to the MSSM via hypercharge flux while preventing dimension-4 proton decay. General expressions for the massless spectrum, consistency conditions and a new method for the computation of curvature-induced tadpoles are presented. We also providemore » a geometric toolkit for further model searches in the framework of toric geometry. Finally, an explicit global model with three chiral generations and all required Yukawa couplings is defined on a Calabi-Yau fourfold which is fibered over the del Pezzo transition of the Fano threefold P{sup 4}.« less
NASA Astrophysics Data System (ADS)
Paasche, H.; Tronicke, J.
2012-04-01
In many near surface geophysical applications multiple tomographic data sets are routinely acquired to explore subsurface structures and parameters. Linking the model generation process of multi-method geophysical data sets can significantly reduce ambiguities in geophysical data analysis and model interpretation. Most geophysical inversion approaches rely on local search optimization methods used to find an optimal model in the vicinity of a user-given starting model. The final solution may critically depend on the initial model. Alternatively, global optimization (GO) methods have been used to invert geophysical data. They explore the solution space in more detail and determine the optimal model independently from the starting model. Additionally, they can be used to find sets of optimal models allowing a further analysis of model parameter uncertainties. Here we employ particle swarm optimization (PSO) to realize the global optimization of tomographic data. PSO is an emergent methods based on swarm intelligence characterized by fast and robust convergence towards optimal solutions. The fundamental principle of PSO is inspired by nature, since the algorithm mimics the behavior of a flock of birds searching food in a search space. In PSO, a number of particles cruise a multi-dimensional solution space striving to find optimal model solutions explaining the acquired data. The particles communicate their positions and success and direct their movement according to the position of the currently most successful particle of the swarm. The success of a particle, i.e. the quality of the currently found model by a particle, must be uniquely quantifiable to identify the swarm leader. When jointly inverting disparate data sets, the optimization solution has to satisfy multiple optimization objectives, at least one for each data set. Unique determination of the most successful particle currently leading the swarm is not possible. Instead, only statements about the Pareto optimality of the found solutions can be made. Identification of the leading particle traditionally requires a costly combination of ranking and niching techniques. In our approach, we use a decision rule under uncertainty to identify the currently leading particle of the swarm. In doing so, we consider the different objectives of our optimization problem as competing agents with partially conflicting interests. Analysis of the maximin fitness function allows for robust and cheap identification of the currently leading particle. The final optimization result comprises a set of possible models spread along the Pareto front. For convex Pareto fronts, solution density is expected to be maximal in the region ideally compromising all objectives, i.e. the region of highest curvature.
Global Emergency Medicine: A Review of the Literature From 2016.
Becker, Torben K; Hansoti, Bhakti; Bartels, Susan; Hayward, Alison Schroth; Hexom, Braden J; Lunney, Kevin M; Marsh, Regan H; Osei-Ampofo, Maxwell; Trehan, Indi; Chang, Julia; Levine, Adam C
2017-09-01
The Global Emergency Medicine Literature Review (GEMLR) conducts an annual search of peer-reviewed and gray literature relevant to global emergency medicine (EM) to identify, review, and disseminate the most important new research in this field to a global audience of academics and clinical practitioners. This year 13,890 articles written in four languages were identified by our search. These articles were distributed among 20 reviewers for initial screening based on their relevance to the field of global EM. An additional two reviewers searched the gray literature. All articles that were deemed appropriate by at least one reviewer and approved by their editor underwent formal scoring of overall quality and importance. Two independent reviewers scored all articles. A total of 716 articles met our inclusion criteria and underwent full review. Fifty-nine percent were categorized as emergency care in resource-limited settings, 17% as EM development, and 24% as disaster and humanitarian response. Nineteen articles received scores of 18.5 or higher out of a maximum score of 20 and were selected for formal summary and critique. Inter-rater reliability testing between reviewers revealed Cohen's kappa of 0.441. In 2016, the total number of articles identified by our search continued to increase. The proportion of articles in each of the three categories remained stable. Studies and reviews with a focus on infectious diseases, pediatrics, and the use of ultrasound in resource-limited settings represented the majority of articles selected for final review. © 2017 The Authors. Academic Emergency Medicine published by Wiley Periodicals, Inc. on behalf of the Society for Academic Emergency Medicine (SAEM).
Davey, Sanjeev; Davey, Anuradha
2014-12-01
There is a considerable debate on addiction and abuse to Smartphone among adolescents and its consequent impact on their health; not only in a global context, but also specifically in the Indian population; considering that Smartphone's, globally occupy more than 50% of mobile phones market and more precise quantification of the associated problems is important to facilitate understanding in this field. As per PRISMA (2009) guidelines, extensive search of various studies in any form from a global scale to the more narrow Indian context using two key search words: "Smartphone's addiction" and "Indian adolescents" was done using websites of EMBASE, MEDLINE, PubMed, Global Health, Psyc-INFO, Biomed-Central, Web of Science, Cochrane Library, world library - World-Cat, Indian libraries such as National Medical Library of India from 1 January, 1995 to March 31, 2014 first for systematic-review. Finally, meta-analysis on only Indian studies was done using Med-Calc online software capable of doing meta-analysis of proportions. A total of 45 articles were considered in systematic-review from whole world; later on 6 studies out of these 45 related to Smartphone's addiction in India were extracted to perform meta-analysis, in which total 1304 participants (range: 165-335) were enrolled. The smartphone addiction magnitude in India ranged from 39% to 44% as per fixed effects calculated (P < 0.0001). Smartphone addiction among Indian teens can not only damage interpersonal skills, but also it can lead to significant negative health risks and harmful psychological effects on Indian adolescents.
Davey, Sanjeev; Davey, Anuradha
2014-01-01
There is a considerable debate on addiction and abuse to Smartphone among adolescents and its consequent impact on their health; not only in a global context, but also specifically in the Indian population; considering that Smartphone's, globally occupy more than 50% of mobile phones market and more precise quantification of the associated problems is important to facilitate understanding in this field. As per PRISMA (2009) guidelines, extensive search of various studies in any form from a global scale to the more narrow Indian context using two key search words: “Smartphone's addiction” and “Indian adolescents” was done using websites of EMBASE, MEDLINE, PubMed, Global Health, Psyc-INFO, Biomed-Central, Web of Science, Cochrane Library, world library - World-Cat, Indian libraries such as National Medical Library of India from 1 January, 1995 to March 31, 2014 first for systematic-review. Finally, meta-analysis on only Indian studies was done using Med-Calc online software capable of doing meta-analysis of proportions. A total of 45 articles were considered in systematic-review from whole world; later on 6 studies out of these 45 related to Smartphone's addiction in India were extracted to perform meta-analysis, in which total 1304 participants (range: 165-335) were enrolled. The smartphone addiction magnitude in India ranged from 39% to 44% as per fixed effects calculated (P < 0.0001). Smartphone addiction among Indian teens can not only damage interpersonal skills, but also it can lead to significant negative health risks and harmful psychological effects on Indian adolescents. PMID:25709785
A Meta-Data Driven Approach to Searching for Educational Resources in a Global Context.
ERIC Educational Resources Information Center
Wade, Vincent P.; Doherty, Paul
This paper presents the design of an Internet-enabled search service that supports educational resource discovery within an educational brokerage service. More specifically, it presents the design and implementation of a metadata-driven approach to implementing the distributed search and retrieval of Internet-based educational resources and…
NASA Astrophysics Data System (ADS)
Park, Sang-Gon; Jeong, Dong-Seok
2000-12-01
In this paper, we propose a fast adaptive diamond search algorithm (FADS) for block matching motion estimation. Many fast motion estimation algorithms reduce the computational complexity by the UESA (Unimodal Error Surface Assumption) where the matching error monotonically increases as the search moves away from the global minimum point. Recently, many fast BMAs (Block Matching Algorithms) make use of the fact that global minimum points in real world video sequences are centered at the position of zero motion. But these BMAs, especially in large motion, are easily trapped into the local minima and result in poor matching accuracy. So, we propose a new motion estimation algorithm using the spatial correlation among the neighboring blocks. We move the search origin according to the motion vectors of the spatially neighboring blocks and their MAEs (Mean Absolute Errors). The computer simulation shows that the proposed algorithm has almost the same computational complexity with DS (Diamond Search), but enhances PSNR. Moreover, the proposed algorithm gives almost the same PSNR as that of FS (Full Search), even for the large motion with half the computational load.
GMDD: a database of GMO detection methods
Dong, Wei; Yang, Litao; Shen, Kailin; Kim, Banghyun; Kleter, Gijs A; Marvin, Hans JP; Guo, Rong; Liang, Wanqi; Zhang, Dabing
2008-01-01
Background Since more than one hundred events of genetically modified organisms (GMOs) have been developed and approved for commercialization in global area, the GMO analysis methods are essential for the enforcement of GMO labelling regulations. Protein and nucleic acid-based detection techniques have been developed and utilized for GMOs identification and quantification. However, the information for harmonization and standardization of GMO analysis methods at global level is needed. Results GMO Detection method Database (GMDD) has collected almost all the previous developed and reported GMOs detection methods, which have been grouped by different strategies (screen-, gene-, construct-, and event-specific), and also provide a user-friendly search service of the detection methods by GMO event name, exogenous gene, or protein information, etc. In this database, users can obtain the sequences of exogenous integration, which will facilitate PCR primers and probes design. Also the information on endogenous genes, certified reference materials, reference molecules, and the validation status of developed methods is included in this database. Furthermore, registered users can also submit new detection methods and sequences to this database, and the newly submitted information will be released soon after being checked. Conclusion GMDD contains comprehensive information of GMO detection methods. The database will make the GMOs analysis much easier. PMID:18522755
Stationkeeping of Lissajous Trajectories in the Earth-Moon System with Applications to ARTEMIS
NASA Technical Reports Server (NTRS)
Folta, D. C.; Pavlak, T. A.; Howell, K. C.; Woodard, M. A.; Woodfork, D. W.
2010-01-01
In the last few decades, several missions have successfully exploited trajectories near the.Sun-Earth L1 and L2 libration points. Recently, the collinear libration points in the Earth-Moon system have emerged as locations with immediate application. Most libration point orbits, in any system, are inherently unstable. and must be controlled. To this end, several stationkeeping strategies are considered for application to ARTEMIS. Two approaches are examined to investigate the stationkeeping problem in this regime and the specific options. available for ARTEMIS given the mission and vehicle constraints. (I) A baseline orbit-targeting approach controls the vehicle to remain near a nominal trajectory; a related global optimum search method searches all possible maneuver angles to determine an optimal angle and magnitude; and (2) an orbit continuation method, with various formulations determines maneuver locations and minimizes costs. Initial results indicate that consistent stationkeeping costs can be achieved with both approaches and the costs are reasonable. These methods are then applied to Lissajous trajectories representing a baseline ARTEMIS libration orbit trajectory.
Herrera, Samantha; Enuameh, Yeetey; Adjei, George; Ae-Ngibise, Kenneth Ayuurebobi; Asante, Kwaku Poku; Sankoh, Osman; Owusu-Agyei, Seth; Yé, Yazoume
2017-10-23
Lack of valid and reliable data on malaria deaths continues to be a problem that plagues the global health community. To address this gap, the verbal autopsy (VA) method was developed to ascertain cause of death at the population level. Despite the adoption and wide use of VA, there are many recognized limitations of VA tools and methods, especially for measuring malaria mortality. This study synthesizes the strengths and limitations of existing VA tools and methods for measuring malaria mortality (MM) in low- and middle-income countries through a systematic literature review. The authors searched PubMed, Cochrane Library, Popline, WHOLIS, Google Scholar, and INDEPTH Network Health and Demographic Surveillance System sites' websites from 1 January 1990 to 15 January 2016 for articles and reports on MM measurement through VA. article presented results from a VA study where malaria was a cause of death; article discussed limitations/challenges related to measurement of MM through VA. Two authors independently searched the databases and websites and conducted a synthesis of articles using a standard matrix. The authors identified 828 publications; 88 were included in the final review. Most publications were VA studies; others were systematic reviews discussing VA tools or methods; editorials or commentaries; and studies using VA data to develop MM estimates. The main limitation were low sensitivity and specificity of VA tools for measuring MM. Other limitations included lack of standardized VA tools and methods, lack of a 'true' gold standard to assess accuracy of VA malaria mortality. Existing VA tools and methods for measuring MM have limitations. Given the need for data to measure progress toward the World Health Organization's Global Technical Strategy for Malaria 2016-2030 goals, the malaria community should define strategies for improving MM estimates, including exploring whether VA tools and methods could be further improved. Longer term strategies should focus on improving countries' vital registration systems for more robust and timely cause of death data.
Education for public health in Europe and its global outreach.
Bjegovic-Mikanovic, Vesna; Jovic-Vranes, Aleksandra; Czabanowska, Katarzyna; Otok, Robert
2014-01-01
At the present time, higher education institutions dealing with education for public health in Europe and beyond are faced with a complex and comprehensive task of responding to global health challenges. Literature reviews in public health and global health and exploration of internet presentations of regional and global organisations dealing with education for public health were the main methods employed in the work presented in this paper. Higher academic institutions are searching for appropriate strategies in competences-based education, which will increase the global attractiveness of their academic programmes and courses for continuous professional development. Academic professionals are taking advantage of blended learning and new web technologies. In Europe and beyond they are opening up debates about the scope of public health and global health. Nevertheless, global health is bringing revitalisation of public health education, which is recognised as one of the core components by many other academic institutions involved in global health work. More than ever, higher academic institutions for public health are recognising the importance of institutional partnerships with various organisations and efficient modes of cooperation in regional and global networks. Networking in a global setting is bringing new opportunities, but also opening debates about global harmonisation of competence-based education to achieve functional knowledge, increase mobility of public health professionals, better employability and affordable performance. As public health opportunities and threats are increasingly global, higher education institutions in Europe and in other regions have to look beyond national boundaries and participate in networks for education, research and practice.
Food security in indigenous and peasant populations: a systematic review.
Restrepo-Arango, Marcos; Gutiérrez-Builes, Lina Andrea; Ríos-Osorio, Leonardo Alberto
2018-04-01
Food security and the vulnerability among indigenous and peasant populations has become a topic of interest to public health all around the world, leading to the investigation about measurement, classification and factors that determine it. This systematic review aims to describe the situation of food security in indigenous and peasant communities, and the methods used for evaluation. The literature search was performed on the Pub Med (5), ScienceDirect (221) and Scopus (377) databases searching for publications between 2004 and 2015, a total of 603 items were located with the search engines. At the end of the screening process and after adding the items found in the gray literature, 25 papers were obtained to write the review. In the 11 years evaluated between 2004 and 2015, scientific activity around the theme was poor with just 4.54% of the publications on this subject, but for 2011 the percentage increased to 13 publications, 63%. Various factors that influence the development of food insecurity are climate change, the diversity of agriculture, globalization and market westernization.
Wang, Gai-Ge; Feng, Qingjiang; Zhao, Xiang-Jun
2014-01-01
An effective hybrid cuckoo search algorithm (CS) with improved shuffled frog-leaping algorithm (ISFLA) is put forward for solving 0-1 knapsack problem. First of all, with the framework of SFLA, an improved frog-leap operator is designed with the effect of the global optimal information on the frog leaping and information exchange between frog individuals combined with genetic mutation with a small probability. Subsequently, in order to improve the convergence speed and enhance the exploitation ability, a novel CS model is proposed with considering the specific advantages of Lévy flights and frog-leap operator. Furthermore, the greedy transform method is used to repair the infeasible solution and optimize the feasible solution. Finally, numerical simulations are carried out on six different types of 0-1 knapsack instances, and the comparative results have shown the effectiveness of the proposed algorithm and its ability to achieve good quality solutions, which outperforms the binary cuckoo search, the binary differential evolution, and the genetic algorithm. PMID:25404940
Optimization of High-Dimensional Functions through Hypercube Evaluation
Abiyev, Rahib H.; Tunay, Mustafa
2015-01-01
A novel learning algorithm for solving global numerical optimization problems is proposed. The proposed learning algorithm is intense stochastic search method which is based on evaluation and optimization of a hypercube and is called the hypercube optimization (HO) algorithm. The HO algorithm comprises the initialization and evaluation process, displacement-shrink process, and searching space process. The initialization and evaluation process initializes initial solution and evaluates the solutions in given hypercube. The displacement-shrink process determines displacement and evaluates objective functions using new points, and the search area process determines next hypercube using certain rules and evaluates the new solutions. The algorithms for these processes have been designed and presented in the paper. The designed HO algorithm is tested on specific benchmark functions. The simulations of HO algorithm have been performed for optimization of functions of 1000-, 5000-, or even 10000 dimensions. The comparative simulation results with other approaches demonstrate that the proposed algorithm is a potential candidate for optimization of both low and high dimensional functions. PMID:26339237
Classification of adaptive memetic algorithms: a comparative study.
Ong, Yew-Soon; Lim, Meng-Hiot; Zhu, Ning; Wong, Kok-Wai
2006-02-01
Adaptation of parameters and operators represents one of the recent most important and promising areas of research in evolutionary computations; it is a form of designing self-configuring algorithms that acclimatize to suit the problem in hand. Here, our interests are on a recent breed of hybrid evolutionary algorithms typically known as adaptive memetic algorithms (MAs). One unique feature of adaptive MAs is the choice of local search methods or memes and recent studies have shown that this choice significantly affects the performances of problem searches. In this paper, we present a classification of memes adaptation in adaptive MAs on the basis of the mechanism used and the level of historical knowledge on the memes employed. Then the asymptotic convergence properties of the adaptive MAs considered are analyzed according to the classification. Subsequently, empirical studies on representatives of adaptive MAs for different type-level meme adaptations using continuous benchmark problems indicate that global-level adaptive MAs exhibit better search performances. Finally we conclude with some promising research directions in the area.
Hybrid General Pattern Search and Simulated Annealing for Industrail Production Planning Problems
NASA Astrophysics Data System (ADS)
Vasant, P.; Barsoum, N.
2010-06-01
In this paper, the hybridization of GPS (General Pattern Search) method and SA (Simulated Annealing) incorporated in the optimization process in order to look for the global optimal solution for the fitness function and decision variables as well as minimum computational CPU time. The real strength of SA approach been tested in this case study problem of industrial production planning. This is due to the great advantage of SA for being easily escaping from trapped in local minima by accepting up-hill move through a probabilistic procedure in the final stages of optimization process. Vasant [1] in his Ph. D thesis has provided 16 different techniques of heuristic and meta-heuristic in solving industrial production problems with non-linear cubic objective functions, eight decision variables and 29 constraints. In this paper, fuzzy technological problems have been solved using hybrid techniques of general pattern search and simulated annealing. The simulated and computational results are compared to other various evolutionary techniques.
NASA Astrophysics Data System (ADS)
Lihoreau, Mathieu; Ings, Thomas C.; Chittka, Lars; Reynolds, Andy M.
2016-07-01
Simulated annealing is a powerful stochastic search algorithm for locating a global maximum that is hidden among many poorer local maxima in a search space. It is frequently implemented in computers working on complex optimization problems but until now has not been directly observed in nature as a searching strategy adopted by foraging animals. We analysed high-speed video recordings of the three-dimensional searching flights of bumblebees (Bombus terrestris) made in the presence of large or small artificial flowers within a 0.5 m3 enclosed arena. Analyses of the three-dimensional flight patterns in both conditions reveal signatures of simulated annealing searches. After leaving a flower, bees tend to scan back-and forth past that flower before making prospecting flights (loops), whose length increases over time. The search pattern becomes gradually more expansive and culminates when another rewarding flower is found. Bees then scan back and forth in the vicinity of the newly discovered flower and the process repeats. This looping search pattern, in which flight step lengths are typically power-law distributed, provides a relatively simple yet highly efficient strategy for pollinators such as bees to find best quality resources in complex environments made of multiple ephemeral feeding sites with nutritionally variable rewards.
Search | The University of Virginia
Menu Search The University of Virginia Main menu Life at UVA Start Here Affording UVA Residence Life Logo Life at UVA Academics Arts Athletics Global Health & Medicine Research Schools Libraries Visit
Bradley, Beverly D; Jung, Tiffany; Tandon-Verma, Ananya; Khoury, Bassem; Chan, Timothy C Y; Cheng, Yu-Ling
2017-04-18
Operations research (OR) is a discipline that uses advanced analytical methods (e.g. simulation, optimisation, decision analysis) to better understand complex systems and aid in decision-making. Herein, we present a scoping review of the use of OR to analyse issues in global health, with an emphasis on health equity and research impact. A systematic search of five databases was designed to identify relevant published literature. A global overview of 1099 studies highlights the geographic distribution of OR and common OR methods used. From this collection of literature, a narrative description of the use of OR across four main application areas of global health - health systems and operations, clinical medicine, public health and health innovation - is also presented. The theme of health equity is then explored in detail through a subset of 44 studies. Health equity is a critical element of global health that cuts across all four application areas, and is an issue particularly amenable to analysis through OR. Finally, we present seven select cases of OR analyses that have been implemented or have influenced decision-making in global health policy or practice. Based on these cases, we identify three key drivers for success in bridging the gap between OR and global health policy, namely international collaboration with stakeholders, use of contextually appropriate data, and varied communication outlets for research findings. Such cases, however, represent a very small proportion of the literature found. Poor availability of representative and quality data, and a lack of collaboration between those who develop OR models and stakeholders in the contexts where OR analyses are intended to serve, were found to be common challenges for effective OR modelling in global health.
Validated Smartphone-Based Apps for Ear and Hearing Assessments: A Review
Pallawela, Danuk
2016-01-01
Background An estimated 360 million people have a disabling hearing impairment globally, the vast majority of whom live in low- and middle-income countries (LMICs). Early identification through screening is important to negate the negative effects of untreated hearing impairment. Substantial barriers exist in screening for hearing impairment in LMICs, such as the requirement for skilled hearing health care professionals and prohibitively expensive specialist equipment to measure hearing. These challenges may be overcome through utilization of increasingly available smartphone app technologies for ear and hearing assessments that are easy to use by unskilled professionals. Objective Our objective was to identify and compare available apps for ear and hearing assessments and consider the incorporation of such apps into hearing screening programs Methods In July 2015, the commercial app stores Google Play and Apple App Store were searched to identify apps for ear and hearing assessments. Thereafter, six databases (EMBASE, MEDLINE, Global Health, Web of Science, CINAHL, and mHealth Evidence) were searched to assess which of the apps identified in the commercial review had been validated against gold standard measures. A comparison was made between validated apps. Results App store search queries returned 30 apps that could be used for ear and hearing assessments, the majority of which are for performing audiometry. The literature search identified 11 eligible validity studies that examined 6 different apps. uHear, an app for self-administered audiometry, was validated in the highest number of peer reviewed studies against gold standard pure tone audiometry (n=5). However, the accuracy of uHear varied across these studies. Conclusions Very few of the available apps have been validated in peer-reviewed studies. Of the apps that have been validated, further independent research is required to fully understand their accuracy at detecting ear and hearing conditions. PMID:28582261
Meta-heuristic algorithms as tools for hydrological science
NASA Astrophysics Data System (ADS)
Yoo, Do Guen; Kim, Joong Hoon
2014-12-01
In this paper, meta-heuristic optimization techniques are introduced and their applications to water resources engineering, particularly in hydrological science are introduced. In recent years, meta-heuristic optimization techniques have been introduced that can overcome the problems inherent in iterative simulations. These methods are able to find good solutions and require limited computation time and memory use without requiring complex derivatives. Simulation-based meta-heuristic methods such as Genetic algorithms (GAs) and Harmony Search (HS) have powerful searching abilities, which can occasionally overcome the several drawbacks of traditional mathematical methods. For example, HS algorithms can be conceptualized from a musical performance process and used to achieve better harmony; such optimization algorithms seek a near global optimum determined by the value of an objective function, providing a more robust determination of musical performance than can be achieved through typical aesthetic estimation. In this paper, meta-heuristic algorithms and their applications (focus on GAs and HS) in hydrological science are discussed by subject, including a review of existing literature in the field. Then, recent trends in optimization are presented and a relatively new technique such as Smallest Small World Cellular Harmony Search (SSWCHS) is briefly introduced, with a summary of promising results obtained in previous studies. As a result, previous studies have demonstrated that meta-heuristic algorithms are effective tools for the development of hydrological models and the management of water resources.
