Sample records for global sequence analysis

  1. 2-D to 3-D global/local finite element analysis of cross-ply composite laminates

    NASA Technical Reports Server (NTRS)

    Thompson, D. Muheim; Griffin, O. Hayden, Jr.

    1990-01-01

    An example of two-dimensional to three-dimensional global/local finite element analysis of a laminated composite plate with a hole is presented. The 'zoom' technique of global/local analysis is used, where displacements of the global/local interface from the two-dimensional global model are applied to the edges of the three-dimensional local model. Three different hole diameters, one, three, and six inches, are considered in order to compare the effect of hole size on the three-dimensional stress state around the hole. In addition, three different stacking sequences are analyzed for the six inch hole case in order to study the effect of stacking sequence. The existence of a 'critical' hole size, where the interlaminar stresses are maximum, is indicated. Dispersion of plies at the same angle, as opposed to clustering, is found to reduce the magnitude of some interlaminar stress components and increase others.

  2. Global Transmission Dynamics of Measles in the Measles Elimination Era.

    PubMed

    Furuse, Yuki; Oshitani, Hitoshi

    2017-04-16

    Although there have been many epidemiological reports of the inter-country transmission of measles, systematic analysis of the global transmission dynamics of the measles virus (MV) is limited. In this study, we applied phylogeographic analysis to characterize the global transmission dynamics of the MV using large-scale genetic sequence data (obtained for 7456 sequences) from 115 countries between 1954 and 2015. These analyses reveal the spatial and temporal characteristics of global transmission of the virus, especially in Australia, China, India, Japan, the UK, and the USA in the period since 1990. The transmission is frequently observed, not only within the same region but also among distant and frequently visited areas. Frequencies of export from measles-endemic countries, such as China, India, and Japan are high but decreasing, while the frequencies from countries where measles is no longer endemic, such as Australia, the UK, and the USA, are low but slightly increasing. The world is heading toward measles eradication, but the disease is still transmitted regionally and globally. Our analysis reveals that countries wherein measles is endemic and those having eliminated the disease (apart from occasional outbreaks) both remain a source of global transmission in this measles elimination era. It is therefore crucial to maintain vigilance in efforts to monitor and eradicate measles globally.

  3. Striatal and Hippocampal Involvement in Motor Sequence Chunking Depends on the Learning Strategy

    PubMed Central

    Lungu, Ovidiu; Monchi, Oury; Albouy, Geneviève; Jubault, Thomas; Ballarin, Emanuelle; Burnod, Yves; Doyon, Julien

    2014-01-01

    Motor sequences can be learned using an incremental approach by starting with a few elements and then adding more as training evolves (e.g., learning a piano piece); conversely, one can use a global approach and practice the whole sequence in every training session (e.g., shifting gears in an automobile). Yet, the neural correlates associated with such learning strategies in motor sequence learning remain largely unexplored to date. Here we used functional magnetic resonance imaging to measure the cerebral activity of individuals executing the same 8-element sequence after they completed a 4-days training regimen (2 sessions each day) following either a global or incremental strategy. A network comprised of striatal and fronto-parietal regions was engaged significantly regardless of the learning strategy, whereas the global training regimen led to additional cerebellar and temporal lobe recruitment. Analysis of chunking/grouping of sequence elements revealed a common prefrontal network in both conditions during the chunk initiation phase, whereas execution of chunk cores led to higher mediotemporal activity (involving the hippocampus) after global than incremental training. The novelty of our results relate to the recruitment of mediotemporal regions conditional of the learning strategy. Thus, the present findings may have clinical implications suggesting that the ability of patients with lesions to the medial temporal lobe to learn and consolidate new motor sequences may benefit from using an incremental strategy. PMID:25148078

  4. Striatal and hippocampal involvement in motor sequence chunking depends on the learning strategy.

    PubMed

    Lungu, Ovidiu; Monchi, Oury; Albouy, Geneviève; Jubault, Thomas; Ballarin, Emanuelle; Burnod, Yves; Doyon, Julien

    2014-01-01

    Motor sequences can be learned using an incremental approach by starting with a few elements and then adding more as training evolves (e.g., learning a piano piece); conversely, one can use a global approach and practice the whole sequence in every training session (e.g., shifting gears in an automobile). Yet, the neural correlates associated with such learning strategies in motor sequence learning remain largely unexplored to date. Here we used functional magnetic resonance imaging to measure the cerebral activity of individuals executing the same 8-element sequence after they completed a 4-days training regimen (2 sessions each day) following either a global or incremental strategy. A network comprised of striatal and fronto-parietal regions was engaged significantly regardless of the learning strategy, whereas the global training regimen led to additional cerebellar and temporal lobe recruitment. Analysis of chunking/grouping of sequence elements revealed a common prefrontal network in both conditions during the chunk initiation phase, whereas execution of chunk cores led to higher mediotemporal activity (involving the hippocampus) after global than incremental training. The novelty of our results relate to the recruitment of mediotemporal regions conditional of the learning strategy. Thus, the present findings may have clinical implications suggesting that the ability of patients with lesions to the medial temporal lobe to learn and consolidate new motor sequences may benefit from using an incremental strategy.

  5. DNA Barcode Analysis of Thrips (Thysanoptera) Diversity in Pakistan Reveals Cryptic Species Complexes.

    PubMed

    Iftikhar, Romana; Ashfaq, Muhammad; Rasool, Akhtar; Hebert, Paul D N

    2016-01-01

    Although thrips are globally important crop pests and vectors of viral disease, species identifications are difficult because of their small size and inconspicuous morphological differences. Sequence variation in the mitochondrial COI-5' (DNA barcode) region has proven effective for the identification of species in many groups of insect pests. We analyzed barcode sequence variation among 471 thrips from various plant hosts in north-central Pakistan. The Barcode Index Number (BIN) system assigned these sequences to 55 BINs, while the Automatic Barcode Gap Discovery detected 56 partitions, a count that coincided with the number of monophyletic lineages recognized by Neighbor-Joining analysis and Bayesian inference. Congeneric species showed an average of 19% sequence divergence (range = 5.6% - 27%) at COI, while intraspecific distances averaged 0.6% (range = 0.0% - 7.6%). BIN analysis suggested that all intraspecific divergence >3.0% actually involved a species complex. In fact, sequences for three major pest species (Haplothrips reuteri, Thrips palmi, Thrips tabaci), and one predatory thrips (Aeolothrips intermedius) showed deep intraspecific divergences, providing evidence that each is a cryptic species complex. The study compiles the first barcode reference library for the thrips of Pakistan, and examines global haplotype diversity in four important pest thrips.

  6. Genetic characterization of the non-structural protein-3 gene of bluetongue virus serotype-2 isolate from India.

    PubMed

    Pudupakam, Raghavendra Sumanth; Raghunath, Shobana; Pudupakam, Meghanath; Daggupati, Sreenivasulu

    2017-03-01

    Sequence analysis and phylogenetic studies based on non-structural protein-3 (NS3) gene are important in understanding the evolution and epidemiology of bluetongue virus (BTV). This study was aimed at characterizing the NS3 gene sequence of Indian BTV serotype-2 (BTV2) to elucidate its genetic relationship to global BTV isolates. The NS3 gene of BTV2 was amplified from infected BHK-21 cell cultures, cloned and subjected to sequence analysis. The generated NS3 gene sequence was compared with the corresponding sequences of different BTV serotypes across the world, and a phylogenetic relationship was established. The NS3 gene of BTV2 showed moderate levels of variability in comparison to different BTV serotypes, with nucleotide sequence identities ranging from 81% to 98%. The region showed high sequence homology of 93-99% at amino acid level with various BTV serotypes. The PPXY/PTAP late domain motifs, glycosylation sites, hydrophobic domains, and the amino acid residues critical for virus-host interactions were conserved in NS3 protein. Phylogenetic analysis revealed that BTV isolates segregate into four topotypes and that the Indian BTV2 in subclade IA is closely related to Asian and Australian origin strains. Analysis of the NS3 gene indicated that Indian BTV2 isolate is closely related to strains from Asia and Australia, suggesting a common origin of infection. Although the pattern of evolution of BTV2 isolate is different from other global isolates, the deduced amino acid sequence of NS3 protein demonstrated high molecular stability.

  7. Genetic characterization of the non-structural protein-3 gene of bluetongue virus serotype-2 isolate from India

    PubMed Central

    Pudupakam, Raghavendra Sumanth; Raghunath, Shobana; Pudupakam, Meghanath; Daggupati, Sreenivasulu

    2017-01-01

    Aim: Sequence analysis and phylogenetic studies based on non-structural protein-3 (NS3) gene are important in understanding the evolution and epidemiology of bluetongue virus (BTV). This study was aimed at characterizing the NS3 gene sequence of Indian BTV serotype-2 (BTV2) to elucidate its genetic relationship to global BTV isolates. Materials and Methods: The NS3 gene of BTV2 was amplified from infected BHK-21 cell cultures, cloned and subjected to sequence analysis. The generated NS3 gene sequence was compared with the corresponding sequences of different BTV serotypes across the world, and a phylogenetic relationship was established. Results: The NS3 gene of BTV2 showed moderate levels of variability in comparison to different BTV serotypes, with nucleotide sequence identities ranging from 81% to 98%. The region showed high sequence homology of 93-99% at amino acid level with various BTV serotypes. The PPXY/PTAP late domain motifs, glycosylation sites, hydrophobic domains, and the amino acid residues critical for virus-host interactions were conserved in NS3 protein. Phylogenetic analysis revealed that BTV isolates segregate into four topotypes and that the Indian BTV2 in subclade IA is closely related to Asian and Australian origin strains. Conclusion: Analysis of the NS3 gene indicated that Indian BTV2 isolate is closely related to strains from Asia and Australia, suggesting a common origin of infection. Although the pattern of evolution of BTV2 isolate is different from other global isolates, the deduced amino acid sequence of NS3 protein demonstrated high molecular stability. PMID:28435199

  8. The effect of OPC Factor on energy levels in healthy adults ages 45-65: a phase IIb randomized controlled trial.

    PubMed

    LaRiccia, Patrick J; Farrar, John T; Sammel, Mary D; Gallo, Joseph J

    2008-07-01

    To determine the efficacy of the food supplement OPC Factor to increase energy levels in healthy adults aged 45 to 65. Randomized, placebo-controlled, triple-blind crossover study. Twenty-five (25) healthy adults recruited from the University of Pennsylvania Health System. OPC Factor,trade mark (AlivenLabs, Lebanon, TN) a food supplement that contains oligomeric proanthocyanidins from grape seeds and pine bark along with other nutrient supplements including vitamins and minerals, was in the form of an effervescent powder. The placebo was similar in appearance and taste. Five outcome measurements were performed: (1) Energy subscale scores of the Activation-Deactivation Adjective Check List (AD ACL); (2) One (1) global question of percent energy change (Global Energy Percent Change); (3) One (1) global question of energy change measured on a Likert scale (Global Energy Scale Change); 4. One (1) global question of percent overall status change (Global Overall Status Percent Change); and (5) One (1) global question of overall status change measured on a Likert scale (Global Overall Status Scale Change). There were no carryover/period effects in the groups randomized to Placebo/Active Product sequence versus Active Product/Placebo sequence. Examination of the AD ACL Energy subscale scores for the Active Product versus Placebo comparison revealed no significant difference in the intention-to-treat (IT) analysis and the treatment received (TR) analysis. However, Global Energy Percent Change (p = 0.06) and Global Energy Scale Change (p = 0.09) both closely approached conventional levels of statistical significance for the active product in the IT analysis. Global Energy Percent Change (p = 0.05) and Global Energy Scale Change (p = 0.04) reached statistical significance in the TR analysis. A cumulative percent responders analysis graph indicated greater response rates for the active product. OPC Factor may increase energy levels in healthy adults aged 45-65 years. A larger study is recommended. Clinical Trials.gov identifier: NCT03318019.

  9. Parallel analysis of RNA ends enhances global investigation of microRNAs and target RNAs of Brachypodium distachyon

    PubMed Central

    2013-01-01

    Background The wild grass Brachypodium distachyon has emerged as a model system for temperate grasses and biofuel plants. However, the global analysis of miRNAs, molecules known to be key for eukaryotic gene regulation, has been limited in B. distachyon to studies examining a few samples or that rely on computational predictions. Similarly an in-depth global analysis of miRNA-mediated target cleavage using parallel analysis of RNA ends (PARE) data is lacking in B. distachyon. Results B. distachyon small RNAs were cloned and deeply sequenced from 17 libraries that represent different tissues and stresses. Using a computational pipeline, we identified 116 miRNAs including not only conserved miRNAs that have not been reported in B. distachyon, but also non-conserved miRNAs that were not found in other plants. To investigate miRNA-mediated cleavage function, four PARE libraries were constructed from key tissues and sequenced to a total depth of approximately 70 million sequences. The roughly 5 million distinct genome-matched sequences that resulted represent an extensive dataset for analyzing small RNA-guided cleavage events. Analysis of the PARE and miRNA data provided experimental evidence for miRNA-mediated cleavage of 264 sites in predicted miRNA targets. In addition, PARE analysis revealed that differentially expressed miRNAs in the same family guide specific target RNA cleavage in a correspondingly tissue-preferential manner. Conclusions B. distachyon miRNAs and target RNAs were experimentally identified and analyzed. Knowledge gained from this study should provide insights into the roles of miRNAs and the regulation of their targets in B. distachyon and related plants. PMID:24367943

  10. TRAP: automated classification, quantification and annotation of tandemly repeated sequences.

    PubMed

    Sobreira, Tiago José P; Durham, Alan M; Gruber, Arthur

    2006-02-01

    TRAP, the Tandem Repeats Analysis Program, is a Perl program that provides a unified set of analyses for the selection, classification, quantification and automated annotation of tandemly repeated sequences. TRAP uses the results of the Tandem Repeats Finder program to perform a global analysis of the satellite content of DNA sequences, permitting researchers to easily assess the tandem repeat content for both individual sequences and whole genomes. The results can be generated in convenient formats such as HTML and comma-separated values. TRAP can also be used to automatically generate annotation data in the format of feature table and GFF files.

  11. Application of wavelet analysis in determining the periodicity of global warming

    NASA Astrophysics Data System (ADS)

    Feng, Xiao

    2018-04-01

    In the last two decades of the last century, the global average temperature has risen by 0.48 ° C over 100 years ago. Since then, global warming has become a hot topic. Global warming will have complex and potential impacts on humans and the Earth. However, the negative impacts far outweigh the positive impacts. The most obvious external manifestation of global warming is temperature. Therefore, this study uses wavelet analysis study the characteristics of temperature time series, solve the periodicity of the sequence, find out the trend of temperature change and predict the extent of global warming in the future, so as to take the necessary precautionary measures.

  12. Defining a Core Genome Multilocus Sequence Typing Scheme for the Global Epidemiology of Vibrio parahaemolyticus

    PubMed Central

    Jolley, Keith A.; Reed, Elizabeth; Martinez-Urtaza, Jaime

    2017-01-01

    ABSTRACT Vibrio parahaemolyticus is an important human foodborne pathogen whose transmission is associated with the consumption of contaminated seafood, with a growing number of infections reported over recent years worldwide. A multilocus sequence typing (MLST) database for V. parahaemolyticus was created in 2008, and a large number of clones have been identified, causing severe outbreaks worldwide (sequence type 3 [ST3]), recurrent outbreaks in certain regions (e.g., ST36), or spreading to other regions where they are nonendemic (e.g., ST88 or ST189). The current MLST scheme uses sequences of 7 genes to generate an ST, which results in a powerful tool for inferring the population structure of this pathogen, although with limited resolution, especially compared to pulsed-field gel electrophoresis (PFGE). The application of whole-genome sequencing (WGS) has become routine for trace back investigations, with core genome MLST (cgMLST) analysis as one of the most straightforward ways to explore complex genomic data in an epidemiological context. Therefore, there is a need to generate a new, portable, standardized, and more advanced system that provides higher resolution and discriminatory power among V. parahaemolyticus strains using WGS data. We sequenced 92 V. parahaemolyticus genomes and used the genome of strain RIMD 2210633 as a reference (with a total of 4,832 genes) to determine which genes were suitable for establishing a V. parahaemolyticus cgMLST scheme. This analysis resulted in the identification of 2,254 suitable core genes for use in the cgMLST scheme. To evaluate the performance of this scheme, we performed a cgMLST analysis of 92 newly sequenced genomes, plus an additional 142 strains with genomes available at NCBI. cgMLST analysis was able to distinguish related and unrelated strains, including those with the same ST, clearly showing its enhanced resolution over conventional MLST analysis. It also distinguished outbreak-related from non-outbreak-related strains within the same ST. The sequences obtained from this work were deposited and are available in the public database (http://pubmlst.org/vparahaemolyticus). The application of this cgMLST scheme to the characterization of V. parahaemolyticus strains provided by different laboratories from around the world will reveal the global picture of the epidemiology, spread, and evolution of this pathogen and will become a powerful tool for outbreak investigations, allowing for the unambiguous comparison of strains with global coverage. PMID:28330888

  13. Life-cycle analysis of dryland greenhouse gases affected by cropping sequence and nitrogen fertilization

    USDA-ARS?s Scientific Manuscript database

    Little information is available about management practices effect on net global warming potential (GWP) and greenhouse gas intensity (GHGI) under dryland cropping systems. We evaluated the effects of cropping sequences (conventional till malt barley-fallow [CTB-F], no-till malt barley-pea [NTB-P], a...

  14. Global ecological pattern of ammonia-oxidizing archaea.

    PubMed

    Cao, Huiluo; Auguet, Jean-Christophe; Gu, Ji-Dong

    2013-01-01

    The global distribution of ammonia-oxidizing archaea (AOA), which play a pivotal role in the nitrification process, has been confirmed through numerous ecological studies. Though newly available amoA (ammonia monooxygenase subunit A) gene sequences from new environments are accumulating rapidly in public repositories, a lack of information on the ecological and evolutionary factors shaping community assembly of AOA on the global scale is apparent. We conducted a meta-analysis on uncultured AOA using over ca. 6,200 archaeal amoA gene sequences, so as to reveal their community distribution patterns along a wide spectrum of physicochemical conditions and habitat types. The sequences were dereplicated at 95% identity level resulting in a dataset containing 1,476 archaeal amoA gene sequences from eight habitat types: namely soil, freshwater, freshwater sediment, estuarine sediment, marine water, marine sediment, geothermal system, and symbiosis. The updated comprehensive amoA phylogeny was composed of three major monophyletic clusters (i.e. Nitrosopumilus, Nitrosotalea, Nitrosocaldus) and a non-monophyletic cluster constituted mostly by soil and sediment sequences that we named Nitrososphaera. Diversity measurements indicated that marine and estuarine sediments as well as symbionts might be the largest reservoirs of AOA diversity. Phylogenetic analyses were further carried out using macroevolutionary analyses to explore the diversification pattern and rates of nitrifying archaea. In contrast to other habitats that displayed constant diversification rates, marine planktonic AOA interestingly exhibit a very recent and accelerating diversification rate congruent with the lowest phylogenetic diversity observed in their habitats. This result suggested the existence of AOA communities with different evolutionary history in the different habitats. Based on an up-to-date amoA phylogeny, this analysis provided insights into the possible evolutionary mechanisms and environmental parameters that shape AOA community assembly at global scale.

  15. Inter-laboratory evaluation of the EUROFORGEN Global ancestry-informative SNP panel by massively parallel sequencing using the Ion PGM™.

    PubMed

    Eduardoff, M; Gross, T E; Santos, C; de la Puente, M; Ballard, D; Strobl, C; Børsting, C; Morling, N; Fusco, L; Hussing, C; Egyed, B; Souto, L; Uacyisrael, J; Syndercombe Court, D; Carracedo, Á; Lareu, M V; Schneider, P M; Parson, W; Phillips, C; Parson, W; Phillips, C

    2016-07-01

    The EUROFORGEN Global ancestry-informative SNP (AIM-SNPs) panel is a forensic multiplex of 128 markers designed to differentiate an individual's ancestry from amongst the five continental population groups of Africa, Europe, East Asia, Native America, and Oceania. A custom multiplex of AmpliSeq™ PCR primers was designed for the Global AIM-SNPs to perform massively parallel sequencing using the Ion PGM™ system. This study assessed individual SNP genotyping precision using the Ion PGM™, the forensic sensitivity of the multiplex using dilution series, degraded DNA plus simple mixtures, and the ancestry differentiation power of the final panel design, which required substitution of three original ancestry-informative SNPs with alternatives. Fourteen populations that had not been previously analyzed were genotyped using the custom multiplex and these studies allowed assessment of genotyping performance by comparison of data across five laboratories. Results indicate a low level of genotyping error can still occur from sequence misalignment caused by homopolymeric tracts close to the target SNP, despite careful scrutiny of candidate SNPs at the design stage. Such sequence misalignment required the exclusion of component SNP rs2080161 from the Global AIM-SNPs panel. However, the overall genotyping precision and sensitivity of this custom multiplex indicates the Ion PGM™ assay for the Global AIM-SNPs is highly suitable for forensic ancestry analysis with massively parallel sequencing. Copyright © 2016 Elsevier Ireland Ltd. All rights reserved.

  16. Massively parallel sequencing of 32 forensic markers using the Precision ID GlobalFiler™ NGS STR Panel and the Ion PGM™ System.

    PubMed

    Wang, Zheng; Zhou, Di; Wang, Hui; Jia, Zhenjun; Liu, Jing; Qian, Xiaoqin; Li, Chengtao; Hou, Yiping

    2017-11-01

    Massively parallel sequencing (MPS) technologies have proved capable of sequencing the majority of the key forensic STR markers. By MPS, not only the repeat-length size but also sequence variations could be detected. Recently, Thermo Fisher Scientific has designed an advanced MPS 32-plex panel, named the Precision ID GlobalFiler™ NGS STR Panel, where the primer set has been designed specifically for the purpose of MPS technologies and the data analysis are supported by a new version HID STR Genotyper Plugin (V4.0). In this study, a series of experiments that evaluated concordance, reliability, sensitivity of detection, mixture analysis, and the ability to analyze case-type and challenged samples were conducted. In addition, 106 unrelated Han individuals were sequenced to perform genetic analyses of allelic diversity. As expected, MPS detected broader allele variations and gained higher power of discrimination and exclusion rate. MPS results were found to be concordant with current capillary electrophoresis methods, and single source complete profiles could be obtained stably using as little as 100pg of input DNA. Moreover, this MPS panel could be adapted to case-type samples and partial STR genotypes of the minor contributor could be detected up to 19:1 mixture. Aforementioned results indicate that the Precision ID GlobalFiler™ NGS STR Panel is reliable, robust and reproducible and have the potential to be used as a tool for human forensics. Copyright © 2017 Elsevier B.V. All rights reserved.

  17. RNA-Seq for Bacterial Gene Expression.

    PubMed

    Poulsen, Line Dahl; Vinther, Jeppe

    2018-06-01

    RNA sequencing (RNA-seq) has become the preferred method for global quantification of bacterial gene expression. With the continued improvements in sequencing technology and data analysis tools, the most labor-intensive and expensive part of an RNA-seq experiment is the preparation of sequencing libraries, which is also essential for the quality of the data obtained. Here, we present a straightforward and inexpensive basic protocol for preparation of strand-specific RNA-seq libraries from bacterial RNA as well as a computational pipeline for the data analysis of sequencing reads. The protocol is based on the Illumina platform and allows easy multiplexing of samples and the removal of sequencing reads that are PCR duplicates. © 2018 by John Wiley & Sons, Inc. © 2018 John Wiley & Sons, Inc.

  18. A global meta-analysis of Tuber ITS rDNA sequences: species diversity, host associations and long-distance dispersal

    Treesearch

    Gregory M. Bonito; Andrii P. Gryganskyi; James M. Trappe; Rytas Vilgalys

    2010-01-01

    Truffles (Tuber) are ectomycorrhizal fungi characterized by hypogeous fruitbodies. Their biodiversity, host associations and geographical distributions are not well documented. ITS rDNA sequences of Tuber are commonly recovered from molecular surveys of fungal communities, but most remain insufficiently identified making it...

  19. Analysis of time in establishing synchronization radio communication system with expanded spectrum conditions for communication with mobile robots

    NASA Astrophysics Data System (ADS)

    Latinovic, T. S.; Kalabic, S. B.; Barz, C. R.; Petrica, P. Paul; Pop-Vădean, A.

    2018-01-01

    This paper analyzes the influence of the Doppler Effect on the length of time to establish synchronization pseudorandom sequences in radio communications systems with an expanded spectrum. Also, this paper explores the possibility of using secure wireless communication for modular robots. Wireless communication could be used for local and global communication. We analyzed a radio communication system integrator, including the two effects of the Doppler signal on the duration of establishing synchronization of the received and locally generated pseudorandom sequence. The effects of the impact of the variability of the phase were analyzed between the said sequences and correspondence of the phases of these signals with the interval of time of acquisition of received sequences. An analysis of these impacts is essential in the transmission of signal and protection of the transfer of information in the communication systems with an expanded range (telecommunications, mobile telephony, Global Navigation Satellite System GNSS, and wireless communication). Results show that wireless communication can provide a safety approach for communication with mobile robots.

  20. A generalized global alignment algorithm.

    PubMed

    Huang, Xiaoqiu; Chao, Kun-Mao

    2003-01-22

    Homologous sequences are sometimes similar over some regions but different over other regions. Homologous sequences have a much lower global similarity if the different regions are much longer than the similar regions. We present a generalized global alignment algorithm for comparing sequences with intermittent similarities, an ordered list of similar regions separated by different regions. A generalized global alignment model is defined to handle sequences with intermittent similarities. A dynamic programming algorithm is designed to compute an optimal general alignment in time proportional to the product of sequence lengths and in space proportional to the sum of sequence lengths. The algorithm is implemented as a computer program named GAP3 (Global Alignment Program Version 3). The generalized global alignment model is validated by experimental results produced with GAP3 on both DNA and protein sequences. The GAP3 program extends the ability of standard global alignment programs to recognize homologous sequences of lower similarity. The GAP3 program is freely available for academic use at http://bioinformatics.iastate.edu/aat/align/align.html.

  1. Assessing Global Awareness over Short-Term Study Abroad Sequence: A Factor Analysis

    ERIC Educational Resources Information Center

    Kurt, Mark R.; Olitsky, Neal H.; Geis, Paul

    2013-01-01

    Academic study abroad programs are uniquely equipped to give students the opportunities to achieve outcomes for global citizenship (Langran, Langran, and Ozment 2009). These programs take students outside the confines of their home institutions and expose students to new cultures and languages while integrating academic content to enhance the…

  2. Multi-scale symbolic transfer entropy analysis of EEG

    NASA Astrophysics Data System (ADS)

    Yao, Wenpo; Wang, Jun

    2017-10-01

    From both global and local perspectives, we symbolize two kinds of EEG and analyze their dynamic and asymmetrical information using multi-scale transfer entropy. Multi-scale process with scale factor from 1 to 199 and step size of 2 is applied to EEG of healthy people and epileptic patients, and then the permutation with embedding dimension of 3 and global approach are used to symbolize the sequences. The forward and reverse symbol sequences are taken as the inputs of transfer entropy. Scale factor intervals of permutation and global way are (37, 57) and (65, 85) where the two kinds of EEG have satisfied entropy distinctions. When scale factor is 67, transfer entropy of the healthy and epileptic subjects of permutation, 0.1137 and 0.1028, have biggest difference. And the corresponding values of the global symbolization is 0.0641 and 0.0601 which lies in the scale factor of 165. Research results show that permutation which takes contribution of local information has better distinction and is more effectively applied to our multi-scale transfer entropy analysis of EEG.

  3. Defining a Core Genome Multilocus Sequence Typing Scheme for the Global Epidemiology of Vibrio parahaemolyticus.

    PubMed

    Gonzalez-Escalona, Narjol; Jolley, Keith A; Reed, Elizabeth; Martinez-Urtaza, Jaime

    2017-06-01

    Vibrio parahaemolyticus is an important human foodborne pathogen whose transmission is associated with the consumption of contaminated seafood, with a growing number of infections reported over recent years worldwide. A multilocus sequence typing (MLST) database for V. parahaemolyticus was created in 2008, and a large number of clones have been identified, causing severe outbreaks worldwide (sequence type 3 [ST3]), recurrent outbreaks in certain regions (e.g., ST36), or spreading to other regions where they are nonendemic (e.g., ST88 or ST189). The current MLST scheme uses sequences of 7 genes to generate an ST, which results in a powerful tool for inferring the population structure of this pathogen, although with limited resolution, especially compared to pulsed-field gel electrophoresis (PFGE). The application of whole-genome sequencing (WGS) has become routine for trace back investigations, with core genome MLST (cgMLST) analysis as one of the most straightforward ways to explore complex genomic data in an epidemiological context. Therefore, there is a need to generate a new, portable, standardized, and more advanced system that provides higher resolution and discriminatory power among V. parahaemolyticus strains using WGS data. We sequenced 92 V. parahaemolyticus genomes and used the genome of strain RIMD 2210633 as a reference (with a total of 4,832 genes) to determine which genes were suitable for establishing a V. parahaemolyticus cgMLST scheme. This analysis resulted in the identification of 2,254 suitable core genes for use in the cgMLST scheme. To evaluate the performance of this scheme, we performed a cgMLST analysis of 92 newly sequenced genomes, plus an additional 142 strains with genomes available at NCBI. cgMLST analysis was able to distinguish related and unrelated strains, including those with the same ST, clearly showing its enhanced resolution over conventional MLST analysis. It also distinguished outbreak-related from non-outbreak-related strains within the same ST. The sequences obtained from this work were deposited and are available in the public database (http://pubmlst.org/vparahaemolyticus). The application of this cgMLST scheme to the characterization of V. parahaemolyticus strains provided by different laboratories from around the world will reveal the global picture of the epidemiology, spread, and evolution of this pathogen and will become a powerful tool for outbreak investigations, allowing for the unambiguous comparison of strains with global coverage. Copyright © 2017 Gonzalez-Escalona et al.

  4. Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments.

    PubMed

    Daily, Jeff

    2016-02-10

    Sequence alignment algorithms are a key component of many bioinformatics applications. Though various fast Smith-Waterman local sequence alignment implementations have been developed for x86 CPUs, most are embedded into larger database search tools. In addition, fast implementations of Needleman-Wunsch global sequence alignment and its semi-global variants are not as widespread. This article presents the first software library for local, global, and semi-global pairwise intra-sequence alignments and improves the performance of previous intra-sequence implementations. A faster intra-sequence local pairwise alignment implementation is described and benchmarked, including new global and semi-global variants. Using a 375 residue query sequence a speed of 136 billion cell updates per second (GCUPS) was achieved on a dual Intel Xeon E5-2670 24-core processor system, the highest reported for an implementation based on Farrar's 'striped' approach. Rognes's SWIPE optimal database search application is still generally the fastest available at 1.2 to at best 2.4 times faster than Parasail for sequences shorter than 500 amino acids. However, Parasail was faster for longer sequences. For global alignments, Parasail's prefix scan implementation is generally the fastest, faster even than Farrar's 'striped' approach, however the opal library is faster for single-threaded applications. The software library is designed for 64 bit Linux, OS X, or Windows on processors with SSE2, SSE41, or AVX2. Source code is available from https://github.com/jeffdaily/parasail under the Battelle BSD-style license. Applications that require optimal alignment scores could benefit from the improved performance. For the first time, SIMD global, semi-global, and local alignments are available in a stand-alone C library.

  5. Genome and Transcriptome Sequencing of the Ostreid herpesvirus 1 From Tomales Bay, California

    NASA Astrophysics Data System (ADS)

    Burge, C. A.; Langevin, S.; Closek, C. J.; Roberts, S. B.; Friedman, C. S.

    2016-02-01

    Mass mortalities of larval and seed bivalve molluscs attributed to the Ostreid herpesvirus 1 (OsHV-1) occur globally. OsHV-1 was fully sequenced and characterized as a member of the Family Malacoherpesviridae. Multiple strains of OsHV-1 exist and may vary in virulence, i.e. OsHV-1 µvar. For most global variants of OsHV-1, sequence data is limited to PCR-based sequencing of segments, including two recent genomes. In the United States, OsHV-1 is limited to detection in adjacent embayments in California, Tomales and Drakes bays. Limited DNA sequence data of OsHV-1 infecting oysters in Tomales Bay indicates the virus detected in Tomales Bay is similar but not identical to any one global variant of OsHV-1. In order to better understand both strain variation and virulence of OsHV-1 infecting oysters in Tomales Bay, we used genomic and transcriptomic sequencing. Meta-genomic sequencing (Illumina MiSeq) was conducted from infected oysters (n=4 per year) collected in 2003, 2007, and 2014, where full OsHV-1 genome sequences and low overall microbial diversity were achieved from highly infected oysters. Increased microbial diversity was detected in three of four samples sequenced from 2003, where qPCR based genome copy numbers of OsHV-1 were lower. Expression analysis (SOLiD RNA sequencing) of OsHV-1 genes expressed in oyster larvae at 24 hours post exposure revealed a nearly complete transcriptome, with several highly expressed genes, which are similar to recent transcriptomic analyses of other OsHV-1 variants. Taken together, our results indicate that genome and transcriptome sequencing may be powerful tools in understanding both strain variation and virulence of non-culturable marine viruses.

  6. Molecular Analysis of Methanogen Richness in Landfill and Marshland Targeting 16S rDNA Sequences

    PubMed Central

    Yadav, Shailendra; Kundu, Sharbadeb; Ghosh, Sankar K.; Maitra, S. S.

    2015-01-01

    Methanogens, a key contributor in global carbon cycling, methane emission, and alternative energy production, generate methane gas via anaerobic digestion of organic matter. The methane emission potential depends upon methanogenic diversity and activity. Since they are anaerobes and difficult to isolate and culture, their diversity present in the landfill sites of Delhi and marshlands of Southern Assam, India, was analyzed using molecular techniques like 16S rDNA sequencing, DGGE, and qPCR. The sequencing results indicated the presence of methanogens belonging to the seventh order and also the order Methanomicrobiales in the Ghazipur and Bhalsawa landfill sites of Delhi. Sequences, related to the phyla Crenarchaeota (thermophilic) and Thaumarchaeota (mesophilic), were detected from marshland sites of Southern Assam, India. Jaccard analysis of DGGE gel using Gel2K showed three main clusters depending on the number and similarity of band patterns. The copy number analysis of hydrogenotrophic methanogens using qPCR indicates higher abundance in landfill sites of Delhi as compared to the marshlands of Southern Assam. The knowledge about “methanogenic archaea composition” and “abundance” in the contrasting ecosystems like “landfill” and “marshland” may reorient our understanding of the Archaea inhabitants. This study could shed light on the relationship between methane-dynamics and the global warming process. PMID:26568700

  7. A communal catalogue reveals Earth's multiscale microbial diversity.

    PubMed

    Thompson, Luke R; Sanders, Jon G; McDonald, Daniel; Amir, Amnon; Ladau, Joshua; Locey, Kenneth J; Prill, Robert J; Tripathi, Anupriya; Gibbons, Sean M; Ackermann, Gail; Navas-Molina, Jose A; Janssen, Stefan; Kopylova, Evguenia; Vázquez-Baeza, Yoshiki; González, Antonio; Morton, James T; Mirarab, Siavash; Zech Xu, Zhenjiang; Jiang, Lingjing; Haroon, Mohamed F; Kanbar, Jad; Zhu, Qiyun; Jin Song, Se; Kosciolek, Tomasz; Bokulich, Nicholas A; Lefler, Joshua; Brislawn, Colin J; Humphrey, Gregory; Owens, Sarah M; Hampton-Marcell, Jarrad; Berg-Lyons, Donna; McKenzie, Valerie; Fierer, Noah; Fuhrman, Jed A; Clauset, Aaron; Stevens, Rick L; Shade, Ashley; Pollard, Katherine S; Goodwin, Kelly D; Jansson, Janet K; Gilbert, Jack A; Knight, Rob

    2017-11-23

    Our growing awareness of the microbial world's importance and diversity contrasts starkly with our limited understanding of its fundamental structure. Despite recent advances in DNA sequencing, a lack of standardized protocols and common analytical frameworks impedes comparisons among studies, hindering the development of global inferences about microbial life on Earth. Here we present a meta-analysis of microbial community samples collected by hundreds of researchers for the Earth Microbiome Project. Coordinated protocols and new analytical methods, particularly the use of exact sequences instead of clustered operational taxonomic units, enable bacterial and archaeal ribosomal RNA gene sequences to be followed across multiple studies and allow us to explore patterns of diversity at an unprecedented scale. The result is both a reference database giving global context to DNA sequence data and a framework for incorporating data from future studies, fostering increasingly complete characterization of Earth's microbial diversity.

  8. Global molecular genetic analysis of porcine circovirus type 2 (PCV2) sequences confirms the presence of four main PCV2 genotypes and reveals a rapid increase of PCV2d.

    PubMed

    Xiao, Chao-Ting; Halbur, Patrick G; Opriessnig, Tanja

    2015-07-01

    The oldest porcine circovirus type 2 (PCV2) sequence dates back to 1962 and is among several hundreds of publicly available PCV2 sequences. Despite this resource, few studies have investigated the global genetic diversity of PCV2. To evaluate the phylogenetic relationship of PCV2 strains, 1680 PCV2 open reading frame 2 (ORF2) sequences were compared and analysed by methods of neighbour-joining, maximum-likelihood, Bayesian inference and network analysis. Four distinct clades were consistently identified and included PCV2a, PCV2b, PCV2c and PCV2d; the p-distance between PCV2d and PCV2b was 0.055±0.008, larger than the PCV2 genotype-definition cut-off of 0.035, supporting PCV2d as an independent genotype. Among the 1680 sequences, 278-285 (16.5-17 %) were classified as PCV2a, 1007-1058 (59.9-63 %) as PCV2b, three (0.2 %) as PCV2c and 322-323 (19.2 %) as PCV2d, with the remaining 12-78 sequences (0.7-4.6 %) classified as intermediate clades or strains by the various methods. Classification of strains to genotypes differed based on the number of sequences used for the analysis, indicating that sample size is important when determining classification and assessing PCV2 trends and shifts. PCV2d was initially identified in 1999 in samples collected in Switzerland, now appears to be widespread in China and has been present in North America since 2012. During 2012-2013, 37 % of all investigated PCV2 sequences from US pigs were classified as PCV2d and overall data analysis suggests an ongoing genotype shift from PCV2b towards PCV2d. The present analyses indicate that PCV2d emerged approximately 20 years ago.

  9. Analysis of correlated mutations in HIV-1 protease using spectral clustering.

    PubMed

    Liu, Ying; Eyal, Eran; Bahar, Ivet

    2008-05-15

    The ability of human immunodeficiency virus-1 (HIV-1) protease to develop mutations that confer multi-drug resistance (MDR) has been a major obstacle in designing rational therapies against HIV. Resistance is usually imparted by a cooperative mechanism that can be elucidated by a covariance analysis of sequence data. Identification of such correlated substitutions of amino acids may be obscured by evolutionary noise. HIV-1 protease sequences from patients subjected to different specific treatments (set 1), and from untreated patients (set 2) were subjected to sequence covariance analysis by evaluating the mutual information (MI) between all residue pairs. Spectral clustering of the resulting covariance matrices disclosed two distinctive clusters of correlated residues: the first, observed in set 1 but absent in set 2, contained residues involved in MDR acquisition; and the second, included those residues differentiated in the various HIV-1 protease subtypes, shortly referred to as the phylogenetic cluster. The MDR cluster occupies sites close to the central symmetry axis of the enzyme, which overlap with the global hinge region identified from coarse-grained normal-mode analysis of the enzyme structure. The phylogenetic cluster, on the other hand, occupies solvent-exposed and highly mobile regions. This study demonstrates (i) the possibility of distinguishing between the correlated substitutions resulting from neutral mutations and those induced by MDR upon appropriate clustering analysis of sequence covariance data and (ii) a connection between global dynamics and functional substitution of amino acids.

  10. Resolving the Origin of Rabbit Hemorrhagic Disease Virus: Insights from an Investigation of the Viral Stocks Released in Australia

    PubMed Central

    Eden, John-Sebastian; Read, Andrew J.; Duckworth, Janine A.; Strive, Tanja

    2015-01-01

    To resolve the evolutionary history of rabbit hemorrhagic disease virus (RHDV), we performed a genomic analysis of the viral stocks imported and released as a biocontrol measure in Australia, as well as a global phylogenetic analysis. Importantly, conflicts were identified between the sequences determined here and those previously published that may have affected evolutionary rate estimates. By removing likely erroneous sequences, we show that RHDV emerged only shortly before its initial description in China. PMID:26378178

  11. A Polyglot Approach to Bioinformatics Data Integration: A Phylogenetic Analysis of HIV-1

    PubMed Central

    Reisman, Steven; Hatzopoulos, Thomas; Läufer, Konstantin; Thiruvathukal, George K.; Putonti, Catherine

    2016-01-01

    As sequencing technologies continue to drop in price and increase in throughput, new challenges emerge for the management and accessibility of genomic sequence data. We have developed a pipeline for facilitating the storage, retrieval, and subsequent analysis of molecular data, integrating both sequence and metadata. Taking a polyglot approach involving multiple languages, libraries, and persistence mechanisms, sequence data can be aggregated from publicly available and local repositories. Data are exposed in the form of a RESTful web service, formatted for easy querying, and retrieved for downstream analyses. As a proof of concept, we have developed a resource for annotated HIV-1 sequences. Phylogenetic analyses were conducted for >6,000 HIV-1 sequences revealing spatial and temporal factors influence the evolution of the individual genes uniquely. Nevertheless, signatures of origin can be extrapolated even despite increased globalization. The approach developed here can easily be customized for any species of interest. PMID:26819543

  12. Local-global analysis of crack growth in continuously reinfoced ceramic matrix composites

    NASA Technical Reports Server (NTRS)

    Ballarini, Roberto; Ahmed, Shamim

    1989-01-01

    This paper describes the development of a mathematical model for predicting the strength and micromechanical failure characteristics of continuously reinforced ceramic matrix composites. The local-global analysis models the vicinity of a propagating crack tip as a local heterogeneous region (LHR) consisting of spring-like representation of the matrix, fibers and interfaces. Parametric studies are conducted to investigate the effects of LHR size, component properties, and interface conditions on the strength and sequence of the failure processes in the unidirectional composite system.

  13. High-Resolution Melting Analysis for Rapid Detection of Sequence Type 131 Escherichia coli.

    PubMed

    Harrison, Lucas B; Hanson, Nancy D

    2017-06-01

    Escherichia coli isolates belonging to the sequence type 131 (ST131) clonal complex have been associated with the global distribution of fluoroquinolone and β-lactam resistance. Whole-genome sequencing and multilocus sequence typing identify sequence type but are expensive when evaluating large numbers of samples. This study was designed to develop a cost-effective screening tool using high-resolution melting (HRM) analysis to differentiate ST131 from non-ST131 E. coli in large sample populations in the absence of sequence analysis. The method was optimized using DNA from 12 E. coli isolates. Singleplex PCR was performed using 10 ng of DNA, Type-it HRM buffer, and multilocus sequence typing primers and was followed by multiplex PCR. The amplicon sizes ranged from 630 to 737 bp. Melt temperature peaks were determined by performing HRM analysis at 0.1°C resolution from 50 to 95°C on a Rotor-Gene Q 5-plex HRM system. Derivative melt curves were compared between sequence types and analyzed by principal component analysis. A blinded study of 191 E. coli isolates of ST131 and unknown sequence types validated this methodology. This methodology returned 99.2% specificity (124 true negatives and 1 false positive) and 100% sensitivity (66 true positives and 0 false negatives). This HRM methodology distinguishes ST131 from non-ST131 E. coli without sequence analysis. The analysis can be accomplished in about 3 h in any laboratory with an HRM-capable instrument and principal component analysis software. Therefore, this assay is a fast and cost-effective alternative to sequencing-based ST131 identification. Copyright © 2017 Harrison and Hanson.

  14. Single-Cell RNA-Sequencing: Assessment of Differential Expression Analysis Methods.

    PubMed

    Dal Molin, Alessandra; Baruzzo, Giacomo; Di Camillo, Barbara

    2017-01-01

    The sequencing of the transcriptomes of single-cells, or single-cell RNA-sequencing, has now become the dominant technology for the identification of novel cell types and for the study of stochastic gene expression. In recent years, various tools for analyzing single-cell RNA-sequencing data have been proposed, many of them with the purpose of performing differentially expression analysis. In this work, we compare four different tools for single-cell RNA-sequencing differential expression, together with two popular methods originally developed for the analysis of bulk RNA-sequencing data, but largely applied to single-cell data. We discuss results obtained on two real and one synthetic dataset, along with considerations about the perspectives of single-cell differential expression analysis. In particular, we explore the methods performance in four different scenarios, mimicking different unimodal or bimodal distributions of the data, as characteristic of single-cell transcriptomics. We observed marked differences between the selected methods in terms of precision and recall, the number of detected differentially expressed genes and the overall performance. Globally, the results obtained in our study suggest that is difficult to identify a best performing tool and that efforts are needed to improve the methodologies for single-cell RNA-sequencing data analysis and gain better accuracy of results.

  15. Information theory applications for biological sequence analysis.

    PubMed

    Vinga, Susana

    2014-05-01

    Information theory (IT) addresses the analysis of communication systems and has been widely applied in molecular biology. In particular, alignment-free sequence analysis and comparison greatly benefited from concepts derived from IT, such as entropy and mutual information. This review covers several aspects of IT applications, ranging from genome global analysis and comparison, including block-entropy estimation and resolution-free metrics based on iterative maps, to local analysis, comprising the classification of motifs, prediction of transcription factor binding sites and sequence characterization based on linguistic complexity and entropic profiles. IT has also been applied to high-level correlations that combine DNA, RNA or protein features with sequence-independent properties, such as gene mapping and phenotype analysis, and has also provided models based on communication systems theory to describe information transmission channels at the cell level and also during evolutionary processes. While not exhaustive, this review attempts to categorize existing methods and to indicate their relation with broader transversal topics such as genomic signatures, data compression and complexity, time series analysis and phylogenetic classification, providing a resource for future developments in this promising area.

  16. Graph pyramids for protein function prediction

    PubMed Central

    2015-01-01

    Background Uncovering the hidden organizational characteristics and regularities among biological sequences is the key issue for detailed understanding of an underlying biological phenomenon. Thus pattern recognition from nucleic acid sequences is an important affair for protein function prediction. As proteins from the same family exhibit similar characteristics, homology based approaches predict protein functions via protein classification. But conventional classification approaches mostly rely on the global features by considering only strong protein similarity matches. This leads to significant loss of prediction accuracy. Methods Here we construct the Protein-Protein Similarity (PPS) network, which captures the subtle properties of protein families. The proposed method considers the local as well as the global features, by examining the interactions among 'weakly interacting proteins' in the PPS network and by using hierarchical graph analysis via the graph pyramid. Different underlying properties of the protein families are uncovered by operating the proposed graph based features at various pyramid levels. Results Experimental results on benchmark data sets show that the proposed hierarchical voting algorithm using graph pyramid helps to improve computational efficiency as well the protein classification accuracy. Quantitatively, among 14,086 test sequences, on an average the proposed method misclassified only 21.1 sequences whereas baseline BLAST score based global feature matching method misclassified 362.9 sequences. With each correctly classified test sequence, the fast incremental learning ability of the proposed method further enhances the training model. Thus it has achieved more than 96% protein classification accuracy using only 20% per class training data. PMID:26044522

  17. Graph pyramids for protein function prediction.

    PubMed

    Sandhan, Tushar; Yoo, Youngjun; Choi, Jin; Kim, Sun

    2015-01-01

    Uncovering the hidden organizational characteristics and regularities among biological sequences is the key issue for detailed understanding of an underlying biological phenomenon. Thus pattern recognition from nucleic acid sequences is an important affair for protein function prediction. As proteins from the same family exhibit similar characteristics, homology based approaches predict protein functions via protein classification. But conventional classification approaches mostly rely on the global features by considering only strong protein similarity matches. This leads to significant loss of prediction accuracy. Here we construct the Protein-Protein Similarity (PPS) network, which captures the subtle properties of protein families. The proposed method considers the local as well as the global features, by examining the interactions among 'weakly interacting proteins' in the PPS network and by using hierarchical graph analysis via the graph pyramid. Different underlying properties of the protein families are uncovered by operating the proposed graph based features at various pyramid levels. Experimental results on benchmark data sets show that the proposed hierarchical voting algorithm using graph pyramid helps to improve computational efficiency as well the protein classification accuracy. Quantitatively, among 14,086 test sequences, on an average the proposed method misclassified only 21.1 sequences whereas baseline BLAST score based global feature matching method misclassified 362.9 sequences. With each correctly classified test sequence, the fast incremental learning ability of the proposed method further enhances the training model. Thus it has achieved more than 96% protein classification accuracy using only 20% per class training data.

  18. Leptospira species molecular epidemiology in the genomic era.

    PubMed

    Caimi, K; Repetto, S A; Varni, V; Ruybal, P

    2017-10-01

    Leptospirosis is a zoonotic disease which global burden is increasing often related to climatic change. Hundreds of whole genome sequences from worldwide isolates of Leptospira spp. are available nowadays, together with online tools that permit to assign MLST sequence types (STs) directly from raw sequence data. In this work we have applied R7L-MLST to near 500 genomes and strains collection globally distributed. All 10 pathogenic species as well as intermediate were typed using this MLST scheme. The correlation observed between STs and serogroups in our previous work, is still satisfied with this higher dataset sustaining the implementation of MLST to assist serological classification as a complementary approach. Bayesian phylogenetic analysis of concatenated sequences from R7-MLST loci allowed us to resolve taxonomic inconsistencies but also showed that events such as recombination, gene conversion or lateral gene transfer played an important role in the evolution of Leptospira genus. Whole genome sequencing allows us to contribute with suitable epidemiologic information useful to apply in the design of control strategies and also in diagnostic methods for this illness. Copyright © 2017 Elsevier B.V. All rights reserved.

  19. Phylogeography of Influenza A(H3N2) Virus in Peru, 2010-2012.

    PubMed

    Pollett, Simon; Nelson, Martha I; Kasper, Matthew; Tinoco, Yeny; Simons, Mark; Romero, Candice; Silva, Marita; Lin, Xudong; Halpin, Rebecca A; Fedorova, Nadia; Stockwell, Timothy B; Wentworth, David; Holmes, Edward C; Bausch, Daniel G

    2015-08-01

    It remains unclear whether lineages of influenza A(H3N2) virus can persist in the tropics and seed temperate areas. We used viral gene sequence data sampled from Peru to test this source-sink model for a Latin American country. Viruses were obtained during 2010-2012 from influenza surveillance cohorts in Cusco, Tumbes, Puerto Maldonado, and Lima. Specimens positive for influenza A(H3N2) virus were randomly selected and underwent hemagglutinin sequencing and phylogeographic analyses. Analysis of 389 hemagglutinin sequences from Peru and 2,192 global sequences demonstrated interseasonal extinction of Peruvian lineages. Extensive mixing occurred with global clades, but some spatial structure was observed at all sites; this structure was weakest in Lima and Puerto Maldonado, indicating that these locations may experience greater viral traffic. The broad diversity and co-circulation of many simultaneous lineages of H3N2 virus in Peru suggests that this country should not be overlooked as a potential source for novel pandemic strains.

  20. Phylogeography of Influenza A(H3N2) Virus in Peru, 2010–2012

    PubMed Central

    Nelson, Martha I.; Kasper, Matthew; Tinoco, Yeny; Simons, Mark; Romero, Candice; Silva, Marita; Lin, Xudong; Halpin, Rebecca A.; Fedorova, Nadia; Stockwell, Timothy B.; Wentworth, David; Holmes, Edward C.; Bausch, Daniel G.

    2015-01-01

    It remains unclear whether lineages of influenza A(H3N2) virus can persist in the tropics and seed temperate areas. We used viral gene sequence data sampled from Peru to test this source–sink model for a Latin American country. Viruses were obtained during 2010–2012 from influenza surveillance cohorts in Cusco, Tumbes, Puerto Maldonado, and Lima. Specimens positive for influenza A(H3N2) virus were randomly selected and underwent hemagglutinin sequencing and phylogeographic analyses. Analysis of 389 hemagglutinin sequences from Peru and 2,192 global sequences demonstrated interseasonal extinction of Peruvian lineages. Extensive mixing occurred with global clades, but some spatial structure was observed at all sites; this structure was weakest in Lima and Puerto Maldonado, indicating that these locations may experience greater viral traffic. The broad diversity and co-circulation of many simultaneous lineages of H3N2 virus in Peru suggests that this country should not be overlooked as a potential source for novel pandemic strains. PMID:26196599

  1. Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daily, Jeffrey A.

    Sequence alignment algorithms are a key component of many bioinformatics applications. Though various fast Smith-Waterman local sequence alignment implementations have been developed for x86 CPUs, most are embedded into larger database search tools. In addition, fast implementations of Needleman-Wunsch global sequence alignment and its semi-global variants are not as widespread. This article presents the first software library for local, global, and semi-global pairwise intra-sequence alignments and improves the performance of previous intra-sequence implementations. As a result, a faster intra-sequence pairwise alignment implementation is described and benchmarked. Using a 375 residue query sequence a speed of 136 billion cell updates permore » second (GCUPS) was achieved on a dual Intel Xeon E5-2670 12-core processor system, the highest reported for an implementation based on Farrar’s ’striped’ approach. When using only a single thread, parasail was 1.7 times faster than Rognes’s SWIPE. For many score matrices, parasail is faster than BLAST. The software library is designed for 64 bit Linux, OS X, or Windows on processors with SSE2, SSE41, or AVX2. Source code is available from https://github.com/jeffdaily/parasail under the Battelle BSD-style license. In conclusion, applications that require optimal alignment scores could benefit from the improved performance. For the first time, SIMD global, semi-global, and local alignments are available in a stand-alone C library.« less

  2. Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments

    DOE PAGES

    Daily, Jeffrey A.

    2016-02-10

    Sequence alignment algorithms are a key component of many bioinformatics applications. Though various fast Smith-Waterman local sequence alignment implementations have been developed for x86 CPUs, most are embedded into larger database search tools. In addition, fast implementations of Needleman-Wunsch global sequence alignment and its semi-global variants are not as widespread. This article presents the first software library for local, global, and semi-global pairwise intra-sequence alignments and improves the performance of previous intra-sequence implementations. As a result, a faster intra-sequence pairwise alignment implementation is described and benchmarked. Using a 375 residue query sequence a speed of 136 billion cell updates permore » second (GCUPS) was achieved on a dual Intel Xeon E5-2670 12-core processor system, the highest reported for an implementation based on Farrar’s ’striped’ approach. When using only a single thread, parasail was 1.7 times faster than Rognes’s SWIPE. For many score matrices, parasail is faster than BLAST. The software library is designed for 64 bit Linux, OS X, or Windows on processors with SSE2, SSE41, or AVX2. Source code is available from https://github.com/jeffdaily/parasail under the Battelle BSD-style license. In conclusion, applications that require optimal alignment scores could benefit from the improved performance. For the first time, SIMD global, semi-global, and local alignments are available in a stand-alone C library.« less

  3. Analysis and Functional Annotation of an Expressed Sequence Tag Collection for Tropical Crop Sugarcane

    PubMed Central

    Vettore, André L.; da Silva, Felipe R.; Kemper, Edson L.; Souza, Glaucia M.; da Silva, Aline M.; Ferro, Maria Inês T.; Henrique-Silva, Flavio; Giglioti, Éder A.; Lemos, Manoel V.F.; Coutinho, Luiz L.; Nobrega, Marina P.; Carrer, Helaine; França, Suzelei C.; Bacci, Maurício; Goldman, Maria Helena S.; Gomes, Suely L.; Nunes, Luiz R.; Camargo, Luis E.A.; Siqueira, Walter J.; Van Sluys, Marie-Anne; Thiemann, Otavio H.; Kuramae, Eiko E.; Santelli, Roberto V.; Marino, Celso L.; Targon, Maria L.P.N.; Ferro, Jesus A.; Silveira, Henrique C.S.; Marini, Danyelle C.; Lemos, Eliana G.M.; Monteiro-Vitorello, Claudia B.; Tambor, José H.M.; Carraro, Dirce M.; Roberto, Patrícia G.; Martins, Vanderlei G.; Goldman, Gustavo H.; de Oliveira, Regina C.; Truffi, Daniela; Colombo, Carlos A.; Rossi, Magdalena; de Araujo, Paula G.; Sculaccio, Susana A.; Angella, Aline; Lima, Marleide M.A.; de Rosa, Vicente E.; Siviero, Fábio; Coscrato, Virginia E.; Machado, Marcos A.; Grivet, Laurent; Di Mauro, Sonia M.Z.; Nobrega, Francisco G.; Menck, Carlos F.M.; Braga, Marilia D.V.; Telles, Guilherme P.; Cara, Frank A.A.; Pedrosa, Guilherme; Meidanis, João; Arruda, Paulo

    2003-01-01

    To contribute to our understanding of the genome complexity of sugarcane, we undertook a large-scale expressed sequence tag (EST) program. More than 260,000 cDNA clones were partially sequenced from 26 standard cDNA libraries generated from different sugarcane tissues. After the processing of the sequences, 237,954 high-quality ESTs were identified. These ESTs were assembled into 43,141 putative transcripts. Of the assembled sequences, 35.6% presented no matches with existing sequences in public databases. A global analysis of the whole SUCEST data set indicated that 14,409 assembled sequences (33% of the total) contained at least one cDNA clone with a full-length insert. Annotation of the 43,141 assembled sequences associated almost 50% of the putative identified sugarcane genes with protein metabolism, cellular communication/signal transduction, bioenergetics, and stress responses. Inspection of the translated assembled sequences for conserved protein domains revealed 40,821 amino acid sequences with 1415 Pfam domains. Reassembling the consensus sequences of the 43,141 transcripts revealed a 22% redundancy in the first assembling. This indicated that possibly 33,620 unique genes had been identified and indicated that >90% of the sugarcane expressed genes were tagged. PMID:14613979

  4. Influenza Virus Database (IVDB): an integrated information resource and analysis platform for influenza virus research.

    PubMed

    Chang, Suhua; Zhang, Jiajie; Liao, Xiaoyun; Zhu, Xinxing; Wang, Dahai; Zhu, Jiang; Feng, Tao; Zhu, Baoli; Gao, George F; Wang, Jian; Yang, Huanming; Yu, Jun; Wang, Jing

    2007-01-01

    Frequent outbreaks of highly pathogenic avian influenza and the increasing data available for comparative analysis require a central database specialized in influenza viruses (IVs). We have established the Influenza Virus Database (IVDB) to integrate information and create an analysis platform for genetic, genomic, and phylogenetic studies of the virus. IVDB hosts complete genome sequences of influenza A virus generated by Beijing Institute of Genomics (BIG) and curates all other published IV sequences after expert annotation. Our Q-Filter system classifies and ranks all nucleotide sequences into seven categories according to sequence content and integrity. IVDB provides a series of tools and viewers for comparative analysis of the viral genomes, genes, genetic polymorphisms and phylogenetic relationships. A search system has been developed for users to retrieve a combination of different data types by setting search options. To facilitate analysis of global viral transmission and evolution, the IV Sequence Distribution Tool (IVDT) has been developed to display the worldwide geographic distribution of chosen viral genotypes and to couple genomic data with epidemiological data. The BLAST, multiple sequence alignment and phylogenetic analysis tools were integrated for online data analysis. Furthermore, IVDB offers instant access to pre-computed alignments and polymorphisms of IV genes and proteins, and presents the results as SNP distribution plots and minor allele distributions. IVDB is publicly available at http://influenza.genomics.org.cn.

  5. Genetic diversity assessment of anoxygenic photosynthetic bacteria by distance-based grouping analysis of pufM sequences.

    PubMed

    Zeng, Y H; Chen, X H; Jiao, N Z

    2007-12-01

    To assess how completely the diversity of anoxygenic phototrophic bacteria (APB) was sampled in natural environments. All nucleotide sequences of the APB marker gene pufM from cultures and environmental clones were retrieved from the GenBank database. A set of cutoff values (sequence distances 0.06, 0.15 and 0.48 for species, genus, and (sub)phylum levels, respectively) was established using a distance-based grouping program. Analysis of the environmental clones revealed that current efforts on APB isolation and sampling in natural environments are largely inadequate. Analysis of the average distance between each identified genus and an uncultured environmental pufM sequence indicated that the majority of cultured APB genera lack environmental representatives. The distance-based grouping method is fast and efficient for bulk functional gene sequences analysis. The results clearly show that we are at a relatively early stage in sampling the global richness of APB species. Periodical assessment will undoubtedly facilitate in-depth analysis of potential biogeographical distribution pattern of APB. This is the first attempt to assess the present understanding of APB diversity in natural environments. The method used is also useful for assessing the diversity of other functional genes.

  6. Sequencing at sea: challenges and experiences in Ion Torrent PGM sequencing during the 2013 Southern Line Islands Research Expedition

    PubMed Central

    Lim, Yan Wei; Cuevas, Daniel A.; Silva, Genivaldo Gueiros Z.; Aguinaldo, Kristen; Dinsdale, Elizabeth A.; Haas, Andreas F.; Hatay, Mark; Sanchez, Savannah E.; Wegley-Kelly, Linda; Dutilh, Bas E.; Harkins, Timothy T.; Lee, Clarence C.; Tom, Warren; Sandin, Stuart A.; Smith, Jennifer E.; Zgliczynski, Brian; Vermeij, Mark J.A.; Rohwer, Forest

    2014-01-01

    Genomics and metagenomics have revolutionized our understanding of marine microbial ecology and the importance of microbes in global geochemical cycles. However, the process of DNA sequencing has always been an abstract extension of the research expedition, completed once the samples were returned to the laboratory. During the 2013 Southern Line Islands Research Expedition, we started the first effort to bring next generation sequencing to some of the most remote locations on our planet. We successfully sequenced twenty six marine microbial genomes, and two marine microbial metagenomes using the Ion Torrent PGM platform on the Merchant Yacht Hanse Explorer. Onboard sequence assembly, annotation, and analysis enabled us to investigate the role of the microbes in the coral reef ecology of these islands and atolls. This analysis identified phosphonate as an important phosphorous source for microbes growing in the Line Islands and reinforced the importance of L-serine in marine microbial ecosystems. Sequencing in the field allowed us to propose hypotheses and conduct experiments and further sampling based on the sequences generated. By eliminating the delay between sampling and sequencing, we enhanced the productivity of the research expedition. By overcoming the hurdles associated with sequencing on a boat in the middle of the Pacific Ocean we proved the flexibility of the sequencing, annotation, and analysis pipelines. PMID:25177534

  7. Sequencing at sea: challenges and experiences in Ion Torrent PGM sequencing during the 2013 Southern Line Islands Research Expedition.

    PubMed

    Lim, Yan Wei; Cuevas, Daniel A; Silva, Genivaldo Gueiros Z; Aguinaldo, Kristen; Dinsdale, Elizabeth A; Haas, Andreas F; Hatay, Mark; Sanchez, Savannah E; Wegley-Kelly, Linda; Dutilh, Bas E; Harkins, Timothy T; Lee, Clarence C; Tom, Warren; Sandin, Stuart A; Smith, Jennifer E; Zgliczynski, Brian; Vermeij, Mark J A; Rohwer, Forest; Edwards, Robert A

    2014-01-01

    Genomics and metagenomics have revolutionized our understanding of marine microbial ecology and the importance of microbes in global geochemical cycles. However, the process of DNA sequencing has always been an abstract extension of the research expedition, completed once the samples were returned to the laboratory. During the 2013 Southern Line Islands Research Expedition, we started the first effort to bring next generation sequencing to some of the most remote locations on our planet. We successfully sequenced twenty six marine microbial genomes, and two marine microbial metagenomes using the Ion Torrent PGM platform on the Merchant Yacht Hanse Explorer. Onboard sequence assembly, annotation, and analysis enabled us to investigate the role of the microbes in the coral reef ecology of these islands and atolls. This analysis identified phosphonate as an important phosphorous source for microbes growing in the Line Islands and reinforced the importance of L-serine in marine microbial ecosystems. Sequencing in the field allowed us to propose hypotheses and conduct experiments and further sampling based on the sequences generated. By eliminating the delay between sampling and sequencing, we enhanced the productivity of the research expedition. By overcoming the hurdles associated with sequencing on a boat in the middle of the Pacific Ocean we proved the flexibility of the sequencing, annotation, and analysis pipelines.

  8. Sequence quality analysis tool for HIV type 1 protease and reverse transcriptase.

    PubMed

    Delong, Allison K; Wu, Mingham; Bennett, Diane; Parkin, Neil; Wu, Zhijin; Hogan, Joseph W; Kantor, Rami

    2012-08-01

    Access to antiretroviral therapy is increasing globally and drug resistance evolution is anticipated. Currently, protease (PR) and reverse transcriptase (RT) sequence generation is increasing, including the use of in-house sequencing assays, and quality assessment prior to sequence analysis is essential. We created a computational HIV PR/RT Sequence Quality Analysis Tool (SQUAT) that runs in the R statistical environment. Sequence quality thresholds are calculated from a large dataset (46,802 PR and 44,432 RT sequences) from the published literature ( http://hivdb.Stanford.edu ). Nucleic acid sequences are read into SQUAT, identified, aligned, and translated. Nucleic acid sequences are flagged if with >five 1-2-base insertions; >one 3-base insertion; >one deletion; >six PR or >18 RT ambiguous bases; >three consecutive PR or >four RT nucleic acid mutations; >zero stop codons; >three PR or >six RT ambiguous amino acids; >three consecutive PR or >four RT amino acid mutations; >zero unique amino acids; or <0.5% or >15% genetic distance from another submitted sequence. Thresholds are user modifiable. SQUAT output includes a summary report with detailed comments for troubleshooting of flagged sequences, histograms of pairwise genetic distances, neighbor joining phylogenetic trees, and aligned nucleic and amino acid sequences. SQUAT is a stand-alone, free, web-independent tool to ensure use of high-quality HIV PR/RT sequences in interpretation and reporting of drug resistance, while increasing awareness and expertise and facilitating troubleshooting of potentially problematic sequences.

  9. The Promise of Whole Genome Pathogen Sequencing for the Molecular Epidemiology of Emerging Aquaculture Pathogens

    PubMed Central

    Bayliss, Sion C.; Verner-Jeffreys, David W.; Bartie, Kerry L.; Aanensen, David M.; Sheppard, Samuel K.; Adams, Alexandra; Feil, Edward J.

    2017-01-01

    Aquaculture is the fastest growing food-producing sector, and the sustainability of this industry is critical both for global food security and economic welfare. The management of infectious disease represents a key challenge. Here, we discuss the opportunities afforded by whole genome sequencing of bacterial and viral pathogens of aquaculture to mitigate disease emergence and spread. We outline, by way of comparison, how sequencing technology is transforming the molecular epidemiology of pathogens of public health importance, emphasizing the importance of community-oriented databases and analysis tools. PMID:28217117

  10. Contribution of energy values to the analysis of global searching molecular dynamics simulations of transmembrane helical bundles.

    PubMed Central

    Torres, Jaume; Briggs, John A G; Arkin, Isaiah T

    2002-01-01

    Molecular interactions between transmembrane alpha-helices can be explored using global searching molecular dynamics simulations (GSMDS), a method that produces a group of probable low energy structures. We have shown previously that the correct model in various homooligomers is always located at the bottom of one of various possible energy basins. Unfortunately, the correct model is not necessarily the one with the lowest energy according to the computational protocol, which has resulted in overlooking of this parameter in favor of experimental data. In an attempt to use energetic considerations in the aforementioned analysis, we used global searching molecular dynamics simulations on three homooligomers of different sizes, the structures of which are known. As expected, our results show that even when the conformational space searched includes the correct structure, taking together simulations using both left and right handedness, the correct model does not necessarily have the lowest energy. However, for the models derived from the simulation that uses the correct handedness, the lowest energy model is always at, or very close to, the correct orientation. We hypothesize that this should also be true when simulations are performed using homologous sequences, and consequently lowest energy models with the right handedness should produce a cluster around a certain orientation. In contrast, using the wrong handedness the lowest energy structures for each sequence should appear at many different orientations. The rationale behind this is that, although more than one energy basin may exist, basins that do not contain the correct model will shift or disappear because they will be destabilized by at least one conservative (i.e. silent) mutation, whereas the basin containing the correct model will remain. This not only allows one to point to the possible handedness of the bundle, but can be used to overcome ambiguities arising from the use of homologous sequences in the analysis of global searching molecular dynamics simulations. In addition, because clustering of lowest energy models arising from homologous sequences only happens when the estimation of the helix tilt is correct, it may provide a validation for the helix tilt estimate. PMID:12023229

  11. Genomic Epidemiology of Vibrio cholerae O1 Associated with Floods, Pakistan, 2010

    PubMed Central

    Shah, Muhammad Ali; Mutreja, Ankur; Thomson, Nicholas; Baker, Stephen; Parkhill, Julian; Dougan, Gordon; Bokhari, Habib

    2014-01-01

    In August 2010, Pakistan experienced major floods and a subsequent cholera epidemic. To clarify the population dynamics and transmission of Vibrio cholerae in Pakistan, we sequenced the genomes of all V. cholerae O1 El Tor isolates and compared the sequences to a global collection of 146 V. cholerae strains. Within the global phylogeny, all isolates from Pakistan formed 2 new subclades (PSC-1 and PSC-2), lying in the third transmission wave of the seventh-pandemic lineage that could be distinguished by signature deletions and their antimicrobial susceptibilities. Geographically, PSC-1 isolates originated from the coast, whereas PSC-2 isolates originated from inland areas flooded by the Indus River. Single-nucleotide polymorphism accumulation analysis correlated river flow direction with the spread of PSC-2. We found at least 2 sources of cholera in Pakistan during the 2010 epidemic and illustrate the value of a global genomic data bank in contextualizing cholera outbreaks. PMID:24378019

  12. Genomic epidemiology of Vibrio cholerae O1 associated with floods, Pakistan, 2010.

    PubMed

    Shah, Muhammad Ali; Mutreja, Ankur; Thomson, Nicholas; Baker, Stephen; Parkhill, Julian; Dougan, Gordon; Bokhari, Habib; Wren, Brendan W

    2014-01-01

    In August 2010, Pakistan experienced major floods and a subsequent cholera epidemic. To clarify the population dynamics and transmission of Vibrio cholerae in Pakistan, we sequenced the genomes of all V. cholerae O1 El Tor isolates and compared the sequences to a global collection of 146 V. cholerae strains. Within the global phylogeny, all isolates from Pakistan formed 2 new subclades (PSC-1 and PSC-2), lying in the third transmission wave of the seventh-pandemic lineage that could be distinguished by signature deletions and their antimicrobial susceptibilities. Geographically, PSC-1 isolates originated from the coast, whereas PSC-2 isolates originated from inland areas flooded by the Indus River. Single-nucleotide polymorphism accumulation analysis correlated river flow direction with the spread of PSC-2. We found at least 2 sources of cholera in Pakistan during the 2010 epidemic and illustrate the value of a global genomic data bank in contextualizing cholera outbreaks.

  13. Comprehensive global amino acid sequence analysis of PB1F2 protein of influenza A H5N1 viruses and the influenza A virus subtypes responsible for the 20th‐century pandemics

    PubMed Central

    Pasricha, Gunisha; Mishra, Akhilesh C.; Chakrabarti, Alok K.

    2012-01-01

    Please cite this paper as: Pasricha et al. (2012) Comprehensive global amino acid sequence analysis of PB1F2 protein of influenza A H5N1 viruses and the Influenza A virus subtypes responsible for the 20th‐century pandemics. Influenza and Other Respiratory Viruses 7(4), 497–505. Background  PB1F2 is the 11th protein of influenza A virus translated from +1 alternate reading frame of PB1 gene. Since the discovery, varying sizes and functions of the PB1F2 protein of influenza A viruses have been reported. Selection of PB1 gene segment in the pandemics, variable size and pleiotropic effect of PB1F2 intrigued us to analyze amino acid sequences of this protein in various influenza A viruses. Methods  Amino acid sequences for PB1F2 protein of influenza A H5N1, H1N1, H2N2, and H3N2 subtypes were obtained from Influenza Research Database. Multiple sequence alignments of the PB1F2 protein sequences of the aforementioned subtypes were used to determine the size, variable and conserved domains and to perform mutational analysis. Results  Analysis showed that 96·4% of the H5N1 influenza viruses harbored full‐length PB1F2 protein. Except for the 2009 pandemic H1N1 virus, all the subtypes of the 20th‐century pandemic influenza viruses contained full‐length PB1F2 protein. Through the years, PB1F2 protein of the H1N1 and H3N2 viruses has undergone much variation. PB1F2 protein sequences of H5N1 viruses showed both human‐ and avian host‐specific conserved domains. Global database of PB1F2 protein revealed that N66S mutation was present only in 3·8% of the H5N1 strains. We found a novel mutation, N84S in the PB1F2 protein of 9·35% of the highly pathogenic avian influenza H5N1 influenza viruses. Conclusions  Varying sizes and mutations of the PB1F2 protein in different influenza A virus subtypes with pandemic potential were obtained. There was genetic divergence of the protein in various hosts which highlighted the host‐specific evolution of the virus. However, studies are required to correlate this sequence variability with the virulence and pathogenicity. PMID:22788742

  14. An Optimal Bahadur-Efficient Method in Detection of Sparse Signals with Applications to Pathway Analysis in Sequencing Association Studies.

    PubMed

    Dai, Hongying; Wu, Guodong; Wu, Michael; Zhi, Degui

    2016-01-01

    Next-generation sequencing data pose a severe curse of dimensionality, complicating traditional "single marker-single trait" analysis. We propose a two-stage combined p-value method for pathway analysis. The first stage is at the gene level, where we integrate effects within a gene using the Sequence Kernel Association Test (SKAT). The second stage is at the pathway level, where we perform a correlated Lancaster procedure to detect joint effects from multiple genes within a pathway. We show that the Lancaster procedure is optimal in Bahadur efficiency among all combined p-value methods. The Bahadur efficiency,[Formula: see text], compares sample sizes among different statistical tests when signals become sparse in sequencing data, i.e. ε →0. The optimal Bahadur efficiency ensures that the Lancaster procedure asymptotically requires a minimal sample size to detect sparse signals ([Formula: see text]). The Lancaster procedure can also be applied to meta-analysis. Extensive empirical assessments of exome sequencing data show that the proposed method outperforms Gene Set Enrichment Analysis (GSEA). We applied the competitive Lancaster procedure to meta-analysis data generated by the Global Lipids Genetics Consortium to identify pathways significantly associated with high-density lipoprotein cholesterol, low-density lipoprotein cholesterol, triglycerides, and total cholesterol.

  15. Repetitive DNA in the pea (Pisum sativum L.) genome: comprehensive characterization using 454 sequencing and comparison to soybean and Medicago truncatula

    PubMed Central

    Macas, Jiří; Neumann, Pavel; Navrátilová, Alice

    2007-01-01

    Background Extraordinary size variation of higher plant nuclear genomes is in large part caused by differences in accumulation of repetitive DNA. This makes repetitive DNA of great interest for studying the molecular mechanisms shaping architecture and function of complex plant genomes. However, due to methodological constraints of conventional cloning and sequencing, a global description of repeat composition is available for only a very limited number of higher plants. In order to provide further data required for investigating evolutionary patterns of repeated DNA within and between species, we used a novel approach based on massive parallel sequencing which allowed a comprehensive repeat characterization in our model species, garden pea (Pisum sativum). Results Analysis of 33.3 Mb sequence data resulted in quantification and partial sequence reconstruction of major repeat families occurring in the pea genome with at least thousands of copies. Our results showed that the pea genome is dominated by LTR-retrotransposons, estimated at 140,000 copies/1C. Ty3/gypsy elements are less diverse and accumulated to higher copy numbers than Ty1/copia. This is in part due to a large population of Ogre-like retrotransposons which alone make up over 20% of the genome. In addition to numerous types of mobile elements, we have discovered a set of novel satellite repeats and two additional variants of telomeric sequences. Comparative genome analysis revealed that there are only a few repeat sequences conserved between pea and soybean genomes. On the other hand, all major families of pea mobile elements are well represented in M. truncatula. Conclusion We have demonstrated that even in a species with a relatively large genome like pea, where a single 454-sequencing run provided only 0.77% coverage, the generated sequences were sufficient to reconstruct and analyze major repeat families corresponding to a total of 35–48% of the genome. These data provide a starting point for further investigations of legume plant genomes based on their global comparative analysis and for the development of more sophisticated approaches for data mining. PMID:18031571

  16. PHYLOViZ: phylogenetic inference and data visualization for sequence based typing methods

    PubMed Central

    2012-01-01

    Background With the decrease of DNA sequencing costs, sequence-based typing methods are rapidly becoming the gold standard for epidemiological surveillance. These methods provide reproducible and comparable results needed for a global scale bacterial population analysis, while retaining their usefulness for local epidemiological surveys. Online databases that collect the generated allelic profiles and associated epidemiological data are available but this wealth of data remains underused and are frequently poorly annotated since no user-friendly tool exists to analyze and explore it. Results PHYLOViZ is platform independent Java software that allows the integrated analysis of sequence-based typing methods, including SNP data generated from whole genome sequence approaches, and associated epidemiological data. goeBURST and its Minimum Spanning Tree expansion are used for visualizing the possible evolutionary relationships between isolates. The results can be displayed as an annotated graph overlaying the query results of any other epidemiological data available. Conclusions PHYLOViZ is a user-friendly software that allows the combined analysis of multiple data sources for microbial epidemiological and population studies. It is freely available at http://www.phyloviz.net. PMID:22568821

  17. Phylodynamic and Phylogeographic Patterns of the HIV Type 1 Subtype F1 Parenteral Epidemic in Romania

    PubMed Central

    Hué, Stéphane; Buckton, Andrew J.; Myers, Richard E.; Duiculescu, Dan; Ene, Luminita; Oprea, Cristiana; Tardei, Gratiela; Rugina, Sorin; Mardarescu, Mariana; Floch, Corinne; Notheis, Gundula; Zöhrer, Bettina; Cane, Patricia A.; Pillay, Deenan

    2012-01-01

    Abstract In the late 1980s an HIV-1 epidemic emerged in Romania that was dominated by subtype F1. The main route of infection is believed to be parenteral transmission in children. We sequenced partial pol coding regions of 70 subtype F1 samples from children and adolescents from the PENTA-EPPICC network of which 67 were from Romania. Phylogenetic reconstruction using the sequences and other publically available global subtype F sequences showed that 79% of Romanian F1 sequences formed a statistically robust monophyletic cluster. The monophyletic cluster was epidemiologically linked to parenteral transmission in children. Coalescent-based analysis dated the origins of the parenteral epidemic to 1983 [1981–1987; 95% HPD]. The analysis also shows that the epidemic's effective population size has remained fairly constant since the early 1990s suggesting limited onward spread of the virus within the population. Furthermore, phylogeographic analysis suggests that the root location of the parenteral epidemic was Bucharest. PMID:22251065

  18. First isolation of new canine parvovirus 2a from Tibetan mastiff and global analysis of the full-length VP2 gene of canine parvoviruses 2 in China.

    PubMed

    Zhong, Zhijun; Liang, Luqi; Zhao, Juan; Xu, Xiaoyang; Cao, Xuefeng; Liu, Xuehan; Zhou, Ziyao; Ren, Zhihua; Shen, Liuhong; Geng, Yi; Gu, Xiaobin; Peng, Guangneng

    2014-07-09

    Canine parvovirus 2 (CPV-2) was first identified in 1978, and is responsible for classic parvoviral enteritis. Despite the widespread vaccination of domestic carnivores, CPVs have remained important pathogens of domestic and wild carnivores. In this study, we isolated CPV-2 from Tibetan mastiffs and performed a global analysis of the complete VP2 gene sequences of CPV-2 strains in China. Six isolates were typed as new CPV-2a, according to key amino acid positions. On a phylogenetic tree, these six sequences formed a distinct clade. Five isolates occurred on the same branch as KF785794 from China and GQ379049 from Thailand; CPV-LS-ZA1 formed a separate subgroup with FJ435347 from China. One hundred ninety-eight sequences from various parts of China and the six sequences isolated here formed seven distinct clusters, indicating the high diversity of CPVs in China. Of 204 VP2 sequences, 183 (91.04%) encoded the mutation Ser297Ala, regardless of the antigenic type, implying that most Chinese CPV-2 strains contain the VP2 mutation Ser297Ala. However, the biological significance of this change from prototype CPV-2a/2b to new CPV-2a/2b types remains unclear. This study is the first to isolate new CPV-2a from the Tibetan mastiff. Our data show that new CPV-2a/2b variants are now circulating in China.

  19. Global MLST of Salmonella Typhi Revisited in Post-genomic Era: Genetic Conservation, Population Structure, and Comparative Genomics of Rare Sequence Types.

    PubMed

    Yap, Kien-Pong; Ho, Wing S; Gan, Han M; Chai, Lay C; Thong, Kwai L

    2016-01-01

    Typhoid fever, caused by Salmonella enterica serovar Typhi, remains an important public health burden in Southeast Asia and other endemic countries. Various genotyping methods have been applied to study the genetic variations of this human-restricted pathogen. Multilocus sequence typing (MLST) is one of the widely accepted methods, and recently, there is a growing interest in the re-application of MLST in the post-genomic era. In this study, we provide the global MLST distribution of S. Typhi utilizing both publicly available 1,826 S. Typhi genome sequences in addition to performing conventional MLST on S. Typhi strains isolated from various endemic regions spanning over a century. Our global MLST analysis confirms the predominance of two sequence types (ST1 and ST2) co-existing in the endemic regions. Interestingly, S. Typhi strains with ST8 are currently confined within the African continent. Comparative genomic analyses of ST8 and other rare STs with genomes of ST1/ST2 revealed unique mutations in important virulence genes such as flhB, sipC, and tviD that may explain the variations that differentiate between seemingly successful (widespread) and unsuccessful (poor dissemination) S. Typhi populations. Large scale whole-genome phylogeny demonstrated evidence of phylogeographical structuring and showed that ST8 may have diverged from the earlier ancestral population of ST1 and ST2, which later lost some of its fitness advantages, leading to poor worldwide dissemination. In response to the unprecedented increase in genomic data, this study demonstrates and highlights the utility of large-scale genome-based MLST as a quick and effective approach to narrow the scope of in-depth comparative genomic analysis and consequently provide new insights into the fine scale of pathogen evolution and population structure.

  20. Sensitive Next-Generation Sequencing Method Reveals Deep Genetic Diversity of HIV-1 in the Democratic Republic of the Congo.

    PubMed

    Rodgers, Mary A; Wilkinson, Eduan; Vallari, Ana; McArthur, Carole; Sthreshley, Larry; Brennan, Catherine A; Cloherty, Gavin; de Oliveira, Tulio

    2017-03-15

    As the epidemiological epicenter of the human immunodeficiency virus (HIV) pandemic, the Democratic Republic of the Congo (DRC) is a reservoir of circulating HIV strains exhibiting high levels of diversity and recombination. In this study, we characterized HIV specimens collected in two rural areas of the DRC between 2001 and 2003 to identify rare strains of HIV. The env gp41 region was sequenced and characterized for 172 HIV-positive specimens. The env sequences were predominantly subtype A (43.02%), but 7 other subtypes (33.14%), 20 circulating recombinant forms (CRFs; 11.63%), and 20 unclassified (11.63%) sequences were also found. Of the rare and unclassified subtypes, 18 specimens were selected for next-generation sequencing (NGS) by a modified HIV-switching mechanism at the 5' end of the RNA template (SMART) method to obtain full-genome sequences. NGS produced 14 new complete genomes, which included pure subtype C ( n = 2), D ( n = 1), F1 ( n = 1), H ( n = 3), and J ( n = 1) genomes. The two subtype C genomes and one of the subtype H genomes branched basal to their respective subtype branches but had no evidence of recombination. The remaining 6 genomes were complex recombinants of 2 or more subtypes, including subtypes A1, F, G, H, J, and K and unclassified fragments, including one subtype CRF25 isolate, which branched basal to all CRF25 references. Notably, all recombinant subtype H fragments branched basal to the H clade. Spatial-geographical analysis indicated that the diverse sequences identified here did not expand globally. The full-genome and subgenomic sequences identified in our study population significantly increase the documented diversity of the strains involved in the continually evolving HIV-1 pandemic. IMPORTANCE Very little is known about the ancestral HIV-1 strains that founded the global pandemic, and very few complete genome sequences are available from patients in the Congo Basin, where HIV-1 expanded early in the global pandemic. By sequencing a subgenomic fragment of the HIV-1 envelope from study participants in the DRC, we identified rare variants for complete genome sequencing. The basal branching of some of the complete genome sequences that we recovered suggests that these strains are more closely related to ancestral HIV-1 strains than to previously reported strains and is evidence that the local diversification of HIV in the DRC continues to outpace the diversity of global strains decades after the emergence of the pandemic. Copyright © 2017 Rodgers et al.

  1. Direct identification of non-polio enteroviruses in residual paralysis cases by analysis of VP1 sequences.

    PubMed

    Rahimi, Pooneh; Tabatabaie, H; Gouya, Mohammad M; Mahmudi, M; Musavi, T; Rad, K Samimi; Azad, T Mokhtari; Nategh, R

    2009-06-01

    The 66 serotypes of human enteroviruses (EVs) are classified into four species A-D, based on phylogenetic relationships in multiple genome regions. Partial VP(1) amplification and sequence analysis are reliable methods for identifying non-polio enterovirus serotypes, especially in negative cell culture specimens from patients with residual paralysis. In Iran during the years 2000-2002, there were 29 residual paralysis cases with negative cell (RD, HEp(2) and L(20)B) culture results. The genomic RNA was extracted from stool specimens from cases of residual paralysis and detected by amplification of the 5'-nontranslated region using RT-PCR with Pan-EV primers. Partial VP(1) amplification by semi-nested RT-PCR (snRT-PCR) and sequence analysis were done. Specimens from the 29 culture-negative cases contained echoviruses of six different serotypes. The global eradication of wild polioviruses is near and study of non-polio enteroviruses, which can cause poliomyelitis, is increasingly important to understand their pathogenesis. The VP(1) sequences, derived from the snRT-PCR products, allowed rapid molecular analysis of these non-polio strains.

  2. Association mining of dependency between time series

    NASA Astrophysics Data System (ADS)

    Hafez, Alaaeldin

    2001-03-01

    Time series analysis is considered as a crucial component of strategic control over a broad variety of disciplines in business, science and engineering. Time series data is a sequence of observations collected over intervals of time. Each time series describes a phenomenon as a function of time. Analysis on time series data includes discovering trends (or patterns) in a time series sequence. In the last few years, data mining has emerged and been recognized as a new technology for data analysis. Data Mining is the process of discovering potentially valuable patterns, associations, trends, sequences and dependencies in data. Data mining techniques can discover information that many traditional business analysis and statistical techniques fail to deliver. In this paper, we adapt and innovate data mining techniques to analyze time series data. By using data mining techniques, maximal frequent patterns are discovered and used in predicting future sequences or trends, where trends describe the behavior of a sequence. In order to include different types of time series (e.g. irregular and non- systematic), we consider past frequent patterns of the same time sequences (local patterns) and of other dependent time sequences (global patterns). We use the word 'dependent' instead of the word 'similar' for emphasis on real life time series where two time series sequences could be completely different (in values, shapes, etc.), but they still react to the same conditions in a dependent way. In this paper, we propose the Dependence Mining Technique that could be used in predicting time series sequences. The proposed technique consists of three phases: (a) for all time series sequences, generate their trend sequences, (b) discover maximal frequent trend patterns, generate pattern vectors (to keep information of frequent trend patterns), use trend pattern vectors to predict future time series sequences.

  3. MinION Analysis and Reference Consortium: Phase 1 data release and analysis

    PubMed Central

    Eccles, David A.; Zalunin, Vadim; Urban, John M.; Piazza, Paolo; Bowden, Rory J.; Paten, Benedict; Mwaigwisya, Solomon; Batty, Elizabeth M.; Simpson, Jared T.; Snutch, Terrance P.

    2015-01-01

    The advent of a miniaturized DNA sequencing device with a high-throughput contextual sequencing capability embodies the next generation of large scale sequencing tools. The MinION™ Access Programme (MAP) was initiated by Oxford Nanopore Technologies™ in April 2014, giving public access to their USB-attached miniature sequencing device. The MinION Analysis and Reference Consortium (MARC) was formed by a subset of MAP participants, with the aim of evaluating and providing standard protocols and reference data to the community. Envisaged as a multi-phased project, this study provides the global community with the Phase 1 data from MARC, where the reproducibility of the performance of the MinION was evaluated at multiple sites. Five laboratories on two continents generated data using a control strain of Escherichia coli K-12, preparing and sequencing samples according to a revised ONT protocol. Here, we provide the details of the protocol used, along with a preliminary analysis of the characteristics of typical runs including the consistency, rate, volume and quality of data produced. Further analysis of the Phase 1 data presented here, and additional experiments in Phase 2 of E. coli from MARC are already underway to identify ways to improve and enhance MinION performance. PMID:26834992

  4. Mitochondrial Disease Sequence Data Resource (MSeqDR): a global grass-roots consortium to facilitate deposition, curation, annotation, and integrated analysis of genomic data for the mitochondrial disease clinical and research communities.

    PubMed

    Falk, Marni J; Shen, Lishuang; Gonzalez, Michael; Leipzig, Jeremy; Lott, Marie T; Stassen, Alphons P M; Diroma, Maria Angela; Navarro-Gomez, Daniel; Yeske, Philip; Bai, Renkui; Boles, Richard G; Brilhante, Virginia; Ralph, David; DaRe, Jeana T; Shelton, Robert; Terry, Sharon F; Zhang, Zhe; Copeland, William C; van Oven, Mannis; Prokisch, Holger; Wallace, Douglas C; Attimonelli, Marcella; Krotoski, Danuta; Zuchner, Stephan; Gai, Xiaowu

    2015-03-01

    Success rates for genomic analyses of highly heterogeneous disorders can be greatly improved if a large cohort of patient data is assembled to enhance collective capabilities for accurate sequence variant annotation, analysis, and interpretation. Indeed, molecular diagnostics requires the establishment of robust data resources to enable data sharing that informs accurate understanding of genes, variants, and phenotypes. The "Mitochondrial Disease Sequence Data Resource (MSeqDR) Consortium" is a grass-roots effort facilitated by the United Mitochondrial Disease Foundation to identify and prioritize specific genomic data analysis needs of the global mitochondrial disease clinical and research community. A central Web portal (https://mseqdr.org) facilitates the coherent compilation, organization, annotation, and analysis of sequence data from both nuclear and mitochondrial genomes of individuals and families with suspected mitochondrial disease. This Web portal provides users with a flexible and expandable suite of resources to enable variant-, gene-, and exome-level sequence analysis in a secure, Web-based, and user-friendly fashion. Users can also elect to share data with other MSeqDR Consortium members, or even the general public, either by custom annotation tracks or through the use of a convenient distributed annotation system (DAS) mechanism. A range of data visualization and analysis tools are provided to facilitate user interrogation and understanding of genomic, and ultimately phenotypic, data of relevance to mitochondrial biology and disease. Currently available tools for nuclear and mitochondrial gene analyses include an MSeqDR GBrowse instance that hosts optimized mitochondrial disease and mitochondrial DNA (mtDNA) specific annotation tracks, as well as an MSeqDR locus-specific database (LSDB) that curates variant data on more than 1300 genes that have been implicated in mitochondrial disease and/or encode mitochondria-localized proteins. MSeqDR is integrated with a diverse array of mtDNA data analysis tools that are both freestanding and incorporated into an online exome-level dataset curation and analysis resource (GEM.app) that is being optimized to support needs of the MSeqDR community. In addition, MSeqDR supports mitochondrial disease phenotyping and ontology tools, and provides variant pathogenicity assessment features that enable community review, feedback, and integration with the public ClinVar variant annotation resource. A centralized Web-based informed consent process is being developed, with implementation of a Global Unique Identifier (GUID) system to integrate data deposited on a given individual from different sources. Community-based data deposition into MSeqDR has already begun. Future efforts will enhance capabilities to incorporate phenotypic data that enhance genomic data analyses. MSeqDR will fill the existing void in bioinformatics tools and centralized knowledge that are necessary to enable efficient nuclear and mtDNA genomic data interpretation by a range of shareholders across both clinical diagnostic and research settings. Ultimately, MSeqDR is focused on empowering the global mitochondrial disease community to better define and explore mitochondrial diseases. Copyright © 2014 Elsevier Inc. All rights reserved.

  5. Mitochondrial Disease Sequence Data Resource (MSeqDR): A global grass-roots consortium to facilitate deposition, curation, annotation, and integrated analysis of genomic data for the mitochondrial disease clinical and research communities

    PubMed Central

    Falk, Marni J.; Shen, Lishuang; Gonzalez, Michael; Leipzig, Jeremy; Lott, Marie T.; Stassen, Alphons P.M.; Diroma, Maria Angela; Navarro-Gomez, Daniel; Yeske, Philip; Bai, Renkui; Boles, Richard G.; Brilhante, Virginia; Ralph, David; DaRe, Jeana T.; Shelton, Robert; Terry, Sharon; Zhang, Zhe; Copeland, William C.; van Oven, Mannis; Prokisch, Holger; Wallace, Douglas C.; Attimonelli, Marcella; Krotoski, Danuta; Zuchner, Stephan; Gai, Xiaowu

    2014-01-01

    Success rates for genomic analyses of highly heterogeneous disorders can be greatly improved if a large cohort of patient data is assembled to enhance collective capabilities for accurate sequence variant annotation, analysis, and interpretation. Indeed, molecular diagnostics requires the establishment of robust data resources to enable data sharing that informs accurate understanding of genes, variants, and phenotypes. The “Mitochondrial Disease Sequence Data Resource (MSeqDR) Consortium” is a grass-roots effort facilitated by the United Mitochondrial Disease Foundation to identify and prioritize specific genomic data analysis needs of the global mitochondrial disease clinical and research community. A central Web portal (https://mseqdr.org) facilitates the coherent compilation, organization, annotation, and analysis of sequence data from both nuclear and mitochondrial genomes of individuals and families with suspected mitochondrial disease. This Web portal provides users with a flexible and expandable suite of resources to enable variant-, gene-, and exome-level sequence analysis in a secure, Web-based, and user-friendly fashion. Users can also elect to share data with other MSeqDR Consortium members, or even the general public, either by custom annotation tracks or through use of a convenient distributed annotation system (DAS) mechanism. A range of data visualization and analysis tools are provided to facilitate user interrogation and understanding of genomic, and ultimately phenotypic, data of relevance to mitochondrial biology and disease. Currently available tools for nuclear and mitochondrial gene analyses include an MSeqDR GBrowse instance that hosts optimized mitochondrial disease and mitochondrial DNA (mtDNA) specific annotation tracks, as well as an MSeqDR locus-specific database (LSDB) that curates variant data on more than 1,300 genes that have been implicated in mitochondrial disease and/or encode mitochondria-localized proteins. MSeqDR is integrated with a diverse array of mtDNA data analysis tools that are both freestanding and incorporated into an online exome-level dataset curation and analysis resource (GEM.app) that is being optimized to support needs of the MSeqDR community. In addition, MSeqDR supports mitochondrial disease phenotyping and ontology tools, and provides variant pathogenicity assessment features that enable community review, feedback, and integration with the public ClinVar variant annotation resource. A centralized Web-based informed consent process is being developed, with implementation of a Global Unique Identifier (GUID) system to integrate data deposited on a given individual from different sources. Community-based data deposition into MSeqDR has already begun. Future efforts will enhance capabilities to incorporate phenotypic data that enhance genomic data analyses. MSeqDR will fill the existing void in bioinformatics tools and centralized knowledge that are necessary to enable efficient nuclear and mtDNA genomic data interpretation by a range of shareholders across both clinical diagnostic and research settings. Ultimately, MSeqDR is focused on empowering the global mitochondrial disease community to better define and explore mitochondrial disease. PMID:25542617

  6. Status of the Microbial Census

    PubMed Central

    Schloss, Patrick D.; Handelsman, Jo

    2004-01-01

    Over the past 20 years, more than 78,000 16S rRNA gene sequences have been deposited in GenBank and the Ribosomal Database Project, making the 16S rRNA gene the most widely studied gene for reconstructing bacterial phylogeny. While there is a general appreciation that these sequences are largely unique and derived from diverse species of bacteria, there has not been a quantitative attempt to describe the extent of sequencing efforts to date. We constructed rarefaction curves for each bacterial phylum and for the entire bacterial domain to assess the current state of sampling and the relative taxonomic richness of each phylum. This analysis quantifies the general sense among microbiologists that we are a long way from a complete census of the bacteria on Earth. Moreover, the analysis indicates that current sampling strategies might not be the most effective ones to describe novel diversity because there remain numerous phyla that are globally distributed yet poorly sampled. Based on the current level of sampling, it is not possible to estimate the total number of bacterial species on Earth, but the minimum species richness is 35,498. Considering previous global species richness estimates of 107 to 109, we are certain that this estimate will increase with additional sequencing efforts. The data support previous calls for extensive surveys of multiple chemically disparate environments and of specific phylogenetic groups to advance the census most rapidly. PMID:15590780

  7. Evolution of a global regulator: Lrp in four orders of γ-Proteobacteria.

    PubMed

    Unoarumhi, Yvette; Blumenthal, Robert M; Matson, Jyl S

    2016-05-20

    Bacterial global regulators each regulate the expression of several hundred genes. In Escherichia coli, the top seven global regulators together control over half of all genes. Leucine-responsive regulatory protein (Lrp) is one of these top seven global regulators. Lrp orthologs are very widely distributed, among both Bacteria and Archaea. Surprisingly, even within the phylum γ-Proteobacteria (which includes E. coli), Lrp is a global regulator in some orders and a local regulator in others. This raises questions about the evolution of Lrp and, more broadly, of global regulators. We examined Lrp sequences from four bacterial orders of the γ-Proteobacteria using phylogenetic and Logo analyses. The orders studied were Enterobacteriales and Vibrionales, in which Lrp plays a global role in tested species; Pasteurellales, in which Lrp is a local regulator in the tested species; and Alteromonadales, an order closely related to the other three but in which Lrp has not yet been studied. For comparison, we analyzed the Lrp paralog AsnC, which in all tested cases is a local regulator. The Lrp and AsnC phylogenetic clusters each divided, as expected, into subclusters representing the Enterobacteriales, Vibrionales, and Pasteuralles. However the Alteromonadales did not yield coherent clusters for either Lrp or AsnC. Logo analysis revealed signatures associated with globally- vs. locally- acting Lrp orthologs, providing testable hypotheses for which portions of Lrp are responsible for a global vs. local role. These candidate regions include both ends of the Lrp polypeptide but not, interestingly, the highly-conserved helix-turn-helix motif responsible for DNA sequence specificity. Lrp and AsnC have conserved sequence signatures that allow their unambiguous annotation, at least in γ-Proteobacteria. Among Lrp orthologs, specific residues correlated with global vs. local regulatory roles, and can now be tested to determine which are functionally relevant and which simply reflect divergence. In the Alteromonadales, it appears that there are different subgroups of Lrp orthologs, one of which may act globally while the other may act locally. These results suggest experiments to improve our understanding of the evolution of bacterial global regulators.

  8. RNA sequencing: current and prospective uses in metabolic research.

    PubMed

    Vikman, Petter; Fadista, Joao; Oskolkov, Nikolay

    2014-10-01

    Previous global RNA analysis was restricted to known transcripts in species with a defined transcriptome. Next generation sequencing has transformed transcriptomics by making it possible to analyse expressed genes with an exon level resolution from any tissue in any species without any a priori knowledge of which genes that are being expressed, splice patterns or their nucleotide sequence. In addition, RNA sequencing is a more sensitive technique compared with microarrays with a larger dynamic range, and it also allows for investigation of imprinting and allele-specific expression. This can be done for a cost that is able to compete with that of a microarray, making RNA sequencing a technique available to most researchers. Therefore RNA sequencing has recently become the state of the art with regards to large-scale RNA investigations and has to a large extent replaced microarrays. The only drawback is the large data amounts produced, which together with the complexity of the data can make a researcher spend far more time on analysis than performing the actual experiment. © 2014 Society for Endocrinology.

  9. Insights from Human/Mouse genome comparisons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Pennacchio, Len A.

    2003-03-30

    Large-scale public genomic sequencing efforts have provided a wealth of vertebrate sequence data poised to provide insights into mammalian biology. These include deep genomic sequence coverage of human, mouse, rat, zebrafish, and two pufferfish (Fugu rubripes and Tetraodon nigroviridis) (Aparicio et al. 2002; Lander et al. 2001; Venter et al. 2001; Waterston et al. 2002). In addition, a high-priority has been placed on determining the genomic sequence of chimpanzee, dog, cow, frog, and chicken (Boguski 2002). While only recently available, whole genome sequence data have provided the unique opportunity to globally compare complete genome contents. Furthermore, the shared evolutionary ancestrymore » of vertebrate species has allowed the development of comparative genomic approaches to identify ancient conserved sequences with functionality. Accordingly, this review focuses on the initial comparison of available mammalian genomes and describes various insights derived from such analysis.« less

  10. Phylogeographical analysis of the dominant multidrug-resistant H58 clade of Salmonella Typhi identifies inter- and intracontinental transmission events.

    PubMed

    Wong, Vanessa K; Baker, Stephen; Pickard, Derek J; Parkhill, Julian; Page, Andrew J; Feasey, Nicholas A; Kingsley, Robert A; Thomson, Nicholas R; Keane, Jacqueline A; Weill, François-Xavier; Edwards, David J; Hawkey, Jane; Harris, Simon R; Mather, Alison E; Cain, Amy K; Hadfield, James; Hart, Peter J; Thieu, Nga Tran Vu; Klemm, Elizabeth J; Glinos, Dafni A; Breiman, Robert F; Watson, Conall H; Kariuki, Samuel; Gordon, Melita A; Heyderman, Robert S; Okoro, Chinyere; Jacobs, Jan; Lunguya, Octavie; Edmunds, W John; Msefula, Chisomo; Chabalgoity, Jose A; Kama, Mike; Jenkins, Kylie; Dutta, Shanta; Marks, Florian; Campos, Josefina; Thompson, Corinne; Obaro, Stephen; MacLennan, Calman A; Dolecek, Christiane; Keddy, Karen H; Smith, Anthony M; Parry, Christopher M; Karkey, Abhilasha; Mulholland, E Kim; Campbell, James I; Dongol, Sabina; Basnyat, Buddha; Dufour, Muriel; Bandaranayake, Don; Naseri, Take Toleafoa; Singh, Shalini Pravin; Hatta, Mochammad; Newton, Paul; Onsare, Robert S; Isaia, Lupeoletalalei; Dance, David; Davong, Viengmon; Thwaites, Guy; Wijedoru, Lalith; Crump, John A; De Pinna, Elizabeth; Nair, Satheesh; Nilles, Eric J; Thanh, Duy Pham; Turner, Paul; Soeng, Sona; Valcanis, Mary; Powling, Joan; Dimovski, Karolina; Hogg, Geoff; Farrar, Jeremy; Holt, Kathryn E; Dougan, Gordon

    2015-06-01

    The emergence of multidrug-resistant (MDR) typhoid is a major global health threat affecting many countries where the disease is endemic. Here whole-genome sequence analysis of 1,832 Salmonella enterica serovar Typhi (S. Typhi) identifies a single dominant MDR lineage, H58, that has emerged and spread throughout Asia and Africa over the last 30 years. Our analysis identifies numerous transmissions of H58, including multiple transfers from Asia to Africa and an ongoing, unrecognized MDR epidemic within Africa itself. Notably, our analysis indicates that H58 lineages are displacing antibiotic-sensitive isolates, transforming the global population structure of this pathogen. H58 isolates can harbor a complex MDR element residing either on transmissible IncHI1 plasmids or within multiple chromosomal integration sites. We also identify new mutations that define the H58 lineage. This phylogeographical analysis provides a framework to facilitate global management of MDR typhoid and is applicable to similar MDR lineages emerging in other bacterial species.

  11. Phylogeographical analysis of the dominant multidrug-resistant H58 clade of Salmonella Typhi identifies inter- and intracontinental transmission events

    PubMed Central

    Wong, Vanessa K; Baker, Stephen; Pickard, Derek J; Parkhill, Julian; Page, Andrew J; Feasey, Nicholas A; Kingsley, Robert A; Thomson, Nicholas R; Keane, Jacqueline A; Weill, François-Xavier; Edwards, David J; Hawkey, Jane; Harris, Simon R; Mather, Alison E; Cain, Amy K; Hadfield, James; Hart, Peter J; Thieu, Nga Tran Vu; Klemm, Elizabeth J; Glinos, Dafni A; Breiman, Robert F; Watson, Conall H; Kariuki, Samuel; Gordon, Melita A; Heyderman, Robert S; Okoro, Chinyere; Jacobs, Jan; Lunguya, Octavie; Edmunds, W John; Msefula, Chisomo; Chabalgoity, Jose A; Kama, Mike; Jenkins, Kylie; Dutta, Shanta; Marks, Florian; Campos, Josefina; Thompson, Corinne; Obaro, Stephen; MacLennan, Calman A; Dolecek, Christiane; Keddy, Karen H; Smith, Anthony M; Parry, Christopher M; Karkey, Abhilasha; Mulholland, E Kim; Campbell, James I; Dongol, Sabina; Basnyat, Buddha; Dufour, Muriel; Bandaranayake, Don; Naseri, Take Toleafoa; Singh, Shalini Pravin; Hatta, Mochammad; Newton, Paul; Onsare, Robert S; Isaia, Lupeoletalalei; Dance, David; Davong, Viengmon; Thwaites, Guy; Wijedoru, Lalith; Crump, John A; De Pinna, Elizabeth; Nair, Satheesh; Nilles, Eric J; Thanh, Duy Pham; Turner, Paul; Soeng, Sona; Valcanis, Mary; Powling, Joan; Dimovski, Karolina; Hogg, Geoff; Farrar, Jeremy; Holt, Kathryn E; Dougan, Gordon

    2016-01-01

    The emergence of multidrug-resistant (MDR) typhoid is a major global health threat affecting many countries where the disease is endemic. Here whole-genome sequence analysis of 1,832 Salmonella enterica serovar Typhi (S. Typhi) identifies a single dominant MDR lineage, H58, that has emerged and spread throughout Asia and Africa over the last 30 years. Our analysis identifies numerous transmissions of H58, including multiple transfers from Asia to Africa and an ongoing, unrecognized MDR epidemic within Africa itself. Notably, our analysis indicates that H58 lineages are displacing antibiotic-sensitive isolates, transforming the global population structure of this pathogen. H58 isolates can harbor a complex MDR element residing either on transmissible IncHI1 plasmids or within multiple chromosomal integration sites. We also identify new mutations that define the H58 lineage. This phylogeographical analysis provides a framework to facilitate global management of MDR typhoid and is applicable to similar MDR lineages emerging in other bacterial species. PMID:25961941

  12. Illumina GA IIx& HiSeq 2000 Production Sequenccing and QC Analysis Pipelines at the DOE Joint Genome Institute

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Daum, Christopher; Zane, Matthew; Han, James

    2011-01-31

    The U.S. Department of Energy (DOE) Joint Genome Institute's (JGI) Production Sequencing group is committed to the generation of high-quality genomic DNA sequence to support the mission areas of renewable energy generation, global carbon management, and environmental characterization and clean-up. Within the JGI's Production Sequencing group, a robust Illumina Genome Analyzer and HiSeq pipeline has been established. Optimization of the sesequencer pipelines has been ongoing with the aim of continual process improvement of the laboratory workflow, reducing operational costs and project cycle times to increases ample throughput, and improving the overall quality of the sequence generated. A sequence QC analysismore » pipeline has been implemented to automatically generate read and assembly level quality metrics. The foremost of these optimization projects, along with sequencing and operational strategies, throughput numbers, and sequencing quality results will be presented.« less

  13. Temporal Fourier analysis applied to equilibrium radionuclide cineangiography. Importance in the study of global and regional left ventricular wall motion.

    PubMed

    Cardot, J C; Berthout, P; Verdenet, J; Bidet, A; Faivre, R; Bassand, J P; Bidet, R; Maurat, J P

    1982-01-01

    Regional and global left ventricular wall motion was assessed in 120 patients using radionuclide cineangiography (RCA) and contrast angiography. Functional imaging procedures based on a temporal Fourier analysis of dynamic image sequences were applied to the study of cardiac contractility. Two images were constructed by taking the phase and amplitude values of the first harmonic in the Fourier transform for each pixel. These two images aided in determining the perimeter of the left ventricle to calculate the global ejection fraction. Regional left ventricular wall motion was studied by analyzing the phase value and by examining the distribution histogram of these values. The accuracy of global ejection fraction calculation was improved by the Fourier technique. This technique increased the sensitivity of RCA for determining segmental abnormalities especially in the left anterior oblique view (LAO).

  14. Deconstruction of the Ras switching cycle through saturation mutagenesis

    PubMed Central

    Bandaru, Pradeep; Shah, Neel H; Bhattacharyya, Moitrayee; Barton, John P; Kondo, Yasushi; Cofsky, Joshua C; Gee, Christine L; Chakraborty, Arup K; Kortemme, Tanja; Ranganathan, Rama; Kuriyan, John

    2017-01-01

    Ras proteins are highly conserved signaling molecules that exhibit regulated, nucleotide-dependent switching between active and inactive states. The high conservation of Ras requires mechanistic explanation, especially given the general mutational tolerance of proteins. Here, we use deep mutational scanning, biochemical analysis and molecular simulations to understand constraints on Ras sequence. Ras exhibits global sensitivity to mutation when regulated by a GTPase activating protein and a nucleotide exchange factor. Removing the regulators shifts the distribution of mutational effects to be largely neutral, and reveals hotspots of activating mutations in residues that restrain Ras dynamics and promote the inactive state. Evolutionary analysis, combined with structural and mutational data, argue that Ras has co-evolved with its regulators in the vertebrate lineage. Overall, our results show that sequence conservation in Ras depends strongly on the biochemical network in which it operates, providing a framework for understanding the origin of global selection pressures on proteins. DOI: http://dx.doi.org/10.7554/eLife.27810.001 PMID:28686159

  15. Emergence and global spread of epidemic healthcare-associated Clostridium difficile

    PubMed Central

    He, Miao; Miyajima, Fabio; Roberts, Paul; Ellison, Louise; Pickard, Derek J.; Martin, Melissa J.; Connor, Thomas R.; Harris, Simon R.; Fairley, Derek; Bamford, Kathleen B.; D’Arc, Stephanie; Brazier, Jon; Brown, Derek; Coia, John E.; Douce, Gill; Gerding, Dale; Kim, Hee Jung; Koh, Tse Hsien; Kato, Haru; Senoh, Mitsutoshi; Louie, Tom; Michell, Stephen; Butt, Emma; Peacock, Sharon J.; Brown, Nick M.; Riley, Tom; Songer, Glen; Wilcox, Mark; Pirmohamed, Munir; Kuijper, Ed; Hawkey, Peter; Wren, Brendan W.; Dougan, Gordon; Parkhill, Julian; Lawley, Trevor D.

    2012-01-01

    Epidemic Clostridium difficile (027/BI/NAP1) rapidly emerged in the past decade as the leading cause of antibiotic-associated diarrhea worldwide. However, the key moments in the evolutionary history leading to its emergence and subsequent patterns of global spread remain unknown. Here we define the global population structure of C. difficile 027/BI/NAP1 based on whole-genome sequencing and phylogenetic analysis. We demonstrate that two distinct epidemic lineages, FQR1 and FQR2, not one as previously thought, emerged in North America within a relatively short period after acquiring the same fluoroquinolone resistance mutation and a highly-related conjugative transposon. The two epidemic lineages displayed distinct patterns of global spread, and the FQR2 lineage spread more widely leading to healthcare outbreaks in the UK, continental Europe and Australia. Our analysis identifies key genetic changes linked to the rapid trans-continental dissemination of epidemic C. difficile 027/BI/NAP1 and highlights the routes by which it spreads through the global healthcare system. PMID:23222960

  16. Novel Single Nucleotide Polymorphism-Based Assay for Genotyping Mycobacterium avium subsp. paratuberculosis

    PubMed Central

    Goldstone, Robert J.; McLuckie, Joyce; Smith, David G. E.

    2015-01-01

    Typing of Mycobacterium avium subspecies paratuberculosis strains presents a challenge, since they are genetically monomorphic and traditional molecular techniques have limited discriminatory power. The recent advances and availability of whole-genome sequencing have extended possibilities for the characterization of Mycobacterium avium subspecies paratuberculosis, and whole-genome sequencing can provide a phylogenetic context to facilitate global epidemiology studies. In this study, we developed a single nucleotide polymorphism (SNP) assay based on PCR and restriction enzyme digestion or sequencing of the amplified product. The SNP analysis was performed using genome sequence data from 133 Mycobacterium avium subspecies paratuberculosis isolates with different genotypes from 8 different host species and 17 distinct geographic regions around the world. A total of 28,402 SNPs were identified among all of the isolates. The minimum number of SNPs required to distinguish between all of the 133 genomes was 93 and between only the type C isolates was 41. To reduce the number of SNPs and PCRs required, we adopted an approach based on sequential detection of SNPs and a decision tree. By the analysis of 14 SNPs Mycobacterium avium subspecies paratuberculosis isolates can be characterized within 14 phylogenetic groups with a higher discriminatory power than mycobacterial interspersed repetitive unit–variable number tandem repeat assay and other typing methods. Continuous updating of genome sequences is needed in order to better characterize new phylogenetic groups and SNP profiles. The novel SNP assay is a discriminative, simple, reproducible method and requires only basic laboratory equipment for the large-scale global typing of Mycobacterium avium subspecies paratuberculosis isolates. PMID:26677250

  17. First Isolation of New Canine Parvovirus 2a from Tibetan Mastiff and Global Analysis of the Full-Length VP2 Gene of Canine Parvoviruses 2 in China

    PubMed Central

    Zhong, Zhijun; Liang, Luqi; Zhao, Juan; Xu, Xiaoyang; Cao, Xuefeng; Liu, Xuehan; Zhou, Ziyao; Ren, Zhihua; Shen, Liuhong; Geng, Yi; Gu, Xiaobin; Peng, Guangneng

    2014-01-01

    Canine parvovirus 2 (CPV-2) was first identified in 1978, and is responsible for classic parvoviral enteritis. Despite the widespread vaccination of domestic carnivores, CPVs have remained important pathogens of domestic and wild carnivores. In this study, we isolated CPV-2 from Tibetan mastiffs and performed a global analysis of the complete VP2 gene sequences of CPV-2 strains in China. Six isolates were typed as new CPV-2a, according to key amino acid positions. On a phylogenetic tree, these six sequences formed a distinct clade. Five isolates occurred on the same branch as KF785794 from China and GQ379049 from Thailand; CPV-LS-ZA1 formed a separate subgroup with FJ435347 from China. One hundred ninety-eight sequences from various parts of China and the six sequences isolated here formed seven distinct clusters, indicating the high diversity of CPVs in China. Of 204 VP2 sequences, 183 (91.04%) encoded the mutation Ser297Ala, regardless of the antigenic type, implying that most Chinese CPV-2 strains contain the VP2 mutation Ser297Ala. However, the biological significance of this change from prototype CPV-2a/2b to new CPV-2a/2b types remains unclear. This study is the first to isolate new CPV-2a from the Tibetan mastiff. Our data show that new CPV-2a/2b variants are now circulating in China. PMID:25007818

  18. A global view of structure–function relationships in the tautomerase superfamily

    PubMed Central

    Davidson, Rebecca; Baas, Bert-Jan; Akiva, Eyal; Holliday, Gemma L.; Polacco, Benjamin J.; LeVieux, Jake A.; Pullara, Collin R.; Zhang, Yan Jessie; Whitman, Christian P.

    2018-01-01

    The tautomerase superfamily (TSF) consists of more than 11,000 nonredundant sequences present throughout the biosphere. Characterized members have attracted much attention because of the unusual and key catalytic role of an N-terminal proline. These few characterized members catalyze a diverse range of chemical reactions, but the full scale of their chemical capabilities and biological functions remains unknown. To gain new insight into TSF structure–function relationships, we performed a global analysis of similarities across the entire superfamily and computed a sequence similarity network to guide classification into distinct subgroups. Our results indicate that TSF members are found in all domains of life, with most being present in bacteria. The eukaryotic members of the cis-3-chloroacrylic acid dehalogenase subgroup are limited to fungal species, whereas the macrophage migration inhibitory factor subgroup has wide eukaryotic representation (including mammals). Unexpectedly, we found that 346 TSF sequences lack Pro-1, of which 85% are present in the malonate semialdehyde decarboxylase subgroup. The computed network also enabled the identification of similarity paths, namely sequences that link functionally diverse subgroups and exhibit transitional structural features that may help explain reaction divergence. A structure-guided comparison of these linker proteins identified conserved transitions between them, and kinetic analysis paralleled these observations. Phylogenetic reconstruction of the linker set was consistent with these findings. Our results also suggest that contemporary TSF members may have evolved from a short 4-oxalocrotonate tautomerase–like ancestor followed by gene duplication and fusion. Our new linker-guided strategy can be used to enrich the discovery of sequence/structure/function transitions in other enzyme superfamilies. PMID:29184004

  19. Interpreting the biological relevance of bioinformatic analyses with T-DNA sequence for protein allergenicity.

    PubMed

    Harper, B; McClain, S; Ganko, E W

    2012-08-01

    Global regulatory agencies require bioinformatic sequence analysis as part of their safety evaluation for transgenic crops. Analysis typically focuses on encoded proteins and adjacent endogenous flanking sequences. Recently, regulatory expectations have expanded to include all reading frames of the inserted DNA. The intent is to provide biologically relevant results that can be used in the overall assessment of safety. This paper evaluates the relevance of assessing the allergenic potential of all DNA reading frames found in common food genes using methods considered for the analysis of T-DNA sequences used in transgenic crops. FASTA and BLASTX algorithms were used to compare genes from maize, rice, soybean, cucumber, melon, watermelon, and tomato using international regulatory guidance. Results show that BLASTX for maize yielded 7254 alignments that exceeded allergen similarity thresholds and 210,772 alignments that matched eight or more consecutive amino acids with an allergen; other crops produced similar results. This analysis suggests that each nontransgenic crop has a much greater potential for allergenic risk than what has been observed clinically. We demonstrate that a meaningful safety assessment is unlikely to be provided by using methods with inherently high frequencies of false positive alignments when broadly applied to all reading frames of DNA sequence. Copyright © 2012 Elsevier Inc. All rights reserved.

  20. Ultra-deep sequencing reveals high prevalence and broad structural diversity of hepatitis B surface antigen mutations in a global population

    PubMed Central

    Gencay, Mikael; Hübner, Kirsten; Gohl, Peter; Seffner, Anja; Weizenegger, Michael; Neofytos, Dionysios; Batrla, Richard; Woeste, Andreas; Kim, Hyon-suk; Westergaard, Gaston; Reinsch, Christine; Brill, Eva; Thu Thuy, Pham Thi; Hoang, Bui Huu; Sonderup, Mark; Spearman, C. Wendy; Pabinger, Stephan; Gautier, Jérémie; Brancaccio, Giuseppina; Fasano, Massimo; Santantonio, Teresa; Gaeta, Giovanni B.; Nauck, Markus; Kaminski, Wolfgang E.

    2017-01-01

    The diversity of the hepatitis B surface antigen (HBsAg) has a significant impact on the performance of diagnostic screening tests and the clinical outcome of hepatitis B infection. Neutralizing or diagnostic antibodies against the HBsAg are directed towards its highly conserved major hydrophilic region (MHR), in particular towards its “a” determinant subdomain. Here, we explored, on a global scale, the genetic diversity of the HBsAg MHR in a large, multi-ethnic cohort of randomly selected subjects with HBV infection from four continents. A total of 1553 HBsAg positive blood samples of subjects originating from 20 different countries across Africa, America, Asia and central Europe were characterized for amino acid variation in the MHR. Using highly sensitive ultra-deep sequencing, we found 72.8% of the successfully sequenced subjects (n = 1391) demonstrated amino acid sequence variation in the HBsAg MHR. This indicates that the global variation frequency in the HBsAg MHR is threefold higher than previously reported. The majority of the amino acid mutations were found in the HBV genotypes B (28.9%) and C (25.4%). Collectively, we identified 345 distinct amino acid mutations in the MHR. Among these, we report 62 previously unknown mutations, which extends the worldwide pool of currently known HBsAg MHR mutations by 22%. Importantly, topological analysis identified the “a” determinant upstream flanking region as the structurally most diverse subdomain of the HBsAg MHR. The highest prevalence of “a” determinant region mutations was observed in subjects from Asia, followed by the African, American and European cohorts, respectively. Finally, we found that more than half (59.3%) of all HBV subjects investigated carried multiple MHR mutations. Together, this worldwide ultra-deep sequencing based genotyping study reveals that the global prevalence and structural complexity of variation in the hepatitis B surface antigen have, to date, been significantly underappreciated. PMID:28472040

  1. Ultra-deep sequencing reveals high prevalence and broad structural diversity of hepatitis B surface antigen mutations in a global population.

    PubMed

    Gencay, Mikael; Hübner, Kirsten; Gohl, Peter; Seffner, Anja; Weizenegger, Michael; Neofytos, Dionysios; Batrla, Richard; Woeste, Andreas; Kim, Hyon-Suk; Westergaard, Gaston; Reinsch, Christine; Brill, Eva; Thu Thuy, Pham Thi; Hoang, Bui Huu; Sonderup, Mark; Spearman, C Wendy; Pabinger, Stephan; Gautier, Jérémie; Brancaccio, Giuseppina; Fasano, Massimo; Santantonio, Teresa; Gaeta, Giovanni B; Nauck, Markus; Kaminski, Wolfgang E

    2017-01-01

    The diversity of the hepatitis B surface antigen (HBsAg) has a significant impact on the performance of diagnostic screening tests and the clinical outcome of hepatitis B infection. Neutralizing or diagnostic antibodies against the HBsAg are directed towards its highly conserved major hydrophilic region (MHR), in particular towards its "a" determinant subdomain. Here, we explored, on a global scale, the genetic diversity of the HBsAg MHR in a large, multi-ethnic cohort of randomly selected subjects with HBV infection from four continents. A total of 1553 HBsAg positive blood samples of subjects originating from 20 different countries across Africa, America, Asia and central Europe were characterized for amino acid variation in the MHR. Using highly sensitive ultra-deep sequencing, we found 72.8% of the successfully sequenced subjects (n = 1391) demonstrated amino acid sequence variation in the HBsAg MHR. This indicates that the global variation frequency in the HBsAg MHR is threefold higher than previously reported. The majority of the amino acid mutations were found in the HBV genotypes B (28.9%) and C (25.4%). Collectively, we identified 345 distinct amino acid mutations in the MHR. Among these, we report 62 previously unknown mutations, which extends the worldwide pool of currently known HBsAg MHR mutations by 22%. Importantly, topological analysis identified the "a" determinant upstream flanking region as the structurally most diverse subdomain of the HBsAg MHR. The highest prevalence of "a" determinant region mutations was observed in subjects from Asia, followed by the African, American and European cohorts, respectively. Finally, we found that more than half (59.3%) of all HBV subjects investigated carried multiple MHR mutations. Together, this worldwide ultra-deep sequencing based genotyping study reveals that the global prevalence and structural complexity of variation in the hepatitis B surface antigen have, to date, been significantly underappreciated.

  2. Global versus Local Regulatory Roles for Lrp-Related Proteins: Haemophilus influenzae as a Case Study

    PubMed Central

    Friedberg, Devorah; Midkiff, Michael; Calvo, Joseph M.

    2001-01-01

    Lrp (leucine-responsive regulatory protein) plays a global regulatory role in Escherichia coli, affecting expression of dozens of operons. Numerous lrp-related genes have been identified in different bacteria and archaea, including asnC, an E. coli gene that was the first reported member of this family. Pairwise comparisons of amino acid sequences of the corresponding proteins shows an average sequence identity of only 29% for the vast majority of comparisons. By contrast, Lrp-related proteins from enteric bacteria show more than 97% amino acid identity. Is the global regulatory role associated with E. coli Lrp limited to enteric bacteria? To probe this question we investigated LrfB, an Lrp-related protein from Haemophilus influenzae that shares 75% sequence identity with E. coli Lrp (highest sequence identity among 42 sequences compared). A strain of H. influenzae having an lrfB null allele grew at the wild-type growth rate but with a filamentous morphology. A comparison of two-dimensional (2D) electrophoretic patterns of proteins from parent and mutant strains showed only two differences (comparable studies with lrp+ and lrp E. coli strains by others showed 20 differences). The abundance of LrfB in H. influenzae, estimated by Western blotting experiments, was about 130 dimers per cell (compared to 3,000 dimers per E. coli cell). LrfB expressed in E. coli replaced Lrp as a repressor of the lrp gene but acted only to a limited extent as an activator of the ilvIH operon. Thus, although LrfB resembles Lrp sufficiently to perform some of its functions, its low abundance is consonant with a more local role in regulating but a few genes, a view consistent with the results of the 2D electrophoretic analysis. We speculate that an Lrp having a global regulatory role evolved to help enteric bacteria adapt to their ecological niches and that it is unlikely that Lrp-related proteins in other organisms have a broad regulatory function. PMID:11395465

  3. Global distribution of Chelonid fibropapilloma-associated herpesvirus among clinically healthy sea turtles.

    PubMed

    Alfaro-Núñez, Alonzo; Frost Bertelsen, Mads; Bojesen, Anders Miki; Rasmussen, Isabel; Zepeda-Mendoza, Lisandra; Tange Olsen, Morten; Gilbert, Marcus Thomas Pius

    2014-10-25

    Fibropapillomatosis (FP) is a neoplastic disease characterized by cutaneous tumours that has been documented to infect all sea turtle species. Chelonid fibropapilloma-associated herpesvirus (CFPHV) is believed to be the aetiological agent of FP, based principally on consistent PCR-based detection of herpesvirus DNA sequences from FP tumours. We used a recently described PCR-based assay that targets 3 conserved CFPHV genes, to survey 208 green turtles (Chelonia mydas). This included both FP tumour exhibiting and clinically healthy individuals. An additional 129 globally distributed clinically healthy individual sea turtles; representing four other species were also screened. CFPHV DNA sequences were obtained from 37/37 (100%) FP exhibiting green turtles, and 45/300 (15%) clinically healthy animals spanning all five species. Although the frequency of infected individuals per turtle population varied considerably, most global populations contained at least one CFPHV positive individual, with the exception of various turtle species from the Arabian Gulf, Northern Indian Ocean and Puerto Rico. Haplotype analysis of the different gene markers clustered the CFPHV DNA sequences for two of the markers (UL18 and UL22) in turtles from Turks and Caicos separate to all others, regardless of host species or geographic origin. Presence of CFPHV DNA within globally distributed samples for all five species of sea turtle was confirmed. While 100% of the FP exhibiting green turtles yielded CFPHV sequences, surprisingly, so did 15% of the clinically healthy turtles. We hypothesize that turtle populations with zero (0%) CFPHV frequency may be attributed to possible environmental differences, diet and/or genetic resistance in these individuals. Our results provide first data on the prevalence of CFPHV among seemingly healthy turtles; a factor that may not be directly correlated to the disease incidence, but may suggest of a long-term co-evolutionary latent infection interaction between CFPHV and its turtle-host across species. Finally, computational analysis of amino acid variants within the Turks and Caicos samples suggest potential functional importance in a substitution for marker UL18 that encodes the major capsid protein gene, which potentially could explain differences in pathogenicity. Nevertheless, such a theory remains to be validated by further research.

  4. Mapping the zebrafish brain methylome using reduced representation bisulfite sequencing

    PubMed Central

    Chatterjee, Aniruddha; Ozaki, Yuichi; Stockwell, Peter A; Horsfield, Julia A; Morison, Ian M; Nakagawa, Shinichi

    2013-01-01

    Reduced representation bisulfite sequencing (RRBS) has been used to profile DNA methylation patterns in mammalian genomes such as human, mouse and rat. The methylome of the zebrafish, an important animal model, has not yet been characterized at base-pair resolution using RRBS. Therefore, we evaluated the technique of RRBS in this model organism by generating four single-nucleotide resolution DNA methylomes of adult zebrafish brain. We performed several simulations to show the distribution of fragments and enrichment of CpGs in different in silico reduced representation genomes of zebrafish. Four RRBS brain libraries generated 98 million sequenced reads and had higher frequencies of multiple mapping than equivalent human RRBS libraries. The zebrafish methylome indicates there is higher global DNA methylation in the zebrafish genome compared with its equivalent human methylome. This observation was confirmed by RRBS of zebrafish liver. High coverage CpG dinucleotides are enriched in CpG island shores more than in the CpG island core. We found that 45% of the mapped CpGs reside in gene bodies, and 7% in gene promoters. This analysis provides a roadmap for generating reproducible base-pair level methylomes for zebrafish using RRBS and our results provide the first evidence that RRBS is a suitable technique for global methylation analysis in zebrafish. PMID:23975027

  5. Predicting RNA-protein binding sites and motifs through combining local and global deep convolutional neural networks.

    PubMed

    Pan, Xiaoyong; Shen, Hong-Bin

    2018-05-02

    RNA-binding proteins (RBPs) take over 5∼10% of the eukaryotic proteome and play key roles in many biological processes, e.g. gene regulation. Experimental detection of RBP binding sites is still time-intensive and high-costly. Instead, computational prediction of the RBP binding sites using pattern learned from existing annotation knowledge is a fast approach. From the biological point of view, the local structure context derived from local sequences will be recognized by specific RBPs. However, in computational modeling using deep learning, to our best knowledge, only global representations of entire RNA sequences are employed. So far, the local sequence information is ignored in the deep model construction process. In this study, we present a computational method iDeepE to predict RNA-protein binding sites from RNA sequences by combining global and local convolutional neural networks (CNNs). For the global CNN, we pad the RNA sequences into the same length. For the local CNN, we split a RNA sequence into multiple overlapping fixed-length subsequences, where each subsequence is a signal channel of the whole sequence. Next, we train deep CNNs for multiple subsequences and the padded sequences to learn high-level features, respectively. Finally, the outputs from local and global CNNs are combined to improve the prediction. iDeepE demonstrates a better performance over state-of-the-art methods on two large-scale datasets derived from CLIP-seq. We also find that the local CNN run 1.8 times faster than the global CNN with comparable performance when using GPUs. Our results show that iDeepE has captured experimentally verified binding motifs. https://github.com/xypan1232/iDeepE. xypan172436@gmail.com or hbshen@sjtu.edu.cn. Supplementary data are available at Bioinformatics online.

  6. Gene expression profiling of the plant pathogenic basidiomycetous fungus Rhizoctonia solani AG 4 reveals putative virulence factors

    USDA-ARS?s Scientific Manuscript database

    Rhizoctonia solani is a ubiquitous basidiomycetous soilborne fungal pathogen causing damping off of seedlings, aerial blights and postharvest diseases. To gain insight into the molecular mechanisms of pathogenesis a global approach based on analysis of expressed sequence tags (ESTs) was undertaken. ...

  7. Whole Genome Sequence Analysis of Salmonella Enteritidis Isolated from Wild Mice

    USDA-ARS?s Scientific Manuscript database

    Salmonella Enteritidis is a foodborne pathogen of global concern because of the high frequency isolated from foods and patients. Draft genomes of 64 S. Enteritidis strains from intestines and spleens of mice were reported. The availability of these genomes provides useful information on genomic dive...

  8. Pichia stipitis genomics, transcriptomics, and gene clusters

    Treesearch

    Thomas W. Jeffries; Jennifer R. Headman Van Vleet

    2009-01-01

    Genome sequencing and subsequent global gene expression studies have advanced our understanding of the lignocellulose-fermenting yeast Pichia stipitis. These studies have provided an insight into its central carbon metabolism, and analysis of its genome has revealed numerous functional gene clusters and tandem repeats. Specialized physiological traits are often the...

  9. Soil Communities of Central Park, New York City: A Biodiversity Melting Pot

    NASA Astrophysics Data System (ADS)

    Ramirez, K. S.; Leff, J. W.; Wall, D. H.; Fierer, N.

    2013-12-01

    The majority of earth's biodiversity lives in and makes up the soil, but the majority of soil biodiversity has yet to be characterized or even quantified. This may be especially true of urban soil systems. The last decade of advances in molecular, technical and bioinformatic techniques have contributed greatly to our understanding of belowground biodiversity, from global distribution to species counts. Yet, much of this work has been done in ';natural' systems and it is not known if established patterns of distribution, especially in relation to soil factors hold up in urban soils. Urban soils are intensively managed and disturbed, often by effects unique to urban settings. It remains unclear how urban pressures influence soil biodiversity, or if there is a defined or typical ';urban soil community'. Here we describe a study to examine the total soil biodiversity - Bacteria, Archaea and Eukarya- of Central Park, New York City and test for patterns of distribution and relationships to soil characteristics. We then compare the biodiversity of Central Park to 57 global soils, spanning a number of biomes from Alaska to Antarctica. In this way we can identify similarities and differences in soil communities of Central Park to soils from ';natural' systems. To generate a broad-scale survey of total soil biodiversity, 596 soil samples were collected from across Central Park (3.41 km2). Soils varied greatly in vegetation cover and soil characteristics (pH, moisture, soil C and soil N). Using high-throughput Illumina sequencing technology we characterized the complete soil community from 16S rRNA (Bacteria and Archaea) and 18S rRNA gene sequences (Eukarya). Samples were rarified to 40,000 sequences per sample. To compare Central Park to the 57 global soils the complete soil community of the global soils was also characterized using Illumina sequencing technology. All samples were rarified to 40,000 sequences per sample. The total measured biodiversity in Central Park was high: >540,000 bacterial and archaeal species; and >97,000 eukaryotic species (as determined using a 97% sequence similarity cutoff). The most dominant bacterial phyla include Proteobacteria, Acidobacteria, Bacteroidetes, Verrucomicrobia and Actinobacteria, and Archaea represent 1-8% of the sequences. Additionally, the distribution patterns of Acidobacteria and consequently beta-diversity, was strongly related to soil pH. The most dominant eukaryotic taxa include many Protists (Rhizara, Gregarinia), Fungi (Basidiomycota, Ascomycota), and Metazoa (Nematodes, Rotifers, Arthropods and Annelids). No single soil factor could predict eukaryotic distribution. Central Park soil diversity was strikingly similar to the diversity of the 57 global soils. Central Park and the global soils had similarities in alpha diversity, taxon abundances. Interestingly, there was significant overlap in a number of dominant species between Central Park and the global soils. Together these results represent the most comprehensive analysis of soil biodiversity conducted to date. Our data suggest that even well-studied locations like Central Park harbor very high levels of unexplored biodiversity, and that Central Park biodiversity is comparable to soil biodiversity found globally.

  10. The origin and phylogeography of dog rabies virus

    PubMed Central

    Bourhy, Hervé; Reynes, Jean-Marc; Dunham, Eleca J.; Dacheux, Laurent; Larrous, Florence; Huong, Vu Thi Que; Xu, Gelin; Yan, Jiaxin; Miranda, Mary Elizabeth G.; Holmes, Edward C.

    2012-01-01

    Rabies is a progressively fatal and incurable viral encephalitis caused by a lyssavirus infection. Almost all of the 55 000 annual rabies deaths in humans result from infection with dog rabies viruses (RABV). Despite the importance of rabies for human health, little is known about the spread of RABV in dog populations, and patterns of biodiversity have only been studied in limited geographical space. To address these questions on a global scale, we sequenced 62 new isolates and performed an extensive comparative analysis of RABV gene sequence data, representing 192 isolates sampled from 55 countries. From this, we identified six clades of RABV in non-flying mammals, each of which has a distinct geographical distribution, most likely reflecting major physical barriers to gene flow. Indeed, a detailed analysis of phylogeographic structure revealed only limited viral movement among geographical localities. Using Bayesian coalescent methods we also reveal that the sampled lineages of canid RABV derive from a common ancestor that originated within the past 1500 years. Additionally, we found no evidence for either positive selection or widespread population bottlenecks during the global expansion of canid RABV. Overall, our study reveals that the stochastic processes of genetic drift and population subdivision are the most important factors shaping the global phylogeography of canid RABV. PMID:18931062

  11. Methanogenic archaea are globally ubiquitous in aerated soils and become active under wet anoxic conditions

    PubMed Central

    Angel, Roey; Claus, Peter; Conrad, Ralf

    2012-01-01

    The prototypical representatives of the Euryarchaeota—the methanogens—are oxygen sensitive and are thought to occur only in highly reduced, anoxic environments. However, we found methanogens of the genera Methanosarcina and Methanocella to be present in many types of upland soils (including dryland soils) sampled globally. These methanogens could be readily activated by incubating the soils as slurry under anoxic conditions, as seen by rapid methane production within a few weeks, without any additional carbon source. Analysis of the archaeal 16S ribosomal RNA gene community profile in the incubated samples through terminal restriction fragment length polymorphism and quantification through quantitative PCR indicated dominance of Methanosarcina, whose gene copy numbers also correlated with methane production rates. Analysis of the δ13C of the methane further supported this, as the dominant methanogenic pathway was in most cases aceticlastic, which Methanocella cannot perform. Sequences of the key methanogenic enzyme methyl coenzyme M reductase retrieved from the soil samples before incubation confirmed that Methanosarcina and Methanocella are the dominant methanogens, though some sequences of Methanobrevibacter and Methanobacterium were also detected. The global occurrence of only two active methanogenic archaea supports the hypothesis that these are autochthonous members of the upland soil biome and are well adapted to their environment. PMID:22071343

  12. Genomic Analysis of the Emergence and Rapid Global Dissemination of the Clonal Group 258 Klebsiella pneumoniae Pandemic

    PubMed Central

    Driebe, Elizabeth M.; MacCannell, Duncan R.; Roe, Chandler; Lemmer, Darrin; de Man, Tom; Rasheed, J. Kamile; Engelthaler, David M.; Keim, Paul; Limbago, Brandi M.

    2015-01-01

    Multidrug-resistant Klebsiella pneumoniae producing the KPC carbapenemase have rapidly spread throughout the world, causing severe healthcare-associated infections with limited antimicrobial treatment options. Dissemination of KPC-producing K. pneumoniae is largely attributed to expansion of a single dominant strain, ST258. In this study, we explore phylogenetic relationships and evolution within ST258 and its clonal group, CG258, using whole genome sequence analysis of 167 isolates from 20 countries collected over 17 years. Our results show a common ST258 ancestor emerged from its diverse parental clonal group around 1995 and likely acquired bla KPC prior to dissemination. Over the past two decades, ST258 has remained highly clonal despite diversity in accessory elements and divergence in the capsule polysaccharide synthesis locus. Apart from the large recombination event that gave rise to ST258, few mutations set it apart from its clonal group. However, one mutation occurs in a global transcription regulator. Characterization of outer membrane protein sequences revealed a profile in ST258 that includes a truncated OmpK35 and modified OmpK37. Our work illuminates potential genomic contributors to the pathogenic success of ST258, helps us better understand the global dissemination of this strain, and identifies genetic markers unique to ST258. PMID:26196384

  13. GMDD: a database of GMO detection methods.

    PubMed

    Dong, Wei; Yang, Litao; Shen, Kailin; Kim, Banghyun; Kleter, Gijs A; Marvin, Hans J P; Guo, Rong; Liang, Wanqi; Zhang, Dabing

    2008-06-04

    Since more than one hundred events of genetically modified organisms (GMOs) have been developed and approved for commercialization in global area, the GMO analysis methods are essential for the enforcement of GMO labelling regulations. Protein and nucleic acid-based detection techniques have been developed and utilized for GMOs identification and quantification. However, the information for harmonization and standardization of GMO analysis methods at global level is needed. GMO Detection method Database (GMDD) has collected almost all the previous developed and reported GMOs detection methods, which have been grouped by different strategies (screen-, gene-, construct-, and event-specific), and also provide a user-friendly search service of the detection methods by GMO event name, exogenous gene, or protein information, etc. In this database, users can obtain the sequences of exogenous integration, which will facilitate PCR primers and probes design. Also the information on endogenous genes, certified reference materials, reference molecules, and the validation status of developed methods is included in this database. Furthermore, registered users can also submit new detection methods and sequences to this database, and the newly submitted information will be released soon after being checked. GMDD contains comprehensive information of GMO detection methods. The database will make the GMOs analysis much easier.

  14. A basic analysis toolkit for biological sequences

    PubMed Central

    Giancarlo, Raffaele; Siragusa, Alessandro; Siragusa, Enrico; Utro, Filippo

    2007-01-01

    This paper presents a software library, nicknamed BATS, for some basic sequence analysis tasks. Namely, local alignments, via approximate string matching, and global alignments, via longest common subsequence and alignments with affine and concave gap cost functions. Moreover, it also supports filtering operations to select strings from a set and establish their statistical significance, via z-score computation. None of the algorithms is new, but although they are generally regarded as fundamental for sequence analysis, they have not been implemented in a single and consistent software package, as we do here. Therefore, our main contribution is to fill this gap between algorithmic theory and practice by providing an extensible and easy to use software library that includes algorithms for the mentioned string matching and alignment problems. The library consists of C/C++ library functions as well as Perl library functions. It can be interfaced with Bioperl and can also be used as a stand-alone system with a GUI. The software is available at under the GNU GPL. PMID:17877802

  15. ocsESTdb: a database of oil crop seed EST sequences for comparative analysis and investigation of a global metabolic network and oil accumulation metabolism.

    PubMed

    Ke, Tao; Yu, Jingyin; Dong, Caihua; Mao, Han; Hua, Wei; Liu, Shengyi

    2015-01-21

    Oil crop seeds are important sources of fatty acids (FAs) for human and animal nutrition. Despite their importance, there is a lack of an essential bioinformatics resource on gene transcription of oil crops from a comparative perspective. In this study, we developed ocsESTdb, the first database of expressed sequence tag (EST) information on seeds of four large-scale oil crops with an emphasis on global metabolic networks and oil accumulation metabolism that target the involved unigenes. A total of 248,522 ESTs and 106,835 unigenes were collected from the cDNA libraries of rapeseed (Brassica napus), soybean (Glycine max), sesame (Sesamum indicum) and peanut (Arachis hypogaea). These unigenes were annotated by a sequence similarity search against databases including TAIR, NR protein database, Gene Ontology, COG, Swiss-Prot, TrEMBL and Kyoto Encyclopedia of Genes and Genomes (KEGG). Five genome-scale metabolic networks that contain different numbers of metabolites and gene-enzyme reaction-association entries were analysed and constructed using Cytoscape and yEd programs. Details of unigene entries, deduced amino acid sequences and putative annotation are available from our database to browse, search and download. Intuitive and graphical representations of EST/unigene sequences, functional annotations, metabolic pathways and metabolic networks are also available. ocsESTdb will be updated regularly and can be freely accessed at http://ocri-genomics.org/ocsESTdb/ . ocsESTdb may serve as a valuable and unique resource for comparative analysis of acyl lipid synthesis and metabolism in oilseed plants. It also may provide vital insights into improving oil content in seeds of oil crop species by transcriptional reconstruction of the metabolic network.

  16. Global DNA methylation analysis using methyl-sensitive amplification polymorphism (MSAP).

    PubMed

    Yaish, Mahmoud W; Peng, Mingsheng; Rothstein, Steven J

    2014-01-01

    DNA methylation is a crucial epigenetic process which helps control gene transcription activity in eukaryotes. Information regarding the methylation status of a regulatory sequence of a particular gene provides important knowledge of this transcriptional control. DNA methylation can be detected using several methods, including sodium bisulfite sequencing and restriction digestion using methylation-sensitive endonucleases. Methyl-Sensitive Amplification Polymorphism (MSAP) is a technique used to study the global DNA methylation status of an organism and hence to distinguish between two individuals based on the DNA methylation status determined by the differential digestion pattern. Therefore, this technique is a useful method for DNA methylation mapping and positional cloning of differentially methylated genes. In this technique, genomic DNA is first digested with a methylation-sensitive restriction enzyme such as HpaII, and then the DNA fragments are ligated to adaptors in order to facilitate their amplification. Digestion using a methylation-insensitive isoschizomer of HpaII, MspI is used in a parallel digestion reaction as a loading control in the experiment. Subsequently, these fragments are selectively amplified by fluorescently labeled primers. PCR products from different individuals are compared, and once an interesting polymorphic locus is recognized, the desired DNA fragment can be isolated from a denaturing polyacrylamide gel, sequenced and identified based on DNA sequence similarity to other sequences available in the database. We will use analysis of met1, ddm1, and atmbd9 mutants and wild-type plants treated with a cytidine analogue, 5-azaC, or zebularine to demonstrate how to assess the genetic modulation of DNA methylation in Arabidopsis. It should be noted that despite the fact that MSAP is a reliable technique used to fish for polymorphic methylated loci, its power is limited to the restriction recognition sites of the enzymes used in the genomic DNA digestion.

  17. Phylogenetic and nucleotide sequence analysis of influenza A (H1N1) HA and NA genes of strains isolated from Saudi Arabia.

    PubMed

    Al-Qahtani, Ahmed Ali; Mubin, Muhammad; Dela Cruz, Damian M; Althawadi, Sahar Isa; Ul Rehman, Muhammad Shah Nawaz; Bohol, Marie Fe F; Al-Ahdal, Mohammed N

    2017-01-30

    In early 2009, a novel influenza A (H1N1) virus appeared in Mexico and rapidly disseminated worldwide. Little is known about the phylogeny and evolutionary dynamics of the H1N1 strain found in Saudi Arabia. Nucleotide sequencing and bioinformatics analyses were used to study molecular variation between the virus isolates. In this report, 72 hemagglutinin (HA) and 45 neuraminidase (NA) H1N1 virus gene sequences, isolated in 2009 from various regions of Saudi Arabia, were analyzed. Genetic characterization indicated that viruses from two different clades, 6 and 7, were circulating in the region, with clade 7, the most widely circulating H1N1 clade globally in 2009, being predominant. Sequence analysis of the HA and NA genes revealed a high degree of sequence identity with the corresponding genes from viruses circulating in the South East Asia region and with the A/California/7/2009 strain. New mutations in the HA gene of pandemic H1N1 (pH1N1) viruses, that could alter viral fitness, were identified. Relaxed-clock and Bayesian Skyline Plot analyses, based on the isolates used in this study and closely related globally representative strains, indicated marginally higher substitution rates than the type strain (5.14×10-3 and 4.18×10-3 substitutions/nucleotide/year in the HA and NA genes, respectively). The Saudi isolates were antigenically homogeneous and closely related to the prototype vaccine strain A/California/7/2009. The antigenic site of the HA gene had acquired novel mutations in some isolates, making continued monitoring of these viruses vital for the identification of potentially highly virulent and drug resistant variants.

  18. Assessment of acute myocarditis by cardiac magnetic resonance imaging: Comparison of qualitative and quantitative analysis methods.

    PubMed

    Imbriaco, Massimo; Nappi, Carmela; Puglia, Marta; De Giorgi, Marco; Dell'Aversana, Serena; Cuocolo, Renato; Ponsiglione, Andrea; De Giorgi, Igino; Polito, Maria Vincenza; Klain, Michele; Piscione, Federico; Pace, Leonardo; Cuocolo, Alberto

    2017-10-26

    To compare cardiac magnetic resonance (CMR) qualitative and quantitative analysis methods for the noninvasive assessment of myocardial inflammation in patients with suspected acute myocarditis (AM). A total of 61 patients with suspected AM underwent coronary angiography and CMR. Qualitative analysis was performed applying Lake-Louise Criteria (LLC), followed by quantitative analysis based on the evaluation of edema ratio (ER) and global relative enhancement (RE). Diagnostic performance was assessed for each method by measuring the area under the curves (AUC) of the receiver operating characteristic analyses. The final diagnosis of AM was based on symptoms and signs suggestive of cardiac disease, evidence of myocardial injury as defined by electrocardiogram changes, elevated troponin I, exclusion of coronary artery disease by coronary angiography, and clinical and echocardiographic follow-up at 3 months after admission to the chest pain unit. In all patients, coronary angiography did not show significant coronary artery stenosis. Troponin I levels and creatine kinase were higher in patients with AM compared to those without (both P < .001). There were no significant differences among LLC, T2-weighted short inversion time inversion recovery (STIR) sequences, early (EGE), and late (LGE) gadolinium-enhancement sequences for diagnosis of AM. The AUC for qualitative (T2-weighted STIR 0.92, EGE 0.87 and LGE 0.88) and quantitative (ER 0.89 and global RE 0.80) analyses were also similar. Qualitative and quantitative CMR analysis methods show similar diagnostic accuracy for the diagnosis of AM. These findings suggest that a simplified approach using a shortened CMR protocol including only T2-weighted STIR sequences might be useful to rule out AM in patients with acute coronary syndrome and normal coronary angiography.

  19. Genotyping-by-sequencing highlights original diversity patterns within a European collection of 1191 maize flint lines, as compared to the maize USDA genebank.

    PubMed

    Gouesnard, Brigitte; Negro, Sandra; Laffray, Amélie; Glaubitz, Jeff; Melchinger, Albrecht; Revilla, Pedro; Moreno-Gonzalez, Jesus; Madur, Delphine; Combes, Valérie; Tollon-Cordet, Christine; Laborde, Jacques; Kermarrec, Dominique; Bauland, Cyril; Moreau, Laurence; Charcosset, Alain; Nicolas, Stéphane

    2017-10-01

    Genotyping by sequencing is suitable for analysis of global diversity in maize. We showed the distinctiveness of flint maize inbred lines of interest to enrich the diversity of breeding programs. Genotyping-by-sequencing (GBS) is a highly cost-effective procedure that permits the analysis of large collections of inbred lines. We used it to characterize diversity in 1191 maize flint inbred lines from the INRA collection, the European Cornfed association panel, and lines recently derived from landraces. We analyzed the properties of GBS data obtained with different imputation methods, through comparison with a 50 K SNP array. We identified seven ancestral groups within the Flint collection (dent, Northern flint, Italy, Pyrenees-Galicia, Argentina, Lacaune, Popcorn) in agreement with breeding knowledge. Analysis highlighted many crosses between different origins and the improvement of flint germplasm with dent germplasm. We performed association studies on different agronomic traits, revealing SNPs associated with cob color, kernel color, and male flowering time variation. We compared the diversity of both our collection and the USDA collection which has been previously analyzed by GBS. The population structure of the 4001 inbred lines confirmed the influence of the historical inbred lines (B73, A632, Oh43, Mo17, W182E, PH207, and Wf9) within the dent group. It showed distinctly different tropical and popcorn groups, a sweet-Northern flint group and a flint group sub-structured in Italian and European flint (Pyrenees-Galicia and Lacaune) groups. Interestingly, we identified several selective sweeps between dent, flint, and tropical inbred lines that co-localized with SNPs associated with flowering time variation. The joint analysis of collections by GBS offers opportunities for a global diversity analysis of maize inbred lines.

  20. Analysis of whole genome sequences of 16 strains of rubella virus from the United States, 1961-2009.

    PubMed

    Abernathy, Emily; Chen, Min-hsin; Bera, Jayati; Shrivastava, Susmita; Kirkness, Ewen; Zheng, Qi; Bellini, William; Icenogle, Joseph

    2013-01-25

    Rubella virus is the causative agent of rubella, a mild rash illness, and a potent teratogenic agent when contracted by a pregnant woman. Global rubella control programs target the reduction and elimination of congenital rubella syndrome. Phylogenetic analysis of partial sequences of rubella viruses has contributed to virus surveillance efforts and played an important role in demonstrating that indigenous rubella viruses have been eliminated in the United States. Sixteen wild-type rubella viruses were chosen for whole genome sequencing. All 16 viruses were collected in the United States from 1961 to 2009 and are from 8 of the 13 known rubella genotypes. Phylogenetic analysis of 30 whole genome sequences produced a maximum likelihood tree giving high bootstrap values for all genotypes except provisional genotype 1a. Comparison of the 16 new complete sequences and 14 previously sequenced wild-type viruses found regions with clusters of variable amino acids. The 5' 250 nucleotides of the genome are more conserved than any other part of the genome. Genotype specific deletions in the untranslated region between the non-structural and structural open reading frames were observed for genotypes 2B and genotype 1G. No evidence was seen for recombination events among the 30 viruses. The analysis presented here is consistent with previous reports on the genetic characterization of rubella virus genomes. Conserved and variable regions were identified and additional evidence for genotype specific nucleotide deletions in the intergenic region was found. Phylogenetic analysis confirmed genotype groupings originally based on structural protein coding region sequences, which provides support for the WHO nomenclature for genetic characterization of wild-type rubella viruses.

  1. Plasmid Flux in Escherichia coli ST131 Sublineages, Analyzed by Plasmid Constellation Network (PLACNET), a New Method for Plasmid Reconstruction from Whole Genome Sequences

    PubMed Central

    Garcillán-Barcia, M. Pilar; Mora, Azucena; Blanco, Jorge; Coque, Teresa M.; de la Cruz, Fernando

    2014-01-01

    Bacterial whole genome sequence (WGS) methods are rapidly overtaking classical sequence analysis. Many bacterial sequencing projects focus on mobilome changes, since macroevolutionary events, such as the acquisition or loss of mobile genetic elements, mainly plasmids, play essential roles in adaptive evolution. Existing WGS analysis protocols do not assort contigs between plasmids and the main chromosome, thus hampering full analysis of plasmid sequences. We developed a method (called plasmid constellation networks or PLACNET) that identifies, visualizes and analyzes plasmids in WGS projects by creating a network of contig interactions, thus allowing comprehensive plasmid analysis within WGS datasets. The workflow of the method is based on three types of data: assembly information (including scaffold links and coverage), comparison to reference sequences and plasmid-diagnostic sequence features. The resulting network is pruned by expert analysis, to eliminate confounding data, and implemented in a Cytoscape-based graphic representation. To demonstrate PLACNET sensitivity and efficacy, the plasmidome of the Escherichia coli lineage ST131 was analyzed. ST131 is a globally spread clonal group of extraintestinal pathogenic E. coli (ExPEC), comprising different sublineages with ability to acquire and spread antibiotic resistance and virulence genes via plasmids. Results show that plasmids flux in the evolution of this lineage, which is wide open for plasmid exchange. MOBF12/IncF plasmids were pervasive, adding just by themselves more than 350 protein families to the ST131 pangenome. Nearly 50% of the most frequent γ–proteobacterial plasmid groups were found to be present in our limited sample of ten analyzed ST131 genomes, which represent the main ST131 sublineages. PMID:25522143

  2. Plasmid flux in Escherichia coli ST131 sublineages, analyzed by plasmid constellation network (PLACNET), a new method for plasmid reconstruction from whole genome sequences.

    PubMed

    Lanza, Val F; de Toro, María; Garcillán-Barcia, M Pilar; Mora, Azucena; Blanco, Jorge; Coque, Teresa M; de la Cruz, Fernando

    2014-12-01

    Bacterial whole genome sequence (WGS) methods are rapidly overtaking classical sequence analysis. Many bacterial sequencing projects focus on mobilome changes, since macroevolutionary events, such as the acquisition or loss of mobile genetic elements, mainly plasmids, play essential roles in adaptive evolution. Existing WGS analysis protocols do not assort contigs between plasmids and the main chromosome, thus hampering full analysis of plasmid sequences. We developed a method (called plasmid constellation networks or PLACNET) that identifies, visualizes and analyzes plasmids in WGS projects by creating a network of contig interactions, thus allowing comprehensive plasmid analysis within WGS datasets. The workflow of the method is based on three types of data: assembly information (including scaffold links and coverage), comparison to reference sequences and plasmid-diagnostic sequence features. The resulting network is pruned by expert analysis, to eliminate confounding data, and implemented in a Cytoscape-based graphic representation. To demonstrate PLACNET sensitivity and efficacy, the plasmidome of the Escherichia coli lineage ST131 was analyzed. ST131 is a globally spread clonal group of extraintestinal pathogenic E. coli (ExPEC), comprising different sublineages with ability to acquire and spread antibiotic resistance and virulence genes via plasmids. Results show that plasmids flux in the evolution of this lineage, which is wide open for plasmid exchange. MOBF12/IncF plasmids were pervasive, adding just by themselves more than 350 protein families to the ST131 pangenome. Nearly 50% of the most frequent γ-proteobacterial plasmid groups were found to be present in our limited sample of ten analyzed ST131 genomes, which represent the main ST131 sublineages.

  3. Diversity and Genome Analysis of Australian and Global Oilseed Brassica napus L. Germplasm Using Transcriptomics and Whole Genome Re-sequencing.

    PubMed

    Malmberg, M Michelle; Shi, Fan; Spangenberg, German C; Daetwyler, Hans D; Cogan, Noel O I

    2018-01-01

    Intensive breeding of Brassica napus has resulted in relatively low diversity, such that B. napus would benefit from germplasm improvement schemes that sustain diversity. As such, samples representative of global germplasm pools need to be assessed for existing population structure, diversity and linkage disequilibrium (LD). Complexity reduction genotyping-by-sequencing (GBS) methods, including GBS-transcriptomics (GBS-t), enable cost-effective screening of a large number of samples, while whole genome re-sequencing (WGR) delivers the ability to generate large numbers of unbiased genomic single nucleotide polymorphisms (SNPs), and identify structural variants (SVs). Furthermore, the development of genomic tools based on whole genomes representative of global oilseed diversity and orientated by the reference genome has substantial industry relevance and will be highly beneficial for canola breeding. As recent studies have focused on European and Chinese varieties, a global diversity panel as well as a substantial number of Australian spring types were included in this study. Focusing on industry relevance, 633 varieties were initially genotyped using GBS-t to examine population structure using 61,037 SNPs. Subsequently, 149 samples representative of global diversity were selected for WGR and both data sets used for a side-by-side evaluation of diversity and LD. The WGR data was further used to develop genomic resources consisting of a list of 4,029,750 high-confidence SNPs annotated using SnpEff, and SVs in the form of 10,976 deletions and 2,556 insertions. These resources form the basis of a reliable and repeatable system allowing greater integration between canola genomics studies, with a strong focus on breeding germplasm and industry applicability.

  4. Refined δ13C trend of the Dal'nyaya Taiga series of the Ura uplift (Vendian, southern part of Middle Siberia)

    NASA Astrophysics Data System (ADS)

    Rud'ko, S. V.; Petrov, P. Yu.; Kuznetsov, A. B.; Shatsillo, A. V.; Petrov, O. L.

    2017-12-01

    New data were obtained on δ13Ccarb and δ18O variations in the sequence of deposits of the Dal'nyaya Taiga series at the western and eastern flanks of the Ura anticline. The summary δ13C curve was plotted in view of the correlation of sequence-stratigraphic data of the basin analysis. A series of positive anomalies was found within the succession. Alternatives for global chemostratigraphic correlation of the Dal'nyaya Taiga series of the Ura uplift were considered.

  5. Compositional correlations in the chicken genome.

    PubMed

    Musto, H; Romero, H; Zavala, A; Bernardi, G

    1999-09-01

    This paper analyses the compositional correlations that hold in the chicken genome. Significant linear correlations were found among the regions studied-coding sequences (and their first, second, and third codon positions), flanking regions (5' and 3'), and introns-as is the case in the human genome. We found that these compositional correlations are not limited to global GC levels but even extend to individual bases. Furthermore, an analysis of 1037 coding sequences has confirmed a correlation among GC(3), GC(2), and GC(1). The implications of these results are discussed.

  6. Exome sequencing links corticospinal motor neuron disease to common neurodegenerative disorders.

    PubMed

    Novarino, Gaia; Fenstermaker, Ali G; Zaki, Maha S; Hofree, Matan; Silhavy, Jennifer L; Heiberg, Andrew D; Abdellateef, Mostafa; Rosti, Basak; Scott, Eric; Mansour, Lobna; Masri, Amira; Kayserili, Hulya; Al-Aama, Jumana Y; Abdel-Salam, Ghada M H; Karminejad, Ariana; Kara, Majdi; Kara, Bulent; Bozorgmehri, Bita; Ben-Omran, Tawfeg; Mojahedi, Faezeh; El Din Mahmoud, Iman Gamal; Bouslam, Naima; Bouhouche, Ahmed; Benomar, Ali; Hanein, Sylvain; Raymond, Laure; Forlani, Sylvie; Mascaro, Massimo; Selim, Laila; Shehata, Nabil; Al-Allawi, Nasir; Bindu, P S; Azam, Matloob; Gunel, Murat; Caglayan, Ahmet; Bilguvar, Kaya; Tolun, Aslihan; Issa, Mahmoud Y; Schroth, Jana; Spencer, Emily G; Rosti, Rasim O; Akizu, Naiara; Vaux, Keith K; Johansen, Anide; Koh, Alice A; Megahed, Hisham; Durr, Alexandra; Brice, Alexis; Stevanin, Giovanni; Gabriel, Stacy B; Ideker, Trey; Gleeson, Joseph G

    2014-01-31

    Hereditary spastic paraplegias (HSPs) are neurodegenerative motor neuron diseases characterized by progressive age-dependent loss of corticospinal motor tract function. Although the genetic basis is partly understood, only a fraction of cases can receive a genetic diagnosis, and a global view of HSP is lacking. By using whole-exome sequencing in combination with network analysis, we identified 18 previously unknown putative HSP genes and validated nearly all of these genes functionally or genetically. The pathways highlighted by these mutations link HSP to cellular transport, nucleotide metabolism, and synapse and axon development. Network analysis revealed a host of further candidate genes, of which three were mutated in our cohort. Our analysis links HSP to other neurodegenerative disorders and can facilitate gene discovery and mechanistic understanding of disease.

  7. Conservation and variability of West Nile virus proteins.

    PubMed

    Koo, Qi Ying; Khan, Asif M; Jung, Keun-Ok; Ramdas, Shweta; Miotto, Olivo; Tan, Tin Wee; Brusic, Vladimir; Salmon, Jerome; August, J Thomas

    2009-01-01

    West Nile virus (WNV) has emerged globally as an increasingly important pathogen for humans and domestic animals. Studies of the evolutionary diversity of the virus over its known history will help to elucidate conserved sites, and characterize their correspondence to other pathogens and their relevance to the immune system. We describe a large-scale analysis of the entire WNV proteome, aimed at identifying and characterizing evolutionarily conserved amino acid sequences. This study, which used 2,746 WNV protein sequences collected from the NCBI GenPept database, focused on analysis of peptides of length 9 amino acids or more, which are immunologically relevant as potential T-cell epitopes. Entropy-based analysis of the diversity of WNV sequences, revealed the presence of numerous evolutionarily stable nonamer positions across the proteome (entropy value of < or = 1). The representation (frequency) of nonamers variant to the predominant peptide at these stable positions was, generally, low (< or = 10% of the WNV sequences analyzed). Eighty-eight fragments of length 9-29 amino acids, representing approximately 34% of the WNV polyprotein length, were identified to be identical and evolutionarily stable in all analyzed WNV sequences. Of the 88 completely conserved sequences, 67 are also present in other flaviviruses, and several have been associated with the functional and structural properties of viral proteins. Immunoinformatic analysis revealed that the majority (78/88) of conserved sequences are potentially immunogenic, while 44 contained experimentally confirmed human T-cell epitopes. This study identified a comprehensive catalogue of completely conserved WNV sequences, many of which are shared by other flaviviruses, and majority are potential epitopes. The complete conservation of these immunologically relevant sequences through the entire recorded WNV history suggests they will be valuable as components of peptide-specific vaccines or other therapeutic applications, for sequence-specific diagnosis of a wide-range of Flavivirus infections, and for studies of homologous sequences among other flaviviruses.

  8. Environmental microbiology through the lens of high-throughput DNA sequencing: synopsis of current platforms and bioinformatics approaches.

    PubMed

    Logares, Ramiro; Haverkamp, Thomas H A; Kumar, Surendra; Lanzén, Anders; Nederbragt, Alexander J; Quince, Christopher; Kauserud, Håvard

    2012-10-01

    The incursion of High-Throughput Sequencing (HTS) in environmental microbiology brings unique opportunities and challenges. HTS now allows a high-resolution exploration of the vast taxonomic and metabolic diversity present in the microbial world, which can provide an exceptional insight on global ecosystem functioning, ecological processes and evolution. This exploration has also economic potential, as we will have access to the evolutionary innovation present in microbial metabolisms, which could be used for biotechnological development. HTS is also challenging the research community, and the current bottleneck is present in the data analysis side. At the moment, researchers are in a sequence data deluge, with sequencing throughput advancing faster than the computer power needed for data analysis. However, new tools and approaches are being developed constantly and the whole process could be depicted as a fast co-evolution between sequencing technology, informatics and microbiologists. In this work, we examine the most popular and recently commercialized HTS platforms as well as bioinformatics methods for data handling and analysis used in microbial metagenomics. This non-exhaustive review is intended to serve as a broad state-of-the-art guide to researchers expanding into this rapidly evolving field. Copyright © 2012 Elsevier B.V. All rights reserved.

  9. Draft genome sequence of bitter gourd (Momordica charantia), a vegetable and medicinal plant in tropical and subtropical regions.

    PubMed

    Urasaki, Naoya; Takagi, Hiroki; Natsume, Satoshi; Uemura, Aiko; Taniai, Naoki; Miyagi, Norimichi; Fukushima, Mai; Suzuki, Shouta; Tarora, Kazuhiko; Tamaki, Moritoshi; Sakamoto, Moriaki; Terauchi, Ryohei; Matsumura, Hideo

    2017-02-01

    Bitter gourd (Momordica charantia) is an important vegetable and medicinal plant in tropical and subtropical regions globally. In this study, the draft genome sequence of a monoecious bitter gourd inbred line, OHB3-1, was analyzed. Through Illumina sequencing and de novo assembly, scaffolds of 285.5 Mb in length were generated, corresponding to ∼84% of the estimated genome size of bitter gourd (339 Mb). In this draft genome sequence, 45,859 protein-coding gene loci were identified, and transposable elements accounted for 15.3% of the whole genome. According to synteny mapping and phylogenetic analysis of conserved genes, bitter gourd was more related to watermelon (Citrullus lanatus) than to cucumber (Cucumis sativus) or melon (C. melo). Using RAD-seq analysis, 1507 marker loci were genotyped in an F2 progeny of two bitter gourd lines, resulting in an improved linkage map, comprising 11 linkage groups. By anchoring RAD tag markers, 255 scaffolds were assigned to the linkage map. Comparative analysis of genome sequences and predicted genes determined that putative trypsin-inhibitor and ribosome-inactivating genes were distinctive in the bitter gourd genome. These genes could characterize the bitter gourd as a medicinal plant. © The Author 2016. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  10. Phylogenetic Distribution of CRISPR-Cas Systems in Antibiotic-Resistant Pseudomonas aeruginosa.

    PubMed

    van Belkum, Alex; Soriaga, Leah B; LaFave, Matthew C; Akella, Srividya; Veyrieras, Jean-Baptiste; Barbu, E Magda; Shortridge, Dee; Blanc, Bernadette; Hannum, Gregory; Zambardi, Gilles; Miller, Kristofer; Enright, Mark C; Mugnier, Nathalie; Brami, Daniel; Schicklin, Stéphane; Felderman, Martina; Schwartz, Ariel S; Richardson, Toby H; Peterson, Todd C; Hubby, Bolyn; Cady, Kyle C

    2015-11-24

    Pseudomonas aeruginosa is an antibiotic-refractory pathogen with a large genome and extensive genotypic diversity. Historically, P. aeruginosa has been a major model system for understanding the molecular mechanisms underlying type I clustered regularly interspaced short palindromic repeat (CRISPR) and CRISPR-associated protein (CRISPR-Cas)-based bacterial immune system function. However, little information on the phylogenetic distribution and potential role of these CRISPR-Cas systems in molding the P. aeruginosa accessory genome and antibiotic resistance elements is known. Computational approaches were used to identify and characterize CRISPR-Cas systems within 672 genomes, and in the process, we identified a previously unreported and putatively mobile type I-C P. aeruginosa CRISPR-Cas system. Furthermore, genomes harboring noninhibited type I-F and I-E CRISPR-Cas systems were on average ~300 kb smaller than those without a CRISPR-Cas system. In silico analysis demonstrated that the accessory genome (n = 22,036 genes) harbored the majority of identified CRISPR-Cas targets. We also assembled a global spacer library that aided the identification of difficult-to-characterize mobile genetic elements within next-generation sequencing (NGS) data and allowed CRISPR typing of a majority of P. aeruginosa strains. In summary, our analysis demonstrated that CRISPR-Cas systems play an important role in shaping the accessory genomes of globally distributed P. aeruginosa isolates. P. aeruginosa is both an antibiotic-refractory pathogen and an important model system for type I CRISPR-Cas bacterial immune systems. By combining the genome sequences of 672 newly and previously sequenced genomes, we were able to provide a global view of the phylogenetic distribution, conservation, and potential targets of these systems. This analysis identified a new and putatively mobile P. aeruginosa CRISPR-Cas subtype, characterized the diverse distribution of known CRISPR-inhibiting genes, and provided a potential new use for CRISPR spacer libraries in accessory genome analysis. Our data demonstrated the importance of CRISPR-Cas systems in modulating the accessory genomes of globally distributed strains while also providing substantial data for subsequent genomic and experimental studies in multiple fields. Understanding why certain genotypes of P. aeruginosa are clinically prevalent and adept at horizontally acquiring virulence and antibiotic resistance elements is of major clinical and economic importance. Copyright © 2015 van Belkum et al.

  11. Phylogenetic Analysis of Klebsiella pneumoniae from Hospitalized Children, Pakistan.

    PubMed

    Ejaz, Hasan; Wang, Nancy; Wilksch, Jonathan J; Page, Andrew J; Cao, Hanwei; Gujaran, Shruti; Keane, Jacqueline A; Lithgow, Trevor; Ul-Haq, Ikram; Dougan, Gordon; Strugnell, Richard A; Heinz, Eva

    2017-11-01

    Klebsiella pneumoniae shows increasing emergence of multidrug-resistant lineages, including strains resistant to all available antimicrobial drugs. We conducted whole-genome sequencing of 178 highly drug-resistant isolates from a tertiary hospital in Lahore, Pakistan. Phylogenetic analyses to place these isolates into global context demonstrate the expansion of multiple independent lineages, including K. quasipneumoniae.

  12. Proteome Studies of Filamentous Fungi

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Baker, Scott E.; Panisko, Ellen A.

    2011-04-20

    The continued fast pace of fungal genome sequence generation has enabled proteomic analysis of a wide breadth of organisms that span the breadth of the Kingdom Fungi. There is some phylogenetic bias to the current catalog of fungi with reasonable DNA sequence databases (genomic or EST) that could be analyzed at a global proteomic level. However, the rapid development of next generation sequencing platforms has lowered the cost of genome sequencing such that in the near future, having a genome sequence will no longer be a time or cost bottleneck for downstream proteomic (and transcriptomic) analyses. High throughput, non-gel basedmore » proteomics offers a snapshot of proteins present in a given sample at a single point in time. There are a number of different variations on the general method and technologies for identifying peptides in a given sample. We present a method that can serve as a “baseline” for proteomic studies of fungi.« less

  13. Sequence stratigraphy of the Triassic in the Barentsz Sea

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Skjold, L.JU.; Van Veen, P.M.; Gjelberg, J.

    1990-05-01

    A regional study of the Triassic in the Barentsz Sea (20-32{degree}E, 71-74{degree}N) revealed sequences that correlate seismically for hundreds of kilometers. Recent offshore drilling results enabled them to establish a biostratigraphic time framework. Comparisons with information from onshore outcrops (such as the Svalbard Archipelago) aided the piecing together of these superregional sequences. Seismic character analysis identified three units with composite progradational patterns (Induan, Olenekian, and Anisian). Fluvial, deltaic, and marine deposits can be distinguished and located relative to the paleocoastlines. Corresponding downlap surfaces suggest the development of condensed intervals, predicted to consist of organic-rich source rocks, as was later confirmedmore » by drilling. Regional predictions based on this sequence-stratigraphic approach have proved valuable when correlating and evaluating well information. The sequences identified also help define third-order sea level curves for the area; these improve published curves thought to have global significance.« less

  14. Proteome studies of filamentous fungi.

    PubMed

    Baker, Scott E; Panisko, Ellen A

    2011-01-01

    The continued fast pace of fungal genome sequence generation has enabled proteomic analysis of a wide variety of organisms that span the breadth of the Kingdom Fungi. There is some phylogenetic bias to the current catalog of fungi with reasonable DNA sequence databases (genomic or EST) that could be analyzed at a global proteomic level. However, the rapid development of next generation sequencing platforms has lowered the cost of genome sequencing such that in the near future, having a genome sequence will no longer be a time or cost bottleneck for downstream proteomic (and transcriptomic) analyses. High throughput, nongel-based proteomics offers a snapshot of proteins present in a given sample at a single point in time. There are a number of variations on the general methods and technologies for identifying peptides in a given sample. We present a method that can serve as a "baseline" for proteomic studies of fungi.

  15. The novel 2016 WHO Neisseria gonorrhoeae reference strains for global quality assurance of laboratory investigations: phenotypic, genetic and reference genome characterization.