Health effects of indebtedness: a systematic review
2014-01-01
Background In the aftermath of the global financial crisis, millions of households have been left with debts that they are unable to manage. Indebtedness may impair the wellbeing of those affected by it for years to come. This systematic review focuses on the long-term consequences of indebtedness on health. Methods The method used in the paper is a systematic review. First, bibliographic databases were searched for peer-reviewed articles. Second, the references and citations of the included articles were searched for additional articles. Results The results from our sample of 33 peer-reviewed studies demonstrate serious health effects related to indebtedness. Individuals with unmet loan payments had suicidal ideation and suffered from depression more often than those without such financial problems. Unpaid financial obligations were also related to poorer subjective health and health-related behaviour. Debt counselling and other programmes to mitigate debt-related stress are needed to alleviate the adverse effects of indebtedness on health. Conclusions The results demonstrate that indebtedness has serious effects on health. PMID:24885280
NASA Astrophysics Data System (ADS)
Rahmani, Kianoosh; Kavousifard, Farzaneh; Abbasi, Alireza
2017-09-01
This article proposes a novel probabilistic Distribution Feeder Reconfiguration (DFR) based method to consider the uncertainty impacts into account with high accuracy. In order to achieve the set aim, different scenarios are generated to demonstrate the degree of uncertainty in the investigated elements which are known as the active and reactive load consumption and the active power generation of the wind power units. Notably, a normal Probability Density Function (PDF) based on the desired accuracy is divided into several class intervals for each uncertain parameter. Besides, the Weiball PDF is utilised for modelling wind generators and taking the variation impacts of the power production in wind generators. The proposed problem is solved based on Fuzzy Adaptive Modified Particle Swarm Optimisation to find the most optimal switching scheme during the Multi-objective DFR. Moreover, this paper holds two suggestions known as new mutation methods to adjust the inertia weight of PSO by the fuzzy rules to enhance its ability in global searching within the entire search space.
Hierarchical Artificial Bee Colony Algorithm for RFID Network Planning Optimization
Ma, Lianbo; Chen, Hanning; Hu, Kunyuan; Zhu, Yunlong
2014-01-01
This paper presents a novel optimization algorithm, namely, hierarchical artificial bee colony optimization, called HABC, to tackle the radio frequency identification network planning (RNP) problem. In the proposed multilevel model, the higher-level species can be aggregated by the subpopulations from lower level. In the bottom level, each subpopulation employing the canonical ABC method searches the part-dimensional optimum in parallel, which can be constructed into a complete solution for the upper level. At the same time, the comprehensive learning method with crossover and mutation operators is applied to enhance the global search ability between species. Experiments are conducted on a set of 10 benchmark optimization problems. The results demonstrate that the proposed HABC obtains remarkable performance on most chosen benchmark functions when compared to several successful swarm intelligence and evolutionary algorithms. Then HABC is used for solving the real-world RNP problem on two instances with different scales. Simulation results show that the proposed algorithm is superior for solving RNP, in terms of optimization accuracy and computation robustness. PMID:24592200
Hierarchical artificial bee colony algorithm for RFID network planning optimization.
Ma, Lianbo; Chen, Hanning; Hu, Kunyuan; Zhu, Yunlong
2014-01-01
This paper presents a novel optimization algorithm, namely, hierarchical artificial bee colony optimization, called HABC, to tackle the radio frequency identification network planning (RNP) problem. In the proposed multilevel model, the higher-level species can be aggregated by the subpopulations from lower level. In the bottom level, each subpopulation employing the canonical ABC method searches the part-dimensional optimum in parallel, which can be constructed into a complete solution for the upper level. At the same time, the comprehensive learning method with crossover and mutation operators is applied to enhance the global search ability between species. Experiments are conducted on a set of 10 benchmark optimization problems. The results demonstrate that the proposed HABC obtains remarkable performance on most chosen benchmark functions when compared to several successful swarm intelligence and evolutionary algorithms. Then HABC is used for solving the real-world RNP problem on two instances with different scales. Simulation results show that the proposed algorithm is superior for solving RNP, in terms of optimization accuracy and computation robustness.
Aiding Design of Wave Energy Converters via Computational Simulations
NASA Astrophysics Data System (ADS)
Jebeli Aqdam, Hejar; Ahmadi, Babak; Raessi, Mehdi; Tootkaboni, Mazdak
2015-11-01
With the increasing interest in renewable energy sources, wave energy converters will continue to gain attention as a viable alternative to current electricity production methods. It is therefore crucial to develop computational tools for the design and analysis of wave energy converters. A successful design requires balance between the design performance and cost. Here an analytical solution is used for the approximate analysis of interactions between a flap-type wave energy converter (WEC) and waves. The method is verified using other flow solvers and experimental test cases. Then the model is used in conjunction with a powerful heuristic optimization engine, Charged System Search (CSS) to explore the WEC design space. CSS is inspired by charged particles behavior. It searches the design space by considering candidate answers as charged particles and moving them based on the Coulomb's laws of electrostatics and Newton's laws of motion to find the global optimum. Finally the impacts of changes in different design parameters on the power takeout of the superior WEC designs are investigated. National Science Foundation, CBET-1236462.
Review: Optimization methods for groundwater modeling and management
NASA Astrophysics Data System (ADS)
Yeh, William W.-G.
2015-09-01
Optimization methods have been used in groundwater modeling as well as for the planning and management of groundwater systems. This paper reviews and evaluates the various optimization methods that have been used for solving the inverse problem of parameter identification (estimation), experimental design, and groundwater planning and management. Various model selection criteria are discussed, as well as criteria used for model discrimination. The inverse problem of parameter identification concerns the optimal determination of model parameters using water-level observations. In general, the optimal experimental design seeks to find sampling strategies for the purpose of estimating the unknown model parameters. A typical objective of optimal conjunctive-use planning of surface water and groundwater is to minimize the operational costs of meeting water demand. The optimization methods include mathematical programming techniques such as linear programming, quadratic programming, dynamic programming, stochastic programming, nonlinear programming, and the global search algorithms such as genetic algorithms, simulated annealing, and tabu search. Emphasis is placed on groundwater flow problems as opposed to contaminant transport problems. A typical two-dimensional groundwater flow problem is used to explain the basic formulations and algorithms that have been used to solve the formulated optimization problems.
Selection of Thermal Worst-Case Orbits via Modified Efficient Global Optimization
NASA Technical Reports Server (NTRS)
Moeller, Timothy M.; Wilhite, Alan W.; Liles, Kaitlin A.
2014-01-01
Efficient Global Optimization (EGO) was used to select orbits with worst-case hot and cold thermal environments for the Stratospheric Aerosol and Gas Experiment (SAGE) III. The SAGE III system thermal model changed substantially since the previous selection of worst-case orbits (which did not use the EGO method), so the selections were revised to ensure the worst cases are being captured. The EGO method consists of first conducting an initial set of parametric runs, generated with a space-filling Design of Experiments (DoE) method, then fitting a surrogate model to the data and searching for points of maximum Expected Improvement (EI) to conduct additional runs. The general EGO method was modified by using a multi-start optimizer to identify multiple new test points at each iteration. This modification facilitates parallel computing and decreases the burden of user interaction when the optimizer code is not integrated with the model. Thermal worst-case orbits for SAGE III were successfully identified and shown by direct comparison to be more severe than those identified in the previous selection. The EGO method is a useful tool for this application and can result in computational savings if the initial Design of Experiments (DoE) is selected appropriately.
Research on particle swarm optimization algorithm based on optimal movement probability
NASA Astrophysics Data System (ADS)
Ma, Jianhong; Zhang, Han; He, Baofeng
2017-01-01
The particle swarm optimization algorithm to improve the control precision, and has great application value training neural network and fuzzy system control fields etc.The traditional particle swarm algorithm is used for the training of feed forward neural networks,the search efficiency is low, and easy to fall into local convergence.An improved particle swarm optimization algorithm is proposed based on error back propagation gradient descent. Particle swarm optimization for Solving Least Squares Problems to meme group, the particles in the fitness ranking, optimization problem of the overall consideration, the error back propagation gradient descent training BP neural network, particle to update the velocity and position according to their individual optimal and global optimization, make the particles more to the social optimal learning and less to its optimal learning, it can avoid the particles fall into local optimum, by using gradient information can accelerate the PSO local search ability, improve the multi beam particle swarm depth zero less trajectory information search efficiency, the realization of improved particle swarm optimization algorithm. Simulation results show that the algorithm in the initial stage of rapid convergence to the global optimal solution can be near to the global optimal solution and keep close to the trend, the algorithm has faster convergence speed and search performance in the same running time, it can improve the convergence speed of the algorithm, especially the later search efficiency.
Saleh, M; Karfoul, A; Kachenoura, A; Senhadji, L; Albera, L
2016-08-01
Improving the execution time and the numerical complexity of the well-known kurtosis-based maximization method, the RobustICA, is investigated in this paper. A Newton-based scheme is proposed and compared to the conventional RobustICA method. A new implementation using the nonlinear Conjugate Gradient one is investigated also. Regarding the Newton approach, an exact computation of the Hessian of the considered cost function is provided. The proposed approaches and the considered implementations inherit the global plane search of the initial RobustICA method for which a better convergence speed for a given direction is still guaranteed. Numerical results on Magnetic Resonance Spectroscopy (MRS) source separation show the efficiency of the proposed approaches notably the quasi-Newton one using the BFGS method.
National Centers for Environmental Prediction
: Influence of convective parameterization on the systematic errors of Climate Forecast System (CFS) model ; Climate Dynamics, 41, 45-61, 2013. Saha, S., S. Pokhrel and H. S. Chaudhari : Influence of Eurasian snow Organization Search Enter text Search Navigation Bar End Cap Search EMC Go Branches Global Climate and Weather
The Globalization Classroom: New Option for Becoming More Human?
ERIC Educational Resources Information Center
Svetelj, Tony
2014-01-01
Within a multi-cultural and multi-religious society, exposed to the challenges of globalization, a traditional understanding of humanism offers insufficient frameworks for an adequate comprehension of human agency, its flourishing and search for meaning. The process of globalization continuously shakes the pedagogical assumptions and principles of…
SF-36 total score as a single measure of health-related quality of life: Scoping review
Lins, Liliane; Carvalho, Fernando Martins
2016-01-01
According to the 36-Item Short Form Health Survey questionnaire developers, a global measure of health-related quality of life such as the “SF-36 Total/Global/Overall Score” cannot be generated from the questionnaire. However, studies keep on reporting such measure. This study aimed to evaluate the frequency and to describe some characteristics of articles reporting the SF-36 Total/Global/Overall Score in the scientific literature. The Preferred Reporting Items for Systematic Reviews and Meta-Analyses method was adapted to a scoping review. We performed searches in PubMed, Web of Science, SCOPUS, BVS, and Cochrane Library databases for articles using such scores. We found 172 articles published between 1997 and 2015; 110 (64.0%) of them were published from 2010 onwards; 30.0% appeared in journals with Impact Factor 3.00 or greater. Overall, 129 (75.0%) out of the 172 studies did not specify the method for calculating the “SF-36 Total Score”; 13 studies did not specify their methods but referred to the SF-36 developers’ studies or others; and 30 articles used different strategies for calculating such score, the most frequent being arithmetic averaging of the eight SF-36 domains scores. We concluded that the “SF-36 Total/Global/Overall Score” has been increasingly reported in the scientific literature. Researchers should be aware of this procedure and of its possible impacts upon human health. PMID:27757230
When being narrow minded is a good thing: locally biased people show stronger contextual cueing.
Bellaera, Lauren; von Mühlenen, Adrian; Watson, Derrick G
2014-01-01
Repeated contexts allow us to find relevant information more easily. Learning such contexts has been proposed to depend upon either global processing of the repeated contexts, or alternatively processing of the local region surrounding the target information. In this study, we measured the extent to which observers were by default biased to process towards a more global or local level. The findings showed that the ability to use context to help guide their search was strongly related to an observer's local/global processing bias. Locally biased people could use context to help improve their search better than globally biased people. The results suggest that the extent to which context can be used depends crucially on the observer's attentional bias and thus also to factors and influences that can change this bias.
Internationalization or globalization of higher education
Rezaei, Habibolah; Yousefi, Alireza; Larijani, Bagher; Dehnavieh, Reza; Rezaei, Nima; Adibi, Peyman
2018-01-01
INTRODUCTION: Studies about globalization and internationalization demonstrate different attitudes in explaining these concepts. Since there is no consensus among Iranian specialists about these concepts, the purpose of this study is to explain the concepts of internationalization and globalization in Iran. MATERIALS AND METHODS: This study is a systematic review done in the first half of 2016. To explain the concept of globalization and internationalization, articles in Scientific Information D atabase, Magiran database, and Google Scholar were searched with the keywords such as globalization, scientific exchange, international cooperation, curriculum exchange, student exchange, faculty exchange, multinational cooperation, transnational cooperation, and collaborative research. Articles, used in this study, were in Persian and were devoted to internationalization and globalization between 2001 and 2016. The criterion of discarding the articles was duplicity. RESULTS: As many as 180 Persian articles were found on this topic. After discarding repetitive articles, 64 remained. Among those, 39 articles mentioned the differences between globalization and internationalization. Definitions of globalization were categorized in four categories, including globalization, globalizing, globalization of higher education, and globalizing of higher education. Definitions about internationalization were categorized in five categories such as internationalization, internationalization of higher education, internationalization of the curriculum, internationalization of curriculum studies, and internationalization of curriculum profession. CONCLUSION: The spectrum of the globalization of higher education moves from dissonance and multipolarization to unification and single polarization of the world. One end of the spectrum, which is unification and single polarization of the world, is interpreted as globalization. The other side of the spectrum, which is dissonance and multipolarization, is interpreted as globalizing. The definition of internalization is the same as that of globalizing. In other words, it is possible to say that internalization is similar to globalizing but different from globalization. PMID:29417068
NASA Astrophysics Data System (ADS)
Yi, Jin; Li, Xinyu; Xiao, Mi; Xu, Junnan; Zhang, Lin
2017-01-01
Engineering design often involves different types of simulation, which results in expensive computational costs. Variable fidelity approximation-based design optimization approaches can realize effective simulation and efficiency optimization of the design space using approximation models with different levels of fidelity and have been widely used in different fields. As the foundations of variable fidelity approximation models, the selection of sample points of variable-fidelity approximation, called nested designs, is essential. In this article a novel nested maximin Latin hypercube design is constructed based on successive local enumeration and a modified novel global harmony search algorithm. In the proposed nested designs, successive local enumeration is employed to select sample points for a low-fidelity model, whereas the modified novel global harmony search algorithm is employed to select sample points for a high-fidelity model. A comparative study with multiple criteria and an engineering application are employed to verify the efficiency of the proposed nested designs approach.
QuickVina: accelerating AutoDock Vina using gradient-based heuristics for global optimization.
Handoko, Stephanus Daniel; Ouyang, Xuchang; Su, Chinh Tran To; Kwoh, Chee Keong; Ong, Yew Soon
2012-01-01
Predicting binding between macromolecule and small molecule is a crucial phase in the field of rational drug design. AutoDock Vina, one of the most widely used docking software released in 2009, uses an empirical scoring function to evaluate the binding affinity between the molecules and employs the iterated local search global optimizer for global optimization, achieving a significantly improved speed and better accuracy of the binding mode prediction compared its predecessor, AutoDock 4. In this paper, we propose further improvement in the local search algorithm of Vina by heuristically preventing some intermediate points from undergoing local search. Our improved version of Vina-dubbed QVina-achieved a maximum acceleration of about 25 times with the average speed-up of 8.34 times compared to the original Vina when tested on a set of 231 protein-ligand complexes while maintaining the optimal scores mostly identical. Using our heuristics, larger number of different ligands can be quickly screened against a given receptor within the same time frame.
An Enhanced Memetic Algorithm for Single-Objective Bilevel Optimization Problems.
Islam, Md Monjurul; Singh, Hemant Kumar; Ray, Tapabrata; Sinha, Ankur
2017-01-01
Bilevel optimization, as the name reflects, deals with optimization at two interconnected hierarchical levels. The aim is to identify the optimum of an upper-level leader problem, subject to the optimality of a lower-level follower problem. Several problems from the domain of engineering, logistics, economics, and transportation have an inherent nested structure which requires them to be modeled as bilevel optimization problems. Increasing size and complexity of such problems has prompted active theoretical and practical interest in the design of efficient algorithms for bilevel optimization. Given the nested nature of bilevel problems, the computational effort (number of function evaluations) required to solve them is often quite high. In this article, we explore the use of a Memetic Algorithm (MA) to solve bilevel optimization problems. While MAs have been quite successful in solving single-level optimization problems, there have been relatively few studies exploring their potential for solving bilevel optimization problems. MAs essentially attempt to combine advantages of global and local search strategies to identify optimum solutions with low computational cost (function evaluations). The approach introduced in this article is a nested Bilevel Memetic Algorithm (BLMA). At both upper and lower levels, either a global or a local search method is used during different phases of the search. The performance of BLMA is presented on twenty-five standard test problems and two real-life applications. The results are compared with other established algorithms to demonstrate the efficacy of the proposed approach.
Global Emergency Medicine: A Review of the Literature From 2015.
Becker, Torben K; Hansoti, Bhakti; Bartels, Susan; Bisanzo, Mark; Jacquet, Gabrielle A; Lunney, Kevin; Marsh, Regan; Osei-Ampofo, Maxwell; Trehan, Indi; Lam, Christopher; Levine, Adam C
2016-10-01
The Global Emergency Medicine Literature Review (GEMLR) conducts an annual search of peer-reviewed and gray literature relevant to global emergency medicine (EM) to identify, review, and disseminate the most important new research in this field to a global audience of academics and clinical practitioners. This year 12,435 articles written in six languages were identified by our search. These articles were distributed among 20 reviewers for initial screening based on their relevance to the field of global EM. An additional two reviewers searched the gray literature. A total of 723 articles were deemed appropriate by at least one reviewer and approved by their editor for formal scoring of overall quality and importance. Two independent reviewers scored all articles. A total of 723 articles met our predetermined inclusion criteria and underwent full review. Sixty percent were categorized as emergency care in resource-limited settings (ECRLS), 17% as EM development (EMD), and 23% as disaster and humanitarian response (DHR). Twenty-four articles received scores of 18.5 or higher out of a maximum score 20 and were selected for formal summary and critique. Inter-rater reliability between reviewers gave an intraclass correlation coefficient of 0.71 (95% confidence interval = 0.66 to 0.75). Studies and reviews with a focus on infectious diseases, trauma, and the diagnosis and treatment of diseases common in resource-limited settings represented the majority of articles selected for final review. In 2015, there were almost twice as many articles found by our search compared to the 2014 review. The number of EMD articles increased, while the number ECRLS articles decreased. The number of DHR articles remained stable. As in prior years, the majority of articles focused on infectious diseases. © 2016 by the Society for Academic Emergency Medicine.
Global search and rescue - A new concept. [orbital digital radar system with passive reflectors
NASA Technical Reports Server (NTRS)
Sivertson, W. E., Jr.
1976-01-01
A new terrestrial search and rescue concept is defined embodying the use of simple passive radiofreqeuncy reflectors in conjunction with a low earth-orbiting, all-weather, synthetic aperture radar to detect, identify, and position locate earth-bound users in distress. Users include ships, aircraft, small boats, explorers, hikers, etc. Airborne radar tests were conducted to evaluate the basic concept. Both X-band and L-band, dual polarization radars were operated simultaneously. Simple, relatively small, corner-reflector targets were successfully imaged and digital data processing approaches were investigated. Study of the basic concept and evaluation of results obtained from aircraft flight tests indicate an all-weather, day or night, global search and rescue system is feasible.
Medial-based deformable models in nonconvex shape-spaces for medical image segmentation.
McIntosh, Chris; Hamarneh, Ghassan
2012-01-01
We explore the application of genetic algorithms (GA) to deformable models through the proposition of a novel method for medical image segmentation that combines GA with nonconvex, localized, medial-based shape statistics. We replace the more typical gradient descent optimizer used in deformable models with GA, and the convex, implicit, global shape statistics with nonconvex, explicit, localized ones. Specifically, we propose GA to reduce typical deformable model weaknesses pertaining to model initialization, pose estimation and local minima, through the simultaneous evolution of a large number of models. Furthermore, we constrain the evolution, and thus reduce the size of the search-space, by using statistically-based deformable models whose deformations are intuitive (stretch, bulge, bend) and are driven in terms of localized principal modes of variation, instead of modes of variation across the entire shape that often fail to capture localized shape changes. Although GA are not guaranteed to achieve the global optima, our method compares favorably to the prevalent optimization techniques, convex/nonconvex gradient-based optimizers and to globally optimal graph-theoretic combinatorial optimization techniques, when applied to the task of corpus callosum segmentation in 50 mid-sagittal brain magnetic resonance images.
Method of steering the gain of a multiple antenna global positioning system receiver
NASA Astrophysics Data System (ADS)
Evans, Alan G.; Hermann, Bruce R.
1992-06-01
A method for steering the gain of a multiple antenna Global Positioning System (GPS) receiver toward a plurality of a GPS satellites simultaneously is provided. The GPS signals of a known wavelength are processed digitally for a particular instant in time. A range difference or propagation delay between each antenna for GPS signals received from each satellite is first resolved. The range difference consists of a fractional wavelength difference and an integer wavelength difference. The fractional wavelength difference is determined by each antenna's tracking loop. The integer wavelength difference is based upon the known wavelength and separation between each antenna with respect to each satellite position. The range difference is then used to digitally delay the GPS signals at each antenna with respect to a reference antenna. The signal at the reference antenna is then summed with the digitally delayed signals to generate a composite antenna gain. The method searches for the correct number of integer wavelengths to maximize the composite gain. The range differences are also used to determine the attitude of the array.