    PubMed

    Unemo, Magnus; Golparian, Daniel; Sánchez-Busó, Leonor; Grad, Yonatan; Jacobsson, Susanne; Ohnishi, Makoto; Lahra, Monica M; Limnios, Athena; Sikora, Aleksandra E; Wi, Teodora; Harris, Simon R

    2016-11-01

    Gonorrhoea and MDR Neisseria gonorrhoeae remain public health concerns globally. Enhanced, quality-assured, gonococcal antimicrobial resistance (AMR) surveillance is essential worldwide. The WHO global Gonococcal Antimicrobial Surveillance Programme (GASP) was relaunched in 2009. We describe the phenotypic, genetic and reference genome characteristics of the 2016 WHO gonococcal reference strains intended for quality assurance in the WHO global GASP, other GASPs, diagnostics and research worldwide. The 2016 WHO reference strains (n = 14) constitute the eight 2008 WHO reference strains and six novel strains. The novel strains represent low-level to high-level cephalosporin resistance, high-level azithromycin resistance and a porA mutant. All strains were comprehensively characterized for antibiogram (n = 23), serovar, prolyliminopeptidase, plasmid types, molecular AMR determinants, N. gonorrhoeae multiantigen sequence typing STs and MLST STs. Complete reference genomes were produced using single-molecule PacBio sequencing. The reference strains represented all available phenotypes, susceptible and resistant, to antimicrobials previously and currently used or considered for future use in gonorrhoea treatment. All corresponding resistance genotypes and molecular epidemiological types were described. Fully characterized, annotated and finished references genomes (n = 14) were presented. The 2016 WHO gonococcal reference strains are intended for internal and external quality assurance and quality control in laboratory investigations, particularly in the WHO global GASP and other GASPs, but also in phenotypic (e.g. culture, species determination) and molecular diagnostics, molecular AMR detection, molecular epidemiology and as fully characterized, annotated and finished reference genomes in WGS analysis, transcriptomics, proteomics and other molecular technologies and data analysis. © The Author 2016. Published by Oxford University Press on behalf of the British Society for Antimicrobial Chemotherapy. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  16. Global copy number profiling of cancer genomes | Office of Cancer Genomics

    Cancer.gov

    In this article, we introduce a robust and efficient strategy for deriving global and allele-specific copy number alternations (CNA) from cancer whole exome sequencing data based on Log R ratios and B-allele frequencies. Applying the approach to the analysis of over 200 skin cancer samples, we demonstrate its utility for discovering distinct CNA events and for deriving ancillary information such as tumor purity. Availability and implementation: https://github.com/xfwang/CLOSE CONTACT: xuefeng.wang@stonybrook.edu or michael.krauthammer@yale.edu. (Publication Abstract)

  17. Task planning with uncertainty for robotic systems. Thesis

    NASA Technical Reports Server (NTRS)

    Cao, Tiehua

    1993-01-01

    In a practical robotic system, it is important to represent and plan sequences of operations and to be able to choose an efficient sequence from them for a specific task. During the generation and execution of task plans, different kinds of uncertainty may occur and erroneous states need to be handled to ensure the efficiency and reliability of the system. An approach to task representation, planning, and error recovery for robotic systems is demonstrated. Our approach to task planning is based on an AND/OR net representation, which is then mapped to a Petri net representation of all feasible geometric states and associated feasibility criteria for net transitions. Task decomposition of robotic assembly plans based on this representation is performed on the Petri net for robotic assembly tasks, and the inheritance of properties of liveness, safeness, and reversibility at all levels of decomposition are explored. This approach provides a framework for robust execution of tasks through the properties of traceability and viability. Uncertainty in robotic systems are modeled by local fuzzy variables, fuzzy marking variables, and global fuzzy variables which are incorporated in fuzzy Petri nets. Analysis of properties and reasoning about uncertainty are investigated using fuzzy reasoning structures built into the net. Two applications of fuzzy Petri nets, robot task sequence planning and sensor-based error recovery, are explored. In the first application, the search space for feasible and complete task sequences with correct precedence relationships is reduced via the use of global fuzzy variables in reasoning about subgoals. In the second application, sensory verification operations are modeled by mutually exclusive transitions to reason about local and global fuzzy variables on-line and automatically select a retry or an alternative error recovery sequence when errors occur. Task sequencing and task execution with error recovery capability for one and multiple soft components in robotic systems are investigated.

  18. Geographic Patterns of Genetic Variation in a Broadly Distributed Marine Vertebrate: New Insights into Loggerhead Turtle Stock Structure from Expanded Mitochondrial DNA Sequences

    PubMed Central

    Shamblin, Brian M.; Bolten, Alan B.; Abreu-Grobois, F. Alberto; Bjorndal, Karen A.; Cardona, Luis; Carreras, Carlos; Clusa, Marcel; Monzón-Argüello, Catalina; Nairn, Campbell J.; Nielsen, Janne T.; Nel, Ronel; Soares, Luciano S.; Stewart, Kelly R.; Vilaça, Sibelle T.; Türkozan, Oguz; Yilmaz, Can; Dutton, Peter H.

    2014-01-01

    Previous genetic studies have demonstrated that natal homing shapes the stock structure of marine turtle nesting populations. However, widespread sharing of common haplotypes based on short segments of the mitochondrial control region often limits resolution of the demographic connectivity of populations. Recent studies employing longer control region sequences to resolve haplotype sharing have focused on regional assessments of genetic structure and phylogeography. Here we synthesize available control region sequences for loggerhead turtles from the Mediterranean Sea, Atlantic, and western Indian Ocean basins. These data represent six of the nine globally significant regional management units (RMUs) for the species and include novel sequence data from Brazil, Cape Verde, South Africa and Oman. Genetic tests of differentiation among 42 rookeries represented by short sequences (380 bp haplotypes from 3,486 samples) and 40 rookeries represented by long sequences (∼800 bp haplotypes from 3,434 samples) supported the distinction of the six RMUs analyzed as well as recognition of at least 18 demographically independent management units (MUs) with respect to female natal homing. A total of 59 haplotypes were resolved. These haplotypes belonged to two highly divergent global lineages, with haplogroup I represented primarily by CC-A1, CC-A4, and CC-A11 variants and haplogroup II represented by CC-A2 and derived variants. Geographic distribution patterns of haplogroup II haplotypes and the nested position of CC-A11.6 from Oman among the Atlantic haplotypes invoke recent colonization of the Indian Ocean from the Atlantic for both global lineages. The haplotypes we confirmed for western Indian Ocean RMUs allow reinterpretation of previous mixed stock analysis and further suggest that contemporary migratory connectivity between the Indian and Atlantic Oceans occurs on a broader scale than previously hypothesized. This study represents a valuable model for conducting comprehensive international cooperative data management and research in marine ecology. PMID:24465810

  19. The practical evaluation of DNA barcode efficacy.

    PubMed

    Spouge, John L; Mariño-Ramírez, Leonardo

    2012-01-01

    This chapter describes a workflow for measuring the efficacy of a barcode in identifying species. First, assemble individual sequence databases corresponding to each barcode marker. A controlled collection of taxonomic data is preferable to GenBank data, because GenBank data can be problematic, particularly when comparing barcodes based on more than one marker. To ensure proper controls when evaluating species identification, specimens not having a sequence in every marker database should be discarded. Second, select a computer algorithm for assigning species to barcode sequences. No algorithm has yet improved notably on assigning a specimen to the species of its nearest neighbor within a barcode database. Because global sequence alignments (e.g., with the Needleman-Wunsch algorithm, or some related algorithm) examine entire barcode sequences, they generally produce better species assignments than local sequence alignments (e.g., with BLAST). No neighboring method (e.g., global sequence similarity, global sequence distance, or evolutionary distance based on a global alignment) has yet shown a notable superiority in identifying species. Finally, "the probability of correct identification" (PCI) provides an appropriate measurement of barcode efficacy. The overall PCI for a data set is the average of the species PCIs, taken over all species in the data set. This chapter states explicitly how to calculate PCI, how to estimate its statistical sampling error, and how to use data on PCR failure to set limits on how much improvements in PCR technology can improve species identification.

  20. The Sorcerer II Global Ocean Sampling expedition: expanding the universe of protein families.

    PubMed

    Yooseph, Shibu; Sutton, Granger; Rusch, Douglas B; Halpern, Aaron L; Williamson, Shannon J; Remington, Karin; Eisen, Jonathan A; Heidelberg, Karla B; Manning, Gerard; Li, Weizhong; Jaroszewski, Lukasz; Cieplak, Piotr; Miller, Christopher S; Li, Huiying; Mashiyama, Susan T; Joachimiak, Marcin P; van Belle, Christopher; Chandonia, John-Marc; Soergel, David A; Zhai, Yufeng; Natarajan, Kannan; Lee, Shaun; Raphael, Benjamin J; Bafna, Vineet; Friedman, Robert; Brenner, Steven E; Godzik, Adam; Eisenberg, David; Dixon, Jack E; Taylor, Susan S; Strausberg, Robert L; Frazier, Marvin; Venter, J Craig

    2007-03-01

    Metagenomics projects based on shotgun sequencing of populations of micro-organisms yield insight into protein families. We used sequence similarity clustering to explore proteins with a comprehensive dataset consisting of sequences from available databases together with 6.12 million proteins predicted from an assembly of 7.7 million Global Ocean Sampling (GOS) sequences. The GOS dataset covers nearly all known prokaryotic protein families. A total of 3,995 medium- and large-sized clusters consisting of only GOS sequences are identified, out of which 1,700 have no detectable homology to known families. The GOS-only clusters contain a higher than expected proportion of sequences of viral origin, thus reflecting a poor sampling of viral diversity until now. Protein domain distributions in the GOS dataset and current protein databases show distinct biases. Several protein domains that were previously categorized as kingdom specific are shown to have GOS examples in other kingdoms. About 6,000 sequences (ORFans) from the literature that heretofore lacked similarity to known proteins have matches in the GOS data. The GOS dataset is also used to improve remote homology detection. Overall, besides nearly doubling the number of current proteins, the predicted GOS proteins also add a great deal of diversity to known protein families and shed light on their evolution. These observations are illustrated using several protein families, including phosphatases, proteases, ultraviolet-irradiation DNA damage repair enzymes, glutamine synthetase, and RuBisCO. The diversity added by GOS data has implications for choosing targets for experimental structure characterization as part of structural genomics efforts. Our analysis indicates that new families are being discovered at a rate that is linear or almost linear with the addition of new sequences, implying that we are still far from discovering all protein families in nature.

  1. Sequence stratigraphy as a scientific enterprise: the evolution and persistence of conflicting paradigms

    NASA Astrophysics Data System (ADS)

    Miall, Andrew D.; Miall, Charlene E.

    2001-08-01

    In the 1970s, seismic stratigraphy represented a new paradigm in geological thought. The development of new techniques for analyzing seismic-reflection data constituted a "crisis," as conceptualized by T.S. Kuhn, and stimulated a revolution in stratigraphy. We analyze here a specific subset of the new ideas, that pertaining to the concept of global-eustasy and the global cycle chart published by Vail et al. [Vail, P.R., Mitchum, R.M., Jr., Todd, R.G., Widmier, J.M., Thompson, S., III, Sangree, J.B., Bubb, J.N., Hatlelid, W.G., 1977. Seismic stratigraphy and global changes of sea-level. In: Payton, C.E. (Ed.), Seismic Stratigraphy—Applications to Hydrocarbon Exploration, Am. Assoc. Pet. Geol. Mem. 26, pp. 49-212.] The global-eustasy model posed two challenges to the "normal science" of stratigraphy then underway: (1) that sequence stratigraphy, as exemplified by the global cycle chart, constitutes a superior standard of geologic time to that assembled from conventional chronostratigraphic evidence, and (2) that stratigraphic processes are dominated by the effects of eustasy, to the exclusion of other allogenic mechanisms, including tectonism. While many stratigraphers now doubt the universal validity of the model of global-eustasy, what we term the global-eustasy paradigm, a group of sequence researchers led by Vail still adheres to it, and the two conceptual approaches have evolved into two conflicting paradigms. Those who assert that there are multiple processes generating stratigraphic sequences (possibly including eustatic processes) are adherents of what we term the complexity paradigm. Followers of this paradigm argue that tests of the global cycle chart amount to little more than circular reasoning. A new body of work documenting the European sequence record was published in 1998 by de Graciansky et al. These workers largely follow the global-eustasy paradigm. Citation and textual analysis of this work indicates that they have not responded to any of the scientific problems identified by the opposing group. These researchers have developed their own descriptive and interpretive language that is largely self-referential. Through the use of philosophical and sociological assumptions about the nature of human activity, and in particular the work of Thomas Kuhn, we have attempted to illustrate (1) how the preconceptions of geologists shape their observations in nature; (2) how the working environment can contribute to the consensus that develops around a theoretical approach with a concomitant disregard for anomalous data that may arise; (3) how a theoretical argument can be accepted by the geological community in the absence of "proofs" such as documentation and primary data; (4) how the definition of a situation and the use or non-use of geological language "texts" can direct geological interpretive processes in one direction or another; and (5) how citation patterns and clusters of interrelated "invisible colleges" of geologists can extend or thwart the advancement of geological knowledge.

  2. Global analysis of bacterial transcription factors to predict cellular target processes.

    PubMed

    Doerks, Tobias; Andrade, Miguel A; Lathe, Warren; von Mering, Christian; Bork, Peer

    2004-03-01

    Whole-genome sequences are now available for >100 bacterial species, giving unprecedented power to comparative genomics approaches. We have applied genome-context methods to predict target processes that are regulated by transcription factors (TFs). Of 128 orthologous groups of proteins annotated as TFs, to date, 36 are functionally uncharacterized; in our analysis we predict a probable cellular target process or biochemical pathway for half of these functionally uncharacterized TFs.

  3. Diversity and Evolution of Mycobacterium tuberculosis: Moving to Whole-Genome-Based Approaches

    PubMed Central

    Niemann, Stefan; Supply, Philip

    2014-01-01

    Genotyping of clinical Mycobacterium tuberculosis complex (MTBC) strains has become a standard tool for epidemiological tracing and for the investigation of the local and global strain population structure. Of special importance is the analysis of the expansion of multidrug (MDR) and extensively drug-resistant (XDR) strains. Classical genotyping and, more recently, whole-genome sequencing have revealed that the strains of the MTBC are more diverse than previously anticipated. Globally, several phylogenetic lineages can be distinguished whose geographical distribution is markedly variable. Strains of particular (sub)lineages, such as Beijing, seem to be more virulent and associated with enhanced resistance levels and fitness, likely fueling their spread in certain world regions. The upcoming generalization of whole-genome sequencing approaches will expectedly provide more comprehensive insights into the molecular and epidemiological mechanisms involved and lead to better diagnostic and therapeutic tools. PMID:25190252

  4. Global Dispersal Pattern of HIV Type 1 Subtype CRF01_AE: A Genetic Trace of Human Mobility Related to Heterosexual Sexual Activities Centralized in Southeast Asia.

    PubMed

    Angelis, Konstantinos; Albert, Jan; Mamais, Ioannis; Magiorkinis, Gkikas; Hatzakis, Angelos; Hamouda, Osamah; Struck, Daniel; Vercauteren, Jurgen; Wensing, Annemarie M J; Alexiev, Ivailo; Åsjö, Birgitta; Balotta, Claudia; Camacho, Ricardo J; Coughlan, Suzie; Griskevicius, Algirdas; Grossman, Zehava; Horban, Andrzej; Kostrikis, Leondios G; Lepej, Snjezana; Liitsola, Kirsi; Linka, Marek; Nielsen, Claus; Otelea, Dan; Paredes, Roger; Poljak, Mario; Puchhammer-Stöckl, Elisabeth; Schmit, Jean-Claude; Sönnerborg, Anders; Staneková, Danica; Stanojevic, Maja; Boucher, Charles A B; Kaplan, Lauren; Vandamme, Anne-Mieke; Paraskevis, Dimitrios

    2015-06-01

    Human immunodeficiency virus type 1 (HIV-1) subtype CRF01_AE originated in Africa and then passed to Thailand, where it established a major epidemic. Despite the global presence of CRF01_AE, little is known about its subsequent dispersal pattern. We assembled a global data set of 2736 CRF01_AE sequences by pooling sequences from public databases and patient-cohort studies. We estimated viral dispersal patterns, using statistical phylogeographic analysis run over bootstrap trees estimated by the maximum likelihood method. We show that Thailand has been the source of viral dispersal to most areas worldwide, including 17 of 20 sampled countries in Europe. Japan, Singapore, Vietnam, and other Asian countries have played a secondary role in the viral dissemination. In contrast, China and Taiwan have mainly imported strains from neighboring Asian countries, North America, and Africa without any significant viral exportation. The central role of Thailand in the global spread of CRF01_AE can be probably explained by the popularity of Thailand as a vacation destination characterized by sex tourism and by Thai emigration to the Western world. Our study highlights the unique case of CRF01_AE, the only globally distributed non-B clade whose global dispersal did not originate in Africa. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  5. Niche specialization of terrestrial archaeal ammonia oxidizers.

    PubMed

    Gubry-Rangin, Cécile; Hai, Brigitte; Quince, Christopher; Engel, Marion; Thomson, Bruce C; James, Phillip; Schloter, Michael; Griffiths, Robert I; Prosser, James I; Nicol, Graeme W

    2011-12-27

    Soil pH is a major determinant of microbial ecosystem processes and potentially a major driver of evolution, adaptation, and diversity of ammonia oxidizers, which control soil nitrification. Archaea are major components of soil microbial communities and contribute significantly to ammonia oxidation in some soils. To determine whether pH drives evolutionary adaptation and community structure of soil archaeal ammonia oxidizers, sequences of amoA, a key functional gene of ammonia oxidation, were examined in soils at global, regional, and local scales. Globally distributed database sequences clustered into 18 well-supported phylogenetic lineages that dominated specific soil pH ranges classified as acidic (pH <5), acido-neutral (5 ≤ pH <7), or alkalinophilic (pH ≥ 7). To determine whether patterns were reproduced at regional and local scales, amoA gene fragments were amplified from DNA extracted from 47 soils in the United Kingdom (pH 3.5-8.7), including a pH-gradient formed by seven soils at a single site (pH 4.5-7.5). High-throughput sequencing and analysis of amoA gene fragments identified an additional, previously undiscovered phylogenetic lineage and revealed similar pH-associated distribution patterns at global, regional, and local scales, which were most evident for the five most abundant clusters. Archaeal amoA abundance and diversity increased with soil pH, which was the only physicochemical characteristic measured that significantly influenced community structure. These results suggest evolution based on specific adaptations to soil pH and niche specialization, resulting in a global distribution of archaeal lineages that have important consequences for soil ecosystem function and nitrogen cycling.

  6. De Novo Assembly and Characterization of the Transcriptome of the Chinese Medicinal Herb, Gentiana rigescens

    PubMed Central

    Zhang, Xiaodong; Allan, Andrew C.; Li, Caixia; Wang, Yuanzhong; Yao, Qiuyang

    2015-01-01

    Gentiana rigescens is an important medicinal herb in China. The main validated medicinal component gentiopicroside is synthesized in shoots, but is mainly found in the plant’s roots. The gentiopicroside biosynthetic pathway and its regulatory control remain to be elucidated. Genome resources of gentian are limited. Next-generation sequencing (NGS) technologies can aid in supplying global gene expression profiles. In this study we present sequence and transcript abundance data for the root and leaf transcriptome of G. rigescens, obtained using the Illumina Hiseq2000. Over fifty million clean reads were obtained from leaf and root libraries. This yields 76,717 unigenes with an average length of 753 bp. Among these, 33,855 unigenes were identified as putative homologs of annotated sequences in public protein and nucleotide databases. Digital abundance analysis identified 3306 unigenes differentially enriched between leaf and root. Unigenes found in both tissues were categorized according to their putative functional categories. Of the differentially expressed genes, over 130 were annotated as related to terpenoid biosynthesis. This work is the first study of global transcriptome analyses in gentian. These sequences and putative functional data comprise a resource for future investigation of terpenoid biosynthesis in Gentianaceae species and annotation of the gentiopicroside biosynthetic pathway and its regulatory mechanisms. PMID:26006235

  7. Sequence analysis of MHC class I α2 from sockeye salmon (Oncorhynchus nerka).

    PubMed

    McClelland, Erin K; Ming, Tobi J; Tabata, Amy; Miller, Kristina M

    2011-09-01

    Most studies assessing adaptive MHC diversity in salmon populations have focused on the classical class II DAB or DAA loci, as these have been most amenable to single PCR amplifications due to their relatively low level of sequence divergence. Herein, we report the characterization of the classical class I UBA α2 locus based on collections taken throughout the species range of sockeye salmon (Oncorhynchus nerka). Through use of multiple lineage-specific primer sets, denaturing gradient gel electrophoresis and sequencing, we identified thirty-four alleles from three highly divergent lineages. Sequence identity between lineages ranged from 30.0% to 56.8% but was relatively high within lineages. Allelic identity within the antigen recognition site (ARS) was greater than for the longer sequence. Global positive selection on UBA was seen at the sequence level (dN:dS = 1.012) with four codons under positive selection and 12 codons under negative selection. Crown Copyright © 2011. Published by Elsevier Ltd. All rights reserved.

  8. A new look at dust and clouds in the Mars atmosphere - Analysis of emission-phase-function sequences from global Viking IRTM observations

    NASA Technical Reports Server (NTRS)

    Clancy, R. T.; Lee, Steven W.

    1991-01-01

    The present analysis of emission-phase function (EPF) observations from the IR thermal mapper aboard the Viking Orbiter encompasses polar latitudes, and Viking Lander sites, and spans a wide range of solar longitudes. A multiple scattering radiative transfer model which incorporates a bidirectional phase function for the surface and atmospheric scattering by dust and clouds yields surface albedos and dust and ice optical properties and optical depths for the variety of Mars conditions. It is possible to fit all analyzed EPF sequences corresponding to dust scattering with an albedo of 0.92, rather than the 0.86 given by Pollack et al. on the bases of Viking Lander observations.

  9. Comprehensive global amino acid sequence analysis of PB1F2 protein of influenza A H5N1 viruses and the influenza A virus subtypes responsible for the 20th-century pandemics.

    PubMed

    Pasricha, Gunisha; Mishra, Akhilesh C; Chakrabarti, Alok K

    2013-07-01

    PB1F2 is the 11th protein of influenza A virus translated from +1 alternate reading frame of PB1 gene. Since the discovery, varying sizes and functions of the PB1F2 protein of influenza A viruses have been reported. Selection of PB1 gene segment in the pandemics, variable size and pleiotropic effect of PB1F2 intrigued us to analyze amino acid sequences of this protein in various influenza A viruses. Amino acid sequences for PB1F2 protein of influenza A H5N1, H1N1, H2N2, and H3N2 subtypes were obtained from Influenza Research Database. Multiple sequence alignments of the PB1F2 protein sequences of the aforementioned subtypes were used to determine the size, variable and conserved domains and to perform mutational analysis. Analysis showed that 96·4% of the H5N1 influenza viruses harbored full-length PB1F2 protein. Except for the 2009 pandemic H1N1 virus, all the subtypes of the 20th-century pandemic influenza viruses contained full-length PB1F2 protein. Through the years, PB1F2 protein of the H1N1 and H3N2 viruses has undergone much variation. PB1F2 protein sequences of H5N1 viruses showed both human- and avian host-specific conserved domains. Global database of PB1F2 protein revealed that N66S mutation was present only in 3·8% of the H5N1 strains. We found a novel mutation, N84S in the PB1F2 protein of 9·35% of the highly pathogenic avian influenza H5N1 influenza viruses. Varying sizes and mutations of the PB1F2 protein in different influenza A virus subtypes with pandemic potential were obtained. There was genetic divergence of the protein in various hosts which highlighted the host-specific evolution of the virus. However, studies are required to correlate this sequence variability with the virulence and pathogenicity. © 2012 John Wiley & Sons Ltd.

  10. Taxonomic evaluation of selected Ganoderma species and database sequence validation

    PubMed Central

    Jargalmaa, Suldbold; Eimes, John A.; Park, Myung Soo; Park, Jae Young; Oh, Seung-Yoon

    2017-01-01

    Species in the genus Ganoderma include several ecologically important and pathogenic fungal species whose medicinal and economic value is substantial. Due to the highly similar morphological features within the Ganoderma, identification of species has relied heavily on DNA sequencing using BLAST searches, which are only reliable if the GenBank submissions are accurately labeled. In this study, we examined 113 specimens collected from 1969 to 2016 from various regions in Korea using morphological features and multigene analysis (internal transcribed spacer, translation elongation factor 1-α, and the second largest subunit of RNA polymerase II). These specimens were identified as four Ganoderma species: G. sichuanense, G. cf. adspersum, G. cf. applanatum, and G. cf. gibbosum. With the exception of G. sichuanense, these species were difficult to distinguish based solely on morphological features. However, phylogenetic analysis at three different loci yielded concordant phylogenetic information, and supported the four species distinctions with high bootstrap support. A survey of over 600 Ganoderma sequences available on GenBank revealed that 65% of sequences were either misidentified or ambiguously labeled. Here, we suggest corrected annotations for GenBank sequences based on our phylogenetic validation and provide updated global distribution patterns for these Ganoderma species. PMID:28761785

  11. Global versus local linear beat-to-beat analysis of the relationship between arterial pressure and pulse transit time during dynamic exercise.

    PubMed

    Porta, A; Gasperi, C; Nollo, G; Lucini, D; Pizzinelli, P; Antolini, R; Pagani, M

    2006-04-01

    Global linear analysis has been traditionally performed to verify the relationship between pulse transit time (PTT) and systolic arterial pressure (SAP) at the level of their spontaneous beat-to-beat variabilities: PTT and SAP have been plotted in the plane (PTT,SAP) and a significant linear correlation has been found. However, this relationship is weak and in specific individuals cannot be found. This result prevents the utilization of the SAP-PTT relationship to derive arterial pressure changes from PTT measures on an individual basis. We propose a local linear approach to study the SAP-PTT relationship. This approach is based on the definition of short SAP-PTT sequences characterized by SAP increase (decrease) and PTT decrease (increase) and on their search in the SAP and PTT beat-to-beat series. This local approach was applied to PTT and SAP series derived from 13 healthy humans during incremental supine dynamic exercise (at 10, 20 and 30% of the nominal individual maximum effort) and compared to the global approach. While global approach failed in some subjects, local analysis allowed the extraction of the gain of the SAP-PTT relationship in all subjects both at rest and during exercise. When both local and global analyses were successful, the local SAP-PTT gain is more negative than the global one as a likely result of noise reduction.

  12. Data Release: DNA barcodes of plant species collected for the Global Genome Initiative for Gardens Program, National Museum of Natural History, Smithsonian Institution

    PubMed Central

    Zúñiga, Jose D.; Gostel, Morgan R.; Mulcahy, Daniel G.; Barker, Katharine; Asia Hill; Sedaghatpour, Maryam; Vo, Samantha Q.; Funk, Vicki A.; Coddington, Jonathan A.

    2017-01-01

    Abstract The Global Genome Initiative has sequenced and released 1961 DNA barcodes for genetic samples obtained as part of the Global Genome Initiative for Gardens Program. The dataset includes barcodes for 29 plant families and 309 genera that did not have sequences flagged as barcodes in GenBank and sequences from officially recognized barcoding genetic markers meet the data standard of the Consortium for the Barcode of Life. The genetic samples were deposited in the Smithsonian Institution’s National Museum of Natural History Biorepository and their records were made public through the Global Genome Biodiversity Network’s portal. The DNA barcodes are now available on GenBank. PMID:29118648

  13. Investigating the viral ecology of global bee communities with high-throughput metagenomics.

    PubMed

    Galbraith, David A; Fuller, Zachary L; Ray, Allyson M; Brockmann, Axel; Frazier, Maryann; Gikungu, Mary W; Martinez, J Francisco Iturralde; Kapheim, Karen M; Kerby, Jeffrey T; Kocher, Sarah D; Losyev, Oleksiy; Muli, Elliud; Patch, Harland M; Rosa, Cristina; Sakamoto, Joyce M; Stanley, Scott; Vaudo, Anthony D; Grozinger, Christina M

    2018-06-11

    Bee viral ecology is a fascinating emerging area of research: viruses exert a range of effects on their hosts, exacerbate impacts of other environmental stressors, and, importantly, are readily shared across multiple bee species in a community. However, our understanding of bee viral communities is limited, as it is primarily derived from studies of North American and European Apis mellifera populations. Here, we examined viruses in populations of A. mellifera and 11 other bee species from 9 countries, across 4 continents and Oceania. We developed a novel pipeline to rapidly and inexpensively screen for bee viruses. This pipeline includes purification of encapsulated RNA/DNA viruses, sequence-independent amplification, high throughput sequencing, integrated assembly of contigs, and filtering to identify contigs specifically corresponding to viral sequences. We identified sequences for (+)ssRNA, (-)ssRNA, dsRNA, and ssDNA viruses. Overall, we found 127 contigs corresponding to novel viruses (i.e. previously not observed in bees), with 27 represented by >0.1% of the reads in a given sample, and 7 contained an RdRp or replicase sequence which could be used for robust phylogenetic analysis. This study provides a sequence-independent pipeline for viral metagenomics analysis, and greatly expands our understanding of the diversity of viruses found in bee communities.

  14. Phylo-VISTA: Interactive visualization of multiple DNA sequence alignments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shah, Nameeta; Couronne, Olivier; Pennacchio, Len A.

    The power of multi-sequence comparison for biological discovery is well established. The need for new capabilities to visualize and compare cross-species alignment data is intensified by the growing number of genomic sequence datasets being generated for an ever-increasing number of organisms. To be efficient these visualization algorithms must support the ability to accommodate consistently a wide range of evolutionary distances in a comparison framework based upon phylogenetic relationships. Results: We have developed Phylo-VISTA, an interactive tool for analyzing multiple alignments by visualizing a similarity measure for multiple DNA sequences. The complexity of visual presentation is effectively organized using a frameworkmore » based upon interspecies phylogenetic relationships. The phylogenetic organization supports rapid, user-guided interspecies comparison. To aid in navigation through large sequence datasets, Phylo-VISTA leverages concepts from VISTA that provide a user with the ability to select and view data at varying resolutions. The combination of multiresolution data visualization and analysis, combined with the phylogenetic framework for interspecies comparison, produces a highly flexible and powerful tool for visual data analysis of multiple sequence alignments. Availability: Phylo-VISTA is available at http://www-gsd.lbl. gov/phylovista. It requires an Internet browser with Java Plugin 1.4.2 and it is integrated into the global alignment program LAGAN at http://lagan.stanford.edu« less

  15. Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq)-A Method for High-Throughput Analysis of Differentially Methylated CCGG Sites in Plants with Large Genomes.

    PubMed

    Chwialkowska, Karolina; Korotko, Urszula; Kosinska, Joanna; Szarejko, Iwona; Kwasniewski, Miroslaw

    2017-01-01

    Epigenetic mechanisms, including histone modifications and DNA methylation, mutually regulate chromatin structure, maintain genome integrity, and affect gene expression and transposon mobility. Variations in DNA methylation within plant populations, as well as methylation in response to internal and external factors, are of increasing interest, especially in the crop research field. Methylation Sensitive Amplification Polymorphism (MSAP) is one of the most commonly used methods for assessing DNA methylation changes in plants. This method involves gel-based visualization of PCR fragments from selectively amplified DNA that are cleaved using methylation-sensitive restriction enzymes. In this study, we developed and validated a new method based on the conventional MSAP approach called Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq). We improved the MSAP-based approach by replacing the conventional separation of amplicons on polyacrylamide gels with direct, high-throughput sequencing using Next Generation Sequencing (NGS) and automated data analysis. MSAP-Seq allows for global sequence-based identification of changes in DNA methylation. This technique was validated in Hordeum vulgare . However, MSAP-Seq can be straightforwardly implemented in different plant species, including crops with large, complex and highly repetitive genomes. The incorporation of high-throughput sequencing into MSAP-Seq enables parallel and direct analysis of DNA methylation in hundreds of thousands of sites across the genome. MSAP-Seq provides direct genomic localization of changes and enables quantitative evaluation. We have shown that the MSAP-Seq method specifically targets gene-containing regions and that a single analysis can cover three-quarters of all genes in large genomes. Moreover, MSAP-Seq's simplicity, cost effectiveness, and high-multiplexing capability make this method highly affordable. Therefore, MSAP-Seq can be used for DNA methylation analysis in crop plants with large and complex genomes.

  16. Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq)—A Method for High-Throughput Analysis of Differentially Methylated CCGG Sites in Plants with Large Genomes

    PubMed Central

    Chwialkowska, Karolina; Korotko, Urszula; Kosinska, Joanna; Szarejko, Iwona; Kwasniewski, Miroslaw

    2017-01-01

    Epigenetic mechanisms, including histone modifications and DNA methylation, mutually regulate chromatin structure, maintain genome integrity, and affect gene expression and transposon mobility. Variations in DNA methylation within plant populations, as well as methylation in response to internal and external factors, are of increasing interest, especially in the crop research field. Methylation Sensitive Amplification Polymorphism (MSAP) is one of the most commonly used methods for assessing DNA methylation changes in plants. This method involves gel-based visualization of PCR fragments from selectively amplified DNA that are cleaved using methylation-sensitive restriction enzymes. In this study, we developed and validated a new method based on the conventional MSAP approach called Methylation Sensitive Amplification Polymorphism Sequencing (MSAP-Seq). We improved the MSAP-based approach by replacing the conventional separation of amplicons on polyacrylamide gels with direct, high-throughput sequencing using Next Generation Sequencing (NGS) and automated data analysis. MSAP-Seq allows for global sequence-based identification of changes in DNA methylation. This technique was validated in Hordeum vulgare. However, MSAP-Seq can be straightforwardly implemented in different plant species, including crops with large, complex and highly repetitive genomes. The incorporation of high-throughput sequencing into MSAP-Seq enables parallel and direct analysis of DNA methylation in hundreds of thousands of sites across the genome. MSAP-Seq provides direct genomic localization of changes and enables quantitative evaluation. We have shown that the MSAP-Seq method specifically targets gene-containing regions and that a single analysis can cover three-quarters of all genes in large genomes. Moreover, MSAP-Seq's simplicity, cost effectiveness, and high-multiplexing capability make this method highly affordable. Therefore, MSAP-Seq can be used for DNA methylation analysis in crop plants with large and complex genomes. PMID:29250096

  17. Phylogenetic Analysis of Klebsiella pneumoniae from Hospitalized Children, Pakistan

    PubMed Central

    Ejaz, Hasan; Wang, Nancy; Wilksch, Jonathan J.; Page, Andrew J.; Cao, Hanwei; Gujaran, Shruti; Keane, Jacqueline A.; Lithgow, Trevor; ul-Haq, Ikram; Dougan, Gordon

    2017-01-01

    Klebsiella pneumoniae shows increasing emergence of multidrug-resistant lineages, including strains resistant to all available antimicrobial drugs. We conducted whole-genome sequencing of 178 highly drug-resistant isolates from a tertiary hospital in Lahore, Pakistan. Phylogenetic analyses to place these isolates into global context demonstrate the expansion of multiple independent lineages, including K. quasipneumoniae. PMID:29048298

  18. Development and verification of global/local analysis techniques for laminated composites

    NASA Technical Reports Server (NTRS)

    Thompson, Danniella Muheim; Griffin, O. Hayden, Jr.

    1991-01-01

    A two-dimensional to three-dimensional global/local finite element approach was developed, verified, and applied to a laminated composite plate of finite width and length containing a central circular hole. The resulting stress fields for axial compression loads were examined for several symmetric stacking sequences and hole sizes. Verification was based on comparison of the displacements and the stress fields with those accepted trends from previous free edge investigations and a complete three-dimensional finite element solution of the plate. The laminates in the compression study included symmetric cross-ply, angle-ply and quasi-isotropic stacking sequences. The entire plate was selected as the global model and analyzed with two-dimensional finite elements. Displacements along a region identified as the global/local interface were applied in a kinematically consistent fashion to independent three-dimensional local models. Local areas of interest in the plate included a portion of the straight free edge near the hole, and the immediate area around the hole. Interlaminar stress results obtained from the global/local analyses compares well with previously reported trends, and some new conclusions about interlaminar stress fields in plates with different laminate orientations and hole sizes are presented for compressive loading. The effectiveness of the global/local procedure in reducing the computational effort required to solve these problems is clearly demonstrated through examination of the computer time required to formulate and solve the linear, static system of equations which result for the global and local analyses to those required for a complete three-dimensional formulation for a cross-ply laminate. Specific processors used during the analyses are described in general terms. The application of this global/local technique is not limited software system, and was developed and described in as general a manner as possible.

  19. High-speed all-optical DNA local sequence alignment based on a three-dimensional artificial neural network.

    PubMed

    Maleki, Ehsan; Babashah, Hossein; Koohi, Somayyeh; Kavehvash, Zahra

    2017-07-01

    This paper presents an optical processing approach for exploring a large number of genome sequences. Specifically, we propose an optical correlator for global alignment and an extended moiré matching technique for local analysis of spatially coded DNA, whose output is fed to a novel three-dimensional artificial neural network for local DNA alignment. All-optical implementation of the proposed 3D artificial neural network is developed and its accuracy is verified in Zemax. Thanks to its parallel processing capability, the proposed structure performs local alignment of 4 million sequences of 150 base pairs in a few seconds, which is much faster than its electrical counterparts, such as the basic local alignment search tool.

  20. Complete genome analysis of highly pathogenic bovine ephemeral fever virus isolated in Turkey in 2012.

    PubMed

    Abayli, Hasan; Tonbak, Sukru; Azkur, Ahmet Kursat; Bulut, Hakan

    2017-10-01

    Relatively high prevalence and mortality rates of bovine ephemeral fever (BEF) have been reported in recent epidemics in some countries, including Turkey, when compared with previous outbreaks. A limited number of complete genome sequences of BEF virus (BEFV) are available in the GenBank Database. In this study, the complete genome of highly pathogenic BEFV isolated during an outbreak in Turkey in 2012 was analyzed for genetic characterization. The complete genome of the Turkish BEFV isolate was amplified by reverse transcription-polymerase chain reaction (RT-PCR) and sequenced. It was found that the complete genome of the Turkish BEFV isolate was 14,901 nt in length. The complete genome sequence obtained from the study showed 91-92% identity at nucleotide level to Australian (BB7721) and Chinese (Bovine/China/Henan1/2012) BEFV isolates. Phylogenetic analysis of the glycoprotein gene of the Turkish BEFV isolate also showed that Turkish isolates were closely related to Israeli isolates. Because of the limited number of complete BEFV genome sequences, the results from this study will be useful for understanding the global molecular epidemiology and geodynamics of BEF.

  1. GMDD: a database of GMO detection methods

    PubMed Central

    Dong, Wei; Yang, Litao; Shen, Kailin; Kim, Banghyun; Kleter, Gijs A; Marvin, Hans JP; Guo, Rong; Liang, Wanqi; Zhang, Dabing

    2008-01-01

    Background Since more than one hundred events of genetically modified organisms (GMOs) have been developed and approved for commercialization in global area, the GMO analysis methods are essential for the enforcement of GMO labelling regulations. Protein and nucleic acid-based detection techniques have been developed and utilized for GMOs identification and quantification. However, the information for harmonization and standardization of GMO analysis methods at global level is needed. Results GMO Detection method Database (GMDD) has collected almost all the previous developed and reported GMOs detection methods, which have been grouped by different strategies (screen-, gene-, construct-, and event-specific), and also provide a user-friendly search service of the detection methods by GMO event name, exogenous gene, or protein information, etc. In this database, users can obtain the sequences of exogenous integration, which will facilitate PCR primers and probes design. Also the information on endogenous genes, certified reference materials, reference molecules, and the validation status of developed methods is included in this database. Furthermore, registered users can also submit new detection methods and sequences to this database, and the newly submitted information will be released soon after being checked. Conclusion GMDD contains comprehensive information of GMO detection methods. The database will make the GMOs analysis much easier. PMID:18522755

  2. Analysis of the Impact of Data Normalization on Cyber Event Correlation Query Performance

    DTIC Science & Technology

    2012-03-01

    2003). Organizations use it in planning, target marketing , decision-making, data analysis, and customer services (Shin, 2003). Organizations that...Following this IP address is a router message sequence number. This is a globally unique number for each router terminal and can range from...Appendix G, invokes the PERL parser for the log files from a particular USAF base, and invokes the CTL file that loads the resultant CSV file into the

  3. Application of Quaternion in improving the quality of global sequence alignment scores for an ambiguous sequence target in Streptococcus pneumoniae DNA

    NASA Astrophysics Data System (ADS)

    Lestari, D.; Bustamam, A.; Novianti, T.; Ardaneswari, G.

    2017-07-01

    DNA sequence can be defined as a succession of letters, representing the order of nucleotides within DNA, using a permutation of four DNA base codes including adenine (A), guanine (G), cytosine (C), and thymine (T). The precise code of the sequences is determined using DNA sequencing methods and technologies, which have been developed since the 1970s and currently become highly developed, advanced and highly throughput sequencing technologies. So far, DNA sequencing has greatly accelerated biological and medical research and discovery. However, in some cases DNA sequencing could produce any ambiguous and not clear enough sequencing results that make them quite difficult to be determined whether these codes are A, T, G, or C. To solve these problems, in this study we can introduce other representation of DNA codes namely Quaternion Q = (PA, PT, PG, PC), where PA, PT, PG, PC are the probability of A, T, G, C bases that could appear in Q and PA + PT + PG + PC = 1. Furthermore, using Quaternion representations we are able to construct the improved scoring matrix for global sequence alignment processes, by applying a dot product method. Moreover, this scoring matrix produces better and higher quality of the match and mismatch score between two DNA base codes. In implementation, we applied the Needleman-Wunsch global sequence alignment algorithm using Octave, to analyze our target sequence which contains some ambiguous sequence data. The subject sequences are the DNA sequences of Streptococcus pneumoniae families obtained from the Genebank, meanwhile the target DNA sequence are received from our collaborator database. As the results we found the Quaternion representations improve the quality of the sequence alignment score and we can conclude that DNA sequence target has maximum similarity with Streptococcus pneumoniae.

  4. De novo transcriptome sequencing in Frankliniella occidentalis to identify genes involved in plant virus transmission and insecticide resistance.

    PubMed

    Zhang, Zhijun; Zhang, Pengjun; Li, Weidi; Zhang, Jinming; Huang, Fang; Yang, Jian; Bei, Yawei; Lu, Yaobin

    2013-05-01

    The western flower thrips (WFT), Frankliniella occidentalis, a world-wide invasive insect, causes agricultural damage by directly feeding and by indirectly vectoring Tospoviruses, such as Tomato spotted wilt virus (TSWV). We characterized the transcriptome of WFT and analyzed global gene expression of WFT response to TSWV infection using Illumina sequencing platform. We compiled 59,932 unigenes, and identified 36,339 unigenes by similarity analysis against public databases, most of which were annotated using gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analysis. Within these annotated transcripts, we collected 278 sequences related to insecticide resistance. GO and KEGG analysis of different expression genes between TSWV-infected and non-infected WFT population revealed that TSWV can regulate cellular process and immune response, which might lead to low virus titers in thrips cells and no detrimental effects on F. occidentalis. This data-set not only enriches genomic resource for WFT, but also benefits research into its molecular genetics and functional genomics. Copyright © 2013 Elsevier Inc. All rights reserved.

  5. Global preamplification simplifies targeted mRNA quantification

    PubMed Central

    Kroneis, Thomas; Jonasson, Emma; Andersson, Daniel; Dolatabadi, Soheila; Ståhlberg, Anders

    2017-01-01

    The need to perform gene expression profiling using next generation sequencing and quantitative real-time PCR (qPCR) on small sample sizes and single cells is rapidly expanding. However, to analyse few molecules, preamplification is required. Here, we studied global and target-specific preamplification using 96 optimised qPCR assays. To evaluate the preamplification strategies, we monitored the reactions in real-time using SYBR Green I detection chemistry followed by melting curve analysis. Next, we compared yield and reproducibility of global preamplification to that of target-specific preamplification by qPCR using the same amount of total RNA. Global preamplification generated 9.3-fold lower yield and 1.6-fold lower reproducibility than target-specific preamplification. However, the performance of global preamplification is sufficient for most downstream applications and offers several advantages over target-specific preamplification. To demonstrate the potential of global preamplification we analysed the expression of 15 genes in 60 single cells. In conclusion, we show that global preamplification simplifies targeted gene expression profiling of small sample sizes by a flexible workflow. We outline the pros and cons for global preamplification compared to target-specific preamplification. PMID:28332609

  6. Feasibility and reproducibility of feature-tracking-based strain and strain rate measures of the left ventricle in different diseases and genders.

    PubMed

    Maceira, Alicia M; Tuset-Sanchis, Luis; López-Garrido, Miguel; San Andres, Marta; López-Lereu, M Pilar; Monmeneu, Jose V; García-González, M Pilar; Higueras, Laura

    2018-05-01

    The measurement of myocardial deformation by strain analysis is an evolving tool to quantify regional and global myocardial function. To assess the feasibility and reproducibility of myocardial strain/strain rate measurements with magnetic resonance feature tracking (MR-FT) in healthy subjects and in patient groups. Prospective study. Sixty patients (20 hypertensives with left ventricular (LV) hypertrophy (H); 20 nonischemic dilated cardiomyopathy (D); 20 ischemic heart disease (I); as well as 20 controls (C) were included, 10 men and 10 women in each group. A 1.5T MR protocol including steady-state free precession (SSFP) cine sequences in the standard views and late enhancement sequences. LV volumes, mass, global and regional radial, circumferential, and longitudinal strain/strain rate were measured using CVI42 software. The analysis time was recorded. Intraobserver and interobserver agreement and intraclass correlation coefficients (ICC) were obtained for reproducibility assessment as well as differences according to gender and group of pertinence. Strain/strain rate analysis could be achieved in all subjects. The average analysis time was 14 ± 3 minutes. The average intraobserver ICC was excellent (ICC >0.90) for strain and good (ICC >0.75) for strain rate. Reproducibility of strain measurements was good to excellent (ICC >0.75) for all groups of subjects and both genders. Reproducibility of strain measurements was good for basal segments (ICC >0.75) and excellent for middle and apical segments (ICC >0.90). Reproducibility of strain rate measurements was moderate for basal segments (ICC >0.50) and good for middle and apical segments. MR-FT for strain/strain rate analysis is a feasible and highly reproducible technique. CVI42 FT analysis was equally feasible and reproducible in various pathologies and between genders. Better reproducibility was seen globally for middle and apical segments, which needs further clarification. 3 Technical Efficacy Stage 2 J. Magn. Reson. Imaging 2018;47:1415-1425. © 2017 International Society for Magnetic Resonance in Medicine.

  7. A Phylogenetic and Phenotypic Analysis of Salmonella enterica Serovar Weltevreden, an Emerging Agent of Diarrheal Disease in Tropical Regions

    PubMed Central

    Makendi, Carine; Page, Andrew J.; Wren, Brendan W.; Le Thi Phuong, Tu; Clare, Simon; Hale, Christine; Goulding, David; Klemm, Elizabeth J.; Pickard, Derek; Okoro, Chinyere; Hunt, Martin; Thompson, Corinne N.; Phu Huong Lan, Nguyen; Tran Do Hoang, Nhu; Thwaites, Guy E.; Le Hello, Simon; Brisabois, Anne; Weill, François-Xavier; Baker, Stephen; Dougan, Gordon

    2016-01-01

    Salmonella enterica serovar Weltevreden (S. Weltevreden) is an emerging cause of diarrheal and invasive disease in humans residing in tropical regions. Despite the regional and international emergence of this Salmonella serovar, relatively little is known about its genetic diversity, genomics or virulence potential in model systems. Here we used whole genome sequencing and bioinformatics analyses to define the phylogenetic structure of a diverse global selection of S. Weltevreden. Phylogenetic analysis of more than 100 isolates demonstrated that the population of S. Weltevreden can be segregated into two main phylogenetic clusters, one associated predominantly with continental Southeast Asia and the other more internationally dispersed. Subcluster analysis suggested the local evolution of S. Weltevreden within specific geographical regions. Four of the isolates were sequenced using long read sequencing to produce high quality reference genomes. Phenotypic analysis in Hep-2 cells and in a murine infection model indicated that S. Weltevreden were significantly attenuated in these models compared to the classical S. Typhimurium reference strain SL1344. Our work outlines novel insights into this important emerging pathogen and provides a baseline understanding for future research studies. PMID:26867150

  8. Mechanisms controlling the complete accretionary beach state sequence

    NASA Astrophysics Data System (ADS)

    Dubarbier, Benjamin; Castelle, Bruno; Ruessink, Gerben; Marieu, Vincent

    2017-06-01

    Accretionary downstate beach sequence is a key element of observed nearshore morphological variability along sandy coasts. We present and analyze the first numerical simulation of such a sequence using a process-based morphodynamic model that solves the coupling between waves, depth-integrated currents, and sediment transport. The simulation evolves from an alongshore uniform barred beach (storm profile) to an almost featureless shore-welded terrace (summer profile) through the highly alongshore variable detached crescentic bar and transverse bar/rip system states. A global analysis of the full sequence allows determining the varying contributions of the different hydro-sedimentary processes. Sediment transport driven by orbital velocity skewness is critical to the overall onshore sandbar migration, while gravitational downslope sediment transport acts as a damping term inhibiting further channel growth enforced by rip flow circulation. Accurate morphological diffusivity and inclusion of orbital velocity skewness opens new perspectives in terms of morphodynamic modeling of real beaches.

  9. A comprehensive framework for functional diversity patterns of marine chromophytic phytoplankton using rbcL phylogeny

    PubMed Central

    Samanta, Brajogopal; Bhadury, Punyasloke

    2016-01-01

    Marine chromophytes are taxonomically diverse group of algae and contribute approximately half of the total oceanic primary production. To understand the global patterns of functional diversity of chromophytic phytoplankton, robust bioinformatics and statistical analyses including deep phylogeny based on 2476 form ID rbcL gene sequences representing seven ecologically significant oceanographic ecoregions were undertaken. In addition, 12 form ID rbcL clone libraries were generated and analyzed (148 sequences) from Sundarbans Biosphere Reserve representing the world’s largest mangrove ecosystem as part of this study. Global phylogenetic analyses recovered 11 major clades of chromophytic phytoplankton in varying proportions with several novel rbcL sequences in each of the seven targeted ecoregions. Majority of OTUs was found to be exclusive to each ecoregion, whereas some were shared by two or more ecoregions based on beta-diversity analysis. Present phylogenetic and bioinformatics analyses provide a strong statistical support for the hypothesis that different oceanographic regimes harbor distinct and coherent groups of chromophytic phytoplankton. It has been also shown as part of this study that varying natural selection pressure on form ID rbcL gene under different environmental conditions could lead to functional differences and overall fitness of chromophytic phytoplankton populations. PMID:26861415

  10. Niche specialization of terrestrial archaeal ammonia oxidizers

    PubMed Central

    Gubry-Rangin, Cécile; Hai, Brigitte; Quince, Christopher; Engel, Marion; Thomson, Bruce C.; James, Phillip; Schloter, Michael; Griffiths, Robert I.; Prosser, James I.; Nicol, Graeme W.

    2011-01-01

    Soil pH is a major determinant of microbial ecosystem processes and potentially a major driver of evolution, adaptation, and diversity of ammonia oxidizers, which control soil nitrification. Archaea are major components of soil microbial communities and contribute significantly to ammonia oxidation in some soils. To determine whether pH drives evolutionary adaptation and community structure of soil archaeal ammonia oxidizers, sequences of amoA, a key functional gene of ammonia oxidation, were examined in soils at global, regional, and local scales. Globally distributed database sequences clustered into 18 well-supported phylogenetic lineages that dominated specific soil pH ranges classified as acidic (pH <5), acido-neutral (5≤ pH <7), or alkalinophilic (pH ≥7). To determine whether patterns were reproduced at regional and local scales, amoA gene fragments were amplified from DNA extracted from 47 soils in the United Kingdom (pH 3.5–8.7), including a pH-gradient formed by seven soils at a single site (pH 4.5–7.5). High-throughput sequencing and analysis of amoA gene fragments identified an additional, previously undiscovered phylogenetic lineage and revealed similar pH-associated distribution patterns at global, regional, and local scales, which were most evident for the five most abundant clusters. Archaeal amoA abundance and diversity increased with soil pH, which was the only physicochemical characteristic measured that significantly influenced community structure. These results suggest evolution based on specific adaptations to soil pH and niche specialization, resulting in a global distribution of archaeal lineages that have important consequences for soil ecosystem function and nitrogen cycling. PMID:22158986

  11. An RNA-Seq Transcriptome Analysis of Orthophosphate-Deficient White Lupin Reveals Novel Insights into Phosphorus Acclimation in Plants1[W][OA

    PubMed Central

    O’Rourke, Jamie A.; Yang, S. Samuel; Miller, Susan S.; Bucciarelli, Bruna; Liu, Junqi; Rydeen, Ariel; Bozsoki, Zoltan; Uhde-Stone, Claudia; Tu, Zheng Jin; Allan, Deborah; Gronwald, John W.; Vance, Carroll P.

    2013-01-01

    Phosphorus, in its orthophosphate form (Pi), is one of the most limiting macronutrients in soils for plant growth and development. However, the whole-genome molecular mechanisms contributing to plant acclimation to Pi deficiency remain largely unknown. White lupin (Lupinus albus) has evolved unique adaptations for growth in Pi-deficient soils, including the development of cluster roots to increase root surface area. In this study, we utilized RNA-Seq technology to assess global gene expression in white lupin cluster roots, normal roots, and leaves in response to Pi supply. We de novo assembled 277,224,180 Illumina reads from 12 complementary DNA libraries to build what is to our knowledge the first white lupin gene index (LAGI 1.0). This index contains 125,821 unique sequences with an average length of 1,155 bp. Of these sequences, 50,734 were transcriptionally active (reads per kilobase per million reads ≥ 3), representing approximately 7.8% of the white lupin genome, using the predicted genome size of Lupinus angustifolius as a reference. We identified a total of 2,128 sequences differentially expressed in response to Pi deficiency with a 2-fold or greater change and P ≤ 0.05. Twelve sequences were consistently differentially expressed due to Pi deficiency stress in three species, Arabidopsis (Arabidopsis thaliana), potato (Solanum tuberosum), and white lupin, making them ideal candidates to monitor the Pi status of plants. Additionally, classic physiological experiments were coupled with RNA-Seq data to examine the role of cytokinin and gibberellic acid in Pi deficiency-induced cluster root development. This global gene expression analysis provides new insights into the biochemical and molecular mechanisms involved in the acclimation to Pi deficiency. PMID:23197803

  12. An RNA-Seq transcriptome analysis of orthophosphate-deficient white lupin reveals novel insights into phosphorus acclimation in plants.

    PubMed

    O'Rourke, Jamie A; Yang, S Samuel; Miller, Susan S; Bucciarelli, Bruna; Liu, Junqi; Rydeen, Ariel; Bozsoki, Zoltan; Uhde-Stone, Claudia; Tu, Zheng Jin; Allan, Deborah; Gronwald, John W; Vance, Carroll P

    2013-02-01

    Phosphorus, in its orthophosphate form (P(i)), is one of the most limiting macronutrients in soils for plant growth and development. However, the whole-genome molecular mechanisms contributing to plant acclimation to P(i) deficiency remain largely unknown. White lupin (Lupinus albus) has evolved unique adaptations for growth in P(i)-deficient soils, including the development of cluster roots to increase root surface area. In this study, we utilized RNA-Seq technology to assess global gene expression in white lupin cluster roots, normal roots, and leaves in response to P(i) supply. We de novo assembled 277,224,180 Illumina reads from 12 complementary DNA libraries to build what is to our knowledge the first white lupin gene index (LAGI 1.0). This index contains 125,821 unique sequences with an average length of 1,155 bp. Of these sequences, 50,734 were transcriptionally active (reads per kilobase per million reads ≥ 3), representing approximately 7.8% of the white lupin genome, using the predicted genome size of Lupinus angustifolius as a reference. We identified a total of 2,128 sequences differentially expressed in response to P(i) deficiency with a 2-fold or greater change and P ≤ 0.05. Twelve sequences were consistently differentially expressed due to P(i) deficiency stress in three species, Arabidopsis (Arabidopsis thaliana), potato (Solanum tuberosum), and white lupin, making them ideal candidates to monitor the P(i) status of plants. Additionally, classic physiological experiments were coupled with RNA-Seq data to examine the role of cytokinin and gibberellic acid in P(i) deficiency-induced cluster root development. This global gene expression analysis provides new insights into the biochemical and molecular mechanisms involved in the acclimation to P(i) deficiency.

  13. Population analysis of Vibrio parahaemolyticus originating from different geographical regions demonstrates a high genetic diversity.

    PubMed

    Urmersbach, Sara; Alter, Thomas; Koralage, Madura Sanjeevani Gonsal; Sperling, Lisa; Gerdts, Gunnar; Messelhäusser, Ute; Huehn, Stephan

    2014-03-08

    Vibrio parahaemolyticus is frequently isolated from environmental and seafood samples and associated with gastroenteritis outbreakes in American, European, Asian and African countries. To distinguish between different lineages of V. parahaemolyticus various genotyping techniques have been used, incl. multilocus sequence typing (MLST). Even though some studies have already applied MLST analysis to characterize V. parahaemolyticus strain sets, these studies have been restricted to specific geographical areas (e.g. U.S. coast, Thailand and Peru), have focused exclusively on pandemic or non-pandemic pathogenic isolates or have been based on a limited strain number. To generate a global picture of V. parahaemolyticus genotype distribution, a collection of 130 environmental and seafood related V. parahaemolyticus isolates of different geographical origins (Sri Lanka, Ecuador, North Sea and Baltic Sea as well as German retail) was subjected to MLST analysis after modification of gyrB and recA PCRs. The V. parahaemolyticus population was composed of 82 unique Sequence Types (STs), of which 68 (82.9%) were new to the pubMLST database. After translating the in-frame nucleotide sequences into amino acid sequences, less diversity was detectable: a total of 31 different peptide Sequence Types (pSTs) with 19 (61.3%) new pSTs were generated from the analyzed isolates. Most STs did not show a global dissemination, but some were supra-regionally distributed and clusters of STs were dependent on geographical origin. On peptide level no general clustering of strains from specific geographical regions was observed, thereby the most common pSTs were found on all continents (Asia, South America and Europe) and rare pSTs were restricted to distinct countries or even geographical regions. One lineage of pSTs associated only with strains from North and Baltic Sea strains was identified. Our study reveals a high genetic diversity in the analyzed V. parahaemolyticus strain set as well as for geographical strain subsets, with a high proportion of newly discovered alleles and STs. Differences between the subsets were identified. Our data support the postulated population structure of V. parahaemolyticus which follows the 'epidemic' model of clonal expansion. Application of peptide based AA-MLST allowed the identification of reliable relationships between strains.

  14. Insights into the phylogeny of Northern Hemisphere Armillaria: Neighbor-net and Bayesian analyses of translation elongation factor 1-α gene sequences.

    PubMed

    Klopfenstein, Ned B; Stewart, Jane E; Ota, Yuko; Hanna, John W; Richardson, Bryce A; Ross-Davis, Amy L; Elías-Román, Rubén D; Korhonen, Kari; Keča, Nenad; Iturritxa, Eugenia; Alvarado-Rosales, Dionicio; Solheim, Halvor; Brazee, Nicholas J; Łakomy, Piotr; Cleary, Michelle R; Hasegawa, Eri; Kikuchi, Taisei; Garza-Ocañas, Fortunato; Tsopelas, Panaghiotis; Rigling, Daniel; Prospero, Simone; Tsykun, Tetyana; Bérubé, Jean A; Stefani, Franck O P; Jafarpour, Saeideh; Antonín, Vladimír; Tomšovský, Michal; McDonald, Geral I; Woodward, Stephen; Kim, Mee-Sook

    2017-01-01

    Armillaria possesses several intriguing characteristics that have inspired wide interest in understanding phylogenetic relationships within and among species of this genus. Nuclear ribosomal DNA sequence-based analyses of Armillaria provide only limited information for phylogenetic studies among widely divergent taxa. More recent studies have shown that translation elongation factor 1-α (tef1) sequences are highly informative for phylogenetic analysis of Armillaria species within diverse global regions. This study used Neighbor-net and coalescence-based Bayesian analyses to examine phylogenetic relationships of newly determined and existing tef1 sequences derived from diverse Armillaria species from across the Northern Hemisphere, with Southern Hemisphere Armillaria species included for reference. Based on the Bayesian analysis of tef1 sequences, Armillaria species from the Northern Hemisphere are generally contained within the following four superclades, which are named according to the specific epithet of the most frequently cited species within the superclade: (i) Socialis/Tabescens (exannulate) superclade including Eurasian A. ectypa, North American A. socialis (A. tabescens), and Eurasian A. socialis (A. tabescens) clades; (ii) Mellea superclade including undescribed annulate North American Armillaria sp. (Mexico) and four separate clades of A. mellea (Europe and Iran, eastern Asia, and two groups from North America); (iii) Gallica superclade including Armillaria Nag E (Japan), multiple clades of A. gallica (Asia and Europe), A. calvescens (eastern North America), A. cepistipes (North America), A. altimontana (western USA), A. nabsnona (North America and Japan), and at least two A. gallica clades (North America); and (iv) Solidipes/Ostoyae superclade including two A. solidipes/ostoyae clades (North America), A. gemina (eastern USA), A. solidipes/ostoyae (Eurasia), A. cepistipes (Europe and Japan), A. sinapina (North America and Japan), and A. borealis (Eurasia) clade 2. Of note is that A. borealis (Eurasia) clade 1 appears basal to the Solidipes/Ostoyae and Gallica superclades. The Neighbor-net analysis showed similar phylogenetic relationships. This study further demonstrates the utility of tef1 for global phylogenetic studies of Armillaria species and provides critical insights into multiple taxonomic issues that warrant further study.

  15. High throughput sequencing identifies chilling responsive genes in sweetpotato (Ipomoea batatas Lam.) during storage.

    PubMed

    Xie, Zeyi; Zhou, Zhilin; Li, Hongmin; Yu, Jingjing; Jiang, Jiaojiao; Tang, Zhonghou; Ma, Daifu; Zhang, Baohong; Han, Yonghua; Li, Zongyun

    2018-05-21

    Sweetpotato (Ipomoea batatas L.) is a globally important economic food crop. It belongs to Convolvulaceae family and origins in the tropics; however, sweetpotato is sensitive to cold stress during storage. In this study, we performed transcriptome sequencing to investigate the sweetpotato response to chilling stress during storage. A total of 110,110 unigenes were generated via high-throughput sequencing. Differentially expressed genes (DEGs) analysis showed that 18,681 genes were up-regulated and 21,983 genes were down-regulated in low temperature condition. Many DEGs were related to the cell membrane system, antioxidant enzymes, carbohydrate metabolism, and hormone metabolism, which are potentially associated with sweetpotato resistance to low temperature. The existence of DEGs suggests a molecular basis for the biochemical and physiological consequences of sweetpotato in low temperature storage conditions. Our analysis will provide a new target for enhancement of sweetpotato cold stress tolerance in postharvest storage through genetic manipulation. Copyright © 2018. Published by Elsevier Inc.

  16. Specific Primers for Rapid Detection of Microsporum audouinii by PCR in Clinical Samples▿

    PubMed Central

    Roque, H. D.; Vieira, R.; Rato, S.; Luz-Martins, M.

    2006-01-01

    This report describes application of PCR fingerprinting to identify common species of dermatophytes using the microsatellite primers M13, (GACA)4, and (GTG)5. The initial PCR analysis rendered a specific DNA fragment for Microsporum audouinii, which was cloned and sequenced. Based on the sequencing data of this fragment, forward (MA_1F) and reverse (MA_1R) primers were designed and verified by PCR to establish their reliability in the diagnosis of M. audouinii. These primers produced a singular PCR band of 431 bp specific only to strains and isolates of M. audouinii, based on a global test of 182 strains/isolates belonging to 11 species of dermatophytes. These findings indicate these primers are reliable for diagnostic purposes, and we recommend their use in laboratory analysis. PMID:17005755

  17. Specific primers for rapid detection of Microsporum audouinii by PCR in clinical samples.

    PubMed

    Roque, H D; Vieira, R; Rato, S; Luz-Martins, M

    2006-12-01

    This report describes application of PCR fingerprinting to identify common species of dermatophytes using the microsatellite primers M13, (GACA)4, and (GTG)5. The initial PCR analysis rendered a specific DNA fragment for Microsporum audouinii, which was cloned and sequenced. Based on the sequencing data of this fragment, forward (MA_1F) and reverse (MA_1R) primers were designed and verified by PCR to establish their reliability in the diagnosis of M. audouinii. These primers produced a singular PCR band of 431 bp specific only to strains and isolates of M. audouinii, based on a global test of 182 strains/isolates belonging to 11 species of dermatophytes. These findings indicate these primers are reliable for diagnostic purposes, and we recommend their use in laboratory analysis.

  18. The Global Phylogeography of Lyssaviruses - Challenging the 'Out of Africa' Hypothesis

    PubMed Central

    Fooks, Anthony R.; Marston, Denise A.; Garcia-R, Juan C.

    2016-01-01

    Rabies virus kills tens of thousands of people globally each year, especially in resource-limited countries. Yet, there are genetically- and antigenically-related lyssaviruses, all capable of causing the disease rabies, circulating globally among bats without causing conspicuous disease outbreaks. The species richness and greater genetic diversity of African lyssaviruses, along with the lack of antibody cross-reactivity among them, has led to the hypothesis that Africa is the origin of lyssaviruses. This hypothesis was tested using a probabilistic phylogeographical approach. The nucleoprotein gene sequences from 153 representatives of 16 lyssavirus species, collected between 1956 and 2015, were used to develop a phylogenetic tree which incorporated relevant geographic and temporal data relating to the viruses. In addition, complete genome sequences from all 16 (putative) species were analysed. The most probable ancestral distribution for the internal nodes was inferred using three different approaches and was confirmed by analysis of complete genomes. These results support a Palearctic origin for lyssaviruses (posterior probability = 0.85), challenging the ‘out of Africa’ hypothesis, and suggest three independent transmission events to the Afrotropical region, representing the three phylogroups that form the three major lyssavirus clades. PMID:28036390

  19. Lichen flora around the Korean Antarctic Scientific Station, King George Island, Antarctic.

    PubMed

    Kim, Ji Hee; Ahn, In-Young; Hong, Soon Gyu; Andreev, Mikhail; Lim, Kwang-Mi; Oh, Mi Jin; Koh, Young Jin; Hur, Jae-Seoun

    2006-10-01

    As part of the long-term monitoring projects on Antarctic terrestrial vegetation in relation to global climate change, a lichen floristical survey was conducted around the Korean Antarctic Station (King Sejong Station), which is located on Barton Peninsula, King George Island, in January and February of 2006. Two hundred and twenty-five lichen specimens were collected and sixty-two lichen species in 38 genera were identified by morphological characteristics, chemical constituents, TLC analysis and ITS nucleotide sequence analysis.

  20. DNA Barcode Sequence Identification Incorporating Taxonomic Hierarchy and within Taxon Variability

    PubMed Central

    Little, Damon P.

    2011-01-01

    For DNA barcoding to succeed as a scientific endeavor an accurate and expeditious query sequence identification method is needed. Although a global multiple–sequence alignment can be generated for some barcoding markers (e.g. COI, rbcL), not all barcoding markers are as structurally conserved (e.g. matK). Thus, algorithms that depend on global multiple–sequence alignments are not universally applicable. Some sequence identification methods that use local pairwise alignments (e.g. BLAST) are unable to accurately differentiate between highly similar sequences and are not designed to cope with hierarchic phylogenetic relationships or within taxon variability. Here, I present a novel alignment–free sequence identification algorithm–BRONX–that accounts for observed within taxon variability and hierarchic relationships among taxa. BRONX identifies short variable segments and corresponding invariant flanking regions in reference sequences. These flanking regions are used to score variable regions in the query sequence without the production of a global multiple–sequence alignment. By incorporating observed within taxon variability into the scoring procedure, misidentifications arising from shared alleles/haplotypes are minimized. An explicit treatment of more inclusive terminals allows for separate identifications to be made for each taxonomic level and/or for user–defined terminals. BRONX performs better than all other methods when there is imperfect overlap between query and reference sequences (e.g. mini–barcode queries against a full–length barcode database). BRONX consistently produced better identifications at the genus–level for all query types. PMID:21857897

  1. Prediction of HIV-1 sensitivity to broadly neutralizing antibodies shows a trend towards resistance over time.

    PubMed

    Hake, Anna; Pfeifer, Nico

    2017-10-01

    Treatment with broadly neutralizing antibodies (bNAbs) has proven effective against HIV-1 infections in humanized mice, non-human primates, and humans. Due to the high mutation rate of HIV-1, resistance testing of the patient's viral strains to the bNAbs is still inevitable. So far, bNAb resistance can only be tested in expensive and time-consuming neutralization experiments. Here, we introduce well-performing computational models that predict the neutralization response of HIV-1 to bNAbs given only the envelope sequence of the virus. Using non-linear support vector machines based on a string kernel, the models learnt even the important binding sites of bNAbs with more complex epitopes, i.e., the CD4 binding site targeting bNAbs, proving thereby the biological relevance of the models. To increase the interpretability of the models, we additionally provide a new kind of motif logo for each query sequence, visualizing those residues of the test sequence that influenced the prediction outcome the most. Moreover, we predicted the neutralization sensitivity of around 34,000 HIV-1 samples from different time points to a broad range of bNAbs, enabling the first analysis of HIV resistance to bNAbs on a global scale. The analysis showed for many of the bNAbs a trend towards antibody resistance over time, which had previously only been discovered for a small non-representative subset of the global HIV-1 population.

  2. Prediction of HIV-1 sensitivity to broadly neutralizing antibodies shows a trend towards resistance over time

    PubMed Central

    2017-01-01

    Treatment with broadly neutralizing antibodies (bNAbs) has proven effective against HIV-1 infections in humanized mice, non-human primates, and humans. Due to the high mutation rate of HIV-1, resistance testing of the patient’s viral strains to the bNAbs is still inevitable. So far, bNAb resistance can only be tested in expensive and time-consuming neutralization experiments. Here, we introduce well-performing computational models that predict the neutralization response of HIV-1 to bNAbs given only the envelope sequence of the virus. Using non-linear support vector machines based on a string kernel, the models learnt even the important binding sites of bNAbs with more complex epitopes, i.e., the CD4 binding site targeting bNAbs, proving thereby the biological relevance of the models. To increase the interpretability of the models, we additionally provide a new kind of motif logo for each query sequence, visualizing those residues of the test sequence that influenced the prediction outcome the most. Moreover, we predicted the neutralization sensitivity of around 34,000 HIV-1 samples from different time points to a broad range of bNAbs, enabling the first analysis of HIV resistance to bNAbs on a global scale. The analysis showed for many of the bNAbs a trend towards antibody resistance over time, which had previously only been discovered for a small non-representative subset of the global HIV-1 population. PMID:29065122

  3. Molecular epidemiology of Plum pox virus in Japan.

    PubMed

    Maejima, Kensaku; Himeno, Misako; Komatsu, Ken; Takinami, Yusuke; Hashimoto, Masayoshi; Takahashi, Shuichiro; Yamaji, Yasuyuki; Oshima, Kenro; Namba, Shigetou

    2011-05-01

    For a molecular epidemiological study based on complete genome sequences, 37 Plum pox virus (PPV) isolates were collected from the Kanto region in Japan. Pair-wise analyses revealed that all 37 Japanese isolates belong to the PPV-D strain, with low genetic diversity (less than 0.8%). In phylogenetic analysis of the PPV-D strain based on complete nucleotide sequences, the relationships of the PPV-D strain were reconstructed with high resolution: at the global level, the American, Canadian, and Japanese isolates formed their own distinct monophyletic clusters, suggesting that the routes of viral entry into these countries were independent; at the local level, the actual transmission histories of PPV were precisely reconstructed with high bootstrap support. This is the first description of the molecular epidemiology of PPV based on complete genome sequences.

  4. Comprehensive evaluation of AmpliSeq transcriptome, a novel targeted whole transcriptome RNA sequencing methodology for global gene expression analysis.

    PubMed

    Li, Wenli; Turner, Amy; Aggarwal, Praful; Matter, Andrea; Storvick, Erin; Arnett, Donna K; Broeckel, Ulrich

    2015-12-16

    Whole transcriptome sequencing (RNA-seq) represents a powerful approach for whole transcriptome gene expression analysis. However, RNA-seq carries a few limitations, e.g., the requirement of a significant amount of input RNA and complications led by non-specific mapping of short reads. The Ion AmpliSeq Transcriptome Human Gene Expression Kit (AmpliSeq) was recently introduced by Life Technologies as a whole-transcriptome, targeted gene quantification kit to overcome these limitations of RNA-seq. To assess the performance of this new methodology, we performed a comprehensive comparison of AmpliSeq with RNA-seq using two well-established next-generation sequencing platforms (Illumina HiSeq and Ion Torrent Proton). We analyzed standard reference RNA samples and RNA samples obtained from human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs). Using published data from two standard RNA reference samples, we observed a strong concordance of log2 fold change for all genes when comparing AmpliSeq to Illumina HiSeq (Pearson's r = 0.92) and Ion Torrent Proton (Pearson's r = 0.92). We used ROC, Matthew's correlation coefficient and RMSD to determine the overall performance characteristics. All three statistical methods demonstrate AmpliSeq as a highly accurate method for differential gene expression analysis. Additionally, for genes with high abundance, AmpliSeq outperforms the two RNA-seq methods. When analyzing four closely related hiPSC-CM lines, we show that both AmpliSeq and RNA-seq capture similar global gene expression patterns consistent with known sources of variations. Our study indicates that AmpliSeq excels in the limiting areas of RNA-seq for gene expression quantification analysis. Thus, AmpliSeq stands as a very sensitive and cost-effective approach for very large scale gene expression analysis and mRNA marker screening with high accuracy.

  5. Diversity and distribution of Archaea in global estuarine ecosystems.

    PubMed

    Liu, Xiaobo; Pan, Jie; Liu, Yang; Li, Meng; Gu, Ji-Dong

    2018-05-09

    Estuarine ecosystem is a unique geographical transitional zone between freshwater and seawater, harboring a wide range of microbial communities including Archaea. Although a large number of Archaea have been detected in such ecosystem, the global patterns in archaeal diversity and distribution are extremely scarce. To bridge this gap, we carried out a comprehensive survey of archaeal communities using ca. 4000 publicly available archaeal 16S rRNA gene sequences (>300 bp) collected from 24 estuaries in different latitude regions. These sequences were divided into 1450 operational taxonomic units (OTUs) at 97% identity, suggesting a high biodiversity that increased gradually from the high- to low-latitude estuaries. Phylogenetic analysis showed that estuarine ecosystem was a large biodiversity pool of Archaea that was mainly composed of 12 phyla. Among them, the predominant groups were Bathyarchaeota, Euryarchaeota and Thaumarchaeota. Interestingly, archaeal distribution demonstrated a geographical differentiation in that Thaumarchaeota was dominated in the low-latitude estuaries, Bathyarchaeota in the mid-latitude estuaries, and Euryarchaeota in the high-latitude estuaries, respectively. Furthermore, the majority of the most abundant 20 OTUs demonstrated an overrepresented or underrepresented distribution pattern in some specific estuaries or latitude regions while a few were evenly distributed throughout the estuaries. This pattern indicates a potential selectivity of geographical distribution. In addition, the analysis of environmental parameters suggested that latitude would be one of the major factors driving the distribution of archaeal communities in estuarine ecosystem. This study profiles a clear framework on the diversity and distribution of Archaea in the global estuarine ecosystem and explores the general environmental factors that influence these patterns. Our findings constitute an important part of the exploration of the global ecology of Archaea. Copyright © 2018 Elsevier B.V. All rights reserved.

  6. Analysis of Pvama1 genes from China-Myanmar border reveals little regional genetic differentiation of Plasmodium vivax populations.

    PubMed

    Zhu, Xiaotong; Zhao, Pan; Wang, Si; Liu, Fei; Liu, Jun; Wang, Jian; Yang, Zhaoqing; Yan, Guiyun; Fan, Qi; Cao, Yaming; Cui, Liwang

    2016-11-29

    With the premise of diminishing parasite genetic diversity following the reduction of malaria incidence, the analysis of polymorphic antigenic markers may provide important information about the impact of malaria control on local parasite populations. Here we evaluated the genetic diversity of Plasmodium vivax apical membrane antigen 1 (Pvama1) gene in a parasite population from the China-Myanmar border and compared it with global P. vivax populations. We performed evolutionary analysis to examine the genetic diversity, natural selection, and population differentiation of 73 Pvama1 sequences acquired from the China-Myanmar border as well as 615 publically available Pvama1 sequences from seven global P. vivax populations. A total of 308 Pvama1 haplotypes were identified among the global P. vivax isolates. The overall nucleotide diversity of Pvama1 gene among the 73 China-Myanmar border parasite isolates was 0.008 with 41 haplotypes being identified (Hd = 0.958). Domain I (DI) harbored the majority (26/33) of the polymorphic sites. The McDonald Kreitman test showed a significant positive selection across the ectodomain and the DI of Pvama1. The fixation index (F ST ) estimation between the China-Myanmar border, Thailand (0.01) and Myanmar (0.10) showed only slight geographical genetic differentiation. Notably, the Sal-I haplotype was not detected in any of the analyzed global isolates, whereas the Belem strain was restricted to the Thai population. The detected mutations are mapped outside the overlapped region of the predicted B-cell epitopes and intrinsically unstructured/disordered regions. This study revealed high levels of genetic diversity of Pvama1 in the P. vivax parasite population from the China-Myanmar border with DI displaying stronger diversifying selection than other domains. There were low levels of population subdivision among parasite populations from the Greater Mekong Subregion.

  7. Development of an Expressed Sequence Tag (EST) Resource for Wheat (Triticum aestivum L.)

    PubMed Central

    Lazo, G. R.; Chao, S.; Hummel, D. D.; Edwards, H.; Crossman, C. C.; Lui, N.; Matthews, D. E.; Carollo, V. L.; Hane, D. L.; You, F. M.; Butler, G. E.; Miller, R. E.; Close, T. J.; Peng, J. H.; Lapitan, N. L. V.; Gustafson, J. P.; Qi, L. L.; Echalier, B.; Gill, B. S.; Dilbirligi, M.; Randhawa, H. S.; Gill, K. S.; Greene, R. A.; Sorrells, M. E.; Akhunov, E. D.; Dvořák, J.; Linkiewicz, A. M.; Dubcovsky, J.; Hossain, K. G.; Kalavacharla, V.; Kianian, S. F.; Mahmoud, A. A.; Miftahudin; Ma, X.-F.; Conley, E. J.; Anderson, J. A.; Pathan, M. S.; Nguyen, H. T.; McGuire, P. E.; Qualset, C. O.; Anderson, O. D.

    2004-01-01

    This report describes the rationale, approaches, organization, and resource development leading to a large-scale deletion bin map of the hexaploid (2n = 6x = 42) wheat genome (Triticum aestivum L.). Accompanying reports in this issue detail results from chromosome bin-mapping of expressed sequence tags (ESTs) representing genes onto the seven homoeologous chromosome groups and a global analysis of the entire mapped wheat EST data set. Among the resources developed were the first extensive public wheat EST collection (113,220 ESTs). Described are protocols for sequencing, sequence processing, EST nomenclature, and the assembly of ESTs into contigs. These contigs plus singletons (unassembled ESTs) were used for selection of distinct sequence motif unigenes. Selected ESTs were rearrayed, validated by 5′ and 3′ sequencing, and amplified for probing a series of wheat aneuploid and deletion stocks. Images and data for all Southern hybridizations were deposited in databases and were used by the coordinators for each of the seven homoeologous chromosome groups to validate the mapping results. Results from this project have established the foundation for future developments in wheat genomics. PMID:15514037

  8. The Bacterial Response Regulator ArcA Uses a Diverse Binding Site Architecture to Regulate Carbon Oxidation Globally

    PubMed Central

    Park, Dan M.; Akhtar, Md. Sohail; Ansari, Aseem Z.; Landick, Robert; Kiley, Patricia J.

    2013-01-01

    Despite the importance of maintaining redox homeostasis for cellular viability, how cells control redox balance globally is poorly understood. Here we provide new mechanistic insight into how the balance between reduced and oxidized electron carriers is regulated at the level of gene expression by mapping the regulon of the response regulator ArcA from Escherichia coli, which responds to the quinone/quinol redox couple via its membrane-bound sensor kinase, ArcB. Our genome-wide analysis reveals that ArcA reprograms metabolism under anaerobic conditions such that carbon oxidation pathways that recycle redox carriers via respiration are transcriptionally repressed by ArcA. We propose that this strategy favors use of catabolic pathways that recycle redox carriers via fermentation akin to lactate production in mammalian cells. Unexpectedly, bioinformatic analysis of the sequences bound by ArcA in ChIP-seq revealed that most ArcA binding sites contain additional direct repeat elements beyond the two required for binding an ArcA dimer. DNase I footprinting assays suggest that non-canonical arrangements of cis-regulatory modules dictate both the length and concentration-sensitive occupancy of DNA sites. We propose that this plasticity in ArcA binding site architecture provides both an efficient means of encoding binding sites for ArcA, σ70-RNAP and perhaps other transcription factors within the same narrow sequence space and an effective mechanism for global control of carbon metabolism to maintain redox homeostasis. PMID:24146625

  9. Global patterns in coronavirus diversity

    PubMed Central

    Johnson, Christine K.; Greig, Denise J.; Kramer, Sarah; Che, Xiaoyu; Wells, Heather; Hicks, Allison L.; Joly, Damien O.; Wolfe, Nathan D.; Daszak, Peter; Karesh, William; Lipkin, W. I.; Morse, Stephen S.; Mazet, Jonna A. K.

    2017-01-01

    Abstract Since the emergence of Severe Acute Respiratory Syndrome Coronavirus (SARS-CoV) and Middle East Respiratory Syndrom Coronavirus (MERS-CoV) it has become increasingly clear that bats are important reservoirs of CoVs. Despite this, only 6% of all CoV sequences in GenBank are from bats. The remaining 94% largely consist of known pathogens of public health or agricultural significance, indicating that current research effort is heavily biased towards describing known diseases rather than the ‘pre-emergent’ diversity in bats. Our study addresses this critical gap, and focuses on resource poor countries where the risk of zoonotic emergence is believed to be highest. We surveyed the diversity of CoVs in multiple host taxa from twenty countries to explore the factors driving viral diversity at a global scale. We identified sequences representing 100 discrete phylogenetic clusters, ninety-one of which were found in bats, and used ecological and epidemiologic analyses to show that patterns of CoV diversity correlate with those of bat diversity. This cements bats as the major evolutionary reservoirs and ecological drivers of CoV diversity. Co-phylogenetic reconciliation analysis was also used to show that host switching has contributed to CoV evolution, and a preliminary analysis suggests that regional variation exists in the dynamics of this process. Overall our study represents a model for exploring global viral diversity and advances our fundamental understanding of CoV biodiversity and the potential risk factors associated with zoonotic emergence. PMID:28630747

  10. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ruggles, Kelly V.; Tang, Zuojian; Wang, Xuya

    Improvements in mass spectrometry (MS)-based peptide sequencing provide a new opportunity to determine whether polymorphisms, mutations and splice variants identified in cancer cells are translated. Herein we therefore describe a proteogenomic data integration tool (QUILTS) and illustrate its application to whole genome, transcriptome and global MS peptide sequence datasets generated from a pair of luminal and basal-like breast cancer patient derived xenografts (PDX). The sensitivity of proteogenomic analysis for singe nucleotide variant (SNV) expression and novel splice junction (NSJ) detection was probed using multiple MS/MS process replicates. Despite over thirty sample replicates, only about 10% of all SNV (somatic andmore » germline) were detected by both DNA and RNA sequencing were observed as peptides. An even smaller proportion of peptides corresponding to NSJ observed by RNA sequencing were detected (<0.1%). Peptides mapping to DNA-detected SNV without a detectable mRNA transcript were also observed demonstrating the transcriptome coverage was also incomplete (~80%). In contrast to germ-line variants, somatic variants were less likely to be detected at the peptide level in the basal-like tumor than the luminal tumor raising the possibility of differential translation or protein degradation effects. In conclusion, the QUILTS program integrates DNA, RNA and peptide sequencing to assess the degree to which somatic mutations are translated and therefore biologically active. By identifying gaps in sequence coverage QUILTS benchmarks current technology and assesses progress towards whole cancer proteome and transcriptome analysis.« less

  11. Comparison of whole-genome bisulfite sequencing library preparation strategies identifies sources of biases affecting DNA methylation data.

    PubMed

    Olova, Nelly; Krueger, Felix; Andrews, Simon; Oxley, David; Berrens, Rebecca V; Branco, Miguel R; Reik, Wolf

    2018-03-15

    Whole-genome bisulfite sequencing (WGBS) is becoming an increasingly accessible technique, used widely for both fundamental and disease-oriented research. Library preparation methods benefit from a variety of available kits, polymerases and bisulfite conversion protocols. Although some steps in the procedure, such as PCR amplification, are known to introduce biases, a systematic evaluation of biases in WGBS strategies is missing. We perform a comparative analysis of several commonly used pre- and post-bisulfite WGBS library preparation protocols for their performance and quality of sequencing outputs. Our results show that bisulfite conversion per se is the main trigger of pronounced sequencing biases, and PCR amplification builds on these underlying artefacts. The majority of standard library preparation methods yield a significantly biased sequence output and overestimate global methylation. Importantly, both absolute and relative methylation levels at specific genomic regions vary substantially between methods, with clear implications for DNA methylation studies. We show that amplification-free library preparation is the least biased approach for WGBS. In protocols with amplification, the choice of bisulfite conversion protocol or polymerase can significantly minimize artefacts. To aid with the quality assessment of existing WGBS datasets, we have integrated a bias diagnostic tool in the Bismark package and offer several approaches for consideration during the preparation and analysis of WGBS datasets.

  12. Global and local pitch perception in children with developmental dyslexia.

    PubMed

    Ziegler, Johannes C; Pech-Georgel, Catherine; George, Florence; Foxton, Jessica M

    2012-03-01

    This study investigated global versus local pitch pattern perception in children with dyslexia aged between 8 and 11 years. Children listened to two consecutive 4-tone pitch sequences while performing a same/different task. On the different trials, sequences either preserved the contour (local condition) or they violated the contour (global condition). Compared to normally developing children, dyslexics showed robust pitch perception deficits in the local but not the global condition. This finding was replicated in a simple pitch direction task, which minimizes sequencing and short term memory. Results are consistent with a left-hemisphere deficit in dyslexia because local pitch changes are supposedly processed by the left hemisphere, whereas global pitch changes are processed by the right hemisphere. The present data suggest a link between impaired pitch processing and abnormal phonological development in children with dyslexia, which makes pitch pattern processing a potent tool for early diagnosis and remediation of dyslexia. Copyright © 2011 Elsevier Inc. All rights reserved.

  13. Genomics of crop wild relatives: expanding the gene pool for crop improvement.

    PubMed

    Brozynska, Marta; Furtado, Agnelo; Henry, Robert J

    2016-04-01

    Plant breeders require access to new genetic diversity to satisfy the demands of a growing human population for more food that can be produced in a variable or changing climate and to deliver the high-quality food with nutritional and health benefits demanded by consumers. The close relatives of domesticated plants, crop wild relatives (CWRs), represent a practical gene pool for use by plant breeders. Genomics of CWR generates data that support the use of CWR to expand the genetic diversity of crop plants. Advances in DNA sequencing technology are enabling the efficient sequencing of CWR and their increased use in crop improvement. As the sequencing of genomes of major crop species is completed, attention has shifted to analysis of the wider gene pool of major crops including CWR. A combination of de novo sequencing and resequencing is required to efficiently explore useful genetic variation in CWR. Analysis of the nuclear genome, transcriptome and maternal (chloroplast and mitochondrial) genome of CWR is facilitating their use in crop improvement. Genome analysis results in discovery of useful alleles in CWR and identification of regions of the genome in which diversity has been lost in domestication bottlenecks. Targeting of high priority CWR for sequencing will maximize the contribution of genome sequencing of CWR. Coordination of global efforts to apply genomics has the potential to accelerate access to and conservation of the biodiversity essential to the sustainability of agriculture and food production. © 2015 Society for Experimental Biology, Association of Applied Biologists and John Wiley & Sons Ltd.

  14. A Comprehensive Approach to Sequence-oriented IsomiR annotation (CASMIR): demonstration with IsomiR profiling in colorectal neoplasia.

    PubMed

    Wu, Chung Wah; Evans, Jared M; Huang, Shengbing; Mahoney, Douglas W; Dukek, Brian A; Taylor, William R; Yab, Tracy C; Smyrk, Thomas C; Jen, Jin; Kisiel, John B; Ahlquist, David A

    2018-05-25

    MicroRNA (miRNA) profiling is an important step in studying biological associations and identifying marker candidates. miRNA exists in isoforms, called isomiRs, which may exhibit distinct properties. With conventional profiling methods, limitations in assay and analysis platforms may compromise isomiR interrogation. We introduce a comprehensive approach to sequence-oriented isomiR annotation (CASMIR) to allow unbiased identification of global isomiRs from small RNA sequencing data. In this approach, small RNA reads are maintained as independent sequences instead of being summarized under miRNA names. IsomiR features are identified through step-wise local alignment against canonical forms and precursor sequences. Through customizing the reference database, CASMIR is applicable to isomiR annotation across species. To demonstrate its application, we investigated isomiR profiles in normal and neoplastic human colorectal epithelia. We also ran miRDeep2, a popular miRNA analysis algorithm to validate isomiRs annotated by CASMIR. With CASMIR, specific and biologically relevant isomiR patterns could be identified. We note that specific isomiRs are often more abundant than their canonical forms. We identify isomiRs that are commonly up-regulated in both colorectal cancer and advanced adenoma, and illustrate advantages in targeting isomiRs as potential biomarkers over canonical forms. Studying miRNAs at the isomiR level could reveal new insight into miRNA biology and inform assay design for specific isomiRs. CASMIR facilitates comprehensive annotation of isomiR features in small RNA sequencing data for isomiR profiling and differential expression analysis.

  15. Listening to the customer: implementing a patient satisfaction measurement system.

    PubMed

    Cohen, L; Delaney, P; Boston, P

    1994-01-01

    Patient satisfaction is an important issue in positioning ambulatory medical services. An effective patient satisfaction measurement program not only helps hospital managers improve the quality of clinical and administrative activities, but also helps the hospital remain viable in increasingly competitive markets. A method for the design and measurement of patient satisfaction with outpatient Endoscopy Lab services is described in this article. The survey focuses on the sequence of events experienced by the patient. Outcome measures of primary interest include global patient satisfaction and the likelihood of using the service again if given a choice. Analysis of patient responses shows that global satisfaction with the outpatient experience is positively associated with service return intention. Additional analysis shows that facility cleanliness, privacy and nurse attention are most strongly associated with global patient satisfaction. Results underscore the importance of various service attributes on patient satisfaction and return intention and of the need to further expand the uses of patient satisfaction measurement in the outpatient Endoscopy Lab.

  16. The Present and Future of Whole Genome Sequencing (WGS) and Whole Metagenome Sequencing (WMS) for Surveillance of Antimicrobial Resistant Microorganisms and Antimicrobial Resistance Genes across the Food Chain

    PubMed Central

    Oniciuc, Elena A.; Likotrafiti, Eleni; Alvarez-Molina, Adrián; Alvarez-Ordóñez, Avelino

    2018-01-01

    Antimicrobial resistance (AMR) surveillance is a critical step within risk assessment schemes, as it is the basis for informing global strategies, monitoring the effectiveness of public health interventions, and detecting new trends and emerging threats linked to food. Surveillance of AMR is currently based on the isolation of indicator microorganisms and the phenotypic characterization of clinical, environmental and food strains isolated. However, this approach provides very limited information on the mechanisms driving AMR or on the presence or spread of AMR genes throughout the food chain. Whole-genome sequencing (WGS) of bacterial pathogens has shown potential for epidemiological surveillance, outbreak detection, and infection control. In addition, whole metagenome sequencing (WMS) allows for the culture-independent analysis of complex microbial communities, providing useful information on AMR genes occurrence. Both technologies can assist the tracking of AMR genes and mobile genetic elements, providing the necessary information for the implementation of quantitative risk assessments and allowing for the identification of hotspots and routes of transmission of AMR across the food chain. This review article summarizes the information currently available on the use of WGS and WMS for surveillance of AMR in foodborne pathogenic bacteria and food-related samples and discusses future needs that will have to be considered for the routine implementation of these next-generation sequencing methodologies with this aim. In particular, methodological constraints that impede the use at a global scale of these high-throughput sequencing (HTS) technologies are identified, and the standardization of methods and protocols is suggested as a measure to upgrade HTS-based AMR surveillance schemes. PMID:29789467

  17. Defining objective clusters for rabies virus sequences using affinity propagation clustering

    PubMed Central

    Fischer, Susanne; Freuling, Conrad M.; Pfaff, Florian; Bodenhofer, Ulrich; Höper, Dirk; Fischer, Mareike; Marston, Denise A.; Fooks, Anthony R.; Mettenleiter, Thomas C.; Conraths, Franz J.; Homeier-Bachmann, Timo

    2018-01-01

    Rabies is caused by lyssaviruses, and is one of the oldest known zoonoses. In recent years, more than 21,000 nucleotide sequences of rabies viruses (RABV), from the prototype species rabies lyssavirus, have been deposited in public databases. Subsequent phylogenetic analyses in combination with metadata suggest geographic distributions of RABV. However, these analyses somewhat experience technical difficulties in defining verifiable criteria for cluster allocations in phylogenetic trees inviting for a more rational approach. Therefore, we applied a relatively new mathematical clustering algorythm named ‘affinity propagation clustering’ (AP) to propose a standardized sub-species classification utilizing full-genome RABV sequences. Because AP has the advantage that it is computationally fast and works for any meaningful measure of similarity between data samples, it has previously been applied successfully in bioinformatics, for analysis of microarray and gene expression data, however, cluster analysis of sequences is still in its infancy. Existing (516) and original (46) full genome RABV sequences were used to demonstrate the application of AP for RABV clustering. On a global scale, AP proposed four clusters, i.e. New World cluster, Arctic/Arctic-like, Cosmopolitan, and Asian as previously assigned by phylogenetic studies. By combining AP with established phylogenetic analyses, it is possible to resolve phylogenetic relationships between verifiably determined clusters and sequences. This workflow will be useful in confirming cluster distributions in a uniform transparent manner, not only for RABV, but also for other comparative sequence analyses. PMID:29357361

  18. The identification of complete domains within protein sequences using accurate E-values for semi-global alignment

    PubMed Central

    Kann, Maricel G.; Sheetlin, Sergey L.; Park, Yonil; Bryant, Stephen H.; Spouge, John L.

    2007-01-01

    The sequencing of complete genomes has created a pressing need for automated annotation of gene function. Because domains are the basic units of protein function and evolution, a gene can be annotated from a domain database by aligning domains to the corresponding protein sequence. Ideally, complete domains are aligned to protein subsequences, in a ‘semi-global alignment’. Local alignment, which aligns pieces of domains to subsequences, is common in high-throughput annotation applications, however. It is a mature technique, with the heuristics and accurate E-values required for screening large databases and evaluating the screening results. Hidden Markov models (HMMs) provide an alternative theoretical framework for semi-global alignment, but their use is limited because they lack heuristic acceleration and accurate E-values. Our new tool, GLOBAL, overcomes some limitations of previous semi-global HMMs: it has accurate E-values and the possibility of the heuristic acceleration required for high-throughput applications. Moreover, according to a standard of truth based on protein structure, two semi-global HMM alignment tools (GLOBAL and HMMer) had comparable performance in identifying complete domains, but distinctly outperformed two tools based on local alignment. When searching for complete protein domains, therefore, GLOBAL avoids disadvantages commonly associated with HMMs, yet maintains their superior retrieval performance. PMID:17596268

  19. Computation of fluid and particle motion from a time-sequenced image pair: a global outlier identification approach.

    PubMed

    Ray, Nilanjan

    2011-10-01

    Fluid motion estimation from time-sequenced images is a significant image analysis task. Its application is widespread in experimental fluidics research and many related areas like biomedical engineering and atmospheric sciences. In this paper, we present a novel flow computation framework to estimate the flow velocity vectors from two consecutive image frames. In an energy minimization-based flow computation, we propose a novel data fidelity term, which: 1) can accommodate various measures, such as cross-correlation or sum of absolute or squared differences of pixel intensities between image patches; 2) has a global mechanism to control the adverse effect of outliers arising out of motion discontinuities, proximity of image borders; and 3) can go hand-in-hand with various spatial smoothness terms. Further, the proposed data term and related regularization schemes are both applicable to dense and sparse flow vector estimations. We validate these claims by numerical experiments on benchmark flow data sets. © 2011 IEEE

  20. Phylo-mLogo: an interactive and hierarchical multiple-logo visualization tool for alignment of many sequences

    PubMed Central

    Shih, Arthur Chun-Chieh; Lee, DT; Peng, Chin-Lin; Wu, Yu-Wei

    2007-01-01

    Background When aligning several hundreds or thousands of sequences, such as epidemic virus sequences or homologous/orthologous sequences of some big gene families, to reconstruct the epidemiological history or their phylogenies, how to analyze and visualize the alignment results of many sequences has become a new challenge for computational biologists. Although there are several tools available for visualization of very long sequence alignments, few of them are applicable to the alignments of many sequences. Results A multiple-logo alignment visualization tool, called Phylo-mLogo, is presented in this paper. Phylo-mLogo calculates the variabilities and homogeneities of alignment sequences by base frequencies or entropies. Different from the traditional representations of sequence logos, Phylo-mLogo not only displays the global logo patterns of the whole alignment of multiple sequences, but also demonstrates their local homologous logos for each clade hierarchically. In addition, Phylo-mLogo also allows the user to focus only on the analysis of some important, structurally or functionally constrained sites in the alignment selected by the user or by built-in automatic calculation. Conclusion With Phylo-mLogo, the user can symbolically and hierarchically visualize hundreds of aligned sequences simultaneously and easily check the changes of their amino acid sites when analyzing many homologous/orthologous or influenza virus sequences. More information of Phylo-mLogo can be found at URL . PMID:17319966

  1. On the way toward systems biology of Aspergillus fumigatus infection.

    PubMed

    Albrecht, Daniela; Kniemeyer, Olaf; Mech, Franziska; Gunzer, Matthias; Brakhage, Axel; Guthke, Reinhard

    2011-06-01

    Pathogenicity of Aspergillus fumigatus is multifactorial. Thus, global studies are essential for the understanding of the infection process. Therefore, a data warehouse was established where genome sequence, transcriptome and proteome data are stored. These data are analyzed for the elucidation of virulence determinants. The data analysis workflow starts with pre-processing including imputing of missing values and normalization. Last step is the identification of differentially expressed genes/proteins as interesting candidates for further analysis, in particular for functional categorization and correlation studies. Sequence data and other prior knowledge extracted from databases are integrated to support the inference of gene regulatory networks associated with pathogenicity. This knowledge-assisted data analysis aims at establishing mathematical models with predictive strength to assist further experimental work. Recently, first steps were done to extend the integrative data analysis and computational modeling by evaluating spatio-temporal data (movies) that monitor interactions of A. fumigatus morphotypes (e.g. conidia) with host immune cells. Copyright © 2011 Elsevier GmbH. All rights reserved.

  2. Global and Local Pitch Perception in Children with Developmental Dyslexia

    ERIC Educational Resources Information Center

    Ziegler, Johannes C.; Pech-Georgel, Catherine; George, Florence; Foxton, Jessica M.

    2012-01-01

    This study investigated global versus local pitch pattern perception in children with dyslexia aged between 8 and 11 years. Children listened to two consecutive 4-tone pitch sequences while performing a same/different task. On the different trials, sequences either preserved the contour (local condition) or they violated the contour (global…

  3. EEG microstates during resting represent personality differences.

    PubMed

    Schlegel, Felix; Lehmann, Dietrich; Faber, Pascal L; Milz, Patricia; Gianotti, Lorena R R

    2012-01-01

    We investigated the spontaneous brain electric activity of 13 skeptics and 16 believers in paranormal phenomena; they were university students assessed with a self-report scale about paranormal beliefs. 33-channel EEG recordings during no-task resting were processed as sequences of momentary potential distribution maps. Based on the maps at peak times of Global Field Power, the sequences were parsed into segments of quasi-stable potential distribution, the 'microstates'. The microstates were clustered into four classes of map topographies (A-D). Analysis of the microstate parameters time coverage, occurrence frequency and duration as well as the temporal sequence (syntax) of the microstate classes revealed significant differences: Believers had a higher coverage and occurrence of class B, tended to decreased coverage and occurrence of class C, and showed a predominant sequence of microstate concatenations from A to C to B to A that was reversed in skeptics (A to B to C to A). Microstates of different topographies, putative "atoms of thought", are hypothesized to represent different types of information processing.The study demonstrates that personality differences can be detected in resting EEG microstate parameters and microstate syntax. Microstate analysis yielded no conclusive evidence for the hypothesized relation between paranormal belief and schizophrenia.

  4. CEQer: a graphical tool for copy number and allelic imbalance detection from whole-exome sequencing data.

    PubMed

    Piazza, Rocco; Magistroni, Vera; Pirola, Alessandra; Redaelli, Sara; Spinelli, Roberta; Redaelli, Serena; Galbiati, Marta; Valletta, Simona; Giudici, Giovanni; Cazzaniga, Giovanni; Gambacorti-Passerini, Carlo

    2013-01-01

    Copy number alterations (CNA) are common events occurring in leukaemias and solid tumors. Comparative Genome Hybridization (CGH) is actually the gold standard technique to analyze CNAs; however, CGH analysis requires dedicated instruments and is able to perform only low resolution Loss of Heterozygosity (LOH) analyses. Here we present CEQer (Comparative Exome Quantification analyzer), a new graphical, event-driven tool for CNA/allelic-imbalance (AI) coupled analysis of exome sequencing data. By using case-control matched exome data, CEQer performs a comparative digital exonic quantification to generate CNA data and couples this information with exome-wide LOH and allelic imbalance detection. This data is used to build mixed statistical/heuristic models allowing the identification of CNA/AI events. To test our tool, we initially used in silico generated data, then we performed whole-exome sequencing from 20 leukemic specimens and corresponding matched controls and we analyzed the results using CEQer. Taken globally, these analyses showed that the combined use of comparative digital exon quantification and LOH/AI allows generating very accurate CNA data. Therefore, we propose CEQer as an efficient, robust and user-friendly graphical tool for the identification of CNA/AI in the context of whole-exome sequencing data.

  5. Global migration of influenza A viruses in swine

    PubMed Central

    Nelson, Martha I.; Viboud, Cécile; Vincent, Amy L.; Culhane, Marie R.; Detmer, Susan E.; Wentworth, David E.; Rambaut, Andrew; Suchard, Marc A.; Holmes, Edward C.; Lemey, Philippe

    2015-01-01

    The complex and unresolved evolutionary origins of the 2009 H1N1 influenza pandemic exposed major gaps in our knowledge of the global spatial ecology and evolution of influenza A viruses in swine (swIAVs). Here we undertake an expansive phylogenetic analysis of swIAV sequence data and demonstrate that the global live swine trade strongly predicts the spatial dissemination of swIAVs, with Europe and North America acting as sources of viruses in Asian countries. In contrast, China has the world’s largest swine population but is not a major exporter of live swine, and is not an important source of swIAVs in neighboring Asian countries or globally. A meta-population simulation model incorporating trade data predicts that the global ecology of swIAVs is more complex than previously thought, and the US and China’s large swine populations are unlikely to be representative of swIAV diversity in their respective geographic regions, requiring independent surveillance efforts throughout Latin America and Asia. PMID:25813399

  6. Multi-modulus algorithm based on global artificial fish swarm intelligent optimization of DNA encoding sequences.

    PubMed

    Guo, Y C; Wang, H; Wu, H P; Zhang, M Q

    2015-12-21

    Aimed to address the defects of the large mean square error (MSE), and the slow convergence speed in equalizing the multi-modulus signals of the constant modulus algorithm (CMA), a multi-modulus algorithm (MMA) based on global artificial fish swarm (GAFS) intelligent optimization of DNA encoding sequences (GAFS-DNA-MMA) was proposed. To improve the convergence rate and reduce the MSE, this proposed algorithm adopted an encoding method based on DNA nucleotide chains to provide a possible solution to the problem. Furthermore, the GAFS algorithm, with its fast convergence and global search ability, was used to find the best sequence. The real and imaginary parts of the initial optimal weight vector of MMA were obtained through DNA coding of the best sequence. The simulation results show that the proposed algorithm has a faster convergence speed and smaller MSE in comparison with the CMA, the MMA, and the AFS-DNA-MMA.

  7. Coxiella Burnetti Vaccine Development: Lipopolysaccharide Structural Analysis

    DTIC Science & Technology

    1989-12-29

    linkage, branching, and sequence, by periodate oxidation, supercritical fluid chromatography , and mass spectrometry. These techniques combine to pro... Supercritical fluid chromatography of PFBAB labeled maltodextrin sample prepared as the acetate derivative. C-anopropyl SFC column using CO 2 as the...8217 ide the elements of a global approach to oligosaccharide structure. The utility of s"pr critical fluid chromatography for a determination of Lipid-A

  8. Internal tectonic structure of the Central American Wadati-Benioff zone based on analysis of aftershock sequences

    NASA Astrophysics Data System (ADS)

    Å PičáK, Aleš; Hanuš, VáClav; VaněK, JiřÃ.­; BěHounková, Marie

    2007-09-01

    Relocated Engdahl et al. (1998) global seismological data for 10 aftershock sequences were used to analyze the internal tectonic structure of the Central American subduction zone; the main shocks of several of these were the most destructive and often referenced earthquakes in the region (e.g., the 1970 Chiapas, 1983 Osa, 1992 Nicaragua, 1999 Quepos, 2001 El Salvador earthquakes). The spatial analysis of aftershock foci distribution was performed in a rotated Cartesian coordinate system (x, y, z) related to the Wadati-Benioff zone, and not in a standard coordinate system (ϕ, λ, h are latitude, longitude, focal depth, respectively). Available fault plane solutions were also transformed into the plane approximating the Wadati-Benioff zone. The spatial distribution of earthquakes in each aftershock sequence was modeled as either a plane fit using a least squares approximation or a volume fit with a minimum thickness rectangular box. The analysis points to a quasi-planar distribution of earthquake foci in all aftershock sequences, manifesting the appurtenance of aftershocks to fracture zones. Geometrical parameters of fracture zones (strike, dip, and dimensions) hosting individual sequences were calculated and compared with the seafloor morphology of the Cocos Plate. The smooth character of the seafloor correlates with the aftershock fracture zones oriented parallel to the trench and commonly subparallel to the subducting slab, whereas subduction of the Cocos Ridge and seamounts around the Quepos Plateau coincides with steeply dipping fracture zones. Transformed focal mechanisms are almost exclusively (>90%) of normal character.

  9. Internal tectonic structure of the Central American Wadati-Benioff zone based on analysis of aftershock sequences

    NASA Astrophysics Data System (ADS)

    Špičák, Aleš; Hanuš, Václav; Vaněk, Jiří; Běhounková, Marie

    2007-09-01

    Relocated Engdahl et al. (1998) global seismological data for 10 aftershock sequences were used to analyze the internal tectonic structure of the Central American subduction zone; the main shocks of several of these were the most destructive and often referenced earthquakes in the region (e.g., the 1970 Chiapas, 1983 Osa, 1992 Nicaragua, 1999 Quepos, 2001 El Salvador earthquakes). The spatial analysis of aftershock foci distribution was performed in a rotated Cartesian coordinate system (x, y, z) related to the Wadati-Benioff zone, and not in a standard coordinate system ($\\varphi$, λ, h are latitude, longitude, focal depth, respectively). Available fault plane solutions were also transformed into the plane approximating the Wadati-Benioff zone. The spatial distribution of earthquakes in each aftershock sequence was modeled as either a plane fit using a least squares approximation or a volume fit with a minimum thickness rectangular box. The analysis points to a quasi-planar distribution of earthquake foci in all aftershock sequences, manifesting the appurtenance of aftershocks to fracture zones. Geometrical parameters of fracture zones (strike, dip, and dimensions) hosting individual sequences were calculated and compared with the seafloor morphology of the Cocos Plate. The smooth character of the seafloor correlates with the aftershock fracture zones oriented parallel to the trench and commonly subparallel to the subducting slab, whereas subduction of the Cocos Ridge and seamounts around the Quepos Plateau coincides with steeply dipping fracture zones. Transformed focal mechanisms are almost exclusively (>90%) of normal character.

  10. Discovery of genes related to insecticide resistance in Bactrocera dorsalis by functional genomic analysis of a de novo assembled transcriptome.

    PubMed

    Hsu, Ju-Chun; Chien, Ting-Ying; Hu, Chia-Cheng; Chen, Mei-Ju May; Wu, Wen-Jer; Feng, Hai-Tung; Haymer, David S; Chen, Chien-Yu

    2012-01-01

    Insecticide resistance has recently become a critical concern for control of many insect pest species. Genome sequencing and global quantization of gene expression through analysis of the transcriptome can provide useful information relevant to this challenging problem. The oriental fruit fly, Bactrocera dorsalis, is one of the world's most destructive agricultural pests, and recently it has been used as a target for studies of genetic mechanisms related to insecticide resistance. However, prior to this study, the molecular data available for this species was largely limited to genes identified through homology. To provide a broader pool of gene sequences of potential interest with regard to insecticide resistance, this study uses whole transcriptome analysis developed through de novo assembly of short reads generated by next-generation sequencing (NGS). The transcriptome of B. dorsalis was initially constructed using Illumina's Solexa sequencing technology. Qualified reads were assembled into contigs and potential splicing variants (isotigs). A total of 29,067 isotigs have putative homologues in the non-redundant (nr) protein database from NCBI, and 11,073 of these correspond to distinct D. melanogaster proteins in the RefSeq database. Approximately 5,546 isotigs contain coding sequences that are at least 80% complete and appear to represent B. dorsalis genes. We observed a strong correlation between the completeness of the assembled sequences and the expression intensity of the transcripts. The assembled sequences were also used to identify large numbers of genes potentially belonging to families related to insecticide resistance. A total of 90 P450-, 42 GST-and 37 COE-related genes, representing three major enzyme families involved in insecticide metabolism and resistance, were identified. In addition, 36 isotigs were discovered to contain target site sequences related to four classes of resistance genes. Identified sequence motifs were also analyzed to characterize putative polypeptide translational products and associate them with specific genes and protein functions.

  11. Metagenomic Analysis of the Indian Ocean Picocyanobacterial Community: Structure, Potential Function and Evolution

    PubMed Central

    Díez, Beatriz; Nylander, Johan A. A.; Ininbergs, Karolina; Dupont, Christopher L.; Allen, Andrew E.; Yooseph, Shibu; Rusch, Douglas B.; Bergman, Birgitta

    2016-01-01

    Unicellular cyanobacteria are ubiquitous photoautotrophic microbes that contribute substantially to global primary production. Picocyanobacteria such as Synechococcus and Prochlorococcus depend on chlorophyll a-binding protein complexes to capture light energy. In addition, Synechococcus has accessory pigments organized into phycobilisomes, and Prochlorococcus contains chlorophyll b. Across a surface water transect spanning the sparsely studied tropical Indian Ocean, we examined Synechococcus and Prochlorococcus occurrence, taxonomy and habitat preference in an evolutionary context. Shotgun sequencing of size fractionated microbial communities from 0.1 μm to 20 μm and subsequent phylogenetic analysis indicated that cyanobacteria account for up to 15% of annotated reads, with the genera Prochlorococcus and Synechococcus comprising 90% of the cyanobacterial reads, even in the largest size fraction (3.0–20 mm). Phylogenetic analyses of cyanobacterial light-harvesting genes (chl-binding pcb/isiA, allophycocyanin (apcAB), phycocyanin (cpcAB) and phycoerythin (cpeAB)) mostly identified picocyanobacteria clades comprised of overlapping sequences obtained from Indian Ocean, Atlantic and/or Pacific Oceans samples. Habitat reconstructions coupled with phylogenetic analysis of the Indian Ocean samples suggested that large Synechococcus-like ancestors in coastal waters expanded their ecological niche towards open oligotrophic waters in the Indian Ocean through lineage diversification and associated streamlining of genomes (e.g. loss of phycobilisomes and acquisition of Chl b); resulting in contemporary small celled Prochlorococcus. Comparative metagenomic analysis with picocyanobacteria populations in other oceans suggests that this evolutionary scenario may be globally important. PMID:27196065

  12. Metagenomic Analysis of the Indian Ocean Picocyanobacterial Community: Structure, Potential Function and Evolution

    DOE PAGES

    Diez, Beatriz; Nylander, Johan A. A.; Ininbergs, Karolina; ...

    2016-05-19

    Unicellular cyanobacteria are ubiquitous photoautotrophic microbes that contribute substantially to global primary production. Picocyanobacteria such as Synechococcus and Prochlorococcus depend on chlorophyll a-binding protein complexes to capture light energy. In addition, Synechococcus has accessory pigments organized into phycobilisomes, and Prochlorococcus contains chlorophyll b. Across a surface water transect spanning the sparsely studied tropical Indian Ocean, we examined Synechococcus and Prochlorococcus occurrence, taxonomy and habitat preference in an evolutionary context. Shotgun sequencing of size fractionated microbial communities from 0.1 μm to 20 μm and subsequent phylogenetic analysis indicated that cyanobacteria account for up to 15% of annotated reads, with the generamore » Prochlorococcus and Synechococcus comprising 90% of the cyanobacterial reads, even in the largest size fraction (3.0–20 mm). Phylogenetic analyses of cyanobacterial light-harvesting genes (chl-binding pcb/isiA, allophycocyanin ( apcAB), phycocyanin ( cpcAB) and phycoerythin ( cpeAB)) mostly identified picocyanobacteria clades comprised of overlapping sequences obtained from Indian Ocean, Atlantic and/or Pacific Oceans samples. Habitat reconstructions coupled with phylogenetic analysis of the Indian Ocean samples suggested that large Synechococcus-like ancestors in coastal waters expanded their ecological niche towards open oligotrophic waters in the Indian Ocean through lineage diversification and associated streamlining of genomes (e.g. loss of phycobilisomes and acquisition of Chl b); resulting in contemporary small celled Prochlorococcus. As a result, comparative metagenomic analysis with picocyanobacteria populations in other oceans suggests that this evolutionary scenario may be globally important.« less

  13. Metagenomic Analysis of the Indian Ocean Picocyanobacterial Community: Structure, Potential Function and Evolution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Diez, Beatriz; Nylander, Johan A. A.; Ininbergs, Karolina

    Unicellular cyanobacteria are ubiquitous photoautotrophic microbes that contribute substantially to global primary production. Picocyanobacteria such as Synechococcus and Prochlorococcus depend on chlorophyll a-binding protein complexes to capture light energy. In addition, Synechococcus has accessory pigments organized into phycobilisomes, and Prochlorococcus contains chlorophyll b. Across a surface water transect spanning the sparsely studied tropical Indian Ocean, we examined Synechococcus and Prochlorococcus occurrence, taxonomy and habitat preference in an evolutionary context. Shotgun sequencing of size fractionated microbial communities from 0.1 μm to 20 μm and subsequent phylogenetic analysis indicated that cyanobacteria account for up to 15% of annotated reads, with the generamore » Prochlorococcus and Synechococcus comprising 90% of the cyanobacterial reads, even in the largest size fraction (3.0–20 mm). Phylogenetic analyses of cyanobacterial light-harvesting genes (chl-binding pcb/isiA, allophycocyanin ( apcAB), phycocyanin ( cpcAB) and phycoerythin ( cpeAB)) mostly identified picocyanobacteria clades comprised of overlapping sequences obtained from Indian Ocean, Atlantic and/or Pacific Oceans samples. Habitat reconstructions coupled with phylogenetic analysis of the Indian Ocean samples suggested that large Synechococcus-like ancestors in coastal waters expanded their ecological niche towards open oligotrophic waters in the Indian Ocean through lineage diversification and associated streamlining of genomes (e.g. loss of phycobilisomes and acquisition of Chl b); resulting in contemporary small celled Prochlorococcus. As a result, comparative metagenomic analysis with picocyanobacteria populations in other oceans suggests that this evolutionary scenario may be globally important.« less

  14. Soup to Tree: The Phylogeny of Beetles Inferred by Mitochondrial Metagenomics of a Bornean Rainforest Sample

    PubMed Central

    Crampton-Platt, Alex; Timmermans, Martijn J.T.N.; Gimmel, Matthew L.; Kutty, Sujatha Narayanan; Cockerill, Timothy D.; Vun Khen, Chey; Vogler, Alfried P.

    2015-01-01

    In spite of the growth of molecular ecology, systematics and next-generation sequencing, the discovery and analysis of diversity is not currently integrated with building the tree-of-life. Tropical arthropod ecologists are well placed to accelerate this process if all specimens obtained through mass-trapping, many of which will be new species, could be incorporated routinely into phylogeny reconstruction. Here we test a shotgun sequencing approach, whereby mitochondrial genomes are assembled from complex ecological mixtures through mitochondrial metagenomics, and demonstrate how the approach overcomes many of the taxonomic impediments to the study of biodiversity. DNA from approximately 500 beetle specimens, originating from a single rainforest canopy fogging sample from Borneo, was pooled and shotgun sequenced, followed by de novo assembly of complete and partial mitogenomes for 175 species. The phylogenetic tree obtained from this local sample was highly similar to that from existing mitogenomes selected for global coverage of major lineages of Coleoptera. When all sequences were combined only minor topological changes were induced against this reference set, indicating an increasingly stable estimate of coleopteran phylogeny, while the ecological sample expanded the tip-level representation of several lineages. Robust trees generated from ecological samples now enable an evolutionary framework for ecology. Meanwhile, the inclusion of uncharacterized samples in the tree-of-life rapidly expands taxon and biogeographic representation of lineages without morphological identification. Mitogenomes from shotgun sequencing of unsorted environmental samples and their associated metadata, placed robustly into the phylogenetic tree, constitute novel DNA “superbarcodes” for testing hypotheses regarding global patterns of diversity. PMID:25957318

  15. SeqLib: a C ++ API for rapid BAM manipulation, sequence alignment and sequence assembly

    PubMed Central

    Wala, Jeremiah; Beroukhim, Rameen

    2017-01-01

    Abstract We present SeqLib, a C ++ API and command line tool that provides a rapid and user-friendly interface to BAM/SAM/CRAM files, global sequence alignment operations and sequence assembly. Four C libraries perform core operations in SeqLib: HTSlib for BAM access, BWA-MEM and BLAT for sequence alignment and Fermi for error correction and sequence assembly. Benchmarking indicates that SeqLib has lower CPU and memory requirements than leading C ++ sequence analysis APIs. We demonstrate an example of how minimal SeqLib code can extract, error-correct and assemble reads from a CRAM file and then align with BWA-MEM. SeqLib also provides additional capabilities, including chromosome-aware interval queries and read plotting. Command line tools are available for performing integrated error correction, micro-assemblies and alignment. Availability and Implementation: SeqLib is available on Linux and OSX for the C ++98 standard and later at github.com/walaj/SeqLib. SeqLib is released under the Apache2 license. Additional capabilities for BLAT alignment are available under the BLAT license. Contact: jwala@broadinstitue.org; rameen@broadinstitute.org PMID:28011768

  16. SeqLib: a C ++ API for rapid BAM manipulation, sequence alignment and sequence assembly.

    PubMed

    Wala, Jeremiah; Beroukhim, Rameen

    2017-03-01

    We present SeqLib, a C ++ API and command line tool that provides a rapid and user-friendly interface to BAM/SAM/CRAM files, global sequence alignment operations and sequence assembly. Four C libraries perform core operations in SeqLib: HTSlib for BAM access, BWA-MEM and BLAT for sequence alignment and Fermi for error correction and sequence assembly. Benchmarking indicates that SeqLib has lower CPU and memory requirements than leading C ++ sequence analysis APIs. We demonstrate an example of how minimal SeqLib code can extract, error-correct and assemble reads from a CRAM file and then align with BWA-MEM. SeqLib also provides additional capabilities, including chromosome-aware interval queries and read plotting. Command line tools are available for performing integrated error correction, micro-assemblies and alignment. SeqLib is available on Linux and OSX for the C ++98 standard and later at github.com/walaj/SeqLib. SeqLib is released under the Apache2 license. Additional capabilities for BLAT alignment are available under the BLAT license. jwala@broadinstitue.org ; rameen@broadinstitute.org. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com

  17. Detection of Emerging Vaccine-Related Polioviruses by Deep Sequencing.

    PubMed

    Sahoo, Malaya K; Holubar, Marisa; Huang, ChunHong; Mohamed-Hadley, Alisha; Liu, Yuanyuan; Waggoner, Jesse J; Troy, Stephanie B; Garcia-Garcia, Lourdes; Ferreyra-Reyes, Leticia; Maldonado, Yvonne; Pinsky, Benjamin A

    2017-07-01

    Oral poliovirus vaccine can mutate to regain neurovirulence. To date, evaluation of these mutations has been performed primarily on culture-enriched isolates by using conventional Sanger sequencing. We therefore developed a culture-independent, deep-sequencing method targeting the 5' untranslated region (UTR) and P1 genomic region to characterize vaccine-related poliovirus variants. Error analysis of the deep-sequencing method demonstrated reliable detection of poliovirus mutations at levels of <1%, depending on read depth. Sequencing of viral nucleic acids from the stool of vaccinated, asymptomatic children and their close contacts collected during a prospective cohort study in Veracruz, Mexico, revealed no vaccine-derived polioviruses. This was expected given that the longest duration between sequenced sample collection and the end of the most recent national immunization week was 66 days. However, we identified many low-level variants (<5%) distributed across the 5' UTR and P1 genomic region in all three Sabin serotypes, as well as vaccine-related viruses with multiple canonical mutations associated with phenotypic reversion present at high levels (>90%). These results suggest that monitoring emerging vaccine-related poliovirus variants by deep sequencing may aid in the poliovirus endgame and efforts to ensure global polio eradication. Copyright © 2017 Sahoo et al.

  18. Whole-genome comparative analysis of three phytopathogenic Xylella fastidiosa strains.

    PubMed

    Bhattacharyya, Anamitra; Stilwagen, Stephanie; Ivanova, Natalia; D'Souza, Mark; Bernal, Axel; Lykidis, Athanasios; Kapatral, Vinayak; Anderson, Iain; Larsen, Niels; Los, Tamara; Reznik, Gary; Selkov, Eugene; Walunas, Theresa L; Feil, Helene; Feil, William S; Purcell, Alexander; Lassez, Jean-Louis; Hawkins, Trevor L; Haselkorn, Robert; Overbeek, Ross; Predki, Paul F; Kyrpides, Nikos C

    2002-09-17

    Xylella fastidiosa (Xf) causes wilt disease in plants and is responsible for major economic and crop losses globally. Owing to the public importance of this phytopathogen we embarked on a comparative analysis of the complete genome of Xf pv citrus and the partial genomes of two recently sequenced strains of this species: Xf pv almond and Xf pv oleander, which cause leaf scorch in almond and oleander plants, respectively. We report a reanalysis of the previously sequenced Xf 9a5c (CVC, citrus) strain and the two "gapped" Xf genomes revealing ORFs encoding critical functions in pathogenicity and conjugative transfer. Second, a detailed whole-genome functional comparison was based on the three sequenced Xf strains, identifying the unique genes present in each strain, in addition to those shared between strains. Third, an "in silico" cellular reconstruction of these organisms was made, based on a comparison of their core functional subsystems that led to a characterization of their conjugative transfer machinery, identification of potential differences in their adhesion mechanisms, and highlighting of the absence of a classical quorum-sensing mechanism. This study demonstrates the effectiveness of comparative analysis strategies in the interpretation of genomes that are closely related.

  19. Biochemical and genetic analysis of the yeast proteome with a movable ORF collection

    PubMed Central

    Gelperin, Daniel M.; White, Michael A.; Wilkinson, Martha L.; Kon, Yoshiko; Kung, Li A.; Wise, Kevin J.; Lopez-Hoyo, Nelson; Jiang, Lixia; Piccirillo, Stacy; Yu, Haiyuan; Gerstein, Mark; Dumont, Mark E.; Phizicky, Eric M.; Snyder, Michael; Grayhack, Elizabeth J.

    2005-01-01

    Functional analysis of the proteome is an essential part of genomic research. To facilitate different proteomic approaches, a MORF (moveable ORF) library of 5854 yeast expression plasmids was constructed, each expressing a sequence-verified ORF as a C-terminal ORF fusion protein, under regulated control. Analysis of 5573 MORFs demonstrates that nearly all verified ORFs are expressed, suggests the authenticity of 48 ORFs characterized as dubious, and implicates specific processes including cytoskeletal organization and transcriptional control in growth inhibition caused by overexpression. Global analysis of glycosylated proteins identifies 109 new confirmed N-linked and 345 candidate glycoproteins, nearly doubling the known yeast glycome. PMID:16322557

  20. Genetic characterization of Anaplasma marginale strains from Tunisia using single and multiple gene typing reveals novel variants with an extensive genetic diversity.

    PubMed

    Ben Said, Mourad; Ben Asker, Alaa; Belkahia, Hanène; Ghribi, Raoua; Selmi, Rachid; Messadi, Lilia

    2018-05-12

    Anaplasma marginale, which is responsible for bovine anaplasmosis in tropical and subtropical regions, is a tick-borne obligatory intraerythrocytic bacterium of cattle and wild ruminants. In Tunisia, information about the genetic diversity and the phylogeny of A. marginale strains are limited to the msp4 gene analysis. The purpose of this study is to investigate A. marginale isolates infecting 16 cattle located in different bioclimatic areas of northern Tunisia with single gene analysis and multilocus sequence typing methods on the basis of seven partial genes (dnaA, ftsZ, groEL, lipA, secY, recA and sucB). The single gene analysis confirmed the presence of different and novel heterogenic A. marginale strains infecting cattle from the north of Tunisia. The concatenated sequence analysis showed a phylogeographical resolution at the global level and that most of the Tunisian sequence types (STs) formed a separate cluster from a South African isolate and from all New World isolates and strains. By combining the characteristics of each single locus with those of the multi-loci scheme, these results provide a more detailed understanding on the diversity and the evolution of Tunisian A. marginale strains. Copyright © 2018 Elsevier GmbH. All rights reserved.

  1. Twenty-first century vaccinomics innovation systems: capacity building in the global South and the role of Product Development Partnerships (PDPs).

    PubMed

    Huzair, Farah; Borda-Rodriguez, Alexander; Upton, Mary

    2011-09-01

    The availability of sequence information from publicly available complete genomes and data intensive sciences, together with next-generation sequencing technologies offer substantial promise for innovation in vaccinology and global public health in the beginning of the 21st century. This article presents an innovation analysis for the nascent field of vaccinomics by describing one of the major challenges in this endeavor: the need for capacities in "vaccinomics innovation systems" to support the developing countries involved in the creation and testing of new vaccines. In particular, we discuss the need for understanding how institutional frameworks can enhance capacities as intrinsic to a systems approach to health technology development. We focus our attention on the global South, meaning the technically less advanced and developing nations in Africa, Asia, and Latin America. This focus is timely and appropriate because the challenge for innovation in postgenomics medicine is markedly much greater in these regions where basic infrastructures are often underresourced and new or the anticipated institutional relationships can be fragile. Importantly, we examine the role of Product Development Partnerships (PDPs) as a 21st century organizational innovation that contributes to strengthening fragile institutions and capacity building. For vaccinomics innovation systems to stand the test of time in a context of global public health, local communities, knowledge, and cultures need to be collectively taken into account at all stages in programs for vaccinomics-guided vaccine development and delivery in the global South where the public health needs for rational vaccine development are urgent.

  2. Transcriptome sequencing and differential gene expression analysis in Viola yedoensis Makino (Fam. Violaceae) responsive to cadmium (Cd) pollution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gao, Jian; Luo, Mao; Zhu, Ye

    2015-03-27

    Viola yedoensis Makino is an important Chinese traditional medicine plant adapted to cadmium (Cd) pollution regions. Illumina sequencing technology was used to sequence the transcriptome of V. yedoensis Makino. We sequenced Cd-treated (VIYCd) and untreated (VIYCK) samples of V. yedoensis, and obtained 100,410,834 and 83,587,676 high quality reads, respectively. After de novo assembly and quantitative assessment, 109,800 unigenes were finally generated with an average length of 661 bp. We then obtained functional annotations by aligning unigenes with public protein databases including NR, NT, SwissProt, KEGG and COG. In addition, 892 differentially expressed genes (DEGs) were investigated between the two libraries ofmore » untreated (VIYCK) and Cd-treated (VIYCd) plants. Moreover, 15 randomly selected DEGs were further validated with qRT-PCR and the results were highly accordant with the Solexa analysis. This study firstly generated a successful global analysis of the V. yedoensis transcriptome and it will provide for further studies on gene expression, genomics, and functional genomics in Violaceae. - Highlights: • A de novo assembly generated 109,800 unigenes and 5,4479 of them were annotated. • 31,285 could be classified into 26 COG categories. • 263 biosynthesis pathways were predicted and classified into five categories. • 892 DEGs were detected and 15 of them were validated by qRT-PCR.« less

  3. Cross cultural differences in unconscious knowledge.

    PubMed

    Kiyokawa, Sachiko; Dienes, Zoltán; Tanaka, Daisuke; Yamada, Ayumi; Crowe, Louise

    2012-07-01

    Previous studies have indicated cross cultural differences in conscious processes, such that Asians have a global preference and Westerners a more analytical one. We investigated whether these biases also apply to unconscious knowledge. In Experiment 1, Japanese and UK participants memorized strings of large (global) letters made out of small (local) letters. The strings constituted one sequence of letters at a global level and a different sequence at a local level. Implicit learning occurred at the global and not the local level for the Japanese but equally at both levels for the English. In Experiment 2, the Japanese preference for global over local processing persisted even when structure existed only at the local but not global level. In Experiment 3, Japanese and UK participants were asked to attend to just one of the levels, global or local. Now the cultural groups performed similarly, indicating that the bias largely reflects preference rather than ability (although the data left room for residual ability differences). In Experiment 4, the greater global advantage of Japanese rather English was confirmed for strings made of Japanese kana rather than Roman letters. That is, the cultural difference is not due to familiarity of the sequence elements. In sum, we show for the first time that cultural biases strongly affect the type of unconscious knowledge people acquire. Copyright © 2012 Elsevier B.V. All rights reserved.

  4. Spectral Phasor approach for fingerprinting of photo-activatable fluorescent proteins Dronpa, Kaede and KikGR

    PubMed Central

    Cutrale, Francesco; Salih, Anya; Gratton, Enrico

    2013-01-01

    The phasor global analysis algorithm is common for fluorescence lifetime applications, but has only been recently proposed for spectral analysis. Here the phasor representation and fingerprinting is exploited in its second harmonic to determine the number and spectra of photo-activated states as well as their conversion dynamics. We follow the sequence of photo-activation of proteins over time by rapidly collecting multiple spectral images. The phasor representation of the cumulative images provides easy identification of the spectral signatures of each photo-activatable protein. PMID:24040513

  5. Redescription and molecular phylogeny of the type species for two main metopid genera, Metopus es (Müller, 1776) Lauterborn, 1916 and Brachonella contorta (Levander, 1894) Jankowski, 1964 (Metopida, Ciliophora), based on broad geographic sampling.

    PubMed

    Bourland, William; Rotterova, Johana; Čepička, Ivan

    2017-06-01

    Metopid ciliates occupy terrestrial, freshwater, and marine habitats worldwide, playing important roles as predominant consumers of bacteria, flagellates, algae, and diatoms in hypoxic environments. Metopus and Brachonella are the most species-rich metopid genera, however most of their species have not been studied by modern methods Here, we report the morphologic, morphometric and molecular characterization, and phylogeny of Metopus es and Brachonella contorta, both types of their respective genera, collected in a broad global sampling effort. Five strains of M. es and three strains of B. contorta were studied in detail, providing the first correlation of morphology, morphometrics, and 18S rRNA gene sequencing for both. We submitted 29 new 18S rRNA gene sequences to GenBank. Phylogenetic analyses yielded trees of similar topology. A strongly supported Metopus es clade is sister to the Brachonella contorta clade. Our analysis shows genus Metopus is not monophyletic. The monophyly of Brachonella cannot yet be determined due to lack of sequences for other species of this genus in molecular databases. Both species appear to have a global distribution. Metopus es was not found in Africa, probably reflecting low sampling effort. Strains of both species showed low 18S rRNA gene sequence divergence despite wide geographic separation. Copyright © 2016 Elsevier GmbH. All rights reserved.

  6. Global sequence diversity of the lactate dehydrogenase gene in Plasmodium falciparum.

    PubMed

    Simpalipan, Phumin; Pattaradilokrat, Sittiporn; Harnyuttanakorn, Pongchai

    2018-01-09

    Antigen-detecting rapid diagnostic tests (RDTs) have been recommended by the World Health Organization for use in remote areas to improve malaria case management. Lactate dehydrogenase (LDH) of Plasmodium falciparum is one of the main parasite antigens employed by various commercial RDTs. It has been hypothesized that the poor detection of LDH-based RDTs is attributed in part to the sequence diversity of the gene. To test this, the present study aimed to investigate the genetic diversity of the P. falciparum ldh gene in Thailand and to construct the map of LDH sequence diversity in P. falciparum populations worldwide. The ldh gene was sequenced for 50 P. falciparum isolates in Thailand and compared with hundreds of sequences from P. falciparum populations worldwide. Several indices of molecular variation were calculated, including the proportion of polymorphic sites, the average nucleotide diversity index (π), and the haplotype diversity index (H). Tests of positive selection and neutrality tests were performed to determine signatures of natural selection on the gene. Mean genetic distance within and between species of Plasmodium ldh was analysed to infer evolutionary relationships. Nucleotide sequences of P. falciparum ldh could be classified into 9 alleles, encoding 5 isoforms of LDH. L1a was the most common allelic type and was distributed in P. falciparum populations worldwide. Plasmodium falciparum ldh sequences were highly conserved, with haplotype and nucleotide diversity values of 0.203 and 0.0004, respectively. The extremely low genetic diversity was maintained by purifying selection, likely due to functional constraints. Phylogenetic analysis inferred the close genetic relationship of P. falciparum to malaria parasites of great apes, rather than to other human malaria parasites. This study revealed the global genetic variation of the ldh gene in P. falciparum, providing knowledge for improving detection of LDH-based RDTs and supporting the candidacy of LDH as a therapeutic drug target.

  7. Gene-enriched draft genome of the cattle tick Rhipicephalus microplus: Assembly by the hybrid Pacific Biosciences/Illumina approach enabled analysis of the highly repetitive genome

    USDA-ARS?s Scientific Manuscript database

    The genome of the cattle tick R. microplus, an ectoparasite with global distribution, is estimated to be 7.1 Gbp and consists of ~70% repetitive DNA. We report the first assembly of a tick genome that utilized a hybrid sequencing and assembly approach to capture the repetitive fractions of the genom...

  8. AGILE: Autonomous Global Integrated Language Exploitation

    DTIC Science & Technology

    2008-04-01

    training is extending the pronunciation dictionary to cover any additional words. For many languages this is relatively straightforward via grapheme-to...into one or more word sequences and look up the constituent parts in the Master dictionary or apply Buckwalter to them. The Buckwalter prefix table was...errors involve the article ’Al’. As a result of this analysis, the pronunciation dictionary was extended to add alternate pronunciations for the

  9. Global transcriptomic response of Anoxybacillus sp. SK 3-4 to aluminum exposure.

    PubMed

    Lim, Jia Chun; Thevarajoo, Suganthi; Selvaratnam, Chitra; Goh, Kian Mau; Shamsir, Mohd Shahir; Ibrahim, Zaharah; Chong, Chun Shiong

    2017-02-01

    Anoxybacillus sp. SK 3-4 is a Gram-positive, rod-shaped bacterium and a member of family Bacillaceae. We had previously reported that the strain is an aluminum resistant thermophilic bacterium. This is the first report to provide a detailed analysis of the global transcriptional response of Anoxybacillus when the cells were exposed to 600 mg L -1 of aluminum. The transcriptome was sequenced using Illumina MiSeq sequencer. Total of 708 genes were differentially expressed (fold change >2.00) with 316 genes were up-regulated while 347 genes were down-regulated, in comparing to control with no aluminum added in the culture. Based on Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, the majority of genes encoding for cell metabolism such as glycolysis, sulfur metabolism, cysteine and methionine metabolism were up-regulated; while most of the gene associated with tricarboxylic acid cycle (TCA cycle) and valine, leucine and isoleucine metabolism were down-regulated. In addition, a significant number of the genes encoding ABC transporters, metal ions transporters, and some stress response proteins were also differentially expressed following aluminum exposure. The findings provide further insight and help us to understand on the resistance of Anoxybacillus sp. SK 3-4 toward aluminium. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Phylogenetic and population genetic analyses of Phaeosphaeria nodorum and its close relatives indicate cryptic species and an origin in the Fertile Crescent.

    PubMed

    McDonald, Megan C; Razavi, Mohammad; Friesen, Timothy L; Brunner, Patrick C; McDonald, Bruce A

    2012-11-01

    The origin of the fungal wheat pathogen Phaeosphaeria nodorum remains unclear despite earlier intensive global population genetic and phylogeographical studies. We sequenced 1683 bp distributed across three loci in 355 globally distributed Phaeosphaeria isolates, including 74 collected in Iran near the center of origin of wheat. We identified nine phylogenetically distinct clades, including two previously unknown species tentatively named P1 and P2 collected in Iran. Coalescent analysis indicates that P1 and P2 are sister species of P. nodorum and the other Phaeosphaeria species identified in our analysis. Two species, P. nodorum and P. avenaria f. sp. tritici 1 (Pat1), comprised ~85% of the sampled isolates, making them the dominant wheat-infecting pathogens within the species complex. We designed a PCR-RFLP assay to distinguish P. nodorum from Pat1. Approximately 4% of P. nodorum and Pat1 isolates showed evidence of hybridization. Measures of private allelic richness at SSR and sequence loci suggest that the center of origin of P. nodorum coincides with its host in the Fertile Crescent. We hypothesize that the origin of this species complex is also in the Fertile Crescent, with four species out of nine found exclusively in the Iranian collections. Copyright © 2012 Elsevier Inc. All rights reserved.

  11. Microbial diversity in degraded and non-degraded petroleum samples and comparison across oil reservoirs at local and global scales.

    PubMed

    Sierra-Garcia, Isabel Natalia; Dellagnezze, Bruna M; Santos, Viviane P; Chaves B, Michel R; Capilla, Ramsés; Santos Neto, Eugenio V; Gray, Neil; Oliveira, Valeria M

    2017-01-01

    Microorganisms have shown their ability to colonize extreme environments including deep subsurface petroleum reservoirs. Physicochemical parameters may vary greatly among petroleum reservoirs worldwide and so do the microbial communities inhabiting these different environments. The present work aimed at the characterization of the microbiota in biodegraded and non-degraded petroleum samples from three Brazilian reservoirs and the comparison of microbial community diversity across oil reservoirs at local and global scales using 16S rRNA clone libraries. The analysis of 620 16S rRNA bacterial and archaeal sequences obtained from Brazilian oil samples revealed 42 bacterial OTUs and 21 archaeal OTUs. The bacterial community from the degraded oil was more diverse than the non-degraded samples. Non-degraded oil samples were overwhelmingly dominated by gammaproteobacterial sequences with a predominance of the genera Marinobacter and Marinobacterium. Comparisons of microbial diversity among oil reservoirs worldwide suggested an apparent correlation of prokaryotic communities with reservoir temperature and depth and no influence of geographic distance among reservoirs. The detailed analysis of the phylogenetic diversity across reservoirs allowed us to define a core microbiome encompassing three bacterial classes (Gammaproteobacteria, Clostridia, and Bacteroidia) and one archaeal class (Methanomicrobia) ubiquitous in petroleum reservoirs and presumably owning the abilities to sustain life in these environments.

  12. Transcription Factor Map Alignment of Promoter Regions

    PubMed Central

    Blanco, Enrique; Messeguer, Xavier; Smith, Temple F; Guigó, Roderic

    2006-01-01

    We address the problem of comparing and characterizing the promoter regions of genes with similar expression patterns. This remains a challenging problem in sequence analysis, because often the promoter regions of co-expressed genes do not show discernible sequence conservation. In our approach, thus, we have not directly compared the nucleotide sequence of promoters. Instead, we have obtained predictions of transcription factor binding sites, annotated the predicted sites with the labels of the corresponding binding factors, and aligned the resulting sequences of labels—to which we refer here as transcription factor maps (TF-maps). To obtain the global pairwise alignment of two TF-maps, we have adapted an algorithm initially developed to align restriction enzyme maps. We have optimized the parameters of the algorithm in a small, but well-curated, collection of human–mouse orthologous gene pairs. Results in this dataset, as well as in an independent much larger dataset from the CISRED database, indicate that TF-map alignments are able to uncover conserved regulatory elements, which cannot be detected by the typical sequence alignments. PMID:16733547

  13. CLIP-related methodologies and their application to retrovirology.

    PubMed

    Bieniasz, Paul D; Kutluay, Sebla B

    2018-05-02

    Virtually every step of HIV-1 replication and numerous cellular antiviral defense mechanisms are regulated by the binding of a viral or cellular RNA-binding protein (RBP) to distinct sequence or structural elements on HIV-1 RNAs. Until recently, these protein-RNA interactions were studied largely by in vitro binding assays complemented with genetics approaches. However, these methods are highly limited in the identification of the relevant targets of RBPs in physiologically relevant settings. Development of crosslinking-immunoprecipitation sequencing (CLIP) methodology has revolutionized the analysis of protein-nucleic acid complexes. CLIP combines immunoprecipitation of covalently crosslinked protein-RNA complexes with high-throughput sequencing, providing a global account of RNA sequences bound by a RBP of interest in cells (or virions) at near-nucleotide resolution. Numerous variants of the CLIP protocol have recently been developed, some with major improvements over the original. Herein, we briefly review these methodologies and give examples of how CLIP has been successfully applied to retrovirology research.

  14. International Standards for Genomes, Transcriptomes, and Metagenomes

    PubMed Central

    Mason, Christopher E.; Afshinnekoo, Ebrahim; Tighe, Scott; Wu, Shixiu; Levy, Shawn

    2017-01-01

    Challenges and biases in preparing, characterizing, and sequencing DNA and RNA can have significant impacts on research in genomics across all kingdoms of life, including experiments in single-cells, RNA profiling, and metagenomics (across multiple genomes). Technical artifacts and contamination can arise at each point of sample manipulation, extraction, sequencing, and analysis. Thus, the measurement and benchmarking of these potential sources of error are of paramount importance as next-generation sequencing (NGS) projects become more global and ubiquitous. Fortunately, a variety of methods, standards, and technologies have recently emerged that improve measurements in genomics and sequencing, from the initial input material to the computational pipelines that process and annotate the data. Here we review current standards and their applications in genomics, including whole genomes, transcriptomes, mixed genomic samples (metagenomes), and the modified bases within each (epigenomes and epitranscriptomes). These standards, tools, and metrics are critical for quantifying the accuracy of NGS methods, which will be essential for robust approaches in clinical genomics and precision medicine. PMID:28337071

  15. Genomic Definition of Hypervirulent and Multidrug-Resistant Klebsiella pneumoniae Clonal Groups

    PubMed Central

    Bialek-Davenet, Suzanne; Criscuolo, Alexis; Ailloud, Florent; Passet, Virginie; Jones, Louis; Delannoy-Vieillard, Anne-Sophie; Garin, Benoit; Le Hello, Simon; Arlet, Guillaume; Nicolas-Chanoine, Marie-Hélène; Decré, Dominique

    2014-01-01

    Multidrug-resistant and highly virulent Klebsiella pneumoniae isolates are emerging, but the clonal groups (CGs) corresponding to these high-risk strains have remained imprecisely defined. We aimed to identify K. pneumoniae CGs on the basis of genome-wide sequence variation and to provide a simple bioinformatics tool to extract virulence and resistance gene data from genomic data. We sequenced 48 K. pneumoniae isolates, mostly of serotypes K1 and K2, and compared the genomes with 119 publicly available genomes. A total of 694 highly conserved genes were included in a core-genome multilocus sequence typing scheme, and cluster analysis of the data enabled precise definition of globally distributed hypervirulent and multidrug-resistant CGs. In addition, we created a freely accessible database, BIGSdb-Kp, to enable rapid extraction of medically and epidemiologically relevant information from genomic sequences of K. pneumoniae. Although drug-resistant and virulent K. pneumoniae populations were largely nonoverlapping, isolates with combined virulence and resistance features were detected. PMID:25341126

  16. 3D RNA and functional interactions from evolutionary couplings

    PubMed Central

    Weinreb, Caleb; Riesselman, Adam; Ingraham, John B.; Gross, Torsten; Sander, Chris; Marks, Debora S.

    2016-01-01

    Summary Non-coding RNAs are ubiquitous, but the discovery of new RNA gene sequences far outpaces research on their structure and functional interactions. We mine the evolutionary sequence record to derive precise information about function and structure of RNAs and RNA-protein complexes. As in protein structure prediction, we use maximum entropy global probability models of sequence co-variation to infer evolutionarily constrained nucleotide-nucleotide interactions within RNA molecules, and nucleotide-amino acid interactions in RNA-protein complexes. The predicted contacts allow all-atom blinded 3D structure prediction at good accuracy for several known RNA structures and RNA-protein complexes. For unknown structures, we predict contacts in 160 non-coding RNA families. Beyond 3D structure prediction, evolutionary couplings help identify important functional interactions, e.g., at switch points in riboswitches and at a complex nucleation site in HIV. Aided by accelerating sequence accumulation, evolutionary coupling analysis can accelerate the discovery of functional interactions and 3D structures involving RNA. PMID:27087444

  17. GTSO: Global Trace Synchronization and Ordering Mechanism for Wireless Sensor Network Monitoring Platforms

    PubMed Central

    Bonastre, Alberto; Ors, Rafael

    2017-01-01

    Monitoring is one of the best ways to evaluate the behavior of computer systems. When the monitored system is a distributed system—such as a wireless sensor network (WSN)—the monitoring operation must also be distributed, providing a distributed trace for further analysis. The temporal sequence of occurrence of the events registered by the distributed monitoring platform (DMP) must be correctly established to provide cause-effect relationships between them, so the logs obtained in different monitor nodes must be synchronized. Many of synchronization mechanisms applied to DMPs consist in adjusting the internal clocks of the nodes to the same value as a reference time. However, these mechanisms can create an incoherent event sequence. This article presents a new method to achieve global synchronization of the traces obtained in a DMP. It is based on periodic synchronization signals that are received by the monitor nodes and logged along with the recorded events. This mechanism processes all traces and generates a global post-synchronized trace by scaling all times registered proportionally according with the synchronization signals. It is intended to be a simple but efficient offline mechanism. Its application in a WSN-DMP demonstrates that it guarantees a correct ordering of the events, avoiding the aforementioned issues. PMID:29295494

  18. GTSO: Global Trace Synchronization and Ordering Mechanism for Wireless Sensor Network Monitoring Platforms.

    PubMed

    Navia, Marlon; Campelo, José Carlos; Bonastre, Alberto; Ors, Rafael

    2017-12-23

    Monitoring is one of the best ways to evaluate the behavior of computer systems. When the monitored system is a distributed system-such as a wireless sensor network (WSN)-the monitoring operation must also be distributed, providing a distributed trace for further analysis. The temporal sequence of occurrence of the events registered by the distributed monitoring platform (DMP) must be correctly established to provide cause-effect relationships between them, so the logs obtained in different monitor nodes must be synchronized. Many of synchronization mechanisms applied to DMPs consist in adjusting the internal clocks of the nodes to the same value as a reference time. However, these mechanisms can create an incoherent event sequence. This article presents a new method to achieve global synchronization of the traces obtained in a DMP. It is based on periodic synchronization signals that are received by the monitor nodes and logged along with the recorded events. This mechanism processes all traces and generates a global post-synchronized trace by scaling all times registered proportionally according with the synchronization signals. It is intended to be a simple but efficient offline mechanism. Its application in a WSN-DMP demonstrates that it guarantees a correct ordering of the events, avoiding the aforementioned issues.

  19. Multi-scale Quantitative Precipitation Forecasting Using ...

    EPA Pesticide Factsheets

    Global sea surface temperature (SST) anomalies can affect terrestrial precipitation via ocean-atmosphere interaction known as climate teleconnection. Non-stationary and non-linear characteristics of the ocean-atmosphere system make the identification of the teleconnection signals difficult to be detected at a local scale as it could cause large uncertainties when using linear correlation analysis only. This paper explores the relationship between global SST and terrestrial precipitation with respect to long-term non-stationary teleconnection signals during 1981-2010 over three regions in North America and one in Central America. Empirical mode decomposition as well as wavelet analysis is utilized to extract the intrinsic trend and the dominant oscillation of the SST and precipitation time series in sequence. After finding possible associations between the dominant oscillation of seasonal precipitation and global SST through lagged correlation analysis, the statistically significant SST regions are extracted based on the correlation coefficient. With these characterized associations, individual contribution of these SST forcing regions linked to the related precipitation responses are further quantified through nonlinear modeling with the aid of extreme learning machine. Results indicate that the non-leading SST regions also contribute a salient portion to the terrestrial precipitation variability compared to some known leading SST regions. In some cases, these

  20. Environmental High-content Fluorescence Microscopy (e-HCFM) of Tara Oceans Samples Provides a View of Global Ocean Protist Biodiversity

    NASA Astrophysics Data System (ADS)

    Coelho, L. P.; Colin, S.; Sunagawa, S.; Karsenti, E.; Bork, P.; Pepperkok, R.; de Vargas, C.

    2016-02-01

    Protists are responsible for much of the diversity in the eukaryotic kingdomand are crucial to several biogeochemical processes of global importance (e.g.,the carbon cycle). Recent global investigations of these organisms have reliedon sequence-based approaches. These methods do not, however, capture thecomplex functional morphology of these organisms nor can they typically capturephenomena such as interactions (except indirectly through statistical means).Direct imaging of these organisms, can therefore provide a valuable complementto sequencing and, when performed quantitatively, provide measures ofstructures and interaction patterns which can then be related back to sequencebased measurements. Towards this end, we developed a framework, environmentalhigh-content fluorescence microscopy (e-HCFM) which can be applied toenvironmental samples composed of mixed communities. This strategy is based ongeneral purposes dyes that stain major structures in eukaryotes. Samples areimaged using scanning confocal microscopy, resulting in a three-dimensionalimage-stack. High-throughput can be achieved using automated microscopy andcomputational analysis. Standard bioimage informatics segmentation methodscombined with feature computation and machine learning results in automatictaxonomic assignments to the objects that are imaged in addition to severalbiochemically relevant measurements (such as biovolumes, fluorescenceestimates) per organism. We provide results on 174 image acquisition from TaraOcean samples, which cover organisms from 5 to 180 microns (82 samples in the5-20 fraction, 96 in the 20-180 fraction). We show a validation of the approachboth on technical grounds (demonstrating the high accuracy of automatedclassification) and provide results obtain from image analysis and fromintegrating with other data, such as associated environmental parametersmeasured in situ as well as perspectives on integration with sequenceinformation.

  1. A novel model for DNA sequence similarity analysis based on graph theory.

    PubMed

    Qi, Xingqin; Wu, Qin; Zhang, Yusen; Fuller, Eddie; Zhang, Cun-Quan

    2011-01-01

    Determination of sequence similarity is one of the major steps in computational phylogenetic studies. As we know, during evolutionary history, not only DNA mutations for individual nucleotide but also subsequent rearrangements occurred. It has been one of major tasks of computational biologists to develop novel mathematical descriptors for similarity analysis such that various mutation phenomena information would be involved simultaneously. In this paper, different from traditional methods (eg, nucleotide frequency, geometric representations) as bases for construction of mathematical descriptors, we construct novel mathematical descriptors based on graph theory. In particular, for each DNA sequence, we will set up a weighted directed graph. The adjacency matrix of the directed graph will be used to induce a representative vector for DNA sequence. This new approach measures similarity based on both ordering and frequency of nucleotides so that much more information is involved. As an application, the method is tested on a set of 0.9-kb mtDNA sequences of twelve different primate species. All output phylogenetic trees with various distance estimations have the same topology, and are generally consistent with the reported results from early studies, which proves the new method's efficiency; we also test the new method on a simulated data set, which shows our new method performs better than traditional global alignment method when subsequent rearrangements happen frequently during evolutionary history.

  2. PseKNC: a flexible web server for generating pseudo K-tuple nucleotide composition.

    PubMed

    Chen, Wei; Lei, Tian-Yu; Jin, Dian-Chuan; Lin, Hao; Chou, Kuo-Chen

    2014-07-01

    The pseudo oligonucleotide composition, or pseudo K-tuple nucleotide composition (PseKNC), can be used to represent a DNA or RNA sequence with a discrete model or vector yet still keep considerable sequence order information, particularly the global or long-range sequence order information, via the physicochemical properties of its constituent oligonucleotides. Therefore, the PseKNC approach may hold very high potential for enhancing the power in dealing with many problems in computational genomics and genome sequence analysis. However, dealing with different DNA or RNA problems may need different kinds of PseKNC. Here, we present a flexible and user-friendly web server for PseKNC (at http://lin.uestc.edu.cn/pseknc/default.aspx) by which users can easily generate many different modes of PseKNC according to their need by selecting various parameters and physicochemical properties. Furthermore, for the convenience of the vast majority of experimental scientists, a step-by-step guide is provided on how to use the current web server to generate their desired PseKNC without the need to follow the complicated mathematical equations, which are presented in this article just for the integrity of PseKNC formulation and its development. It is anticipated that the PseKNC web server will become a very useful tool in computational genomics and genome sequence analysis. Copyright © 2014 Elsevier Inc. All rights reserved.

  3. Poliovirus serotype-specific VP1 sequencing primers.

    PubMed

    Kilpatrick, David R; Iber, Jane C; Chen, Qi; Ching, Karen; Yang, Su-Ju; De, Lina; Mandelbaum, Mark D; Emery, Brian; Campagnoli, Ray; Burns, Cara C; Kew, Olen

    2011-06-01

    The Global Polio Laboratory Network routinely uses poliovirus-specific PCR primers and probes to determine the serotype and genotype of poliovirus isolates obtained as part of global poliovirus surveillance. To provide detailed molecular epidemiologic information, poliovirus isolates are further characterized by sequencing the ~900-nucleotide region encoding the major capsid protein, VP1. It is difficult to obtain quality sequence information when clinical or environmental samples contain poliovirus mixtures. As an alternative to conventional methods for resolving poliovirus mixtures, sets of serotype-specific primers were developed for amplifying and sequencing the VP1 regions of individual components of mixed populations of vaccine-vaccine, vaccine-wild, and wild-wild polioviruses. Published by Elsevier B.V.

  4. Integrated biostratigraphic and sequence stratigraphic framework for Upper Cretaceous strata of the eastern Gulf Coastal Plain, USA

    USGS Publications Warehouse

    Mancini, E.A.; Puckett, T.M.; Tew, B.H.

    1996-01-01

    Upper Cretaceous (Santonian-Maastrichtian stages) strata of the eastern US Gulf Coastal Plain represent a relatively complete section of marine to nonmarine mixed siliciclastic and carbonate sediments. This section includes three depositional sequences which display characteristic systems tracts and distinct physical defining surfaces. The marine lithofacies are rich in calcareous nannoplankton and planktonic foraminifera which can be used for biostratigraphic zonation. Integration of this zonation with the lithostratigraphy and sequence stratigraphy of these strata results in a framework that can be used for local and regional intrabasin correlation and potentially for global interbasin correlation. Only the synchronous maximum flooding surfaces of these depositional sequences, however, have chronostratigraphic significance. The sequence boundaries and initial flooding surfaces are diachronous, and their use for correlation can produce conflicting results. The availability of high resolution biostratigraphy is critical for global correlation of depositional sequences. ?? 1996 Academic Press Limited.

  5. Spatiotemporal Phylogenetic Analysis and Molecular Characterisation of Infectious Bursal Disease Viruses Based on the VP2 Hyper-Variable Region

    PubMed Central

    Dolz, Roser; Valle, Rosa; Perera, Carmen L.; Bertran, Kateri; Frías, Maria T.; Majó, Natàlia; Ganges, Llilianne; Pérez, Lester J.

    2013-01-01

    Background Infectious bursal disease is a highly contagious and acute viral disease caused by the infectious bursal disease virus (IBDV); it affects all major poultry producing areas of the world. The current study was designed to rigorously measure the global phylogeographic dynamics of IBDV strains to gain insight into viral population expansion as well as the emergence, spread and pattern of the geographical structure of very virulent IBDV (vvIBDV) strains. Methodology/Principal Findings Sequences of the hyper-variable region of the VP2 (HVR-VP2) gene from IBDV strains isolated from diverse geographic locations were obtained from the GenBank database; Cuban sequences were obtained in the current work. All sequences were analysed by Bayesian phylogeographic analysis, implemented in the Bayesian Evolutionary Analysis Sampling Trees (BEAST), Bayesian Tip-association Significance testing (BaTS) and Spatial Phylogenetic Reconstruction of Evolutionary Dynamics (SPREAD) software packages. Selection pressure on the HVR-VP2 was also assessed. The phylogeographic association-trait analysis showed that viruses sampled from individual countries tend to cluster together, suggesting a geographic pattern for IBDV strains. Spatial analysis from this study revealed that strains carrying sequences that were linked to increased virulence of IBDV appeared in Iran in 1981 and spread to Western Europe (Belgium) in 1987, Africa (Egypt) around 1990, East Asia (China and Japan) in 1993, the Caribbean Region (Cuba) by 1995 and South America (Brazil) around 2000. Selection pressure analysis showed that several codons in the HVR-VP2 region were under purifying selection. Conclusions/Significance To our knowledge, this work is the first study applying the Bayesian phylogeographic reconstruction approach to analyse the emergence and spread of vvIBDV strains worldwide. PMID:23805195

  6. Spatiotemporal Phylogenetic Analysis and Molecular Characterisation of Infectious Bursal Disease Viruses Based on the VP2 Hyper-Variable Region.

    PubMed

    Alfonso-Morales, Abdulahi; Martínez-Pérez, Orlando; Dolz, Roser; Valle, Rosa; Perera, Carmen L; Bertran, Kateri; Frías, Maria T; Majó, Natàlia; Ganges, Llilianne; Pérez, Lester J

    2013-01-01

    Infectious bursal disease is a highly contagious and acute viral disease caused by the infectious bursal disease virus (IBDV); it affects all major poultry producing areas of the world. The current study was designed to rigorously measure the global phylogeographic dynamics of IBDV strains to gain insight into viral population expansion as well as the emergence, spread and pattern of the geographical structure of very virulent IBDV (vvIBDV) strains. Sequences of the hyper-variable region of the VP2 (HVR-VP2) gene from IBDV strains isolated from diverse geographic locations were obtained from the GenBank database; Cuban sequences were obtained in the current work. All sequences were analysed by Bayesian phylogeographic analysis, implemented in the Bayesian Evolutionary Analysis Sampling Trees (BEAST), Bayesian Tip-association Significance testing (BaTS) and Spatial Phylogenetic Reconstruction of Evolutionary Dynamics (SPREAD) software packages. Selection pressure on the HVR-VP2 was also assessed. The phylogeographic association-trait analysis showed that viruses sampled from individual countries tend to cluster together, suggesting a geographic pattern for IBDV strains. Spatial analysis from this study revealed that strains carrying sequences that were linked to increased virulence of IBDV appeared in Iran in 1981 and spread to Western Europe (Belgium) in 1987, Africa (Egypt) around 1990, East Asia (China and Japan) in 1993, the Caribbean Region (Cuba) by 1995 and South America (Brazil) around 2000. Selection pressure analysis showed that several codons in the HVR-VP2 region were under purifying selection. To our knowledge, this work is the first study applying the Bayesian phylogeographic reconstruction approach to analyse the emergence and spread of vvIBDV strains worldwide.

  7. Targeted or whole genome sequencing of formalin fixed tissue samples: potential applications in cancer genomics.

    PubMed

    Munchel, Sarah; Hoang, Yen; Zhao, Yue; Cottrell, Joseph; Klotzle, Brandy; Godwin, Andrew K; Koestler, Devin; Beyerlein, Peter; Fan, Jian-Bing; Bibikova, Marina; Chien, Jeremy

    2015-09-22

    Current genomic studies are limited by the poor availability of fresh-frozen tissue samples. Although formalin-fixed diagnostic samples are in abundance, they are seldom used in current genomic studies because of the concern of formalin-fixation artifacts. Better characterization of these artifacts will allow the use of archived clinical specimens in translational and clinical research studies. To provide a systematic analysis of formalin-fixation artifacts on Illumina sequencing, we generated 26 DNA sequencing data sets from 13 pairs of matched formalin-fixed paraffin-embedded (FFPE) and fresh-frozen (FF) tissue samples. The results indicate high rate of concordant calls between matched FF/FFPE pairs at reference and variant positions in three commonly used sequencing approaches (whole genome, whole exome, and targeted exon sequencing). Global mismatch rates and C · G > T · A substitutions were comparable between matched FF/FFPE samples, and discordant rates were low (<0.26%) in all samples. Finally, low-pass whole genome sequencing produces similar pattern of copy number alterations between FF/FFPE pairs. The results from our studies suggest the potential use of diagnostic FFPE samples for cancer genomic studies to characterize and catalog variations in cancer genomes.

  8. MIPS: analysis and annotation of genome information in 2007

    PubMed Central

    Mewes, H. W.; Dietmann, S.; Frishman, D.; Gregory, R.; Mannhaupt, G.; Mayer, K. F. X.; Münsterkötter, M.; Ruepp, A.; Spannagl, M.; Stümpflen, V.; Rattei, T.

    2008-01-01

    The Munich Information Center for Protein Sequences (MIPS-GSF, Neuherberg, Germany) combines automatic processing of large amounts of sequences with manual annotation of selected model genomes. Due to the massive growth of the available data, the depth of annotation varies widely between independent databases. Also, the criteria for the transfer of information from known to orthologous sequences are diverse. To cope with the task of global in-depth genome annotation has become unfeasible. Therefore, our efforts are dedicated to three levels of annotation: (i) the curation of selected genomes, in particular from fungal and plant taxa (e.g. CYGD, MNCDB, MatDB), (ii) the comprehensive, consistent, automatic annotation employing exhaustive methods for the computation of sequence similarities and sequence-related attributes as well as the classification of individual sequences (SIMAP, PEDANT and FunCat) and (iii) the compilation of manually curated databases for protein interactions based on scrutinized information from the literature to serve as an accepted set of reliable annotated interaction data (MPACT, MPPI, CORUM). All databases and tools described as well as the detailed descriptions of our projects can be accessed through the MIPS web server (http://mips.gsf.de). PMID:18158298

  9. MIPS: analysis and annotation of genome information in 2007.

    PubMed

    Mewes, H W; Dietmann, S; Frishman, D; Gregory, R; Mannhaupt, G; Mayer, K F X; Münsterkötter, M; Ruepp, A; Spannagl, M; Stümpflen, V; Rattei, T

    2008-01-01

    The Munich Information Center for Protein Sequences (MIPS-GSF, Neuherberg, Germany) combines automatic processing of large amounts of sequences with manual annotation of selected model genomes. Due to the massive growth of the available data, the depth of annotation varies widely between independent databases. Also, the criteria for the transfer of information from known to orthologous sequences are diverse. To cope with the task of global in-depth genome annotation has become unfeasible. Therefore, our efforts are dedicated to three levels of annotation: (i) the curation of selected genomes, in particular from fungal and plant taxa (e.g. CYGD, MNCDB, MatDB), (ii) the comprehensive, consistent, automatic annotation employing exhaustive methods for the computation of sequence similarities and sequence-related attributes as well as the classification of individual sequences (SIMAP, PEDANT and FunCat) and (iii) the compilation of manually curated databases for protein interactions based on scrutinized information from the literature to serve as an accepted set of reliable annotated interaction data (MPACT, MPPI, CORUM). All databases and tools described as well as the detailed descriptions of our projects can be accessed through the MIPS web server (http://mips.gsf.de).

  10. A weighted sampling algorithm for the design of RNA sequences with targeted secondary structure and nucleotide distribution.

    PubMed

    Reinharz, Vladimir; Ponty, Yann; Waldispühl, Jérôme

    2013-07-01

    The design of RNA sequences folding into predefined secondary structures is a milestone for many synthetic biology and gene therapy studies. Most of the current software uses similar local search strategies (i.e. a random seed is progressively adapted to acquire the desired folding properties) and more importantly do not allow the user to control explicitly the nucleotide distribution such as the GC-content in their sequences. However, the latter is an important criterion for large-scale applications as it could presumably be used to design sequences with better transcription rates and/or structural plasticity. In this article, we introduce IncaRNAtion, a novel algorithm to design RNA sequences folding into target secondary structures with a predefined nucleotide distribution. IncaRNAtion uses a global sampling approach and weighted sampling techniques. We show that our approach is fast (i.e. running time comparable or better than local search methods), seedless (we remove the bias of the seed in local search heuristics) and successfully generates high-quality sequences (i.e. thermodynamically stable) for any GC-content. To complete this study, we develop a hybrid method combining our global sampling approach with local search strategies. Remarkably, our glocal methodology overcomes both local and global approaches for sampling sequences with a specific GC-content and target structure. IncaRNAtion is available at csb.cs.mcgill.ca/incarnation/. Supplementary data are available at Bioinformatics online.

  11. Automated sequence-specific protein NMR assignment using the memetic algorithm MATCH.

    PubMed

    Volk, Jochen; Herrmann, Torsten; Wüthrich, Kurt

    2008-07-01

    MATCH (Memetic Algorithm and Combinatorial Optimization Heuristics) is a new memetic algorithm for automated sequence-specific polypeptide backbone NMR assignment of proteins. MATCH employs local optimization for tracing partial sequence-specific assignments within a global, population-based search environment, where the simultaneous application of local and global optimization heuristics guarantees high efficiency and robustness. MATCH thus makes combined use of the two predominant concepts in use for automated NMR assignment of proteins. Dynamic transition and inherent mutation are new techniques that enable automatic adaptation to variable quality of the experimental input data. The concept of dynamic transition is incorporated in all major building blocks of the algorithm, where it enables switching between local and global optimization heuristics at any time during the assignment process. Inherent mutation restricts the intrinsically required randomness of the evolutionary algorithm to those regions of the conformation space that are compatible with the experimental input data. Using intact and artificially deteriorated APSY-NMR input data of proteins, MATCH performed sequence-specific resonance assignment with high efficiency and robustness.

  12. Diverse Array of New Viral Sequences Identified in Worldwide Populations of the Asian Citrus Psyllid (Diaphorina citri) Using Viral Metagenomics

    PubMed Central

    Nouri, Shahideh; Salem, Nidá; Nigg, Jared C.

    2015-01-01

    ABSTRACT The Asian citrus psyllid, Diaphorina citri, is the natural vector of the causal agent of Huanglongbing (HLB), or citrus greening disease. Together; HLB and D. citri represent a major threat to world citrus production. As there is no cure for HLB, insect vector management is considered one strategy to help control the disease, and D. citri viruses might be useful. In this study, we used a metagenomic approach to analyze viral sequences associated with the global population of D. citri. By sequencing small RNAs and the transcriptome coupled with bioinformatics analysis, we showed that the virus-like sequences of D. citri are diverse. We identified novel viral sequences belonging to the picornavirus superfamily, the Reoviridae, Parvoviridae, and Bunyaviridae families, and an unclassified positive-sense single-stranded RNA virus. Moreover, a Wolbachia prophage-related sequence was identified. This is the first comprehensive survey to assess the viral community from worldwide populations of an agricultural insect pest. Our results provide valuable information on new putative viruses, some of which may have the potential to be used as biocontrol agents. IMPORTANCE Insects have the most species of all animals, and are hosts to, and vectors of, a great variety of known and unknown viruses. Some of these most likely have the potential to be important fundamental and/or practical resources. In this study, we used high-throughput next-generation sequencing (NGS) technology and bioinformatics analysis to identify putative viruses associated with Diaphorina citri, the Asian citrus psyllid. D. citri is the vector of the bacterium causing Huanglongbing (HLB), currently the most serious threat to citrus worldwide. Here, we report several novel viral sequences associated with D. citri. PMID:26676774

  13. Diverse Array of New Viral Sequences Identified in Worldwide Populations of the Asian Citrus Psyllid (Diaphorina citri) Using Viral Metagenomics.

    PubMed

    Nouri, Shahideh; Salem, Nidá; Nigg, Jared C; Falk, Bryce W

    2015-12-16

    The Asian citrus psyllid, Diaphorina citri, is the natural vector of the causal agent of Huanglongbing (HLB), or citrus greening disease. Together; HLB and D. citri represent a major threat to world citrus production. As there is no cure for HLB, insect vector management is considered one strategy to help control the disease, and D. citri viruses might be useful. In this study, we used a metagenomic approach to analyze viral sequences associated with the global population of D. citri. By sequencing small RNAs and the transcriptome coupled with bioinformatics analysis, we showed that the virus-like sequences of D. citri are diverse. We identified novel viral sequences belonging to the picornavirus superfamily, the Reoviridae, Parvoviridae, and Bunyaviridae families, and an unclassified positive-sense single-stranded RNA virus. Moreover, a Wolbachia prophage-related sequence was identified. This is the first comprehensive survey to assess the viral community from worldwide populations of an agricultural insect pest. Our results provide valuable information on new putative viruses, some of which may have the potential to be used as biocontrol agents. Insects have the most species of all animals, and are hosts to, and vectors of, a great variety of known and unknown viruses. Some of these most likely have the potential to be important fundamental and/or practical resources. In this study, we used high-throughput next-generation sequencing (NGS) technology and bioinformatics analysis to identify putative viruses associated with Diaphorina citri, the Asian citrus psyllid. D. citri is the vector of the bacterium causing Huanglongbing (HLB), currently the most serious threat to citrus worldwide. Here, we report several novel viral sequences associated with D. citri. Copyright © 2016, American Society for Microbiology. All Rights Reserved.

  14. The Genetic Diversity, Haplotype Analysis, and Phylogenetic Relationship of Aedes albopictus (Diptera: Culicidae) Based on the Cytochrome Oxidase 1 Marker: A Malaysian Scenario.

    PubMed

    Ismail, Nurul-Ain; Adilah-Amrannudin, Nurul; Hamsidi, Mayamin; Ismail, Rodziah; Dom, Nazri Che; Ahmad, Abu Hassan; Mastuki, Mohd Fahmi; Camalxaman, Siti Nazrina

    2017-11-07

    The global expansion of Ae. albopictus from its native range in Southeast Asia has been implicated in the recent emergence of dengue endemicity in Malaysia. Genetic variability studies of Ae. albopictus are currently lacking in the Malaysian setting, yet are crucial to enhancing the existing vector control strategies. The study was conducted to establish the genetic variability of maternally inherited mitochondrial DNA encoding for cytochrome oxidase subunit 1 (CO1) gene in Ae. albopictus. Twelve localities were selected in the Subang Jaya district based on temporal indices utilizing 120 mosquito samples. Genetic polymorphism and phylogenetic analysis were conducted to unveil the genetic variability and geographic origins of Ae. albopictus. The haplotype network was mapped to determine the genealogical relationship of sequences among groups of population in the Asian region. Comparison of Malaysian CO1 sequences with sequences derived from five Asian countries revealed genetically distinct Ae. albopictus populations. Phylogenetic analysis revealed that all sequences from other Asian countries descended from the same genetic lineage as the Malaysian sequences. Noteworthy, our study highlights the discovery of 20 novel haplotypes within the Malaysian population which to date had not been reported. These findings could help determine the genetic variation of this invasive species, which in turn could possibly improve the current dengue vector surveillance strategies, locally and regionally. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  15. Genetic diversity of Grapevine virus A in Washington and California vineyards.

    PubMed

    Alabi, Olufemi J; Al Rwahnih, Maher; Mekuria, Tefera A; Naidu, Rayapati A

    2014-05-01

    Grapevine virus A (GVA; genus Vitivirus, family Betaflexiviridae) has been implicated with the Kober stem grooving disorder of the rugose wood disease complex. In this study, 26 isolates of GVA recovered from wine grape (Vitis vinifera) cultivars from California and Washington were analyzed for their genetic diversity. An analysis of a portion of the RNA-dependent RNA polymerase (RdRp) and complete coat protein (CP) sequences revealed intra- and inter-isolate sequence diversity. Our results indicated that both RdRp and CP are under strong negative selection based on the normalized values for the ratio of nonsynonymous substitutions per nonsynonymous site to synonymous substitutions per synonymous site. A global phylogenetic analysis of CP sequences revealed segregation of virus isolates into four major clades with no geographic clustering. In contrast, the RdRp-based phylogenetic tree indicated segregation of GVA isolates from California and Washington into six clades, independent of geographic origin or cultivar. Phylogenetic network coupled with recombination analyses showed putative recombination events in both RdRp and CP sequence data sets, with more of these events located in the CP sequence. The preponderance of divergent variants of GVA co-replicating within individual grapevines could increase viral genotypic complexity with implications for phylogenetic analysis and evolutionary history of the virus. The knowledge of genetic diversity of GVA generated in this study will provide a foundation for elucidating the epidemiological characteristics of virus populations at different scales and implementing appropriate management strategies for minimizing the spread of genetic variants of the virus by vectors and via planting materials supplied to nurseries and grape growers.

  16. Direct mapping of symbolic DNA sequence into frequency domain in global repeat map algorithm

    PubMed Central

    Glunčić, Matko; Paar, Vladimir

    2013-01-01

    The main feature of global repeat map (GRM) algorithm (www.hazu.hr/grm/software/win/grm2012.exe) is its ability to identify a broad variety of repeats of unbounded length that can be arbitrarily distant in sequences as large as human chromosomes. The efficacy is due to the use of complete set of a K-string ensemble which enables a new method of direct mapping of symbolic DNA sequence into frequency domain, with straightforward identification of repeats as peaks in GRM diagram. In this way, we obtain very fast, efficient and highly automatized repeat finding tool. The method is robust to substitutions and insertions/deletions, as well as to various complexities of the sequence pattern. We present several case studies of GRM use, in order to illustrate its capabilities: identification of α-satellite tandem repeats and higher order repeats (HORs), identification of Alu dispersed repeats and of Alu tandems, identification of Period 3 pattern in exons, implementation of ‘magnifying glass’ effect, identification of complex HOR pattern, identification of inter-tandem transitional dispersed repeat sequences and identification of long segmental duplications. GRM algorithm is convenient for use, in particular, in cases of large repeat units, of highly mutated and/or complex repeats, and of global repeat maps for large genomic sequences (chromosomes and genomes). PMID:22977183

  17. A Global Comparison of the Human and T. brucei Degradomes Gives Insights about Possible Parasite Drug Targets

    PubMed Central

    Mashiyama, Susan T.; Koupparis, Kyriacos; Caffrey, Conor R.; McKerrow, James H.; Babbitt, Patricia C.