Gao, Yingbin; Kong, Xiangyu; Zhang, Huihui; Hou, Li'an
2017-05-01
Minor component (MC) plays an important role in signal processing and data analysis, so it is a valuable work to develop MC extraction algorithms. Based on the concepts of weighted subspace and optimum theory, a weighted information criterion is proposed for searching the optimum solution of a linear neural network. This information criterion exhibits a unique global minimum attained if and only if the state matrix is composed of the desired MCs of an autocorrelation matrix of an input signal. By using gradient ascent method and recursive least square (RLS) method, two algorithms are developed for multiple MCs extraction. The global convergences of the proposed algorithms are also analyzed by the Lyapunov method. The proposed algorithms can extract the multiple MCs in parallel and has advantage in dealing with high dimension matrices. Since the weighted matrix does not require an accurate value, it facilitates the system design of the proposed algorithms for practical applications. The speed and computation advantages of the proposed algorithms are verified through simulations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Miconi, Thomas; Groomes, Laura; Kreiman, Gabriel
2016-01-01
When searching for an object in a scene, how does the brain decide where to look next? Visual search theories suggest the existence of a global “priority map” that integrates bottom-up visual information with top-down, target-specific signals. We propose a mechanistic model of visual search that is consistent with recent neurophysiological evidence, can localize targets in cluttered images, and predicts single-trial behavior in a search task. This model posits that a high-level retinotopic area selective for shape features receives global, target-specific modulation and implements local normalization through divisive inhibition. The normalization step is critical to prevent highly salient bottom-up features from monopolizing attention. The resulting activity pattern constitues a priority map that tracks the correlation between local input and target features. The maximum of this priority map is selected as the locus of attention. The visual input is then spatially enhanced around the selected location, allowing object-selective visual areas to determine whether the target is present at this location. This model can localize objects both in array images and when objects are pasted in natural scenes. The model can also predict single-trial human fixations, including those in error and target-absent trials, in a search task involving complex objects. PMID:26092221
ERIC Educational Resources Information Center
Williams, Carrick C.; Pollatsek, Alexander; Cave, Kyle R.; Stroud, Michael J.
2009-01-01
In 2 experiments, eye movements were examined during searches in which elements were grouped into four 9-item clusters. The target (a red or blue "T") was known in advance, and each cluster contained different numbers of target-color elements. Rather than color composition of a cluster invariantly guiding the order of search though…
Yang, Albert C.; Huang, Norden E.; Peng, Chung-Kang; Tsai, Shih-Jen
2010-01-01
Background Seasonal depression has generated considerable clinical interest in recent years. Despite a common belief that people in higher latitudes are more vulnerable to low mood during the winter, it has never been demonstrated that human's moods are subject to seasonal change on a global scale. The aim of this study was to investigate large-scale seasonal patterns of depression using Internet search query data as a signature and proxy of human affect. Methodology/Principal Findings Our study was based on a publicly available search engine database, Google Insights for Search, which provides time series data of weekly search trends from January 1, 2004 to June 30, 2009. We applied an empirical mode decomposition method to isolate seasonal components of health-related search trends of depression in 54 geographic areas worldwide. We identified a seasonal trend of depression that was opposite between the northern and southern hemispheres; this trend was significantly correlated with seasonal oscillations of temperature (USA: r = −0.872, p<0.001; Australia: r = −0.656, p<0.001). Based on analyses of search trends over 54 geological locations worldwide, we found that the degree of correlation between searching for depression and temperature was latitude-dependent (northern hemisphere: r = −0.686; p<0.001; southern hemisphere: r = 0.871; p<0.0001). Conclusions/Significance Our findings indicate that Internet searches for depression from people in higher latitudes are more vulnerable to seasonal change, whereas this phenomenon is obscured in tropical areas. This phenomenon exists universally across countries, regardless of language. This study provides novel, Internet-based evidence for the epidemiology of seasonal depression. PMID:21060851
Global Optimization of Low-Thrust Interplanetary Trajectories Subject to Operational Constraints
NASA Technical Reports Server (NTRS)
Englander, Jacob A.; Vavrina, Matthew A.; Hinckley, David
2016-01-01
Low-thrust interplanetary space missions are highly complex and there can be many locally optimal solutions. While several techniques exist to search for globally optimal solutions to low-thrust trajectory design problems, they are typically limited to unconstrained trajectories. The operational design community in turn has largely avoided using such techniques and has primarily focused on accurate constrained local optimization combined with grid searches and intuitive design processes at the expense of efficient exploration of the global design space. This work is an attempt to bridge the gap between the global optimization and operational design communities by presenting a mathematical framework for global optimization of low-thrust trajectories subject to complex constraints including the targeting of planetary landing sites, a solar range constraint to simplify the thermal design of the spacecraft, and a real-world multi-thruster electric propulsion system that must switch thrusters on and off as available power changes over the course of a mission.
A Novel Particle Swarm Optimization Algorithm for Global Optimization
Wang, Chun-Feng; Liu, Kui
2016-01-01
Particle Swarm Optimization (PSO) is a recently developed optimization method, which has attracted interest of researchers in various areas due to its simplicity and effectiveness, and many variants have been proposed. In this paper, a novel Particle Swarm Optimization algorithm is presented, in which the information of the best neighbor of each particle and the best particle of the entire population in the current iteration is considered. Meanwhile, to avoid premature, an abandoned mechanism is used. Furthermore, for improving the global convergence speed of our algorithm, a chaotic search is adopted in the best solution of the current iteration. To verify the performance of our algorithm, standard test functions have been employed. The experimental results show that the algorithm is much more robust and efficient than some existing Particle Swarm Optimization algorithms. PMID:26955387
Education for public health in Europe and its global outreach
Bjegovic-Mikanovic, Vesna; Jovic-Vranes, Aleksandra; Czabanowska, Katarzyna; Otok, Robert
2014-01-01
Introduction At the present time, higher education institutions dealing with education for public health in Europe and beyond are faced with a complex and comprehensive task of responding to global health challenges. Review Literature reviews in public health and global health and exploration of internet presentations of regional and global organisations dealing with education for public health were the main methods employed in the work presented in this paper. Higher academic institutions are searching for appropriate strategies in competences-based education, which will increase the global attractiveness of their academic programmes and courses for continuous professional development. Academic professionals are taking advantage of blended learning and new web technologies. In Europe and beyond they are opening up debates about the scope of public health and global health. Nevertheless, global health is bringing revitalisation of public health education, which is recognised as one of the core components by many other academic institutions involved in global health work. More than ever, higher academic institutions for public health are recognising the importance of institutional partnerships with various organisations and efficient modes of cooperation in regional and global networks. Networking in a global setting is bringing new opportunities, but also opening debates about global harmonisation of competence-based education to achieve functional knowledge, increase mobility of public health professionals, better employability and affordable performance. Conclusions As public health opportunities and threats are increasingly global, higher education institutions in Europe and in other regions have to look beyond national boundaries and participate in networks for education, research and practice. PMID:24560263
Systematic review and consensus guidelines for environmental sampling of Burkholderia pseudomallei.
Limmathurotsakul, Direk; Dance, David A B; Wuthiekanun, Vanaporn; Kaestli, Mirjam; Mayo, Mark; Warner, Jeffrey; Wagner, David M; Tuanyok, Apichai; Wertheim, Heiman; Yoke Cheng, Tan; Mukhopadhyay, Chiranjay; Puthucheary, Savithiri; Day, Nicholas P J; Steinmetz, Ivo; Currie, Bart J; Peacock, Sharon J
2013-01-01
Burkholderia pseudomallei, a Tier 1 Select Agent and the cause of melioidosis, is a Gram-negative bacillus present in the environment in many tropical countries. Defining the global pattern of B. pseudomallei distribution underpins efforts to prevent infection, and is dependent upon robust environmental sampling methodology. Our objective was to review the literature on the detection of environmental B. pseudomallei, update the risk map for melioidosis, and propose international consensus guidelines for soil sampling. An international working party (Detection of Environmental Burkholderia pseudomallei Working Party (DEBWorP)) was formed during the VIth World Melioidosis Congress in 2010. PubMed (January 1912 to December 2011) was searched using the following MeSH terms: pseudomallei or melioidosis. Bibliographies were hand-searched for secondary references. The reported geographical distribution of B. pseudomallei in the environment was mapped and categorized as definite, probable, or possible. The methodology used for detecting environmental B. pseudomallei was extracted and collated. We found that global coverage was patchy, with a lack of studies in many areas where melioidosis is suspected to occur. The sampling strategies and bacterial identification methods used were highly variable, and not all were robust. We developed consensus guidelines with the goals of reducing the probability of false-negative results, and the provision of affordable and 'low-tech' methodology that is applicable in both developed and developing countries. The proposed consensus guidelines provide the basis for the development of an accurate and comprehensive global map of environmental B. pseudomallei.
NASA Astrophysics Data System (ADS)
Srivastava, D. C.
2016-12-01
A Genetic Algorithm Method for Direct estimation of paleostress states from heterogeneous fault-slip observationsDeepak C. Srivastava, Prithvi Thakur and Pravin K. GuptaDepartment of Earth Sciences, Indian Institute of Technology Roorkee, Roorkee 247667, India. Abstract Paleostress estimation from a group of heterogeneous fault-slip observations entails first the classification of the observations into homogeneous fault sets and then a separate inversion of each homogeneous set. This study combines these two issues into a nonlinear inverse problem and proposes a heuristic search method that inverts the heterogeneous fault-slip observations. The method estimates different paleostress states in a group of heterogeneous fault-slip observations and classifies it into homogeneous sets as a byproduct. It uses the genetic algorithm operators, elitism, selection, encoding, crossover and mutation. These processes translate into a guided search that finds successively fitter solutions and operate iteratively until the termination criteria is met and the globally fittest stress tensors are obtained. We explain the basic steps of the algorithm on a working example and demonstrate validity of the method on several synthetic and a natural group of heterogeneous fault-slip observations. The method is independent of any user-defined bias or any entrapment of solution in a local optimum. It succeeds even in the difficult situations where other classification methods are found to fail.
Explorative search of distributed bio-data to answer complex biomedical questions
2014-01-01
Background The huge amount of biomedical-molecular data increasingly produced is providing scientists with potentially valuable information. Yet, such data quantity makes difficult to find and extract those data that are most reliable and most related to the biomedical questions to be answered, which are increasingly complex and often involve many different biomedical-molecular aspects. Such questions can be addressed only by comprehensively searching and exploring different types of data, which frequently are ordered and provided by different data sources. Search Computing has been proposed for the management and integration of ranked results from heterogeneous search services. Here, we present its novel application to the explorative search of distributed biomedical-molecular data and the integration of the search results to answer complex biomedical questions. Results A set of available bioinformatics search services has been modelled and registered in the Search Computing framework, and a Bioinformatics Search Computing application (Bio-SeCo) using such services has been created and made publicly available at http://www.bioinformatics.deib.polimi.it/bio-seco/seco/. It offers an integrated environment which eases search, exploration and ranking-aware combination of heterogeneous data provided by the available registered services, and supplies global results that can support answering complex multi-topic biomedical questions. Conclusions By using Bio-SeCo, scientists can explore the very large and very heterogeneous biomedical-molecular data available. They can easily make different explorative search attempts, inspect obtained results, select the most appropriate, expand or refine them and move forward and backward in the construction of a global complex biomedical query on multiple distributed sources that could eventually find the most relevant results. Thus, it provides an extremely useful automated support for exploratory integrated bio search, which is fundamental for Life Science data driven knowledge discovery. PMID:24564278
Recognition of functional sites in protein structures.
Shulman-Peleg, Alexandra; Nussinov, Ruth; Wolfson, Haim J
2004-06-04
Recognition of regions on the surface of one protein, that are similar to a binding site of another is crucial for the prediction of molecular interactions and for functional classifications. We first describe a novel method, SiteEngine, that assumes no sequence or fold similarities and is able to recognize proteins that have similar binding sites and may perform similar functions. We achieve high efficiency and speed by introducing a low-resolution surface representation via chemically important surface points, by hashing triangles of physico-chemical properties and by application of hierarchical scoring schemes for a thorough exploration of global and local similarities. We proceed to rigorously apply this method to functional site recognition in three possible ways: first, we search a given functional site on a large set of complete protein structures. Second, a potential functional site on a protein of interest is compared with known binding sites, to recognize similar features. Third, a complete protein structure is searched for the presence of an a priori unknown functional site, similar to known sites. Our method is robust and efficient enough to allow computationally demanding applications such as the first and the third. From the biological standpoint, the first application may identify secondary binding sites of drugs that may lead to side-effects. The third application finds new potential sites on the protein that may provide targets for drug design. Each of the three applications may aid in assigning a function and in classification of binding patterns. We highlight the advantages and disadvantages of each type of search, provide examples of large-scale searches of the entire Protein Data Base and make functional predictions.
Chen, I-Jen; Foloppe, Nicolas
2013-12-15
Computational conformational sampling underpins much of molecular modeling and design in pharmaceutical work. The sampling of smaller drug-like compounds has been an active area of research. However, few studies have tested in details the sampling of larger more flexible compounds, which are also relevant to drug discovery, including therapeutic peptides, macrocycles, and inhibitors of protein-protein interactions. Here, we investigate extensively mainstream conformational sampling methods on three carefully curated compound sets, namely the 'Drug-like', larger 'Flexible', and 'Macrocycle' compounds. These test molecules are chemically diverse with reliable X-ray protein-bound bioactive structures. The compared sampling methods include Stochastic Search and the recent LowModeMD from MOE, all the low-mode based approaches from MacroModel, and MD/LLMOD recently developed for macrocycles. In addition to default settings, key parameters of the sampling protocols were explored. The performance of the computational protocols was assessed via (i) the reproduction of the X-ray bioactive structures, (ii) the size, coverage and diversity of the output conformational ensembles, (iii) the compactness/extendedness of the conformers, and (iv) the ability to locate the global energy minimum. The influence of the stochastic nature of the searches on the results was also examined. Much better results were obtained by adopting search parameters enhanced over the default settings, while maintaining computational tractability. In MOE, the recent LowModeMD emerged as the method of choice. Mixed torsional/low-mode from MacroModel performed as well as LowModeMD, and MD/LLMOD performed well for macrocycles. The low-mode based approaches yielded very encouraging results with the flexible and macrocycle sets. Thus, one can productively tackle the computational conformational search of larger flexible compounds for drug discovery, including macrocycles. Copyright © 2013 Elsevier Ltd. All rights reserved.
Globally optimal superconducting magnets part I: minimum stored energy (MSE) current density map.
Tieng, Quang M; Vegh, Viktor; Brereton, Ian M
2009-01-01
An optimal current density map is crucial in magnet design to provide the initial values within search spaces in an optimization process for determining the final coil arrangement of the magnet. A strategy for obtaining globally optimal current density maps for the purpose of designing magnets with coaxial cylindrical coils in which the stored energy is minimized within a constrained domain is outlined. The current density maps obtained utilising the proposed method suggests that peak current densities occur around the perimeter of the magnet domain, where the adjacent peaks have alternating current directions for the most compact designs. As the dimensions of the domain are increased, the current density maps yield traditional magnet designs of positive current alone. These unique current density maps are obtained by minimizing the stored magnetic energy cost function and therefore suggest magnet coil designs of minimal system energy. Current density maps are provided for a number of different domain arrangements to illustrate the flexibility of the method and the quality of the achievable designs.
Searching bioremediation patents through Cooperative Patent Classification (CPC).
Prasad, Rajendra
2016-03-01
Patent classification systems have traditionally evolved independently at each patent jurisdiction to classify patents handled by their examiners to be able to search previous patents while dealing with new patent applications. As patent databases maintained by them went online for free access to public as also for global search of prior art by examiners, the need arose for a common platform and uniform structure of patent databases. The diversity of different classification, however, posed problems of integrating and searching relevant patents across patent jurisdictions. To address this problem of comparability of data from different sources and searching patents, WIPO in the recent past developed what is known as International Patent Classification (IPC) system which most countries readily adopted to code their patents with IPC codes along with their own codes. The Cooperative Patent Classification (CPC) is the latest patent classification system based on IPC/European Classification (ECLA) system, developed by the European Patent Office (EPO) and the United States Patent and Trademark Office (USPTO) which is likely to become a global standard. This paper discusses this new classification system with reference to patents on bioremediation.
Sale, Mark; Sherer, Eric A
2015-01-01
The current algorithm for selecting a population pharmacokinetic/pharmacodynamic model is based on the well-established forward addition/backward elimination method. A central strength of this approach is the opportunity for a modeller to continuously examine the data and postulate new hypotheses to explain observed biases. This algorithm has served the modelling community well, but the model selection process has essentially remained unchanged for the last 30 years. During this time, more robust approaches to model selection have been made feasible by new technology and dramatic increases in computation speed. We review these methods, with emphasis on genetic algorithm approaches and discuss the role these methods may play in population pharmacokinetic/pharmacodynamic model selection. PMID:23772792
A Method of Trajectory Design for Manned Asteroids Exploration
NASA Astrophysics Data System (ADS)
Gan, Q. B.; Zhang, Y.; Zhu, Z. F.; Han, W. H.; Dong, X.
2014-11-01
A trajectory optimization method of the nuclear propulsion manned asteroids exploration is presented. In the case of launching between 2035 and 2065, based on the Lambert transfer orbit, the phases of departure from and return to the Earth are searched at first. Then the optimal flight trajectory in the feasible regions is selected by pruning the flight sequences. Setting the nuclear propulsion flight plan as propel-coast-propel, and taking the minimal mass of aircraft departure as the index, the nuclear propulsion flight trajectory is separately optimized using a hybrid method. With the initial value of the optimized local parameters of each three phases, the global parameters are jointedly optimized. At last, the minimal departure mass trajectory design result is given.
Jiang, Ling; Yang, Christopher C
2017-09-01
The rapid growth of online health social websites has captured a vast amount of healthcare information and made the information easy to access for health consumers. E-patients often use these social websites for informational and emotional support. However, health consumers could be easily overwhelmed by the overloaded information. Healthcare information searching can be very difficult for consumers, not to mention most of them are not skilled information searcher. In this work, we investigate the approaches for measuring user similarity in online health social websites. By recommending similar users to consumers, we can help them to seek informational and emotional support in a more efficient way. We propose to represent the healthcare social media data as a heterogeneous healthcare information network and introduce the local and global structural approaches for measuring user similarity in a heterogeneous network. We compare the proposed structural approaches with the content-based approach. Experiments were conducted on a dataset collected from a popular online health social website, and the results showed that content-based approach performed better for inactive users, while structural approaches performed better for active users. Moreover, global structural approach outperformed local structural approach for all user groups. In addition, we conducted experiments on local and global structural approaches using different weight schemas for the edges in the network. Leverage performed the best for both local and global approaches. Finally, we integrated different approaches and demonstrated that hybrid method yielded better performance than the individual approach. The results indicate that content-based methods can effectively capture the similarity of inactive users who usually have focused interests, while structural methods can achieve better performance when rich structural information is available. Local structural approach only considers direct connections between nodes in the network, while global structural approach takes the indirect connections into account. Therefore, the global similarity approach can deal with sparse networks and capture the implicit similarity between two users. Different approaches may capture different aspects of the similarity relationship between two users. When we combine different methods together, we could achieve a better performance than using each individual method. Copyright © 2017 Elsevier B.V. All rights reserved.
Futamura, Masaki; Thomas, Kim S.; Grindlay, Douglas J. C.; Doney, Elizabeth J.; Torley, Donna; Williams, Hywel C.
2013-01-01
Background Many research studies have been published on atopic eczema and these are often summarised in systematic reviews (SRs). Identifying SRs can be time-consuming for health professionals, and researchers. In order to facilitate the identification of important research, we have compiled an on-line resource that includes all relevant eczema reviews published since 2000. Methods SRs were searched for in MEDLINE (Ovid), EMBASE (Ovid), PubMed, the Cochrane Database of Systematic Reviews, DARE and NHS Evidence. Selected SRs were assessed against the pre-defined eligibility criteria and relevant articles were grouped by treatment category for the included interventions. All identified systematic reviews are included in the Global Resource of EczemA Trials (GREAT) database (www.greatdatabase.org.uk) and key clinical messages are summarised here. Results A total of 128 SRs reviews were identified, including three clinical guidelines. Of these, 46 (36%) were found in the Cochrane Library. No single database contained all of the SRs found. The number of SRs published per year has increased substantially over the last thirteen years, and reviews were published in a variety of clinical journals. Of the 128 SRs, 1 (1%) was on mechanism, 37 (29%) were on epidemiology, 40 (31%) were on eczema prevention, 29 (23%) were on topical treatments, 31 (24%) were on systemic treatments, and 24 (19%) were on other treatments. All SRs included searches of MEDLINE in their search methods. One hundred six SRs (83%) searched more than one electronic database. There were no language restrictions reported in the search methods of 52 of the SRs (41%). Conclusions This mapping of atopic eczema reviews is a valuable resource. It will help healthcare practitioners, guideline writers, information specialists, and researchers to quickly identify relevant up-to-date evidence in the field for improving patient care. PMID:23505516
A Study of Penalty Function Methods for Constraint Handling with Genetic Algorithm
NASA Technical Reports Server (NTRS)
Ortiz, Francisco
2004-01-01
COMETBOARDS (Comparative Evaluation Testbed of Optimization and Analysis Routines for Design of Structures) is a design optimization test bed that can evaluate the performance of several different optimization algorithms. A few of these optimization algorithms are the sequence of unconstrained minimization techniques (SUMT), sequential linear programming (SLP) and the sequential quadratic programming techniques (SQP). A genetic algorithm (GA) is a search technique that is based on the principles of natural selection or "survival of the fittest". Instead of using gradient information, the GA uses the objective function directly in the search. The GA searches the solution space by maintaining a population of potential solutions. Then, using evolving operations such as recombination, mutation and selection, the GA creates successive generations of solutions that will evolve and take on the positive characteristics of their parents and thus gradually approach optimal or near-optimal solutions. By using the objective function directly in the search, genetic algorithms can be effectively applied in non-convex, highly nonlinear, complex problems. The genetic algorithm is not guaranteed to find the global optimum, but it is less likely to get trapped at a local optimum than traditional gradient-based search methods when the objective function is not smooth and generally well behaved. The purpose of this research is to assist in the integration of genetic algorithm (GA) into COMETBOARDS. COMETBOARDS cast the design of structures as a constrained nonlinear optimization problem. One method used to solve constrained optimization problem with a GA to convert the constrained optimization problem into an unconstrained optimization problem by developing a penalty function that penalizes infeasible solutions. There have been several suggested penalty function in the literature each with there own strengths and weaknesses. A statistical analysis of some suggested penalty functions is performed in this study. Also, a response surface approach to robust design is used to develop a new penalty function approach. This new penalty function approach is then compared with the other existing penalty functions.