    2012-01-01

    We performed a genome-level computational study of sequence and structure similarity, the latter using crystal structures and models, of the proteases of Homo sapiens and the human parasite Trypanosoma brucei. Using sequence and structure similarity networks to summarize the results, we constructed global views that show visually the relative abundance and variety of proteases in the degradome landscapes of these two species, and provide insights into evolutionary relationships between proteases. The results also indicate how broadly these sequence sets are covered by three-dimensional structures. These views facilitate cross-species comparisons and offer clues for drug design from knowledge about the sequences and structures of potential drug targets and their homologs. Two protease groups (“M32” and “C51”) that are very different in sequence from human proteases are examined in structural detail, illustrating the application of this global approach in mining new pathogen genomes for potential drug targets. Based on our analyses, a human ACE2 inhibitor was selected for experimental testing on one of these parasite proteases, TbM32, and was shown to inhibit it. These sequence and structure data, along with interactive versions of the protein similarity networks generated in this study, are available at http://babbittlab.ucsf.edu/resources.html. PMID:23236535

  18. Identification of Methanogenic archaea in the Hyporheic Sediment of Sitka Stream

    PubMed Central

    Buriánková, Iva; Brablcová, Lenka; Mach, Václav; Dvořák, Petr; Chaudhary, Prem Prashant; Rulík, Martin

    2013-01-01

    Methanogenic archaea produce methane as a metabolic product under anoxic conditions and they play a crucial role in the global methane cycle. In this study molecular diversity of methanogenic archaea in the hyporheic sediment of the lowland stream Sitka (Olomouc, Czech Republic) was analyzed by PCR amplification, cloning and sequencing analysis of the methyl coenzyme M reductase alpha subunit (mcrA) gene. Sequencing analysis of 60 clones revealed 24 different mcrA phylotypes from hyporheic sedimentary layers to a depth of 50 cm. Phylotypes were affiliated with Methanomicrobiales, Methanosarcinales and Methanobacteriales orders. Only one phylotype remains unclassified. The majority of the phylotypes showed higher affiliation with uncultured methanogens than with known methanogenic species. The presence of relatively rich assemblage of methanogenic archaea confirmed that methanogens may be an important component of hyporheic microbial communities and may affect CH4 cycling in rivers. PMID:24278322

  19. Genome Analysis of Streptococcus pyogenes Associated with Pharyngitis and Skin Infections

    PubMed Central

    Ibrahim, Joe; Eisen, Jonathan A.; Jospin, Guillaume; Coil, David A.; Khazen, Georges

    2016-01-01

    Streptococcus pyogenes is a very important human pathogen, commonly associated with skin or throat infections but can also cause life-threatening situations including sepsis, streptococcal toxic shock syndrome, and necrotizing fasciitis. Various studies involving typing and molecular characterization of S. pyogenes have been published to date; however next-generation sequencing (NGS) studies provide a comprehensive collection of an organism’s genetic variation. In this study, the genomes of nine S. pyogenes isolates associated with pharyngitis and skin infection were sequenced and studied for the presence of virulence genes, resistance elements, prophages, genomic recombination, and other genomic features. Additionally, a comparative phylogenetic analysis of the isolates with global clones highlighted their possible evolutionary lineage and their site of infection. The genomes were found to also house a multitude of features including gene regulation systems, virulence factors and antimicrobial resistance mechanisms. PMID:27977735

  20. Transcriptome analysis and related databases of Lactococcus lactis.

    PubMed

    Kuipers, Oscar P; de Jong, Anne; Baerends, Richard J S; van Hijum, Sacha A F T; Zomer, Aldert L; Karsens, Harma A; den Hengst, Chris D; Kramer, Naomi E; Buist, Girbe; Kok, Jan

    2002-08-01

    Several complete genome sequences of Lactococcus lactis and their annotations will become available in the near future, next to the already published genome sequence of L. lactis ssp. lactis IL 1403. This will allow intraspecies comparative genomics studies as well as functional genomics studies aimed at a better understanding of physiological processes and regulatory networks operating in lactococci. This paper describes the initial set-up of a DNA-microarray facility in our group, to enable transcriptome analysis of various Gram-positive bacteria, including a ssp. lactis and a ssp. cremoris strain of Lactococcus lactis. Moreover a global description will be given of the hardware and software requirements for such a set-up, highlighting the crucial integration of relevant bioinformatics tools and methods. This includes the development of MolGenIS, an information system for transcriptome data storage and retrieval, and LactococCye, a metabolic pathway/genome database of Lactococcus lactis.

  1. Soup to Tree: The Phylogeny of Beetles Inferred by Mitochondrial Metagenomics of a Bornean Rainforest Sample.

    PubMed

    Crampton-Platt, Alex; Timmermans, Martijn J T N; Gimmel, Matthew L; Kutty, Sujatha Narayanan; Cockerill, Timothy D; Vun Khen, Chey; Vogler, Alfried P

    2015-09-01

    In spite of the growth of molecular ecology, systematics and next-generation sequencing, the discovery and analysis of diversity is not currently integrated with building the tree-of-life. Tropical arthropod ecologists are well placed to accelerate this process if all specimens obtained through mass-trapping, many of which will be new species, could be incorporated routinely into phylogeny reconstruction. Here we test a shotgun sequencing approach, whereby mitochondrial genomes are assembled from complex ecological mixtures through mitochondrial metagenomics, and demonstrate how the approach overcomes many of the taxonomic impediments to the study of biodiversity. DNA from approximately 500 beetle specimens, originating from a single rainforest canopy fogging sample from Borneo, was pooled and shotgun sequenced, followed by de novo assembly of complete and partial mitogenomes for 175 species. The phylogenetic tree obtained from this local sample was highly similar to that from existing mitogenomes selected for global coverage of major lineages of Coleoptera. When all sequences were combined only minor topological changes were induced against this reference set, indicating an increasingly stable estimate of coleopteran phylogeny, while the ecological sample expanded the tip-level representation of several lineages. Robust trees generated from ecological samples now enable an evolutionary framework for ecology. Meanwhile, the inclusion of uncharacterized samples in the tree-of-life rapidly expands taxon and biogeographic representation of lineages without morphological identification. Mitogenomes from shotgun sequencing of unsorted environmental samples and their associated metadata, placed robustly into the phylogenetic tree, constitute novel DNA "superbarcodes" for testing hypotheses regarding global patterns of diversity. © The Author 2015. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  2. Genotyping of enteroviruses isolated in Kenya from pediatric patients using partial VP1 region.

    PubMed

    Opanda, Silvanos M; Wamunyokoli, Fred; Khamadi, Samoel; Coldren, Rodney; Bulimo, Wallace D

    2016-01-01

    Enteroviruses (EV) are responsible for a wide range of clinical diseases in humans. Though studied broadly in several regions of the world, the genetic diversity of human enteroviruses (HEV) circulating in the sub-Saharan Africa remains under-documented. In the current study, we molecularly typed 61 HEV strains isolated in Kenya between 2008 and 2011 targeting the 3'-end of the VP1 gene. Viral RNA was extracted from the archived isolates and part of the VP1 gene amplified by RT-PCR, followed by sequence analysis. Twenty-two different EV types were detected. Majority (72.0 %) of these belonged to Enterovirus B species followed by Enterovirus D (21.3 %) and Enterovirus A (6.5 %). The most frequently detected types were Enterovirus-D68 (EV-D68), followed by Coxsackievirus B2 (CV-B2), CV-B1, CV-B4 and CV-B3. Phylogenetic analyses of these viruses revealed that Kenyan CV-B1 isolates were segregated among sequences of global CV-B1 strains. Conversely, the Kenyan CV-B2, CV-B3, CV-B4 and EV-D68 strains generally grouped together with those detected from other countries. Notably, the Kenyan EV-D68 strains largely clustered with sequences of global strains obtained between 2008 and 2010 than those circulating in recent years. Overall, our results indicate that HEV strains belonging to Enterovirus D and Enterovirus B species pre-dominantly circulated and played a significant role in pediatric respiratory infection in Kenya, during the study period. The Kenyan CV-B1 strains were genetically divergent from those circulating in other countries. Phylogenetic clustering of Kenyan EV-D68 strains with sequences of global strains circulating between 2008 and 2010 than those obtained in recent years suggests a high genomic variability associated with the surface protein encoding VP1 gene in these enteroviruses.

  3. Comparative genomics of Vibrio cholerae from Haiti, Asia, and Africa.

    PubMed

    Reimer, Aleisha R; Van Domselaar, Gary; Stroika, Steven; Walker, Matthew; Kent, Heather; Tarr, Cheryl; Talkington, Deborah; Rowe, Lori; Olsen-Rasmussen, Melissa; Frace, Michael; Sammons, Scott; Dahourou, Georges Anicet; Boncy, Jacques; Smith, Anthony M; Mabon, Philip; Petkau, Aaron; Graham, Morag; Gilmour, Matthew W; Gerner-Smidt, Peter

    2011-11-01

    Cholera was absent from the island of Hispaniola at least a century before an outbreak that began in Haiti in the fall of 2010. Pulsed-field gel electrophoresis (PFGE) analysis of clinical isolates from the Haiti outbreak and recent global travelers returning to the United States showed indistinguishable PFGE fingerprints. To better explore the genetic ancestry of the Haiti outbreak strain, we acquired 23 whole-genome Vibrio cholerae sequences: 9 isolates obtained in Haiti or the Dominican Republic, 12 PFGE pattern-matched isolates linked to Asia or Africa, and 2 nonmatched outliers from the Western Hemisphere. Phylogenies for whole-genome sequences and core genome single-nucleotide polymorphisms showed that the Haiti outbreak strain is genetically related to strains originating in India and Cameroon. However, because no identical genetic match was found among sequenced contemporary isolates, a definitive genetic origin for the outbreak in Haiti remains speculative.

  4. DNA enrichment approaches to identify unauthorized genetically modified organisms (GMOs).

    PubMed

    Arulandhu, Alfred J; van Dijk, Jeroen P; Dobnik, David; Holst-Jensen, Arne; Shi, Jianxin; Zel, Jana; Kok, Esther J

    2016-07-01

    With the increased global production of different genetically modified (GM) plant varieties, chances increase that unauthorized GM organisms (UGMOs) may enter the food chain. At the same time, the detection of UGMOs is a challenging task because of the limited sequence information that will generally be available. PCR-based methods are available to detect and quantify known UGMOs in specific cases. If this approach is not feasible, DNA enrichment of the unknown adjacent sequences of known GMO elements is one way to detect the presence of UGMOs in a food or feed product. These enrichment approaches are also known as chromosome walking or gene walking (GW). In recent years, enrichment approaches have been coupled with next generation sequencing (NGS) analysis and implemented in, amongst others, the medical and microbiological fields. The present review will provide an overview of these approaches and an evaluation of their applicability in the identification of UGMOs in complex food or feed samples.

  5. Genomic analysis of expressed sequence tags in American black bear Ursus americanus

    PubMed Central

    2010-01-01

    Background Species of the bear family (Ursidae) are important organisms for research in molecular evolution, comparative physiology and conservation biology, but relatively little genetic sequence information is available for this group. Here we report the development and analyses of the first large scale Expressed Sequence Tag (EST) resource for the American black bear (Ursus americanus). Results Comprehensive analyses of molecular functions, alternative splicing, and tissue-specific expression of 38,757 black bear EST sequences were conducted using the dog genome as a reference. We identified 18 genes, involved in functions such as lipid catabolism, cell cycle, and vesicle-mediated transport, that are showing rapid evolution in the bear lineage Three genes, Phospholamban (PLN), cysteine glycine-rich protein 3 (CSRP3) and Troponin I type 3 (TNNI3), are related to heart contraction, and defects in these genes in humans lead to heart disease. Two genes, biphenyl hydrolase-like (BPHL) and CSRP3, contain positively selected sites in bear. Global analysis of evolution rates of hibernation-related genes in bear showed that they are largely conserved and slowly evolving genes, rather than novel and fast-evolving genes. Conclusion We provide a genomic resource for an important mammalian organism and our study sheds new light on the possible functions and evolution of bear genes. PMID:20338065

  6. Genomic analysis of expressed sequence tags in American black bear Ursus americanus.

    PubMed

    Zhao, Sen; Shao, Chunxuan; Goropashnaya, Anna V; Stewart, Nathan C; Xu, Yichi; Tøien, Øivind; Barnes, Brian M; Fedorov, Vadim B; Yan, Jun

    2010-03-26

    Species of the bear family (Ursidae) are important organisms for research in molecular evolution, comparative physiology and conservation biology, but relatively little genetic sequence information is available for this group. Here we report the development and analyses of the first large scale Expressed Sequence Tag (EST) resource for the American black bear (Ursus americanus). Comprehensive analyses of molecular functions, alternative splicing, and tissue-specific expression of 38,757 black bear EST sequences were conducted using the dog genome as a reference. We identified 18 genes, involved in functions such as lipid catabolism, cell cycle, and vesicle-mediated transport, that are showing rapid evolution in the bear lineage Three genes, Phospholamban (PLN), cysteine glycine-rich protein 3 (CSRP3) and Troponin I type 3 (TNNI3), are related to heart contraction, and defects in these genes in humans lead to heart disease. Two genes, biphenyl hydrolase-like (BPHL) and CSRP3, contain positively selected sites in bear. Global analysis of evolution rates of hibernation-related genes in bear showed that they are largely conserved and slowly evolving genes, rather than novel and fast-evolving genes. We provide a genomic resource for an important mammalian organism and our study sheds new light on the possible functions and evolution of bear genes.

  7. CEQer: A Graphical Tool for Copy Number and Allelic Imbalance Detection from Whole-Exome Sequencing Data

    PubMed Central

    Piazza, Rocco; Magistroni, Vera; Pirola, Alessandra; Redaelli, Sara; Spinelli, Roberta; Redaelli, Serena; Galbiati, Marta; Valletta, Simona; Giudici, Giovanni; Cazzaniga, Giovanni; Gambacorti-Passerini, Carlo

    2013-01-01

    Copy number alterations (CNA) are common events occurring in leukaemias and solid tumors. Comparative Genome Hybridization (CGH) is actually the gold standard technique to analyze CNAs; however, CGH analysis requires dedicated instruments and is able to perform only low resolution Loss of Heterozygosity (LOH) analyses. Here we present CEQer (Comparative Exome Quantification analyzer), a new graphical, event-driven tool for CNA/allelic-imbalance (AI) coupled analysis of exome sequencing data. By using case-control matched exome data, CEQer performs a comparative digital exonic quantification to generate CNA data and couples this information with exome-wide LOH and allelic imbalance detection. This data is used to build mixed statistical/heuristic models allowing the identification of CNA/AI events. To test our tool, we initially used in silico generated data, then we performed whole-exome sequencing from 20 leukemic specimens and corresponding matched controls and we analyzed the results using CEQer. Taken globally, these analyses showed that the combined use of comparative digital exon quantification and LOH/AI allows generating very accurate CNA data. Therefore, we propose CEQer as an efficient, robust and user-friendly graphical tool for the identification of CNA/AI in the context of whole-exome sequencing data. PMID:24124457

  8. South Asia as a Reservoir for the Global Spread of Ciprofloxacin-Resistant Shigella sonnei: A Cross-Sectional Study.

    PubMed

    Chung The, Hao; Rabaa, Maia A; Pham Thanh, Duy; De Lappe, Niall; Cormican, Martin; Valcanis, Mary; Howden, Benjamin P; Wangchuk, Sonam; Bodhidatta, Ladaporn; Mason, Carl J; Nguyen Thi Nguyen, To; Vu Thuy, Duong; Thompson, Corinne N; Phu Huong Lan, Nguyen; Voong Vinh, Phat; Ha Thanh, Tuyen; Turner, Paul; Sar, Poda; Thwaites, Guy; Thomson, Nicholas R; Holt, Kathryn E; Baker, Stephen

    2016-08-01

    Antimicrobial resistance is a major issue in the Shigellae, particularly as a specific multidrug-resistant (MDR) lineage of Shigella sonnei (lineage III) is becoming globally dominant. Ciprofloxacin is a recommended treatment for Shigella infections. However, ciprofloxacin-resistant S. sonnei are being increasingly isolated in Asia and sporadically reported on other continents. We hypothesized that Asia is a primary hub for the recent international spread of ciprofloxacin-resistant S. sonnei. We performed whole-genome sequencing on a collection of 60 contemporaneous ciprofloxacin-resistant S. sonnei isolated in four countries within Asia (Vietnam, n = 11; Bhutan, n = 12; Thailand, n = 1; Cambodia, n = 1) and two outside of Asia (Australia, n = 19; Ireland, n = 16). We reconstructed the recent evolutionary history of these organisms and combined these data with their geographical location of isolation. Placing these sequences into a global phylogeny, we found that all ciprofloxacin-resistant S. sonnei formed a single clade within a Central Asian expansion of lineage III. Furthermore, our data show that resistance to ciprofloxacin within S. sonnei may be globally attributed to a single clonal emergence event, encompassing sequential gyrA-S83L, parC-S80I, and gyrA-D87G mutations. Geographical data predict that South Asia is the likely primary source of these organisms, which are being regularly exported across Asia and intercontinentally into Australia, the United States and Europe. Our analysis was limited by the number of S. sonnei sequences available from diverse geographical areas and time periods, and we cannot discount the potential existence of other unsampled reservoir populations of antimicrobial-resistant S. sonnei. This study suggests that a single clone, which is widespread in South Asia, is likely driving the current intercontinental surge of ciprofloxacin-resistant S. sonnei and is capable of establishing endemic transmission in new locations. Despite being limited in geographical scope, our work has major implications for understanding the international transfer of antimicrobial-resistant pathogens, with S. sonnei acting as a tractable model for studying how antimicrobial-resistant Gram-negative bacteria spread globally.

  9. South Asia as a Reservoir for the Global Spread of Ciprofloxacin-Resistant Shigella sonnei: A Cross-Sectional Study

    PubMed Central

    Pham Thanh, Duy; De Lappe, Niall; Cormican, Martin; Howden, Benjamin P.; Wangchuk, Sonam; Bodhidatta, Ladaporn; Nguyen Thi Nguyen, To; Thompson, Corinne N.; Phu Huong Lan, Nguyen; Voong Vinh, Phat; Ha Thanh, Tuyen; Turner, Paul; Sar, Poda; Thwaites, Guy; Thomson, Nicholas R.; Holt, Kathryn E.; Baker, Stephen

    2016-01-01

    Background Antimicrobial resistance is a major issue in the Shigellae, particularly as a specific multidrug-resistant (MDR) lineage of Shigella sonnei (lineage III) is becoming globally dominant. Ciprofloxacin is a recommended treatment for Shigella infections. However, ciprofloxacin-resistant S. sonnei are being increasingly isolated in Asia and sporadically reported on other continents. We hypothesized that Asia is a primary hub for the recent international spread of ciprofloxacin-resistant S. sonnei. Methods and Findings We performed whole-genome sequencing on a collection of 60 contemporaneous ciprofloxacin-resistant S. sonnei isolated in four countries within Asia (Vietnam, n = 11; Bhutan, n = 12; Thailand, n = 1; Cambodia, n = 1) and two outside of Asia (Australia, n = 19; Ireland, n = 16). We reconstructed the recent evolutionary history of these organisms and combined these data with their geographical location of isolation. Placing these sequences into a global phylogeny, we found that all ciprofloxacin-resistant S. sonnei formed a single clade within a Central Asian expansion of lineage III. Furthermore, our data show that resistance to ciprofloxacin within S. sonnei may be globally attributed to a single clonal emergence event, encompassing sequential gyrA-S83L, parC-S80I, and gyrA-D87G mutations. Geographical data predict that South Asia is the likely primary source of these organisms, which are being regularly exported across Asia and intercontinentally into Australia, the United States and Europe. Our analysis was limited by the number of S. sonnei sequences available from diverse geographical areas and time periods, and we cannot discount the potential existence of other unsampled reservoir populations of antimicrobial-resistant S. sonnei. Conclusions This study suggests that a single clone, which is widespread in South Asia, is likely driving the current intercontinental surge of ciprofloxacin-resistant S. sonnei and is capable of establishing endemic transmission in new locations. Despite being limited in geographical scope, our work has major implications for understanding the international transfer of antimicrobial-resistant pathogens, with S. sonnei acting as a tractable model for studying how antimicrobial-resistant Gram-negative bacteria spread globally. PMID:27483136

  10. Single-Genome Sequencing of Hepatitis C Virus in Donor-Recipient Pairs Distinguishes Modes and Models of Virus Transmission and Early Diversification.

    PubMed

    Li, Hui; Stoddard, Mark B; Wang, Shuyi; Giorgi, Elena E; Blair, Lily M; Learn, Gerald H; Hahn, Beatrice H; Alter, Harvey J; Busch, Michael P; Fierer, Daniel S; Ribeiro, Ruy M; Perelson, Alan S; Bhattacharya, Tanmoy; Shaw, George M

    2016-01-01

    Despite the recent development of highly effective anti-hepatitis C virus (HCV) drugs, the global burden of this pathogen remains immense. Control or eradication of HCV will likely require the broad application of antiviral drugs and development of an effective vaccine. A precise molecular identification of transmitted/founder (T/F) HCV genomes that lead to productive clinical infection could play a critical role in vaccine research, as it has for HIV-1. However, the replication schema of these two RNA viruses differ substantially, as do viral responses to innate and adaptive host defenses. These differences raise questions as to the certainty of T/F HCV genome inferences, particularly in cases where multiple closely related sequence lineages have been observed. To clarify these issues and distinguish between competing models of early HCV diversification, we examined seven cases of acute HCV infection in humans and chimpanzees, including three examples of virus transmission between linked donors and recipients. Using single-genome sequencing (SGS) of plasma vRNA, we found that inferred T/F sequences in recipients were identical to viral sequences in their respective donors. Early in infection, HCV genomes generally evolved according to a simple model of random evolution where the coalescent corresponded to the T/F sequence. Closely related sequence lineages could be explained by high multiplicity infection from a donor whose viral sequences had undergone a pretransmission bottleneck due to treatment, immune selection, or recent infection. These findings validate SGS, together with mathematical modeling and phylogenetic analysis, as a novel strategy to infer T/F HCV genome sequences. Despite the recent development of highly effective, interferon-sparing anti-hepatitis C virus (HCV) drugs, the global burden of this pathogen remains immense. Control or eradication of HCV will likely require the broad application of antiviral drugs and the development of an effective vaccine, which could be facilitated by a precise molecular identification of transmitted/founder (T/F) viral genomes and their progeny. We used single-genome sequencing to show that inferred HCV T/F sequences in recipients were identical to viral sequences in their respective donors and that viral genomes generally evolved early in infection according to a simple model of random sequence evolution. Altogether, the findings validate T/F genome inferences and illustrate how T/F sequence identification can illuminate studies of HCV transmission, immunopathogenesis, drug resistance development, and vaccine protection, including sieving effects on breakthrough virus strains. Copyright © 2015 Li et al.

  11. Photovoltaic System Modeling. Uncertainty and Sensitivity Analyses

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Clifford W.; Martin, Curtis E.

    2015-08-01

    We report an uncertainty and sensitivity analysis for modeling AC energy from ph otovoltaic systems . Output from a PV system is predicted by a sequence of models. We quantify u ncertainty i n the output of each model using empirical distribution s of each model's residuals. We propagate uncertainty through the sequence of models by sampli ng these distributions to obtain a n empirical distribution of a PV system's output. We consider models that: (1) translate measured global horizontal, direct and global diffuse irradiance to plane - of - array irradiance; (2) estimate effective irradiance; (3) predict cell temperature;more » (4) estimate DC voltage, current and power ; (5) reduce DC power for losses due to inefficient maximum power point tracking or mismatch among modules; and (6) convert DC to AC power . O ur analysis consider s a notional PV system com prising an array of FirstSolar FS - 387 modules and a 250 kW AC inverter ; we use measured irradiance and weather at Albuquerque, NM. We found the uncertainty in PV syste m output to be relatively small, on the order of 1% for daily energy. We found that unce rtainty in the models for POA irradiance and effective irradiance to be the dominant contributors to uncertainty in predicted daily energy. Our analysis indicates that efforts to reduce the uncertainty in PV system output predictions may yield the greatest improvements by focusing on the POA and effective irradiance models.« less

  12. Analysis of the global transcriptome of longan (Dimocarpus longan Lour.) embryogenic callus using Illumina paired-end sequencing

    PubMed Central

    2013-01-01

    Background Longan is a tropical/subtropical fruit tree of great economic importance in Southeast Asia. Progress in understanding molecular mechanisms of longan embryogenesis, which is the primary influence on fruit quality and yield, is slowed by lack of transcriptomic and genomic information. Illumina second generation sequencing, which is suitable for generating enormous numbers of transcript sequences that can be used for functional genomic analysis of longan. Results In this study, a longan embryogenic callus (EC) cDNA library was sequenced using an Illumina HiSeq 2000 system. A total of 64,876,258 clean reads comprising 5.84 Gb of nucleotides were assembled into 68,925 unigenes of 448-bp mean length, with unigenes ≥1000 bp accounting for 8.26% of the total. Using BLASTx, 40,634 unigenes were found to have significant similarity with accessions in Nr and Swiss- Prot databases. Of these, 38,845 unigenes were assigned to 43 GO sub-categories and 17,118 unigenes were classified into 25 COG sub-groups. In addition, 17,306 unigenes mapped to 199 KEGG pathways, with the categories of Metabolic pathways, Plant-pathogen interaction, Biosynthesis of secondary metabolites, and Genetic information processing being well represented. Analyses of unigenes ≥1000 bp revealed 328 embryogenesis-related unigenes as well as numerous unigenes expressed in EC associated with functions of reproductive growth, such as flowering, gametophytogenesis, and fertility, and vegetative growth, such as root and shoot growth. Furthermore, 23 unigenes related to embryogenesis and reproductive and vegetative growth were validated by quantitative real time PCR (qPCR) in samples from different stages of longan somatic embryogenesis (SE); their differentially expressions in the various embryogenic cultures indicated their possible roles in longan SE. Conclusions The quantity and variety of expressed EC genes identified in this study is sufficient to serve as a global transcriptome dataset for longan EC and to provide more molecular resources for longan functional genomics. PMID:23957614

  13. The genome sequence and effector complement of the flax rust pathogen Melampsora lini.

    PubMed

    Nemri, Adnane; Saunders, Diane G O; Anderson, Claire; Upadhyaya, Narayana M; Win, Joe; Lawrence, Gregory J; Jones, David A; Kamoun, Sophien; Ellis, Jeffrey G; Dodds, Peter N

    2014-01-01

    Rust fungi cause serious yield reductions on crops, including wheat, barley, soybean, coffee, and represent real threats to global food security. Of these fungi, the flax rust pathogen Melampsora lini has been developed most extensively over the past 80 years as a model to understand the molecular mechanisms that underpin pathogenesis. During infection, M. lini secretes virulence effectors to promote disease. The number of these effectors, their function and their degree of conservation across rust fungal species is unknown. To assess this, we sequenced and assembled de novo the genome of M. lini isolate CH5 into 21,130 scaffolds spanning 189 Mbp (scaffold N50 of 31 kbp). Global analysis of the DNA sequence revealed that repetitive elements, primarily retrotransposons, make up at least 45% of the genome. Using ab initio predictions, transcriptome data and homology searches, we identified 16,271 putative protein-coding genes. An analysis pipeline was then implemented to predict the effector complement of M. lini and compare it to that of the poplar rust, wheat stem rust and wheat stripe rust pathogens to identify conserved and species-specific effector candidates. Previous knowledge of four cloned M. lini avirulence effector proteins and two basidiomycete effectors was used to optimize parameters of the effector prediction pipeline. Markov clustering based on sequence similarity was performed to group effector candidates from all four rust pathogens. Clusters containing at least one member from M. lini were further analyzed and prioritized based on features including expression in isolated haustoria and infected leaf tissue and conservation across rust species. Herein, we describe 200 of 940 clusters that ranked highest on our priority list, representing 725 flax rust candidate effectors. Our findings on this important model rust species provide insight into how effectors of rust fungi are conserved across species and how they may act to promote infection on their hosts.

  14. Whole genome characterization of human influenza A(H1N1)pdm09 viruses isolated from Kenya during the 2009 pandemic.

    PubMed

    Gachara, George; Symekher, Samuel; Otieno, Michael; Magana, Japheth; Opot, Benjamin; Bulimo, Wallace

    2016-06-01

    An influenza pandemic caused by a novel influenza virus A(H1N1)pdm09 spread worldwide in 2009 and is estimated to have caused between 151,700 and 575,400 deaths globally. While whole genome data on new virus enables a deeper insight in the pathogenesis, epidemiology, and drug sensitivities of the circulating viruses, there are relatively limited complete genetic sequences available for this virus from African countries. We describe herein the full genome analysis of influenza A(H1N1)pdm09 viruses isolated in Kenya between June 2009 and August 2010. A total of 40 influenza A(H1N1)pdm09 viruses isolated during the pandemic were selected. The segments from each isolate were amplified and directly sequenced. The resulting sequences of individual gene segments were concatenated and used for subsequent analysis. These were used to infer phylogenetic relationships and also to reconstruct the time of most recent ancestor, time of introduction into the country, rates of substitution and to estimate a time-resolved phylogeny. The Kenyan complete genome sequences clustered with globally distributed clade 2 and clade 7 sequences but local clade 2 viruses did not circulate beyond the introductory foci while clade 7 viruses disseminated country wide. The time of the most recent common ancestor was estimated between April and June 2009, and distinct clusters circulated during the pandemic. The complete genome had an estimated rate of nucleotide substitution of 4.9×10(-3) substitutions/site/year and greater diversity in surface expressed proteins was observed. We show that two clades of influenza A(H1N1)pdm09 virus were introduced into Kenya from the UK and the pandemic was sustained as a result of importations. Several closely related but distinct clusters co-circulated locally during the peak pandemic phase but only one cluster dominated in the late phase of the pandemic suggesting that it possessed greater adaptability. Copyright © 2016 Elsevier B.V. All rights reserved.

  15. Molecular characterization of domestic and exotic potato virus S isolates and a global analysis of genomic sequences.

    PubMed

    Lin, Y-H; Abad, J A; Maroon-Lango, C J; Perry, K L; Pappu, H R

    2014-08-01

    Five potato virus S (PVS) isolates from the USA and three isolates from Chile were characterized based on biological and molecular properties to delineate these PVS isolates into either ordinary (PVS(O)) or Andean (PVS(A)) strains. Five isolates - 41956, Cosimar, Galaxy, ND2492-2R, and Q1 - were considered ordinary strains, as they induced local lesions on the inoculated leaves of Chenopodium quinoa, whereas the remaining three (FL206-1D, Q3, and Q5) failed to induce symptoms. Considerable variability of symptom expression and severity was observed among these isolates when tested on additional indicator plants and potato cv. Defender. Additionally, all eight isolates were characterized by determining the nucleotide sequences of their coat protein (CP) genes. Based on their biological and genetic properties, the 41956, Cosimar, Galaxy, ND2492-2R, and Q1 isolates were identified as PVS(O). PVS-FL206-1D and the two Chilean isolates (PVS-Q3 and PVS-Q5) could not be identified based on phenotype alone; however, based on sequence comparisons, PVS-FL206-1D was identified as PVS(O), while Q3 and Q5 clustered with known PVS(A) strains. C. quinoa may not be a reliable indicator for distinguishing PVS strains. Sequences of the CP gene should be used as an additional criterion for delineating PVS strains. A global genetic analysis of known PVS sequences from GenBank was carried out to investigate nucleotide substitution, population selection, and genetic recombination and to assess the genetic diversity and evolution of PVS. A higher degree of nucleotide diversity (π value) of the CP gene compared to that of the 11K gene suggested greater variation in the CP gene. When comparing PVS(A) and PVS(O) strains, a higher π value was found for PVS(A). Statistical tests of the neutrality hypothesis indicated a negative selection pressure on both the CP and 11K proteins of PVS(O), whereas a balancing selection pressure was found on PVS(A).

  16. Sequencing our way towards understanding global eukaryotic biodiversity

    PubMed Central

    Bik, Holly M.; Porazinska, Dorota L.; Creer, Simon; Caporaso, J. Gregory; Knight, Rob; Thomas, W. Kelley

    2011-01-01

    Microscopic eukaryotes are abundant, diverse, and fill critical ecological roles across every ecosystem on earth, yet there is a well-recognized gap in our understanding of their global biodiversity. Fundamental advances in DNA sequencing and bioinformatics now allow accurate en masse biodiversity assessments of microscopic eukaryotes from environmental samples. Despite a promising outlook, the field of eukaryotic marker gene surveys faces significant challenges: how to generate data that is most useful to the community, especially in the face of evolving sequencing technology and bioinformatics pipelines, and how to incorporate an expanding number of target genes. PMID:22244672

  17. A draft annotation and overview of the human genome

    PubMed Central

    Wright, Fred A; Lemon, William J; Zhao, Wei D; Sears, Russell; Zhuo, Degen; Wang, Jian-Ping; Yang, Hee-Yung; Baer, Troy; Stredney, Don; Spitzner, Joe; Stutz, Al; Krahe, Ralf; Yuan, Bo

    2001-01-01

    Background The recent draft assembly of the human genome provides a unified basis for describing genomic structure and function. The draft is sufficiently accurate to provide useful annotation, enabling direct observations of previously inferred biological phenomena. Results We report here a functionally annotated human gene index placed directly on the genome. The index is based on the integration of public transcript, protein, and mapping information, supplemented with computational prediction. We describe numerous global features of the genome and examine the relationship of various genetic maps with the assembly. In addition, initial sequence analysis reveals highly ordered chromosomal landscapes associated with paralogous gene clusters and distinct functional compartments. Finally, these annotation data were synthesized to produce observations of gene density and number that accord well with historical estimates. Such a global approach had previously been described only for chromosomes 21 and 22, which together account for 2.2% of the genome. Conclusions We estimate that the genome contains 65,000-75,000 transcriptional units, with exon sequences comprising 4%. The creation of a comprehensive gene index requires the synthesis of all available computational and experimental evidence. PMID:11516338

  18. Phylogenomics of nonavian reptiles and the structure of the ancestral amniote genome

    PubMed Central

    Shedlock, Andrew M.; Botka, Christopher W.; Zhao, Shaying; Shetty, Jyoti; Zhang, Tingting; Liu, Jun S.; Deschavanne, Patrick J.; Edwards, Scott V.

    2007-01-01

    We report results of a megabase-scale phylogenomic analysis of the Reptilia, the sister group of mammals. Large-scale end-sequence scanning of genomic clones of a turtle, alligator, and lizard reveals diverse, mammal-like landscapes of retroelements and simple sequence repeats (SSRs) not found in the chicken. Several global genomic traits, including distinctive phylogenetic lineages of CR1-like long interspersed elements (LINEs) and a paucity of A-T rich SSRs, characterize turtles and archosaur genomes, whereas higher frequencies of tandem repeats and a lower global GC content reveal mammal-like features in Anolis. Nonavian reptile genomes also possess a high frequency of diverse and novel 50-bp unit tandem duplications not found in chicken or mammals. The frequency distributions of ≈65,000 8-mer oligonucleotides suggest that rates of DNA-word frequency change are an order of magnitude slower in reptiles than in mammals. These results suggest a diverse array of interspersed and SSRs in the common ancestor of amniotes and a genomic conservatism and gradual loss of retroelements in reptiles that culminated in the minimalist chicken genome. PMID:17307883

  19. Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics

    NASA Astrophysics Data System (ADS)

    Wang, Bin; Shao, Yanchun; Chen, Tao; Chen, Wanping; Chen, Fusheng

    2015-12-01

    Acetobacter pasteurianus (Ap) CICC 20001 and CGMCC 1.41 are two acetic acid bacteria strains that, because of their strong abilities to produce and tolerate high concentrations of acetic acid, have been widely used to brew vinegar in China. To globally understand the fermentation characteristics, acid-tolerant mechanisms and genetic stabilities, their genomes were sequenced. Genomic comparisons with 9 other sequenced Ap strains revealed that their chromosomes were evolutionarily conserved, whereas the plasmids were unique compared with other Ap strains. Analysis of the acid-tolerant metabolic pathway at the genomic level indicated that the metabolism of some amino acids and the known mechanisms of acetic acid tolerance, might collaboratively contribute to acetic acid resistance in Ap strains. The balance of instability factors and stability factors in the genomes of Ap CICC 20001 and CGMCC 1.41 strains might be the basis for their genetic stability, consistent with their stable industrial performances. These observations provide important insights into the acid resistance mechanism and the genetic stability of Ap strains and lay a foundation for future genetic manipulation and engineering of these two strains.

  20. Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics.

    PubMed

    Wang, Bin; Shao, Yanchun; Chen, Tao; Chen, Wanping; Chen, Fusheng

    2015-12-22

    Acetobacter pasteurianus (Ap) CICC 20001 and CGMCC 1.41 are two acetic acid bacteria strains that, because of their strong abilities to produce and tolerate high concentrations of acetic acid, have been widely used to brew vinegar in China. To globally understand the fermentation characteristics, acid-tolerant mechanisms and genetic stabilities, their genomes were sequenced. Genomic comparisons with 9 other sequenced Ap strains revealed that their chromosomes were evolutionarily conserved, whereas the plasmids were unique compared with other Ap strains. Analysis of the acid-tolerant metabolic pathway at the genomic level indicated that the metabolism of some amino acids and the known mechanisms of acetic acid tolerance, might collaboratively contribute to acetic acid resistance in Ap strains. The balance of instability factors and stability factors in the genomes of Ap CICC 20001 and CGMCC 1.41 strains might be the basis for their genetic stability, consistent with their stable industrial performances. These observations provide important insights into the acid resistance mechanism and the genetic stability of Ap strains and lay a foundation for future genetic manipulation and engineering of these two strains.

  1. Streptococcal toxic shock syndrome caused by the dissemination of an invasive emm3/ST15 strain of Streptococcus pyogenes.

    PubMed

    Sekizuka, Tsuyoshi; Nai, Emina; Yoshida, Tomohiro; Endo, Shota; Hamajima, Emi; Akiyama, Satoka; Ikuta, Yoji; Obana, Natsuko; Kawaguchi, Takahiro; Hayashi, Kenta; Noda, Masahiro; Sumita, Tomoko; Kokaji, Masayuki; Katori, Tatsuo; Hashino, Masanori; Oba, Kunihiro; Kuroda, Makoto

    2017-12-18

    Streptococcus pyogenes (group A Streptococcus [GAS]) is a major human pathogen that causes a wide spectrum of clinical manifestations. Although invasive GAS (iGAS) infections are relatively uncommon, emm3/ST15 GAS is a highly virulent, invasive, and pathogenic strain. Global molecular epidemiology analysis has suggested that the frequency of emm3 GAS has been recently increasing. A 14-year-old patient was diagnosed with streptococcal toxic shock syndrome and severe pneumonia, impaired renal function, and rhabdomyolysis. GAS was isolated from a culture of endotracheal aspirates and designated as KS030. Comparative genome analysis suggested that KS030 is classified as emm3 (emm-type) and ST15 (multilocus sequencing typing [MLST]), which is similar to iGAS isolates identified in the UK (2013) and Switzerland (2015). We conclude that the global dissemination of emm3/ST15 GAS strain has the potential to cause invasive disease.

  2. An Analysis of the Sensitivity of Proteogenomic Mapping of Somatic Mutations and Novel Splicing Events in Cancer.

    PubMed

    Ruggles, Kelly V; Tang, Zuojian; Wang, Xuya; Grover, Himanshu; Askenazi, Manor; Teubl, Jennifer; Cao, Song; McLellan, Michael D; Clauser, Karl R; Tabb, David L; Mertins, Philipp; Slebos, Robbert; Erdmann-Gilmore, Petra; Li, Shunqiang; Gunawardena, Harsha P; Xie, Ling; Liu, Tao; Zhou, Jian-Ying; Sun, Shisheng; Hoadley, Katherine A; Perou, Charles M; Chen, Xian; Davies, Sherri R; Maher, Christopher A; Kinsinger, Christopher R; Rodland, Karen D; Zhang, Hui; Zhang, Zhen; Ding, Li; Townsend, R Reid; Rodriguez, Henry; Chan, Daniel; Smith, Richard D; Liebler, Daniel C; Carr, Steven A; Payne, Samuel; Ellis, Matthew J; Fenyő, David

    2016-03-01

    Improvements in mass spectrometry (MS)-based peptide sequencing provide a new opportunity to determine whether polymorphisms, mutations, and splice variants identified in cancer cells are translated. Herein, we apply a proteogenomic data integration tool (QUILTS) to illustrate protein variant discovery using whole genome, whole transcriptome, and global proteome datasets generated from a pair of luminal and basal-like breast-cancer-patient-derived xenografts (PDX). The sensitivity of proteogenomic analysis for singe nucleotide variant (SNV) expression and novel splice junction (NSJ) detection was probed using multiple MS/MS sample process replicates defined here as an independent tandem MS experiment using identical sample material. Despite analysis of over 30 sample process replicates, only about 10% of SNVs (somatic and germline) detected by both DNA and RNA sequencing were observed as peptides. An even smaller proportion of peptides corresponding to NSJ observed by RNA sequencing were detected (<0.1%). Peptides mapping to DNA-detected SNVs without a detectable mRNA transcript were also observed, suggesting that transcriptome coverage was incomplete (∼80%). In contrast to germline variants, somatic variants were less likely to be detected at the peptide level in the basal-like tumor than in the luminal tumor, raising the possibility of differential translation or protein degradation effects. In conclusion, this large-scale proteogenomic integration allowed us to determine the degree to which mutations are translated and identify gaps in sequence coverage, thereby benchmarking current technology and progress toward whole cancer proteome and transcriptome analysis. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  3. Towards a global cancer knowledge network: dissecting the current international cancer genomic sequencing landscape.

    PubMed

    Vis, D J; Lewin, J; Liao, R G; Mao, M; Andre, F; Ward, R L; Calvo, F; Teh, B T; Camargo, A A; Knoppers, B M; Sawyers, C L; Wessels, L F A; Lawler, M; Siu, L L; Voest, E

    2017-05-01

    While next generation sequencing has enhanced our understanding of the biological basis of malignancy, current knowledge on global practices for sequencing cancer samples is limited. To address this deficiency, we developed a survey to provide a snapshot of current sequencing activities globally, identify barriers to data sharing and use this information to develop sustainable solutions for the cancer research community. A multi-item survey was conducted assessing demographics, clinical data collection, genomic platforms, privacy/ethics concerns, funding sources and data sharing barriers for sequencing initiatives globally. Additionally, respondents were asked as to provide the primary intent of their initiative (clinical diagnostic, research or combination). Of 107 initiatives invited to participate, 59 responded (response rate = 55%). Whole exome sequencing (P = 0.03) and whole genome sequencing (P = 0.01) were utilized less frequently in clinical diagnostic than in research initiatives. Procedures to identify cancer-specific variants were heterogeneous, with bioinformatics pipelines employing different mutation calling/variant annotation algorithms. Measurement of treatment efficacy varied amongst initiatives, with time on treatment (57%) and RECIST (53%) being the most common; however, other parameters were also employed. Whilst 72% of initiatives indicated data sharing, its scope varied, with a number of restrictions in place (e.g. transfer of raw data). The largest perceived barriers to data harmonization were the lack of financial support (P < 0.01) and bioinformatics concerns (e.g. lack of interoperability) (P = 0.02). Capturing clinical data was more likely to be perceived as a barrier to data sharing by larger initiatives than by smaller initiatives (P = 0.01). These results identify the main barriers, as perceived by the cancer sequencing community, to effective sharing of cancer genomic and clinical data. They highlight the need for greater harmonization of technical, ethical and data capture processes in cancer sample sequencing worldwide, in order to support effective and responsible data sharing for the benefit of patients. © The Author 2017. Published by Oxford University Press on behalf of the European Society for Medical Oncology.

  4. Global Systems-Level Analysis of Hfq and SmpB Deletion Mutants in Salmonella: Implications for Virulence and Global Protein Translation

    PubMed Central

    Porwollik, Steffen; Mottaz-Brewer, Heather; Petritis, Brianne O.; Jaitly, Navdeep; Adkins, Joshua N.; McClelland, Michael; Heffron, Fred; Smith, Richard D.

    2009-01-01

    Using sample-matched transcriptomics and proteomics measurements it is now possible to begin to understand the impact of post-transcriptional regulatory programs in Enterobacteria. In bacteria post-transcriptional regulation is mediated by relatively few identified RNA-binding protein factors including CsrA, Hfq and SmpB. A mutation in any one of these three genes, csrA, hfq, and smpB, in Salmonella is attenuated for mouse virulence and unable to survive in macrophages. CsrA has a clearly defined specificity based on binding to a specific mRNA sequence to inhibit translation. However, the proteins regulated by Hfq and SmpB are not as clearly defined. Previous work identified proteins regulated by hfq using purification of the RNA-protein complex with direct sequencing of the bound RNAs and found binding to a surprisingly large number of transcripts. In this report we have used global proteomics to directly identify proteins regulated by Hfq or SmpB by comparing protein abundance in the parent and isogenic hfq or smpB mutant. From these same samples we also prepared RNA for microarray analysis to determine if alteration of protein expression was mediated post-transcriptionally. Samples were analyzed from bacteria grown under four different conditions; two laboratory conditions and two that are thought to mimic the intracellular environment. We show that mutants of hfq and smpB directly or indirectly modulate at least 20% and 4% of all possible Salmonella proteins, respectively, with limited correlation between transcription and protein expression. These proteins represent a broad spectrum of Salmonella proteins required for many biological processes including host cell invasion, motility, central metabolism, LPS biosynthesis, two-component regulatory systems, and fatty acid metabolism. Our results represent one of the first global analyses of post-transcriptional regulons in any organism and suggest that regulation at the translational level is widespread and plays an important role in virulence regulation and environmental adaptation for Salmonella. PMID:19277208

  5. Revealing impaired pathways in the an11 mutant by high-throughput characterization of Petunia axillaris and Petunia inflata transcriptomes.

    PubMed

    Zenoni, Sara; D'Agostino, Nunzio; Tornielli, Giovanni B; Quattrocchio, Francesca; Chiusano, Maria L; Koes, Ronald; Zethof, Jan; Guzzo, Flavia; Delledonne, Massimo; Frusciante, Luigi; Gerats, Tom; Pezzotti, Mario

    2011-10-01

    Petunia is an excellent model system, especially for genetic, physiological and molecular studies. Thus far, however, genome-wide expression analysis has been applied rarely because of the lack of sequence information. We applied next-generation sequencing to generate, through de novo read assembly, a large catalogue of transcripts for Petunia axillaris and Petunia inflata. On the basis of both transcriptomes, comprehensive microarray chips for gene expression analysis were established and used for the analysis of global- and organ-specific gene expression in Petunia axillaris and Petunia inflata and to explore the molecular basis of the seed coat defects in a Petunia hybrida mutant, anthocyanin 11 (an11), lacking a WD40-repeat (WDR) transcription regulator. Among the transcripts differentially expressed in an11 seeds compared with wild type, many expected targets of AN11 were found but also several interesting new candidates that might play a role in morphogenesis of the seed coat. Our results validate the combination of next-generation sequencing with microarray analyses strategies to identify the transcriptome of two petunia species without previous knowledge of their genome, and to develop comprehensive chips as useful tools for the analysis of gene expression in P. axillaris, P. inflata and P. hybrida. © 2011 The Authors. The Plant Journal © 2011 Blackwell Publishing Ltd.

  6. Homology-based Modeling of Rhodopsin-like Family Members in the Inactive State: Structural Analysis and Deduction of Tips for Modeling and Optimization.

    PubMed

    Pappalardo, Matteo; Rayan, Mahmoud; Abu-Lafi, Saleh; Leonardi, Martha E; Milardi, Danilo; Guccione, Salvatore; Rayan, Anwar

    2017-08-01

    Modeling G-Protein Coupled Receptors (GPCRs) is an emergent field of research, since utility of high-quality models in receptor structure-based strategies might facilitate the discovery of interesting drug candidates. The findings from a quantitative analysis of eighteen resolved structures of rhodopsin family "A" receptors crystallized with antagonists and 153 pairs of structures are described. A strategy termed endeca-amino acids fragmentation was used to analyze the structures models aiming to detect the relationship between sequence identity and Root Mean Square Deviation (RMSD) at each trans-membrane-domain. Moreover, we have applied the leave-one-out strategy to study the shiftiness likelihood of the helices. The type of correlation between sequence identity and RMSD was studied using the aforementioned set receptors as representatives of membrane proteins and 98 serine proteases with 4753 pairs of structures as representatives of globular proteins. Data analysis using fragmentation strategy revealed that there is some extent of correlation between sequence identity and global RMSD of 11AA width windows. However, spatial conservation is not always close to the endoplasmic side as was reported before. A comparative study with globular proteins shows that GPCRs have higher standard deviation and higher slope in the graph with correlation between sequence identity and RMSD. The extracted information disclosed in this paper could be incorporated in the modeling protocols while using technique for model optimization and refinement. © 2017 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Correlation of offshore seismic profiles with onshore New Jersey Miocene sediments

    USGS Publications Warehouse

    Monteverde, D.H.; Miller, K.G.; Mountain, Gregory S.

    2000-01-01

    The New Jersey passive continental margin records the interaction of sequences and sea-level, although previous studies linking seismically defined sequences, borehole control, and global ??18O records were hindered by a seismic data gap on the inner-shelf. We describe new seismic data from the innermost New Jersey shelf that tie offshore seismic stratigraphy directly to onshore boreholes. These data link the onshore boreholes to existing seismic grids across the outer margin and to boreholes on the continental slope. Surfaces defined by age; facies, and log signature in the onshore boreholes at the base of sequences Kw2b, Kw2a, Kw1c, and Kw0 are now tied to seismic sequence boundaries m5s, m5.2s, m5.4s, and m6s, respectively, defined beneath the inner shelf. Sequence boundaries recognized in onshore boreholes and inner shelf seismic profiles apparently correlate with reflections m5, m5.2, m5.4, and m6, respectively, that were dated at slope boreholes during ODP Leg 150. We now recognize an additional sequence boundary beneath the shelf that we name m5.5s and correlate to the base of the onshore sequence Kw1b. The new seismic data image prograding Oligocene clinoforms beneath the inner shelf, consistent with the results from onshore boreholes. A land-based seismic profile crossing the Island Beach borehole reveals reflector geometries that we tie to Lower Miocene litho- and bio-facies in this borehole. These land-based seismic profiles image well-defined sequence boundaries, onlap and downlap truncations that correlate to Transgressive Systems Tracts (TST) and Highstand Systems Tracts (HST) identified in boreholes. Preliminary analysis of CH0698 data continues these system tract delineations across the inner shelf The CH0698 seismic profiles tie seismically defined sequence boundaries with sequences identified by lithiologic and paleontologic criteria. Both can now be related to global ??18O increases and attendant glacioeustatic lowerings. This integration of core, log, and seismic character of mid-Tertiary sediments across the width of the New Jersey margin is a major step in the long-standing effort to evaluate the impact of glaciouestasy on siliciclastic sediments of a passive continental margin. (C) 2000 Elsevier Science B.V. All rights reserved.

  8. Comparative Analysis of Sequential Proximal Optimizing Technique Versus Kissing Balloon Inflation Technique in Provisional Bifurcation Stenting: Fractal Coronary Bifurcation Bench Test.

    PubMed

    Finet, Gérard; Derimay, François; Motreff, Pascal; Guerin, Patrice; Pilet, Paul; Ohayon, Jacques; Darremont, Olivier; Rioufol, Gilles

    2015-08-24

    This study used a fractal bifurcation bench model to compare 6 optimization sequences for coronary bifurcation provisional stenting, including 1 novel sequence without kissing balloon inflation (KBI), comprising initial proximal optimizing technique (POT) + side-branch inflation (SBI) + final POT, called "re-POT." In provisional bifurcation stenting, KBI fails to improve the rate of major adverse cardiac events. Proximal geometric deformation increases the rate of in-stent restenosis and target lesion revascularization. A bifurcation bench model was used to compare KBI alone, KBI after POT, KBI with asymmetric inflation pressure after POT, and 2 sequences without KBI: initial POT plus SBI, and initial POT plus SBI with final POT (called "re-POT"). For each protocol, 5 stents were tested using 2 different drug-eluting stent designs: that is, a total of 60 tests. Compared with the classic KBI-only sequence and those associating POT with modified KBI, the re-POT sequence gave significantly (p < 0.05) better geometric results: it reduced SB ostium stent-strut obstruction from 23.2 ± 6.0% to 5.6 ± 8.3%, provided perfect proximal stent apposition with almost perfect circularity (ellipticity index reduced from 1.23 ± 0.02 to 1.04 ± 0.01), reduced proximal area overstretch from 24.2 ± 7.6% to 8.0 ± 0.4%, and reduced global strut malapposition from 40 ± 6.2% to 2.6 ± 1.4%. In comparison with 5 other techniques, the re-POT sequence significantly optimized the final result of provisional coronary bifurcation stenting, maintaining circular geometry while significantly reducing SB ostium strut obstruction and global strut malapposition. These experimental findings confirm that provisional stenting may be optimized more effectively without KBI using re-POT. Copyright © 2015 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  9. A Preliminary Study of Viral Metagenomics of French Bat Species in Contact with Humans: Identification of New Mammalian Viruses

    PubMed Central

    Dacheux, Laurent; Cervantes-Gonzalez, Minerva; Guigon, Ghislaine; Thiberge, Jean-Michel; Vandenbogaert, Mathias; Maufrais, Corinne

    2014-01-01

    The prediction of viral zoonosis epidemics has become a major public health issue. A profound understanding of the viral population in key animal species acting as reservoirs represents an important step towards this goal. Bats harbor diverse viruses, some of which are of particular interest because they cause severe human diseases. However, little is known about the diversity of the global population of viruses found in bats (virome). We determined the viral diversity of five different French insectivorous bat species (nine specimens in total) in close contact with humans. Sequence-independent amplification, high-throughput sequencing with Illumina technology and a dedicated bioinformatics analysis pipeline were used on pooled tissues (brain, liver and lungs). Comparisons of the sequences of contigs and unassembled reads provided a global taxonomic distribution of virus-related sequences for each sample, highlighting differences both within and between bat species. Many viral families were present in these viromes, including viruses known to infect bacteria, plants/fungi, insects or vertebrates, the most relevant being those infecting mammals (Retroviridae, Herpesviridae, Bunyaviridae, Poxviridae, Flaviviridae, Reoviridae, Bornaviridae, Picobirnaviridae). In particular, we detected several new mammalian viruses, including rotaviruses, gammaretroviruses, bornaviruses and bunyaviruses with the identification of the first bat nairovirus. These observations demonstrate that bats naturally harbor viruses from many different families, most of which infect mammals. They may therefore constitute a major reservoir of viral diversity that should be analyzed carefully, to determine the role played by bats in the spread of zoonotic viral infections. PMID:24489870

  10. CRISPR Diversity and Microevolution in Clostridium difficile

    PubMed Central

    Andersen, Joakim M.; Shoup, Madelyn; Robinson, Cathy; Britton, Robert; Olsen, Katharina E.P.; Barrangou, Rodolphe

    2016-01-01

    Abstract Virulent strains of Clostridium difficile have become a global health problem associated with morbidity and mortality. Traditional typing methods do not provide ideal resolution to track outbreak strains, ascertain genetic diversity between isolates, or monitor the phylogeny of this species on a global basis. Here, we investigate the occurrence and diversity of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (cas) in C. difficile to assess the potential of CRISPR-based phylogeny and high-resolution genotyping. A single Type-IB CRISPR-Cas system was identified in 217 analyzed genomes with cas gene clusters present at conserved chromosomal locations, suggesting vertical evolution of the system, assessing a total of 1,865 CRISPR arrays. The CRISPR arrays, markedly enriched (8.5 arrays/genome) compared with other species, occur both at conserved and variable locations across strains, and thus provide a basis for typing based on locus occurrence and spacer polymorphism. Clustering of strains by array composition correlated with sequence type (ST) analysis. Spacer content and polymorphism within conserved CRISPR arrays revealed phylogenetic relationship across clades and within ST. Spacer polymorphisms of conserved arrays were instrumental for differentiating closely related strains, e.g., ST1/RT027/B1 strains and pathogenicity locus encoding ST3/RT001 strains. CRISPR spacers showed sequence similarity to phage sequences, which is consistent with the native role of CRISPR-Cas as adaptive immune systems in bacteria. Overall, CRISPR-Cas sequences constitute a valuable basis for genotyping of C. difficile isolates, provide insights into the micro-evolutionary events that occur between closely related strains, and reflect the evolutionary trajectory of these genomes. PMID:27576538

  11. De novo Transcriptome Assembly of Chinese Kale and Global Expression Analysis of Genes Involved in Glucosinolate Metabolism in Multiple Tissues

    PubMed Central

    Wu, Shuanghua; Lei, Jianjun; Chen, Guoju; Chen, Hancai; Cao, Bihao; Chen, Changming

    2017-01-01

    Chinese kale, a vegetable of the cruciferous family, is a popular crop in southern China and Southeast Asia due to its high glucosinolate content and nutritional qualities. However, there is little research on the molecular genetics and genes involved in glucosinolate metabolism and its regulation in Chinese kale. In this study, we sequenced and characterized the transcriptomes and expression profiles of genes expressed in 11 tissues of Chinese kale. A total of 216 million 150-bp clean reads were generated using RNA-sequencing technology. From the sequences, 98,180 unigenes were assembled for the whole plant, and 49,582~98,423 unigenes were assembled for each tissue. Blast analysis indicated that a total of 80,688 (82.18%) unigenes exhibited similarity to known proteins. The functional annotation and classification tools used in this study suggested that genes principally expressed in Chinese kale, were mostly involved in fundamental processes, such as cellular and molecular functions, the signal transduction, and biosynthesis of secondary metabolites. The expression levels of all unigenes were analyzed in various tissues of Chinese kale. A large number of candidate genes involved in glucosinolate metabolism and its regulation were identified, and the expression patterns of these genes were analyzed. We found that most of the genes involved in glucosinolate biosynthesis were highly expressed in the root, petiole, and in senescent leaves. The expression patterns of ten glucosinolate biosynthetic genes from RNA-seq were validated by quantitative RT-PCR in different tissues. These results provided an initial and global overview of Chinese kale gene functions and expression activities in different tissues. PMID:28228764

  12. A functional genomics tool for the Pacific bluefin tuna: Development of a 44K oligonucleotide microarray from whole-genome sequencing data for global transcriptome analysis.

    PubMed

    Yasuike, Motoshige; Fujiwara, Atushi; Nakamura, Yoji; Iwasaki, Yuki; Nishiki, Issei; Sugaya, Takuma; Shimizu, Akio; Sano, Motohiko; Kobayashi, Takanori; Ototake, Mitsuru

    2016-02-01

    Bluefin tunas are one of the most important fishery resources worldwide. Because of high market values, bluefin tuna farming has been rapidly growing during recent years. At present, the most common form of the tuna farming is based on the stocking of wild-caught fish. Therefore, concerns have been raised about the negative impact of the tuna farming on wild stocks. Recently, the Pacific bluefin tuna (PBT), Thunnus orientalis, has succeeded in completing the reproduction cycle under aquaculture conditions, but production bottlenecks remain to be solved because of very little biological information on bluefin tunas. Functional genomics approaches promise to rapidly increase our knowledge on biological processes in the bluefin tuna. Here, we describe the development of the first 44K PBT oligonucleotide microarray (oligo-array), based on whole-genome shotgun (WGS) sequencing and large-scale expressed sequence tags (ESTs) data. In addition, we also introduce an initial 44K PBT oligo-array experiment using in vitro grown peripheral blood leukocytes (PBLs) stimulated with immunostimulants such as lipopolysaccharide (LPS: a cell wall component of Gram-negative bacteria) or polyinosinic:polycytidylic acid (poly I:C: a synthetic mimic of viral infection). This pilot 44K PBT oligo-array analysis successfully addressed distinct immune processes between LPS- and poly I:C- stimulated PBLs. Thus, we expect that this oligo-array will provide an excellent opportunity to analyze global gene expression profiles for a better understanding of diseases and stress, as well as for reproduction, development and influence of nutrition on tuna aquaculture production. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  13. A dated molecular phylogeny of manta and devil rays (Mobulidae) based on mitogenome and nuclear sequences.

    PubMed

    Poortvliet, Marloes; Olsen, Jeanine L; Croll, Donald A; Bernardi, Giacomo; Newton, Kelly; Kollias, Spyros; O'Sullivan, John; Fernando, Daniel; Stevens, Guy; Galván Magaña, Felipe; Seret, Bernard; Wintner, Sabine; Hoarau, Galice

    2015-02-01

    Manta and devil rays are an iconic group of globally distributed pelagic filter feeders, yet their evolutionary history remains enigmatic. We employed next generation sequencing of mitogenomes for nine of the 11 recognized species and two outgroups; as well as additional Sanger sequencing of two mitochondrial and two nuclear genes in an extended taxon sampling set. Analysis of the mitogenome coding regions in a Maximum Likelihood and Bayesian framework provided a well-resolved phylogeny. The deepest divergences distinguished three clades with high support, one containing Manta birostris, Manta alfredi, Mobula tarapacana, Mobula japanica and Mobula mobular; one containing Mobula kuhlii, Mobula eregoodootenkee and Mobula thurstoni; and one containing Mobula munkiana, Mobula hypostoma and Mobula rochebrunei. Mobula remains paraphyletic with the inclusion of Manta, a result that is in agreement with previous studies based on molecular and morphological data. A fossil-calibrated Bayesian random local clock analysis suggests that mobulids diverged from Rhinoptera around 30 Mya. Subsequent divergences are characterized by long internodes followed by short bursts of speciation extending from an initial episode of divergence in the Early and Middle Miocene (19-17 Mya) to a second episode during the Pliocene and Pleistocene (3.6 Mya - recent). Estimates of divergence dates overlap significantly with periods of global warming, during which upwelling intensity - and related high primary productivity in upwelling regions - decreased markedly. These periods are hypothesized to have led to fragmentation and isolation of feeding regions leading to possible regional extinctions, as well as the promotion of allopatric speciation. The closely shared evolutionary history of mobulids in combination with ongoing threats from fisheries and climate change effects on upwelling and food supply, reinforces the case for greater protection of this charismatic family of pelagic filter feeders. Copyright © 2014 Elsevier Inc. All rights reserved.

  14. Typing and Clustering of Yersinia pseudotuberculosis Isolates by Restriction Fragment Length Polymorphism Analysis Using Insertion Sequences

    PubMed Central

    Voskresenskaya, E.; Savin, C.; Leclercq, A.; Tseneva, G.

    2014-01-01

    Yersinia pseudotuberculosis is an enteropathogen that has an animal reservoir and causes human infections, mostly in temperate and cold countries. Most of the methods previously used to subdivide Y. pseudotuberculosis were performed on small numbers of isolates from a specific geographical area. One aim of this study was to evaluate the typing efficiency of restriction fragment length polymorphism of insertion sequence hybridization patterns (IS-RFLP) compared to other typing methods, such as serotyping, ribotyping, and multilocus sequence typing (MLST), on the same set of 80 strains of Y. pseudotuberculosis of global origin. We found that IS100 was not adequate for IS-RFLP but that both IS285 and IS1541 efficiently subtyped Y. pseudotuberculosis. The discriminatory index (DI) of IS1541-RFLP (0.980) was superior to those of IS285-RFLP (0.939), ribotyping (0.944), MLST (0.861), and serotyping (0.857). The combination of the two IS (2IS-RFLP) further increased the DI to 0.998. Thus, IS-RFLP is a powerful tool for the molecular typing of Y. pseudotuberculosis and has the advantage of exhibiting well-resolved banding patterns that allow for a reliable comparison of strains of worldwide origin. The other aim of this study was to assess the clustering power of IS-RFLP. We found that 2IS-RFLP had a remarkable capacity to group strains with similar genotypic and phenotypic markers, thus identifying robust populations within Y. pseudotuberculosis. Our study thus demonstrates that 2IS- and even IS1541-RFLP alone might be valuable tools for the molecular typing of global isolates of Y. pseudotuberculosis and for the analysis of the population structure of this species. PMID:24671793

  15. Genome sequencing defines phylogeny and spread of methicillin-resistant Staphylococcus aureus in a high transmission setting

    PubMed Central

    Tong, Steven Y.C.; Holden, Matthew T.G.; Nickerson, Emma K.; Cooper, Ben S.; Köser, Claudio U.; Cori, Anne; Jombart, Thibaut; Cauchemez, Simon; Fraser, Christophe; Wuthiekanun, Vanaporn; Thaipadungpanit, Janjira; Hongsuwan, Maliwan; Day, Nicholas P.; Limmathurotsakul, Direk; Parkhill, Julian; Peacock, Sharon J.

    2015-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of nosocomial infection. Whole-genome sequencing of MRSA has been used to define phylogeny and transmission in well-resourced healthcare settings, yet the greatest burden of nosocomial infection occurs in resource-restricted settings where barriers to transmission are lower. Here, we study the flux and genetic diversity of MRSA on ward and individual patient levels in a hospital where transmission was common. We repeatedly screened all patients on two intensive care units for MRSA carriage over a 3-mo period. All MRSA belonged to multilocus sequence type 239 (ST 239). We defined the population structure and charted the spread of MRSA by sequencing 79 isolates from 46 patients and five members of staff, including the first MRSA-positive screen isolates and up to two repeat isolates where available. Phylogenetic analysis identified a flux of distinct ST 239 clades over time in each intensive care unit. In total, five main clades were identified, which varied in the carriage of plasmids encoding antiseptic and antimicrobial resistance determinants. Sequence data confirmed intra- and interwards transmission events and identified individual patients who were colonized by more than one clade. One patient on each unit was the source of numerous transmission events, and deep sampling of one of these cases demonstrated colonization with a “cloud” of related MRSA variants. The application of whole-genome sequencing and analysis provides novel insights into the transmission of MRSA in under-resourced healthcare settings and has relevance to wider global health. PMID:25491771

  16. Genome sequencing and comparative genomics of honey bee microsporidia, Nosema apis reveal novel insights into host-parasite interactions.

    PubMed

    Chen, Yan ping; Pettis, Jeffery S; Zhao, Yan; Liu, Xinyue; Tallon, Luke J; Sadzewicz, Lisa D; Li, Renhua; Zheng, Huoqing; Huang, Shaokang; Zhang, Xuan; Hamilton, Michele C; Pernal, Stephen F; Melathopoulos, Andony P; Yan, Xianghe; Evans, Jay D

    2013-07-05

    The microsporidia parasite Nosema contributes to the steep global decline of honey bees that are critical pollinators of food crops. There are two species of Nosema that have been found to infect honey bees, Nosema apis and N. ceranae. Genome sequencing of N. apis and comparative genome analysis with N. ceranae, a fully sequenced microsporidia species, reveal novel insights into host-parasite interactions underlying the parasite infections. We applied the whole-genome shotgun sequencing approach to sequence and assemble the genome of N. apis which has an estimated size of 8.5 Mbp. We predicted 2,771 protein- coding genes and predicted the function of each putative protein using the Gene Ontology. The comparative genomic analysis led to identification of 1,356 orthologs that are conserved between the two Nosema species and genes that are unique characteristics of the individual species, thereby providing a list of virulence factors and new genetic tools for studying host-parasite interactions. We also identified a highly abundant motif in the upstream promoter regions of N. apis genes. This motif is also conserved in N. ceranae and other microsporidia species and likely plays a role in gene regulation across the microsporidia. The availability of the N. apis genome sequence is a significant addition to the rapidly expanding body of microsprodian genomic data which has been improving our understanding of eukaryotic genome diversity and evolution in a broad sense. The predicted virulent genes and transcriptional regulatory elements are potential targets for innovative therapeutics to break down the life cycle of the parasite.

  17. Comparative genomics of citric-acid-producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

    PubMed Central

    Andersen, Mikael R.; Salazar, Margarita P.; Schaap, Peter J.; van de Vondervoort, Peter J.I.; Culley, David; Thykaer, Jette; Frisvad, Jens C.; Nielsen, Kristian F.; Albang, Richard; Albermann, Kaj; Berka, Randy M.; Braus, Gerhard H.; Braus-Stromeyer, Susanna A.; Corrochano, Luis M.; Dai, Ziyu; van Dijck, Piet W.M.; Hofmann, Gerald; Lasure, Linda L.; Magnuson, Jon K.; Menke, Hildegard; Meijer, Martin; Meijer, Susan L.; Nielsen, Jakob B.; Nielsen, Michael L.; van Ooyen, Albert J.J.; Pel, Herman J.; Poulsen, Lars; Samson, Rob A.; Stam, Hein; Tsang, Adrian; van den Brink, Johannes M.; Atkins, Alex; Aerts, Andrea; Shapiro, Harris; Pangilinan, Jasmyn; Salamov, Asaf; Lou, Yigong; Lindquist, Erika; Lucas, Susan; Grimwood, Jane; Grigoriev, Igor V.; Kubicek, Christian P.; Martinez, Diego; van Peij, Noël N.M.E.; Roubos, Johannes A.; Nielsen, Jens; Baker, Scott E.

    2011-01-01

    The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compel additional exploration. We therefore undertook whole-genome sequencing of the acidogenic A. niger wild-type strain (ATCC 1015) and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence, and half the telomeric regions have been elucidated. Moreover, sequence information from ATCC 1015 was used to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 Mb of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis supported up-regulation of genes associated with biosynthesis of amino acids that are abundant in glucoamylase A, tRNA-synthases, and protein transporters in the protein producing CBS 513.88 strain. Our results and data sets from this integrative systems biology analysis resulted in a snapshot of fungal evolution and will support further optimization of cell factories based on filamentous fungi. PMID:21543515

  18. Improved PCR-Based Detection of Soil Transmitted Helminth Infections Using a Next-Generation Sequencing Approach to Assay Design.

    PubMed

    Pilotte, Nils; Papaiakovou, Marina; Grant, Jessica R; Bierwert, Lou Ann; Llewellyn, Stacey; McCarthy, James S; Williams, Steven A

    2016-03-01

    The soil transmitted helminths are a group of parasitic worms responsible for extensive morbidity in many of the world's most economically depressed locations. With growing emphasis on disease mapping and eradication, the availability of accurate and cost-effective diagnostic measures is of paramount importance to global control and elimination efforts. While real-time PCR-based molecular detection assays have shown great promise, to date, these assays have utilized sub-optimal targets. By performing next-generation sequencing-based repeat analyses, we have identified high copy-number, non-coding DNA sequences from a series of soil transmitted pathogens. We have used these repetitive DNA elements as targets in the development of novel, multi-parallel, PCR-based diagnostic assays. Utilizing next-generation sequencing and the Galaxy-based RepeatExplorer web server, we performed repeat DNA analysis on five species of soil transmitted helminths (Necator americanus, Ancylostoma duodenale, Trichuris trichiura, Ascaris lumbricoides, and Strongyloides stercoralis). Employing high copy-number, non-coding repeat DNA sequences as targets, novel real-time PCR assays were designed, and assays were tested against established molecular detection methods. Each assay provided consistent detection of genomic DNA at quantities of 2 fg or less, demonstrated species-specificity, and showed an improved limit of detection over the existing, proven PCR-based assay. The utilization of next-generation sequencing-based repeat DNA analysis methodologies for the identification of molecular diagnostic targets has the ability to improve assay species-specificity and limits of detection. By exploiting such high copy-number repeat sequences, the assays described here will facilitate soil transmitted helminth diagnostic efforts. We recommend similar analyses when designing PCR-based diagnostic tests for the detection of other eukaryotic pathogens.

  19. Global sequence variation in the histidine-rich proteins 2 and 3 of Plasmodium falciparum: implications for the performance of malaria rapid diagnostic tests

    PubMed Central

    2010-01-01

    Background Accurate diagnosis is essential for prompt and appropriate treatment of malaria. While rapid diagnostic tests (RDTs) offer great potential to improve malaria diagnosis, the sensitivity of RDTs has been reported to be highly variable. One possible factor contributing to variable test performance is the diversity of parasite antigens. This is of particular concern for Plasmodium falciparum histidine-rich protein 2 (PfHRP2)-detecting RDTs since PfHRP2 has been reported to be highly variable in isolates of the Asia-Pacific region. Methods The pfhrp2 exon 2 fragment from 458 isolates of P. falciparum collected from 38 countries was amplified and sequenced. For a subset of 80 isolates, the exon 2 fragment of histidine-rich protein 3 (pfhrp3) was also amplified and sequenced. DNA sequence and statistical analysis of the variation observed in these genes was conducted. The potential impact of the pfhrp2 variation on RDT detection rates was examined by analysing the relationship between sequence characteristics of this gene and the results of the WHO product testing of malaria RDTs: Round 1 (2008), for 34 PfHRP2-detecting RDTs. Results Sequence analysis revealed extensive variations in the number and arrangement of various repeats encoded by the genes in parasite populations world-wide. However, no statistically robust correlation between gene structure and RDT detection rate for P. falciparum parasites at 200 parasites per microlitre was identified. Conclusions The results suggest that despite extreme sequence variation, diversity of PfHRP2 does not appear to be a major cause of RDT sensitivity variation. PMID:20470441

  20. RNA-Seq Analysis of Cocos nucifera: Transcriptome Sequencing and De Novo Assembly for Subsequent Functional Genomics Approaches

    PubMed Central

    Xia, Wei; Mason, Annaliese S.; Xia, Zhihui; Qiao, Fei; Zhao, Songlin; Tang, Haoru

    2013-01-01

    Background Cocos nucifera (coconut), a member of the Arecaceae family, is an economically important woody palm grown in tropical regions. Despite its agronomic importance, previous germplasm assessment studies have relied solely on morphological and agronomical traits. Molecular biology techniques have been scarcely used in assessment of genetic resources and for improvement of important agronomic and quality traits in Cocos nucifera, mostly due to the absence of available sequence information. Methodology/Principal Findings To provide basic information for molecular breeding and further molecular biological analysis in Cocos nucifera, we applied RNA-seq technology and de novo assembly to gain a global overview of the Cocos nucifera transcriptome from mixed tissue samples. Using Illumina sequencing, we obtained 54.9 million short reads and conducted de novo assembly to obtain 57,304 unigenes with an average length of 752 base pairs. Sequence comparison between assembled unigenes and released cDNA sequences of Cocos nucifera and Elaeis guineensis indicated that the assembled sequences were of high quality. Approximately 99.9% of unigenes were novel compared to the released coconut EST sequences. Using BLASTX, 68.2% of unigenes were successfully annotated based on the Genbank non-redundant (Nr) protein database. The annotated unigenes were then further classified using the Gene Ontology (GO), Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Conclusions/Significance Our study provides a large quantity of novel genetic information for Cocos nucifera. This information will act as a valuable resource for further molecular genetic studies and breeding in coconut, as well as for isolation and characterization of functional genes involved in different biochemical pathways in this important tropical crop species. PMID:23555859

  1. RNA-Seq analysis of Cocos nucifera: transcriptome sequencing and de novo assembly for subsequent functional genomics approaches.

    PubMed

    Fan, Haikuo; Xiao, Yong; Yang, Yaodong; Xia, Wei; Mason, Annaliese S; Xia, Zhihui; Qiao, Fei; Zhao, Songlin; Tang, Haoru

    2013-01-01

    Cocos nucifera (coconut), a member of the Arecaceae family, is an economically important woody palm grown in tropical regions. Despite its agronomic importance, previous germplasm assessment studies have relied solely on morphological and agronomical traits. Molecular biology techniques have been scarcely used in assessment of genetic resources and for improvement of important agronomic and quality traits in Cocos nucifera, mostly due to the absence of available sequence information. To provide basic information for molecular breeding and further molecular biological analysis in Cocos nucifera, we applied RNA-seq technology and de novo assembly to gain a global overview of the Cocos nucifera transcriptome from mixed tissue samples. Using Illumina sequencing, we obtained 54.9 million short reads and conducted de novo assembly to obtain 57,304 unigenes with an average length of 752 base pairs. Sequence comparison between assembled unigenes and released cDNA sequences of Cocos nucifera and Elaeis guineensis indicated that the assembled sequences were of high quality. Approximately 99.9% of unigenes were novel compared to the released coconut EST sequences. Using BLASTX, 68.2% of unigenes were successfully annotated based on the Genbank non-redundant (Nr) protein database. The annotated unigenes were then further classified using the Gene Ontology (GO), Clusters of Orthologous Groups (COG) and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases. Our study provides a large quantity of novel genetic information for Cocos nucifera. This information will act as a valuable resource for further molecular genetic studies and breeding in coconut, as well as for isolation and characterization of functional genes involved in different biochemical pathways in this important tropical crop species.

  2. First Report on Circulation of Echinococcus ortleppi in the one Humped Camel (Camelus dromedaries), Sudan

    PubMed Central

    2013-01-01

    Background Echinococcus granulosus (EG) complex, the cause of cystic echinococcosis (CE), infects humans and several other animal species worldwide and hence the disease is of public health importance. Ten genetic variants, or genotypes designated as (G1-G10), are distributed worldwide based on genetic diversity. The objective of this study was to provide some sequence data and phylogeny of EG isolates recovered from the Sudanese one-humped camel (Camelus dromedaries). Fifty samples of hydatid cysts were collected from the one- humped camels (Camelus dromedaries) at Taboul slaughter house, central Sudan. DNAs were extracted from protoscolices and/or associated germinal layers of hydatid cysts using a commercial kit. The mitochondrial NADH dehydrogenase subunit 1 (NADH1) gene and the cytochrome C oxidase subunit 1 (cox1) gene were used as targets for polymerase chain reaction (PCR) amplification. The PCR products were purified and partial sequences were generated. Sequences were further examined by sequence analysis and subsequent phylogeny to compare these sequences to those from known strains of EG circulating globally. Results The identity of the PCR products were confirmed as NADH1 and cox1 nucleotide sequences using the Basic Local Alignment Search Tool (BLAST) of NCBI (National Center for Biotechnology Information, Bethesda, MD). The phylogenetic analysis showed that 98% (n = 49) of the isolates clustered with Echinococcus canadensis genotype 6 (G6), whereas only one isolate (2%) clustered with Echinococcus ortleppi (G5). Conclusions This investigation expands on the existing sequence data generated from EG isolates recovered from camel in the Sudan. The circulation of the cattle genotype (G5) in the one-humped camel is reported here for the first time. PMID:23800362

  3. First report on circulation of Echinococcus ortleppi in the one humped camel (Camelus dromedaries), Sudan.

    PubMed

    Ahmed, Mohamed E; Eltom, Kamal H; Musa, Nasreen O; Ali, Ibtisam A; Elamin, Fatima M; Grobusch, Martin P; Aradaib, Imadeldin E

    2013-06-25

    Echinococcus granulosus (EG) complex, the cause of cystic echinococcosis (CE), infects humans and several other animal species worldwide and hence the disease is of public health importance. Ten genetic variants, or genotypes designated as (G1-G10), are distributed worldwide based on genetic diversity. The objective of this study was to provide some sequence data and phylogeny of EG isolates recovered from the Sudanese one-humped camel (Camelus dromedaries). Fifty samples of hydatid cysts were collected from the one- humped camels (Camelus dromedaries) at Taboul slaughter house, central Sudan. DNAs were extracted from protoscolices and/or associated germinal layers of hydatid cysts using a commercial kit. The mitochondrial NADH dehydrogenase subunit 1 (NADH1) gene and the cytochrome C oxidase subunit 1 (cox1) gene were used as targets for polymerase chain reaction (PCR) amplification. The PCR products were purified and partial sequences were generated. Sequences were further examined by sequence analysis and subsequent phylogeny to compare these sequences to those from known strains of EG circulating globally. The identity of the PCR products were confirmed as NADH1 and cox1 nucleotide sequences using the Basic Local Alignment Search Tool (BLAST) of NCBI (National Center for Biotechnology Information, Bethesda, MD). The phylogenetic analysis showed that 98% (n = 49) of the isolates clustered with Echinococcus canadensis genotype 6 (G6), whereas only one isolate (2%) clustered with Echinococcus ortleppi (G5). This investigation expands on the existing sequence data generated from EG isolates recovered from camel in the Sudan. The circulation of the cattle genotype (G5) in the one-humped camel is reported here for the first time.

  4. General properties of magnetic CP stars

    NASA Astrophysics Data System (ADS)

    Glagolevskij, Yu. V.

    2017-07-01

    We present the review of our previous studies related to observational evidence of the fossil field hypothesis of formation and evolution of magnetic and non-magnetic chemically peculiar stars. Analysis of the observed data shows that these stars acquire their main properties in the process of gravitational collapse. In the non-stationary Hayashi phase, a magnetic field becomes weakened and its configuration complicated, but the fossil field global orientation remains. After a non-stationary phase, relaxation of young star's tangled field takes place and by the time of joining ZAMS (Zero Age Main Sequence) it is generally restored to a dipole structure. Stability of dipole structures allows them to remain unchanged up to the end of their life on the Main Sequence which is 109 years at most.

  5. Trends of amino acid usage in the proteins from the unicellular parasite Giardia lamblia.

    PubMed

    Garat, B; Musto, H

    2000-12-29

    Correspondence analysis of amino acid frequencies was applied to 75 complete coding sequences from the unicellular parasite Giardia lamblia, and it was found that three major factors influence the variability of amino acidic composition of proteins. The first trend strongly correlated with (a) the cysteine content and (b) the mean weight of the amino acids used in each protein. The second trend correlated with the global levels of hydropathy and aromaticity of each protein. Both axes might be related with the defense of the parasite to oxygen free radicals. Finally, the third trend correlated with the expressivity of each gene, indicating that in G. lamblia highly expressed sequences display a tendency to preferentially use a subset of the total amino acids.

  6. Molecular detection and genetic characterization of Babesia, Theileria and Anaplasma amongst apparently healthy sheep and goats in the central region of Turkey.

    PubMed

    Zhou, Mo; Cao, Shinuo; Sevinc, Ferda; Sevinc, Mutlu; Ceylan, Onur; Ekici, Sepil; Jirapattharasate, Charoonluk; Moumouni, Paul Franck Adjou; Liu, Mingming; Wang, Guanbo; Iguchi, Aiko; Vudriko, Patrick; Suzuki, Hiroshi; Xuan, Xuenan

    2017-02-01

    Babesia spp., Theileria spp. and Anaplasma spp. are significant tick-borne pathogens of livestock globally. In this study, we investigated the presence and distribution of Babesia ovis, Theileria ovis and Anaplasma ovis in 343 small ruminants (249 sheep and 94 goats) from 13 towns in the Central Anatolia region of Turkey using species-specific PCR assays. The PCR were conducted using the primers based on the B. ovis ssu rRNA (BoSSUrRNA), T. ovis ssu rRNA (ToSSUrRNA) and A. ovis major surface protein 4 (AoMSP4) genes, respectively. Fragments of these genes were sequenced for phylogenetic analysis. PCR results revealed that the overall infections of A. ovis, T. ovis and B. ovis were 60.0%, 35.9% and 5.2%, respectively. Co-infection of the animals with two or three pathogens was detected in 105/343 (30.6%) of the ovine samples. The results of sequence analysis indicated that AoMSP4 were conserved among the Turkish samples, with 100% sequence identity values. In contrast, the BoSSUrRNA and ToSSUrRNA gene sequences were relatively diverse with identity values of 98.54%-99.82% and 99.23%-99.81%, respectively. Phylograms were inferred based on the BoSSUrRNA, ToSSUrRNA and AoMSP4 sequences obtained in this study and those from previous studies. B. ovis isolates from Turkey were found in the same clade as the isolates from other countries in phylogenetic analysis. On the other hand, the Turkish T. ovis isolates in the present study formed a monophyletic grouping with the isolates from other countries in a phylogeny based on ToSSUrRNA sequences. Furthermore, phylogenetic analysis using AoMSP4 sequences showed the presence of three genotypes of A. ovis. This study provides important data for understanding the epidemiology of tick-borne diseases in small ruminants and the degree of genetic heterogeneities among these pathogens in Turkey. To our knowledge, this is the first study on the co-infection of Babesia, Theileria and Anaplasma in sheep and goats in Turkey. Copyright © 2016 Elsevier GmbH. All rights reserved.

  7. Global stratigraphy of Venus: Analysis of a random sample of thirty-six test areas

    NASA Technical Reports Server (NTRS)

    Basilevsky, Alexander T.; Head, James W., III

    1995-01-01

    The age relations between 36 impact craters with dark paraboloids and other geologic units and structures at these localities have been studied through photogeologic analysis of Magellan SAR images of the surface of Venus. Geologic settings in all 36 sites, about 1000 x 1000 km each, could be characterized using only 10 different terrain units and six types of structures. Mapping of such units and structures in 36 randomly distributed large regions shows evidence for a distinctive regional and global stratigraphic and geologic sequence. On the basis of this sequence we have developed a model that illustrates several major themes in the history of Venus. Most of the history of Venus (that of its first 80% or so) is not preserved in the surface geomorphological record. The major deformation associated with tessera formation in the period sometime between 0.5-1.0 b.y. ago (Ivanov and Basilevsky, 1993) is the earliest event detected. Our stratigraphic analyses suggest that following tessera formation, extensive volcanic flooding resurfaced at least 85% of the planet in the form of the presently-ridged and fractured plains. Several lines of evidence favor a high flux in the post-tessera period but we have no independent evidence for the absolute duration of ridged plains emplacement. During this time, the net state of stress in the lithosphere apparently changed from extensional to compressional, first in the form of extensive ridge belt development, followed by the formation of extensive wrinkle ridges on the flow units. Subsequently, there occurred local emplacement of smooth and lobate plains units which are presently essentially undeformed. The major events in the latest 10% of the presently preserved history of Venus are continued rifting and some associated volcanism, and the redistribution of eolian material largely derived from impact crater deposits. Detailed geologic mapping and stratigraphic synthesis are necessary to test this sequence and to address many of the outstanding problems raised by this analysis.

  8. Antarctic Pliocene Biotic and Environmental Change in a Global Context Changes

    NASA Astrophysics Data System (ADS)

    Quilty, P. G.; Whitehead, J.

    2005-12-01

    The Pliocene was globally an interval of dramatic climate change and often compared with the environment evolving through human-induced global change. Antarctic history needs to be integrated into global patterns. The Prydz Bay-Prince Charles Mountains region of East Antarctica is a major source of data on Late Paleozoic-Recent changes in Antarctic biota and environment. This paper reviews what is known of 13 marine transgressions in the Late Neogene of the region and attempts to compare the Antarctic pattern with global patterns, such as those identified through global sequence stratigraphic analysis. Although temporal resolution in Antarctic sections is not always as good as for sections elsewhere, enough data exist to indicate that many events can be construed as part of global changes. It is expected that further correlation will be effected. During much of the Pliocene, there was less continental ice, reduced sea-ice cover, probably higher sea-level, penetration of marine conditions deep into the hinterland, and independent evidence to indicate that this was due to warmth. The Antarctic Polar Frontal Zone probably was much farther south than currently. There have been major changes in the marine fauna, and distribution of surviving species since the mid-Pliocene. Antarctic fish faunas underwent major changes during this interval with evolution of a major new Subfamily and diversification in at least two subfamilies. No palynological evidence of terrestrial vegetation has been recovered from the Prydz Bay - Prince Charles Mountain region. Analysis of origin and extinction data for two global planktonic foraminiferal biostratigraphic zonations shows that the interval Late Miocene-Pliocene was an interval of enhanced extinction and evolution, consistent with an interval of more rapid and high amplitude fluctuating environments.