Yoshimura, Takayoshi; Taketsugu, Tetsuya; Sawamura, Masaya
2017-01-01
We explored the reaction mechanism of the cationic rhodium(i)–BINAP complex catalysed isomerisation of allylic amines using the artificial force induced reaction method with the global reaction route mapping strategy, which enabled us to search for various reaction paths without assumption of transition states. The entire reaction network was reproduced in the form of a graph, and reasonable paths were selected from the complicated network using Prim’s algorithm. As a result, a new dissociative reaction mechanism was proposed. Our comprehensive reaction path search provided rationales for the E/Z and S/R selectivities of the stereoselective reaction. PMID:28970877
A Method for Search Engine Selection using Thesaurus for Selective Meta-Search Engine
NASA Astrophysics Data System (ADS)
Goto, Shoji; Ozono, Tadachika; Shintani, Toramatsu
In this paper, we propose a new method for selecting search engines on WWW for selective meta-search engine. In selective meta-search engine, a method is needed that would enable selecting appropriate search engines for users' queries. Most existing methods use statistical data such as document frequency. These methods may select inappropriate search engines if a query contains polysemous words. In this paper, we describe an search engine selection method based on thesaurus. In our method, a thesaurus is constructed from documents in a search engine and is used as a source description of the search engine. The form of a particular thesaurus depends on the documents used for its construction. Our method enables search engine selection by considering relationship between terms and overcomes the problems caused by polysemous words. Further, our method does not have a centralized broker maintaining data, such as document frequency for all search engines. As a result, it is easy to add a new search engine, and meta-search engines become more scalable with our method compared to other existing methods.
Family medicine around the world: overview by region
Arya, Neil; Gibson, Christine; Ponka, David; Haq, Cynthia; Hansel, Stephanie; Dahlman, Bruce; Rouleau, Katherine
2017-01-01
Abstract Objective To demonstrate how family medicine has been recognized and integrated into primary health care systems in contrasting contexts around the world and to provide an overview of how family physicians are trained and certified. Composition of the committee Since 2012, the College of Family Physicians of Canada has hosted the Besrour Conferences to reflect on its role in advancing the discipline of family medicine globally. The Besrour Papers Working Group, which was struck at the 2013 conference, was tasked with developing a series of papers to highlight the key issues, lessons learned, and outcomes emerging from the various activities of the Besrour collaboration. The working group comprised members of various academic departments of family medicine in Canada and abroad who attended the conferences. Methods An initial search was conducted in PubMed using a family medicine hedge of MeSH terms, text words, and family medicine journals, combined with text words and terms representing low- and middle-income countries and the concept of family medicine training programs. A second search was completed using only family medicine terms in the CAB Direct and World Bank databases. Subsequent PubMed searches were conducted to identify articles about specific conditions or services based on suggestions from the authors of the articles selected from the second search. Additional articles were identified through reference lists of key articles and through Google searches. We then attempted to verify and augment the information through colleagues and partners. Report The scope of family medicine and the nature of family medicine training vary considerably worldwide. Challenges include limited capacity, incomplete understanding of roles, and variability of standards and recognition. Opportunities for advancement might include technology, collaboration, changes in pedagogy, flexible training methods, and system-wide support. PMID:28615392
Elastic SCAD as a novel penalization method for SVM classification tasks in high-dimensional data.
Becker, Natalia; Toedt, Grischa; Lichter, Peter; Benner, Axel
2011-05-09
Classification and variable selection play an important role in knowledge discovery in high-dimensional data. Although Support Vector Machine (SVM) algorithms are among the most powerful classification and prediction methods with a wide range of scientific applications, the SVM does not include automatic feature selection and therefore a number of feature selection procedures have been developed. Regularisation approaches extend SVM to a feature selection method in a flexible way using penalty functions like LASSO, SCAD and Elastic Net.We propose a novel penalty function for SVM classification tasks, Elastic SCAD, a combination of SCAD and ridge penalties which overcomes the limitations of each penalty alone.Since SVM models are extremely sensitive to the choice of tuning parameters, we adopted an interval search algorithm, which in comparison to a fixed grid search finds rapidly and more precisely a global optimal solution. Feature selection methods with combined penalties (Elastic Net and Elastic SCAD SVMs) are more robust to a change of the model complexity than methods using single penalties. Our simulation study showed that Elastic SCAD SVM outperformed LASSO (L1) and SCAD SVMs. Moreover, Elastic SCAD SVM provided sparser classifiers in terms of median number of features selected than Elastic Net SVM and often better predicted than Elastic Net in terms of misclassification error.Finally, we applied the penalization methods described above on four publicly available breast cancer data sets. Elastic SCAD SVM was the only method providing robust classifiers in sparse and non-sparse situations. The proposed Elastic SCAD SVM algorithm provides the advantages of the SCAD penalty and at the same time avoids sparsity limitations for non-sparse data. We were first to demonstrate that the integration of the interval search algorithm and penalized SVM classification techniques provides fast solutions on the optimization of tuning parameters.The penalized SVM classification algorithms as well as fixed grid and interval search for finding appropriate tuning parameters were implemented in our freely available R package 'penalizedSVM'.We conclude that the Elastic SCAD SVM is a flexible and robust tool for classification and feature selection tasks for high-dimensional data such as microarray data sets.
Elastic SCAD as a novel penalization method for SVM classification tasks in high-dimensional data
2011-01-01
Background Classification and variable selection play an important role in knowledge discovery in high-dimensional data. Although Support Vector Machine (SVM) algorithms are among the most powerful classification and prediction methods with a wide range of scientific applications, the SVM does not include automatic feature selection and therefore a number of feature selection procedures have been developed. Regularisation approaches extend SVM to a feature selection method in a flexible way using penalty functions like LASSO, SCAD and Elastic Net. We propose a novel penalty function for SVM classification tasks, Elastic SCAD, a combination of SCAD and ridge penalties which overcomes the limitations of each penalty alone. Since SVM models are extremely sensitive to the choice of tuning parameters, we adopted an interval search algorithm, which in comparison to a fixed grid search finds rapidly and more precisely a global optimal solution. Results Feature selection methods with combined penalties (Elastic Net and Elastic SCAD SVMs) are more robust to a change of the model complexity than methods using single penalties. Our simulation study showed that Elastic SCAD SVM outperformed LASSO (L1) and SCAD SVMs. Moreover, Elastic SCAD SVM provided sparser classifiers in terms of median number of features selected than Elastic Net SVM and often better predicted than Elastic Net in terms of misclassification error. Finally, we applied the penalization methods described above on four publicly available breast cancer data sets. Elastic SCAD SVM was the only method providing robust classifiers in sparse and non-sparse situations. Conclusions The proposed Elastic SCAD SVM algorithm provides the advantages of the SCAD penalty and at the same time avoids sparsity limitations for non-sparse data. We were first to demonstrate that the integration of the interval search algorithm and penalized SVM classification techniques provides fast solutions on the optimization of tuning parameters. The penalized SVM classification algorithms as well as fixed grid and interval search for finding appropriate tuning parameters were implemented in our freely available R package 'penalizedSVM'. We conclude that the Elastic SCAD SVM is a flexible and robust tool for classification and feature selection tasks for high-dimensional data such as microarray data sets. PMID:21554689
Global reaction to the recent outbreaks of Zika virus: Insights from a Big Data analysis
Trucchi, Cecilia; Paganino, Chiara; Barberis, Ilaria; Martini, Mariano; Sticchi, Laura; Trinka, Eugen; Brigo, Francesco; Ansaldi, Filippo; Icardi, Giancarlo; Orsi, Andrea
2017-01-01
Objective The recent spreading of Zika virus represents an emerging global health threat. As such, it is attracting public interest worldwide, generating a great amount of related Internet searches and social media interactions. The aim of this research was to understand Zika-related digital behavior throughout the epidemic spreading and to assess its consistence with real-world epidemiological data, using a behavioral informatics and analytics approach. Methods In this study, the global web-interest and reaction to the recently occurred outbreaks of the Zika Virus were analyzed in terms of tweets and Google Trends (GT), Google News, YouTube, and Wikipedia search queries. These data streams were mined from 1st January 2004 to 31st October 2016, with a focus on the period November 2015—October 2016. This analysis was complemented with the use of epidemiological data. Spearman’s correlation was performed to correlate all Zika-related data. Moreover, a multivariate regression was performed using Zika-related search queries as a dependent variable, and epidemiological data, number of inhabitants in 2015 and Human Development Index as predictor variables. Results Overall 3,864,395 tweets, 284,903 accesses to Wikipedia pages dedicated to the Zika virus were analyzed during the study period. All web-data sources showed that the main spike of researches and interactions occurred in February 2016 with a second peak in August 2016. All novel data streams-related activities increased markedly during the epidemic period with respect to pre-epidemic period when no web activity was detected. Correlations between data from all these web platforms resulted very high and statistically significant. The countries in which web searches were particularly concentrated are mainly from Central and South Americas. The majority of queries concerned the symptoms of the Zika virus, its vector of transmission, and its possible effect to babies, including microcephaly. No statistically significant correlation was found between novel data streams and global real-world epidemiological data. At country level, a correlation between the digital interest towards the Zika virus and Zika incidence rate or microcephaly cases has been detected. Conclusions An increasing public interest and reaction to the current Zika virus outbreak was documented by all web-data sources and a similar pattern of web reactions has been detected. The public opinion seems to be particularly worried by the alert of teratogenicity of the Zika virus. Stakeholders and health authorities could usefully exploited these internet tools for collecting the concerns of public opinion and reply to them, disseminating key information. PMID:28934352
Guided particle swarm optimization method to solve general nonlinear optimization problems
NASA Astrophysics Data System (ADS)
Abdelhalim, Alyaa; Nakata, Kazuhide; El-Alem, Mahmoud; Eltawil, Amr
2018-04-01
The development of hybrid algorithms is becoming an important topic in the global optimization research area. This article proposes a new technique in hybridizing the particle swarm optimization (PSO) algorithm and the Nelder-Mead (NM) simplex search algorithm to solve general nonlinear unconstrained optimization problems. Unlike traditional hybrid methods, the proposed method hybridizes the NM algorithm inside the PSO to improve the velocities and positions of the particles iteratively. The new hybridization considers the PSO algorithm and NM algorithm as one heuristic, not in a sequential or hierarchical manner. The NM algorithm is applied to improve the initial random solution of the PSO algorithm and iteratively in every step to improve the overall performance of the method. The performance of the proposed method was tested over 20 optimization test functions with varying dimensions. Comprehensive comparisons with other methods in the literature indicate that the proposed solution method is promising and competitive.
Seismic data restoration with a fast L1 norm trust region method
NASA Astrophysics Data System (ADS)
Cao, Jingjie; Wang, Yanfei
2014-08-01
Seismic data restoration is a major strategy to provide reliable wavefield when field data dissatisfy the Shannon sampling theorem. Recovery by sparsity-promoting inversion often get sparse solutions of seismic data in a transformed domains, however, most methods for sparsity-promoting inversion are line-searching methods which are efficient but are inclined to obtain local solutions. Using trust region method which can provide globally convergent solutions is a good choice to overcome this shortcoming. A trust region method for sparse inversion has been proposed, however, the efficiency should be improved to suitable for large-scale computation. In this paper, a new L1 norm trust region model is proposed for seismic data restoration and a robust gradient projection method for solving the sub-problem is utilized. Numerical results of synthetic and field data demonstrate that the proposed trust region method can get excellent computation speed and is a viable alternative for large-scale computation.
47 CFR 80.1125 - Search and rescue coordinating communications.
Code of Federal Regulations, 2012 CFR
2012-10-01
... 47 Telecommunication 5 2012-10-01 2012-10-01 false Search and rescue coordinating communications. 80.1125 Section 80.1125 Telecommunication FEDERAL COMMUNICATIONS COMMISSION (CONTINUED) SAFETY AND SPECIAL RADIO SERVICES STATIONS IN THE MARITIME SERVICES Global Maritime Distress and Safety System (GMDSS...
2005 8th Annual Systems Engineering Conference. Volume 1, Tuesday
2005-10-27
Services NCES Discovery Services Federated Search Denotes interface Service NCCP Oktoberfest 2004 101 Task: Global Strike Mission Planning NCCP Oktoberfest...Enterprise Service Management Security Services NCES Discovery Services Federated Search Service Test, cert and accreditation needs to be focused on small
NASA Astrophysics Data System (ADS)
Li, Tanghua; Wu, Patrick; Steffen, Holger; Wang, Hansheng
2018-05-01
Most models of Glacial Isostatic Adjustment (GIA) assume that the Earth is laterally homogeneous. However, seismic and geological observations clearly show that the Earth's mantle is laterally heterogeneous. Previous studies of GIA with lateral heterogeneity mostly focused on its effect or sensitivity on GIA predictions, and it is not clear to what extent can lateral heterogeneity solve the misfits between GIA predictions and observations. Our aim is to search for the best 3D viscosity models that can simultaneously fit the global relative sea-level (RSL) data, the peak uplift rates (u-dot from GNSS) and peak gravity-rate-of-change (g-dot from the GRACE satellite mission) in Laurentia and Fennoscandia. However, the search is dependent on the ice and viscosity model inputs - the latter depends on the background viscosity and the seismic tomography models used. In this paper, the ICE-6G_C ice model, with Bunge & Grand's seismic tomography model and background viscosity models close to VM5 will be assumed. A Coupled Laplace-Finite Element Method is used to compute gravitationally self-consistent sea level change with time dependent coastlines and rotational feedback in addition to changes in deformation, gravity and the state of stress. Several laterally heterogeneous models are found to fit the global sea level data better than laterally homogeneous models. Two of these laterally heterogeneous models also fit the ICE-6G_C peak g-dot and u-dot rates observed in Laurentia simultaneously. However, even with the introduction of lateral heterogeneity, no model that is able to fit the present-day g-dot and uplift rate data in Fennoscandia has been found. Therefore, either the ice history of ICE-6G_C in Fennoscandia and Barent Sea needs some modifications, or the sub-lithospheric property/non-thermal effect underneath northern Europe must be different from that underneath Laurentia.
Estimating meme fitness in adaptive memetic algorithms for combinatorial problems.
Smith, J E
2012-01-01
Among the most promising and active research areas in heuristic optimisation is the field of adaptive memetic algorithms (AMAs). These gain much of their reported robustness by adapting the probability with which each of a set of local improvement operators is applied, according to an estimate of their current value to the search process. This paper addresses the issue of how the current value should be estimated. Assuming the estimate occurs over several applications of a meme, we consider whether the extreme or mean improvements should be used, and whether this aggregation should be global, or local to some part of the solution space. To investigate these issues, we use the well-established COMA framework that coevolves the specification of a population of memes (representing different local search algorithms) alongside a population of candidate solutions to the problem at hand. Two very different memetic algorithms are considered: the first using adaptive operator pursuit to adjust the probabilities of applying a fixed set of memes, and a second which applies genetic operators to dynamically adapt and create memes and their functional definitions. For the latter, especially on combinatorial problems, credit assignment mechanisms based on historical records, or on notions of landscape locality, will have limited application, and it is necessary to estimate the value of a meme via some form of sampling. The results on a set of binary encoded combinatorial problems show that both methods are very effective, and that for some problems it is necessary to use thousands of variables in order to tease apart the differences between different reward schemes. However, for both memetic algorithms, a significant pattern emerges that reward based on mean improvement is better than that based on extreme improvement. This contradicts recent findings from adapting the parameters of operators involved in global evolutionary search. The results also show that local reward schemes outperform global reward schemes in combinatorial spaces, unlike in continuous spaces. An analysis of evolving meme behaviour is used to explain these findings.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ostlund, Neil
This research showed the feasibility of applying the concepts of the Semantic Web to Computation Chemistry. We have created the first web portal (www.chemsem.com) that allows data created in the calculations of quantum chemistry, and other such chemistry calculations to be placed on the web in a way that makes the data accessible to scientists in a semantic form never before possible. The semantic web nature of the portal allows data to be searched, found, and used as an advance over the usual approach of a relational database. The semantic data on our portal has the nature of a Giantmore » Global Graph (GGG) that can be easily merged with related data and searched globally via a SPARQL Protocol and RDF Query Language (SPARQL) that makes global searches for data easier than with traditional methods. Our Semantic Web Portal requires that the data be understood by a computer and hence defined by an ontology (vocabulary). This ontology is used by the computer in understanding the data. We have created such an ontology for computational chemistry (purl.org/gc) that encapsulates a broad knowledge of the field of computational chemistry. We refer to this ontology as the Gainesville Core. While it is perhaps the first ontology for computational chemistry and is used by our portal, it is only a start of what must be a long multi-partner effort to define computational chemistry. In conjunction with the above efforts we have defined a new potential file standard (Common Standard for eXchange – CSX for computational chemistry data). This CSX file is the precursor of data in the Resource Description Framework (RDF) form that the semantic web requires. Our portal translates CSX files (as well as other computational chemistry data files) into RDF files that are part of the graph database that the semantic web employs. We propose a CSX file as a convenient way to encapsulate computational chemistry data.« less
Global Health Teaching in India: A Curricular Landscape
Pati, Sanghamitra; Sinha, Rajeshwari; Panda, Meely; Pati, Sandipana; Sharma, Anjali; Zodpey, Sanjay
2017-01-01
Today, health has transcended national boundaries and become more multifaceted. Global health has evolved as a new paradigm and is recently being identified as a thrust area now in India. Despite an existing need for a standardized global health curriculum, there is little information available on its education and curriculum in medical and health education space. In the Indian context, we are yet to have a fuller picture of the current status, including, content, structure, selection, teaching methods of global health, and how students are evaluated in India. The objective of this study was to map courses relating to studies on global health in India and analyze its mode of delivery. A detailed Internet search was carried out to identify global health courses and analyzed for: (i) whether global health is a part of the teaching curriculum, (ii) mode of teaching, (iii) broad contents, (iv) instructional formats, (v) assessment, and (vi) selection process. It was found that delivery of global health education in India was fragmented with limited focus at the undergraduate and postgraduate levels. Global health teaching was largely based on certificate courses or online courses, with hardly any institutions imparting a distinct global health education program. There is also no definite specification as to which institutes can impart teaching on global health education and what the specific eligibility requirements are. Our analysis suggests that efforts should be directed toward integrating global health education into broader public health curriculum. At the same time, the need for generation of global health leaders, creation of a common forum for addressing merits and demerits of global health issues, as well as creation of more opportunities for placements are recognized. PMID:29021978
Global Health Teaching in India: A Curricular Landscape.
Pati, Sanghamitra; Sinha, Rajeshwari; Panda, Meely; Pati, Sandipana; Sharma, Anjali; Zodpey, Sanjay
2017-01-01
Today, health has transcended national boundaries and become more multifaceted. Global health has evolved as a new paradigm and is recently being identified as a thrust area now in India. Despite an existing need for a standardized global health curriculum, there is little information available on its education and curriculum in medical and health education space. In the Indian context, we are yet to have a fuller picture of the current status, including, content, structure, selection, teaching methods of global health, and how students are evaluated in India. The objective of this study was to map courses relating to studies on global health in India and analyze its mode of delivery. A detailed Internet search was carried out to identify global health courses and analyzed for: (i) whether global health is a part of the teaching curriculum, (ii) mode of teaching, (iii) broad contents, (iv) instructional formats, (v) assessment, and (vi) selection process. It was found that delivery of global health education in India was fragmented with limited focus at the undergraduate and postgraduate levels. Global health teaching was largely based on certificate courses or online courses, with hardly any institutions imparting a distinct global health education program. There is also no definite specification as to which institutes can impart teaching on global health education and what the specific eligibility requirements are. Our analysis suggests that efforts should be directed toward integrating global health education into broader public health curriculum. At the same time, the need for generation of global health leaders, creation of a common forum for addressing merits and demerits of global health issues, as well as creation of more opportunities for placements are recognized.
A Novel Hybrid Firefly Algorithm for Global Optimization.
Zhang, Lina; Liu, Liqiang; Yang, Xin-She; Dai, Yuntao
Global optimization is challenging to solve due to its nonlinearity and multimodality. Traditional algorithms such as the gradient-based methods often struggle to deal with such problems and one of the current trends is to use metaheuristic algorithms. In this paper, a novel hybrid population-based global optimization algorithm, called hybrid firefly algorithm (HFA), is proposed by combining the advantages of both the firefly algorithm (FA) and differential evolution (DE). FA and DE are executed in parallel to promote information sharing among the population and thus enhance searching efficiency. In order to evaluate the performance and efficiency of the proposed algorithm, a diverse set of selected benchmark functions are employed and these functions fall into two groups: unimodal and multimodal. The experimental results show better performance of the proposed algorithm compared to the original version of the firefly algorithm (FA), differential evolution (DE) and particle swarm optimization (PSO) in the sense of avoiding local minima and increasing the convergence rate.
A Novel Hybrid Firefly Algorithm for Global Optimization
Zhang, Lina; Liu, Liqiang; Yang, Xin-She; Dai, Yuntao
2016-01-01
Global optimization is challenging to solve due to its nonlinearity and multimodality. Traditional algorithms such as the gradient-based methods often struggle to deal with such problems and one of the current trends is to use metaheuristic algorithms. In this paper, a novel hybrid population-based global optimization algorithm, called hybrid firefly algorithm (HFA), is proposed by combining the advantages of both the firefly algorithm (FA) and differential evolution (DE). FA and DE are executed in parallel to promote information sharing among the population and thus enhance searching efficiency. In order to evaluate the performance and efficiency of the proposed algorithm, a diverse set of selected benchmark functions are employed and these functions fall into two groups: unimodal and multimodal. The experimental results show better performance of the proposed algorithm compared to the original version of the firefly algorithm (FA), differential evolution (DE) and particle swarm optimization (PSO) in the sense of avoiding local minima and increasing the convergence rate. PMID:27685869
Global Design Optimization for Aerodynamics and Rocket Propulsion Components
NASA Technical Reports Server (NTRS)
Shyy, Wei; Papila, Nilay; Vaidyanathan, Rajkumar; Tucker, Kevin; Turner, James E. (Technical Monitor)
2000-01-01
Modern computational and experimental tools for aerodynamics and propulsion applications have matured to a stage where they can provide substantial insight into engineering processes involving fluid flows, and can be fruitfully utilized to help improve the design of practical devices. In particular, rapid and continuous development in aerospace engineering demands that new design concepts be regularly proposed to meet goals for increased performance, robustness and safety while concurrently decreasing cost. To date, the majority of the effort in design optimization of fluid dynamics has relied on gradient-based search algorithms. Global optimization methods can utilize the information collected from various sources and by different tools. These methods offer multi-criterion optimization, handle the existence of multiple design points and trade-offs via insight into the entire design space, can easily perform tasks in parallel, and are often effective in filtering the noise intrinsic to numerical and experimental data. However, a successful application of the global optimization method needs to address issues related to data requirements with an increase in the number of design variables, and methods for predicting the model performance. In this article, we review recent progress made in establishing suitable global optimization techniques employing neural network and polynomial-based response surface methodologies. Issues addressed include techniques for construction of the response surface, design of experiment techniques for supplying information in an economical manner, optimization procedures and multi-level techniques, and assessment of relative performance between polynomials and neural networks. Examples drawn from wing aerodynamics, turbulent diffuser flows, gas-gas injectors, and supersonic turbines are employed to help demonstrate the issues involved in an engineering design context. Both the usefulness of the existing knowledge to aid current design practices and the need for future research are identified.
WorldWideScience.org: the global science gateway.
Fitzpatrick, Roberta Bronson
2009-10-01
WorldWideScience.org is a Web-based global gateway connecting users to both national and international scientific databases and portals. This column will provide background information on the resource as well as introduce basic searching practices for users.
Raza, Ali S.; Zhang, Xian; De Moraes, Carlos G. V.; Reisman, Charles A.; Liebmann, Jeffrey M.; Ritch, Robert; Hood, Donald C.
2014-01-01
Purpose. To improve the detection of glaucoma, techniques for assessing local patterns of damage and for combining structure and function were developed. Methods. Standard automated perimetry (SAP) and frequency-domain optical coherence tomography (fdOCT) data, consisting of macular retinal ganglion cell plus inner plexiform layer (mRGCPL) as well as macular and optic disc retinal nerve fiber layer (mRNFL and dRNFL) thicknesses, were collected from 52 eyes of 52 healthy controls and 156 eyes of 96 glaucoma suspects and patients. In addition to generating simple global metrics, SAP and fdOCT data were searched for contiguous clusters of abnormal points and converted to a continuous metric (pcc). The pcc metric, along with simpler methods, was used to combine the information from the SAP and fdOCT. The performance of different methods was assessed using the area under receiver operator characteristic curves (AROC scores). Results. The pcc metric performed better than simple global measures for both the fdOCT and SAP. The best combined structure-function metric (mRGCPL&SAP pcc, AROC = 0.868 ± 0.032) was better (statistically significant) than the best metrics for independent measures of structure and function. When SAP was used as part of the inclusion and exclusion criteria, AROC scores increased for all metrics, including the best combined structure-function metric (AROC = 0.975 ± 0.014). Conclusions. A combined structure-function metric improved the detection of glaucomatous eyes. Overall, the primary sources of value-added for glaucoma detection stem from the continuous cluster search (the pcc), the mRGCPL data, and the combination of structure and function. PMID:24408977
Bohren, Meghan A; Vogel, Joshua P; Hunter, Erin C; Lutsiv, Olha; Makh, Suprita K; Souza, João Paulo; Aguiar, Carolina; Saraiva Coneglian, Fernando; Diniz, Alex Luíz Araújo; Tunçalp, Özge; Javadi, Dena; Oladapo, Olufemi T; Khosla, Rajat; Hindin, Michelle J; Gülmezoglu, A Metin
2015-06-01
Despite growing recognition of neglectful, abusive, and disrespectful treatment of women during childbirth in health facilities, there is no consensus at a global level on how these occurrences are defined and measured. This mixed-methods systematic review aims to synthesize qualitative and quantitative evidence on the mistreatment of women during childbirth in health facilities to inform the development of an evidence-based typology of the phenomenon. We searched PubMed, CINAHL, and Embase databases and grey literature using a predetermined search strategy to identify qualitative, quantitative, and mixed-methods studies on the mistreatment of women during childbirth across all geographical and income-level settings. We used a thematic synthesis approach to synthesize the qualitative evidence and assessed the confidence in the qualitative review findings using the CERQual approach. In total, 65 studies were included from 34 countries. Qualitative findings were organized under seven domains: (1) physical abuse, (2) sexual abuse, (3) verbal abuse, (4) stigma and discrimination, (5) failure to meet professional standards of care, (6) poor rapport between women and providers, and (7) health system conditions and constraints. Due to high heterogeneity of the quantitative data, we were unable to conduct a meta-analysis; instead, we present descriptions of study characteristics, outcome measures, and results. Additional themes identified in the quantitative studies are integrated into the typology. This systematic review presents a comprehensive, evidence-based typology of the mistreatment of women during childbirth in health facilities, and demonstrates that mistreatment can occur at the level of interaction between the woman and provider, as well as through systemic failures at the health facility and health system levels. We propose this typology be adopted to describe the phenomenon and be used to develop measurement tools and inform future research, programs, and interventions.
Mrklas, Kelly J; MacDonald, Shannon; Shea-Budgell, Melissa A; Bedingfield, Nancy; Ganshorn, Heather; Glaze, Sarah; Bill, Lea; Healy, Bonnie; Healy, Chyloe; Guichon, Juliet; Colquhoun, Amy; Bell, Christopher; Richardson, Ruth; Henderson, Rita; Kellner, James; Barnabe, Cheryl; Bednarczyk, Robert A; Letendre, Angeline; Nelson, Gregg S
2018-03-02
Despite the existence of human papilloma virus (HPV) vaccines with demonstrated safety and effectiveness and funded HPV vaccination programs, coverage rates are persistently lower and cervical cancer burden higher among Canadian Indigenous peoples. Barriers and supports to HPV vaccination in Indigenous peoples have not been systematically documented, nor have interventions to increase uptake in this population. This protocol aims to appraise the literature in Canadian and global Indigenous peoples, relating to documented barriers and supports to vaccination and interventions to increase acceptability/uptake or reduce hesitancy of vaccination. Although HPV vaccination is the primary focus, we anticipate only a small number of relevant studies to emerge from the search and will, therefore, employ a broad search strategy to capture literature related to both HPV vaccination and vaccination in general in global Indigenous peoples. Eligible studies will include global Indigenous peoples and discuss barriers or supports and/or interventions to improve uptake or to reduce hesitancy, for the HPV vaccine and/or other vaccines. Primary outcomes are documented barriers or supports or interventions. All study designs meeting inclusion criteria will be considered, without restricting by language, location, or data type. We will use an a priori search strategy, comprised of key words and controlled vocabulary terms, developed in consultation with an academic librarian, and reviewed by a second academic librarian using the PRESS checklist. We will search several electronic databases from date of inception, without restrictions. A pre-defined group of global Indigenous websites will be reviewed for relevant gray literature. Bibliographic searches will be conducted for all included studies to identify relevant reviews. Data analysis will include an inductive, qualitative, thematic synthesis and a quantitative analysis of measured barriers and supports, as well as a descriptive synthesis and quantitative summary of measures for interventions. To our knowledge, this study will contribute the first systematic review of documented barriers, supports, and interventions for vaccination in general and for HPV vaccination. The results of this study are expected to inform future research, policies, programs, and community-driven initiatives to enhance acceptability and uptake of HPV vaccination among Indigenous peoples. PROSPERO Registration Number: CRD42017048844.
NASA Astrophysics Data System (ADS)
Hayatbini, N.; Faridzad, M.; Yang, T.; Akbari Asanjan, A.; Gao, X.; Sorooshian, S.
2016-12-01
The Artificial Neural Networks (ANNs) are useful in many fields, including water resources engineering and management. However, due to the non-linear and chaotic characteristics associated with natural processes and human decision making, the use of ANNs in real-world applications is still limited, and its performance needs to be further improved for a broader practical use. The commonly used Back-Propagation (BP) scheme and gradient-based optimization in training the ANNs have already found to be problematic in some cases. The BP scheme and gradient-based optimization methods are associated with the risk of premature convergence, stuck in local optimums, and the searching is highly dependent on initial conditions. Therefore, as an alternative to BP and gradient-based searching scheme, we propose an effective and efficient global searching method, termed the Shuffled Complex Evolutionary Global optimization algorithm with Principal Component Analysis (SP-UCI), to train the ANN connectivity weights. Large number of real-world datasets are tested with the SP-UCI-based ANN, as well as various popular Evolutionary Algorithms (EAs)-enhanced ANNs, i.e., Particle Swarm Optimization (PSO)-, Genetic Algorithm (GA)-, Simulated Annealing (SA)-, and Differential Evolution (DE)-enhanced ANNs. Results show that SP-UCI-enhanced ANN is generally superior over other EA-enhanced ANNs with regard to the convergence and computational performance. In addition, we carried out a case study for hydropower scheduling in the Trinity Lake in the western U.S. In this case study, multiple climate indices are used as predictors for the SP-UCI-enhanced ANN. The reservoir inflows and hydropower releases are predicted up to sub-seasonal to seasonal scale. Results show that SP-UCI-enhanced ANN is able to achieve better statistics than other EAs-based ANN, which implies the usefulness and powerfulness of proposed SP-UCI-enhanced ANN for reservoir operation, water resources engineering and management. The SP-UCI-enhanced ANN is universally applicable to many other regression and prediction problems, and it has a good potential to be an alternative to the classical BP scheme and gradient-based optimization methods.
Wang, Li; Jia, Pengfei; Huang, Tailai; Duan, Shukai; Yan, Jia; Wang, Lidan
2016-01-01
An electronic nose (E-nose) is an intelligent system that we will use in this paper to distinguish three indoor pollutant gases (benzene (C6H6), toluene (C7H8), formaldehyde (CH2O)) and carbon monoxide (CO). The algorithm is a key part of an E-nose system mainly composed of data processing and pattern recognition. In this paper, we employ support vector machine (SVM) to distinguish indoor pollutant gases and two of its parameters need to be optimized, so in order to improve the performance of SVM, in other words, to get a higher gas recognition rate, an effective enhanced krill herd algorithm (EKH) based on a novel decision weighting factor computing method is proposed to optimize the two SVM parameters. Krill herd (KH) is an effective method in practice, however, on occasion, it cannot avoid the influence of some local best solutions so it cannot always find the global optimization value. In addition its search ability relies fully on randomness, so it cannot always converge rapidly. To address these issues we propose an enhanced KH (EKH) to improve the global searching and convergence speed performance of KH. To obtain a more accurate model of the krill behavior, an updated crossover operator is added to the approach. We can guarantee the krill group are diversiform at the early stage of iterations, and have a good performance in local searching ability at the later stage of iterations. The recognition results of EKH are compared with those of other optimization algorithms (including KH, chaotic KH (CKH), quantum-behaved particle swarm optimization (QPSO), particle swarm optimization (PSO) and genetic algorithm (GA)), and we can find that EKH is better than the other considered methods. The research results verify that EKH not only significantly improves the performance of our E-nose system, but also provides a good beginning and theoretical basis for further study about other improved krill algorithms’ applications in all E-nose application areas. PMID:27529247
NASA Astrophysics Data System (ADS)
Trimarchi, Giancarlo; Zhang, Xiuwen; DeVries Vermeer, Michael J.; Cantwell, Jacqueline; Poeppelmeier, Kenneth R.; Zunger, Alex
2015-10-01
Theoretical sorting of stable and synthesizable "missing compounds" from those that are unstable is a crucial step in the discovery of previously unknown functional materials. This active research area often involves high-throughput (HT) examination of the total energy of a given compound in a list of candidate formal structure types (FSTs), searching for those with the lowest energy within that list. While it is well appreciated that local relaxation methods based on a fixed list of structure types can lead to inaccurate geometries, this approach is widely used in HT studies because it produces answers faster than global optimization methods (that vary lattice vectors and atomic positions without local restrictions). We find, however, a different failure mode of the HT protocol: specific crystallographic classes of formal structure types each correspond to a series of chemically distinct "daughter structure types" (DSTs) that have the same space group but possess totally different local bonding configurations, including coordination types. Failure to include such DSTs in the fixed list of examined candidate structures used in contemporary high-throughput approaches can lead to qualitative misidentification of the stable bonding pattern, not just quantitative inaccuracies. In this work, we (i) clarify the understanding of the general DST-FST relationship, thus improving current discovery HT approaches, (ii) illustrate this failure mode for RbCuS and RbCuSe (the latter being a yet unreported compound and is predicted here) by developing a synthesis method and accelerated crystal-structure determination, and (iii) apply the genetic-algorithm-based global space-group optimization (GSGO) approach which is not vulnerable to the failure mode of HT searches of fixed lists, demonstrating a correct identification of the stable DST. The broad impact of items (i)-(iii) lies in the demonstrated predictive ability of a more comprehensive search strategy than what is currently used—use HT calculations as the preliminary broad screening followed by unbiased GSGO of the final candidates.
Simultaneous beam sampling and aperture shape optimization for SPORT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zarepisheh, Masoud; Li, Ruijiang; Xing, Lei, E-mail: Lei@stanford.edu
Purpose: Station parameter optimized radiation therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital linear accelerators, in which the station parameters of a delivery system, such as aperture shape and weight, couch position/angle, gantry/collimator angle, can be optimized simultaneously. SPORT promises to deliver remarkable radiation dose distributions in an efficient manner, yet there exists no optimization algorithm for its implementation. The purpose of this work is to develop an algorithm to simultaneously optimize the beam sampling and aperture shapes. Methods: The authors build a mathematical model with the fundamental station point parameters as the decisionmore » variables. To solve the resulting large-scale optimization problem, the authors devise an effective algorithm by integrating three advanced optimization techniques: column generation, subgradient method, and pattern search. Column generation adds the most beneficial stations sequentially until the plan quality improvement saturates and provides a good starting point for the subsequent optimization. It also adds the new stations during the algorithm if beneficial. For each update resulted from column generation, the subgradient method improves the selected stations locally by reshaping the apertures and updating the beam angles toward a descent subgradient direction. The algorithm continues to improve the selected stations locally and globally by a pattern search algorithm to explore the part of search space not reachable by the subgradient method. By combining these three techniques together, all plausible combinations of station parameters are searched efficiently to yield the optimal solution. Results: A SPORT optimization framework with seamlessly integration of three complementary algorithms, column generation, subgradient method, and pattern search, was established. The proposed technique was applied to two previously treated clinical cases: a head and neck and a prostate case. It significantly improved the target conformality and at the same time critical structure sparing compared with conventional intensity modulated radiation therapy (IMRT). In the head and neck case, for example, the average PTV coverage D99% for two PTVs, cord and brainstem max doses, and right parotid gland mean dose were improved, respectively, by about 7%, 37%, 12%, and 16%. Conclusions: The proposed method automatically determines the number of the stations required to generate a satisfactory plan and optimizes simultaneously the involved station parameters, leading to improved quality of the resultant treatment plans as compared with the conventional IMRT plans.« less
Services Contact Site Map Go Global Land Survey(GLS) Data Access ESDI Download via Search and Preview Tool gls The Global Land Survey (GLS) collection of Landsat imagery is designed to meet a need from Availability: GLS 1975, 1990, 2000, and 2005 are available to the public for free at the US Geological Survey
Penas, David R; González, Patricia; Egea, Jose A; Doallo, Ramón; Banga, Julio R
2017-01-21
The development of large-scale kinetic models is one of the current key issues in computational systems biology and bioinformatics. Here we consider the problem of parameter estimation in nonlinear dynamic models. Global optimization methods can be used to solve this type of problems but the associated computational cost is very large. Moreover, many of these methods need the tuning of a number of adjustable search parameters, requiring a number of initial exploratory runs and therefore further increasing the computation times. Here we present a novel parallel method, self-adaptive cooperative enhanced scatter search (saCeSS), to accelerate the solution of this class of problems. The method is based on the scatter search optimization metaheuristic and incorporates several key new mechanisms: (i) asynchronous cooperation between parallel processes, (ii) coarse and fine-grained parallelism, and (iii) self-tuning strategies. The performance and robustness of saCeSS is illustrated by solving a set of challenging parameter estimation problems, including medium and large-scale kinetic models of the bacterium E. coli, bakerés yeast S. cerevisiae, the vinegar fly D. melanogaster, Chinese Hamster Ovary cells, and a generic signal transduction network. The results consistently show that saCeSS is a robust and efficient method, allowing very significant reduction of computation times with respect to several previous state of the art methods (from days to minutes, in several cases) even when only a small number of processors is used. The new parallel cooperative method presented here allows the solution of medium and large scale parameter estimation problems in reasonable computation times and with small hardware requirements. Further, the method includes self-tuning mechanisms which facilitate its use by non-experts. We believe that this new method can play a key role in the development of large-scale and even whole-cell dynamic models.
CAD-CAM database management at Bendix Kansas City
DOE Office of Scientific and Technical Information (OSTI.GOV)
Witte, D.R.
1985-05-01
The Bendix Kansas City Division of Allied Corporation began integrating mechanical CAD-CAM capabilities into its operations in June 1980. The primary capabilities include a wireframe modeling application, a solid modeling application, and the Bendix Integrated Computer Aided Manufacturing (BICAM) System application, a set of software programs and procedures which provides user-friendly access to graphic applications and data, and user-friendly sharing of data between applications and users. BICAM also provides for enforcement of corporate/enterprise policies. Three access categories, private, local, and global, are realized through the implementation of data-management metaphors: the desk, reading rack, file cabinet, and library are for themore » storage, retrieval, and sharing of drawings and models. Access is provided through menu selections; searching for designs is done by a paging method or a search-by-attribute-value method. The sharing of designs between all users of Part Data is key. The BICAM System supports 375 unique users per quarter and manages over 7500 drawings and models. The BICAM System demonstrates the need for generalized models, a high-level system framework, prototyping, information-modeling methods, and an understanding of the entire enterprise. Future BICAM System implementations are planned to take advantage of this knowledge.« less
Subjective global assessment of nutritional status – A systematic review of the literature.
da Silva Fink, Jaqueline; Daniel de Mello, Paula; Daniel de Mello, Elza
2015-10-01
Subjective Global Assessment (SGA) is a nutritional assessment tool widely used in hospital clinical practice, even though it is not exempted of limitations in relation to its use. This systematic review intended to update knowledge on the performance of SGA as a method for the assessment of the nutritional status of hospitalized adults. PubMed data base was consulted, using the search term "subjective global assessment". Studies published in English, Portuguese or Spanish, between 2002 and 2012 were selected, excluding those not found in full, letters to the editor, pilot studies, narrative reviews, studies with n < 30, studies with population younger than 18 years of age, research with non-hospitalized populations or those which used a modified version of the SGA. Of 454 eligible studies, 110 presented eligibility criteria. After applying the exclusion criteria, 21 studies were selected, 6 with surgical patients, 7 with clinical patients, and 8 with both. Most studies demonstrated SGA performance similar or better than the usual assessment methods for nutritional status, such as anthropometry and laboratory data, but the same result was not found when comparing SGA and nutritional screening methods. Recently published literature demonstrates SGA as a valid tool for the nutritional diagnosis of hospitalized clinical and surgical patients, and point to a potential superiority of nutritional screening methods in the early detection of malnutrition. Copyright © 2014 Elsevier Ltd and European Society for Clinical Nutrition and Metabolism. All rights reserved.
van der Gijp, A; Ravesloot, C J; Jarodzka, H; van der Schaaf, M F; van der Schaaf, I C; van Schaik, J P J; Ten Cate, Th J
2017-08-01
Eye tracking research has been conducted for decades to gain understanding of visual diagnosis such as in radiology. For educational purposes, it is important to identify visual search patterns that are related to high perceptual performance and to identify effective teaching strategies. This review of eye-tracking literature in the radiology domain aims to identify visual search patterns associated with high perceptual performance. Databases PubMed, EMBASE, ERIC, PsycINFO, Scopus and Web of Science were searched using 'visual perception' OR 'eye tracking' AND 'radiology' and synonyms. Two authors independently screened search results and included eye tracking studies concerning visual skills in radiology published between January 1, 1994 and July 31, 2015. Two authors independently assessed study quality with the Medical Education Research Study Quality Instrument, and extracted study data with respect to design, participant and task characteristics, and variables. A thematic analysis was conducted to extract and arrange study results, and a textual narrative synthesis was applied for data integration and interpretation. The search resulted in 22 relevant full-text articles. Thematic analysis resulted in six themes that informed the relation between visual search and level of expertise: (1) time on task, (2) eye movement characteristics of experts, (3) differences in visual attention, (4) visual search patterns, (5) search patterns in cross sectional stack imaging, and (6) teaching visual search strategies. Expert search was found to be characterized by a global-focal search pattern, which represents an initial global impression, followed by a detailed, focal search-to-find mode. Specific task-related search patterns, like drilling through CT scans and systematic search in chest X-rays, were found to be related to high expert levels. One study investigated teaching of visual search strategies, and did not find a significant effect on perceptual performance. Eye tracking literature in radiology indicates several search patterns are related to high levels of expertise, but teaching novices to search as an expert may not be effective. Experimental research is needed to find out which search strategies can improve image perception in learners.
Ghosh, Ranadhir; Yearwood, John; Ghosh, Moumita; Bagirov, Adil
2006-06-01
In this paper we investigate a hybrid model based on the Discrete Gradient method and an evolutionary strategy for determining the weights in a feed forward artificial neural network. Also we discuss different variants for hybrid models using the Discrete Gradient method and an evolutionary strategy for determining the weights in a feed forward artificial neural network. The Discrete Gradient method has the advantage of being able to jump over many local minima and find very deep local minima. However, earlier research has shown that a good starting point for the discrete gradient method can improve the quality of the solution point. Evolutionary algorithms are best suited for global optimisation problems. Nevertheless they are cursed with longer training times and often unsuitable for real world application. For optimisation problems such as weight optimisation for ANNs in real world applications the dimensions are large and time complexity is critical. Hence the idea of a hybrid model can be a suitable option. In this paper we propose different fusion strategies for hybrid models combining the evolutionary strategy with the discrete gradient method to obtain an optimal solution much quicker. Three different fusion strategies are discussed: a linear hybrid model, an iterative hybrid model and a restricted local search hybrid model. Comparative results on a range of standard datasets are provided for different fusion hybrid models.
Gamito, Pedro; Oliveira, Jorge; Alghazzawi, Daniyal; Fardoun, Habib; Rosa, Pedro; Sousa, Tatiana; Maia, Ines; Morais, Diogo; Lopes, Paulo; Brito, Rodrigo
2017-01-01
Ecological validity should be the cornerstone of any assessment of cognitive functioning. For this purpose, we have developed a preliminary study to test the Art Gallery Test (AGT) as an alternative to traditional neuropsychological testing. The AGT involves three visual search subtests displayed in a virtual reality (VR) art gallery, designed to assess visual attention within an ecologically valid setting. To evaluate the relation between AGT and standard neuropsychological assessment scales, data were collected on a normative sample of healthy adults ( n = 30). The measures consisted of concurrent paper-and-pencil neuropsychological measures [Montreal Cognitive Assessment (MoCA), Frontal Assessment Battery (FAB), and Color Trails Test (CTT)] along with the outcomes from the three subtests of the AGT. The results showed significant correlations between the AGT subtests describing different visual search exercises strategies with global and specific cognitive measures. Comparative visual search was associated with attention and cognitive flexibility (CTT); whereas visual searches involving pictograms correlated with global cognitive function (MoCA).
Hybrid optimization and Bayesian inference techniques for a non-smooth radiation detection problem
Stefanescu, Razvan; Schmidt, Kathleen; Hite, Jason; ...