  9. Quantification of the effects of eustasy, subsidence, and sediment supply on Miocene sequences, mid-Atlantic margin of the United States

    USGS Publications Warehouse

    Browning, J.V.; Miller, K.G.; McLaughlin, P.P.; Kominz, M.A.; Sugarman, P.J.; Monteverde, D.; Feigenson, M.D.; Hernandez, J.C.

    2006-01-01

    We use backstripping to quantify the roles of variations in global sea level (eustasy), subsidence, and sediment supply on the development of the Miocene stratigraphic record of the mid-Atlantic continental margin of the United States (New Jersey, Delaware, and Maryland). Eustasy is a primary influence on sequence patterns, determining the global template of sequences (i.e., times when sequences can be preserved) and explaining similarities in Miocene sequence architecture on margins throughout the world. Sequences can be correlated throughout the mid-Atlantic region with Sr-isotopic chronology (??0.6 m.y. to ??1.2 m.y.). Eight Miocene sequences correlate regionally and can be correlated to global ??18O increases, indicating glacioeustatic control. This margin is dominated by passive subsidence with little evidence for active tectonic overprints, except possibly in Maryland during the early Miocene. However, early Miocene sequences in New Jersey and Delaware display a patchwork distribution that is attributable to minor (tens of meters) intervals of excess subsidence. Backstripping quantifies that excess subsidence began in Delaware at ca. 21 Ma and continued until 12 Ma, with maximum rates from ca. 21-16 Ma. We attribute this enhanced subsidence to local flexural response to the progradation of thick sequences offshore and adjacent to this area. Removing this excess subsidence in Delaware yields a record that is remarkably similar to New Jersey eustatic estimates. We conclude that sea-level rise and fall is a first-order control on accommodation providing similar timing on all margins to the sequence record. Tectonic changes due to movement of the crust can overprint the record, resulting in large gaps in the stratigraphic record. Smaller differences in sequences can be attributed to local flexural loading effects, particularly in regions experiencing large-scale progradation. ?? 2006 Geological Society of America.

  10. Evolution, substrate specificity and subfamily classification of glycoside hydrolase family 5 (GH5).

    PubMed

    Aspeborg, Henrik; Coutinho, Pedro M; Wang, Yang; Brumer, Harry; Henrissat, Bernard

    2012-09-20

    The large Glycoside Hydrolase family 5 (GH5) groups together a wide range of enzymes acting on β-linked oligo- and polysaccharides, and glycoconjugates from a large spectrum of organisms. The long and complex evolution of this family of enzymes and its broad sequence diversity limits functional prediction. With the objective of improving the differentiation of enzyme specificities in a knowledge-based context, and to obtain new evolutionary insights, we present here a new, robust subfamily classification of family GH5. About 80% of the current sequences were assigned into 51 subfamilies in a global analysis of all publicly available GH5 sequences and associated biochemical data. Examination of subfamilies with catalytically-active members revealed that one third are monospecific (containing a single enzyme activity), although new functions may be discovered with biochemical characterization in the future. Furthermore, twenty subfamilies presently have no characterization whatsoever and many others have only limited structural and biochemical data. Mapping of functional knowledge onto the GH5 phylogenetic tree revealed that the sequence space of this historical and industrially important family is far from well dispersed, highlighting targets in need of further study. The analysis also uncovered a number of GH5 proteins which have lost their catalytic machinery, indicating evolution towards novel functions. Overall, the subfamily division of GH5 provides an actively curated resource for large-scale protein sequence annotation for glycogenomics; the subfamily assignments are openly accessible via the Carbohydrate-Active Enzyme database at http://www.cazy.org/GH5.html.

  11. NGSPanPipe: A Pipeline for Pan-genome Identification in Microbial Strains from Experimental Reads.

    PubMed

    Kulsum, Umay; Kapil, Arti; Singh, Harpreet; Kaur, Punit

    2018-01-01

    Recent advancements in sequencing technologies have decreased both time span and cost for sequencing the whole bacterial genome. High-throughput Next-Generation Sequencing (NGS) technology has led to the generation of enormous data concerning microbial populations publically available across various repositories. As a consequence, it has become possible to study and compare the genomes of different bacterial strains within a species or genus in terms of evolution, ecology and diversity. Studying the pan-genome provides insights into deciphering microevolution, global composition and diversity in virulence and pathogenesis of a species. It can also assist in identifying drug targets and proposing vaccine candidates. The effective analysis of these large genome datasets necessitates the development of robust tools. Current methods to develop pan-genome do not support direct input of raw reads from the sequencer machine but require preprocessing of reads as an assembled protein/gene sequence file or the binary matrix of orthologous genes/proteins. We have designed an easy-to-use integrated pipeline, NGSPanPipe, which can directly identify the pan-genome from short reads. The output from the pipeline is compatible with other pan-genome analysis tools. We evaluated our pipeline with other methods for developing pan-genome, i.e. reference-based assembly and de novo assembly using simulated reads of Mycobacterium tuberculosis. The single script pipeline (pipeline.pl) is applicable for all bacterial strains. It integrates multiple in-house Perl scripts and is freely accessible from https://github.com/Biomedinformatics/NGSPanPipe .

  12. Deep sequencing reveals cell-type-specific patterns of single-cell transcriptome variation.

    PubMed

    Dueck, Hannah; Khaladkar, Mugdha; Kim, Tae Kyung; Spaethling, Jennifer M; Francis, Chantal; Suresh, Sangita; Fisher, Stephen A; Seale, Patrick; Beck, Sheryl G; Bartfai, Tamas; Kuhn, Bernhard; Eberwine, James; Kim, Junhyong

    2015-06-09

    Differentiation of metazoan cells requires execution of different gene expression programs but recent single-cell transcriptome profiling has revealed considerable variation within cells of seeming identical phenotype. This brings into question the relationship between transcriptome states and cell phenotypes. Additionally, single-cell transcriptomics presents unique analysis challenges that need to be addressed to answer this question. We present high quality deep read-depth single-cell RNA sequencing for 91 cells from five mouse tissues and 18 cells from two rat tissues, along with 30 control samples of bulk RNA diluted to single-cell levels. We find that transcriptomes differ globally across tissues with regard to the number of genes expressed, the average expression patterns, and within-cell-type variation patterns. We develop methods to filter genes for reliable quantification and to calibrate biological variation. All cell types include genes with high variability in expression, in a tissue-specific manner. We also find evidence that single-cell variability of neuronal genes in mice is correlated with that in rats consistent with the hypothesis that levels of variation may be conserved. Single-cell RNA-sequencing data provide a unique view of transcriptome function; however, careful analysis is required in order to use single-cell RNA-sequencing measurements for this purpose. Technical variation must be considered in single-cell RNA-sequencing studies of expression variation. For a subset of genes, biological variability within each cell type appears to be regulated in order to perform dynamic functions, rather than solely molecular noise.

  13. Incidental and clinically actionable genetic variants in 1005 whole exomes and genomes from Qatar.

    PubMed

    Jain, Abhinav; Gandhi, Shrey; Koshy, Remya; Scaria, Vinod

    2018-03-20

    Incidental findings in genomic data have been studied in great detail in the recent years, especially from population-scale data sets. However, little is known about the frequency of such findings in ethnic groups, specifically the Middle East, which were not previously covered in global sequencing studies. The availability of whole exome and genome data sets for a highly consanguineous Arab population from Qatar motivated us to explore the incidental findings in this population-scale data. The sequence data of 1005 Qatari individuals were systematically analyzed for incidental genetic variants in the 59 genes suggested by the American College of Medical Genetics and Genomics. We identified four genetic variants which were pathogenic or likely pathogenic. These variants occurred in six individuals, suggesting a frequency of 0.59% in the population, much lesser than that previously reported from European and African populations. Our analysis identified a variant in RYR1 gene associated with Malignant Hyperthermia that has significantly higher frequency in the population compared to global frequencies. Evaluation of the allele frequencies of these variants suggested enrichment in sub-populations, especially in individuals of Sub-Saharan African ancestry. The present study thereby provides the information on pathogenicity and frequency, which could aid in genomic medicine. To the best of our knowledge, this is the first comprehensive analysis of incidental genetic findings in any Arab population and suggests ethnic differences in incidental findings.

  14. Global Transcriptional Start Site Mapping Using Differential RNA Sequencing Reveals Novel Antisense RNAs in Escherichia coli

    PubMed Central

    Thomason, Maureen K.; Bischler, Thorsten; Eisenbart, Sara K.; Förstner, Konrad U.; Zhang, Aixia; Herbig, Alexander; Nieselt, Kay

    2014-01-01

    While the model organism Escherichia coli has been the subject of intense study for decades, the full complement of its RNAs is only now being examined. Here we describe a survey of the E. coli transcriptome carried out using a differential RNA sequencing (dRNA-seq) approach, which can distinguish between primary and processed transcripts, and an automated prediction algorithm for transcriptional start sites (TSS). With the criterion of expression under at least one of three growth conditions examined, we predicted 14,868 TSS candidates, including 5,574 internal to annotated genes (iTSS) and 5,495 TSS corresponding to potential antisense RNAs (asRNAs). We examined expression of 14 candidate asRNAs by Northern analysis using RNA from wild-type E. coli and from strains defective for RNases III and E, two RNases reported to be involved in asRNA processing. Interestingly, nine asRNAs detected as distinct bands by Northern analysis were differentially affected by the rnc and rne mutations. We also compared our asRNA candidates with previously published asRNA annotations from RNA-seq data and discuss the challenges associated with these cross-comparisons. Our global transcriptional start site map represents a valuable resource for identification of transcription start sites, promoters, and novel transcripts in E. coli and is easily accessible, together with the cDNA coverage plots, in an online genome browser. PMID:25266388

  15. Molecular Strain Typing of Mycobacterium tuberculosis: a Review of Frequently Used Methods

    PubMed Central

    2016-01-01

    Tuberculosis, caused by the bacterium Mycobacterium tuberculosis, remains one of the most serious global health problems. Molecular typing of M. tuberculosis has been used for various epidemiologic purposes as well as for clinical management. Currently, many techniques are available to type M. tuberculosis. Choosing the most appropriate technique in accordance with the existing laboratory conditions and the specific features of the geographic region is important. Insertion sequence IS6110-based restriction fragment length polymorphism (RFLP) analysis is considered the gold standard for the molecular epidemiologic investigations of tuberculosis. However, other polymerase chain reaction-based methods such as spacer oligonucleotide typing (spoligotyping), which detects 43 spacer sequence-interspersing direct repeats (DRs) in the genomic DR region; mycobacterial interspersed repetitive units–variable number tandem repeats, (MIRU-VNTR), which determines the number and size of tandem repetitive DNA sequences; repetitive-sequence-based PCR (rep-PCR), which provides high-throughput genotypic fingerprinting of multiple Mycobacterium species; and the recently developed genome-based whole genome sequencing methods demonstrate similar discriminatory power and greater convenience. This review focuses on techniques frequently used for the molecular typing of M. tuberculosis and discusses their general aspects and applications. PMID:27709842

  16. Differences in community composition of bacteria in four glaciers in western China

    NASA Astrophysics Data System (ADS)

    An, L. Z.; Chen, Y.; Xiang, S.-R.; Shang, T.-C.; Tian, L.-D.

    2010-06-01

    Microbial community patterns vary in glaciers worldwide, presenting unique responses to global climatic and environmental changes. Four bacterial clone libraries were established by 16S rRNA gene amplification from four ice layers along the 42-m-long ice core MuztB drilled from the Muztag Ata Glacier. A total of 151 bacterial sequences obtained from the ice core MuztB were phylogenetically compared with the 71 previously reported sequences from three ice cores extracted from ice caps Malan, Dunde, and Puruogangri. Six phylogenetic clusters Flavisolibacter, Flexibacter (Bacteroidetes), Acinetobacter, Enterobacter (Gammaproteobacteria), Planococcus/Anoxybacillus (Firmicutes), and Propionibacter/Luteococcus (Actinobacteria) frequently occurred along the Muztag Ata Glacier profile, and their proportion varied by seasons. Sequence analysis showed that most of the sequences from the ice core clustered with those from cold environments, and the sequence clusters from the same glacier more closely grouped together than those from the geographically isolated glaciers. Moreover, bacterial communities from the same location or similarly aged ice formed a cluster, and were clearly separate from those from other geographically isolated glaciers. In summary, the findings provide preliminary evidence of zonal distribution of microbial community, and suggest biogeography of microorganisms in glacier ice.

  17. Differences in community composition of bacteria in four deep ice sheets in western China

    NASA Astrophysics Data System (ADS)

    An, L.; Chen, Y.; Xiang, S.-R.; Shang, T.-C.; Tian, L.-De

    2010-02-01

    Microbial community patterns vary in glaciers world wide, presenting unique responses to global climatic and environmental changes. Four bacterial clone libraries were established by 16S rRNA gene amplification from four ice layers along the 42-m-long ice core MuztB drilled from the Muztag Ata Glacier. A total of 152 bacterial sequences obtained from the ice core MuztB were phylogenetically compared with the 71 previously reported sequences from three ice cores extracted from ice caps Malan, Dunde, and Puruoganri. The six functional clusters Flavisolibacter, Flexibacter (Bacteroidetes), Acinetobacter, Enterobacter (Gammaproteobacteria), Planococcus/Anoxybacillus (Firmicutes), and Propionibacter/Luteococcus (Actinobacteria) frequently occurred along the Muztag Ata Glacier profile. Sequence analysis showed that most of the sequences from the ice core clustered with those from cold environments, and the sequences from the same glacier formed a distinct cluster. Moreover, bacterial communities from the same location or similarly aged ice formed a cluster, and were clearly separate from those from other geographically isolated glaciers. In a summary, the findings provide preliminary evidence of zone distribution of microbial community, support our hypothesis of the spatial and temporal biogeography of microorganisms in glacial ice.

  18. Rapid CRISPR/Cas9-Mediated Cloning of Full-Length Epstein-Barr Virus Genomes from Latently Infected Cells.

    PubMed

    Yajima, Misako; Ikuta, Kazufumi; Kanda, Teru

    2018-04-03

    Herpesviruses have relatively large DNA genomes of more than 150 kb that are difficult to clone and sequence. Bacterial artificial chromosome (BAC) cloning of herpesvirus genomes is a powerful technique that greatly facilitates whole viral genome sequencing as well as functional characterization of reconstituted viruses. We describe recently invented technologies for rapid BAC cloning of herpesvirus genomes using CRISPR/Cas9-mediated homology-directed repair. We focus on recent BAC cloning techniques of Epstein-Barr virus (EBV) genomes and discuss the possible advantages of a CRISPR/Cas9-mediated strategy comparatively with precedent EBV-BAC cloning strategies. We also describe the design decisions of this technology as well as possible pitfalls and points to be improved in the future. The obtained EBV-BAC clones are subjected to long-read sequencing analysis to determine complete EBV genome sequence including repetitive regions. Rapid cloning and sequence determination of various EBV strains will greatly contribute to the understanding of their global geographical distribution. This technology can also be used to clone disease-associated EBV strains and test the hypothesis that they have special features that distinguish them from strains that infect asymptomatically.

  19. Rapid CRISPR/Cas9-Mediated Cloning of Full-Length Epstein-Barr Virus Genomes from Latently Infected Cells

    PubMed Central

    Ikuta, Kazufumi; Kanda, Teru

    2018-01-01

    Herpesviruses have relatively large DNA genomes of more than 150 kb that are difficult to clone and sequence. Bacterial artificial chromosome (BAC) cloning of herpesvirus genomes is a powerful technique that greatly facilitates whole viral genome sequencing as well as functional characterization of reconstituted viruses. We describe recently invented technologies for rapid BAC cloning of herpesvirus genomes using CRISPR/Cas9-mediated homology-directed repair. We focus on recent BAC cloning techniques of Epstein-Barr virus (EBV) genomes and discuss the possible advantages of a CRISPR/Cas9-mediated strategy comparatively with precedent EBV-BAC cloning strategies. We also describe the design decisions of this technology as well as possible pitfalls and points to be improved in the future. The obtained EBV-BAC clones are subjected to long-read sequencing analysis to determine complete EBV genome sequence including repetitive regions. Rapid cloning and sequence determination of various EBV strains will greatly contribute to the understanding of their global geographical distribution. This technology can also be used to clone disease-associated EBV strains and test the hypothesis that they have special features that distinguish them from strains that infect asymptomatically. PMID:29614006

  20. Temporality of Features in Near-Death Experience Narratives

    PubMed Central

    Martial, Charlotte; Cassol, Héléna; Antonopoulos, Georgios; Charlier, Thomas; Heros, Julien; Donneau, Anne-Françoise; Charland-Verville, Vanessa; Laureys, Steven

    2017-01-01

    Background: After an occurrence of a Near-Death Experience (NDE), Near-Death Experiencers (NDErs) usually report extremely rich and detailed narratives. Phenomenologically, a NDE can be described as a set of distinguishable features. Some authors have proposed regular patterns of NDEs, however, the actual temporality sequence of NDE core features remains a little explored area. Objectives: The aim of the present study was to investigate the frequency distribution of these features (globally and according to the position of features in narratives) as well as the most frequently reported temporality sequences of features. Methods: We collected 154 French freely expressed written NDE narratives (i.e., Greyson NDE scale total score ≥ 7/32). A text analysis was conducted on all narratives in order to infer temporal ordering and frequency distribution of NDE features. Results: Our analyses highlighted the following most frequently reported sequence of consecutive NDE features: Out-of-Body Experience, Experiencing a tunnel, Seeing a bright light, Feeling of peace. Yet, this sequence was encountered in a very limited number of NDErs. Conclusion: These findings may suggest that NDEs temporality sequences can vary across NDErs. Exploring associations and relationships among features encountered during NDEs may complete the rigorous definition and scientific comprehension of the phenomenon. PMID:28659779

  1. Integrated analysis of RNA-binding protein complexes using in vitro selection and high-throughput sequencing and sequence specificity landscapes (SEQRS).

    PubMed

    Lou, Tzu-Fang; Weidmann, Chase A; Killingsworth, Jordan; Tanaka Hall, Traci M; Goldstrohm, Aaron C; Campbell, Zachary T

    2017-04-15

    RNA-binding proteins (RBPs) collaborate to control virtually every aspect of RNA function. Tremendous progress has been made in the area of global assessment of RBP specificity using next-generation sequencing approaches both in vivo and in vitro. Understanding how protein-protein interactions enable precise combinatorial regulation of RNA remains a significant problem. Addressing this challenge requires tools that can quantitatively determine the specificities of both individual proteins and multimeric complexes in an unbiased and comprehensive way. One approach utilizes in vitro selection, high-throughput sequencing, and sequence-specificity landscapes (SEQRS). We outline a SEQRS experiment focused on obtaining the specificity of a multi-protein complex between Drosophila RBPs Pumilio (Pum) and Nanos (Nos). We discuss the necessary controls in this type of experiment and examine how the resulting data can be complemented with structural and cell-based reporter assays. Additionally, SEQRS data can be integrated with functional genomics data to uncover biological function. Finally, we propose extensions of the technique that will enhance our understanding of multi-protein regulatory complexes assembled onto RNA. Copyright © 2016 Elsevier Inc. All rights reserved.

  2. Temporality of Features in Near-Death Experience Narratives.

    PubMed

    Martial, Charlotte; Cassol, Héléna; Antonopoulos, Georgios; Charlier, Thomas; Heros, Julien; Donneau, Anne-Françoise; Charland-Verville, Vanessa; Laureys, Steven

    2017-01-01

    Background: After an occurrence of a Near-Death Experience (NDE), Near-Death Experiencers (NDErs) usually report extremely rich and detailed narratives. Phenomenologically, a NDE can be described as a set of distinguishable features. Some authors have proposed regular patterns of NDEs, however, the actual temporality sequence of NDE core features remains a little explored area. Objectives: The aim of the present study was to investigate the frequency distribution of these features (globally and according to the position of features in narratives) as well as the most frequently reported temporality sequences of features. Methods: We collected 154 French freely expressed written NDE narratives (i.e., Greyson NDE scale total score ≥ 7/32). A text analysis was conducted on all narratives in order to infer temporal ordering and frequency distribution of NDE features. Results: Our analyses highlighted the following most frequently reported sequence of consecutive NDE features: Out-of-Body Experience, Experiencing a tunnel, Seeing a bright light, Feeling of peace. Yet, this sequence was encountered in a very limited number of NDErs. Conclusion: These findings may suggest that NDEs temporality sequences can vary across NDErs. Exploring associations and relationships among features encountered during NDEs may complete the rigorous definition and scientific comprehension of the phenomenon.

  3. Molecular Strain Typing of Mycobacterium tuberculosis: a Review of Frequently Used Methods.

    PubMed

    Ei, Phyu Win; Aung, Wah Wah; Lee, Jong Seok; Choi, Go Eun; Chang, Chulhun L

    2016-11-01

    Tuberculosis, caused by the bacterium Mycobacterium tuberculosis, remains one of the most serious global health problems. Molecular typing of M. tuberculosis has been used for various epidemiologic purposes as well as for clinical management. Currently, many techniques are available to type M. tuberculosis. Choosing the most appropriate technique in accordance with the existing laboratory conditions and the specific features of the geographic region is important. Insertion sequence IS6110-based restriction fragment length polymorphism (RFLP) analysis is considered the gold standard for the molecular epidemiologic investigations of tuberculosis. However, other polymerase chain reaction-based methods such as spacer oligonucleotide typing (spoligotyping), which detects 43 spacer sequence-interspersing direct repeats (DRs) in the genomic DR region; mycobacterial interspersed repetitive units-variable number tandem repeats, (MIRU-VNTR), which determines the number and size of tandem repetitive DNA sequences; repetitive-sequence-based PCR (rep-PCR), which provides high-throughput genotypic fingerprinting of multiple Mycobacterium species; and the recently developed genome-based whole genome sequencing methods demonstrate similar discriminatory power and greater convenience. This review focuses on techniques frequently used for the molecular typing of M. tuberculosis and discusses their general aspects and applications.

  4. Mitochondrial control-region sequence variation in aboriginal Australians.

    PubMed Central

    van Holst Pellekaan, S; Frommer, M; Sved, J; Boettcher, B

    1998-01-01

    The mitochondrial D-loop hypervariable segment 1 (mt HVS1) between nucleotides 15997 and 16377 has been examined in aboriginal Australian people from the Darling River region of New South Wales (riverine) and from Yuendumu in central Australia (desert). Forty-seven unique HVS1 types were identified, varying at 49 nucleotide positions. Pairwise analysis by calculation of BEPPI (between population proportion index) reveals statistically significant structure in the populations, although some identical HVS1 types are seen in the two contrasting regions. mt HVS1 types may reflect more-ancient distributions than do linguistic diversity and other culturally distinguishing attributes. Comparison with sequences from five published global studies reveals that these Australians demonstrate greatest divergence from some Africans, least from Papua New Guinea highlanders, and only slightly more from some Pacific groups (Indonesian, Asian, Samoan, and coastal Papua New Guinea), although the HVS1 types vary at different nucleotide sites. Construction of a median network, displaying three main groups, suggests that several hypervariable nucleotide sites within the HVS1 are likely to have undergone mutation independently, making phylogenetic comparison with global samples by conventional methods difficult. Specific nucleotide-site variants are major separators in median networks constructed from Australian HVS1 types alone and for one global selection. The distribution of these, requiring extended study, suggests that they may be signatures of different groups of prehistoric colonizers into Australia, for which the time of colonization remains elusive. PMID:9463317

  5. Candida auris

    MedlinePlus

    ... auris infection spread globally? CDC conducted whole genome sequencing of C. auris specimens from countries in the ... Asia, southern Africa, and South America. Whole genome sequencing produces detailed DNA fingerprints of organisms. CDC found ...

  6. The global catalogue of microorganisms 10K type strain sequencing project: closing the genomic gaps for the validly published prokaryotic and fungi species.

    PubMed

    Wu, Linhuan; McCluskey, Kevin; Desmeth, Philippe; Liu, Shuangjiang; Hideaki, Sugawara; Yin, Ye; Moriya, Ohkuma; Itoh, Takashi; Kim, Cha Young; Lee, Jung-Sook; Zhou, Yuguang; Kawasaki, Hiroko; Hazbón, Manzour Hernando; Robert, Vincent; Boekhout, Teun; Lima, Nelson; Evtushenko, Lyudmila; Boundy-Mills, Kyria; Bunk, Boyke; Moore, Edward R B; Eurwilaichitr, Lily; Ingsriswang, Supawadee; Shah, Heena; Yao, Su; Jin, Tao; Huang, Jinqun; Shi, Wenyu; Sun, Qinglan; Fan, Guomei; Li, Wei; Li, Xian; Kurtböke, Ipek; Ma, Juncai

    2018-05-01

    Genomic information is essential for taxonomic, phylogenetic, and functional studies to comprehensively decipher the characteristics of microorganisms, to explore microbiomes through metagenomics, and to answer fundamental questions of nature and human life. However, large gaps remain in the available genomic sequencing information published for bacterial and archaeal species, and the gaps are even larger for fungal type strains. The Global Catalogue of Microorganisms (GCM) leads an internationally coordinated effort to sequence type strains and close gaps in the genomic maps of microorganisms. Hence, the GCM aims to promote research by deep-mining genomic data.

  7. High-fidelity target sequencing of individual molecules identified using barcode sequences: de novo detection and absolute quantitation of mutations in plasma cell-free DNA from cancer patients.

    PubMed

    Kukita, Yoji; Matoba, Ryo; Uchida, Junji; Hamakawa, Takuya; Doki, Yuichiro; Imamura, Fumio; Kato, Kikuya

    2015-08-01

    Circulating tumour DNA (ctDNA) is an emerging field of cancer research. However, current ctDNA analysis is usually restricted to one or a few mutation sites due to technical limitations. In the case of massively parallel DNA sequencers, the number of false positives caused by a high read error rate is a major problem. In addition, the final sequence reads do not represent the original DNA population due to the global amplification step during the template preparation. We established a high-fidelity target sequencing system of individual molecules identified in plasma cell-free DNA using barcode sequences; this system consists of the following two steps. (i) A novel target sequencing method that adds barcode sequences by adaptor ligation. This method uses linear amplification to eliminate the errors introduced during the early cycles of polymerase chain reaction. (ii) The monitoring and removal of erroneous barcode tags. This process involves the identification of individual molecules that have been sequenced and for which the number of mutations have been absolute quantitated. Using plasma cell-free DNA from patients with gastric or lung cancer, we demonstrated that the system achieved near complete elimination of false positives and enabled de novo detection and absolute quantitation of mutations in plasma cell-free DNA. © The Author 2015. Published by Oxford University Press on behalf of Kazusa DNA Research Institute.

  8. Genetic Characterization of a Panel of Diverse HIV-1 Isolates at Seven International Sites

    PubMed Central

    Chen, Yue; Sanchez, Ana M.; Sabino, Ester; Hunt, Gillian; Ledwaba, Johanna; Hackett, John; Swanson, Priscilla; Hewlett, Indira; Ragupathy, Viswanath; Vikram Vemula, Sai; Zeng, Peibin; Tee, Kok-Keng; Chow, Wei Zhen; Ji, Hezhao; Sandstrom, Paul; Denny, Thomas N.; Busch, Michael P.; Gao, Feng

    2016-01-01

    HIV-1 subtypes and drug resistance are routinely tested by many international surveillance groups. However, results from different sites often vary. A systematic comparison of results from multiple sites is needed to determine whether a standardized protocol is required for consistent and accurate data analysis. A panel of well-characterized HIV-1 isolates (N = 50) from the External Quality Assurance Program Oversight Laboratory (EQAPOL) was assembled for evaluation at seven international sites. This virus panel included seven subtypes, six circulating recombinant forms (CRFs), nine unique recombinant forms (URFs) and three group O viruses. Seven viruses contained 10 major drug resistance mutations (DRMs). HIV-1 isolates were prepared at a concentration of 107 copies/ml and compiled into blinded panels. Subtypes and DRMs were determined with partial or full pol gene sequences by conventional Sanger sequencing and/or Next Generation Sequencing (NGS). Subtype and DRM results were reported and decoded for comparison with full-length genome sequences generated by EQAPOL. The partial pol gene was amplified by RT-PCR and sequenced for 89.4%-100% of group M viruses at six sites. Subtyping results of majority of the viruses (83%-97.9%) were correctly determined for the partial pol sequences. All 10 major DRMs in seven isolates were detected at these six sites. The complete pol gene sequence was also obtained by NGS at one site. However, this method missed six group M viruses and sequences contained host chromosome fragments. Three group O viruses were only characterized with additional group O-specific RT-PCR primers employed by one site. These results indicate that PCR protocols and subtyping tools should be standardized to efficiently amplify diverse viruses and more consistently assign virus genotypes, which is critical for accurate global subtype and drug resistance surveillance. Targeted NGS analysis of partial pol sequences can serve as an alternative approach, especially for detection of low-abundance DRMs. PMID:27314585

  9. Genetic Characterization of a Panel of Diverse HIV-1 Isolates at Seven International Sites.

    PubMed

    Hora, Bhavna; Keating, Sheila M; Chen, Yue; Sanchez, Ana M; Sabino, Ester; Hunt, Gillian; Ledwaba, Johanna; Hackett, John; Swanson, Priscilla; Hewlett, Indira; Ragupathy, Viswanath; Vikram Vemula, Sai; Zeng, Peibin; Tee, Kok-Keng; Chow, Wei Zhen; Ji, Hezhao; Sandstrom, Paul; Denny, Thomas N; Busch, Michael P; Gao, Feng

    2016-01-01

    HIV-1 subtypes and drug resistance are routinely tested by many international surveillance groups. However, results from different sites often vary. A systematic comparison of results from multiple sites is needed to determine whether a standardized protocol is required for consistent and accurate data analysis. A panel of well-characterized HIV-1 isolates (N = 50) from the External Quality Assurance Program Oversight Laboratory (EQAPOL) was assembled for evaluation at seven international sites. This virus panel included seven subtypes, six circulating recombinant forms (CRFs), nine unique recombinant forms (URFs) and three group O viruses. Seven viruses contained 10 major drug resistance mutations (DRMs). HIV-1 isolates were prepared at a concentration of 107 copies/ml and compiled into blinded panels. Subtypes and DRMs were determined with partial or full pol gene sequences by conventional Sanger sequencing and/or Next Generation Sequencing (NGS). Subtype and DRM results were reported and decoded for comparison with full-length genome sequences generated by EQAPOL. The partial pol gene was amplified by RT-PCR and sequenced for 89.4%-100% of group M viruses at six sites. Subtyping results of majority of the viruses (83%-97.9%) were correctly determined for the partial pol sequences. All 10 major DRMs in seven isolates were detected at these six sites. The complete pol gene sequence was also obtained by NGS at one site. However, this method missed six group M viruses and sequences contained host chromosome fragments. Three group O viruses were only characterized with additional group O-specific RT-PCR primers employed by one site. These results indicate that PCR protocols and subtyping tools should be standardized to efficiently amplify diverse viruses and more consistently assign virus genotypes, which is critical for accurate global subtype and drug resistance surveillance. Targeted NGS analysis of partial pol sequences can serve as an alternative approach, especially for detection of low-abundance DRMs.

  10. Impact of geostationary satellite water vapor channel data on weather analysis and forecasting

    NASA Technical Reports Server (NTRS)

    Velden, Christopher S.

    1995-01-01

    Preliminary results from NWP impact studies are indicating that upper-tropospheric wind information provided by tracking motions in sequences of geostationary satellite water vapor imagery can positively influence forecasts on regional scales, and possibly on global scales as well. The data are complimentary to cloud-tracked winds by providing data in cloud-free regions, as well as comparable in quality. First results from GOES-8 winds are encouraging, and further efforts and model impacts will be directed towards optimizing these data in numerical weather prediction (NWP). Assuming successful launches of GOES-J and GMS-5 satellites in 1995, high quality and resolution water vapor imagers will be available to provide nearly complete global upper-tropospheric wind coverage.

  11. Analysis of alterative cleavage and polyadenylation by 3′ region extraction and deep sequencing

    PubMed Central

    Hoque, Mainul; Ji, Zhe; Zheng, Dinghai; Luo, Wenting; Li, Wencheng; You, Bei; Park, Ji Yeon; Yehia, Ghassan; Tian, Bin

    2012-01-01

    Alternative cleavage and polyadenylation (APA) leads to mRNA isoforms with different coding sequences (CDS) and/or 3′ untranslated regions (3′UTRs). Using 3′ Region Extraction And Deep Sequencing (3′READS), a method which addresses the internal priming and oligo(A) tail issues that commonly plague polyA site (pA) identification, we comprehensively mapped pAs in the mouse genome, thoroughly annotating 3′ ends of genes and revealing over five thousand pAs (~8% of total) flanked by A-rich sequences, which have hitherto been overlooked. About 79% of mRNA genes and 66% of long non-coding RNA (lncRNA) genes have APA; but these two gene types have distinct usage patterns for pAs in introns and upstream exons. Promoter-distal pAs become relatively more abundant during embryonic development and cell differentiation, a trend affecting pAs in both 3′-most exons and upstream regions. Upregulated isoforms generally have stronger pAs, suggesting global modulation of the 3′ end processing activity in development and differentiation. PMID:23241633

  12. Complete genome sequence of the bacteriochlorophyll a-containing Roseibacterium elongatum type strain (DSM 19469T), a representative of the Roseobacter group isolated from Australian coast sand

    PubMed Central

    Riedel, Thomas; Fiebig, Anne; Göker, Markus; Klenk, Hans-Peter

    2014-01-01

    Roseibacterium elongatum Suzuki et al. 2006 is a pink-pigmented and bacteriochlorophyll a-producing representative of the Roseobacter group within the alphaproteobacterial family Rhodobacteraceae. Representatives of the marine ‘Roseobacter group’ were found to be abundant in the ocean and play an important role in global and biogeochemical processes. In the present study we describe the features of R. elongatum strain OCh 323T together with its genome sequence and annotation. The 3,555,102 bp long genome consists of one circular chromosome with no extrachromosomal elements and is one of the smallest known Roseobacter genomes. It contains 3,540 protein-coding genes and 59 RNA genes. Genome analysis revealed the presence of a photosynthetic gene cluster, which putatively enables a photoheterotrophic lifestyle. Gene sequences associated with quorum sensing, motility, surface attachment, and thiosulfate and carbon monoxide oxidation could be detected. The genome was sequenced as part of the activities of the Transregional Collaborative Research Centre 51 (TRR51) funded by the German Research Foundation (DFG). PMID:25197467

  13. Complete genome sequence of the bacteriochlorophyll a-containing Roseibacterium elongatum type strain (DSM 19469(T)), a representative of the Roseobacter group isolated from Australian coast sand.

    PubMed

    Riedel, Thomas; Fiebig, Anne; Göker, Markus; Klenk, Hans-Peter

    2014-06-15

    Roseibacterium elongatum Suzuki et al. 2006 is a pink-pigmented and bacteriochlorophyll a-producing representative of the Roseobacter group within the alphaproteobacterial family Rhodobacteraceae. Representatives of the marine 'Roseobacter group' were found to be abundant in the ocean and play an important role in global and biogeochemical processes. In the present study we describe the features of R. elongatum strain OCh 323(T) together with its genome sequence and annotation. The 3,555,102 bp long genome consists of one circular chromosome with no extrachromosomal elements and is one of the smallest known Roseobacter genomes. It contains 3,540 protein-coding genes and 59 RNA genes. Genome analysis revealed the presence of a photosynthetic gene cluster, which putatively enables a photoheterotrophic lifestyle. Gene sequences associated with quorum sensing, motility, surface attachment, and thiosulfate and carbon monoxide oxidation could be detected. The genome was sequenced as part of the activities of the Transregional Collaborative Research Centre 51 (TRR51) funded by the German Research Foundation (DFG).

  14. Multi-tissue transcriptomics for construction of a comprehensive gene resource for the terrestrial snail Theba pisana.

    PubMed

    Zhao, M; Wang, T; Adamson, K J; Storey, K B; Cummins, S F

    2016-02-08

    The land snail Theba pisana is native to the Mediterranean region but has become one of the most abundant invasive species worldwide. Here, we present three transcriptomes of this agriculture pest derived from three tissues: the central nervous system, hepatopancreas (digestive gland), and foot muscle. Sequencing of the three tissues produced 339,479,092 high quality reads and a global de novo assembly generated a total of 250,848 unique transcripts (unigenes). BLAST analysis mapped 52,590 unigenes to NCBI non-redundant protein databases and further functional analysis annotated 21,849 unigenes with gene ontology. We report that T. pisana transcripts have representatives in all functional classes and a comparison of differentially expressed transcripts amongst all three tissues demonstrates enormous differences in their potential metabolic activities. The genes differentially expressed include those with sequence similarity to those genes associated with multiple bacterial diseases and neurological diseases. To provide a valuable resource that will assist functional genomics study, we have implemented a user-friendly web interface, ThebaDB (http://thebadb.bioinfo-minzhao.org/). This online database allows for complex text queries, sequence searches, and data browsing by enriched functional terms and KEGG mapping.

  15. Building toy models of proteins using coevolutionary information

    NASA Astrophysics Data System (ADS)

    Cheng, Ryan; Raghunathan, Mohit; Onuchic, Jose

    2015-03-01

    Recent developments in global statistical methodologies have advanced the analysis of large collections of protein sequences for coevolutionary information. Coevolution between amino acids in a protein arises from compensatory mutations that are needed to maintain the stability or function of a protein over the course of evolution. This gives rise to quantifiable correlations between amino acid positions within the multiple sequence alignment of a protein family. Here, we use Direct Coupling Analysis (DCA) to infer a Potts model Hamiltonian governing the correlated mutations in a protein family to obtain the sequence-dependent interaction energies of a toy protein model. We demonstrate that this methodology predicts residue-residue interaction energies that are consistent with experimental mutational changes in protein stabilities as well as other computational methodologies. Furthermore, we demonstrate with several examples that DCA could be used to construct a structure-based model that quantitatively agrees with experimental data on folding mechanisms. This work serves as a potential framework for generating models of proteins that are enriched by evolutionary data that can potentially be used to engineer key functional motions and interactions in protein systems. This research has been supported by the NSF INSPIRE award MCB-1241332 and by the CTBP sponsored by the NSF (Grant PHY-1427654).

  16. Unraveling the Complexities of Life Sciences Data.

    PubMed

    Higdon, Roger; Haynes, Winston; Stanberry, Larissa; Stewart, Elizabeth; Yandl, Gregory; Howard, Chris; Broomall, William; Kolker, Natali; Kolker, Eugene

    2013-03-01

    The life sciences have entered into the realm of big data and data-enabled science, where data can either empower or overwhelm. These data bring the challenges of the 5 Vs of big data: volume, veracity, velocity, variety, and value. Both independently and through our involvement with DELSA Global (Data-Enabled Life Sciences Alliance, DELSAglobal.org), the Kolker Lab ( kolkerlab.org ) is creating partnerships that identify data challenges and solve community needs. We specialize in solutions to complex biological data challenges, as exemplified by the community resource of MOPED (Model Organism Protein Expression Database, MOPED.proteinspire.org ) and the analysis pipeline of SPIRE (Systematic Protein Investigative Research Environment, PROTEINSPIRE.org ). Our collaborative work extends into the computationally intensive tasks of analysis and visualization of millions of protein sequences through innovative implementations of sequence alignment algorithms and creation of the Protein Sequence Universe tool (PSU). Pushing into the future together with our collaborators, our lab is pursuing integration of multi-omics data and exploration of biological pathways, as well as assigning function to proteins and porting solutions to the cloud. Big data have come to the life sciences; discovering the knowledge in the data will bring breakthroughs and benefits.

  17. Comparative Analysis of Expressed Genes from Cacao Meristems Infected by Moniliophthora perniciosa

    PubMed Central

    Gesteira, Abelmon S.; Micheli, Fabienne; Carels, Nicolas; Da Silva, Aline C.; Gramacho, Karina P.; Schuster, Ivan; Macêdo, Joci N.; Pereira, Gonçalo A. G.; Cascardo, Júlio C. M.

    2007-01-01

    Background and Aims Witches' broom disease is caused by the hemibiotrophic basidiomycete Moniliophthora perniciosa, and is one of the most important diseases of cacao in the western hemisphere. Because very little is known about the global process of such disease development, expressed sequence tags (ESTs) were used to identify genes expressed during the Theobroma cacao–Moniliophthora perniciosa interaction. Methods Two cDNA libraries corresponding to the resistant (RT) and susceptible (SP) cacao–M. perniciosa interactions were constructed from total RNA, using the DB SMART Creator cDNA library kit (Clontech). Clones were randomly selected, sequenced from the 5′ end and analysed using bioinformatics tools including in silico analysis of the differential gene expression. Key Results A total of 6884 ESTs were generated from the RT and SP cDNA libraries. These ESTs were composed of 2585 singlets and 341 contigs for a total of 2926 non-redundant sequences. The redundancy of the libraries was low and their specificity high when compared with the few other cacao libraries already published. Sequence analysis allowed the assignment of a putative functional category for 54 % of sequences, whereas approx. 22 % of sequences corresponded to unknown function and approx. 24 % of sequences did not show any significant similarity with other proteins present in the database. Despite the similar overall distribution of the sequences in functional categories between the two libraries, qualitative differences were observed. Genes involved during the defence response to pathogen infection or in programmed cell death were identified, such as pathogenesis related-proteins, trypsin inhibitor or oxalate oxidase, and some of them showed an in silico differential expression between the resistant and the susceptible interactions. Conclusions As far as is known this is the first EST resource from the cacao–M. perniciosa interaction and it is believed that it will provide a significant contribution to the understanding of the molecular mechanisms of the resistance and susceptibility of cacao to M. perniciosa, to develop strategies to control witches broom, and as a source of polymorphism for molecular marker development and marker-assisted selection. PMID:17557832

  18. The World Health Organization Global Programme on AIDS proposal for standardization of HIV sequence nomenclature. WHO Network for HIV Isolation and Characterization.

    PubMed

    Korber, B T; Osmanov, S; Esparza, J; Myers, G

    1994-11-01

    The World Health Organization Global Programme on AIDS (WHO/GPA) is conducting a large-scale collaborative study of human immunodeficiency virus type 1 (HIV-1) variation, based in four potential vaccine-trial site countries: Brazil, Rwanda, Thailand, and Uganda. Through the course of this study, it was crucial to keep track of certain attributes of the samples from which the viral nucleotide sequences were derived (e.g., country of origin and viral culture characterization), so that meaningful sequence comparisons could be made. Here we describe a system developed in the context of the WHO/GPA study that summarizes such critical attributes by representing them as standardized characters directly incorporated into sequence names. This nomenclature allows linkage of clinical, phenotypic, and geographic information with molecular data. We propose that other investigators involved in human immunodeficiency virus (HIV) nucleotide sequencing efforts adopt a similar standardized sequence nomenclature to facilitate cross-study sequence comparison. HIV sequence data are being generated at an ever-increasing rate; directly coupled to this increase is our deepening understanding of biological parameters that influence or result from sequence variability. A standardized sequence nomenclature that includes relevant biological information would enable researchers to better utilize the growing body of sequence data, and enhance their ability to interpret the biological implications of their own data through facilitating comparisons with previously published work.

  19. Learning Sequences of Actions in Collectives of Autonomous Agents

    NASA Technical Reports Server (NTRS)

    Turner, Kagan; Agogino, Adrian K.; Wolpert, David H.; Clancy, Daniel (Technical Monitor)

    2001-01-01

    In this paper we focus on the problem of designing a collective of autonomous agents that individually learn sequences of actions such that the resultant sequence of joint actions achieves a predetermined global objective. We are particularly interested in instances of this problem where centralized control is either impossible or impractical. For single agent systems in similar domains, machine learning methods (e.g., reinforcement learners) have been successfully used. However, applying such solutions directly to multi-agent systems often proves problematic, as agents may work at cross-purposes, or have difficulty in evaluating their contribution to achievement of the global objective, or both. Accordingly, the crucial design step in multiagent systems centers on determining the private objectives of each agent so that as the agents strive for those objectives, the system reaches a good global solution. In this work we consider a version of this problem involving multiple autonomous agents in a grid world. We use concepts from collective intelligence to design goals for the agents that are 'aligned' with the global goal, and are 'learnable' in that agents can readily see how their behavior affects their utility. We show that reinforcement learning agents using those goals outperform both 'natural' extensions of single agent algorithms and global reinforcement, learning solutions based on 'team games'.

  20. New Insights into the Diversity of the Genus Faecalibacterium.

    PubMed

    Benevides, Leandro; Burman, Sriti; Martin, Rebeca; Robert, Véronique; Thomas, Muriel; Miquel, Sylvie; Chain, Florian; Sokol, Harry; Bermudez-Humaran, Luis G; Morrison, Mark; Langella, Philippe; Azevedo, Vasco A; Chatel, Jean-Marc; Soares, Siomar

    2017-01-01

    Faecalibacterium prausnitzii is a commensal bacterium, ubiquitous in the gastrointestinal tracts of animals and humans. This species is a functionally important member of the microbiota and studies suggest it has an impact on the physiology and health of the host. F. prausnitzii is the only identified species in the genus Faecalibacterium , but a recent study clustered strains of this species in two different phylogroups. Here, we propose the existence of distinct species in this genus through the use of comparative genomics. Briefly, we performed analyses of 16S rRNA gene phylogeny, phylogenomics, whole genome Multi-Locus Sequence Typing (wgMLST), Average Nucleotide Identity (ANI), gene synteny, and pangenome to better elucidate the phylogenetic relationships among strains of Faecalibacterium . For this, we used 12 newly sequenced, assembled, and curated genomes of F. prausnitzii , which were isolated from feces of healthy volunteers from France and Australia, and combined these with published data from 5 strains downloaded from public databases. The phylogenetic analysis of the 16S rRNA sequences, together with the wgMLST profiles and a phylogenomic tree based on comparisons of genome similarity, all supported the clustering of Faecalibacterium strains in different genospecies. Additionally, the global analysis of gene synteny among all strains showed a highly fragmented profile, whereas the intra-cluster analyses revealed larger and more conserved collinear blocks. Finally, ANI analysis substantiated the presence of three distinct clusters-A, B, and C-composed of five, four, and four strains, respectively. The pangenome analysis of each cluster corroborated the classification of these clusters into three distinct species, each containing less variability than that found within the global pangenome of all strains. Here, we propose that comparison of pangenome subsets and their associated α values may be used as an alternative approach, together with ANI, in the in silico classification of new species. Altogether, our results provide evidence not only for the reconsideration of the phylogenetic and genomic relatedness among strains currently assigned to F. prausnitzii , but also the need for lineage (strain-based) differentiation of this taxon to better define how specific members might be associated with positive or negative host interactions.

  1. Impact of Sampling Density on the Extent of HIV Clustering

    PubMed Central

    Novitsky, Vlad; Moyo, Sikhulile; Lei, Quanhong; DeGruttola, Victor

    2014-01-01

    Abstract Identifying and monitoring HIV clusters could be useful in tracking the leading edge of HIV transmission in epidemics. Currently, greater specificity in the definition of HIV clusters is needed to reduce confusion in the interpretation of HIV clustering results. We address sampling density as one of the key aspects of HIV cluster analysis. The proportion of viral sequences in clusters was estimated at sampling densities from 1.0% to 70%. A set of 1,248 HIV-1C env gp120 V1C5 sequences from a single community in Botswana was utilized in simulation studies. Matching numbers of HIV-1C V1C5 sequences from the LANL HIV Database were used as comparators. HIV clusters were identified by phylogenetic inference under bootstrapped maximum likelihood and pairwise distance cut-offs. Sampling density below 10% was associated with stochastic HIV clustering with broad confidence intervals. HIV clustering increased linearly at sampling density >10%, and was accompanied by narrowing confidence intervals. Patterns of HIV clustering were similar at bootstrap thresholds 0.7 to 1.0, but the extent of HIV clustering decreased with higher bootstrap thresholds. The origin of sampling (local concentrated vs. scattered global) had a substantial impact on HIV clustering at sampling densities ≥10%. Pairwise distances at 10% were estimated as a threshold for cluster analysis of HIV-1 V1C5 sequences. The node bootstrap support distribution provided additional evidence for 10% sampling density as the threshold for HIV cluster analysis. The detectability of HIV clusters is substantially affected by sampling density. A minimal genotyping density of 10% and sampling density of 50–70% are suggested for HIV-1 V1C5 cluster analysis. PMID:25275430

  2. Streptococcus suis in invasive human infections in Poland: clonality and determinants of virulence and antimicrobial resistance.

    PubMed

    Bojarska, A; Molska, E; Janas, K; Skoczyńska, A; Stefaniuk, E; Hryniewicz, W; Sadowy, E

    2016-06-01

    The purpose of this study was to perform an analysis of Streptococcus suis human invasive isolates, collected in Poland by the National Reference Centre for Bacterial Meningitis. Isolates obtained from 21 patients during 2000-2013 were investigated by phenotypic tests, multilocus sequence typing (MLST), analysis of the TR9 locus from the multilocus variable number tandem repeat (VNTR) analysis (MLVA) scheme and pulsed-field gel electrophoresis (PFGE) of SmaI-digested DNA. Determinants of virulence and antimicrobial resistance were detected by polymerase chain reaction (PCR) and analysed by sequencing. All isolates represented sequence type 1 (ST1) and were suggested to be serotype 2. PFGE and analysis of the TR9 locus allowed the discrimination of four and 17 types, respectively. Most of the isolates were haemolysis- and DNase-positive, and around half of them formed biofilm. Genes encoding suilysin, extracellular protein factor, fibronectin-binding protein, muramidase-released protein, surface antigen one, enolase, serum opacity factor and pili were ubiquitous in the studied group, while none of the isolates carried sequences characteristic for the 89K pathogenicity island. All isolates were susceptible to penicillin, cefotaxime, imipenem, moxifloxacin, chloramphenicol, rifampicin, gentamicin, linezolid, vancomycin and daptomycin. Five isolates (24 %) were concomitantly non-susceptible to erythromycin, clindamycin and tetracycline, and harboured the tet(O) and erm(B) genes; for one isolate, lsa(E) and lnu(B) were additionally detected. Streptococcus suis isolated in Poland from human invasive infections belongs to a globally distributed clonal complex of this pathogen, enriched in virulence markers. This is the first report of the lsa(E) and lnu(B) resistance genes in S. suis.

  3. Complete genome sequence and comparative analysis of Acetobacter pasteurianus 386B, a strain well-adapted to the cocoa bean fermentation ecosystem.

    PubMed

    Illeghems, Koen; De Vuyst, Luc; Weckx, Stefan

    2013-08-01

    Acetobacter pasteurianus 386B, an acetic acid bacterium originating from a spontaneous cocoa bean heap fermentation, proved to be an ideal functional starter culture for coca bean fermentations. It is able to dominate the fermentation process, thereby resisting high acetic acid concentrations and temperatures. However, the molecular mechanisms underlying its metabolic capabilities and niche adaptations are unknown. In this study, whole-genome sequencing and comparative genome analysis was used to investigate this strain's mechanisms to dominate the cocoa bean fermentation process. The genome sequence of A. pasteurianus 386B is composed of a 2.8-Mb chromosome and seven plasmids. The annotation of 2875 protein-coding sequences revealed important characteristics, including several metabolic pathways, the occurrence of strain-specific genes such as an endopolygalacturonase, and the presence of mechanisms involved in tolerance towards various stress conditions. Furthermore, the low number of transposases in the genome and the absence of complete phage genomes indicate that this strain might be more genetically stable compared with other A. pasteurianus strains, which is an important advantage for the use of this strain as a functional starter culture. Comparative genome analysis with other members of the Acetobacteraceae confirmed the functional properties of A. pasteurianus 386B, such as its thermotolerant nature and unique genetic composition. Genome analysis of A. pasteurianus 386B provided detailed insights into the underlying mechanisms of its metabolic features, niche adaptations, and tolerance towards stress conditions. Combination of these data with previous experimental knowledge enabled an integrated, global overview of the functional characteristics of this strain. This knowledge will enable improved fermentation strategies and selection of appropriate acetic acid bacteria strains as functional starter culture for cocoa bean fermentation processes.

  4. Digital Correction of Motion Artifacts in Microscopy Image Sequences Collected from Living Animals Using Rigid and Non-Rigid Registration

    PubMed Central

    Lorenz, Kevin S.; Salama, Paul; Dunn, Kenneth W.; Delp, Edward J.

    2013-01-01

    Digital image analysis is a fundamental component of quantitative microscopy. However, intravital microscopy presents many challenges for digital image analysis. In general, microscopy volumes are inherently anisotropic, suffer from decreasing contrast with tissue depth, lack object edge detail, and characteristically have low signal levels. Intravital microscopy introduces the additional problem of motion artifacts, resulting from respiratory motion and heartbeat from specimens imaged in vivo. This paper describes an image registration technique for use with sequences of intravital microscopy images collected in time-series or in 3D volumes. Our registration method involves both rigid and non-rigid components. The rigid registration component corrects global image translations, while the non-rigid component manipulates a uniform grid of control points defined by B-splines. Each control point is optimized by minimizing a cost function consisting of two parts: a term to define image similarity, and a term to ensure deformation grid smoothness. Experimental results indicate that this approach is promising based on the analysis of several image volumes collected from the kidney, lung, and salivary gland of living rodents. PMID:22092443

  5. Phylogenetic Analysis of the Spike (S) Gene of the New Variants of Porcine Epidemic Diarrhoea Virus in Taiwan.

    PubMed

    Chiou, H-Y; Huang, Y-L; Deng, M-C; Chang, C-Y; Jeng, C-R; Tsai, P-S; Yang, C; Pang, V F; Chang, H-W

    2017-02-01

    New variants of porcine epidemic diarrhoea virus (PEDV), which emerged in Taiwan in late 2013, have caused a high morbidity and mortality in neonatal piglets. To investigate the molecular characteristics of the spike (S) gene of the emerging Taiwan PEDV strains for a better understanding of the genetic diversity and relationship among the Taiwan new variants and the global PEDVs, full-length S genes of PEDVs from nine 1-7 day-old piglets from three pig farms in the central and southern Taiwan were sequenced and analysed. The result of phylogenetic analysis of the S gene showed that all the Taiwan PEDV strains were closely related to the non-S INDEL strains from US, Canada and China, suggesting a common ancestor for these strains. As compared with the historic PEDVs and CV777-based vaccine strains, the nine Taiwan PEDV variants shared almost the same genetic signatures as the global non-S INDEL strains, including a series of insertions, deletions and mutations in the amino terminal as well as identical mutations in the neutralizing epitopes of the S gene. The high similarity of the S protein among the Taiwan and the globally emerged non-S INDEL PEDV strains suggests that the Taiwan new variants may share similar pathogenesis and immunogenicity as the global outbreak variants. The development of a novel vaccine based on the Taiwan or the global non-S INDEL strains may be contributive to the control of the current global porcine epidemic diarrhoea outbreaks. © 2015 Blackwell Verlag GmbH.

  6. Molecular characterization of Streptococcus agalactiae and Streptococcus uberis isolates from bovine milk.

    PubMed

    Shome, Bibek Ranjan; Bhuvana, Mani; Mitra, Susweta Das; Krithiga, Natesan; Shome, Rajeswari; Velu, Dhanikachalam; Banerjee, Apala; Barbuddhe, Sukhadeo B; Prabhudas, Krishnamshetty; Rahman, Habibar

    2012-12-01

    Streptococci are one among the major mastitis pathogens which have a considerable impact on cow health, milk quality, and productivity. The aim of the present study was to investigate the occurrence and virulence characteristics of streptococci from bovine milk and to assess the molecular epidemiology and population structure of the Indian isolates using multilocus sequence typing (MLST) and pulsed-field gel electrophoresis (PFGE). Out of a total of 209 bovine composite milk samples screened from four herds (A-D), 30 Streptococcus spp. were isolated from 29 milk samples. Among the 30 isolates, species-specific PCR and partial 16S rRNA gene sequence analysis identified 17 Streptococcus agalactiae arising from herd A and 13 Streptococcus uberis comprising of 5, 7, and 1 isolates from herds B, C, and D respectively. PCR based screening for virulence genes revealed the presence of the cfb and the pavA genes in 17 and 1 S. agalactiae isolates, respectively. Similarly, in S. uberis isolates, cfu gene was present in six isolates from herd C, the pau A/skc gene in all the isolates from herds B, C, and D, whereas the sua gene was present in four isolates from herd B and the only isolate from herd D. On MLST analysis, all the S. agalactiae isolates were found to be of a novel sequence type (ST), ST-483, reported for the first time and is a single locus variant of the predicted subgroup founder ST-310, while the S. uberis isolates were found to be of three novel sequence types, namely ST-439, ST-474, and ST-475, all reported for the first time. ST-474 was a double locus variant of three different STs of global clonal complex ST-143 considered to be associated with clinical and subclinical mastitis, but ST-439 and ST-475 were singletons. Unique sequence types identified for both S. agalactiae and S. uberis were found to be herd specific. On PFGE analysis, identical or closely related restriction patterns for S. agalactiae ST-483 and S. uberis ST-439 in herds A and B respectively, but an unrelated restriction pattern for S. uberis ST-474 and ST-475 isolates from herds D and C respectively, were obtained. This signifies that the isolates of particular ST may exhibit related PFGE patterns suggesting detection of a faster molecular clock by PFGE than MLST. Since all the isolates of both the species belonged to novel sequence types, their epidemiological significance in global context could not be ascertained, however, evidence suggests that they have uniquely evolved in Indian conditions. Further research would be useful for understanding the role of these pathogens in bovine sub-clinical mastitis and implementing effective control strategies in India.

  7. The Applied Development of a Tiered Multilocus Sequence Typing (MLST) Scheme for Dichelobacter nodosus.

    PubMed

    Blanchard, Adam M; Jolley, Keith A; Maiden, Martin C J; Coffey, Tracey J; Maboni, Grazieli; Staley, Ceri E; Bollard, Nicola J; Warry, Andrew; Emes, Richard D; Davies, Peers L; Tötemeyer, Sabine

    2018-01-01

    Dichelobacter nodosus ( D. nodosus ) is the causative pathogen of ovine footrot, a disease that has a significant welfare and financial impact on the global sheep industry. Previous studies into the phylogenetics of D. nodosus have focused on Australia and Scandinavia, meaning the current diversity in the United Kingdom (U.K.) population and its relationship globally, is poorly understood. Numerous epidemiological methods are available for bacterial typing; however, few account for whole genome diversity or provide the opportunity for future application of new computational techniques. Multilocus sequence typing (MLST) measures nucleotide variations within several loci with slow accumulation of variation to enable the designation of allele numbers to determine a sequence type. The usage of whole genome sequence data enables the application of MLST, but also core and whole genome MLST for higher levels of strain discrimination with a negligible increase in experimental cost. An MLST database was developed alongside a seven loci scheme using publically available whole genome data from the sequence read archive. Sequence type designation and strain discrimination was compared to previously published data to ensure reproducibility. Multiple D. nodosus isolates from U.K. farms were directly compared to populations from other countries. The U.K. isolates define new clades within the global population of D. nodosus and predominantly consist of serogroups A, B and H, however serogroups C, D, E, and I were also found. The scheme is publically available at https://pubmlst.org/dnodosus/.

  8. The Earth Microbiome Project: Meeting report of the "1 EMP meeting on sample selection and acquisition" at Argonne National Laboratory October 6 2010.

    PubMed

    Gilbert, Jack A; Meyer, Folker; Jansson, Janet; Gordon, Jeff; Pace, Norman; Tiedje, James; Ley, Ruth; Fierer, Noah; Field, Dawn; Kyrpides, Nikos; Glöckner, Frank-Oliver; Klenk, Hans-Peter; Wommack, K Eric; Glass, Elizabeth; Docherty, Kathryn; Gallery, Rachel; Stevens, Rick; Knight, Rob

    2010-12-25

    This report details the outcome the first meeting of the Earth Microbiome Project to discuss sample selection and acquisition. The meeting, held at the Argonne National Laboratory on Wednesday October 6(th) 2010, focused on discussion of how to prioritize environmental samples for sequencing and metagenomic analysis as part of the global effort of the EMP to systematically determine the functional and phylogenetic diversity of microbial communities across the world.

  9. Sequence analysis of the G gene of hRSVA ON1 genotype from Egyptian children with acute respiratory tract infections.

    PubMed

    Abdel-Moneim, Ahmed S; Soliman, May S; Kamel, Mahmoud M; El-Kholy, Amani A

    2018-03-01

    Human respiratory syncytial virus causes severe lower respiratory tract infection in neonates and children. Genotype ON1, with duplication of 72-nt in the G gene, was first detected in Canada and then recorded in other countries. In the current study, we describe the first detection of the ON1 genotype among children in Egypt in 2014/2015. Sequence analysis of the full-attachment G gene revealed that the majority of the strains examined were related to the ON1 genotype and only one sample related to N1 genotype. The Egyptian ON1 strains showed unique non-silent mutations in addition to variable mutations near the antigenic sites in comparison to the original ON1 ancestor strain. Continuous surveillance of hRSV regionally and globally is needed to understand the evolutionary mechanisms and strategies adopted by hRSV and their inducers for better adaption to the host.

  10. Methylation-sensitive amplified polymorphism-based genome-wide analysis of cytosine methylation profiles in Nicotiana tabacum cultivars.

    PubMed

    Jiao, J; Wu, J; Lv, Z; Sun, C; Gao, L; Yan, X; Cui, L; Tang, Z; Yan, B; Jia, Y

    2015-11-26

    This study aimed to investigate cytosine methylation profiles in different tobacco (Nicotiana tabacum) cultivars grown in China. Methylation-sensitive amplified polymorphism was used to analyze genome-wide global methylation profiles in four tobacco cultivars (Yunyan 85, NC89, K326, and Yunyan 87). Amplicons with methylated C motifs were cloned by reamplified polymerase chain reaction, sequenced, and analyzed. The results show that geographical location had a greater effect on methylation patterns in the tobacco genome than did sampling time. Analysis of the CG dinucleotide distribution in methylation-sensitive polymorphic restriction fragments suggested that a CpG dinucleotide cluster-enriched area is a possible site of cytosine methylation in the tobacco genome. The sequence alignments of the Nia1 gene (that encodes nitrate reductase) in Yunyan 87 in different regions indicate that a C-T transition might be responsible for the tobacco phenotype. T-C nucleotide replacement might also be responsible for the tobacco phenotype and may be influenced by geographical location.

  11. Molecular profiling of multiple myeloma: from gene expression analysis to next-generation sequencing.

    PubMed

    Agnelli, Luca; Tassone, Pierfrancesco; Neri, Antonino

    2013-06-01

    Multiple myeloma is a fatal malignant proliferation of clonal bone marrow Ig-secreting plasma cells, characterized by wide clinical, biological, and molecular heterogeneity. Herein, global gene and microRNA expression, genome-wide DNA profilings, and next-generation sequencing technology used to investigate the genomic alterations underlying the bio-clinical heterogeneity in multiple myeloma are discussed. High-throughput technologies have undoubtedly allowed a better comprehension of the molecular basis of the disease, a fine stratification, and early identification of high-risk patients, and have provided insights toward targeted therapy studies. However, such technologies are at risk of being affected by laboratory- or cohort-specific biases, and are moreover influenced by high number of expected false positives. This aspect has a major weight in myeloma, which is characterized by large molecular heterogeneity. Therefore, meta-analysis as well as multiple approaches are desirable if not mandatory to validate the results obtained, in line with commonly accepted recommendation for tumor diagnostic/prognostic biomarker studies.

  12. The domestication of the probiotic bacterium Lactobacillus acidophilus

    PubMed Central

    Bull, Matthew J.; Jolley, Keith A.; Bray, James E.; Aerts, Maarten; Vandamme, Peter; Maiden, Martin C. J.; Marchesi, Julian R.; Mahenthiralingam, Eshwar

    2014-01-01

    Lactobacillus acidophilus is a Gram-positive lactic acid bacterium that has had widespread historical use in the dairy industry and more recently as a probiotic. Although L. acidophilus has been designated as safe for human consumption, increasing commercial regulation and clinical demands for probiotic validation has resulted in a need to understand its genetic diversity. By drawing on large, well-characterised collections of lactic acid bacteria, we examined L. acidophilus isolates spanning 92 years and including multiple strains in current commercial use. Analysis of the whole genome sequence data set (34 isolate genomes) demonstrated L. acidophilus was a low diversity, monophyletic species with commercial isolates essentially identical at the sequence level. Our results indicate that commercial use has domesticated L. acidophilus with genetically stable, invariant strains being consumed globally by the human population. PMID:25425319

  13. The domestication of the probiotic bacterium Lactobacillus acidophilus.

    PubMed

    Bull, Matthew J; Jolley, Keith A; Bray, James E; Aerts, Maarten; Vandamme, Peter; Maiden, Martin C J; Marchesi, Julian R; Mahenthiralingam, Eshwar

    2014-11-26

    Lactobacillus acidophilus is a Gram-positive lactic acid bacterium that has had widespread historical use in the dairy industry and more recently as a probiotic. Although L. acidophilus has been designated as safe for human consumption, increasing commercial regulation and clinical demands for probiotic validation has resulted in a need to understand its genetic diversity. By drawing on large, well-characterised collections of lactic acid bacteria, we examined L. acidophilus isolates spanning 92 years and including multiple strains in current commercial use. Analysis of the whole genome sequence data set (34 isolate genomes) demonstrated L. acidophilus was a low diversity, monophyletic species with commercial isolates essentially identical at the sequence level. Our results indicate that commercial use has domesticated L. acidophilus with genetically stable, invariant strains being consumed globally by the human population.

  14. Comparative Genome Analysis of Extended-Spectrum-β-Lactamase-Producing Escherichia coli Sequence Type 131 Strains from Nepal and Japan

    PubMed Central

    Miyoshi-Akiyama, Tohru; Sherchan, Jatan Bahadur; Doi, Yohei; Nagamatsu, Maki; Sherchand, Jeevan B.; Tandukar, Sarmila; Ohmagari, Norio; Kirikae, Teruo; Ohara, Hiroshi

    2016-01-01

    ABSTRACT The global spread of extended-spectrum-β-lactamase (ESBL)-producing Escherichia coli (ESBL-E. coli) has largely been driven by the pandemic sequence type 131 (ST131). This study aimed to determine the molecular epidemiology of their spread in two Asian countries with contrasting prevalence. We conducted whole-genome sequencing (WGS) of ESBL-E. coli ST131 strains collected prospectively from Nepal and Japan, two countries in Asia with a high and low prevalence of ESBL-E. coli, respectively. We also systematically compared these genomes with those reported from other regions using publicly available WGS data for E. coli ST131 strains. Further, we conducted phylogenetic analysis of these isolates and all genome sequence data for ST131 strains to determine sequence diversity. One hundred five unique ESBL-E. coli isolates from Nepal (February 2013 to July 2013) and 76 isolates from Japan (October 2013 to September 2014) were included. Of these isolates, 54 (51%) isolates from Nepal and 11 (14%) isolates from Japan were identified as ST131 by WGS. Phylogenetic analysis based on WGS suggested that the majority of ESBL-E. coli ST131 isolates from Nepal clustered together, whereas those from Japan were more diverse. Half of the ESBL-E. coli ST131 isolates from Japan belonged to virotype C, whereas half of the isolates from Nepal belonged to a virotype other than virotype A, B, C, D, or E (A/B/C/D/E). The dominant sublineage of E. coli ST131 was H30Rx, which was most prominent in ESBL-E. coli ST131 isolates from Nepal. Our results revealed distinct phylogenetic characteristics of ESBL-E. coli ST131 spread in the two geographical areas of Asia, indicating the involvement of multiple factors in its local spread in each region. IMPORTANCE The global spread of ESBL-E. coli has been driven in large part by pandemic sequence type 131 (ST131). A recent study suggested that, within E. coli ST131, certain sublineages have disseminated worldwide with little association with their geographical origin, highlighting the complexity of the epidemiology of this pandemic clone. ST131 bacteria have also been classified into four virotypes based on the distribution of certain virulence genes. Information on virotype distribution in Asian ST131 strains is limited. We conducted whole-genome sequencing of ESBL-E. coli ST131 strains collected in Nepal and Japan, two Asian countries with a high and low prevalence of ESBL-E. coli, respectively. We systematically compared these ST131 genomes with those reported from other regions to gain insights into the molecular epidemiology of their spread and found the distinct phylogenetic characteristics of the spread of ESBL-E. coli ST131 in these two geographical areas of Asia. PMID:27830191

  15. Large scale analysis of the mutational landscape in HT-SELEX improves aptamer discovery

    PubMed Central

    Hoinka, Jan; Berezhnoy, Alexey; Dao, Phuong; Sauna, Zuben E.; Gilboa, Eli; Przytycka, Teresa M.

    2015-01-01

    High-Throughput (HT) SELEX combines SELEX (Systematic Evolution of Ligands by EXponential Enrichment), a method for aptamer discovery, with massively parallel sequencing technologies. This emerging technology provides data for a global analysis of the selection process and for simultaneous discovery of a large number of candidates but currently lacks dedicated computational approaches for their analysis. To close this gap, we developed novel in-silico methods to analyze HT-SELEX data and utilized them to study the emergence of polymerase errors during HT-SELEX. Rather than considering these errors as a nuisance, we demonstrated their utility for guiding aptamer discovery. Our approach builds on two main advancements in aptamer analysis: AptaMut—a novel technique allowing for the identification of polymerase errors conferring an improved binding affinity relative to the ‘parent’ sequence and AptaCluster—an aptamer clustering algorithm which is to our best knowledge, the only currently available tool capable of efficiently clustering entire aptamer pools. We applied these methods to an HT-SELEX experiment developing aptamers against Interleukin 10 receptor alpha chain (IL-10RA) and experimentally confirmed our predictions thus validating our computational methods. PMID:25870409

  16. Construction and Analysis of Functional Networks in the Gut Microbiome of Type 2 Diabetes Patients.

    PubMed

    Li, Lianshuo; Wang, Zicheng; He, Peng; Ma, Shining; Du, Jie; Jiang, Rui

    2016-10-01

    Although networks of microbial species have been widely used in the analysis of 16S rRNA sequencing data of a microbiome, the construction and analysis of a complete microbial gene network are in general problematic because of the large number of microbial genes in metagenomics studies. To overcome this limitation, we propose to map microbial genes to functional units, including KEGG orthologous groups and the evolutionary genealogy of genes: Non-supervised Orthologous Groups (eggNOG) orthologous groups, to enable the construction and analysis of a microbial functional network. We devised two statistical methods to infer pairwise relationships between microbial functional units based on a deep sequencing dataset of gut microbiome from type 2 diabetes (T2D) patients as well as healthy controls. Networks containing such functional units and their significant interactions were constructed subsequently. We conducted a variety of analyses of global properties, local properties, and functional modules in the resulting functional networks. Our data indicate that besides the observations consistent with the current knowledge, this study provides novel biological insights into the gut microbiome associated with T2D. Copyright © 2016. Production and hosting by Elsevier Ltd.

  17. Gene amplification of 5-enol-pyruvylshikimate-3-phosphate synthase in glyphosate-resistant Kochia scoparia.

    PubMed

    Wiersma, Andrew T; Gaines, Todd A; Preston, Christopher; Hamilton, John P; Giacomini, Darci; Robin Buell, C; Leach, Jan E; Westra, Philip

    2015-02-01

    Field-evolved resistance to the herbicide glyphosate is due to amplification of one of two EPSPS alleles, increasing transcription and protein with no splice variants or effects on other pathway genes. The widely used herbicide glyphosate inhibits the shikimate pathway enzyme 5-enolpyruvylshikimate-3-phosphate synthase (EPSPS). Globally, the intensive use of glyphosate for weed control has selected for glyphosate resistance in 31 weed species. Populations of suspected glyphosate-resistant Kochia scoparia were collected from fields located in the US central Great Plains. Glyphosate dose response verified glyphosate resistance in nine populations. The mechanism of resistance to glyphosate was investigated using targeted sequencing, quantitative PCR, immunoblotting, and whole transcriptome de novo sequencing to characterize the sequence and expression of EPSPS. Sequence analysis showed no mutation of the EPSPS Pro106 codon in glyphosate-resistant K. scoparia, whereas EPSPS genomic copy number and transcript abundance were elevated three- to ten-fold in resistant individuals relative to susceptible individuals. Glyphosate-resistant individuals with increased relative EPSPS copy numbers had consistently lower shikimate accumulation in leaf disks treated with 100 μM glyphosate and EPSPS protein levels were higher in glyphosate-resistant individuals with increased gene copy number compared to glyphosate-susceptible individuals. RNA sequence analysis revealed seven nucleotide positions with two different expressed alleles in glyphosate-susceptible reads. However, one nucleotide at the seven positions was predominant in glyphosate-resistant sequences, suggesting that only one of two EPSPS alleles was amplified in glyphosate-resistant individuals. No alternatively spliced EPSPS transcripts were detected. Expression of five other genes in the chorismate pathway was unaffected in glyphosate-resistant individuals with increased EPSPS expression. These results indicate increased EPSPS expression is a mechanism for glyphosate resistance in these K. scoparia populations.

  18. Genetic epidemiology of pharmacogenetic variants in South East Asian Malays using whole-genome sequences.

    PubMed

    Sivadas, A; Salleh, M Z; Teh, L K; Scaria, V

    2017-10-01

    Expanding the scope of pharmacogenomic research by including multiple global populations is integral to building robust evidence for its clinical translation. Deep whole-genome sequencing of diverse ethnic populations provides a unique opportunity to study rare and common pharmacogenomic markers that often vary in frequency across populations. In this study, we aim to build a diverse map of pharmacogenetic variants in South East Asian (SEA) Malay population using deep whole-genome sequences of 100 healthy SEA Malay individuals. We investigated the allelic diversity of potentially deleterious pharmacogenomic variants in SEA Malay population. Our analysis revealed 227 common and 466 rare potentially functional single nucleotide variants (SNVs) in 437 pharmacogenomic genes involved in drug metabolism, transport and target genes, including 74 novel variants. This study has created one of the most comprehensive maps of pharmacogenetic markers in any population from whole genomes and will hugely benefit pharmacogenomic investigations and drug dosage recommendations in SEA Malays.

  19. Epidemiological and molecular analysis of a waterborne outbreak of norovirus GII.4.

    PubMed

    Zhou, X; Li, H; Sun, L; Mo, Y; Chen, S; Wu, X; Liang, J; Zheng, H; Ke, C; Varma, J K; Klena, J D; Chen, Q; Zou, L; Yang, X

    2012-12-01

    Contaminated water is one of the main sources of norovirus (NoV) gastroenteritis outbreaks globally. Waterborne NoV outbreaks are infrequently attributed to GII.4 NoV. In September 2009, a NoV outbreak affected a small school in Guangdong Province, China. Epidemiological investigations indicated that household use water, supplied by a well, was the probable source (relative risk 1·9). NoV nucleic acid material in concentrated well-water samples was detected using real-time RT-PCR. Nucleotide sequences of NoV extracted from diarrhoea and well-water specimens were identical and had the greatest sequence identity to corresponding sequences from the epidemic strain GII.4-2006b. Our report documents the first laboratory-confirmed waterborne outbreak caused by GII.4 NoV genotype in China. Our investigations indicate that well water, intended exclusively for household use but not for consumption, caused this outbreak. The results of this report serve as a reminder that private well water intended for household use should be tested for NoV.

  20. Molecular characterization of canine parvovirus in Vientiane, Laos.

    PubMed

    Vannamahaxay, Soulasack; Vongkhamchanh, Souliya; Intanon, Montira; Tangtrongsup, Sahatchai; Tiwananthagorn, Saruda; Pringproa, Kidsadagon; Chuammitri, Phongsakorn

    2017-05-01

    The global emergence of canine parvovirus type 2c (CPV-2c) has been well documented. In the present study, 139 rectal swab samples collected from diarrheic dogs living in Vientiane, Laos, in 2016 were tested for the presence of the canine parvovirus (CPV) VP2 gene by PCR. The results showed that 82.73% (115/139) of dogs were CPV positive by PCR. The partial VP2 gene was sequenced in 94 of the positive samples; 91 samples belonged to CPV-2c (426Glu) subtype, while 3 samples belonged to the CPV-2a (426Asn) subtype. Notably, phylogenetic analysis of amino acid sequences revealed a close relationship between Laotian isolates and novel Chinese CPV-2c isolates. In Laotian CPV isolates, aligned protein sequences indicated a high rate of residue substitutions at positions 305, 324, 345, 370, 375, and 426 in the GH loop. The mutation at residue 370 (Q370R), a single mutation, was characterized as a unique mutant residue specific to the Laotian CPV-2c variant.

  1. Consecutive analysis of mutation spectrum in the dystrophin gene of 507 Korean boys with Duchenne/Becker muscular dystrophy in a single center.

    PubMed

    Cho, Anna; Seong, Moon-Woo; Lim, Byung Chan; Lee, Hwa Jeen; Byeon, Jung Hye; Kim, Seung Soo; Kim, Soo Yeon; Choi, Sun Ah; Wong, Ai-Lynn; Lee, Jeongho; Kim, Jon Soo; Ryu, Hye Won; Lee, Jin Sook; Kim, Hunmin; Hwang, Hee; Choi, Ji Eun; Kim, Ki Joong; Hwang, Young Seung; Hong, Ki Ho; Park, Seungman; Cho, Sung Im; Lee, Seung Jun; Park, Hyunwoong; Seo, Soo Hyun; Park, Sung Sup; Chae, Jong Hee

    2017-05-01

    Duchenne and Becker muscular dystrophies (DMD and BMD) are allelic X-linked recessive muscle diseases caused by mutations in the large and complex dystrophin gene. We analyzed the dystrophin gene in 507 Korean DMD/BMD patients by multiple ligation-dependent probe amplification and direct sequencing. Overall, 117 different deletions, 48 duplications, and 90 pathogenic sequence variations, including 30 novel variations, were identified. Deletions and duplications accounted for 65.4% and 13.3% of Korean dystrophinopathy, respectively, suggesting that the incidence of large rearrangements in dystrophin is similar among different ethnic groups. We also detected sequence variations in >100 probands. The small variations were dispersed across the whole gene, and 12.3% were nonsense mutations. Precise genetic characterization in patients with DMD/BMD is timely and important for implementing nationwide registration systems and future molecular therapeutic trials in Korea and globally. Muscle Nerve 55: 727-734, 2017. © 2016 Wiley Periodicals, Inc.

  2. CRISPR Diversity and Microevolution in Clostridium difficile.

    PubMed

    Andersen, Joakim M; Shoup, Madelyn; Robinson, Cathy; Britton, Robert; Olsen, Katharina E P; Barrangou, Rodolphe

    2016-09-19

    Virulent strains of Clostridium difficile have become a global health problem associated with morbidity and mortality. Traditional typing methods do not provide ideal resolution to track outbreak strains, ascertain genetic diversity between isolates, or monitor the phylogeny of this species on a global basis. Here, we investigate the occurrence and diversity of clustered regularly interspaced short palindromic repeats (CRISPR) and CRISPR-associated genes (cas) in C. difficile to assess the potential of CRISPR-based phylogeny and high-resolution genotyping. A single Type-IB CRISPR-Cas system was identified in 217 analyzed genomes with cas gene clusters present at conserved chromosomal locations, suggesting vertical evolution of the system, assessing a total of 1,865 CRISPR arrays. The CRISPR arrays, markedly enriched (8.5 arrays/genome) compared with other species, occur both at conserved and variable locations across strains, and thus provide a basis for typing based on locus occurrence and spacer polymorphism. Clustering of strains by array composition correlated with sequence type (ST) analysis. Spacer content and polymorphism within conserved CRISPR arrays revealed phylogenetic relationship across clades and within ST. Spacer polymorphisms of conserved arrays were instrumental for differentiating closely related strains, e.g., ST1/RT027/B1 strains and pathogenicity locus encoding ST3/RT001 strains. CRISPR spacers showed sequence similarity to phage sequences, which is consistent with the native role of CRISPR-Cas as adaptive immune systems in bacteria. Overall, CRISPR-Cas sequences constitute a valuable basis for genotyping of C. difficile isolates, provide insights into the micro-evolutionary events that occur between closely related strains, and reflect the evolutionary trajectory of these genomes. © The Author(s) 2016. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  3. Cystic echinococcosis in South America: systematic review of species and genotypes of Echinococcus granulosus sensu lato in humans and natural domestic hosts.

    PubMed

    Cucher, Marcela Alejandra; Macchiaroli, Natalia; Baldi, Germán; Camicia, Federico; Prada, Laura; Maldonado, Lucas; Avila, Héctor Gabriel; Fox, Adolfo; Gutiérrez, Ariana; Negro, Perla; López, Raúl; Jensen, Oscar; Rosenzvit, Mara; Kamenetzky, Laura

    2016-02-01

    To systematically review publications on Echinococcus granulosus sensu lato species/genotypes reported in domestic intermediate and definitive hosts in South America and in human cases worldwide, taking into account those articles where DNA sequencing was performed; and to analyse the density of each type of livestock that can act as intermediate host, and features of medical importance such as cyst organ location. Literature search in numerous databases. We included only articles where samples were genotyped by sequencing since to date it is the most accurate method to unambiguously identify all E. granulosus s. l. genotypes. Also, we report new E. granulosus s. l. samples from Argentina and Uruguay analysed by sequencing of cox1 gene. In South America, five countries have cystic echinococcosis cases for which sequencing data are available: Argentina, Brazil, Chile, Peru and Uruguay, adding up 1534 cases. E. granulosus s. s. (G1) accounts for most of the global burden of human and livestock cases. Also, E. canadensis (G6) plays a significant role in human cystic echinococcosis. Likewise, worldwide analysis of human cases showed that 72.9% are caused by E. granulosus s. s. (G1) and 12.2% and 9.6% by E. canadensis G6 and G7, respectively. E. granulosus s. s. (G1) accounts for most of the global burden followed by E. canadensis (G6 and G7) in South America and worldwide. This information should be taken into account to suit local cystic echinococcosis control and prevention programmes according to each molecular epidemiological situation. © 2015 John Wiley & Sons Ltd.

  4. Hitchhiker's guide to multi-dimensional plant pathology.

    PubMed

    Saunders, Diane G O

    2015-02-01

    Filamentous pathogens pose a substantial threat to global food security. One central question in plant pathology is how pathogens cause infection and manage to evade or suppress plant immunity to promote disease. With many technological advances over the past decade, including DNA sequencing technology, an array of new tools has become embedded within the toolbox of next-generation plant pathologists. By employing a multidisciplinary approach plant pathologists can fully leverage these technical advances to answer key questions in plant pathology, aimed at achieving global food security. This review discusses the impact of: cell biology and genetics on progressing our understanding of infection structure formation on the leaf surface; biochemical and molecular analysis to study how pathogens subdue plant immunity and manipulate plant processes through effectors; genomics and DNA sequencing technologies on all areas of plant pathology; and new forms of collaboration on accelerating exploitation of big data. As we embark on the next phase in plant pathology, the integration of systems biology promises to provide a holistic perspective of plant–pathogen interactions from big data and only once we fully appreciate these complexities can we design truly sustainable solutions to preserve our resources.

  5. Global insights into acetic acid resistance mechanisms and genetic stability of Acetobacter pasteurianus strains by comparative genomics

    PubMed Central

    Wang, Bin; Shao, Yanchun; Chen, Tao; Chen, Wanping; Chen, Fusheng

    2015-01-01

    Acetobacter pasteurianus (Ap) CICC 20001 and CGMCC 1.41 are two acetic acid bacteria strains that, because of their strong abilities to produce and tolerate high concentrations of acetic acid, have been widely used to brew vinegar in China. To globally understand the fermentation characteristics, acid-tolerant mechanisms and genetic stabilities, their genomes were sequenced. Genomic comparisons with 9 other sequenced Ap strains revealed that their chromosomes were evolutionarily conserved, whereas the plasmids were unique compared with other Ap strains. Analysis of the acid-tolerant metabolic pathway at the genomic level indicated that the metabolism of some amino acids and the known mechanisms of acetic acid tolerance, might collaboratively contribute to acetic acid resistance in Ap strains. The balance of instability factors and stability factors in the genomes of Ap CICC 20001 and CGMCC 1.41 strains might be the basis for their genetic stability, consistent with their stable industrial performances. These observations provide important insights into the acid resistance mechanism and the genetic stability of Ap strains and lay a foundation for future genetic manipulation and engineering of these two strains. PMID:26691589

  6. Developmental staging of male murine embryonic gonad by SAGE analysis

    PubMed Central

    Lee, Tin-Lap; Li, Yunmin; Alba, Diana; Vong, Queenie P.; Wu, Shao-Ming; Baxendale, Vanessa; Rennert, Owen M.; Lau, Yun-Fai Chris; Chan, Wai-Yee

    2012-01-01

    Despite the identification of key genes such as Sry integral to embryonic gonadal development, the genomic classification and identification of chromosomal activation of this process is still poorly understood. To better understand the genetic regulation of gonadal development, we performed Serial Analysis of Gene Expression (SAGE) to profile the genes and novel transcripts, and an average of 152,000 tags from male embryonic gonads at E10.5 (embryonic day 10.5), E11.5, E12.5, E13.5, E15.5 and E17.5 were analyzed. A total of 275,583 non-singleton tags that do not map to any annotated sequence were identified in the six gonad libraries, and 47,255 tags were mapped to 24,975 annotated sequences, among which 987 sequences were uncharacterized. Utilizing an unsupervised pattern identification technique, we established molecular staging of male gonadal development. Rather than providing a static descriptive analysis, we developed algorithms to cluster the SAGE data and assign SAGE tags to a corresponding chromosomal position; these data are displayed in chromosome graphic format. A prominent increase in global genomic activity from E10.5 to E17.5 was observed. Important chromosomal regions related to the developmental processes were identified and validated based on established mouse models with developmental disorders. These regions may represent markers for early diagnosis for disorders of male gonad development as well as potential treatment targets. PMID:19376482

  7. Differentiation of Trichophyton rubrum clinical isolates from Japanese and Chinese patients by randomly amplified polymorphic DNA and DNA sequence analysis of the non-transcribed spacer region of the rRNA gene.

    PubMed

    Yang, Xiumin; Sugita, Takashi; Takashima, Masako; Hiruma, Masataro; Li, Ruoyu; Sudo, Hajime; Ogawa, Hideoki; Ikeda, Shigaku

    2009-04-01

    Trichophyton rubrum is the most common pathogen causing dermatophytosis worldwide. Recent genetic investigations showed that the microorganism originated in Africa and then spread to Europe and North America via Asia. We investigated the intraspecific diversity of T. rubrum isolated from two closely located Asian countries, Japan and China. A total of 150 clinical isolates of T. rubrum obtained from Japanese and Chinese patients were analyzed by randomly amplified polymorphic DNA (RAPD) and DNA sequence analysis of the non-transcribed spacer (NTS) region in the rRNA gene. RAPD analysis divided the 150 strains into two major clusters, A and B. Of the Japanese isolates, 30% belonged to cluster A and 70% belonged to cluster B, whereas 91% of the Chinese isolates were in cluster A. The NTS region of the rRNA gene was divided into four major groups (I-IV) based on DNA sequencing. The majority of Japanese isolates were type IV (51%), and the majority of Chinese isolates were type III (75%). These results suggest that although Japan and China are neighboring countries, the origins of T. rubrum isolates from these countries may not be identical. These findings provide information useful for tracing the global transmission routes of T. rubrum.

  8. MotionFlow: Visual Abstraction and Aggregation of Sequential Patterns in Human Motion Tracking Data.

    PubMed

    Jang, Sujin; Elmqvist, Niklas; Ramani, Karthik

    2016-01-01

    Pattern analysis of human motions, which is useful in many research areas, requires understanding and comparison of different styles of motion patterns. However, working with human motion tracking data to support such analysis poses great challenges. In this paper, we propose MotionFlow, a visual analytics system that provides an effective overview of various motion patterns based on an interactive flow visualization. This visualization formulates a motion sequence as transitions between static poses, and aggregates these sequences into a tree diagram to construct a set of motion patterns. The system also allows the users to directly reflect the context of data and their perception of pose similarities in generating representative pose states. We provide local and global controls over the partition-based clustering process. To support the users in organizing unstructured motion data into pattern groups, we designed a set of interactions that enables searching for similar motion sequences from the data, detailed exploration of data subsets, and creating and modifying the group of motion patterns. To evaluate the usability of MotionFlow, we conducted a user study with six researchers with expertise in gesture-based interaction design. They used MotionFlow to explore and organize unstructured motion tracking data. Results show that the researchers were able to easily learn how to use MotionFlow, and the system effectively supported their pattern analysis activities, including leveraging their perception and domain knowledge.

  9. [Comments on the use of the "life-table method" in orthopedics].

    PubMed

    Hassenpflug, J; Hahne, H J; Hedderich, J

    1992-01-01

    In the description of long term results, e.g. of joint replacements, survivorship analysis is used increasingly in orthopaedic surgery. The survivorship analysis is more useful to describe the frequency of failure rather than global statements in percentage. The relative probability of failure for fixed intervals is drawn from the number of controlled patients and the frequency of failure. The complementary probabilities of success are linked in their temporal sequence thus representing the probability of survival at a fixed endpoint. Necessary condition for the use of this procedure is the exact definition of moment and manner of failure. It is described how to establish survivorship tables.

  10. Ecological Consistency of SSU rRNA-Based Operational Taxonomic Units at a Global Scale

    PubMed Central

    Schmidt, Thomas S. B.; Matias Rodrigues, João F.; von Mering, Christian

    2014-01-01

    Operational Taxonomic Units (OTUs), usually defined as clusters of similar 16S/18S rRNA sequences, are the most widely used basic diversity units in large-scale characterizations of microbial communities. However, it remains unclear how well the various proposed OTU clustering algorithms approximate ‘true’ microbial taxa. Here, we explore the ecological consistency of OTUs – based on the assumption that, like true microbial taxa, they should show measurable habitat preferences (niche conservatism). In a global and comprehensive survey of available microbial sequence data, we systematically parse sequence annotations to obtain broad ecological descriptions of sampling sites. Based on these, we observe that sequence-based microbial OTUs generally show high levels of ecological consistency. However, different OTU clustering methods result in marked differences in the strength of this signal. Assuming that ecological consistency can serve as an objective external benchmark for cluster quality, we conclude that hierarchical complete linkage clustering, which provided the most ecologically consistent partitions, should be the default choice for OTU clustering. To our knowledge, this is the first approach to assess cluster quality using an external, biologically meaningful parameter as a benchmark, on a global scale. PMID:24763141

  11. Artificial delta growth

    NASA Astrophysics Data System (ADS)

    Mikeš, Daniel

    2010-05-01

    A deltaic sedimentary system has a point source; sediment is carried over the delta plain by distributary channels away from the point source and deposited at the delta front by distributary mouth bars. The established methods to describe such a sedimentary system are "bedding analysis", "facies analysis", and "basin analysis". We shall call the ambient conditions "input" and the rock record "output". There exist a number of methods to deduce input from output, e.g. "Sequence stratigraphy" (a.o. Vail et al. 1977, Catuneanu et al. 2009), "Shoreline trajectory" (a.o. Helland-Hansen & Martinsen 1996, Helland-Hansen & Hampson 2009) on the one hand and the complex use of established techniques on the other (a.o. Miall & Miall 2001, Miall & Miall 2002). None of these deductive methods seems to be sufficient. I claim that the common errors in all these attempts are the following: (1) a sedimentary system is four-dimensional (3+1) and a lesser dimensional analysis is insufficient; (2) a sedimentary system is complex and any empirical/deductive analysis is non-unique. The proper approach to the problem is therefore the theoretical/inductive analysis. To that end we performed six scenarios of a scaled version of a passive margin delta in a flume tank. The scenarios have identical stepwise tectonic subsidence and semi-cyclic sealevel, but different supply curves, i.e. supply is: constant, highly-frequent, proportional to sealevel, inversely proportional to sealevel, lagging to sealevel, ahead of sealevel. The preliminary results are indicative. Lobe-switching occurs frequently and hence locally sedimentation occurs shortly and hiatuses are substantial; therefore events in 2D (+1) cross-sections don't correlate temporally. The number of sedimentary cycles disequals the number of sealevel cycles. Lobe-switching and stepwise tectonic subsidence cause onlap/transgression. Erosional unconformities are local diachronous events, whereas maximum flooding surfaces are regional synchronous events. The evolution of the different scenarios is significantly different. These results demonstrate that the complexity of the deltaic system merits the inductive approach. References: Catuneanu, O. et al., 2009. Towards the standardization of sequence stratigraphy. Earth-Science Reviews, v. 92, p. 1-33. Helland-Hansen, W., and Martinsen, O.J., 1996, Shoreline trajectories and sequences: description of variable depositional dip scenarios: Journal of Sedimentary Research, v. 66, p. 670-688. Helland-Hansen, W. and Hampson, G.J., 2009, Trajectory analysis: concepts and applications. In: Basin Research Special Publication 21, p. 454-483. Miall, A.D., Miall, C.E., 2001, Sequence stratigraphy as a scientific enterprise: the evolution and persistence of conflicting paradigms, Earth Science Reviews, v. 54, p. 321-348. Miall, C.E., Miall, A.D., 2002, The Exxon Factor: the roles of corporate and academic science in the emergence and success of a new global model of sequence stratigraphy, Sociological Quarterly, v. 43-3, p. 307-334. Vail, P.R., Mitchum Jr., R.M., Todd, R.G., Widmier, J.M., Thompson III, S., Sangree, J.B., Bubb, J.N., Hatlelid, W.G., 1977. Seismic stratigraphy and global changes of sea-level. In: Payton, C.E. (Ed.), Seismic Stratigraphy-Applications to Hydrocarbon Exploration. American Association of Petroleum Geologists Memoir, v. 26, p. 49-212.

  12. Partial Shotgun Sequencing of the Boechera stricta Genome Reveals Extensive Microsynteny and Promoter Conservation with Arabidopsis1[W

    PubMed Central

    Windsor, Aaron J.; Schranz, M. Eric; Formanová, Nataša; Gebauer-Jung, Steffi; Bishop, John G.; Schnabelrauch, Domenica; Kroymann, Juergen; Mitchell-Olds, Thomas

    2006-01-01

    Comparative genomics provides insight into the evolutionary dynamics that shape discrete sequences as well as whole genomes. To advance comparative genomics within the Brassicaceae, we have end sequenced 23,136 medium-sized insert clones from Boechera stricta, a wild relative of Arabidopsis (Arabidopsis thaliana). A significant proportion of these sequences, 18,797, are nonredundant and display highly significant similarity (BLASTn e-value ≤ 10−30) to low copy number Arabidopsis genomic regions, including more than 9,000 annotated coding sequences. We have used this dataset to identify orthologous gene pairs in the two species and to perform a global comparison of DNA regions 5′ to annotated coding regions. On average, the 500 nucleotides upstream to coding sequences display 71.4% identity between the two species. In a similar analysis, 61.4% identity was observed between 5′ noncoding sequences of Brassica oleracea and Arabidopsis, indicating that regulatory regions are not as diverged among these lineages as previously anticipated. By mapping the B. stricta end sequences onto the Arabidopsis genome, we have identified nearly 2,000 conserved blocks of microsynteny (bracketing 26% of the Arabidopsis genome). A comparison of fully sequenced B. stricta inserts to their homologous Arabidopsis genomic regions indicates that indel polymorphisms >5 kb contribute substantially to the genome size difference observed between the two species. Further, we demonstrate that microsynteny inferred from end-sequence data can be applied to the rapid identification and cloning of genomic regions of interest from nonmodel species. These results suggest that among diploid relatives of Arabidopsis, small- to medium-scale shotgun sequencing approaches can provide rapid and cost-effective benefits to evolutionary and/or functional comparative genomic frameworks. PMID:16607030

  13. Quantification of the epitope diversity of HIV-1-specific binding antibodies by peptide microarrays for global HIV-1 vaccine development

    DOE PAGES

    Stephenson, Kathryn E.; Neubauer, George H.; Reimer, Ulf; ...

    2014-11-14

    An effective vaccine against human immunodeficiency virus type 1 (HIV-1) will have to provide protection against a vast array of different HIV-1 strains. Current methods to measure HIV-1-specific binding antibodies following immunization typically focus on determining the magnitude of antibody responses, but the epitope diversity of antibody responses has remained largely unexplored. Here we describe the development of a global HIV-1 peptide microarray that contains 6564 peptides from across the HIV-1 proteome and covers the majority of HIV-1 sequences in the Los Alamos National Laboratory global HIV-1 sequence database. Using this microarray, we quantified the magnitude, breadth, and depth ofmore » IgG binding to linear HIV-1 sequences in HIV-1-infected humans and HIV-1-vaccinated humans, rhesus monkeys and guinea pigs. The microarray measured potentially important differences in antibody epitope diversity, particularly regarding the depth of epitope variants recognized at each binding site. Our data suggest that the global HIV-1 peptide microarray may be a useful tool for both preclinical and clinical HIV-1 research.« less

  14. Quantification of the epitope diversity of HIV-1-specific binding antibodies by peptide microarrays for global HIV-1 vaccine development

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Stephenson, Kathryn E.; Neubauer, George H.; Reimer, Ulf

    An effective vaccine against human immunodeficiency virus type 1 (HIV-1) will have to provide protection against a vast array of different HIV-1 strains. Current methods to measure HIV-1-specific binding antibodies following immunization typically focus on determining the magnitude of antibody responses, but the epitope diversity of antibody responses has remained largely unexplored. Here we describe the development of a global HIV-1 peptide microarray that contains 6564 peptides from across the HIV-1 proteome and covers the majority of HIV-1 sequences in the Los Alamos National Laboratory global HIV-1 sequence database. Using this microarray, we quantified the magnitude, breadth, and depth ofmore » IgG binding to linear HIV-1 sequences in HIV-1-infected humans and HIV-1-vaccinated humans, rhesus monkeys and guinea pigs. The microarray measured potentially important differences in antibody epitope diversity, particularly regarding the depth of epitope variants recognized at each binding site. Our data suggest that the global HIV-1 peptide microarray may be a useful tool for both preclinical and clinical HIV-1 research.« less

  15. Global DNA hypomethylation in peripheral blood leukocytes as a biomarker for cancer risk: a meta-analysis.

    PubMed

    Woo, Hae Dong; Kim, Jeongseon

    2012-01-01

    Good biomarkers for early detection of cancer lead to better prognosis. However, harvesting tumor tissue is invasive and cannot be routinely performed. Global DNA methylation of peripheral blood leukocyte DNA was evaluated as a biomarker for cancer risk. We performed a meta-analysis to estimate overall cancer risk according to global DNA hypomethylation levels among studies with various cancer types and analytical methods used to measure DNA methylation. Studies were systemically searched via PubMed with no language limitation up to July 2011. Summary estimates were calculated using a fixed effects model. The subgroup analyses by experimental methods to determine DNA methylation level were performed due to heterogeneity within the selected studies (p<0.001, I(2): 80%). Heterogeneity was not found in the subgroup of %5-mC (p = 0.393, I(2): 0%) and LINE-1 used same target sequence (p = 0.097, I(2): 49%), whereas considerable variance remained in LINE-1 (p<0.001, I(2): 80%) and bladder cancer studies (p = 0.016, I(2): 76%). These results suggest that experimental methods used to quantify global DNA methylation levels are important factors in the association study between hypomethylation levels and cancer risk. Overall, cancer risks of the group with the lowest DNA methylation levels were significantly higher compared to the group with the highest methylation levels [OR (95% CI): 1.48 (1.28-1.70)]. Global DNA hypomethylation in peripheral blood leukocytes may be a suitable biomarker for cancer risk. However, the association between global DNA methylation and cancer risk may be different based on experimental methods, and region of DNA targeted for measuring global hypomethylation levels as well as the cancer type. Therefore, it is important to select a precise and accurate surrogate marker for global DNA methylation levels in the association studies between global DNA methylation levels in peripheral leukocyte and cancer risk.

  16. Complete Genome Sequences of Isolates of Enterococcus faecium Sequence Type 117, a Globally Disseminated Multidrug-Resistant Clone

    PubMed Central

    Tedim, Ana P.; Lanza, Val F.; Manrique, Marina; Pareja, Eduardo; Ruiz-Garbajosa, Patricia; Cantón, Rafael; Baquero, Fernando; Tobes, Raquel

    2017-01-01

    ABSTRACT The emergence of nosocomial infections by multidrug-resistant sequence type 117 (ST117) Enterococcus faecium has been reported in several European countries. ST117 has been detected in Spanish hospitals as one of the main causes of bloodstream infections. We analyzed genome variations of ST117 strains isolated in Madrid and describe the first ST117 closed genome sequences. PMID:28360174

  17. Insights into the genetic structure and diversity of 38 South Asian Indians from deep whole-genome sequencing.

    PubMed

    Wong, Lai-Ping; Lai, Jason Kuan-Han; Saw, Woei-Yuh; Ong, Rick Twee-Hee; Cheng, Anthony Youzhi; Pillai, Nisha Esakimuthu; Liu, Xuanyao; Xu, Wenting; Chen, Peng; Foo, Jia-Nee; Tan, Linda Wei-Lin; Koo, Seok-Hwee; Soong, Richie; Wenk, Markus Rene; Lim, Wei-Yen; Khor, Chiea-Chuen; Little, Peter; Chia, Kee-Seng; Teo, Yik-Ying

    2014-05-01

    South Asia possesses a significant amount of genetic diversity due to considerable intergroup differences in culture and language. There have been numerous reports on the genetic structure of Asian Indians, although these have mostly relied on genotyping microarrays or targeted sequencing of the mitochondria and Y chromosomes. Asian Indians in Singapore are primarily descendants of immigrants from Dravidian-language-speaking states in south India, and 38 individuals from the general population underwent deep whole-genome sequencing with a target coverage of 30X as part of the Singapore Sequencing Indian Project (SSIP). The genetic structure and diversity of these samples were compared against samples from the Singapore Sequencing Malay Project and populations in Phase 1 of the 1,000 Genomes Project (1 KGP). SSIP samples exhibited greater intra-population genetic diversity and possessed higher heterozygous-to-homozygous genotype ratio than other Asian populations. When compared against a panel of well-defined Asian Indians, the genetic makeup of the SSIP samples was closely related to South Indians. However, even though the SSIP samples clustered distinctly from the Europeans in the global population structure analysis with autosomal SNPs, eight samples were assigned to mitochondrial haplogroups that were predominantly present in Europeans and possessed higher European admixture than the remaining samples. An analysis of the relative relatedness between SSIP with two archaic hominins (Denisovan, Neanderthal) identified higher ancient admixture in East Asian populations than in SSIP. The data resource for these samples is publicly available and is expected to serve as a valuable complement to the South Asian samples in Phase 3 of 1 KGP.

  18. Upper Cretaceous sequences and sea-level history, New Jersey Coastal Plain

    USGS Publications Warehouse

    Miller, K.G.; Sugarman, P.J.; Browning, J.V.; Kominz, M.A.; Olsson, R.K.; Feigenson, M.D.; Hernandez, J.C.

    2004-01-01

    We developed a Late Cretaceous sealevel estimate from Upper Cretaceous sequences at Bass River and Ancora, New Jersey (ODP [Ocean Drilling Program] Leg 174AX). We dated 11-14 sequences by integrating Sr isotope and biostratigraphy (age resolution ??0.5 m.y.) and then estimated paleoenvironmental changes within the sequences from lithofacies and biofacies analyses. Sequences generally shallow upsection from middle-neritic to inner-neritic paleodepths, as shown by the transition from thin basal glauconite shelf sands (transgressive systems tracts [TST]), to medial-prodelta silty clays (highstand systems tracts [HST]), and finally to upper-delta-front quartz sands (HST). Sea-level estimates obtained by backstripping (accounting for paleodepth variations, sediment loading, compaction, and basin subsidence) indicate that large (>25 m) and rapid (???1 m.y.) sea-level variations occurred during the Late Cretaceous greenhouse world. The fact that the timing of Upper Cretaceous sequence boundaries in New Jersey is similar to the sea-level lowering records of Exxon Production Research Company (EPR), northwest European sections, and Russian platform outcrops points to a global cause. Because backstripping, seismicity, seismic stratigraphic data, and sediment-distribution patterns all indicate minimal tectonic effects on the New Jersey Coastal Plain, we interpret that we have isolated a eustatic signature. The only known mechanism that can explain such global changes-glacio-eustasy-is consistent with foraminiferal ??18O data. Either continental ice sheets paced sea-level changes during the Late Cretaceous, or our understanding of causal mechanisms for global sea-level change is fundamentally flawed. Comparison of our eustatic history with published ice-sheet models and Milankovitch predictions suggests that small (5-10 ?? 106 km3), ephemeral, and areally restricted Antarctic ice sheets paced the Late Cretaceous global sea-level change. New Jersey and Russian eustatic estimates are typically one-half of the EPR amplitudes, though this difference varies through time, yielding markedly different eustatic curves. We conclude that New Jersey provides the best available estimate for Late Cretaceous sea-level variations. ?? 2004 Geological Society America.

  19. Buckling Test Results from the 8-Foot-Diameter Orthogrid-Stiffened Cylinder Test Article TA01. [Test Dates: 19-21 November 2008

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Waters, W. Allen, Jr.; Haynie, Waddy T.

    2015-01-01

    Results from the testing of cylinder test article SBKF-P2-CYLTA01 (referred to herein as TA01) are presented. The testing was conducted at the Marshall Space Flight Center (MSFC), November 19?21, 2008, in support of the Shell Buckling Knockdown Factor (SBKF) Project.i The test was used to verify the performance of a newly constructed buckling test facility at MSFC and to verify the test article design and analysis approach used by the SBKF project researchers. TA01 is an 8-foot-diameter (96-inches), 78.0-inch long, aluminum-lithium (Al-Li), orthogrid-stiffened cylindrical shell similar to those used in current state-of-the-art launch vehicle structures and was designed to exhibit global buckling when subjected to compression loads. Five different load sequences were applied to TA01 during testing and included four sub-critical load sequences, i.e., loading conditions that did not cause buckling or material failure, and one final load sequence to buckling and collapse. The sub-critical load sequences consisted of either uniform axial compression loading or combined axial compression and bending and the final load sequence subjected TA01 to uniform axial compression. Traditional displacement transducers and strain gages were used to monitor the test article response at nearly 300 locations and an advanced digital image correlation system was used to obtain low-speed and high-speed full-field displacement measurements of the outer surface of the test article. Overall, the test facility and test article performed as designed. In particular, the test facility successfully applied all desired load combinations to the test article and was able to test safely into the postbuckling range of loading, and the test article failed by global buckling. In addition, the test results correlated well with initial pretest predictions.

  20. Genome of a Low-Salinity Ammonia-Oxidizing Archaeon Determined by Single-Cell and Metagenomic Analysis

    PubMed Central

    Potanina, Anastasia; Francis, Christopher A.; Quake, Stephen R.

    2011-01-01

    Ammonia-oxidizing archaea (AOA) are thought to be among the most abundant microorganisms on Earth and may significantly impact the global nitrogen and carbon cycles. We sequenced the genome of AOA in an enrichment culture from low-salinity sediments in San Francisco Bay using single-cell and metagenomic genome sequence data. Five single cells were isolated inside an integrated microfluidic device using laser tweezers, the cells' genomic DNA was amplified by multiple displacement amplification (MDA) in 50 nL volumes and then sequenced by high-throughput DNA pyrosequencing. This microscopy-based approach to single-cell genomics minimizes contamination and allows correlation of high-resolution cell images with genomic sequences. Statistical properties of coverage across the five single cells, in combination with the contrasting properties of the metagenomic dataset allowed the assembly of a high-quality draft genome. The genome of this AOA, which we designate Candidatus Nitrosoarchaeum limnia SFB1, is ∼1.77 Mb with >2100 genes and a G+C content of 32%. Across the entire genome, the average nucleotide identity to Nitrosopumilus maritimus, the only AOA in pure culture, is ∼70%, suggesting this AOA represents a new genus of Crenarchaeota. Phylogenetically, the 16S rRNA and ammonia monooxygenase subunit A (amoA) genes of this AOA are most closely related to sequences reported from a wide variety of freshwater ecosystems. Like N. maritimus, the low-salinity AOA genome appears to have an ammonia oxidation pathway distinct from ammonia oxidizing bacteria (AOB). In contrast to other described AOA, these low-salinity AOA appear to be motile, based on the presence of numerous motility- and chemotaxis-associated genes in the genome. This genome data will be used to inform targeted physiological and metabolic studies of this novel group of AOA, which may ultimately advance our understanding of AOA metabolism and their impacts on the global carbon and nitrogen cycles. PMID:21364937

  1. Genome of a low-salinity ammonia-oxidizing archaeon determined by single-cell and metagenomic analysis.

    PubMed

    Blainey, Paul C; Mosier, Annika C; Potanina, Anastasia; Francis, Christopher A; Quake, Stephen R

    2011-02-22

    Ammonia-oxidizing archaea (AOA) are thought to be among the most abundant microorganisms on Earth and may significantly impact the global nitrogen and carbon cycles. We sequenced the genome of AOA in an enrichment culture from low-salinity sediments in San Francisco Bay using single-cell and metagenomic genome sequence data. Five single cells were isolated inside an integrated microfluidic device using laser tweezers, the cells' genomic DNA was amplified by multiple displacement amplification (MDA) in 50 nL volumes and then sequenced by high-throughput DNA pyrosequencing. This microscopy-based approach to single-cell genomics minimizes contamination and allows correlation of high-resolution cell images with genomic sequences. Statistical properties of coverage across the five single cells, in combination with the contrasting properties of the metagenomic dataset allowed the assembly of a high-quality draft genome. The genome of this AOA, which we designate Candidatus Nitrosoarchaeum limnia SFB1, is ∼1.77 Mb with >2100 genes and a G+C content of 32%. Across the entire genome, the average nucleotide identity to Nitrosopumilus maritimus, the only AOA in pure culture, is ∼70%, suggesting this AOA represents a new genus of Crenarchaeota. Phylogenetically, the 16S rRNA and ammonia monooxygenase subunit A (amoA) genes of this AOA are most closely related to sequences reported from a wide variety of freshwater ecosystems. Like N. maritimus, the low-salinity AOA genome appears to have an ammonia oxidation pathway distinct from ammonia oxidizing bacteria (AOB). In contrast to other described AOA, these low-salinity AOA appear to be motile, based on the presence of numerous motility- and chemotaxis-associated genes in the genome. This genome data will be used to inform targeted physiological and metabolic studies of this novel group of AOA, which may ultimately advance our understanding of AOA metabolism and their impacts on the global carbon and nitrogen cycles.

  2. Time fluctuation analysis of forest fire sequences

    NASA Astrophysics Data System (ADS)

    Vega Orozco, Carmen D.; Kanevski, Mikhaïl; Tonini, Marj; Golay, Jean; Pereira, Mário J. G.

    2013-04-01

    Forest fires are complex events involving both space and time fluctuations. Understanding of their dynamics and pattern distribution is of great importance in order to improve the resource allocation and support fire management actions at local and global levels. This study aims at characterizing the temporal fluctuations of forest fire sequences observed in Portugal, which is the country that holds the largest wildfire land dataset in Europe. This research applies several exploratory data analysis measures to 302,000 forest fires occurred from 1980 to 2007. The applied clustering measures are: Morisita clustering index, fractal and multifractal dimensions (box-counting), Ripley's K-function, Allan Factor, and variography. These algorithms enable a global time structural analysis describing the degree of clustering of a point pattern and defining whether the observed events occur randomly, in clusters or in a regular pattern. The considered methods are of general importance and can be used for other spatio-temporal events (i.e. crime, epidemiology, biodiversity, geomarketing, etc.). An important contribution of this research deals with the analysis and estimation of local measures of clustering that helps understanding their temporal structure. Each measure is described and executed for the raw data (forest fires geo-database) and results are compared to reference patterns generated under the null hypothesis of randomness (Poisson processes) embedded in the same time period of the raw data. This comparison enables estimating the degree of the deviation of the real data from a Poisson process. Generalizations to functional measures of these clustering methods, taking into account the phenomena, were also applied and adapted to detect time dependences in a measured variable (i.e. burned area). The time clustering of the raw data is compared several times with the Poisson processes at different thresholds of the measured function. Then, the clustering measure value depends on the threshold which helps to understand the time pattern of the studied events. Our findings detected the presence of overdensity of events in particular time periods and showed that the forest fire sequences in Portugal can be considered as a multifractal process with a degree of time-clustering of the events. Key words: time sequences, Morisita index, fractals, multifractals, box-counting, Ripley's K-function, Allan Factor, variography, forest fires, point process. Acknowledgements This work was partly supported by the SNFS Project No. 200021-140658, "Analysis and Modelling of Space-Time Patterns in Complex Regions". References - Kanevski M. (Editor). 2008. Advanced Mapping of Environmental Data: Geostatistics, Machine Learning and Bayesian Maximum Entropy. London / Hoboken: iSTE / Wiley. - Telesca L. and Pereira M.G. 2010. Time-clustering investigation of fire temporal fluctuations in Portugal, Nat. Hazards Earth Syst. Sci., vol. 10(4): 661-666. - Vega Orozco C., Tonini M., Conedera M., Kanevski M. (2012) Cluster recognition in spatial-temporal sequences: the case of forest fires, Geoinformatica, vol. 16(4): 653-673.

  3. Hope or Hype? What is Next for Biofuels? (LBNL Science at the Theater)

    ScienceCinema

    Keasling, Jay; Bristow, Jim; Tringe, Susannah Green

    2017-12-09

    Science at the Theater: From the sun to your gas tank: A new breed of biofuels may help solve the global energy challenge and reduce the impact of fossil fuels on global warming. KTVU Channel 2 health and science editor John Fowler will moderate a panel of Lawrence Berkeley National Laboratory scientists who are developing ways to convert the solar energy stored in plants into liquid fuels. Jay Keasling is one of the foremost authorities in the field of synthetic biology. He is applying this research toward the production of advanced carbon-neutral biofuels that can replace gasoline on a gallon-for-gallon basis. Keasling is Berkeley Labs Acting Deputy Director and the Chief Executive Officer of the U.S. Department of Energys Joint BioEnergy Institute. Jim Bristow is deputy director of programs for the U.S. Department of Energy Joint Genome Institute (JGI), a national user facility in Walnut Creek, CA. He developed and implemented JGIs Community Sequencing Program, which provides large-scale DNA sequencing and analysis to advance genomics related to bioenergy and environmental characterization and cleanup. Susanna Green Tringe is a computational biologist with the U.S. Department of Energy Joint Genome Institute (JGI). She helped pioneer the field of metagenomics, a new strategy for isolating, sequencing, and characterizing DNA extracted directly from environmental samples, such as the contents of the termite gut, which yielded enzymes responsible for breakdown of wood into fuel.

  4. Differential rotation in magnetic chemically peculiar stars

    NASA Astrophysics Data System (ADS)

    Mikulášek, Z.; Krtička, J.; Paunzen, E.; Švanda, M.; Hummerich, S.; Bernhard, K.; Jagelka, M.; Janík, J.; Henry, G. W.; Shultz, M. E.

    2018-01-01

    Magnetic chemically peculiar (mCP) stars constitute about 10% of upper-main-sequence stars and are characterized by strong magnetic fields and abnormal photospheric abundances of some chemical elements. Most of them exhibit strictly periodic light, magnetic, radio, and spectral variations that can be fully explained by a rigidly rotating main-sequence star with persistent surface structures and a stable global magnetic field. Long-term observations of the phase curves of these variations enable us to investigate possible surface differential rotation with unprecedented accuracy and reliability. The analysis of the phase curves in the best-observed mCP stars indicates that the location and the contrast of photometric and spectroscopic spots as well as the geometry of the magnetic field remain constant for at least many decades. The strict periodicity of mCP variables supports the concept that the outer layers of upper-main-sequence stars do not rotate differentially. However, there is a small, inhomogeneous group consisting of a few mCP stars whose rotation periods vary on timescales of decades. The period oscillations may reflect real changes in the angular velocity of outer layers of the stars which are anchored by their global magnetic fields. In CU Vir, V901 Ori, and perhaps BS Cir, the rotational period variation indicates the presence of vertical differential rotation; however, its exact nature has remained elusive until now. The incidence of mCP stars with variable rotational periods is currently investigated using a sample of fifty newly identified Kepler mCP stars.

  5. Global analysis of gene expression profiles in developing physic nut (Jatropha curcas L.) seeds.

    PubMed

    Jiang, Huawu; Wu, Pingzhi; Zhang, Sheng; Song, Chi; Chen, Yaping; Li, Meiru; Jia, Yongxia; Fang, Xiaohua; Chen, Fan; Wu, Guojiang

    2012-01-01

    Physic nut (Jatropha curcas L.) is an oilseed plant species with high potential utility as a biofuel. Furthermore, following recent sequencing of its genome and the availability of expressed sequence tag (EST) libraries, it is a valuable model plant for studying carbon assimilation in endosperms of oilseed plants. There have been several transcriptomic analyses of developing physic nut seeds using ESTs, but they have provided limited information on the accumulation of stored resources in the seeds. We applied next-generation Illumina sequencing technology to analyze global gene expression profiles of developing physic nut seeds 14, 19, 25, 29, 35, 41, and 45 days after pollination (DAP). The acquired profiles reveal the key genes, and their expression timeframes, involved in major metabolic processes including: carbon flow, starch metabolism, and synthesis of storage lipids and proteins in the developing seeds. The main period of storage reserves synthesis in the seeds appears to be 29-41 DAP, and the fatty acid composition of the developing seeds is consistent with relative expression levels of different isoforms of acyl-ACP thioesterase and fatty acid desaturase genes. Several transcription factor genes whose expression coincides with storage reserve deposition correspond to those known to regulate the process in Arabidopsis. The results will facilitate searches for genes that influence de novo lipid synthesis, accumulation and their regulatory networks in developing physic nut seeds, and other oil seeds. Thus, they will be helpful in attempts to modify these plants for efficient biofuel production.

  6. Introducing difference recurrence relations for faster semi-global alignment of long sequences.

    PubMed

    Suzuki, Hajime; Kasahara, Masahiro

    2018-02-19

    The read length of single-molecule DNA sequencers is reaching 1 Mb. Popular alignment software tools widely used for analyzing such long reads often take advantage of single-instruction multiple-data (SIMD) operations to accelerate calculation of dynamic programming (DP) matrices in the Smith-Waterman-Gotoh (SWG) algorithm with a fixed alignment start position at the origin. Nonetheless, 16-bit or 32-bit integers are necessary for storing the values in a DP matrix when sequences to be aligned are long; this situation hampers the use of the full SIMD width of modern processors. We proposed a faster semi-global alignment algorithm, "difference recurrence relations," that runs more rapidly than the state-of-the-art algorithm by a factor of 2.1. Instead of calculating and storing all the values in a DP matrix directly, our algorithm computes and stores mainly the differences between the values of adjacent cells in the matrix. Although the SWG algorithm and our algorithm can output exactly the same result, our algorithm mainly involves 8-bit integer operations, enabling us to exploit the full width of SIMD operations (e.g., 32) on modern processors. We also developed a library, libgaba, so that developers can easily integrate our algorithm into alignment programs. Our novel algorithm and optimized library implementation will facilitate accelerating nucleotide long-read analysis algorithms that use pairwise alignment stages. The library is implemented in the C programming language and available at https://github.com/ocxtal/libgaba .

  7. Global characterization of Artemisia annua glandular trichome transcriptome using 454 pyrosequencing

    PubMed Central

    Wang, Wei; Wang, Yejun; Zhang, Qing; Qi, Yan; Guo, Dianjing

    2009-01-01

    Background Glandular trichomes produce a wide variety of commercially important secondary metabolites in many plant species. The most prominent anti-malarial drug artemisinin, a sesquiterpene lactone, is produced in glandular trichomes of Artemisia annua. However, only limited genomic information is currently available in this non-model plant species. Results We present a global characterization of A. annua glandular trichome transcriptome using 454 pyrosequencing. Sequencing runs using two normalized cDNA collections from glandular trichomes yielded 406,044 expressed sequence tags (average length = 210 nucleotides), which assembled into 42,678 contigs and 147,699 singletons. Performing a second sequencing run only increased the number of genes identified by ~30%, indicating that massively parallel pyrosequencing provides deep coverage of the A. annua trichome transcriptome. By BLAST search against the NCBI non-redundant protein database, putative functions were assigned to over 28,573 unigenes, including previously undescribed enzymes likely involved in sesquiterpene biosynthesis. Comparison with ESTs derived from trichome collections of other plant species revealed expressed genes in common functional categories across different plant species. RT-PCR analysis confirmed the expression of selected unigenes and novel transcripts in A. annua glandular trichomes. Conclusion The presence of contigs corresponding to enzymes for terpenoids and flavonoids biosynthesis suggests important metabolic activity in A. annua glandular trichomes. Our comprehensive survey of genes expressed in glandular trichome will facilitate new gene discovery and shed light on the regulatory mechanism of artemisinin metabolism and trichome function in A. annua. PMID:19818120

  8. HubAlign: an accurate and efficient method for global alignment of protein-protein interaction networks.

    PubMed

    Hashemifar, Somaye; Xu, Jinbo

    2014-09-01

    High-throughput experimental techniques have produced a large amount of protein-protein interaction (PPI) data. The study of PPI networks, such as comparative analysis, shall benefit the understanding of life process and diseases at the molecular level. One way of comparative analysis is to align PPI networks to identify conserved or species-specific subnetwork motifs. A few methods have been developed for global PPI network alignment, but it still remains challenging in terms of both accuracy and efficiency. This paper presents a novel global network alignment algorithm, denoted as HubAlign, that makes use of both network topology and sequence homology information, based upon the observation that topologically important proteins in a PPI network usually are much more conserved and thus, more likely to be aligned. HubAlign uses a minimum-degree heuristic algorithm to estimate the topological and functional importance of a protein from the global network topology information. Then HubAlign aligns topologically important proteins first and gradually extends the alignment to the whole network. Extensive tests indicate that HubAlign greatly outperforms several popular methods in terms of both accuracy and efficiency, especially in detecting functionally similar proteins. HubAlign is available freely for non-commercial purposes at http://ttic.uchicago.edu/∼hashemifar/software/HubAlign.zip. Supplementary data are available at Bioinformatics online. © The Author 2014. Published by Oxford University Press.

  9. Application Architecture of Avian Influenza Research Collaboration Network in Korea e-Science

    NASA Astrophysics Data System (ADS)

    Choi, Hoon; Lee, Junehawk

    In the pursuit of globalization of the AI e-Science environment, KISTI is fostering to extend the AI research community to the AI research institutes of neighboring countries and to share the AI e-Science environment with them in the near future. In this paper we introduce the application architecture of AI research collaboration network (AIRCoN). AIRCoN is a global e-Science environment for AI research conducted by KISTI. It consists of AI virus sequence information sharing system for sufficing data requirement of research community, integrated analysis environment for analyzing the mutation pattern of AI viruses and their risks, epidemic modeling and simulation environment for establishing national effective readiness strategy against AI pandemics, and knowledge portal for sharing expertise of epidemic study and unpublished research results with community members.

  10. Adaptive Local Realignment of Protein Sequences.

    PubMed

    DeBlasio, Dan; Kececioglu, John

    2018-06-11

    While mutation rates can vary markedly over the residues of a protein, multiple sequence alignment tools typically use the same values for their scoring-function parameters across a protein's entire length. We present a new approach, called adaptive local realignment, that in contrast automatically adapts to the diversity of mutation rates along protein sequences. This builds upon a recent technique known as parameter advising, which finds global parameter settings for an aligner, to now adaptively find local settings. Our approach in essence identifies local regions with low estimated accuracy, constructs a set of candidate realignments using a carefully-chosen collection of parameter settings, and replaces the region if a realignment has higher estimated accuracy. This new method of local parameter advising, when combined with prior methods for global advising, boosts alignment accuracy as much as 26% over the best default setting on hard-to-align protein benchmarks, and by 6.4% over global advising alone. Adaptive local realignment has been implemented within the Opal aligner using the Facet accuracy estimator.

  11. Genomic Epidemiology of Global Carbapenemase-Producing Enterobacter spp., 2008-2014.

    PubMed

    Peirano, Gisele; Matsumura, Yasufumi; Adams, Mark D; Bradford, Patricia; Motyl, Mary; Chen, Liang; Kreiswirth, Barry N; Pitout, Johann D D

    2018-06-01

    We performed whole-genome sequencing on 170 clinical carbapenemase-producing Enterobacter spp. isolates collected globally during 2008-2014. The most common carbapenemase was VIM, followed by New Delhi metallo-β-lactamase (NDM), Klebsiella pneumoniae carbapenemase, oxacillin 48, and IMP. The isolates were of predominantly 2 species (E. xiangfangensis and E. hormaechei subsp. steigerwaltii) and 4 global clones (sequence type [ST] 114, ST93, ST90, and ST78) with different clades within ST114 and ST90. Particular genetic structures surrounding carbapenemase genes were circulating locally in various institutions within the same or between different STs in Greece, Guatemala, Italy, Spain, Serbia, and Vietnam. We found a common NDM genetic structure (NDM-GE-U.S.), previously described on pNDM-U.S. from Klebsiella pneumoniae ATCC BAA-214, in 14 different clones obtained from 6 countries spanning 4 continents. Our study highlights the importance of surveillance programs using whole-genome sequencing in providing insight into the molecular epidemiology of carbapenemase-producing Enterobacter spp.

  12. Differential global gene expression in red and white skeletal muscle

    NASA Technical Reports Server (NTRS)

    Campbell, W. G.; Gordon, S. E.; Carlson, C. J.; Pattison, J. S.; Hamilton, M. T.; Booth, F. W.

    2001-01-01

    The differences in gene expression among the fiber types of skeletal muscle have long fascinated scientists, but for the most part, previous experiments have only reported differences of one or two genes at a time. The evolving technology of global mRNA expression analysis was employed to determine the potential differential expression of approximately 3,000 mRNAs between the white quad (white muscle) and the red soleus muscle (mixed red muscle) of female ICR mice (30-35 g). Microarray analysis identified 49 mRNA sequences that were differentially expressed between white and mixed red skeletal muscle, including newly identified differential expressions between muscle types. For example, the current findings increase the number of known, differentially expressed mRNAs for transcription factors/coregulators by nine and signaling proteins by three. The expanding knowledge of the diversity of mRNA expression between white and mixed red muscle suggests that there could be quite a complex regulation of phenotype between muscles of different fiber types.

  13. Human motion analysis with detection of subpart deformations

    NASA Astrophysics Data System (ADS)

    Wang, Juhui; Lorette, Guy; Bouthemy, Patrick

    1992-06-01

    One essential constraint used in 3-D motion estimation from optical projections is the rigidity assumption. Because of muscle deformations in human motion, this rigidity requirement is often violated for some regions on the human body. Global methods usually fail to bring stable solutions. This paper presents a model-based approach to combating the effect of muscle deformations in human motion analysis. The approach developed is based on two main stages. In the first stage, the human body is partitioned into different areas, where each area is consistent with a general motion model (not necessarily corresponding to a physical existing motion pattern). In the second stage, the regions are eliminated under the hypothesis that they are not induced by a specific human motion pattern. Each hypothesis is generated by making use of specific knowledge about human motion. A global method is used to estimate the 3-D motion parameters in basis of valid segments. Experiments based on a cycling motion sequence are presented.

  14. Genomic analysis of the causative agents of coccidiosis in domestic chickens

    PubMed Central

    Reid, Adam J.; Blake, Damer P.; Ansari, Hifzur R.; Billington, Karen; Browne, Hilary P.; Bryant, Josephine; Dunn, Matt; Hung, Stacy S.; Kawahara, Fumiya; Miranda-Saavedra, Diego; Malas, Tareq B.; Mourier, Tobias; Naghra, Hardeep; Nair, Mridul; Otto, Thomas D.; Rawlings, Neil D.; Rivailler, Pierre; Sanchez-Flores, Alejandro; Sanders, Mandy; Subramaniam, Chandra; Tay, Yea-Ling; Woo, Yong; Wu, Xikun; Barrell, Bart; Dear, Paul H.; Doerig, Christian; Gruber, Arthur; Ivens, Alasdair C.; Parkinson, John; Rajandream, Marie-Adèle; Shirley, Martin W.; Wan, Kiew-Lian; Berriman, Matthew

    2014-01-01

    Global production of chickens has trebled in the past two decades and they are now the most important source of dietary animal protein worldwide. Chickens are subject to many infectious diseases that reduce their performance and productivity. Coccidiosis, caused by apicomplexan protozoa of the genus Eimeria, is one of the most important poultry diseases. Understanding the biology of Eimeria parasites underpins development of new drugs and vaccines needed to improve global food security. We have produced annotated genome sequences of all seven species of Eimeria that infect domestic chickens, which reveal the full extent of previously described repeat-rich and repeat-poor regions and show that these parasites possess the most repeat-rich proteomes ever described. Furthermore, while no other apicomplexan has been found to possess retrotransposons, Eimeria is home to a family of chromoviruses. Analysis of Eimeria genes involved in basic biology and host-parasite interaction highlights adaptations to a relatively simple developmental life cycle and a complex array of co-expressed surface proteins involved in host cell binding. PMID:25015382

  15. The unique C- and N-terminal sequences of Metallothionein isoform 3 mediate growth inhibition and Vectorial active transport in MCF-7 cells.

    PubMed

    Voels, Brent; Wang, Liping; Sens, Donald A; Garrett, Scott H; Zhang, Ke; Somji, Seema

    2017-05-25

    The 3rd isoform of the metallothionein (MT3) gene family has been shown to be overexpressed in most ductal breast cancers. A previous study has shown that the stable transfection of MCF-7 cells with the MT3 gene inhibits cell growth. The goal of the present study was to determine the role of the unique C-terminal and N-terminal sequences of MT3 on phenotypic properties and gene expression profiles of MCF-7 cells. MCF-7 cells were transfected with various metallothionein gene constructs which contain the insertion or the removal of the unique MT3 C- and N-terminal domains. Global gene expression analysis was performed on the MCF-7 cells containing the various constructs and the expression of the unique C- and N- terminal domains of MT3 was correlated to phenotypic properties of the cells. The results of the present study demonstrate that the C-terminal sequence of MT3, in the absence of the N-terminal sequence, induces dome formation in MCF-7 cells, which in cell cultures is the phenotypic manifestation of a cell's ability to perform vectorial active transport. Global gene expression analysis demonstrated that the increased expression of the GAGE gene family correlated with dome formation. Expression of the C-terminal domain induced GAGE gene expression, whereas the N-terminal domain inhibited GAGE gene expression and that the effect of the N-terminal domain inhibition was dominant over the C-terminal domain of MT3. Transfection with the metallothionein 1E gene increased the expression of GAGE genes. In addition, both the C- and the N-terminal sequences of the MT3 gene had growth inhibitory properties, which correlated to an increased expression of the interferon alpha-inducible protein 6. Our study shows that the C-terminal domain of MT3 confers dome formation in MCF-7 cells and the presence of this domain induces expression of the GAGE family of genes. The differential effects of MT3 and metallothionein 1E on the expression of GAGE genes suggests unique roles of these genes in the development and progression of breast cancer. The finding that interferon alpha-inducible protein 6 expression is associated with the ability of MT3 to inhibit growth needs further investigation.

  16. Does a global DNA barcoding gap exist in Annelida?

    PubMed

    Kvist, Sebastian

    2016-05-01

    Accurate identification of unknown specimens by means of DNA barcoding is contingent on the presence of a DNA barcoding gap, among other factors, as its absence may result in dubious specimen identifications - false negatives or positives. Whereas the utility of DNA barcoding would be greatly reduced in the absence of a distinct and sufficiently sized barcoding gap, the limits of intraspecific and interspecific distances are seldom thoroughly inspected across comprehensive sampling. The present study aims to illuminate this aspect of barcoding in a comprehensive manner for the animal phylum Annelida. All cytochrome c oxidase subunit I sequences (cox1 gene; the chosen region for zoological DNA barcoding) present in GenBank for Annelida, as well as for "Polychaeta", "Oligochaeta", and Hirudinea separately, were downloaded and curated for length, coverage and potential contaminations. The final datasets consisted of 9782 (Annelida), 5545 ("Polychaeta"), 3639 ("Oligochaeta"), and 598 (Hirudinea) cox1 sequences and these were either (i) used as is in an automated global barcoding gap detection analysis or (ii) further analyzed for genetic distances, separated into bins containing intraspecific and interspecific comparisons and plotted in a graph to visualize any potential global barcoding gap. Over 70 million pairwise genetic comparisons were made and results suggest that although there is a tendency towards separation, no distinct or sufficiently sized global barcoding gap exists in either of the datasets rendering future barcoding efforts at risk of erroneous specimen identifications (but local barcoding gaps may still exist allowing for the identification of specimens at lower taxonomic ranks). This seems to be especially true for earthworm taxa, which account for fully 35% of the total number of interspecific comparisons that show 0% divergence.

  17. Multiplex PCR-Based Next-Generation Sequencing and Global Diversity of Seoul Virus in Humans and Rats.

    PubMed

    Kim, Won-Keun; No, Jin Sun; Lee, Seung-Ho; Song, Dong Hyun; Lee, Daesang; Kim, Jeong-Ah; Gu, Se Hun; Park, Sunhye; Jeong, Seong Tae; Kim, Heung-Chul; Klein, Terry A; Wiley, Michael R; Palacios, Gustavo; Song, Jin-Won

    2018-02-01

    Seoul virus (SEOV) poses a worldwide public health threat. This virus, which is harbored by Rattus norvegicus and R. rattus rats, is the causative agent of hemorrhagic fever with renal syndrome (HFRS) in humans, which has been reported in Asia, Europe, the Americas, and Africa. Defining SEOV genome sequences plays a critical role in development of preventive and therapeutic strategies against the unique worldwide hantavirus. We applied multiplex PCR-based next-generation sequencing to obtain SEOV genome sequences from clinical and reservoir host specimens. Epidemiologic surveillance of R. norvegicus rats in South Korea during 2000-2016 demonstrated that the serologic prevalence of enzootic SEOV infections was not significant on the basis of sex, weight (age), and season. Viral loads of SEOV in rats showed wide dissemination in tissues and dynamic circulation among populations. Phylogenetic analyses showed the global diversity of SEOV and possible genomic configuration of genetic exchanges.

  18. Molecular Epidemiology and Phylogeny Reveal Complex Spatial Dynamics in Areas Where Canine Parvovirus Is Endemic ▿†

    PubMed Central

    Clegg, S. R.; Coyne, K. P.; Parker, J.; Dawson, S.; Godsall, S. A.; Pinchbeck, G.; Cripps, P. J.; Gaskell, R. M.; Radford, A. D.

    2011-01-01

    Canine parvovirus type 2 (CPV-2) is a severe enteric pathogen of dogs, causing high mortality in unvaccinated dogs. After emerging, CPV-2 spread rapidly worldwide. However, there is now some evidence to suggest that international transmission appears to be more restricted. In order to investigate the transmission and evolution of CPV-2 both nationally and in relation to the global situation, we have used a long-range PCR to amplify and sequence the full VP2 gene of 150 canine parvoviruses obtained from a large cross-sectional sample of dogs presenting with severe diarrhea to veterinarians in the United Kingdom, over a 2-year period. Among these 150 strains, 50 different DNA sequence types (S) were identified, and apart from one case, all appeared unique to the United Kingdom. Phylogenetic analysis provided clear evidence for spatial clustering at the international level and for the first time also at the national level, with the geographical range of some sequence types appearing to be highly restricted within the United Kingdom. Evolution of the VP2 gene in this data set was associated with a lack of positive selection. In addition, the majority of predicted amino acid sequences were identical to those found elsewhere in the world, suggesting that CPV VP2 has evolved a highly fit conformation. Based on typing systems using key amino acid mutations, 43% of viruses were CPV-2a, and 57% CPV-2b, with no type 2 or 2c found. However, phylogenetic analysis suggested complex antigenic evolution of this virus, with both type 2a and 2b viruses appearing polyphyletic. As such, typing based on specific amino acid mutations may not reflect the true epidemiology of this virus. The geographical restriction that we observed both within the United Kingdom and between the United Kingdom and other countries, together with the lack of CPV-2c in this population, strongly suggests the spread of CPV within its population may be heterogeneously subject to limiting factors. This cross-sectional study of national and global CPV phylogeographic segregation reveals a substantially more complex epidemic structure than previously described. PMID:21593180

  19. GeoSymbio: a hybrid, cloud-based web application of global geospatial bioinformatics and ecoinformatics for Symbiodinium-host symbioses.

    PubMed

    Franklin, Erik C; Stat, Michael; Pochon, Xavier; Putnam, Hollie M; Gates, Ruth D

    2012-03-01

    The genus Symbiodinium encompasses a group of unicellular, photosynthetic dinoflagellates that are found free living or in hospite with a wide range of marine invertebrate hosts including scleractinian corals. We present GeoSymbio, a hybrid web application that provides an online, easy to use and freely accessible interface for users to discover, explore and utilize global geospatial bioinformatic and ecoinformatic data on Symbiodinium-host symbioses. The novelty of this application lies in the combination of a variety of query and visualization tools, including dynamic searchable maps, data tables with filter and grouping functions, and interactive charts that summarize the data. Importantly, this application is hosted remotely or 'in the cloud' using Google Apps, and therefore does not require any specialty GIS, web programming or data programming expertise from the user. The current version of the application utilizes Symbiodinium data based on the ITS2 genetic marker from PCR-based techniques, including denaturing gradient gel electrophoresis, sequencing and cloning of specimens collected during 1982-2010. All data elements of the application are also downloadable as spatial files, tables and nucleic acid sequence files in common formats for desktop analysis. The application provides a unique tool set to facilitate research on the basic biology of Symbiodinium and expedite new insights into their ecology, biogeography and evolution in the face of a changing global climate. GeoSymbio can be accessed at https://sites.google.com/site/geosymbio/. © 2011 Blackwell Publishing Ltd.

  20. Targeted reconstruction of T cell receptor sequence from single cell RNA-seq links CDR3 length to T cell differentiation state

    PubMed Central

    Yates, Kathleen B.; Bi, Kevin; Darko, Samuel; Godec, Jernej; Gerdemann, Ulrike; Swadling, Leo; Douek, Daniel C.; Klenerman, Paul; Barnes, Eleanor J.; Sharpe, Arlene H.

    2017-01-01

    Abstract The T cell compartment must contain diversity in both T cell receptor (TCR) repertoire and cell state to provide effective immunity against pathogens. However, it remains unclear how differences in the TCR contribute to heterogeneity in T cell state. Single cell RNA-sequencing (scRNA-seq) can allow simultaneous measurement of TCR sequence and global transcriptional profile from single cells. However, current methods for TCR inference from scRNA-seq are limited in their sensitivity and require long sequencing reads, thus increasing the cost and decreasing the number of cells that can be feasibly analyzed. Here we present TRAPeS, a publicly available tool that can efficiently extract TCR sequence information from short-read scRNA-seq libraries. We apply it to investigate heterogeneity in the CD8+ T cell response in humans and mice, and show that it is accurate and more sensitive than existing approaches. Coupling TRAPeS with transcriptome analysis of CD8+ T cells specific for a single epitope from Yellow Fever Virus (YFV), we show that the recently described ‘naive-like’ memory population have significantly longer CDR3 regions and greater divergence from germline sequence than do effector-memory phenotype cells. This suggests that TCR usage is associated with the differentiation state of the CD8+ T cell response to YFV. PMID:28934479

  1. Comprehensive comparison of three commercial human whole-exome capture platforms.

    PubMed

    Asan; Xu, Yu; Jiang, Hui; Tyler-Smith, Chris; Xue, Yali; Jiang, Tao; Wang, Jiawei; Wu, Mingzhi; Liu, Xiao; Tian, Geng; Wang, Jun; Wang, Jian; Yang, Huangming; Zhang, Xiuqing

    2011-09-28

    Exome sequencing, which allows the global analysis of protein coding sequences in the human genome, has become an effective and affordable approach to detecting causative genetic mutations in diseases. Currently, there are several commercial human exome capture platforms; however, the relative performances of these have not been characterized sufficiently to know which is best for a particular study. We comprehensively compared three platforms: NimbleGen's Sequence Capture Array and SeqCap EZ, and Agilent's SureSelect. We assessed their performance in a variety of ways, including number of genes covered and capture efficacy. Differences that may impact on the choice of platform were that Agilent SureSelect covered approximately 1,100 more genes, while NimbleGen provided better flanking sequence capture. Although all three platforms achieved similar capture specificity of targeted regions, the NimbleGen platforms showed better uniformity of coverage and greater genotype sensitivity at 30- to 100-fold sequencing depth. All three platforms showed similar power in exome SNP calling, including medically relevant SNPs. Compared with genotyping and whole-genome sequencing data, the three platforms achieved a similar accuracy of genotype assignment and SNP detection. Importantly, all three platforms showed similar levels of reproducibility, GC bias and reference allele bias. We demonstrate key differences between the three platforms, particularly advantages of solutions over array capture and the importance of a large gene target set.

  2. Worldwide phylogenetic relationship of avian poxviruses

    USGS Publications Warehouse

    Gyuranecz, Miklós; Foster, Jeffrey T.; Dán, Ádám; Ip, Hon S.; Egstad, Kristina F.; Parker, Patricia G.; Higashiguchi, Jenni M.; Skinner, Michael A.; Höfle, Ursula; Kreizinger, Zsuzsa; Dorrestein, Gerry M.; Solt, Szabolcs; Sós, Endre; Kim, Young Jun; Uhart, Marcela; Pereda, Ariel; González-Hein, Gisela; Hidalgo, Hector; Blanco, Juan-Manuel; Erdélyi, Károly

    2013-01-01

    Poxvirus infections have been found in 230 species of wild and domestic birds worldwide in both terrestrial and marine environments. This ubiquity raises the question of how infection has been transmitted and globally dispersed. We present a comprehensive global phylogeny of 111 novel poxvirus isolates in addition to all available sequences from GenBank. Phylogenetic analysis of Avipoxvirus genus has traditionally relied on one gene region (4b core protein). In this study we have expanded the analyses to include a second locus (DNA polymerase gene), allowing for a more robust phylogenetic framework, finer genetic resolution within specific groups and the detection of potential recombination. Our phylogenetic results reveal several major features of avipoxvirus evolution and ecology and propose an updated avipoxvirus taxonomy, including three novel subclades. The characterization of poxviruses from 57 species of birds in this study extends the current knowledge of their host range and provides the first evidence of the phylogenetic effect of genetic recombination of avipoxviruses. The repeated occurrence of avian family or order-specific grouping within certain clades (e.g. starling poxvirus, falcon poxvirus, raptor poxvirus, etc.) indicates a marked role of host adaptation, while the sharing of poxvirus species within prey-predator systems emphasizes the capacity for cross-species infection and limited host adaptation. Our study provides a broad and comprehensive phylogenetic analysis of the Avipoxvirus genus, an ecologically and environmentally important viral group, to formulate a genome sequencing strategy that will clarify avipoxvirus taxonomy.

  3. Worldwide Phylogenetic Relationship of Avian Poxviruses

    PubMed Central

    Foster, Jeffrey T.; Dán, Ádám; Ip, Hon S.; Egstad, Kristina F.; Parker, Patricia G.; Higashiguchi, Jenni M.; Skinner, Michael A.; Höfle, Ursula; Kreizinger, Zsuzsa; Dorrestein, Gerry M.; Solt, Szabolcs; Sós, Endre; Kim, Young Jun; Uhart, Marcela; Pereda, Ariel; González-Hein, Gisela; Hidalgo, Hector; Blanco, Juan-Manuel; Erdélyi, Károly

    2013-01-01

    Poxvirus infections have been found in 230 species of wild and domestic birds worldwide in both terrestrial and marine environments. This ubiquity raises the question of how infection has been transmitted and globally dispersed. We present a comprehensive global phylogeny of 111 novel poxvirus isolates in addition to all available sequences from GenBank. Phylogenetic analysis of the Avipoxvirus genus has traditionally relied on one gene region (4b core protein). In this study we expanded the analyses to include a second locus (DNA polymerase gene), allowing for a more robust phylogenetic framework, finer genetic resolution within specific groups, and the detection of potential recombination. Our phylogenetic results reveal several major features of avipoxvirus evolution and ecology and propose an updated avipoxvirus taxonomy, including three novel subclades. The characterization of poxviruses from 57 species of birds in this study extends the current knowledge of their host range and provides the first evidence of the phylogenetic effect of genetic recombination of avipoxviruses. The repeated occurrence of avian family or order-specific grouping within certain clades (e.g., starling poxvirus, falcon poxvirus, raptor poxvirus, etc.) indicates a marked role of host adaptation, while the sharing of poxvirus species within prey-predator systems emphasizes the capacity for cross-species infection and limited host adaptation. Our study provides a broad and comprehensive phylogenetic analysis of the Avipoxvirus genus, an ecologically and environmentally important viral group, to formulate a genome sequencing strategy that will clarify avipoxvirus taxonomy. PMID:23408635

  4. Global transcriptional start site mapping using differential RNA sequencing reveals novel antisense RNAs in Escherichia coli.

    PubMed

    Thomason, Maureen K; Bischler, Thorsten; Eisenbart, Sara K; Förstner, Konrad U; Zhang, Aixia; Herbig, Alexander; Nieselt, Kay; Sharma, Cynthia M; Storz, Gisela

    2015-01-01

    While the model organism Escherichia coli has been the subject of intense study for decades, the full complement of its RNAs is only now being examined. Here we describe a survey of the E. coli transcriptome carried out using a differential RNA sequencing (dRNA-seq) approach, which can distinguish between primary and processed transcripts, and an automated prediction algorithm for transcriptional start sites (TSS). With the criterion of expression under at least one of three growth conditions examined, we predicted 14,868 TSS candidates, including 5,574 internal to annotated genes (iTSS) and 5,495 TSS corresponding to potential antisense RNAs (asRNAs). We examined expression of 14 candidate asRNAs by Northern analysis using RNA from wild-type E. coli and from strains defective for RNases III and E, two RNases reported to be involved in asRNA processing. Interestingly, nine asRNAs detected as distinct bands by Northern analysis were differentially affected by the rnc and rne mutations. We also compared our asRNA candidates with previously published asRNA annotations from RNA-seq data and discuss the challenges associated with these cross-comparisons. Our global transcriptional start site map represents a valuable resource for identification of transcription start sites, promoters, and novel transcripts in E. coli and is easily accessible, together with the cDNA coverage plots, in an online genome browser. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  5. Building international genomics collaboration for global health security

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Helen H.; Erkkila, Tracy; Chain, Patrick S. G.

    Genome science and technologies are transforming life sciences globally in many ways and becoming a highly desirable area for international collaboration to strengthen global health. The Genome Science Program at the Los Alamos National Laboratory is leveraging a long history of expertise in genomics research to assist multiple partner nations in advancing their genomics and bioinformatics capabilities. The capability development objectives focus on providing a molecular genomics-based scientific approach for pathogen detection, characterization, and biosurveillance applications. The general approaches include introduction of basic principles in genomics technologies, training on laboratory methodologies and bioinformatic analysis of resulting data, procurement, and installationmore » of next-generation sequencing instruments, establishing bioinformatics software capabilities, and exploring collaborative applications of the genomics capabilities in public health. Genome centers have been established with public health and research institutions in the Republic of Georgia, Kingdom of Jordan, Uganda, and Gabon; broader collaborations in genomics applications have also been developed with research institutions in many other countries.« less

  6. Intermittent sea-level acceleration

    NASA Astrophysics Data System (ADS)

    Olivieri, M.; Spada, G.

    2013-10-01

    Using instrumental observations from the Permanent Service for Mean Sea Level (PSMSL), we provide a new assessment of the global sea-level acceleration for the last ~ 2 centuries (1820-2010). Our results, obtained by a stack of tide gauge time series, confirm the existence of a global sea-level acceleration (GSLA) and, coherently with independent assessments so far, they point to a value close to 0.01 mm/yr2. However, differently from previous studies, we discuss how change points or abrupt inflections in individual sea-level time series have contributed to the GSLA. Our analysis, based on methods borrowed from econometrics, suggests the existence of two distinct driving mechanisms for the GSLA, both involving a minority of tide gauges globally. The first effectively implies a gradual increase in the rate of sea-level rise at individual tide gauges, while the second is manifest through a sequence of catastrophic variations of the sea-level trend. These occurred intermittently since the end of the 19th century and became more frequent during the last four decades.

  7. Building international genomics collaboration for global health security

    DOE PAGES

    Cui, Helen H.; Erkkila, Tracy; Chain, Patrick S. G.; ...

    2015-12-07

    Genome science and technologies are transforming life sciences globally in many ways and becoming a highly desirable area for international collaboration to strengthen global health. The Genome Science Program at the Los Alamos National Laboratory is leveraging a long history of expertise in genomics research to assist multiple partner nations in advancing their genomics and bioinformatics capabilities. The capability development objectives focus on providing a molecular genomics-based scientific approach for pathogen detection, characterization, and biosurveillance applications. The general approaches include introduction of basic principles in genomics technologies, training on laboratory methodologies and bioinformatic analysis of resulting data, procurement, and installationmore » of next-generation sequencing instruments, establishing bioinformatics software capabilities, and exploring collaborative applications of the genomics capabilities in public health. Genome centers have been established with public health and research institutions in the Republic of Georgia, Kingdom of Jordan, Uganda, and Gabon; broader collaborations in genomics applications have also been developed with research institutions in many other countries.« less

  8. Global transmission of influenza viruses from humans to swine

    PubMed Central

    Gramer, Marie R.; Vincent, Amy L.; Holmes, Edward C.

    2012-01-01

    To determine the extent to which influenza viruses jump between human and swine hosts, we undertook a large-scale phylogenetic analysis of pandemic A/H1N1/09 (H1N1pdm09) influenza virus genome sequence data. From this, we identified at least 49 human-to-swine transmission events that occurred globally during 2009–2011, thereby highlighting the ability of the H1N1pdm09 virus to transmit repeatedly from humans to swine, even following adaptive evolution in humans. Similarly, we identified at least 23 separate introductions of human seasonal (non-pandemic) H1 and H3 influenza viruses into swine globally since 1990. Overall, these results reveal the frequency with which swine are exposed to human influenza viruses, indicate that humans make a substantial contribution to the genetic diversity of influenza viruses in swine, and emphasize the need to improve biosecurity measures at the human–swine interface, including influenza vaccination of swine workers. PMID:22791604

  9. Design space pruning heuristics and global optimization method for conceptual design of low-thrust asteroid tour missions

    NASA Astrophysics Data System (ADS)

    Alemany, Kristina

    Electric propulsion has recently become a viable technology for spacecraft, enabling shorter flight times, fewer required planetary gravity assists, larger payloads, and/or smaller launch vehicles. With the maturation of this technology, however, comes a new set of challenges in the area of trajectory design. Because low-thrust trajectory optimization has historically required long run-times and significant user-manipulation, mission design has relied on expert-based knowledge for selecting departure and arrival dates, times of flight, and/or target bodies and gravitational swing-bys. These choices are generally based on known configurations that have worked well in previous analyses or simply on trial and error. At the conceptual design level, however, the ability to explore the full extent of the design space is imperative to locating the best solutions in terms of mass and/or flight times. Beginning in 2005, the Global Trajectory Optimization Competition posed a series of difficult mission design problems, all requiring low-thrust propulsion and visiting one or more asteroids. These problems all had large ranges on the continuous variables---launch date, time of flight, and asteroid stay times (when applicable)---as well as being characterized by millions or even billions of possible asteroid sequences. Even with recent advances in low-thrust trajectory optimization, full enumeration of these problems was not possible within the stringent time limits of the competition. This investigation develops a systematic methodology for determining a broad suite of good solutions to the combinatorial, low-thrust, asteroid tour problem. The target application is for conceptual design, where broad exploration of the design space is critical, with the goal being to rapidly identify a reasonable number of promising solutions for future analysis. The proposed methodology has two steps. The first step applies a three-level heuristic sequence developed from the physics of the problem, which allows for efficient pruning of the design space. The second phase applies a global optimization scheme to locate a broad suite of good solutions to the reduced problem. The global optimization scheme developed combines a novel branch-and-bound algorithm with a genetic algorithm and an industry-standard low-thrust trajectory optimization program to solve for the following design variables: asteroid sequence, launch date, times of flight, and asteroid stay times. The methodology is developed based on a small sample problem, which is enumerated and solved so that all possible discretized solutions are known. The methodology is then validated by applying it to a larger intermediate sample problem, which also has a known solution. Next, the methodology is applied to several larger combinatorial asteroid rendezvous problems, using previously identified good solutions as validation benchmarks. These problems include the 2nd and 3rd Global Trajectory Optimization Competition problems. The methodology is shown to be capable of achieving a reduction in the number of asteroid sequences of 6-7 orders of magnitude, in terms of the number of sequences that require low-thrust optimization as compared to the number of sequences in the original problem. More than 70% of the previously known good solutions are identified, along with several new solutions that were not previously reported by any of the competitors. Overall, the methodology developed in this investigation provides an organized search technique for the low-thrust mission design of asteroid rendezvous problems.

  10. LGE Provides Incremental Prognostic Information Over Serum Biomarkers in AL Cardiac Amyloidosis.

    PubMed

    Boynton, Samuel J; Geske, Jeffrey B; Dispenzieri, Angela; Syed, Imran S; Hanson, Theodore J; Grogan, Martha; Araoz, Philip A

    2016-06-01

    This study sought to determine the prognostic value of cardiac magnetic resonance (CMR) late gadolinium enhancement (LGE) in amyloid light chain (AL) cardiac amyloidosis. Cardiac involvement is the major determinant of mortality in AL amyloidosis. CMR LGE is a marker of amyloid infiltration of the myocardium. The purpose of this study was to evaluate retrospectively the prognostic value of CMR LGE for determining all-cause mortality in AL amyloidosis and to compare the prognostic power with the biomarker stage. Seventy-six patients with histologically proven AL amyloidosis underwent CMR LGE imaging. LGE was categorized as global, focal patchy, or none. Global LGE was considered present if it was visualized on LGE images or if the myocardium nulled before the blood pool on a cine multiple inversion time (TI) sequence. CMR morphologic and functional evaluation, echocardiographic diastolic evaluation, and cardiac biomarker staging were also performed. Subjects' charts were reviewed for all-cause mortality. Cox proportional hazards analysis was used to evaluate survival in univariate and multivariate analysis. There were 40 deaths, and the median study follow-up period was 34.4 months. Global LGE was associated with all-cause mortality in univariate analysis (hazard ratio = 2.93; p < 0.001). In multivariate modeling with biomarker stage, global LGE remained prognostic (hazard ratio = 2.43; p = 0.01). Diffuse LGE provides incremental prognosis over cardiac biomarker stage in patients with AL cardiac amyloidosis. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  11. A two-locus global DNA barcode for land plants: the coding rbcL gene complements the non-coding trnH-psbA spacer region.

    PubMed

    Kress, W John; Erickson, David L

    2007-06-06

    A useful DNA barcode requires sufficient sequence variation to distinguish between species and ease of application across a broad range of taxa. Discovery of a DNA barcode for land plants has been limited by intrinsically lower rates of sequence evolution in plant genomes than that observed in animals. This low rate has complicated the trade-off in finding a locus that is universal and readily sequenced and has sufficiently high sequence divergence at the species-level. Here, a global plant DNA barcode system is evaluated by comparing universal application and degree of sequence divergence for nine putative barcode loci, including coding and non-coding regions, singly and in pairs across a phylogenetically diverse set of 48 genera (two species per genus). No single locus could discriminate among species in a pair in more than 79% of genera, whereas discrimination increased to nearly 88% when the non-coding trnH-psbA spacer was paired with one of three coding loci, including rbcL. In silico trials were conducted in which DNA sequences from GenBank were used to further evaluate the discriminatory power of a subset of these loci. These trials supported the earlier observation that trnH-psbA coupled with rbcL can correctly identify and discriminate among related species. A combination of the non-coding trnH-psbA spacer region and a portion of the coding rbcL gene is recommended as a two-locus global land plant barcode that provides the necessary universality and species discrimination.

  12. Ichnology applied to sequence stratigraphic analysis of Siluro-Devonian mud-dominated shelf deposits, Paraná Basin, Brazil

    NASA Astrophysics Data System (ADS)

    Sedorko, Daniel; Netto, Renata G.; Savrda, Charles E.

    2018-04-01

    Previous studies of the Paraná Supersequence (Furnas and Ponta Grossa formations) of the Paraná Basin in southern Brazil have yielded disparate sequence stratigraphic interpretations. An integrated sedimentological, paleontological, and ichnological model was created to establish a refined sequence stratigraphic framework for this succession, focusing on the Ponta Grossa Formation. Twenty-nine ichnotaxa are recognized in the Ponta Grossa Formation, recurring assemblages of which define five trace fossil suites that represent various expressions of the Skolithos, Glossifungites and Cruziana ichnofacies. Physical sedimentologic characteristics and associated softground ichnofacies provide the basis for recognizing seven facies that reflect a passive relationship to bathymetric gradients from shallow marine (shoreface) to offshore deposition. The vertical distribution of facies provides the basis for dividing the Ponta Grossa Formation into three major (3rd-order) depositional sequences- Siluro-Devonian and Devonian I and II-each containing a record of three to seven higher-order relative sea-level cycles. Major sequence boundaries, commonly coinciding with hiatuses recognized from previously published biostratigraphic data, are locally marked by firmground Glossifungites Ichnofacies associated with submarine erosion. Maximum transgressive horizons are prominently marked by unbioturbated or weakly bioturbated black shales. By integrating observations of the Ponta Grossa Formation with those recently made on the underlying marginal- to shallow-marine Furnas Formation, the entire Paraná Supersequence can be divided into four disconformity-bound sequences: a Lower Silurian (Llandovery-Wenlock) sequence, corresponding to lower and middle units of the Furnas; a Siluro-Devonian sequence (?Pridoli-Early Emsian), and Devonian sequences I (Late Emsian-Late Eifelian) and II (Late Eifelian-Early Givetian). Stratigraphic positions of sequence boundaries generally coincide with regressive phases on established global sea-level curves for the Silurian-Devonian.

  13. Genetic relationships and epidemiological links between wild type 1 poliovirus isolates in Pakistan and Afghanistan

    PubMed Central

    2012-01-01

    Background/Aim Efforts have been made to eliminate wild poliovirus transmission since 1988 when the World Health Organization began its global eradication campaign. Since then, the incidence of polio has decreased significantly. However, serotype 1 and serotype 3 still circulate endemically in Pakistan and Afghanistan. Both countries constitute a single epidemiologic block representing one of the three remaining major global reservoirs of poliovirus transmission. In this study we used genetic sequence data to investigate transmission links among viruses from diverse locations during 2005-2007. Methods In order to find the origins and routes of wild type 1 poliovirus circulation, polioviruses were isolated from faecal samples of Acute Flaccid Paralysis (AFP) patients. We used viral cultures, two intratypic differentiation methods PCR, ELISA to characterize as vaccine or wild type 1 and nucleic acid sequencing of entire VP1 region of poliovirus genome to determine the genetic relatedness. Results One hundred eleven wild type 1 poliovirus isolates were subjected to nucleotide sequencing for genetic variation study. Considering the 15% divergence of the sequences from Sabin 1, Phylogenetic analysis by MEGA software revealed that active inter and intra country transmission of many genetically distinct strains of wild poliovirus type 1 belonged to genotype SOAS which is indigenous in this region. By grouping wild type 1 polioviruses according to nucleotide sequence homology, three distinct clusters A, B and C were obtained with multiple chains of transmission together with some silent circulations represented by orphan lineages. Conclusion Our results emphasize that there was a persistent transmission of wild type1 polioviruses in Pakistan and Afghanistan during 2005-2007. The epidemiologic information provided by the sequence data can contribute to the formulation of better strategies for poliomyelitis control to those critical areas, associated with high risk population groups which include migrants, internally displaced people, and refugees. The implication of this study is to maintain high quality mass immunization with oral polio vaccine (OPV) in order to interrupt chains of virus transmission in both countries to endorse substantial progress in Eastern-Mediterranean region. PMID:22353446

  14. Microbial Analysis of Australian Dry Lake Cores; Analogs For Biogeochemical Processes

    NASA Astrophysics Data System (ADS)

    Nguyen, A. V.; Baldridge, A. M.; Thomson, B. J.

    2014-12-01

    Lake Gilmore in Western Australia is an acidic ephemeral lake that is analogous to Martian geochemical processes represented by interbedded phyllosilicates and sulfates. These areas demonstrate remnants of a global-scale change on Mars during the late Noachian era from a neutral to alkaline pH to relatively lower pH in the Hesperian era that continues to persist today. The geochemistry of these areas could possibly be caused by small-scale changes such as microbial metabolism. Two approaches were used to determine the presence of microbes in the Australian dry lake cores: DNA analysis and lipid analysis. Detecting DNA or lipids in the cores will provide evidence of living or deceased organisms since they provide distinct markers for life. Basic DNA analysis consists of extraction, amplification through PCR, plasmid cloning, and DNA sequencing. Once the sequence of unknown DNA is known, an online program, BLAST, will be used to identify the microbes for further analysis. The lipid analysis approach consists of phospholipid fatty acid analysis that is done by Microbial ID, which will provide direct identification any microbes from the presence of lipids. Identified microbes are then compared to mineralogy results from the x-ray diffraction of the core samples to determine if the types of metabolic reactions are consistent with the variation in composition in these analog deposits. If so, it provides intriguing implications for the presence of life in similar Martian deposits.

  15. Deep sequencing-based transcriptome profiling analysis of bacteria-challenged Lateolabrax japonicus reveals insight into the immune-relevant genes in marine fish

    PubMed Central

    2010-01-01

    Background Systematic research on fish immunogenetics is indispensable in understanding the origin and evolution of immune systems. This has long been a challenging task because of the limited number of deep sequencing technologies and genome backgrounds of non-model fish available. The newly developed Solexa/Illumina RNA-seq and Digital gene expression (DGE) are high-throughput sequencing approaches and are powerful tools for genomic studies at the transcriptome level. This study reports the transcriptome profiling analysis of bacteria-challenged Lateolabrax japonicus using RNA-seq and DGE in an attempt to gain insights into the immunogenetics of marine fish. Results RNA-seq analysis generated 169,950 non-redundant consensus sequences, among which 48,987 functional transcripts with complete or various length encoding regions were identified. More than 52% of these transcripts are possibly involved in approximately 219 known metabolic or signalling pathways, while 2,673 transcripts were associated with immune-relevant genes. In addition, approximately 8% of the transcripts appeared to be fish-specific genes that have never been described before. DGE analysis revealed that the host transcriptome profile of Vibrio harveyi-challenged L. japonicus is considerably altered, as indicated by the significant up- or down-regulation of 1,224 strong infection-responsive transcripts. Results indicated an overall conservation of the components and transcriptome alterations underlying innate and adaptive immunity in fish and other vertebrate models. Analysis suggested the acquisition of numerous fish-specific immune system components during early vertebrate evolution. Conclusion This study provided a global survey of host defence gene activities against bacterial challenge in a non-model marine fish. Results can contribute to the in-depth study of candidate genes in marine fish immunity, and help improve current understanding of host-pathogen interactions and evolutionary history of immunogenetics from fish to mammals. PMID:20707909

  16. Rcorrector: efficient and accurate error correction for Illumina RNA-seq reads.

    PubMed

    Song, Li; Florea, Liliana

    2015-01-01

    Next-generation sequencing of cellular RNA (RNA-seq) is rapidly becoming the cornerstone of transcriptomic analysis. However, sequencing errors in the already short RNA-seq reads complicate bioinformatics analyses, in particular alignment and assembly. Error correction methods have been highly effective for whole-genome sequencing (WGS) reads, but are unsuitable for RNA-seq reads, owing to the variation in gene expression levels and alternative splicing. We developed a k-mer based method, Rcorrector, to correct random sequencing errors in Illumina RNA-seq reads. Rcorrector uses a De Bruijn graph to compactly represent all trusted k-mers in the input reads. Unlike WGS read correctors, which use a global threshold to determine trusted k-mers, Rcorrector computes a local threshold at every position in a read. Rcorrector has an accuracy higher than or comparable to existing methods, including the only other method (SEECER) designed for RNA-seq reads, and is more time and memory efficient. With a 5 GB memory footprint for 100 million reads, it can be run on virtually any desktop or server. The software is available free of charge under the GNU General Public License from https://github.com/mourisl/Rcorrector/.

  17. Morphological and molecular characterization of fungal pathogen, Magnaphorthe oryzae

    NASA Astrophysics Data System (ADS)

    Hasan, Nor'Aishah; Rafii, Mohd Y.; Rahim, Harun A.; Ali, Nusaibah Syd; Mazlan, Norida; Abdullah, Shamsiah

    2016-02-01

    Rice is arguably the most crucial food crops supplying quarter of calories intake. Fungal pathogen, Magnaphorthe oryzae promotes blast disease unconditionally to gramineous host including rice species. This disease spurred an outbreaks and constant threat to cereal production. Global rice yield declining almost 10-30% including Malaysia. As Magnaphorthe oryzae and its host is model in disease plant study, the rice blast pathosystem has been the subject of intense interest to overcome the importance of the disease to world agriculture. Therefore, in this study, our prime objective was to isolate samples of Magnaphorthe oryzae from diseased leaf obtained from MARDI Seberang Perai, Penang, Malaysia. Molecular identification was performed by sequences analysis from internal transcribed spacer (ITS) region of nuclear ribosomal RNA genes. Phylogenetic affiliation of the isolated samples were analyzed by comparing the ITS sequences with those deposited in the GenBank database. The sequence of the isolate demonstrated at least 99% nucleotide identity with the corresponding sequence in GenBank for Magnaphorthe oryzae. Morphological observed under microscope demonstrated that the structure of conidia followed similar characteristic as M. oryzae. Finding in this study provide useful information for breeding programs, epidemiology studies and improved disease management.

  18. Morphological and molecular characterization of fungal pathogen, Magnaphorthe oryzae

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hasan, Nor’Aishah, E-mail: aishahnh@ns.uitm.edu.my; Rafii, Mohd Y., E-mail: mrafii@upm.edu.my; Department of Crop Science, Universiti Putra Malaysia

    2016-02-01

    Rice is arguably the most crucial food crops supplying quarter of calories intake. Fungal pathogen, Magnaphorthe oryzae promotes blast disease unconditionally to gramineous host including rice species. This disease spurred an outbreaks and constant threat to cereal production. Global rice yield declining almost 10-30% including Malaysia. As Magnaphorthe oryzae and its host is model in disease plant study, the rice blast pathosystem has been the subject of intense interest to overcome the importance of the disease to world agriculture. Therefore, in this study, our prime objective was to isolate samples of Magnaphorthe oryzae from diseased leaf obtained from MARDI Seberangmore » Perai, Penang, Malaysia. Molecular identification was performed by sequences analysis from internal transcribed spacer (ITS) region of nuclear ribosomal RNA genes. Phylogenetic affiliation of the isolated samples were analyzed by comparing the ITS sequences with those deposited in the GenBank database. The sequence of the isolate demonstrated at least 99% nucleotide identity with the corresponding sequence in GenBank for Magnaphorthe oryzae. Morphological observed under microscope demonstrated that the structure of conidia followed similar characteristic as M. oryzae. Finding in this study provide useful information for breeding programs, epidemiology studies and improved disease management.« less

  19. Biodiversity hot spot on a hot spot: novel extremophile diversity in Hawaiian fumaroles.

    PubMed

    Wall, Kate; Cornell, Jennifer; Bizzoco, Richard W; Kelley, Scott T

    2015-01-06

    Fumaroles (steam vents) are the most common, yet least understood, microbial habitat in terrestrial geothermal settings. Long believed too extreme for life, recent advances in sample collection and DNA extraction methods have found that fumarole deposits and subsurface waters harbor a considerable diversity of viable microbes. In this study, we applied culture-independent molecular methods to explore fumarole deposit microbial assemblages in 15 different fumaroles in four geographic locations on the Big Island of Hawai'i. Just over half of the vents yielded sufficient high-quality DNA for the construction of 16S ribosomal RNA gene sequence clone libraries. The bacterial clone libraries contained sequences belonging to 11 recognized bacterial divisions and seven other division-level phylogenetic groups. Archaeal sequences were less numerous, but similarly diverse. The taxonomic composition among fumarole deposits was highly heterogeneous. Phylogenetic analysis found cloned fumarole sequences were related to microbes identified from a broad array of globally distributed ecotypes, including hot springs, terrestrial soils, and industrial waste sites. Our results suggest that fumarole deposits function as an "extremophile collector" and may be a hot spot of novel extremophile biodiversity. © 2015 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  20. Spliced synthetic genes as internal controls in RNA sequencing experiments.

    PubMed

    Hardwick, Simon A; Chen, Wendy Y; Wong, Ted; Deveson, Ira W; Blackburn, James; Andersen, Stacey B; Nielsen, Lars K; Mattick, John S; Mercer, Tim R

    2016-09-01

    RNA sequencing (RNA-seq) can be used to assemble spliced isoforms, quantify expressed genes and provide a global profile of the transcriptome. However, the size and diversity of the transcriptome, the wide dynamic range in gene expression and inherent technical biases confound RNA-seq analysis. We have developed a set of spike-in RNA standards, termed 'sequins' (sequencing spike-ins), that represent full-length spliced mRNA isoforms. Sequins have an entirely artificial sequence with no homology to natural reference genomes, but they align to gene loci encoded on an artificial in silico chromosome. The combination of multiple sequins across a range of concentrations emulates alternative splicing and differential gene expression, and it provides scaling factors for normalization between samples. We demonstrate the use of sequins in RNA-seq experiments to measure sample-specific biases and determine the limits of reliable transcript assembly and quantification in accompanying human RNA samples. In addition, we have designed a complementary set of sequins that represent fusion genes arising from rearrangements of the in silico chromosome to aid in cancer diagnosis. RNA sequins provide a qualitative and quantitative reference with which to navigate the complexity of the human transcriptome.

  1. Genomics of high molecular weight plasmids isolated from an on-farm biopurification system.

    PubMed

    Martini, María C; Wibberg, Daniel; Lozano, Mauricio; Torres Tejerizo, Gonzalo; Albicoro, Francisco J; Jaenicke, Sebastian; van Elsas, Jan Dirk; Petroni, Alejandro; Garcillán-Barcia, M Pilar; de la Cruz, Fernando; Schlüter, Andreas; Pühler, Alfred; Pistorio, Mariano; Lagares, Antonio; Del Papa, María F

    2016-06-20

    The use of biopurification systems (BPS) constitutes an efficient strategy to eliminate pesticides from polluted wastewaters from farm activities. BPS environments contain a high microbial density and diversity facilitating the exchange of information among bacteria, mediated by mobile genetic elements (MGEs), which play a key role in bacterial adaptation and evolution in such environments. Here we sequenced and characterized high-molecular-weight plasmids from a bacterial collection of an on-farm BPS. The high-throughput-sequencing of the plasmid pool yielded a total of several Mb sequence information. Assembly of the sequence data resulted in six complete replicons. Using in silico analyses we identified plasmid replication genes whose encoding proteins represent 13 different Pfam families, as well as proteins involved in plasmid conjugation, indicating a large diversity of plasmid replicons and suggesting the occurrence of horizontal gene transfer (HGT) events within the habitat analyzed. In addition, genes conferring resistance to 10 classes of antimicrobial compounds and those encoding enzymes potentially involved in pesticide and aromatic hydrocarbon degradation were found. Global analysis of the plasmid pool suggest that the analyzed BPS represents a key environment for further studies addressing the dissemination of MGEs carrying catabolic genes and pathway assembly regarding degradation capabilities.

  2. Biodiversity hot spot on a hot spot: novel extremophile diversity in Hawaiian fumaroles

    PubMed Central

    Wall, Kate; Cornell, Jennifer; Bizzoco, Richard W; Kelley, Scott T

    2015-01-01

    Fumaroles (steam vents) are the most common, yet least understood, microbial habitat in terrestrial geothermal settings. Long believed too extreme for life, recent advances in sample collection and DNA extraction methods have found that fumarole deposits and subsurface waters harbor a considerable diversity of viable microbes. In this study, we applied culture-independent molecular methods to explore fumarole deposit microbial assemblages in 15 different fumaroles in four geographic locations on the Big Island of Hawai'i. Just over half of the vents yielded sufficient high-quality DNA for the construction of 16S ribosomal RNA gene sequence clone libraries. The bacterial clone libraries contained sequences belonging to 11 recognized bacterial divisions and seven other division-level phylogenetic groups. Archaeal sequences were less numerous, but similarly diverse. The taxonomic composition among fumarole deposits was highly heterogeneous. Phylogenetic analysis found cloned fumarole sequences were related to microbes identified from a broad array of globally distributed ecotypes, including hot springs, terrestrial soils, and industrial waste sites. Our results suggest that fumarole deposits function as an “extremophile collector” and may be a hot spot of novel extremophile biodiversity. PMID:25565172

  3. A high-resolution, nucleosome position map of C. elegans reveals a lack of universal sequence-dictated positioning

    PubMed Central

    Valouev, Anton; Ichikawa, Jeffrey; Tonthat, Thaisan; Stuart, Jeremy; Ranade, Swati; Peckham, Heather; Zeng, Kathy; Malek, Joel A.; Costa, Gina; McKernan, Kevin; Sidow, Arend; Fire, Andrew; Johnson, Steven M.