2016-12-12
In this paper, we propose several algorithms to recover the location and intensity of a radiation source located in a simulated 250 × 180 m block of an urban center based on synthetic measurements. Radioactive decay and detection are Poisson random processes, so we employ likelihood functions based on this distribution. Owing to the domain geometry and the proposed response model, the negative logarithm of the likelihood is only piecewise continuous differentiable, and it has multiple local minima. To address these difficulties, we investigate three hybrid algorithms composed of mixed optimization techniques. For global optimization, we consider simulated annealing, particlemore » swarm, and genetic algorithm, which rely solely on objective function evaluations; that is, they do not evaluate the gradient in the objective function. By employing early stopping criteria for the global optimization methods, a pseudo-optimum point is obtained. This is subsequently utilized as the initial value by the deterministic implicit filtering method, which is able to find local extrema in non-smooth functions, to finish the search in a narrow domain. These new hybrid techniques, combining global optimization and implicit filtering address, difficulties associated with the non-smooth response, and their performances, are shown to significantly decrease the computational time over the global optimization methods. To quantify uncertainties associated with the source location and intensity, we employ the delayed rejection adaptive Metropolis and DiffeRential Evolution Adaptive Metropolis algorithms. Finally, marginal densities of the source properties are obtained, and the means of the chains compare accurately with the estimates produced by the hybrid algorithms.« less
Graf, Peter A.; Billups, Stephen
2017-07-24
Computational materials design has suffered from a lack of algorithms formulated in terms of experimentally accessible variables. Here we formulate the problem of (ternary) alloy optimization at the level of choice of atoms and their composition that is normal for synthesists. Mathematically, this is a mixed integer problem where a candidate solution consists of a choice of three elements, and how much of each of them to use. This space has the natural structure of a set of equilateral triangles. We solve this problem by introducing a novel version of the DIRECT algorithm that (1) operates on equilateral triangles insteadmore » of rectangles and (2) works across multiple triangles. We demonstrate on a test case that the algorithm is both robust and efficient. Lastly, we offer an explanation of the efficacy of DIRECT -- specifically, its balance of global and local search -- by showing that 'potentially optimal rectangles' of the original algorithm are akin to the Pareto front of the 'multi-component optimization' of global and local search.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graf, Peter A.; Billups, Stephen
Computational materials design has suffered from a lack of algorithms formulated in terms of experimentally accessible variables. Here we formulate the problem of (ternary) alloy optimization at the level of choice of atoms and their composition that is normal for synthesists. Mathematically, this is a mixed integer problem where a candidate solution consists of a choice of three elements, and how much of each of them to use. This space has the natural structure of a set of equilateral triangles. We solve this problem by introducing a novel version of the DIRECT algorithm that (1) operates on equilateral triangles insteadmore » of rectangles and (2) works across multiple triangles. We demonstrate on a test case that the algorithm is both robust and efficient. Lastly, we offer an explanation of the efficacy of DIRECT -- specifically, its balance of global and local search -- by showing that 'potentially optimal rectangles' of the original algorithm are akin to the Pareto front of the 'multi-component optimization' of global and local search.« less
Huang, Song; Tian, Na; Wang, Yan; Ji, Zhicheng
2016-01-01
Taking resource allocation into account, flexible job shop problem (FJSP) is a class of complex scheduling problem in manufacturing system. In order to utilize the machine resources rationally, multi-objective particle swarm optimization (MOPSO) integrating with variable neighborhood search is introduced to address FJSP efficiently. Firstly, the assignment rules (AL) and dispatching rules (DR) are provided to initialize the population. And then special discrete operators are designed to produce new individuals and earliest completion machine (ECM) is adopted in the disturbance operator to escape the optima. Secondly, personal-best archives (cognitive memories) and global-best archive (social memory), which are updated by the predefined non-dominated archive update strategy, are simultaneously designed to preserve non-dominated individuals and select personal-best positions and the global-best position. Finally, three neighborhoods are provided to search the neighborhoods of global-best archive for enhancing local search ability. The proposed algorithm is evaluated by using Kacem instances and Brdata instances, and a comparison with other approaches shows the effectiveness of the proposed algorithm for FJSP.
New directions in building a scientific social network
Hennon, Meredith; LaPorte, Ronald E.; Shubnikov, Eugene; Linkov, Faina
2012-01-01
Introduction Networking leaders in the field of public health and medicine is very important for improving health locally and globally, especially in times of disaster. Methods Fishing can best be defined as using an internet search engine to find the name and email address of the person or organization that is being sought. Results With over 500 hours of work, the group compiled a list of nearly 2,000 email addresses of Ministers of Health, deans of the 1,800 medical schools and schools of public health, and heads of medical and public health societies.
Have the temperature time series a structural change after 1998?
NASA Astrophysics Data System (ADS)
Werner, Rolf; Valev, Dimitare; Danov, Dimitar
2012-07-01
The global and hemisphere temperature GISS and Hadcrut3 time series were analysed for structural changes. We postulate the continuity of the preceding temperature function depending from the time. The slopes are calculated for a sequence of segments limited by time thresholds. We used a standard method, the restricted linear regression with dummy variables. We performed the calculations and tests for different number of thresholds. The thresholds are searched continuously in determined time intervals. The F-statistic is used to obtain the time points of the structural changes.
The potential of genetic algorithms for conceptual design of rotor systems
NASA Technical Reports Server (NTRS)
Crossley, William A.; Wells, Valana L.; Laananen, David H.
1993-01-01
The capabilities of genetic algorithms as a non-calculus based, global search method make them potentially useful in the conceptual design of rotor systems. Coupling reasonably simple analysis tools to the genetic algorithm was accomplished, and the resulting program was used to generate designs for rotor systems to match requirements similar to those of both an existing helicopter and a proposed helicopter design. This provides a comparison with the existing design and also provides insight into the potential of genetic algorithms in design of new rotors.
A tool for simulating parallel branch-and-bound methods
NASA Astrophysics Data System (ADS)
Golubeva, Yana; Orlov, Yury; Posypkin, Mikhail
2016-01-01
The Branch-and-Bound method is known as one of the most powerful but very resource consuming global optimization methods. Parallel and distributed computing can efficiently cope with this issue. The major difficulty in parallel B&B method is the need for dynamic load redistribution. Therefore design and study of load balancing algorithms is a separate and very important research topic. This paper presents a tool for simulating parallel Branchand-Bound method. The simulator allows one to run load balancing algorithms with various numbers of processors, sizes of the search tree, the characteristics of the supercomputer's interconnect thereby fostering deep study of load distribution strategies. The process of resolution of the optimization problem by B&B method is replaced by a stochastic branching process. Data exchanges are modeled using the concept of logical time. The user friendly graphical interface to the simulator provides efficient visualization and convenient performance analysis.
Machine vision application in animal trajectory tracking.
Koniar, Dušan; Hargaš, Libor; Loncová, Zuzana; Duchoň, František; Beňo, Peter
2016-04-01
This article was motivated by the doctors' demand to make a technical support in pathologies of gastrointestinal tract research [10], which would be based on machine vision tools. Proposed solution should be less expensive alternative to already existing RF (radio frequency) methods. The objective of whole experiment was to evaluate the amount of animal motion dependent on degree of pathology (gastric ulcer). In the theoretical part of the article, several methods of animal trajectory tracking are presented: two differential methods based on background subtraction, the thresholding methods based on global and local threshold and the last method used for animal tracking was the color matching with a chosen template containing a searched spectrum of colors. The methods were tested offline on five video samples. Each sample contained situation with moving guinea pig locked in a cage under various lighting conditions. Copyright © 2015 Elsevier Ireland Ltd. All rights reserved.
Engineering calculations for communications satellite systems planning
NASA Technical Reports Server (NTRS)
Reilly, C. H.; Levis, C. A.; Mount-Campbell, C.; Gonsalvez, D. J.; Wang, C. W.; Yamamura, Y.
1985-01-01
Computer-based techniques for optimizing communications-satellite orbit and frequency assignments are discussed. A gradient-search code was tested against a BSS scenario derived from the RARC-83 data. Improvement was obtained, but each iteration requires about 50 minutes of IBM-3081 CPU time. Gradient-search experiments on a small FSS test problem, consisting of a single service area served by 8 satellites, showed quickest convergence when the satellites were all initially placed near the center of the available orbital arc with moderate spacing. A transformation technique is proposed for investigating the surface topography of the objective function used in the gradient-search method. A new synthesis approach is based on transforming single-entry interference constraints into corresponding constraints on satellite spacings. These constraints are used with linear objective functions to formulate the co-channel orbital assignment task as a linear-programming (LP) problem or mixed integer programming (MIP) problem. Globally optimal solutions are always found with the MIP problems, but not necessarily with the LP problems. The MIP solutions can be used to evaluate the quality of the LP solutions. The initial results are very encouraging.
Mitra, Avik; Ghosh, Arindam; Das, Ranabir; Patel, Apoorva; Kumar, Anil
2005-12-01
Quantum adiabatic algorithm is a method of solving computational problems by evolving the ground state of a slowly varying Hamiltonian. The technique uses evolution of the ground state of a slowly varying Hamiltonian to reach the required output state. In some cases, such as the adiabatic versions of Grover's search algorithm and Deutsch-Jozsa algorithm, applying the global adiabatic evolution yields a complexity similar to their classical algorithms. However, using the local adiabatic evolution, the algorithms given by J. Roland and N.J. Cerf for Grover's search [J. Roland, N.J. Cerf, Quantum search by local adiabatic evolution, Phys. Rev. A 65 (2002) 042308] and by Saurya Das, Randy Kobes, and Gabor Kunstatter for the Deutsch-Jozsa algorithm [S. Das, R. Kobes, G. Kunstatter, Adiabatic quantum computation and Deutsh's algorithm, Phys. Rev. A 65 (2002) 062301], yield a complexity of order N (where N=2(n) and n is the number of qubits). In this paper, we report the experimental implementation of these local adiabatic evolution algorithms on a 2-qubit quantum information processor, by Nuclear Magnetic Resonance.
Canada's contribution to global research in cardiovascular diseases.
Nguyen, Hai V; de Oliveira, Claire; Wijeysundera, Harindra C; Wong, William W L; Woo, Gloria; Grootendorst, Paul; Liu, Peter P; Krahn, Murray D
2013-06-01
The burden of cardiovascular disease (CVD) in Canada and other developed countries is growing, in part because of the aging of the population and the alarming rise of obesity. Studying Canada's contribution to the global body of CVD research output will shed light on the effectiveness of investments in Canadian CVD research and inform if Canada has been responding to its CVD burden. Search was conducted using the Web-of-Science database for publications during 1981 through 2010 on major areas and specific interventions in CVD. Search was also conducted using Canadian and US online databases for patents issued between 1981 and 2010. Search data were used to estimate the proportions of the world's pool of research publications and of patents conducted by researchers based in Canada. The results indicate that Canada contributed 6% of global research in CVD during 1981 through 2010. Further, Canada's contribution shows a strong upward trend during the period. Based on patent data, Canada's contribution level was similar (5%-7%). Canada's contribution to the global pool of CVD research is on par with France and close to the UK, Japan, and Germany. Canada's contribution in global CVD research is higher than its average contribution in all fields of research (6% vs 3%). As the burden of chronic diseases including CVD rises with Canada's aging population, the increase in Canadian research into CVD is encouraging. Copyright © 2013 Canadian Cardiovascular Society. Published by Elsevier Inc. All rights reserved.
Nonlinear optimization simplified by hypersurface deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stillinger, F.H.; Weber, T.A.
1988-09-01
A general strategy is advanced for simplifying nonlinear optimization problems, the ant-lion method. This approach exploits shape modifications of the cost-function hypersurface which distend basins surrounding low-lying minima (including global minima). By intertwining hypersurface deformations with steepest-descent displacements, the search is concentrated on a small relevant subset of all minima. Specific calculations demonstrating the value of this method are reported for the partitioning of two classes of irregular but nonrandom graphs, the prime-factor graphs and the pi graphs. We also indicate how this approach can be applied to the traveling salesman problem and to design layout optimization, and that itmore » may be useful in combination with simulated annealing strategies.« less
Automatic Identification of Web-Based Risk Markers for Health Events
Borsa, Diana; Hayward, Andrew C; McKendry, Rachel A; Cox, Ingemar J
2015-01-01
Background The escalating cost of global health care is driving the development of new technologies to identify early indicators of an individual’s risk of disease. Traditionally, epidemiologists have identified such risk factors using medical databases and lengthy clinical studies but these are often limited in size and cost and can fail to take full account of diseases where there are social stigmas or to identify transient acute risk factors. Objective Here we report that Web search engine queries coupled with information on Wikipedia access patterns can be used to infer health events associated with an individual user and automatically generate Web-based risk markers for some of the common medical conditions worldwide, from cardiovascular disease to sexually transmitted infections and mental health conditions, as well as pregnancy. Methods Using anonymized datasets, we present methods to first distinguish individuals likely to have experienced specific health events, and classify them into distinct categories. We then use the self-controlled case series method to find the incidence of health events in risk periods directly following a user’s search for a query category, and compare to the incidence during other periods for the same individuals. Results Searches for pet stores were risk markers for allergy. We also identified some possible new risk markers; for example: searching for fast food and theme restaurants was associated with a transient increase in risk of myocardial infarction, suggesting this exposure goes beyond a long-term risk factor but may also act as an acute trigger of myocardial infarction. Dating and adult content websites were risk markers for sexually transmitted infections, such as human immunodeficiency virus (HIV). Conclusions Web-based methods provide a powerful, low-cost approach to automatically identify risk factors, and support more timely and personalized public health efforts to bring human and economic benefits. PMID:25626480
Spjuth, Ola; Krestyaninova, Maria; Hastings, Janna; Shen, Huei-Yi; Heikkinen, Jani; Waldenberger, Melanie; Langhammer, Arnulf; Ladenvall, Claes; Esko, Tõnu; Persson, Mats-Åke; Heggland, Jon; Dietrich, Joern; Ose, Sandra; Gieger, Christian; Ried, Janina S; Peters, Annette; Fortier, Isabel; de Geus, Eco JC; Klovins, Janis; Zaharenko, Linda; Willemsen, Gonneke; Hottenga, Jouke-Jan; Litton, Jan-Eric; Karvanen, Juha; Boomsma, Dorret I; Groop, Leif; Rung, Johan; Palmgren, Juni; Pedersen, Nancy L; McCarthy, Mark I; van Duijn, Cornelia M; Hveem, Kristian; Metspalu, Andres; Ripatti, Samuli; Prokopenko, Inga; Harris, Jennifer R
2016-01-01
A wealth of biospecimen samples are stored in modern globally distributed biobanks. Biomedical researchers worldwide need to be able to combine the available resources to improve the power of large-scale studies. A prerequisite for this effort is to be able to search and access phenotypic, clinical and other information about samples that are currently stored at biobanks in an integrated manner. However, privacy issues together with heterogeneous information systems and the lack of agreed-upon vocabularies have made specimen searching across multiple biobanks extremely challenging. We describe three case studies where we have linked samples and sample descriptions in order to facilitate global searching of available samples for research. The use cases include the ENGAGE (European Network for Genetic and Genomic Epidemiology) consortium comprising at least 39 cohorts, the SUMMIT (surrogate markers for micro- and macro-vascular hard endpoints for innovative diabetes tools) consortium and a pilot for data integration between a Swedish clinical health registry and a biobank. We used the Sample avAILability (SAIL) method for data linking: first, created harmonised variables and then annotated and made searchable information on the number of specimens available in individual biobanks for various phenotypic categories. By operating on this categorised availability data we sidestep many obstacles related to privacy that arise when handling real values and show that harmonised and annotated records about data availability across disparate biomedical archives provide a key methodological advance in pre-analysis exchange of information between biobanks, that is, during the project planning phase. PMID:26306643
Death, dying and informatics: misrepresenting religion on MedLine
Rodríguez del Pozo, Pablo; Fins, Joseph J
2005-01-01
Background The globalization of medical science carries for doctors worldwide a correlative duty to deepen their understanding of patients' cultural contexts and religious backgrounds, in order to satisfy each as a unique individual. To become better informed, practitioners may turn to MedLine, but it is unclear whether the information found there is an accurate representation of culture and religion. To test MedLine's representation of this field, we chose the topic of death and dying in the three major monotheistic religions. Methods We searched MedLine using PubMed in order to retrieve and thematically analyze full-length scholarly journal papers or case reports dealing with religious traditions and end-of-life care. Our search consisted of a string of words that included the most common denominations of the three religions, the standard heading terms used by the National Reference Center for Bioethics Literature (NRCBL), and the Medical Subject Headings (MeSH) used by the National Library of Medicine. Eligible articles were limited to English-language papers with an abstract. Results We found that while a bibliographic search in MedLine on this topic produced instant results and some valuable literature, the aggregate reflected a selection bias. American writers were over-represented given the global prevalence of these religious traditions. Denominationally affiliated authors predominated in representing the Christian traditions. The Islamic tradition was under-represented. Conclusion MedLine's capability to identify the most current, reliable and accurate information about purely scientific topics should not be assumed to be the same case when considering the interface of religion, culture and end-of-life care. PMID:15992401
Emergency Preparedness & Recovery News Releases - PHE
and reload this page. Skip over global navigation links U.S. Department of Health and Human Services Health Emergency - Leading a Nation Prepared Search Search PHE Home > Emergency Emergency Preparedness necesitan medicamentos HHS Acting Secretary Declares Public Health Emergency to Address National Opioid
Computational Discovery of Materials Using the Firefly Algorithm
NASA Astrophysics Data System (ADS)
Avendaño-Franco, Guillermo; Romero, Aldo
Our current ability to model physical phenomena accurately, the increase computational power and better algorithms are the driving forces behind the computational discovery and design of novel materials, allowing for virtual characterization before their realization in the laboratory. We present the implementation of a novel firefly algorithm, a population-based algorithm for global optimization for searching the structure/composition space. This novel computation-intensive approach naturally take advantage of concurrency, targeted exploration and still keeping enough diversity. We apply the new method in both periodic and non-periodic structures and we present the implementation challenges and solutions to improve efficiency. The implementation makes use of computational materials databases and network analysis to optimize the search and get insights about the geometric structure of local minima on the energy landscape. The method has been implemented in our software PyChemia, an open-source package for materials discovery. We acknowledge the support of DMREF-NSF 1434897 and the Donors of the American Chemical Society Petroleum Research Fund for partial support of this research under Contract 54075-ND10.
NASA Astrophysics Data System (ADS)
Yu, Wan-Ting; Yu, Hong-yi; Du, Jian-Ping; Wang, Ding
2018-04-01
The Direct Position Determination (DPD) algorithm has been demonstrated to achieve a better accuracy with known signal waveforms. However, the signal waveform is difficult to be completely known in the actual positioning process. To solve the problem, we proposed a DPD method for digital modulation signals based on improved particle swarm optimization algorithm. First, a DPD model is established for known modulation signals and a cost function is obtained on symbol estimation. Second, as the optimization of the cost function is a nonlinear integer optimization problem, an improved Particle Swarm Optimization (PSO) algorithm is considered for the optimal symbol search. Simulations are carried out to show the higher position accuracy of the proposed DPD method and the convergence of the fitness function under different inertia weight and population size. On the one hand, the proposed algorithm can take full advantage of the signal feature to improve the positioning accuracy. On the other hand, the improved PSO algorithm can improve the efficiency of symbol search by nearly one hundred times to achieve a global optimal solution.
Conformational space annealing scheme in the inverse design of functional materials
NASA Astrophysics Data System (ADS)
Kim, Sunghyun; Lee, In-Ho; Lee, Jooyoung; Oh, Young Jun; Chang, Kee Joo
2015-03-01
Recently, the so-called inverse method has drawn much attention, in which specific electronic properties are initially assigned and target materials are subsequently searched. In this work, we develop a new scheme for the inverse design of functional materials, in which the conformational space annealing (CSA) algorithm for global optimization is combined with first-principles density functional calculations. To implement the CSA, we need a series of ingredients, (i) an objective function to minimize, (ii) a 'distance' measure between two conformations, (iii) a local enthalpy minimizer of a given conformation, (iv) ways to combine two parent conformations to generate a daughter one, (v) a special conformation update scheme, and (vi) an annealing method in the 'distance' parameter axis. We show the results of applications for searching for Si crystals with direct band gaps and the lowest-enthalpy phase of boron at a finite pressure and discuss the efficiency of the present scheme. This work is supported by the National Research Foundation of Korea (NRF) under Grant No. NRF-2005-0093845 and by Samsung Science and Technology Foundation under Grant No. SSTFBA1401-08.
Liu, Jiamin; Udupa, Jayaram K
2009-04-01
Active shape models (ASM) are widely employed for recognizing anatomic structures and for delineating them in medical images. In this paper, a novel strategy called oriented active shape models (OASM) is presented in an attempt to overcome the following five limitations of ASM: 1) lower delineation accuracy, 2) the requirement of a large number of landmarks, 3) sensitivity to search range, 4) sensitivity to initialization, and 5) inability to fully exploit the specific information present in the given image to be segmented. OASM effectively combines the rich statistical shape information embodied in ASM with the boundary orientedness property and the globally optimal delineation capability of the live wire methodology of boundary segmentation. The latter characteristics allow live wire to effectively separate an object boundary from other nonobject boundaries with similar properties especially when they come very close in the image domain. The approach leads to a two-level dynamic programming method, wherein the first level corresponds to boundary recognition and the second level corresponds to boundary delineation, and to an effective automatic initialization method. The method outputs a globally optimal boundary that agrees with the shape model if the recognition step is successful in bringing the model close to the boundary in the image. Extensive evaluation experiments have been conducted by utilizing 40 image (magnetic resonance and computed tomography) data sets in each of five different application areas for segmenting breast, liver, bones of the foot, and cervical vertebrae of the spine. Comparisons are made between OASM and ASM based on precision, accuracy, and efficiency of segmentation. Accuracy is assessed using both region-based false positive and false negative measures and boundary-based distance measures. The results indicate the following: 1) The accuracy of segmentation via OASM is considerably better than that of ASM; 2) The number of landmarks can be reduced by a factor of 3 in OASM over that in ASM; 3) OASM becomes largely independent of search range and initialization becomes automatic. All three benefits of OASM ensue mainly from the severe constraints brought in by the boundary-orientedness property of live wire and the globally optimal solution found by the 2-level dynamic programming algorithm.
Visual search in scenes involves selective and non-selective pathways
Wolfe, Jeremy M; Vo, Melissa L-H; Evans, Karla K; Greene, Michelle R
2010-01-01
How do we find objects in scenes? For decades, visual search models have been built on experiments in which observers search for targets, presented among distractor items, isolated and randomly arranged on blank backgrounds. Are these models relevant to search in continuous scenes? This paper argues that the mechanisms that govern artificial, laboratory search tasks do play a role in visual search in scenes. However, scene-based information is used to guide search in ways that had no place in earlier models. Search in scenes may be best explained by a dual-path model: A “selective” path in which candidate objects must be individually selected for recognition and a “non-selective” path in which information can be extracted from global / statistical information. PMID:21227734
Freeman, Becky; Chapman, Simon
2010-06-01
The World Health Organization Framework Convention on Tobacco Control (WHO FCTC) bans all forms of tobacco advertising, promotion and sponsorship. The comprehensiveness of this ban has yet to be tested by online social networking media such as Facebook. In this paper, the activities of employees of the transnational tobacco company, British American Tobacco, (BAT) on Facebook and the type of content associated with two globally popular BAT brands (Dunhill and Lucky Strike) are mapped. BAT employees on Facebook were identified and then the term 'British American Tobacco' was searched for in the Facebook search engine and results recorded, including titles, descriptions, names and the number of Facebook participants involved for each search result. To further detail any potential promotional activities, a search for two of BAT's global brands, 'Dunhill' and 'Lucky Strike', was conducted. Each of the 3 search terms generated more than 500 items across a variety of Facebook subsections. Some BAT employees are energetically promoting BAT and BAT brands on Facebook through joining and administrating groups, joining pages as fans and posting photographs of BAT events, products and promotional items. BAT employees undertaking these actions are from countries that have ratified the WHO FCTC, which requires signatories to ban all forms of tobacco advertising, including online and crossborder exposure from countries that are not enforcing advertising restrictions. The results of the present research could be used to test the comprehensiveness of the advertising ban by requesting that governments mandate the removal of this promotional material from Facebook.
NASA Technical Reports Server (NTRS)
Olsen, Lola; Morahan, Michael; Aleman, Alicia; Cepero, Laurel; Stevens, Tyler; Ritz, Scott; Holland, Monica
2011-01-01
The Global Change Master Directory (GCMD) provides an extensive directory of descriptive and spatial information about data sets and data-related services, which are relevant to Earth science research. The directory's data discovery components include controlled keywords, free-text searches, and map/date searches. The GCMD portal for NASA's Land Atmosphere Near-real-time Capability for EOS (LANCE) data products leverages these discovery features by providing users a direct route to NASA's Near-Real-Time (NRT) collections. This portal offers direct access to collection entries by instrument name, informing users of the availability of data. After a relevant collection entry is found through the GCMD's search components, the "Get Data" URL within the entry directs the user to the desired data. http://gcmd.nasa.gov/r/p/gcmd_lance_nrt.
Conformational flexibility of two RNA trimers explored by computational tools and database search.
Fadrná, Eva; Koca, Jaroslav
2003-04-01
Two RNA sequences, AAA and AUG, were studied by the conformational search program CICADA and by molecular dynamics (MD) in the framework of the AMBER force field, and also via thorough PDB database search. CICADA was used to provide detailed information about conformers and conformational interconversions on the energy surfaces of the above molecules. Several conformational families were found for both sequences. Analysis of the results shows differences, especially between the energy of the single families, and also in flexibility and concerted conformational movement. Therefore, several MD trajectories (altogether 16 ns) were run to obtain more details about both the stability of conformers belonging to different conformational families and about the dynamics of the two systems. Results show that the trajectories strongly depend on the starting structure. When the MD start from the global minimum found by CICADA, they provide a stable run, while MD starting from another conformational family generates a trajectory where several different conformational families are visited. The results obtained by theoretical methods are compared with the thorough database search data. It is concluded that all except for the highest energy conformational families found in theoretical result also appear in experimental data. Registry numbers: adenylyl-(3' --> 5')-adenylyl-(3' --> 5')-adenosine [917-44-2] adenylyl-(3' --> 5')-uridylyl-(3' --> 5')-guanosine [3494-35-7].
Helping Survivors of Human Trafficking: A Systematic Review of Exit and Postexit Interventions.
Dell, Nathaniel A; Maynard, Brandy R; Born, Kara R; Wagner, Elizabeth; Atkins, Bonnie; House, Whitney
2017-01-01
Human trafficking is a global problem and results in deleterious psychological, social, and physical effects on the lives of those who are trafficked; however, it is not clear how to best intervene with survivors. The purpose of this review was to synthesize the evidence of exit and postexit intervention programs for survivors of human trafficking to inform practice and research. Systematic review methods were used to search, select, and extract data from published and unpublished experimental, quasi-experimental, and preexperimental studies that assessed the effects of any exit or postexit interventions for victims of human trafficking. The authors searched eight databases, reviewed bibliographies, and conducted forward citation searches from relevant reports and prior reviews to find studies authored between 2005 and 2015. The search yielded six eligible studies that included 155 female and 6 male survivors from four countries. Interventions were diverse, with three using a trauma-informed approach. Authors measured a myriad of outcomes, including mental health, social network, community reintegration, and employment; however, the quality of most studies was poor. Evidence of effects of exit and postexit interventions is sparse, and much of the research is poorly designed and executed; however, the needs of trafficking survivors are complex and effective interventions are desperately needed. Implications for practice and research are discussed.
A novel harmony search-K means hybrid algorithm for clustering gene expression data
Nazeer, KA Abdul; Sebastian, MP; Kumar, SD Madhu
2013-01-01
Recent progress in bioinformatics research has led to the accumulation of huge quantities of biological data at various data sources. The DNA microarray technology makes it possible to simultaneously analyze large number of genes across different samples. Clustering of microarray data can reveal the hidden gene expression patterns from large quantities of expression data that in turn offers tremendous possibilities in functional genomics, comparative genomics, disease diagnosis and drug development. The k- ¬means clustering algorithm is widely used for many practical applications. But the original k-¬means algorithm has several drawbacks. It is computationally expensive and generates locally optimal solutions based on the random choice of the initial centroids. Several methods have been proposed in the literature for improving the performance of the k-¬means algorithm. A meta-heuristic optimization algorithm named harmony search helps find out near-global optimal solutions by searching the entire solution space. Low clustering accuracy of the existing algorithms limits their use in many crucial applications of life sciences. In this paper we propose a novel Harmony Search-K means Hybrid (HSKH) algorithm for clustering the gene expression data. Experimental results show that the proposed algorithm produces clusters with better accuracy in comparison with the existing algorithms. PMID:23390351
A novel harmony search-K means hybrid algorithm for clustering gene expression data.
Nazeer, Ka Abdul; Sebastian, Mp; Kumar, Sd Madhu
2013-01-01
Recent progress in bioinformatics research has led to the accumulation of huge quantities of biological data at various data sources. The DNA microarray technology makes it possible to simultaneously analyze large number of genes across different samples. Clustering of microarray data can reveal the hidden gene expression patterns from large quantities of expression data that in turn offers tremendous possibilities in functional genomics, comparative genomics, disease diagnosis and drug development. The k- ¬means clustering algorithm is widely used for many practical applications. But the original k-¬means algorithm has several drawbacks. It is computationally expensive and generates locally optimal solutions based on the random choice of the initial centroids. Several methods have been proposed in the literature for improving the performance of the k-¬means algorithm. A meta-heuristic optimization algorithm named harmony search helps find out near-global optimal solutions by searching the entire solution space. Low clustering accuracy of the existing algorithms limits their use in many crucial applications of life sciences. In this paper we propose a novel Harmony Search-K means Hybrid (HSKH) algorithm for clustering the gene expression data. Experimental results show that the proposed algorithm produces clusters with better accuracy in comparison with the existing algorithms.
Hou, Dianwei; Nissimagoudar, Arun S; Bian, Qiang; Wu, Kui; Pan, Shilie; Li, Wu; Yang, Zhihua
2018-06-15
Infrared nonlinear optical (IR NLO) crystals are the major materials to widen the output range of solid-state lasers to mid- or far-infrared regions. The IR NLO crystals used in the middle IR region are still inadequate for high-power laser applications because of deleterious thermal effects (lensing and expansion), low laser-induced damage threshold, and two-photon absorption. Herein, the unbiased global minimum search method was used for the first time to search for IR NLO optical materials and ultimately found a new IR NLO material NaGaS 2 . It meets the stringent demands for IR NLO materials pumped by high-power laser with the highest thermal conductivity among common IR NLO materials able to avoid two-photon absorption, a classic nonlinear coefficient, and wide infrared transparency.
A Method of Trajectory Design for Manned Asteroid Explorations1,2
NASA Astrophysics Data System (ADS)
Gan, Qing-Bo; Zhang, Yang; Zhu, Zheng-Fan; Han, Wei-Hua; Dong, Xin
2015-07-01
A trajectory optimization method for the nuclear-electric propulsion manned asteroid explorations is presented. In the case of launching between 2035 and 2065, based on the two-pulse single-cycle Lambert transfer orbit, the phases of departure from and return to the Earth are searched at first. Then the optimal flight trajectory is selected by pruning the flight sequences in two feasible regions. Setting the flight strategy of propelling-taxiing-propelling, and taking the minimal fuel consumption as the performance index, the nuclear-electric propulsion flight trajectory is optimized using the hybrid method. Finally, taking the segmentally optimized parameters as the initial values, in accordance with the overall mission constraints, the globally optimized parameters are obtained. And the numerical and diagrammatical results are given at the same time.
Effective Biot theory and its generalization to poroviscoelastic models
NASA Astrophysics Data System (ADS)
Liu, Xu; Greenhalgh, Stewart; Zhou, Bing; Greenhalgh, Mark
2018-02-01
A method is suggested to express the effective bulk modulus of the solid frame of a poroelastic material as a function of the saturated bulk modulus. This method enables effective Biot theory to be described through the use of seismic dispersion measurements or other models developed for the effective saturated bulk modulus. The effective Biot theory is generalized to a poroviscoelastic model of which the moduli are represented by the relaxation functions of the generalized fractional Zener model. The latter covers the general Zener and the Cole-Cole models as special cases. A global search method is described to determine the parameters of the relaxation functions, and a simple deterministic method is also developed to find the defining parameters of the single Cole-Cole model. These methods enable poroviscoelastic models to be constructed, which are based on measured seismic attenuation functions, and ensure that the model dispersion characteristics match the observations.
Cheng, Ashley
2014-01-01
Objective Describe the epidemiologic literature related to early-life feeding practices and early childhood caries (ECC) with regard to publication attributes and trends in these attributes over time. Methods Systematic literature review including electronic and manual searches (in BIOSIS, CINAHL, Cochrane Library, LILACS, MEDLINE, Web of Science, and WHOLIS), covering the years 1990–2013. Attributes of publications meeting a priori inclusion criteria were abstracted and organized by global region and trends over time. Attributes included country of origin and study design of included publications and age and caries prevalence of the populations studied. Results 244 publications drawn from 196 independent study populations were included. The number of publications and the countries represented increased over time, although some world regions remained underrepresented. Most publications were cross sectional (75%); while this percentage remained fairly constant over time, the percentage of studies to account for confounding factors increased. Publications varied with respect to the caries experience and age range of children included in each study. Conclusions Publication productivity regarding feeding practices and ECC research has grown, but this growth has not been evenly distributed globally. Individual publication attributes (i.e. methods and context) can differ significantly and should be considered when interpreting and synthesizing the literature. PMID:25328911
Simultaneous beam sampling and aperture shape optimization for SPORT.
Zarepisheh, Masoud; Li, Ruijiang; Ye, Yinyu; Xing, Lei
2015-02-01
Station parameter optimized radiation therapy (SPORT) was recently proposed to fully utilize the technical capability of emerging digital linear accelerators, in which the station parameters of a delivery system, such as aperture shape and weight, couch position/angle, gantry/collimator angle, can be optimized simultaneously. SPORT promises to deliver remarkable radiation dose distributions in an efficient manner, yet there exists no optimization algorithm for its implementation. The purpose of this work is to develop an algorithm to simultaneously optimize the beam sampling and aperture shapes. The authors build a mathematical model with the fundamental station point parameters as the decision variables. To solve the resulting large-scale optimization problem, the authors devise an effective algorithm by integrating three advanced optimization techniques: column generation, subgradient method, and pattern search. Column generation adds the most beneficial stations sequentially until the plan quality improvement saturates and provides a good starting point for the subsequent optimization. It also adds the new stations during the algorithm if beneficial. For each update resulted from column generation, the subgradient method improves the selected stations locally by reshaping the apertures and updating the beam angles toward a descent subgradient direction. The algorithm continues to improve the selected stations locally and globally by a pattern search algorithm to explore the part of search space not reachable by the subgradient method. By combining these three techniques together, all plausible combinations of station parameters are searched efficiently to yield the optimal solution. A SPORT optimization framework with seamlessly integration of three complementary algorithms, column generation, subgradient method, and pattern search, was established. The proposed technique was applied to two previously treated clinical cases: a head and neck and a prostate case. It significantly improved the target conformality and at the same time critical structure sparing compared with conventional intensity modulated radiation therapy (IMRT). In the head and neck case, for example, the average PTV coverage D99% for two PTVs, cord and brainstem max doses, and right parotid gland mean dose were improved, respectively, by about 7%, 37%, 12%, and 16%. The proposed method automatically determines the number of the stations required to generate a satisfactory plan and optimizes simultaneously the involved station parameters, leading to improved quality of the resultant treatment plans as compared with the conventional IMRT plans.
Language and style: A barrier to neurosurgical research and advancement in Latin America
Ashfaq, Adeel; Lazareff, Jorge
2017-01-01
Background: The neurosurgical burden in Latin America is understudied and likely underestimated, thus it is imperative to improve quality, training, and delivery of neurosurgical care. A significant aspect of this endeavor is for Latin America to become an integral aspect of the global neurosurgical community, however, there is a paucity of ideology and literature coming from Central and South America. We sought to explore neurosurgical dialogue originating from Latin America as well as barriers to the advancement of neurosurgery in this region. Methods: We conducted a systematic literature review exploring research originating in Latin America in three international neurosurgical journals – Journal of Neurosurgery, Surgical Neurology International, and World Neurosurgery. We utilized PubMed search algorithms to identify articles. Inclusion criteria included publication within the three aforementioned journals, author affiliation with Latin American institutions, and publication within the specified time frame of January 2014 to July 2017. Results: There were 7469 articles identified that met the search criteria. Of these 7469 articles, 326 (4.4%) were from Latin American nations. Conclusion: Our data suggests a relatively low percentage of neurosurgical research originating from Latin America, suggesting a significant lack of participation in the global neurosurgical community. Barriers to global scientific communication include language, rhetorical style, culture, history, biases, funding, and governmental support. Despite challenges, Latin America is making strides towards improvement including the development of neurosurgical societies, as well as international collaborative training and research programs. We consider our report to be a valid initiation of discussion of the broader issue of neurosurgical communication. PMID:29404195
The neurobiology of addiction: the perspective from magnetic resonance imaging present and future.
Suckling, John; Nestor, Liam J
2017-02-01
Addiction is associated with severe economic and social consequences and personal tragedies, the scientific exploration of which draws upon investigations at the molecular, cellular and systems levels with a wide variety of technologies. Magnetic resonance imaging (MRI) has been key to mapping effects observed at the microscopic and mesoscopic scales. The range of measurements from this apparatus has opened new avenues linking neurobiology to behaviour. This review considers the role of MRI in addiction research, and what future technological improvements might offer. A hermeneutic strategy supplemented by an expansive, systematic search of PubMed, Scopus and Web of Science databases, covering from database inception to October 2015, with a conjunction of search terms relevant to addiction and MRI. Formal meta-analyses were prioritized. Results from methods that probe brain structure and function suggest frontostriatal circuitry disturbances within specific cognitive domains, some of which predict drug relapse and treatment response. New methods of processing imaging data are opening opportunities for understanding the role of cerebral vasculature, a global view of brain communication and the complex topology of the cortical surface and drug action. Future technological advances include increases in MRI field strength, with concomitant improvements in image quality. The magnetic resonance imaging literature provides a limited but convergent picture of the neurobiology of addiction as global changes to brain structure and functional disturbances to frontostriatal circuitry, accompanied by changes in anterior white matter. © 2016 The Authors. Addiction published by John Wiley & Sons Ltd on behalf of Society for the Study of Addiction.
Bohren, Meghan A.; Vogel, Joshua P.; Hunter, Erin C.; Lutsiv, Olha; Makh, Suprita K.; Souza, João Paulo; Aguiar, Carolina; Saraiva Coneglian, Fernando; Diniz, Alex Luíz Araújo; Tunçalp, Özge; Javadi, Dena; Oladapo, Olufemi T.; Khosla, Rajat; Hindin, Michelle J.; Gülmezoglu, A. Metin
2015-01-01
Background Despite growing recognition of neglectful, abusive, and disrespectful treatment of women during childbirth in health facilities, there is no consensus at a global level on how these occurrences are defined and measured. This mixed-methods systematic review aims to synthesize qualitative and quantitative evidence on the mistreatment of women during childbirth in health facilities to inform the development of an evidence-based typology of the phenomenon. Methods and Findings We searched PubMed, CINAHL, and Embase databases and grey literature using a predetermined search strategy to identify qualitative, quantitative, and mixed-methods studies on the mistreatment of women during childbirth across all geographical and income-level settings. We used a thematic synthesis approach to synthesize the qualitative evidence and assessed the confidence in the qualitative review findings using the CERQual approach. In total, 65 studies were included from 34 countries. Qualitative findings were organized under seven domains: (1) physical abuse, (2) sexual abuse, (3) verbal abuse, (4) stigma and discrimination, (5) failure to meet professional standards of care, (6) poor rapport between women and providers, and (7) health system conditions and constraints. Due to high heterogeneity of the quantitative data, we were unable to conduct a meta-analysis; instead, we present descriptions of study characteristics, outcome measures, and results. Additional themes identified in the quantitative studies are integrated into the typology. Conclusions This systematic review presents a comprehensive, evidence-based typology of the mistreatment of women during childbirth in health facilities, and demonstrates that mistreatment can occur at the level of interaction between the woman and provider, as well as through systemic failures at the health facility and health system levels. We propose this typology be adopted to describe the phenomenon and be used to develop measurement tools and inform future research, programs, and interventions. PMID:26126110
Suicide rates and information seeking via search engines: A cross-national correlational approach.
Arendt, Florian
2018-09-01
The volume of Google searches for suicide-related terms is positively associated with suicide rates, but previous studies used data from specific, restricted geographical contexts, thus, limiting the generalizability of this finding. We investigated the correlation between suicide-related search volume and suicide rates of 50 nations from five continents. We found a positive correlation between suicide rates and search volume, even after controlling for the level of industrialization. Results give credence to the global existence of a correlation. However, the reason why suicide-related search volume is higher in countries with higher suicide rates is still unclear and up to future research.
Chen, Ning; Liu, Yun; Cheng, Yijie; Liu, Long; Yan, Zhe; Tao, Lixin; Guo, Xiuhua; Luo, Yanxia; Yan, Aoshuang
2015-01-01
Influenza virus vaccine (IVV) is a promising research domain that is closely related to global health matters, which has been acknowledged not only by scientists and technology developers, but also by policy-makers. Meanwhile, patents encompass valuable technological information and reflect the latest technological inventions as well as the innovative capability of a nation. However, little research has examined this up-and-coming research field using patent bibliometric method. Thus, this paper (a) designs the technology classification system and search strategy for the identification of IVV; and (b) presents a longitudinal analysis of the global IVV development based on the European Patent Office (EPO) patents. Bibliometric analysis is used to rank countries, institutions, inventors and technology subfields contributing to IVV technical progress. The results show that the global trends of IVV are a multi-developing feature of variety but an uneven technical resource distribution. Although the synthetic peptide vaccine is a comparatively young field, it already demonstrates the powerful vitality and the enormous development space. With the worldwide competition increasing, all nations especially China should be looking to increase devotion, enhance capability and regard effectiveness of technological innovation.
Liu, Long; Yan, Zhe; Tao, Lixin; Guo, Xiuhua; Luo, Yanxia; Yan, Aoshuang
2015-01-01
Influenza virus vaccine (IVV) is a promising research domain that is closely related to global health matters, which has been acknowledged not only by scientists and technology developers, but also by policy-makers. Meanwhile, patents encompass valuable technological information and reflect the latest technological inventions as well as the innovative capability of a nation. However, little research has examined this up-and-coming research field using patent bibliometric method. Thus, this paper (a) designs the technology classification system and search strategy for the identification of IVV; and (b) presents a longitudinal analysis of the global IVV development based on the European Patent Office (EPO) patents. Bibliometric analysis is used to rank countries, institutions, inventors and technology subfields contributing to IVV technical progress. The results show that the global trends of IVV are a multi-developing feature of variety but an uneven technical resource distribution. Although the synthetic peptide vaccine is a comparatively young field, it already demonstrates the powerful vitality and the enormous development space. With the worldwide competition increasing, all nations especially China should be looking to increase devotion, enhance capability and regard effectiveness of technological innovation. PMID:26372160
Intrathecal Drug Delivery Systems for Noncancer Pain: A Health Technology Assessment.
2016-01-01
Intrathecal drug delivery systems can be used to manage refractory or persistent chronic nonmalignant (noncancer) pain. We investigated the benefits, harms, cost-effectiveness, and budget impact of these systems compared with current standards of care for adult patients with chronic pain owing to nonmalignant conditions. We searched Ovid MEDLINE, Ovid Embase, the Cochrane Library, and the National Health Service's Economic Evaluation Database and Tufts Cost-Effectiveness Analysis Registry from January 1994 to April 2014 for evidence of effectiveness, harms, and cost-effectiveness. We used existing systematic reviews that had employed reliable search and screen methods and also searched for studies published after the search date reported in the latest systematic review to identify studies. Two reviewers screened records and assessed study validity. We found comparative evidence of effectiveness and harms in one cohort study at high risk of bias (≥ 3-year follow-up, N = 130). Four economic evaluations of low to very low quality were also included. Compared with oral opioid analgesia alone or a program of analgesia plus rehabilitation, intrathecal drug delivery systems significantly reduced pain (27% additional improvement) and morphine consumption. Despite these reductions, intrathecal drug delivery systems were not superior in patient-reported well-being or quality of life. There is no evidence of superiority of intrathecal drug delivery systems over oral opioids in global pain improvement and global treatment satisfaction. Comparative evidence of harms was not found. Cost-effectiveness evidence is of insufficient quality to assess the appropriateness of funding intrathecal drug delivery systems. Evidence comparing intrathecal drug delivery systems with standard care was of very low quality. Current evidence does not establish (or rule out) superiority or cost-effectiveness of intrathecal drug delivery systems for managing chronic refractory nonmalignant pain. The budget impact of funding intrathecal drug delivery systems would be between $1.5 and $5.0 million per year.
Evidence-based practice: extending the search to find material for the systematic review
Helmer, Diane; Savoie, Isabelle; Green, Carolyn; Kazanjian, Arminée
2001-01-01
Background: Cochrane-style systematic reviews increasingly require the participation of librarians. Guidelines on the appropriate search strategy to use for systematic reviews have been proposed. However, research evidence supporting these recommendations is limited. Objective: This study investigates the effectiveness of various systematic search methods used to uncover randomized controlled trials (RCTs) for systematic reviews. Effectiveness is defined as the proportion of relevant material uncovered for the systematic review using extended systematic review search methods. The following extended systematic search methods are evaluated: searching subject-specific or specialized databases (including trial registries), hand searching, scanning reference lists, and communicating personally. Methods: Two systematic review projects were prospectively monitored regarding the method used to identify items as well as the type of items retrieved. The proportion of RCTs identified by each systematic search method was calculated. Results: The extended systematic search methods uncovered 29.2% of all items retrieved for the systematic reviews. The search of specialized databases was the most effective method, followed by scanning of reference lists, communicating personally, and hand searching. Although the number of items identified through hand searching was small, these unique items would otherwise have been missed. Conclusions: Extended systematic search methods are effective tools for uncovering material for the systematic review. The quality of the items uncovered has yet to be assessed and will be key in evaluating the value of the systematic search methods. PMID:11837256
Ford, Lorelei; Bharadwaj, Lalita; McLeod, Lianne; Waldner, Cheryl
2017-07-28
Safe drinking water is a global challenge for rural populations dependent on unregulated water. A scoping review of research on human health risk assessments (HHRA) applied to this vulnerable population may be used to improve assessments applied by government and researchers. This review aims to summarize and describe the characteristics of HHRA methods, publications, and current literature gaps of HHRA studies on rural populations dependent on unregulated or unspecified drinking water. Peer-reviewed literature was systematically searched (January 2000 to May 2014) and identified at least one drinking water source as unregulated (21%) or unspecified (79%) in 100 studies. Only 7% of reviewed studies identified a rural community dependent on unregulated drinking water. Source water and hazards most frequently cited included groundwater (67%) and chemical water hazards (82%). Most HHRAs (86%) applied deterministic methods with 14% reporting probabilistic and stochastic methods. Publications increased over time with 57% set in Asia, and 47% of studies identified at least one literature gap in the areas of research, risk management, and community exposure. HHRAs applied to rural populations dependent on unregulated water are poorly represented in the literature even though almost half of the global population is rural.
A general intermolecular force field based on tight-binding quantum chemical calculations
NASA Astrophysics Data System (ADS)
Grimme, Stefan; Bannwarth, Christoph; Caldeweyher, Eike; Pisarek, Jana; Hansen, Andreas
2017-10-01
A black-box type procedure is presented for the generation of a molecule-specific, intermolecular potential energy function. The method uses quantum chemical (QC) information from our recently published extended tight-binding semi-empirical scheme (GFN-xTB) and can treat non-covalently bound complexes and aggregates with almost arbitrary chemical structure. The necessary QC information consists of the equilibrium structure, Mulliken atomic charges, charge centers of localized molecular orbitals, and also of frontier orbitals and orbital energies. The molecular pair potential includes model density dependent Pauli repulsion, penetration, as well as point charge electrostatics, the newly developed D4 dispersion energy model, Drude oscillators for polarization, and a charge-transfer term. Only one element-specific and about 20 global empirical parameters are needed to cover systems with nuclear charges up to radon (Z = 86). The method is tested for standard small molecule interaction energy benchmark sets where it provides accurate intermolecular energies and equilibrium distances. Examples for structures with a few hundred atoms including charged systems demonstrate the versatility of the approach. The method is implemented in a stand-alone computer code which enables rigid-body, global minimum energy searches for molecular aggregation or alignment.
Spiral bacterial foraging optimization method: Algorithm, evaluation and convergence analysis
NASA Astrophysics Data System (ADS)
Kasaiezadeh, Alireza; Khajepour, Amir; Waslander, Steven L.
2014-04-01
A biologically-inspired algorithm called Spiral Bacterial Foraging Optimization (SBFO) is investigated in this article. SBFO, previously proposed by the same authors, is a multi-agent, gradient-based algorithm that minimizes both the main objective function (local cost) and the distance between each agent and a temporary central point (global cost). A random jump is included normal to the connecting line of each agent to the central point, which produces a vortex around the temporary central point. This random jump is also suitable to cope with premature convergence, which is a feature of swarm-based optimization methods. The most important advantages of this algorithm are as follows: First, this algorithm involves a stochastic type of search with a deterministic convergence. Second, as gradient-based methods are employed, faster convergence is demonstrated over GA, DE, BFO, etc. Third, the algorithm can be implemented in a parallel fashion in order to decentralize large-scale computation. Fourth, the algorithm has a limited number of tunable parameters, and finally SBFO has a strong certainty of convergence which is rare in existing global optimization algorithms. A detailed convergence analysis of SBFO for continuously differentiable objective functions has also been investigated in this article.
Ford, Lorelei; Bharadwaj, Lalita; McLeod, Lianne; Waldner, Cheryl
2017-01-01
Safe drinking water is a global challenge for rural populations dependent on unregulated water. A scoping review of research on human health risk assessments (HHRA) applied to this vulnerable population may be used to improve assessments applied by government and researchers. This review aims to summarize and describe the characteristics of HHRA methods, publications, and current literature gaps of HHRA studies on rural populations dependent on unregulated or unspecified drinking water. Peer-reviewed literature was systematically searched (January 2000 to May 2014) and identified at least one drinking water source as unregulated (21%) or unspecified (79%) in 100 studies. Only 7% of reviewed studies identified a rural community dependent on unregulated drinking water. Source water and hazards most frequently cited included groundwater (67%) and chemical water hazards (82%). Most HHRAs (86%) applied deterministic methods with 14% reporting probabilistic and stochastic methods. Publications increased over time with 57% set in Asia, and 47% of studies identified at least one literature gap in the areas of research, risk management, and community exposure. HHRAs applied to rural populations dependent on unregulated water are poorly represented in the literature even though almost half of the global population is rural. PMID:28788087
ERIC Educational Resources Information Center
Penn, Helen
2011-01-01
This article is based on a web-search commissioned by an international charity to review the work of international non-governmental organizations (INGOs) and charities which promote and support early childhood education and care (ECEC) in the global South. The article examines examples of such initiatives. It is suggested that there is…
Cooper, Chris; Booth, Andrew; Britten, Nicky; Garside, Ruth
2017-11-28
The purpose and contribution of supplementary search methods in systematic reviews is increasingly acknowledged. Numerous studies have demonstrated their potential in identifying studies or study data that would have been missed by bibliographic database searching alone. What is less certain is how supplementary search methods actually work, how they are applied, and the consequent advantages, disadvantages and resource implications of each search method. The aim of this study is to compare current practice in using supplementary search methods with methodological guidance. Four methodological handbooks in informing systematic review practice in the UK were read and audited to establish current methodological guidance. Studies evaluating the use of supplementary search methods were identified by searching five bibliographic databases. Studies were included if they (1) reported practical application of a supplementary search method (descriptive) or (2) examined the utility of a supplementary search method (analytical) or (3) identified/explored factors that impact on the utility of a supplementary method, when applied in practice. Thirty-five studies were included in this review in addition to the four methodological handbooks. Studies were published between 1989 and 2016, and dates of publication of the handbooks ranged from 1994 to 2014. Five supplementary search methods were reviewed: contacting study authors, citation chasing, handsearching, searching trial registers and web searching. There is reasonable consistency between recommended best practice (handbooks) and current practice (methodological studies) as it relates to the application of supplementary search methods. The methodological studies provide useful information on the effectiveness of the supplementary search methods, often seeking to evaluate aspects of the method to improve effectiveness or efficiency. In this way, the studies advance the understanding of the supplementary search methods. Further research is required, however, so that a rational choice can be made about which supplementary search strategies should be used, and when.
2014-01-01
Background Getting lost outside is stressful for people with dementia and their caregivers and a leading cause of long-term institutionalisation. Although Global Positional Satellite (GPS) location has been promoted to facilitate safe walking, reduce caregivers’ anxiety and enable people with dementia to remain at home, there is little high quality evidence about its acceptability, effectiveness or cost-effectiveness. This observational study explored the feasibility of recruiting and retaining participants, and the acceptability of outcome measures, to inform decisions about the feasibility of a randomised controlled trial (RCT). Methods People with dementia who had been provided with GPS devices by local social-care services and their caregivers were invited to participate in this study. We undertook interviews with people with dementia, caregivers and professionals to explore the perceived utility and challenges of GPS location, and assessed quality of life (QoL) and mental health. We piloted three methods of calculating resource use: caregiver diary; bi-monthly telephone questionnaires; and interrogation of health and social care records. We asked caregivers to estimate the time spent searching if participants became lost before and whilst using GPS. Results Twenty people were offered GPS locations services by social-care services during the 8-month recruitment period. Of these, 14 agreed to be referred to the research team, 12 of these participated and provided data. Eight people with dementia and 12 caregivers were interviewed. Most participants and professionals were very positive about using GPS. Only one person completed a diary. Resource use, anxiety and depression and QoL questionnaires were considered difficult and were therefore declined by some on follow-up. Social care records were time consuming to search and contained many omissions. Caregivers estimated that GPS reduced searching time although the accuracy of this was not objectively verified. Conclusions Our data suggest that a RCT will face challenges not least that widespread enthusiasm for GPS among social-care staff may challenge recruitment and its ready availability may risk contamination of controls. Potential primary outcomes of a RCT should not rely on caregivers’ recall or questionnaire completion. Time spent searching (if this could be accurately captured) and days until long-term admission are potentially suitable outcomes. PMID:24885489
Evolutionary optimization with data collocation for reverse engineering of biological networks.
Tsai, Kuan-Yao; Wang, Feng-Sheng
2005-04-01
Modern experimental biology is moving away from analyses of single elements to whole-organism measurements. Such measured time-course data contain a wealth of information about the structure and dynamic of the pathway or network. The dynamic modeling of the whole systems is formulated as a reverse problem that requires a well-suited mathematical model and a very efficient computational method to identify the model structure and parameters. Numerical integration for differential equations and finding global parameter values are still two major challenges in this field of the parameter estimation of nonlinear dynamic biological systems. We compare three techniques of parameter estimation for nonlinear dynamic biological systems. In the proposed scheme, the modified collocation method is applied to convert the differential equations to the system of algebraic equations. The observed time-course data are then substituted into the algebraic system equations to decouple system interactions in order to obtain the approximate model profiles. Hybrid differential evolution (HDE) with population size of five is able to find a global solution. The method is not only suited for parameter estimation but also can be applied for structure identification. The solution obtained by HDE is then used as the starting point for a local search method to yield the refined estimates.
HOW DO RADIOLOGISTS USE THE HUMAN SEARCH ENGINE?
Wolfe, Jeremy M; Evans, Karla K; Drew, Trafton; Aizenman, Avigael; Josephs, Emilie
2016-06-01
Radiologists perform many 'visual search tasks' in which they look for one or more instances of one or more types of target item in a medical image (e.g. cancer screening). To understand and improve how radiologists do such tasks, it must be understood how the human 'search engine' works. This article briefly reviews some of the relevant work into this aspect of medical image perception. Questions include how attention and the eyes are guided in radiologic search? How is global (image-wide) information used in search? How might properties of human vision and human cognition lead to errors in radiologic search? © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.
Hannan, Mary; Steffen, Alana; Quinn, Lauretta; Collins, Eileen G; Phillips, Shane A; Bronas, Ulf G
2018-05-25
Chronic kidney disease (CKD) is a common chronic condition in older adults that is associated with cognitive decline. However, the exact prevalence of cognitive impairment in older adults with CKD is unclear likely due to the variety of methods utilized to assess cognitive function. The purpose of this integrative review is to determine how cognitive function is most frequently assessed in older adult patients with CKD. Five electronic databases were searched to explore relevant literature related to cognitive function assessment in older adult patients with CKD. Inclusion and exclusion criteria were created to focus the search to the assessment of cognitive function with standardized cognitive tests in older adults with CKD, not on renal replacement therapy. Through the search methods, 36 articles were found that fulfilled the purpose of the review. There were 36 different types of cognitive tests utilized in the included articles, with each study utilizing between one and 12 tests. The most commonly utilized cognitive test was the Mini Mental State Exam (MMSE), followed by tests of digit symbol substitution and verbal fluency. The most commonly assessed aspect of cognitive function was global cognition. The assessment of cognitive function in older adults with CKD with standardized tests is completed in various ways. Unfortunately, the common methods of assessment of cognitive function may not be fully examining the domains of impairment commonly found in older adults with CKD. Further research is needed to identify the ideal cognitive test to best assess older adults with CKD for cognitive impairment.
Branches Global Climate & Weather Modeling Mesoscale Modeling Marine Modeling and Analysis Contact EMC Weather Service NWS logo - Click to go to the NWS homepage Environmental Modeling Center Home News Organization Search Go Search Polar Go MMAB SST Analysis Main page About MMAB Our Mission Our Personnel EMC
and reload this page. Skip over global navigation links U.S. Department of Health and Human Services Health Emergency - Leading a Nation Prepared Search Search Right Box1 Content 2017 Hurricane Response and Deaf or Hard of Hearing For Public Health Communicators and the Media Tools for the Media and Public
Federal Public Health Actions - PHE
and reload this page. Skip over global navigation links U.S. Department of Health and Human Services Health Emergency - Leading a Nation Prepared Search Search PHE Home > PHE Newsroom > Federal Public Health Actions Federal Public Health Actions Main Content April 20, 2018: Renewal of Determination that a
Committee on Women in Science, Engineering, and Medicine (CWSEM)
Skip to Main Content Contact Us | Search: Search The National Academies of Sciences, Engineering and Medicine Committee on Women in Science, Engineering, and Medicine Committee on Women in Science , Engineering, and Medicine Policy and Global Affairs Home About Us Members Subscribe to CWSEM Alerts Resources
Mechanisms of Age-Related Decline in Memory Search across the Adult Life Span
ERIC Educational Resources Information Center
Hills, Thomas T.; Mata, Rui; Wilke, Andreas; Samanez-Larkin, Gregory R.
2013-01-01
Three alternative mechanisms for age-related decline in memory search have been proposed, which result from either reduced processing speed (global slowing hypothesis), overpersistence on categories (cluster-switching hypothesis), or the inability to maintain focus on local cues related to a decline in working memory (cue-maintenance hypothesis).…
Search Problems in Mission Planning and Navigation of Autonomous Aircraft. M.S. Thesis
NASA Technical Reports Server (NTRS)
Krozel, James A.
1988-01-01
An architecture for the control of an autonomous aircraft is presented. The architecture is a hierarchical system representing an anthropomorphic breakdown of the control problem into planner, navigator, and pilot systems. The planner system determines high level global plans from overall mission objectives. This abstract mission planning is investigated by focusing on the Traveling Salesman Problem with variations on local and global constraints. Tree search techniques are applied including the breadth first, depth first, and best first algorithms. The minimum-column and row entries for the Traveling Salesman Problem cost matrix provides a powerful heuristic to guide these search techniques. Mission planning subgoals are directed from the planner to the navigator for planning routes in mountainous terrain with threats. Terrain/threat information is abstracted into a graph of possible paths for which graph searches are performed. It is shown that paths can be well represented by a search graph based on the Voronoi diagram of points representing the vertices of mountain boundaries. A comparison of Dijkstra's dynamic programming algorithm and the A* graph search algorithm from artificial intelligence/operations research is performed for several navigation path planning examples. These examples illustrate paths that minimize a combination of distance and exposure to threats. Finally, the pilot system synthesizes the flight trajectory by creating the control commands to fly the aircraft.
International volunteerism and global responsibility
2017-01-01
To review the current status of volunteerism in the field of urology as a global responsibility, a PubMed search was done with keywords: international volunteer, urology, global health, international resident education. Furthermore, internet search using Google and Bing as search engines for the same key words was done. Websites of multinational urological organizations was researched for available information. Expert opinions of key individuals in the arena were obtained. There is a paucity of published literature as to the efforts and outcomes of volunteerism in Urology; most of the information is related to the fistula repair outcomes in medical literature. There is credible information on the impact on resident training in the field of dentistry, general surgery, orthopedics and plastic surgery. The desire to volunteer is demonstrated in a survey of urologists, the delivery of volunteer missions is fragmented, the outcomes or impact of these efforts is less well documented. There is a need to create pathways to harness the desire of urologists to volunteer. Simultaneously, the effort to establish ethical standards and guidelines for surgical care in LMIC countries by visiting doctors is important. There is a tremendous opportunity for resident education in this arena, as demonstrated by the ACGME approved path in general surgery. PMID:28540233
Adding statistical regularity results in a global slowdown in visual search.
Vaskevich, Anna; Luria, Roy
2018-05-01
Current statistical learning theories predict that embedding implicit regularities within a task should further improve online performance, beyond general practice. We challenged this assumption by contrasting performance in a visual search task containing either a consistent-mapping (regularity) condition, a random-mapping condition, or both conditions, mixed. Surprisingly, performance in a random visual search, without any regularity, was better than performance in a mixed design search that contained a beneficial regularity. This result was replicated using different stimuli and different regularities, suggesting that mixing consistent and random conditions leads to an overall slowing down of performance. Relying on the predictive-processing framework, we suggest that this global detrimental effect depends on the validity of the regularity: when its predictive value is low, as it is in the case of a mixed design, reliance on all prior information is reduced, resulting in a general slowdown. Our results suggest that our cognitive system does not maximize speed, but rather continues to gather and implement statistical information at the expense of a possible slowdown in performance. Copyright © 2018 Elsevier B.V. All rights reserved.
A path following algorithm for the graph matching problem.
Zaslavskiy, Mikhail; Bach, Francis; Vert, Jean-Philippe
2009-12-01
We propose a convex-concave programming approach for the labeled weighted graph matching problem. The convex-concave programming formulation is obtained by rewriting the weighted graph matching problem as a least-square problem on the set of permutation matrices and relaxing it to two different optimization problems: a quadratic convex and a quadratic concave optimization problem on the set of doubly stochastic matrices. The concave relaxation has the same global minimum as the initial graph matching problem, but the search for its global minimum is also a hard combinatorial problem. We, therefore, construct an approximation of the concave problem solution by following a solution path of a convex-concave problem obtained by linear interpolation of the convex and concave formulations, starting from the convex relaxation. This method allows to easily integrate the information on graph label similarities into the optimization problem, and therefore, perform labeled weighted graph matching. The algorithm is compared with some of the best performing graph matching methods on four data sets: simulated graphs, QAPLib, retina vessel images, and handwritten Chinese characters. In all cases, the results are competitive with the state of the art.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zhan, Fei; Tao, Ye; Zhao, Haifeng
Time-resolved X-ray absorption spectroscopy (TR-XAS), based on the laser-pump/X-ray-probe method, is powerful in capturing the change of the geometrical and electronic structure of the absorbing atom upon excitation. TR-XAS data analysis is generally performed on the laser-on minus laser-off difference spectrum. Here, a new analysis scheme is presented for the TR-XAS difference fitting in both the extended X-ray absorption fine-structure (EXAFS) and the X-ray absorption near-edge structure (XANES) regions.R-space EXAFS difference fitting could quickly provide the main quantitative structure change of the first shell. The XANES fitting part introduces a global non-derivative optimization algorithm and optimizes the local structure changemore » in a flexible way where both the core XAS calculation package and the search method in the fitting shell are changeable. The scheme was applied to the TR-XAS difference analysis of Fe(phen) 3spin crossover complex and yielded reliable distance change and excitation population.« less
Zhan, Fei; Tao, Ye; Zhao, Haifeng
2017-07-01
Time-resolved X-ray absorption spectroscopy (TR-XAS), based on the laser-pump/X-ray-probe method, is powerful in capturing the change of the geometrical and electronic structure of the absorbing atom upon excitation. TR-XAS data analysis is generally performed on the laser-on minus laser-off difference spectrum. Here, a new analysis scheme is presented for the TR-XAS difference fitting in both the extended X-ray absorption fine-structure (EXAFS) and the X-ray absorption near-edge structure (XANES) regions. R-space EXAFS difference fitting could quickly provide the main quantitative structure change of the first shell. The XANES fitting part introduces a global non-derivative optimization algorithm and optimizes the local structure change in a flexible way where both the core XAS calculation package and the search method in the fitting shell are changeable. The scheme was applied to the TR-XAS difference analysis of Fe(phen) 3 spin crossover complex and yielded reliable distance change and excitation population.
Brookes, Emre; Cao, Weiming; Demeler, Borries
2010-02-01
We report a model-independent analysis approach for fitting sedimentation velocity data which permits simultaneous determination of shape and molecular weight distributions for mono- and polydisperse solutions of macromolecules. Our approach allows for heterogeneity in the frictional domain, providing a more faithful description of the experimental data for cases where frictional ratios are not identical for all components. Because of increased accuracy in the frictional properties of each component, our method also provides more reliable molecular weight distributions in the general case. The method is based on a fine grained two-dimensional grid search over s and f/f (0), where the grid is a linear combination of whole boundary models represented by finite element solutions of the Lamm equation with sedimentation and diffusion parameters corresponding to the grid points. A Monte Carlo approach is used to characterize confidence limits for the determined solutes. Computational algorithms addressing the very large memory needs for a fine grained search are discussed. The method is suitable for globally fitting multi-speed experiments, and constraints based on prior knowledge about the experimental system can be imposed. Time- and radially invariant noise can be eliminated. Serial and parallel implementations of the method are presented. We demonstrate with simulated and experimental data of known composition that our method provides superior accuracy and lower variance fits to experimental data compared to other methods in use today, and show that it can be used to identify modes of aggregation and slow polymerization.
Stochastic approach to data analysis in fluorescence correlation spectroscopy.
Rao, Ramachandra; Langoju, Rajesh; Gösch, Michael; Rigler, Per; Serov, Alexandre; Lasser, Theo
2006-09-21
Fluorescence correlation spectroscopy (FCS) has emerged as a powerful technique for measuring low concentrations of fluorescent molecules and their diffusion constants. In FCS, the experimental data is conventionally fit using standard local search techniques, for example, the Marquardt-Levenberg (ML) algorithm. A prerequisite for these categories of algorithms is the sound knowledge of the behavior of fit parameters and in most cases good initial guesses for accurate fitting, otherwise leading to fitting artifacts. For known fit models and with user experience about the behavior of fit parameters, these local search algorithms work extremely well. However, for heterogeneous systems or where automated data analysis is a prerequisite, there is a need to apply a procedure, which treats FCS data fitting as a black box and generates reliable fit parameters with accuracy for the chosen model in hand. We present a computational approach to analyze FCS data by means of a stochastic algorithm for global search called PGSL, an acronym for Probabilistic Global Search Lausanne. This algorithm does not require any initial guesses and does the fitting in terms of searching for solutions by global sampling. It is flexible as well as computationally faster at the same time for multiparameter evaluations. We present the performance study of PGSL for two-component with triplet fits. The statistical study and the goodness of fit criterion for PGSL are also presented. The robustness of PGSL on noisy experimental data for parameter estimation is also verified. We further extend the scope of PGSL by a hybrid analysis wherein the output of PGSL is fed as initial guesses to ML. Reliability studies show that PGSL and the hybrid combination of both perform better than ML for various thresholds of the mean-squared error (MSE).
NASA Astrophysics Data System (ADS)
Tsai, Jinn-Tsong; Chou, Ping-Yi; Chou, Jyh-Horng
2015-11-01
The aim of this study is to generate vector quantisation (VQ) codebooks by integrating principle component analysis (PCA) algorithm, Linde-Buzo-Gray (LBG) algorithm, and evolutionary algorithms (EAs). The EAs include genetic algorithm (GA), particle swarm optimisation (PSO), honey bee mating optimisation (HBMO), and firefly algorithm (FF). The study is to provide performance comparisons between PCA-EA-LBG and PCA-LBG-EA approaches. The PCA-EA-LBG approaches contain PCA-GA-LBG, PCA-PSO-LBG, PCA-HBMO-LBG, and PCA-FF-LBG, while the PCA-LBG-EA approaches contain PCA-LBG, PCA-LBG-GA, PCA-LBG-PSO, PCA-LBG-HBMO, and PCA-LBG-FF. All training vectors of test images are grouped according to PCA. The PCA-EA-LBG used the vectors grouped by PCA as initial individuals, and the best solution gained by the EAs was given for LBG to discover a codebook. The PCA-LBG approach is to use the PCA to select vectors as initial individuals for LBG to find a codebook. The PCA-LBG-EA used the final result of PCA-LBG as an initial individual for EAs to find a codebook. The search schemes in PCA-EA-LBG first used global search and then applied local search skill, while in PCA-LBG-EA first used local search and then employed global search skill. The results verify that the PCA-EA-LBG indeed gain superior results compared to the PCA-LBG-EA, because the PCA-EA-LBG explores a global area to find a solution, and then exploits a better one from the local area of the solution. Furthermore the proposed PCA-EA-LBG approaches in designing VQ codebooks outperform existing approaches shown in the literature.