    2008-01-01

    Using the massively parallel technique of sequencing by oligonucleotide ligation and detection (SOLiD; Applied Biosystems), we have assessed the in vivo positions of more than 44 million putative nucleosome cores in the multicellular genetic model organism Caenorhabditis elegans. These analyses provide a global view of the chromatin architecture of a multicellular animal at extremely high density and resolution. While we observe some degree of reproducible positioning throughout the genome in our mixed stage population of animals, we note that the major chromatin feature in the worm is a diversity of allowed nucleosome positions at the vast majority of individual loci. While absolute positioning of nucleosomes can vary substantially, relative positioning of nucleosomes (in a repeated array structure likely to be maintained at least in part by steric constraints) appears to be a significant property of chromatin structure. The high density of nucleosomal reads enabled a substantial extension of previous analysis describing the usage of individual oligonucleotide sequences along the span of the nucleosome core and linker. We release this data set, via the UCSC Genome Browser, as a resource for the high-resolution analysis of chromatin conformation and DNA accessibility at individual loci within the C. elegans genome. PMID:18477713

  4. Clinical and Molecular Epidemiology of Human Parainfluenza Viruses 1-4 in Children from Viet Nam.

    PubMed

    Linster, Martin; Do, Lien Anh Ha; Minh, Ngo Ngoc Quang; Chen, Yihui; Zhe, Zhu; Tuan, Tran Anh; Tuan, Ha Manh; Su, Yvonne C F; van Doorn, H Rogier; Moorthy, Mahesh; Smith, Gavin J D

    2018-05-01

    HPIVs are serologically and genetically grouped into four species that account for up to 10% of all hospitalizations due to acute respiratory infection in children under the age of five. Genetic and epidemiological data for the four HPIVs derived from two pediatric cohorts in Viet Nam are presented. Respiratory samples were screened for HPIV1-4 by real-time PCR. Demographic and clinical data of patients infected with different HPIV were compared. We used a hemi-nested PCR approach to generate viral genome sequences from HPIV-positive samples and conducted a comprehensive phylogenetic analysis. In total, 170 samples tested positive for HPIV. HPIV3 was most commonly detected in our cohort and 80 co-detections of HPIV with other respiratory viruses were found. Phylogenetic analyses suggest local endemic circulation as well as punctuated introductions of new HPIV lineages. Viral gene flow analysis revealed that Viet Nam is a net importer of viral genetic diversity. Epidemiological analyses imply similar disease severity for all HPIV species. HPIV sequences from Viet Nam formed local clusters and were interspersed with sequences from diverse geographic regions. Combined, this new knowledge will help to investigate global HPIV circulation patterns in more detail and ultimately define more suitable vaccine strains.

  5. The population structure of Vibrio cholerae from the Chandigarh Region of Northern India.

    PubMed

    Abd El Ghany, Moataz; Chander, Jagadish; Mutreja, Ankur; Rashid, Mamoon; Hill-Cawthorne, Grant A; Ali, Shahjahan; Naeem, Raeece; Thomson, Nicholas R; Dougan, Gordon; Pain, Arnab

    2014-07-01

    Cholera infection continues to be a threat to global public health. The current cholera pandemic associated with Vibrio cholerae El Tor has now been ongoing for over half a century. Thirty-eight V. cholerae El Tor isolates associated with a cholera outbreak in 2009 from the Chandigarh region of India were characterised by a combination of microbiology, molecular typing and whole-genome sequencing. The genomic analysis indicated that two clones of V. cholera circulated in the region and caused disease during this time. These clones fell into two distinct sub-clades that map independently onto wave 3 of the phylogenetic tree of seventh pandemic V. cholerae El Tor. Sequence analyses of the cholera toxin gene, the Vibrio seventh Pandemic Island II (VSPII) and SXT element correlated with this phylogenetic position of the two clades on the El Tor tree. The clade 2 isolates, characterized by a drug-resistant profile and the expression of a distinct cholera toxin, are closely related to the recent V. cholerae isolated elsewhere, including Haiti, but fell on a distinct branch of the tree, showing they were independent outbreaks. Multi-Locus Sequence Typing (MLST) distinguishes two sequence types among the 38 isolates, that did not correspond to the clades defined by whole-genome sequencing. Multi-Locus Variable-length tandem-nucleotide repeat Analysis (MLVA) identified 16 distinct clusters. The use of whole-genome sequencing enabled the identification of two clones of V. cholerae that circulated during the 2009 Chandigarh outbreak. These clones harboured a similar structure of ICEVchHai1 but differed mainly in the structure of CTX phage and VSPII. The limited capacity of MLST and MLVA to discriminate between the clones that circulated in the 2009 Chandigarh outbreak highlights the value of whole-genome sequencing as a route to the identification of further genetic markers to subtype V. cholerae isolates.

  6. A Wide Variety of Clostridium perfringens Type A Food-Borne Isolates That Carry a Chromosomal cpe Gene Belong to One Multilocus Sequence Typing Cluster

    PubMed Central

    Xiao, Yinghua; Wagendorp, Arjen; Moezelaar, Roy; Abee, Tjakko

    2012-01-01

    Of 98 suspected food-borne Clostridium perfringens isolates obtained from a nationwide survey by the Food and Consumer Product Safety Authority in The Netherlands, 59 strains were identified as C. perfringens type A. Using PCR-based techniques, the cpe gene encoding enterotoxin was detected in eight isolates, showing a chromosomal location for seven isolates and a plasmid location for one isolate. Further characterization of these strains by using (GTG)5 fingerprint repetitive sequence-based PCR analysis distinguished C. perfringens from other sulfite-reducing clostridia but did not allow for differentiation between various types of C. perfringens strains. To characterize the C. perfringens strains further, multilocus sequence typing (MLST) analysis was performed on eight housekeeping genes of both enterotoxic and non-cpe isolates, and the data were combined with a previous global survey covering strains associated with food poisoning, gas gangrene, and isolates from food or healthy individuals. This revealed that the chromosomal cpe strains (food strains and isolates from food poisoning cases) belong to a distinct cluster that is significantly distant from all the other cpe plasmid-carrying and cpe-negative strains. These results suggest that different groups of C. perfringens have undergone niche specialization and that a distinct group of food isolates has specific core genome sequences. Such findings have epidemiological and evolutionary significance. Better understanding of the origin and reservoir of enterotoxic C. perfringens may allow for improved control of this organism in foods. PMID:22865060

  7. Whole-genome sequencing and analyses identify high genetic heterogeneity, diversity and endemicity of rotavirus genotype P[6] strains circulating in Africa.

    PubMed

    Nyaga, Martin M; Tan, Yi; Seheri, Mapaseka L; Halpin, Rebecca A; Akopov, Asmik; Stucker, Karla M; Fedorova, Nadia B; Shrivastava, Susmita; Duncan Steele, A; Mwenda, Jason M; Pickett, Brett E; Das, Suman R; Jeffrey Mphahlele, M

    2018-05-18

    Rotavirus A (RVA) exhibits a wide genotype diversity globally. Little is known about the genetic composition of genotype P[6] from Africa. This study investigated possible evolutionary mechanisms leading to genetic diversity of genotype P[6] VP4 sequences. Phylogenetic analyses on 167 P[6] VP4 full-length sequences were conducted, which included six porcine-origin sequences. Of the 167 sequences, 57 were newly acquired through whole genome sequencing as part of this study. The other 110 sequences were all publicly-available global P[6] VP4 full-length sequences downloaded from GenBank. The strength of association between the phenotypic features and the phylogeny was also determined. A number of reassortment and mixed infections of RVA genotype P[6] strains were observed in this study. Phylogenetic analyses demostrated the extensive genetic diversity that exists among human P[6] strains, porcine-like strains, their concomitant clades/subclades and estimated that P[6] VP4 gene has a higher substitution rate with the mean of 1.05E-3 substitutions/site/year. Further, the phylogenetic analyses indicated that genotype P[6] strains were endemic in Africa, characterised by an extensive genetic diversity and long-time local evolution of the viruses. This was also supported by phylogeographic clustering and G-genotype clustering of the P[6] strains when Bayesian Tip-association Significance testing (BaTS) was applied, clearly supporting that the viruses evolved locally in Africa instead of spatial mixing among different regions. Overall, the results demonstrated that multiple mechanisms such as reassortment events, various mutations and possibly interspecies transmission account for the enormous diversity of genotype P[6] strains in Africa. These findings highlight the need for continued global surveillance of rotavirus diversity. Copyright © 2018 Elsevier B.V. All rights reserved.

  8. Genomic analysis of methanogenic archaea reveals a shift towards energy conservation

    DOE PAGES

    Gilmore, Sean P.; Henske, John K.; Sexton, Jessica A.; ...

    2017-08-21

    The metabolism of archaeal methanogens drives methane release into the environment and is critical to understanding global carbon cycling. Methanogenesis operates at a very low reducing potential compared to other forms of respiration and is therefore critical to many anaerobic environments. Harnessing or altering methanogen metabolism has the potential to mitigate global warming and even be utilized for energy applications. Here, we report draft genome sequences for the isolated methanogens Methanobacterium bryantii, Methanosarcina spelaei, Methanosphaera cuniculi, and Methanocorpusculum parvum. These anaerobic, methane-producing archaea represent a diverse set of isolates, capable of methylotrophic, acetoclastic, and hydrogenotrophic methanogenesis. Assembly and analysis ofmore » the genomes allowed for simple and rapid reconstruction of metabolism in the four methanogens. Comparison of the distribution of Clusters of Orthologous Groups (COG) proteins to a sample of genomes from the RefSeq database revealed a trend towards energy conservation in genome composition of all methanogens sequenced. Further analysis of the predicted membrane proteins and transporters distinguished differing energy conservation methods utilized during methanogenesis, such as chemiosmotic coupling in Msar. spelaei and electron bifurcation linked to chemiosmotic coupling in Mbac. bryantii and Msph. cuniculi. Methanogens occupy a unique ecological niche, acting as the terminal electron acceptors in anaerobic environments, and their genomes display a significant shift towards energy conservation. The genome-enabled reconstructed metabolisms reported here have significance to diverse anaerobic communities and have led to proposed substrate utilization not previously reported in isolation, such as formate and methanol metabolism in Mbac. bryantii and CO 2 metabolism in Msph. cuniculi. The newly proposed substrates establish an important foundation with which to decipher how methanogens behave in native communities, as CO 2 and formate are common electron carriers in microbial communities.« less

  9. Transcriptome analysis of hexaploid hulless oat in response to salinity stress

    PubMed Central

    Wu, Bin; Hu, Yani; Huo, Pengjie; Zhang, Qian; Chen, Xin; Zhang, Zongwen

    2017-01-01

    Background Oat is a cereal crop of global importance used for food, feed, and forage. Understanding salinity stress tolerance mechanisms in plants is an important step towards generating crop varieties that can cope with environmental stresses. To date, little is known about the salt tolerance of oat at the molecular level. To better understand the molecular mechanisms underlying salt tolerance in oat, we investigated the transcriptomes of control and salt-treated oat using RNA-Seq. Results Using Illumina HiSeq 4000 platform, we generated 72,291,032 and 356,891,432 reads from non-stressed control and salt-stressed oat, respectively. Assembly of 64 Gb raw sequence data yielded 128,414 putative unique transcripts with an average length of 1,189 bp. Analysis of the assembled unigenes from the salt stressed and control libraries indicated that about 65,000 unigenes were differentially expressed at different stages. Functional annotation showed that ABC transporters, plant hormone signal transduction, plant-pathogen interactions, starch and sucrose metabolism, arginine and proline metabolism, and other secondary metabolite pathways were enriched under salt stress. Based on the RPKM values of assembled unigenes, 24 differentially expressed genes under salt stress were selected for quantitative RT-PCR validation, which successfully confirmed the results of RNA-Seq. Furthermore, we identified 18,039 simple sequence repeats, which may help further elucidate salt tolerance mechanisms in oat. Conclusions Our global survey of transcriptome profiles of oat plants in response to salt stress provides useful insights into the molecular mechanisms underlying salt tolerance in this crop. These findings also represent a rich resource for further analysis of salt tolerance and for breeding oat with improved salt tolerance through the use of salt-related genes. PMID:28192458

  10. Ragweed (Ambrosia artemisiifolia) pollen allergenicity: SuperSAGE transcriptomic analysis upon elevated CO2 and drought stress

    PubMed Central

    2014-01-01

    Background Pollen of common ragweed (Ambrosia artemisiifolia) is a main cause of allergic diseases in Northern America. The weed has recently become spreading as a neophyte in Europe, while climate change may also affect the growth of the plant and additionally may also influence pollen allergenicity. To gain better insight in the molecular mechanisms in the development of ragweed pollen and its allergenic proteins under global change scenarios, we generated SuperSAGE libraries to identify differentially expressed transcripts. Results Ragweed plants were grown in a greenhouse under 380 ppm CO2 and under elevated level of CO2 (700 ppm). In addition, drought experiments under both CO2 concentrations were performed. The pollen viability was not altered under elevated CO2, whereas drought stress decreased its viability. Increased levels of individual flavonoid metabolites were found under elevated CO2 and/or drought. Total RNA was isolated from ragweed pollen, exposed to the four mentioned scenarios and four SuperSAGE libraries were constructed. The library dataset included 236,942 unique sequences, showing overlapping as well as clear differently expressed sequence tags (ESTs). The analysis targeted ESTs known in Ambrosia, as well as in pollen of other plants. Among the identified ESTs, those encoding allergenic ragweed proteins (Amb a) increased under elevated CO2 and drought stress. In addition, ESTs encoding allergenic proteins in other plants were also identified. Conclusions The analysis of changes in the transcriptome of ragweed pollen upon CO2 and drought stress using SuperSAGE indicates that under global change scenarios the pollen transcriptome was altered, and impacts the allergenic potential of ragweed pollen. PMID:24972689

  11. Genome sequences of Chlorella sorokiniana UTEX 1602 and Micractinium conductrix SAG 241.80: implications to maltose excretion by a green alga.

    PubMed

    Arriola, Matthew B; Velmurugan, Natarajan; Zhang, Ying; Plunkett, Mary H; Hondzo, Hanna; Barney, Brett M

    2018-02-01

    Green algae represent a key segment of the global species capable of photoautotrophic-driven biological carbon fixation. Algae partition fixed-carbon into chemical compounds required for biomass, while diverting excess carbon into internal storage compounds such as starch and lipids or, in certain cases, into targeted extracellular compounds. Two green algae were selected to probe for critical components associated with sugar production and release in a model alga. Chlorella sorokiniana UTEX 1602 - which does not release significant quantities of sugars to the extracellular space - was selected as a control to compare with the maltose-releasing Micractinium conductrix SAG 241.80 - which was originally isolated from an endosymbiotic association with the ciliate Paramecium bursaria. Both strains were subjected to three sequencing approaches to assemble their genomes and annotate their genes. This analysis was further complemented with transcriptional studies during maltose release by M. conductrix SAG 241.80 versus conditions where sugar release is minimal. The annotation revealed that both strains contain homologs for the key components of a putative pathway leading to cytosolic maltose accumulation, while transcriptional studies found few changes in mRNA levels for the genes associated with these established intracellular sugar pathways. A further analysis of potential sugar transporters found multiple homologs for SWEETs and tonoplast sugar transporters. The analysis of transcriptional differences revealed a lesser and more measured global response for M. conductrix SAG 241.80 versus C. sorokiniana UTEX 1602 during conditions resulting in sugar release, providing a catalog of genes that might play a role in extracellular sugar transport. © 2017 The Authors The Plant Journal © 2017 John Wiley & Sons Ltd.

  12. Genomic analysis of methanogenic archaea reveals a shift towards energy conservation

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Gilmore, Sean P.; Henske, John K.; Sexton, Jessica A.

    The metabolism of archaeal methanogens drives methane release into the environment and is critical to understanding global carbon cycling. Methanogenesis operates at a very low reducing potential compared to other forms of respiration and is therefore critical to many anaerobic environments. Harnessing or altering methanogen metabolism has the potential to mitigate global warming and even be utilized for energy applications. Here, we report draft genome sequences for the isolated methanogens Methanobacterium bryantii, Methanosarcina spelaei, Methanosphaera cuniculi, and Methanocorpusculum parvum. These anaerobic, methane-producing archaea represent a diverse set of isolates, capable of methylotrophic, acetoclastic, and hydrogenotrophic methanogenesis. Assembly and analysis ofmore » the genomes allowed for simple and rapid reconstruction of metabolism in the four methanogens. Comparison of the distribution of Clusters of Orthologous Groups (COG) proteins to a sample of genomes from the RefSeq database revealed a trend towards energy conservation in genome composition of all methanogens sequenced. Further analysis of the predicted membrane proteins and transporters distinguished differing energy conservation methods utilized during methanogenesis, such as chemiosmotic coupling in Msar. spelaei and electron bifurcation linked to chemiosmotic coupling in Mbac. bryantii and Msph. cuniculi. Methanogens occupy a unique ecological niche, acting as the terminal electron acceptors in anaerobic environments, and their genomes display a significant shift towards energy conservation. The genome-enabled reconstructed metabolisms reported here have significance to diverse anaerobic communities and have led to proposed substrate utilization not previously reported in isolation, such as formate and methanol metabolism in Mbac. bryantii and CO 2 metabolism in Msph. cuniculi. The newly proposed substrates establish an important foundation with which to decipher how methanogens behave in native communities, as CO 2 and formate are common electron carriers in microbial communities.« less

  13. Uncertainty and sensitivity analysis for photovoltaic system modeling.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hansen, Clifford W.; Pohl, Andrew Phillip; Jordan, Dirk

    2013-12-01

    We report an uncertainty and sensitivity analysis for modeling DC energy from photovoltaic systems. We consider two systems, each comprised of a single module using either crystalline silicon or CdTe cells, and located either at Albuquerque, NM, or Golden, CO. Output from a PV system is predicted by a sequence of models. Uncertainty in the output of each model is quantified by empirical distributions of each model's residuals. We sample these distributions to propagate uncertainty through the sequence of models to obtain an empirical distribution for each PV system's output. We considered models that: (1) translate measured global horizontal, directmore » and global diffuse irradiance to plane-of-array irradiance; (2) estimate effective irradiance from plane-of-array irradiance; (3) predict cell temperature; and (4) estimate DC voltage, current and power. We found that the uncertainty in PV system output to be relatively small, on the order of 1% for daily energy. Four alternative models were considered for the POA irradiance modeling step; we did not find the choice of one of these models to be of great significance. However, we observed that the POA irradiance model introduced a bias of upwards of 5% of daily energy which translates directly to a systematic difference in predicted energy. Sensitivity analyses relate uncertainty in the PV system output to uncertainty arising from each model. We found that the residuals arising from the POA irradiance and the effective irradiance models to be the dominant contributors to residuals for daily energy, for either technology or location considered. This analysis indicates that efforts to reduce the uncertainty in PV system output should focus on improvements to the POA and effective irradiance models.« less

  14. Simultaneous and complete genome sequencing of influenza A and B with high coverage by Illumina MiSeq Platform.

    PubMed

    Rutvisuttinunt, Wiriya; Chinnawirotpisan, Piyawan; Simasathien, Sriluck; Shrestha, Sanjaya K; Yoon, In-Kyu; Klungthong, Chonticha; Fernandez, Stefan

    2013-11-01

    Active global surveillance and characterization of influenza viruses are essential for better preparation against possible pandemic events. Obtaining comprehensive information about the influenza genome can improve our understanding of the evolution of influenza viruses and emergence of new strains, and improve the accuracy when designing preventive vaccines. This study investigated the use of deep sequencing by the next-generation sequencing (NGS) Illumina MiSeq Platform to obtain complete genome sequence information from influenza virus isolates. The influenza virus isolates were cultured from 6 respiratory acute clinical specimens collected in Thailand and Nepal. DNA libraries obtained from each viral isolate were mixed and all were sequenced simultaneously. Total information of 2.6 Gbases was obtained from a 455±14 K/mm2 density with 95.76% (8,571,655/8,950,724 clusters) of the clusters passing quality control (QC) filters. Approximately 93.7% of all sequences from Read1 and 83.5% from Read2 contained high quality sequences that were ≥Q30, a base calling QC score standard. Alignments analysis identified three seasonal influenza A H3N2 strains, one 2009 pandemic influenza A H1N1 strain and two influenza B strains. The nearly entire genomes of all six virus isolates yielded equal or greater than 600-fold sequence coverage depth. MiSeq Platform identified seasonal influenza A H3N2, 2009 pandemic influenza A H1N1and influenza B in the DNA library mixtures efficiently. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  15. Expressed sequence tags from heat-shocked seagrass Zostera noltii (Hornemann) from its southern distribution range.

    PubMed

    Massa, Sónia I; Pearson, Gareth A; Aires, Tânia; Kube, Michael; Olsen, Jeanine L; Reinhardt, Richard; Serrão, Ester A; Arnaud-Haond, Sophie

    2011-09-01

    Predicted global climate change threatens the distributional ranges of species worldwide. We identified genes expressed in the intertidal seagrass Zostera noltii during recovery from a simulated low tide heat-shock exposure. Five Expressed Sequence Tag (EST) libraries were compared, corresponding to four recovery times following sub-lethal temperature stress, and a non-stressed control. We sequenced and analyzed 7009 sequence reads from 30min, 2h, 4h and 24h after the beginning of the heat-shock (AHS), and 1585 from the control library, for a total of 8594 sequence reads. Among 51 Tentative UniGenes (TUGs) exhibiting significantly different expression between libraries, 19 (37.3%) were identified as 'molecular chaperones' and were over-expressed following heat-shock, while 12 (23.5%) were 'photosynthesis TUGs' generally under-expressed in heat-shocked plants. A time course analysis of expression showed a rapid increase in expression of the molecular chaperone class, most of which were heat-shock proteins; which increased from 2 sequence reads in the control library to almost 230 in the 30min AHS library, followed by a slow decrease during further recovery. In contrast, 'photosynthesis TUGs' were under-expressed 30min AHS compared with the control library, and declined progressively with recovery time in the stress libraries, with a total of 29 sequence reads 24h AHS, compared with 125 in the control. A total of 4734 TUGs were screened for EST-Single Sequence Repeats (EST-SSRs) and 86 microsatellites were identified. Copyright © 2011 Elsevier B.V. All rights reserved.

  16. Inhibition in motor imagery: a novel action mode switching paradigm.

    PubMed

    Rieger, Martina; Dahm, Stephan F; Koch, Iring

    2017-04-01

    Motor imagery requires that actual movements are prevented (i.e., inhibited) from execution. To investigate at what level inhibition takes place in motor imagery, we developed a novel action mode switching paradigm. Participants imagined (indicating only start and end) and executed movements from start buttons to target buttons, and we analyzed trial sequence effects. Trial sequences depended on current action mode (imagination or execution), previous action mode (pure blocks/same mode, mixed blocks/same mode, or mixed blocks/other mode), and movement sequence (action repetition, hand repetition, or hand alternation). Results provided evidence for global inhibition (indicated by switch benefits in execution-imagination (E-I)-sequences in comparison to I-I-sequences), effector-specific inhibition (indicated by hand repetition costs after an imagination trial), and target inhibition (indicated by target repetition benefits in I-I-sequences). No evidence for subthreshold motor activation or action-specific inhibition (inhibition of the movement of an effector to a specific target) was obtained. Two (global inhibition and effector-specific inhibition) of the three observed mechanisms are active inhibition mechanisms. In conclusion, motor imagery is not simply a weaker form of execution, which often is implied in views focusing on similarities between imagination and execution.

  17. Seismic sequence stratigraphy of Miocene deposits related to eustatic, tectonic and climatic events, Cap Bon Peninsula, northeastern Tunisia

    NASA Astrophysics Data System (ADS)

    Gharsalli, Ramzi; Zouaghi, Taher; Soussi, Mohamed; Chebbi, Riadh; Khomsi, Sami; Bédir, Mourad

    2013-09-01

    The Cap Bon Peninsula, belonging to northeastern Tunisia, is located in the Maghrebian Alpine foreland and in the North of the Pelagian block. By its paleoposition, during the Cenozoic, in the edge of the southern Tethyan margin, this peninsula constitutes a geological entity that fossilized the eustatic, tectonic and climatic interactions. Surface and subsurface study carried out in the Cap Bon onshore area and surrounding offshore of Hammamet interests the Miocene deposits from the Langhian-to-Messinian interval time. Related to the basin and the platform positions, sequence and seismic stratigraphy studies have been conducted to identify seven third-order seismic sequences in subsurface (SM1-SM7), six depositional sequences on the Zinnia-1 petroleum well (SDM1-SDM6), and five depositional sequences on the El Oudiane section of the Jebel Abderrahmane (SDM1-SDM5). Each sequence shows a succession of high-frequency systems tract and parasequences. These sequences are separated by remarkable sequence boundaries and maximum flooding surfaces (SB and MFS) that have been correlated to the eustatic cycles and supercycles of the Global Sea Level Chart of Haq et al. (1987). The sequences have been also correlated with Sequence Chronostratigraphic Chart of Hardenbol et al. (1998), related to European basins, allows us to arise some major differences in number and in size. The major discontinuities, which limit the sequences resulted from the interplay between tectonic and climatic phenomena. It thus appears very judicious to bring back these chronological surfaces to eustatic and/or local tectonic activity and global eustatic and climatic controls.

  18. The Ocean Gene Atlas: exploring the biogeography of plankton genes online.

    PubMed

    Villar, Emilie; Vannier, Thomas; Vernette, Caroline; Lescot, Magali; Cuenca, Miguelangel; Alexandre, Aurélien; Bachelerie, Paul; Rosnet, Thomas; Pelletier, Eric; Sunagawa, Shinichi; Hingamp, Pascal

    2018-05-21

    The Ocean Gene Atlas is a web service to explore the biogeography of genes from marine planktonic organisms. It allows users to query protein or nucleotide sequences against global ocean reference gene catalogs. With just one click, the abundance and location of target sequences are visualized on world maps as well as their taxonomic distribution. Interactive results panels allow for adjusting cutoffs for alignment quality and displaying the abundances of genes in the context of environmental features (temperature, nutrients, etc.) measured at the time of sampling. The ease of use enables non-bioinformaticians to explore quantitative and contextualized information on genes of interest in the global ocean ecosystem. Currently the Ocean Gene Atlas is deployed with (i) the Ocean Microbial Reference Gene Catalog (OM-RGC) comprising 40 million non-redundant mostly prokaryotic gene sequences associated with both Tara Oceans and Global Ocean Sampling (GOS) gene abundances and (ii) the Marine Atlas of Tara Ocean Unigenes (MATOU) composed of >116 million eukaryote unigenes. Additional datasets will be added upon availability of further marine environmental datasets that provide the required complement of sequence assemblies, raw reads and contextual environmental parameters. Ocean Gene Atlas is a freely-available web service at: http://tara-oceans.mio.osupytheas.fr/ocean-gene-atlas/.

  19. Microbial diversity in hummock and hollow soils of three wetlands on the Qinghai-Tibetan Plateau revealed by 16S rRNA pyrosequencing.

    PubMed

    Deng, Yongcui; Cui, Xiaoyong; Hernández, Marcela; Dumont, Marc G

    2014-01-01

    The wetlands of the Qinghai-Tibetan Plateau are believed to play an important role in global nutrient cycling, but the composition and diversity of microorganisms in this ecosystem are poorly characterized. An understanding of the effects of geography and microtopography on microbial populations will provide clues to the underlying mechanisms that structure microbial communities. In this study, we used pyrosequencing-based analysis of 16S rRNA gene sequences to assess and compare the composition of soil microbial communities present in hummock and hollow soils from three wetlands (Dangxiong, Hongyuan and Maduo) on the Qinghai-Tibetan Plateau, the world's highest plateau. A total of 36 bacterial phyla were detected. Proteobacteria (34.5% average relative abundance), Actinobacteria (17.3%) and Bacteroidetes (11%) had the highest relative abundances across all sites. Chloroflexi, Acidobacteria, Verrucomicrobia, Firmicutes, and Planctomycetes were also relatively abundant (1-10%). In addition, archaeal sequences belonging to Euryarchaea, Crenarchaea and Thaumarchaea were detected. Alphaproteobacteria sequences, especially of the order Rhodospirillales, were significantly more abundant in Maduo than Hongyuan and Dangxiong wetlands. Compared with Hongyuan soils, Dangxiong and Maduo had significantly higher relative abundances of Gammaproteobacteria sequences (mainly order Xanthomonadales). Hongyuan wetland had a relatively high abundance of methanogens (mainly genera Methanobacterium, Methanosarcina and Methanosaeta) and methanotrophs (mainly Methylocystis) compared with the other two wetlands. Principal coordinate analysis (PCoA) indicated that the microbial community structure differed between locations and microtopographies and canonical correspondence analysis indicated an association between microbial community structure and soil properties or geography. These insights into the microbial community structure and the main controlling factors in wetlands of the Qinghai-Tibetan Plateau provide a valuable background for further studies on biogeochemical processes in this distinct ecosystem.

  20. Massive Collection of Full-Length Complementary DNA Clones and Microarray Analyses:. Keys to Rice Transcriptome Analysis

    NASA Astrophysics Data System (ADS)

    Kikuchi, Shoshi

    2009-02-01

    Completion of the high-precision genome sequence analysis of rice led to the collection of about 35,000 full-length cDNA clones and the determination of their complete sequences. Mapping of these full-length cDNA sequences has given us information on (1) the number of genes expressed in the rice genome; (2) the start and end positions and exon-intron structures of rice genes; (3) alternative transcripts; (4) possible encoded proteins; (5) non-protein-coding (np) RNAs; (6) the density of gene localization on the chromosome; (7) setting the parameters of gene prediction programs; and (8) the construction of a microarray system that monitors global gene expression. Manual curation for rice gene annotation by using mapping information on full-length cDNA and EST assemblies has revealed about 32,000 expressed genes in the rice genome. Analysis of major gene families, such as those encoding membrane transport proteins (pumps, ion channels, and secondary transporters), along with the evolution from bacteria to higher animals and plants, reveals how gene numbers have increased through adaptation to circumstances. Family-based gene annotation also gives us a new way of comparing organisms. Massive amounts of data on gene expression under many kinds of physiological conditions are being accumulated in rice oligoarrays (22K and 44K) based on full-length cDNA sequences. Cluster analyses of genes that have the same promoter cis-elements, that have similar expression profiles, or that encode enzymes in the same metabolic pathways or signal transduction cascades give us clues to understanding the networks of gene expression in rice. As a tool for that purpose, we recently developed "RiCES", a tool for searching for cis-elements in the promoter regions of clustered genes.

  1. Investigation of genetic diversity and epidemiological characteristics of Pasteurella multocida isolates from poultry in southwest China by population structure, multi-locus sequence typing and virulence-associated gene profile analysis.

    PubMed

    Li, Zhangcheng; Cheng, Fangjun; Lan, Shimei; Guo, Jianhua; Liu, Wei; Li, Xiaoyan; Luo, Zeli; Zhang, Manli; Wu, Juan; Shi, Yang

    2018-04-25

    Fowl cholera caused by Pasteurella multocida has always been a disease of global importance for poultry production. The aim of this study was to obtain more information about the epidemiology of avian P. multocida infection in southwest China and the genetic characteristics of clinical isolates. P. multocida isolates were characterized by biochemical and molecular-biological methods. The distributions of the capsular serogroups, the phenotypic antimicrobial resistance profiles, lipopolysaccharide (LPS) genotyping and the presence of 19 virulence genes were investigated in 45 isolates of P. multocida that were associated with clinical disease in poultry. The genetic diversity of P. multocida strains was performed by 16S rRNA and rpoB gene sequence analysis as well as multilocus sequence typing (MLST). The results showed that most (80.0%) of the P. multocida isolates in this study represented special P. multocida subspecies, and 71.1% of the isolates showed multiple-drug resistance. 45 isolates belonged to capsular types: A (100%) and two LPS genotypes: L1 (95.6%) and L3 (4.4%). MLST revealed two new alleles (pmi77 and gdh57) and one new sequence type (ST342). ST129 types dominated in 45 P. multocida isolates. Isolates belonging to ST129 were with the genes ompH+plpB+ptfA+tonB, whereas ST342 included isolates with fur+hgbA+tonB genes. Population genetic analysis and the MLST results revealed that at least one new ST genotype was present in the avian P. multocida in China. These findings provide novel insights into the epidemiological characteristics of avian P. multocida isolates in southwest China.

  2. Characterization of Vibrio parahaemolyticus clinical strains from Maryland (2012-2013) and comparisons to a locally and globally diverse V. parahaemolyticus strains by whole-genome sequence analysis.

    PubMed

    Haendiges, Julie; Timme, Ruth; Allard, Marc W; Myers, Robert A; Brown, Eric W; Gonzalez-Escalona, Narjol

    2015-01-01

    Vibrio parahaemolyticus is the leading cause of foodborne illnesses in the US associated with the consumption of raw shellfish. Previous population studies of V. parahaemolyticus have used Multi-Locus Sequence Typing (MLST) or Pulsed Field Gel Electrophoresis (PFGE). Whole genome sequencing (WGS) provides a much higher level of resolution, but has been used to characterize only a few United States (US) clinical isolates. Here we report the WGS characterization of 34 genomes of V. parahaemolyticus strains that were isolated from clinical cases in the state of Maryland (MD) during 2 years (2012-2013). These 2 years saw an increase of V. parahaemolyticus cases compared to previous years. Among these MD isolates, 28% were negative for tdh and trh, 8% were tdh positive only, 11% were trh positive only, and 53% contained both genes. We compared this set of V. parahaemolyticus genomes to those of a collection of 17 archival strains from the US (10 previously sequenced strains and 7 from NCBI, collected between 1988 and 2004) and 15 international strains, isolated from geographically-diverse environmental and clinical sources (collected between 1980 and 2010). A WGS phylogenetic analysis of these strains revealed the regional outbreak strains from MD are highly diverse and yet genetically distinct from the international strains. Some MD strains caused outbreaks 2 years in a row, indicating a local source of contamination (e.g., ST631). Advances in WGS will enable this type of analysis to become routine, providing an excellent tool for improved surveillance. Databases built with phylogenetic data will help pinpoint sources of contamination in future outbreaks and contribute to faster outbreak control.

  3. Characterization of Vibrio parahaemolyticus clinical strains from Maryland (2012–2013) and comparisons to a locally and globally diverse V. parahaemolyticus strains by whole-genome sequence analysis

    PubMed Central

    Haendiges, Julie; Timme, Ruth; Allard, Marc W.; Myers, Robert A.; Brown, Eric W.; Gonzalez-Escalona, Narjol

    2015-01-01

    Vibrio parahaemolyticus is the leading cause of foodborne illnesses in the US associated with the consumption of raw shellfish. Previous population studies of V. parahaemolyticus have used Multi-Locus Sequence Typing (MLST) or Pulsed Field Gel Electrophoresis (PFGE). Whole genome sequencing (WGS) provides a much higher level of resolution, but has been used to characterize only a few United States (US) clinical isolates. Here we report the WGS characterization of 34 genomes of V. parahaemolyticus strains that were isolated from clinical cases in the state of Maryland (MD) during 2 years (2012–2013). These 2 years saw an increase of V. parahaemolyticus cases compared to previous years. Among these MD isolates, 28% were negative for tdh and trh, 8% were tdh positive only, 11% were trh positive only, and 53% contained both genes. We compared this set of V. parahaemolyticus genomes to those of a collection of 17 archival strains from the US (10 previously sequenced strains and 7 from NCBI, collected between 1988 and 2004) and 15 international strains, isolated from geographically-diverse environmental and clinical sources (collected between 1980 and 2010). A WGS phylogenetic analysis of these strains revealed the regional outbreak strains from MD are highly diverse and yet genetically distinct from the international strains. Some MD strains caused outbreaks 2 years in a row, indicating a local source of contamination (e.g., ST631). Advances in WGS will enable this type of analysis to become routine, providing an excellent tool for improved surveillance. Databases built with phylogenetic data will help pinpoint sources of contamination in future outbreaks and contribute to faster outbreak control. PMID:25745421

  4. Microbial Diversity in Hummock and Hollow Soils of Three Wetlands on the Qinghai-Tibetan Plateau Revealed by 16S rRNA Pyrosequencing

    PubMed Central

    Deng, Yongcui; Cui, Xiaoyong; Hernández, Marcela; Dumont, Marc G.

    2014-01-01

    The wetlands of the Qinghai-Tibetan Plateau are believed to play an important role in global nutrient cycling, but the composition and diversity of microorganisms in this ecosystem are poorly characterized. An understanding of the effects of geography and microtopography on microbial populations will provide clues to the underlying mechanisms that structure microbial communities. In this study, we used pyrosequencing-based analysis of 16S rRNA gene sequences to assess and compare the composition of soil microbial communities present in hummock and hollow soils from three wetlands (Dangxiong, Hongyuan and Maduo) on the Qinghai-Tibetan Plateau, the world’s highest plateau. A total of 36 bacterial phyla were detected. Proteobacteria (34.5% average relative abundance), Actinobacteria (17.3%) and Bacteroidetes (11%) had the highest relative abundances across all sites. Chloroflexi, Acidobacteria, Verrucomicrobia, Firmicutes, and Planctomycetes were also relatively abundant (1–10%). In addition, archaeal sequences belonging to Euryarchaea, Crenarchaea and Thaumarchaea were detected. Alphaproteobacteria sequences, especially of the order Rhodospirillales, were significantly more abundant in Maduo than Hongyuan and Dangxiong wetlands. Compared with Hongyuan soils, Dangxiong and Maduo had significantly higher relative abundances of Gammaproteobacteria sequences (mainly order Xanthomonadales). Hongyuan wetland had a relatively high abundance of methanogens (mainly genera Methanobacterium, Methanosarcina and Methanosaeta) and methanotrophs (mainly Methylocystis) compared with the other two wetlands. Principal coordinate analysis (PCoA) indicated that the microbial community structure differed between locations and microtopographies and canonical correspondence analysis indicated an association between microbial community structure and soil properties or geography. These insights into the microbial community structure and the main controlling factors in wetlands of the Qinghai-Tibetan Plateau provide a valuable background for further studies on biogeochemical processes in this distinct ecosystem. PMID:25078273

  5. Exploiting EST databases for the development and characterisation of 3425 gene-tagged CISP markers in biofuel crop sugarcane and their transferability in cereals and orphan tropical grasses.

    PubMed

    Chandra, Amaresh; Jain, Radha; Solomon, Sushil; Shrivastava, Shiksha; Roy, Ajoy K

    2013-02-04

    Sugarcane is an important cash crop, providing 70% of the global raw sugar as well as raw material for biofuel production. Genetic analysis is hindered in sugarcane because of its large and complex polyploid genome and lack of sufficiently informative gene-tagged markers. Modern genomics has produced large amount of ESTs, which can be exploited to develop molecular markers based on comparative analysis with EST datasets of related crops and whole rice genome sequence, and accentuate their cross-technical functionality in orphan crops like tropical grasses. Utilising 246,180 Saccharum officinarum EST sequences vis-à-vis its comparative analysis with ESTs of sorghum and barley and the whole rice genome sequence, we have developed 3425 novel gene-tagged markers - namely, conserved-intron scanning primers (CISP) - using the web program GeMprospector. Rice orthologue annotation results indicated homology of 1096 sequences with expressed proteins, 491 with hypothetical proteins. The remaining 1838 were miscellaneous in nature. A total of 367 primer-pairs were tested in diverse panel of samples. The data indicate amplification of 41% polymorphic bands leading to 0.52 PIC and 3.50 MI with a set of sugarcane varieties and Saccharum species. In addition, a moderate technical functionality of a set of such markers with orphan tropical grasses (22%) and fodder cum cereal oat (33%) is observed. Developed gene-tagged CISP markers exhibited considerable technical functionality with varieties of sugarcane and unexplored species of tropical grasses. These markers would thus be particularly useful in identifying the economical traits in sugarcane and developing conservation strategies for orphan tropical grasses.

  6. Identification of Burkholderia pseudomallei Near-Neighbor Species in the Northern Territory of Australia

    PubMed Central

    Ginther, Jennifer L.; Mayo, Mark; Warrington, Stephanie D.; Kaestli, Mirjam; Mullins, Travis; Wagner, David M.; Currie, Bart J.; Tuanyok, Apichai; Keim, Paul

    2015-01-01

    Identification and characterization of near-neighbor species are critical to the development of robust molecular diagnostic tools for biothreat agents. One such agent, Burkholderia pseudomallei, a soil bacterium and the causative agent of melioidosis, is lacking in this area because of its genomic diversity and widespread geographic distribution. The Burkholderia genus contains over 60 species and occupies a large range of environments including soil, plants, rhizospheres, water, animals and humans. The identification of novel species in new locations necessitates the need to identify the true global distribution of Burkholderia species, especially the members that are closely related to B. pseudomallei. In our current study, we used the Burkholderia-specific recA sequencing assay to analyze environmental samples from the Darwin region in the Northern Territory of Australia where melioidosis is endemic. Burkholderia recA PCR negative samples were further characterized using 16s rRNA sequencing for species identification. Phylogenetic analysis demonstrated that over 70% of the bacterial isolates were identified as B. ubonensis indicating that this species is common in the soil where B. pseudomallei is endemic. Bayesian phylogenetic analysis reveals many novel branches within the B. cepacia complex, one novel B. oklahomensis-like species, and one novel branch containing one isolate that is distinct from all other samples on the phylogenetic tree. During the analysis with recA sequencing, we discovered 2 single nucleotide polymorphisms in the reverse priming region of B. oklahomensis. A degenerate primer was developed and is proposed for future use. We conclude that the recA sequencing technique is an effective tool to classify Burkholderia and identify soil organisms in a melioidosis endemic area. PMID:26121041

  7. Transcriptome Analysis of the Differentially Expressed Genes in the Male and Female Shrub Willows (Salix suchowensis)

    PubMed Central

    Liu, Jingjing; Yin, Tongming; Ye, Ning; Chen, Yingnan; Yin, Tingting; Liu, Min; Hassani, Danial

    2013-01-01

    Background The dioecious system is relatively rare in plants. Shrub willow is an annual flowering dioecious woody plant, and possesses many characteristics that lend it as a great model for tracking the missing pieces of sex determination evolution. To gain a global view of the genes differentially expressed in the male and female shrub willows and to develop a database for further studies, we performed a large-scale transcriptome sequencing of flower buds which were separately collected from two types of sexes. Results Totally, 1,201,931 high quality reads were obtained, with an average length of 389 bp and a total length of 467.96 Mb. The ESTs were assembled into 29,048 contigs, and 132,709 singletons. These unigenes were further functionally annotated by comparing their sequences to different proteins and functional domain databases and assigned with Gene Ontology (GO) terms. A biochemical pathway database containing 291 predicted pathways was also created based on the annotations of the unigenes. Digital expression analysis identified 806 differentially expressed genes between the male and female flower buds. And 33 of them located on the incipient sex chromosome of Salicaceae, among which, 12 genes might involve in plant sex determination empirically. These genes were worthy of special notification in future studies. Conclusions In this study, a large number of EST sequences were generated from the flower buds of a male and a female shrub willow. We also reported the differentially expressed genes between the two sex-type flowers. This work provides valuable information and sequence resources for uncovering the sex determining genes and for future functional genomics analysis of Salicaceae spp. PMID:23560075

  8. Sequence information signal processor for local and global string comparisons

    DOEpatents

    Peterson, John C.; Chow, Edward T.; Waterman, Michael S.; Hunkapillar, Timothy J.

    1997-01-01

    A sequence information signal processing integrated circuit chip designed to perform high speed calculation of a dynamic programming algorithm based upon the algorithm defined by Waterman and Smith. The signal processing chip of the present invention is designed to be a building block of a linear systolic array, the performance of which can be increased by connecting additional sequence information signal processing chips to the array. The chip provides a high speed, low cost linear array processor that can locate highly similar global sequences or segments thereof such as contiguous subsequences from two different DNA or protein sequences. The chip is implemented in a preferred embodiment using CMOS VLSI technology to provide the equivalent of about 400,000 transistors or 100,000 gates. Each chip provides 16 processing elements, and is designed to provide 16 bit, two's compliment operation for maximum score precision of between -32,768 and +32,767. It is designed to provide a comparison between sequences as long as 4,194,304 elements without external software and between sequences of unlimited numbers of elements with the aid of external software. Each sequence can be assigned different deletion and insertion weight functions. Each processor is provided with a similarity measure device which is independently variable. Thus, each processor can contribute to maximum value score calculation using a different similarity measure.

  9. SDSS-IV MaNGA: Spatially Resolved Star Formation Main Sequence and LI(N)ER Sequence

    NASA Astrophysics Data System (ADS)

    Hsieh, B. C.; Lin, Lihwai; Lin, J. H.; Pan, H. A.; Hsu, C. H.; Sánchez, S. F.; Cano-Díaz, M.; Zhang, K.; Yan, R.; Barrera-Ballesteros, J. K.; Boquien, M.; Riffel, R.; Brownstein, J.; Cruz-González, I.; Hagen, A.; Ibarra, H.; Pan, K.; Bizyaev, D.; Oravetz, D.; Simmons, A.

    2017-12-01

    We present our study on the spatially resolved Hα and M * relation for 536 star-forming and 424 quiescent galaxies taken from the MaNGA survey. We show that the star formation rate surface density ({{{Σ }}}{SFR}), derived based on the Hα emissions, is strongly correlated with the M * surface density ({{{Σ }}}* ) on kiloparsec scales for star-forming galaxies and can be directly connected to the global star-forming sequence. This suggests that the global main sequence may be a consequence of a more fundamental relation on small scales. On the other hand, our result suggests that ∼20% of quiescent galaxies in our sample still have star formation activities in the outer region with lower specific star formation rate (SSFR) than typical star-forming galaxies. Meanwhile, we also find a tight correlation between {{{Σ }}}{{H}α } and {{{Σ }}}* for LI(N)ER regions, named the resolved “LI(N)ER” sequence, in quiescent galaxies, which is consistent with the scenario that LI(N)ER emissions are primarily powered by the hot, evolved stars as suggested in the literature.

  10. A porcine G9 rotavirus strain shares neutralization and VP7 phylogenetic sequence lineage 3 characteristics with contemporary human G9 rotavirus strains.

    PubMed

    Hoshino, Yasutaka; Honma, Shinjiro; Jones, Ronald W; Ross, Jerri; Santos, Norma; Gentsch, Jon R; Kapikian, Albert Z; Hesse, Richard A

    2005-02-05

    Of five globally important VP7 (G) serotypes (G1-4 and 9) of group A rotaviruses (the single most important etiologic agents of infantile diarrhea worldwide), G9 continues to attract considerable attention because of its unique natural history. Serotype G9 rotavirus was isolated from a child with diarrhea first in the United States in 1983 and subsequently in Japan in 1985. Curiously, soon after their detection, G9 rotaviruses were not detected for about a decade in both countries and then reemerged in both countries in the mid-1990s. Unexpectedly, however, such reemerged G9 strains were distinct genetically and molecularly from those isolated in the 1980s. Thus, the origin of the reemerged G9 viruses remains an enigma. Sequence analysis has demonstrated that the G9 rotavirus VP7 gene belongs to one of at least three phylogenetic lineages: lineage 1 (strains isolated in the 1980s in the United States and Japan), lineage 2 (strains first isolated in 1986 and exclusively in India thus far), and lineage 3 (strains that emerged/reemerged in the mid-1990s). Currently, lineage 3 G9 viruses are the most frequently detected G9 strains globally. We characterized a porcine rotavirus (A2 strain) isolated in the United States that was known to belong to the P[7] genotype but had not been serotyped by neutralization. The A2 strain was found to bear serotype G9 and P9 specificities as well as NSP4 [B] and subgroup I characteristics. By VP7-specific neutralization, the porcine G9 strain was more closely related to lineage 3 viruses than to lineage 1 or 2 viruses. Furthermore, by sequence analysis, the A2 VP7 was shown to belong to lineage 3 G9. These findings raise intriguing questions regarding possible explanations for the emergence of variations among the G9 strains.

  11. Global catalogue of microorganisms (gcm): a comprehensive database and information retrieval, analysis, and visualization system for microbial resources

    PubMed Central

    2013-01-01

    Background Throughout the long history of industrial and academic research, many microbes have been isolated, characterized and preserved (whenever possible) in culture collections. With the steady accumulation in observational data of biodiversity as well as microbial sequencing data, bio-resource centers have to function as data and information repositories to serve academia, industry, and regulators on behalf of and for the general public. Hence, the World Data Centre for Microorganisms (WDCM) started to take its responsibility for constructing an effective information environment that would promote and sustain microbial research data activities, and bridge the gaps currently present within and outside the microbiology communities. Description Strain catalogue information was collected from collections by online submission. We developed tools for automatic extraction of strain numbers and species names from various sources, including Genbank, Pubmed, and SwissProt. These new tools connect strain catalogue information with the corresponding nucleotide and protein sequences, as well as to genome sequence and references citing a particular strain. All information has been processed and compiled in order to create a comprehensive database of microbial resources, and was named Global Catalogue of Microorganisms (GCM). The current version of GCM contains information of over 273,933 strains, which includes 43,436bacterial, fungal and archaea species from 52 collections in 25 countries and regions. A number of online analysis and statistical tools have been integrated, together with advanced search functions, which should greatly facilitate the exploration of the content of GCM. Conclusion A comprehensive dynamic database of microbial resources has been created, which unveils the resources preserved in culture collections especially for those whose informatics infrastructures are still under development, which should foster cumulative research, facilitating the activities of microbiologists world-wide, who work in both public and industrial research centres. This database is available from http://gcm.wfcc.info. PMID:24377417

  12. Phylodynamic analysis of porcine circovirus type 2: Methodological approach and datasets.

    PubMed

    Franzo, Giovanni; Cortey, Martì; Segalés, Joaquim; Hughes, Joseph; Drigo, Michele

    2016-09-01

    Since its first description, PCV2 has emerged as one of the most economically relevant diseases for the swine industry. Despite the introduction of vaccines effective in controlling clinical syndromes, PCV2 spread was not prevented and some potential evidences of vaccine immuno escape have recently been reported ("Complete genome sequence of a novel porcine circovirus type 2b variant present in cases of vaccine failures in the United States" (Xiao and Halbur, 2012) [1], "Genetic and antigenic characterization of a newly emerging porcine circovirus type 2b mutant first isolated in cases of vaccine failure in Korea" (Seo et al., 2014) [2]). In this article, we used a collection of PCV2 full genomes, provided in the present manuscript, and several phylogentic, phylodynamic and bioinformatic methods to investigate different aspects of PCV2 epidemiology, history and evolution (more thoroughly described in "PHYLODYNAMIC ANALYSIS of PORCINE CIRCOVIRUS TYPE 2 REVEALS GLOBAL WAVES of EMERGING GENOTYPES and the CIRCULATION of RECOMBINANT FORMS"[3]). The methodological approaches used to consistently detect recombiantion events and estimate population dymanics and spreading patterns of rapidly evolving ssDNA viruses are herein reported. Programs used are described and original scripts have been provided. Ensembled databases used are also made available. These consist of a broad collection of complete genome sequences (i.e. 843 sequences; 63 complete genomes of PCV2a, 310 of PCV2b, 4 of PCV2c, 217 of PCV2d, 64 of CRF01, 140 of CRF02 and 45 of CRF03.), divided in differnt ORF (i.e. ORF1, ORF2 and intergenic regions), of PCV2 genotypes and major Circulating Recombinat Forms (CRF) properly annotated with respective collection data and country. Globally, all of these data can be used as a starting point for further studies and for classification purpose.

  13. Global Regulatory Pathways in the Alphaproteobacteria

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    none

    A major goal for microbiologists in the twenty-first century is to develop an understanding of the microbial cell in all its complexity. In addition to understanding the function of individual gene products we need to focus on how the cell regulates gene expression at a global level to respond to different environmental parameters. Development of genomic technologies such as complete genome sequencing, proteomics, and global comparisons of mRNA expression patterns allows us to begin to address this issue. This proposal focuses on a number of phylogenetically related bacteria that are involved in environmentally important processes such as carbon sequestration andmore » bioremediation. Genome sequencing projects of a number of these bacteria have revealed the presence of a small family of regulatory genes found thus far only in the alpha-proteobacteria. These genes encode proteins that are related to the global regulatory protein RosR in Rhizobium etli, which is involved in determining nodulation competitiveness in this bacterium. Our goal is to examine the function of the proteins encoded by this gene family in several of the bacteria containing homologs to RosR. We will construct gene disruption mutations in a number of these bacteria and characterize the resulting mutant strains using two-dimensional gel electrophoresis and genetic and biochemical techniques. We will thus determine if the other proteins also function as global regulators of gene expression. Using proteomics methods we will identify the specific proteins whose expression varies depending on the presence or absence of the RosR homolog. Over fifty loci regulated by RosR have been identified in R. etli using transposon mutagenesis; this will serve as out benchmark to which we will compare the other regulons. We expect to identify genes regulated by RosR homologs in several bacterial species, including, but not limited to Rhodopseudomonas palustris and Sphingomonas aromaticivorans. In this way we will provide valuable information on gene regulation in this group of bacteria, expand our understanding of the evolution of global regulatory pathways, and develop methods for comparative regulon analysis among microbes.« less

  14. Worldwide genetic variability of the Duffy binding protein: insights into Plasmodium vivax vaccine development.

    PubMed

    Nóbrega de Sousa, Taís; Carvalho, Luzia Helena; Alves de Brito, Cristiana Ferreira

    2011-01-01

    The dependence of Plasmodium vivax on invasion mediated by Duffy binding protein (DBP) makes this protein a prime candidate for development of a vaccine. However, the development of a DBP-based vaccine might be hampered by the high variability of the protein ligand (DBP(II)), known to bias the immune response toward a specific DBP variant. Here, the hypothesis being investigated is that the analysis of the worldwide DBP(II) sequences will allow us to determine the minimum number of haplotypes (MNH) to be included in a DBP-based vaccine of broad coverage. For that, all DBP(II) sequences available were compiled and MNH was based on the most frequent nonsynonymous single nucleotide polymorphisms, the majority mapped on B and T cell epitopes. A preliminary analysis of DBP(II) genetic diversity from eight malaria-endemic countries estimated that a number between two to six DBP haplotypes (17 in total) would target at least 50% of parasite population circulating in each endemic region. Aiming to avoid region-specific haplotypes, we next analyzed the MNH that broadly cover worldwide parasite population. The results demonstrated that seven haplotypes would be required to cover around 60% of DBP(II) sequences available. Trying to validate these selected haplotypes per country, we found that five out of the eight countries will be covered by the MNH (67% of parasite populations, range 48-84%). In addition, to identify related subgroups of DBP(II) sequences we used a Bayesian clustering algorithm. The algorithm grouped all DBP(II) sequences in six populations that were independent of geographic origin, with ancestral populations present in different proportions in each country. In conclusion, in this first attempt to undertake a global analysis about DBP(II) variability, the results suggest that the development of DBP-based vaccine should consider multi-haplotype strategies; otherwise a putative P. vivax vaccine may not target some parasite populations.

  15. Next-Generation Sequencing Reveals Frequent Opportunities for Exposure to Hepatitis C Virus in Ghana

    PubMed Central

    Phillips, Richard O.; Mora, Nallely; Xia, Guo-liang; Campo, David S.; Purdy, Michael A.; Dimitrova, Zoya E.; Owusu, Dorcas O.; Punkova, Lili T.; Skums, Pavel; Owusu-Ofori, Shirley; Sarfo, Fred Stephen; Vaughan, Gilberto; Roh, Hajung; Opare-Sem, Ohene K.; Cooper, Richard S.; Khudyakov, Yury E.

    2015-01-01

    Globally, hepatitis C Virus (HCV) infection is responsible for a large proportion of persons with liver disease, including cancer. The infection is highly prevalent in sub-Saharan Africa. West Africa was identified as a geographic origin of two HCV genotypes. However, little is known about the genetic composition of HCV populations in many countries of the region. Using conventional and next-generation sequencing (NGS), we identified and genetically characterized 65 HCV strains circulating among HCV-positive blood donors in Kumasi, Ghana. Phylogenetic analysis using consensus sequences derived from 3 genomic regions of the HCV genome, 5'-untranslated region, hypervariable region 1 (HVR1) and NS5B gene, consistently classified the HCV variants (n = 65) into genotypes 1 (HCV-1, 15%) and genotype 2 (HCV-2, 85%). The Ghanaian and West African HCV-2 NS5B sequences were found completely intermixed in the phylogenetic tree, indicating a substantial genetic heterogeneity of HCV-2 in Ghana. Analysis of HVR1 sequences from intra-host HCV variants obtained by NGS showed that three donors were infected with >1 HCV strain, including infections with 2 genotypes. Two other donors share an HCV strain, indicating HCV transmission between them. The HCV-2 strain sampled from one donor was replaced with another HCV-2 strain after only 2 months of observation, indicating rapid strain switching. Bayesian analysis estimated that the HCV-2 strains in Ghana were expanding since the 16th century. The blood donors in Kumasi, Ghana, are infected with a very heterogeneous HCV population of HCV-1 and HCV-2, with HCV-2 being prevalent. The detection of three cases of co- or super-infections and transmission linkage between 2 cases suggests frequent opportunities for HCV exposure among the blood donors and is consistent with the reported high HCV prevalence. The conditions for effective HCV-2 transmission existed for ~ 3–4 centuries, indicating a long epidemic history of HCV-2 in Ghana. PMID:26683463

  16. Genome-wide analysis of the WRKY transcription factors in aegilops tauschii.

    PubMed

    Ma, Jianhui; Zhang, Daijing; Shao, Yun; Liu, Pei; Jiang, Lina; Li, Chunxi

    2014-01-01

    The WRKY transcription factors (TFs) play important roles in responding to abiotic and biotic stress in plants. However, due to its unfinished genome sequencing, relatively few WRKY TFs with full-length coding sequences (CDSs) have been identified in wheat. Instead, the Aegilops tauschii genome, which is the D-genome progenitor of the hexaploid wheat genome, provides important resources for the discovery of new genes. In this study, we performed a bioinformatics analysis to identify WRKY TFs with full-length CDSs from the A. tauschii genome. A detailed evolutionary analysis for all these TFs was conducted, and quantitative real-time PCR was carried out to investigate the expression patterns of the abiotic stress-related WRKY TFs under different abiotic stress conditions in A. tauschii seedlings. A total of 93 WRKY TFs were identified from A. tauschii, and 79 of them were found to be newly discovered genes compared with wheat. Gene phylogeny, gene structure and chromosome location of the 93 WRKY TFs were fully analyzed. These studies provide a global view of the WRKY TFs from A. tauschii and a firm foundation for further investigations in both A. tauschii and wheat. © 2015 S. Karger AG, Basel.

  17. Molecular Systematic of Three Species of Oithona (Copepoda, Cyclopoida) from the Atlantic Ocean: Comparative Analysis Using 28S rDNA

    PubMed Central

    Cepeda, Georgina D.; Blanco-Bercial, Leocadio; Bucklin, Ann; Berón, Corina M.; Viñas, María D.

    2012-01-01

    Species of Oithona (Copepoda, Cyclopoida) are highly abundant, ecologically important, and widely distributed throughout the world oceans. Although there are valid and detailed descriptions of the species, routine species identifications remain challenging due to their small size, subtle morphological diagnostic traits, and the description of geographic forms or varieties. This study examined three species of Oithona (O. similis, O. atlantica and O. nana) occurring in the Argentine sector of the South Atlantic Ocean based on DNA sequence variation of a 575 base-pair region of 28S rDNA, with comparative analysis of these species from other North and South Atlantic regions. DNA sequence variation clearly resolved and discriminated the species, and revealed low levels of intraspecific variation among North and South Atlantic populations of each species. The 28S rDNA region was thus shown to provide an accurate and reliable means of identifying the species throughout the sampled domain. Analysis of 28S rDNA variation for additional species collected throughout the global ocean will be useful to accurately characterize biogeographical distributions of the species and to examine phylogenetic relationships among them. PMID:22558245

  18. Transcriptomic analysis of differentially expressed genes in flower-buds of genetic male sterile and wild type cucumber by RNA sequencing.

    PubMed

    Han, Yike; Wang, Xianyun; Zhao, Fengyue; Gao, Shang; Wei, Aimin; Chen, Zhengwu; Liu, Nan; Zhang, Zhenxian; Du, Shengli

    2018-05-01

    Cucumber ( Cucumis sativus L. ) pollen development involves a diverse range of gene interactions between sporophytic and gametophytic tissues. Previous studies in our laboratory showed that male sterility was controlled by a single recessive nuclear gene, and occurred in pollen mother cell meiophase. To fully explore the global gene expression and identify genes related to male sterility, a RNA-seq analysis was adopted in this study. Young male flower-buds (1-2 mm in length) from genetic male sterility (GMS) mutant and homozygous fertile cucumber (WT) were collected for two sequencing libraries. Total 545 differentially expressed genes (DEGs), including 142 up-regulated DEGs and 403 down-regulated DEGs, were detected in two libraries (Fold Change ≥ 2, FDR < 0.01). These genes were involved in a variety of metabolic pathways, like ethylene-activated signaling pathway, sporopollenin biosynthetic pathway, cell cycle and DNA damage repair pathway. qRT-PCR analysis was performed and showed that the correlation between RNA-Seq and qRT-PCR was 0.876. These findings contribute to a better understanding of the mechanism that leads to GMS in cucumber.

  19. Transcriptome analysis of carnation (Dianthus caryophyllus L.) based on next-generation sequencing technology.

    PubMed

    Tanase, Koji; Nishitani, Chikako; Hirakawa, Hideki; Isobe, Sachiko; Tabata, Satoshi; Ohmiya, Akemi; Onozaki, Takashi

    2012-07-02

    Carnation (Dianthus caryophyllus L.), in the family Caryophyllaceae, can be found in a wide range of colors and is a model system for studies of flower senescence. In addition, it is one of the most important flowers in the global floriculture industry. However, few genomics resources, such as sequences and markers are available for carnation or other members of the Caryophyllaceae. To increase our understanding of the genetic control of important characters in carnation, we generated an expressed sequence tag (EST) database for a carnation cultivar important in horticulture by high-throughput sequencing using 454 pyrosequencing technology. We constructed a normalized cDNA library and a 3'-UTR library of carnation, obtaining a total of 1,162,126 high-quality reads. These reads were assembled into 300,740 unigenes consisting of 37,844 contigs and 262,896 singlets. The contigs were searched against an Arabidopsis sequence database, and 61.8% (23,380) of them had at least one BLASTX hit. These contigs were also annotated with Gene Ontology (GO) and were found to cover a broad range of GO categories. Furthermore, we identified 17,362 potential simple sequence repeats (SSRs) in 14,291 of the unigenes. We focused on gene discovery in the areas of flower color and ethylene biosynthesis. Transcripts were identified for almost every gene involved in flower chlorophyll and carotenoid metabolism and in anthocyanin biosynthesis. Transcripts were also identified for every step in the ethylene biosynthesis pathway. We present the first large-scale sequence data set for carnation, generated using next-generation sequencing technology. The large EST database generated from these sequences is an informative resource for identifying genes involved in various biological processes in carnation and provides an EST resource for understanding the genetic diversity of this plant.

  20. Transcriptome analysis of carnation (Dianthus caryophyllus L.) based on next-generation sequencing technology

    PubMed Central

    2012-01-01

    Background Carnation (Dianthus caryophyllus L.), in the family Caryophyllaceae, can be found in a wide range of colors and is a model system for studies of flower senescence. In addition, it is one of the most important flowers in the global floriculture industry. However, few genomics resources, such as sequences and markers are available for carnation or other members of the Caryophyllaceae. To increase our understanding of the genetic control of important characters in carnation, we generated an expressed sequence tag (EST) database for a carnation cultivar important in horticulture by high-throughput sequencing using 454 pyrosequencing technology. Results We constructed a normalized cDNA library and a 3’-UTR library of carnation, obtaining a total of 1,162,126 high-quality reads. These reads were assembled into 300,740 unigenes consisting of 37,844 contigs and 262,896 singlets. The contigs were searched against an Arabidopsis sequence database, and 61.8% (23,380) of them had at least one BLASTX hit. These contigs were also annotated with Gene Ontology (GO) and were found to cover a broad range of GO categories. Furthermore, we identified 17,362 potential simple sequence repeats (SSRs) in 14,291 of the unigenes. We focused on gene discovery in the areas of flower color and ethylene biosynthesis. Transcripts were identified for almost every gene involved in flower chlorophyll and carotenoid metabolism and in anthocyanin biosynthesis. Transcripts were also identified for every step in the ethylene biosynthesis pathway. Conclusions We present the first large-scale sequence data set for carnation, generated using next-generation sequencing technology. The large EST database generated from these sequences is an informative resource for identifying genes involved in various biological processes in carnation and provides an EST resource for understanding the genetic diversity of this plant. PMID:22747974

  1. Visual management of large scale data mining projects.

    PubMed

    Shah, I; Hunter, L

    2000-01-01

    This paper describes a unified framework for visualizing the preparations for, and results of, hundreds of machine learning experiments. These experiments were designed to improve the accuracy of enzyme functional predictions from sequence, and in many cases were successful. Our system provides graphical user interfaces for defining and exploring training datasets and various representational alternatives, for inspecting the hypotheses induced by various types of learning algorithms, for visualizing the global results, and for inspecting in detail results for specific training sets (functions) and examples (proteins). The visualization tools serve as a navigational aid through a large amount of sequence data and induced knowledge. They provided significant help in understanding both the significance and the underlying biological explanations of our successes and failures. Using these visualizations it was possible to efficiently identify weaknesses of the modular sequence representations and induction algorithms which suggest better learning strategies. The context in which our data mining visualization toolkit was developed was the problem of accurately predicting enzyme function from protein sequence data. Previous work demonstrated that approximately 6% of enzyme protein sequences are likely to be assigned incorrect functions on the basis of sequence similarity alone. In order to test the hypothesis that more detailed sequence analysis using machine learning techniques and modular domain representations could address many of these failures, we designed a series of more than 250 experiments using information-theoretic decision tree induction and naive Bayesian learning on local sequence domain representations of problematic enzyme function classes. In more than half of these cases, our methods were able to perfectly discriminate among various possible functions of similar sequences. We developed and tested our visualization techniques on this application.

  2. From psychological need satisfaction to intentional behavior: testing a motivational sequence in two behavioral contexts.

    PubMed

    Hagger, Martin S; Chatzisarantis, Nikos L D; Harris, Jemma

    2006-02-01

    The present study tested a motivational sequence in which global-level psychological need satisfaction from self-determination theory influenced intentions and behavior directly and indirectly through contextual-level motivation and situational-level decision-making constructs from the theory of planned behavior. Two samples of university students (N = 511) completed measures of global-level psychological need satisfaction, contextual-level autonomous motivation, and situational-level attitudes, subjective norms, perceived behavioral control, intentions, and behavior in two behavioral contexts: exercise and dieting. A structural equation model supported the proposed sequence in both samples. The indirect effect was present for exercise behavior, whereas both direct and indirect effects were found for dieting behavior. Findings independently supported the component theories and provided a comprehensive integrated explanation of volitional behavior.

  3. Low Diversity Cryptococcus neoformans Variety grubii Multilocus Sequence Types from Thailand Are Consistent with an Ancestral African Origin

    PubMed Central

    Simwami, Sitali P.; Khayhan, Kantarawee; Henk, Daniel A.; Aanensen, David M.; Boekhout, Teun; Hagen, Ferry; Brouwer, Annemarie E.; Harrison, Thomas S.; Donnelly, Christl A.; Fisher, Matthew C.

    2011-01-01

    The global burden of HIV-associated cryptococcal meningitis is estimated at nearly one million cases per year, causing up to a third of all AIDS-related deaths. Molecular epidemiology constitutes the main methodology for understanding the factors underpinning the emergence of this understudied, yet increasingly important, group of pathogenic fungi. Cryptococcus species are notable in the degree that virulence differs amongst lineages, and highly-virulent emerging lineages are changing patterns of human disease both temporally and spatially. Cryptococcus neoformans variety grubii (Cng, serotype A) constitutes the most ubiquitous cause of cryptococcal meningitis worldwide, however patterns of molecular diversity are understudied across some regions experiencing significant burdens of disease. We compared 183 clinical and environmental isolates of Cng from one such region, Thailand, Southeast Asia, against a global MLST database of 77 Cng isolates. Population genetic analyses showed that Thailand isolates from 11 provinces were highly homogenous, consisting of the same genetic background (globally known as VNI) and exhibiting only ten nearly identical sequence types (STs), with three (STs 44, 45 and 46) dominating our sample. This population contains significantly less diversity when compared against the global population of Cng, specifically Africa. Genetic diversity in Cng was significantly subdivided at the continental level with nearly half (47%) of the global STs unique to a genetically diverse and recombining population in Botswana. These patterns of diversity, when combined with evidence from haplotypic networks and coalescent analyses of global populations, are highly suggestive of an expansion of the Cng VNI clade out of Africa, leading to a limited number of genotypes founding the Asian populations. Divergence time testing estimates the time to the most common ancestor between the African and Asian populations to be 6,920 years ago (95% HPD 122.96 - 27,177.76). Further high-density sampling of global Cng STs is now necessary to resolve the temporal sequence underlying the global emergence of this human pathogen. PMID:21573144

  4. Low diversity Cryptococcus neoformans variety grubii multilocus sequence types from Thailand are consistent with an ancestral African origin.

    PubMed

    Simwami, Sitali P; Khayhan, Kantarawee; Henk, Daniel A; Aanensen, David M; Boekhout, Teun; Hagen, Ferry; Brouwer, Annemarie E; Harrison, Thomas S; Donnelly, Christl A; Fisher, Matthew C

    2011-04-01

    The global burden of HIV-associated cryptococcal meningitis is estimated at nearly one million cases per year, causing up to a third of all AIDS-related deaths. Molecular epidemiology constitutes the main methodology for understanding the factors underpinning the emergence of this understudied, yet increasingly important, group of pathogenic fungi. Cryptococcus species are notable in the degree that virulence differs amongst lineages, and highly-virulent emerging lineages are changing patterns of human disease both temporally and spatially. Cryptococcus neoformans variety grubii (Cng, serotype A) constitutes the most ubiquitous cause of cryptococcal meningitis worldwide, however patterns of molecular diversity are understudied across some regions experiencing significant burdens of disease. We compared 183 clinical and environmental isolates of Cng from one such region, Thailand, Southeast Asia, against a global MLST database of 77 Cng isolates. Population genetic analyses showed that Thailand isolates from 11 provinces were highly homogenous, consisting of the same genetic background (globally known as VNI) and exhibiting only ten nearly identical sequence types (STs), with three (STs 44, 45 and 46) dominating our sample. This population contains significantly less diversity when compared against the global population of Cng, specifically Africa. Genetic diversity in Cng was significantly subdivided at the continental level with nearly half (47%) of the global STs unique to a genetically diverse and recombining population in Botswana. These patterns of diversity, when combined with evidence from haplotypic networks and coalescent analyses of global populations, are highly suggestive of an expansion of the Cng VNI clade out of Africa, leading to a limited number of genotypes founding the Asian populations. Divergence time testing estimates the time to the most common ancestor between the African and Asian populations to be 6,920 years ago (95% HPD 122.96 - 27,177.76). Further high-density sampling of global Cng STs is now necessary to resolve the temporal sequence underlying the global emergence of this human pathogen.

  5. Role for migratory wild birds in the global spread of avian influenza H5N8

    USGS Publications Warehouse

    ,; Ip, Hon S.

    2016-01-01

    Avian influenza viruses affect both poultry production and public health. A subtype H5N8 (clade 2.3.4.4) virus, following an outbreak in poultry in South Korea in January 2014, rapidly spread worldwide in 2014–2015. Our analysis of H5N8 viral sequences, epidemiological investigations, waterfowl migration, and poultry trade showed that long-distance migratory birds can play a major role in the global spread of avian influenza viruses. Further, we found that the hemagglutinin of clade 2.3.4.4 virus was remarkably promiscuous, creating reassortants with multiple neuraminidase subtypes. Improving our understanding of the circumpolar circulation of avian influenza viruses in migratory waterfowl will help to provide early warning of threats from avian influenza to poultry, and potentially human, health.

  6. Sequence, distribution and chromosomal context of class I and class II pilin genes of Neisseria meningitidis identified in whole genome sequences

    PubMed Central

    2014-01-01

    Background Neisseria meningitidis expresses type four pili (Tfp) which are important for colonisation and virulence. Tfp have been considered as one of the most variable structures on the bacterial surface due to high frequency gene conversion, resulting in amino acid sequence variation of the major pilin subunit (PilE). Meningococci express either a class I or a class II pilE gene and recent work has indicated that class II pilins do not undergo antigenic variation, as class II pilE genes encode conserved pilin subunits. The purpose of this work was to use whole genome sequences to further investigate the frequency and variability of the class II pilE genes in meningococcal isolate collections. Results We analysed over 600 publically available whole genome sequences of N. meningitidis isolates to determine the sequence and genomic organization of pilE. We confirmed that meningococcal strains belonging to a limited number of clonal complexes (ccs, namely cc1, cc5, cc8, cc11 and cc174) harbour a class II pilE gene which is conserved in terms of sequence and chromosomal context. We also identified pilS cassettes in all isolates with class II pilE, however, our analysis indicates that these do not serve as donor sequences for pilE/pilS recombination. Furthermore, our work reveals that the class II pilE locus lacks the DNA sequence motifs that enable (G4) or enhance (Sma/Cla repeat) pilin antigenic variation. Finally, through analysis of pilin genes in commensal Neisseria species we found that meningococcal class II pilE genes are closely related to pilE from Neisseria lactamica and Neisseria polysaccharea, suggesting horizontal transfer among these species. Conclusions Class II pilins can be defined by their amino acid sequence and genomic context and are present in meningococcal isolates which have persisted and spread globally. The absence of G4 and Sma/Cla sequences adjacent to the class II pilE genes is consistent with the lack of pilin subunit variation in these isolates, although horizontal transfer may generate class II pilin diversity. This study supports the suggestion that high frequency antigenic variation of pilin is not universal in pathogenic Neisseria. PMID:24690385

  7. Diversity and functions of bacterial community in drinking water biofilms revealed by high-throughput sequencing

    PubMed Central

    Chao, Yuanqing; Mao, Yanping; Wang, Zhiping; Zhang, Tong

    2015-01-01

    The development of biofilms in drinking water (DW) systems may cause various problems to water quality. To investigate the community structure of biofilms on different pipe materials and the global/specific metabolic functions of DW biofilms, PCR-based 454 pyrosequencing data for 16S rRNA genes and Illumina metagenomic data were generated and analysed. Considerable differences in bacterial diversity and taxonomic structure were identified between biofilms formed on stainless steel and biofilms formed on plastics, indicating that the metallic materials facilitate the formation of higher diversity biofilms. Moreover, variations in several dominant genera were observed during biofilm formation. Based on PCA analysis, the global functions in the DW biofilms were similar to other DW metagenomes. Beyond the global functions, the occurrences and abundances of specific protective genes involved in the glutathione metabolism, the SoxRS system, the OxyR system, RpoS regulated genes, and the production/degradation of extracellular polymeric substances were also evaluated. A near-complete and low-contamination draft genome was constructed from the metagenome of the DW biofilm, based on the coverage and tetranucleotide frequencies, and identified as a Bradyrhizobiaceae-like bacterium according to a phylogenetic analysis. Our findings provide new insight into DW biofilms, especially in terms of their metabolic functions. PMID:26067561

  8. Diversity and functions of bacterial community in drinking water biofilms revealed by high-throughput sequencing

    NASA Astrophysics Data System (ADS)

    Chao, Yuanqing; Mao, Yanping; Wang, Zhiping; Zhang, Tong

    2015-06-01

    The development of biofilms in drinking water (DW) systems may cause various problems to water quality. To investigate the community structure of biofilms on different pipe materials and the global/specific metabolic functions of DW biofilms, PCR-based 454 pyrosequencing data for 16S rRNA genes and Illumina metagenomic data were generated and analysed. Considerable differences in bacterial diversity and taxonomic structure were identified between biofilms formed on stainless steel and biofilms formed on plastics, indicating that the metallic materials facilitate the formation of higher diversity biofilms. Moreover, variations in several dominant genera were observed during biofilm formation. Based on PCA analysis, the global functions in the DW biofilms were similar to other DW metagenomes. Beyond the global functions, the occurrences and abundances of specific protective genes involved in the glutathione metabolism, the SoxRS system, the OxyR system, RpoS regulated genes, and the production/degradation of extracellular polymeric substances were also evaluated. A near-complete and low-contamination draft genome was constructed from the metagenome of the DW biofilm, based on the coverage and tetranucleotide frequencies, and identified as a Bradyrhizobiaceae-like bacterium according to a phylogenetic analysis. Our findings provide new insight into DW biofilms, especially in terms of their metabolic functions.

  9. Diversity and functions of bacterial community in drinking water biofilms revealed by high-throughput sequencing.

    PubMed

    Chao, Yuanqing; Mao, Yanping; Wang, Zhiping; Zhang, Tong

    2015-06-12

    The development of biofilms in drinking water (DW) systems may cause various problems to water quality. To investigate the community structure of biofilms on different pipe materials and the global/specific metabolic functions of DW biofilms, PCR-based 454 pyrosequencing data for 16S rRNA genes and Illumina metagenomic data were generated and analysed. Considerable differences in bacterial diversity and taxonomic structure were identified between biofilms formed on stainless steel and biofilms formed on plastics, indicating that the metallic materials facilitate the formation of higher diversity biofilms. Moreover, variations in several dominant genera were observed during biofilm formation. Based on PCA analysis, the global functions in the DW biofilms were similar to other DW metagenomes. Beyond the global functions, the occurrences and abundances of specific protective genes involved in the glutathione metabolism, the SoxRS system, the OxyR system, RpoS regulated genes, and the production/degradation of extracellular polymeric substances were also evaluated. A near-complete and low-contamination draft genome was constructed from the metagenome of the DW biofilm, based on the coverage and tetranucleotide frequencies, and identified as a Bradyrhizobiaceae-like bacterium according to a phylogenetic analysis. Our findings provide new insight into DW biofilms, especially in terms of their metabolic functions.

  10. Characterization and complete genome sequence of a novel N4-like bacteriophage, pSb-1 infecting Shigella boydii.

    PubMed

    Jun, Jin Woo; Yun, Sae Kil; Kim, Hyoun Joong; Chai, Ji Young; Park, Se Chang

    2014-10-01

    Shigellosis is one of major foodborne pathogens in both developed and developing countries. Although antibiotic therapy is considered an effective treatment for shigellosis, the imprudent use of antibiotics has led to the increase of multiple-antibiotic-resistant Shigella species globally. In this study, we isolated a virulent Podoviridae bacteriophage (phage), pSb-1, that infects Shigella boydii. One-step growth analysis revealed that this phage has a short latent period (15 min) and a large burst size (152.63 PFU/cell), indicating that pSb-1 has good host infectivity and effective lytic activity. The double-stranded DNA genome of pSb-1 is composed of 71,629 bp with a G + C content of 42.74%. The genome encodes 103 putative ORFs, 9 putative promoters, 21 transcriptional terminators, and one tRNA region. Genome sequence analysis of pSb-1 and comparative analysis with the homologous phage EC1-UPM, N4-like phage revealed that there is a high degree of similarity (94%, nucleotide sequence identity) between pSb-1 and EC1-UPM in 73 of the 103 ORFs of pSb-1. The results of this investigation indicate that pSb-1 is a novel virulent N4-like phage infecting S. boydii and that this phage might have potential uses against shigellosis. Copyright © 2014 Institut Pasteur. Published by Elsevier Masson SAS. All rights reserved.

  11. Fast and Accurate Multivariate Gaussian Modeling of Protein Families: Predicting Residue Contacts and Protein-Interaction Partners

    PubMed Central

    Feinauer, Christoph; Procaccini, Andrea; Zecchina, Riccardo; Weigt, Martin; Pagnani, Andrea

    2014-01-01

    In the course of evolution, proteins show a remarkable conservation of their three-dimensional structure and their biological function, leading to strong evolutionary constraints on the sequence variability between homologous proteins. Our method aims at extracting such constraints from rapidly accumulating sequence data, and thereby at inferring protein structure and function from sequence information alone. Recently, global statistical inference methods (e.g. direct-coupling analysis, sparse inverse covariance estimation) have achieved a breakthrough towards this aim, and their predictions have been successfully implemented into tertiary and quaternary protein structure prediction methods. However, due to the discrete nature of the underlying variable (amino-acids), exact inference requires exponential time in the protein length, and efficient approximations are needed for practical applicability. Here we propose a very efficient multivariate Gaussian modeling approach as a variant of direct-coupling analysis: the discrete amino-acid variables are replaced by continuous Gaussian random variables. The resulting statistical inference problem is efficiently and exactly solvable. We show that the quality of inference is comparable or superior to the one achieved by mean-field approximations to inference with discrete variables, as done by direct-coupling analysis. This is true for (i) the prediction of residue-residue contacts in proteins, and (ii) the identification of protein-protein interaction partner in bacterial signal transduction. An implementation of our multivariate Gaussian approach is available at the website http://areeweb.polito.it/ricerca/cmp/code. PMID:24663061

  12. Global Genomic Diversity of Oryza sativa Varieties Revealed by Comparative Physical Mapping

    PubMed Central

    Wang, Xiaoming; Kudrna, David A.; Pan, Yonglong; Wang, Hao; Liu, Lin; Lin, Haiyan; Zhang, Jianwei; Song, Xiang; Goicoechea, Jose Luis; Wing, Rod A.; Zhang, Qifa; Luo, Meizhong

    2014-01-01

    Bacterial artificial chromosome (BAC) physical maps embedding a large number of BAC end sequences (BESs) were generated for Oryza sativa ssp. indica varieties Minghui 63 (MH63) and Zhenshan 97 (ZS97) and were compared with the genome sequences of O. sativa spp. japonica cv. Nipponbare and O. sativa ssp. indica cv. 93-11. The comparisons exhibited substantial diversities in terms of large structural variations and small substitutions and indels. Genome-wide BAC-sized and contig-sized structural variations were detected, and the shared variations were analyzed. In the expansion regions of the Nipponbare reference sequence, in comparison to the MH63 and ZS97 physical maps, as well as to the previously constructed 93-11 physical map, the amounts and types of the repeat contents, and the outputs of gene ontology analysis, were significantly different from those of the whole genome. Using the physical maps of four wild Oryza species from OMAP (http://www.omap.org) as a control, we detected many conserved and divergent regions related to the evolution process of O. sativa. Between the BESs of MH63 and ZS97 and the two reference sequences, a total of 1532 polymorphic simple sequence repeats (SSRs), 71,383 SNPs, 1767 multiple nucleotide polymorphisms, 6340 insertions, and 9137 deletions were identified. This study provides independent whole-genome resources for intra- and intersubspecies comparisons and functional genomics studies in O. sativa. Both the comparative physical maps and the GBrowse, which integrated the QTL and molecular markers from GRAMENE (http://www.gramene.org) with our physical maps and analysis results, are open to the public through our Web site (http://gresource.hzau.edu.cn/resource/resource.html). PMID:24424778

  13. PreCisIon: PREdiction of CIS-regulatory elements improved by gene's positION.

    PubMed

    Elati, Mohamed; Nicolle, Rémy; Junier, Ivan; Fernández, David; Fekih, Rim; Font, Julio; Képès, François

    2013-02-01

    Conventional approaches to predict transcriptional regulatory interactions usually rely on the definition of a shared motif sequence on the target genes of a transcription factor (TF). These efforts have been frustrated by the limited availability and accuracy of TF binding site motifs, usually represented as position-specific scoring matrices, which may match large numbers of sites and produce an unreliable list of target genes. To improve the prediction of binding sites, we propose to additionally use the unrelated knowledge of the genome layout. Indeed, it has been shown that co-regulated genes tend to be either neighbors or periodically spaced along the whole chromosome. This study demonstrates that respective gene positioning carries significant information. This novel type of information is combined with traditional sequence information by a machine learning algorithm called PreCisIon. To optimize this combination, PreCisIon builds a strong gene target classifier by adaptively combining weak classifiers based on either local binding sequence or global gene position. This strategy generically paves the way to the optimized incorporation of any future advances in gene target prediction based on local sequence, genome layout or on novel criteria. With the current state of the art, PreCisIon consistently improves methods based on sequence information only. This is shown by implementing a cross-validation analysis of the 20 major TFs from two phylogenetically remote model organisms. For Bacillus subtilis and Escherichia coli, respectively, PreCisIon achieves on average an area under the receiver operating characteristic curve of 70 and 60%, a sensitivity of 80 and 70% and a specificity of 60 and 56%. The newly predicted gene targets are demonstrated to be functionally consistent with previously known targets, as assessed by analysis of Gene Ontology enrichment or of the relevant literature and databases.

  14. Pathogenesis, Molecular Genetics, and Genomics of Mycobacterium avium subsp. paratuberculosis, the Etiologic Agent of Johne’s Disease

    PubMed Central

    Rathnaiah, Govardhan; Zinniel, Denise K.; Bannantine, John P.; Stabel, Judith R.; Gröhn, Yrjö T.; Collins, Michael T.; Barletta, Raúl G.

    2017-01-01

    Mycobacterium avium subsp. paratuberculosis (MAP) is the etiologic agent of Johne’s disease in ruminants causing chronic diarrhea, malnutrition, and muscular wasting. Neonates and young animals are infected primarily by the fecal–oral route. MAP attaches to, translocates via the intestinal mucosa, and is phagocytosed by macrophages. The ensuing host cellular immune response leads to granulomatous enteritis characterized by a thick and corrugated intestinal wall. We review various tissue culture systems, ileal loops, and mice, goats, and cattle used to study MAP pathogenesis. MAP can be detected in clinical samples by microscopy, culturing, PCR, and an enzyme-linked immunosorbent assay. There are commercial vaccines that reduce clinical disease and shedding, unfortunately, their efficacies are limited and may not engender long-term protective immunity. Moreover, the potential linkage with Crohn’s disease and other human diseases makes MAP a concern as a zoonotic pathogen. Potential therapies with anti-mycobacterial agents are also discussed. The completion of the MAP K-10 genome sequence has greatly improved our understanding of MAP pathogenesis. The analysis of this sequence has identified a wide range of gene functions involved in virulence, lipid metabolism, transcriptional regulation, and main metabolic pathways. We also review the transposons utilized to generate random transposon mutant libraries and the recent advances in the post-genomic era. This includes the generation and characterization of allelic exchange mutants, transcriptomic analysis, transposon mutant banks analysis, new efforts to generate comprehensive mutant libraries, and the application of transposon site hybridization mutagenesis and transposon sequencing for global analysis of the MAP genome. Further analysis of candidate vaccine strains development is also provided with critical discussions on their benefits and shortcomings, and strategies to develop a highly efficacious live-attenuated vaccine capable of differentiating infected from vaccinated animals. PMID:29164142

  15. A Two-Locus Global DNA Barcode for Land Plants: The Coding rbcL Gene Complements the Non-Coding trnH-psbA Spacer Region

    PubMed Central

    Kress, W. John; Erickson, David L.

    2007-01-01

    Background A useful DNA barcode requires sufficient sequence variation to distinguish between species and ease of application across a broad range of taxa. Discovery of a DNA barcode for land plants has been limited by intrinsically lower rates of sequence evolution in plant genomes than that observed in animals. This low rate has complicated the trade-off in finding a locus that is universal and readily sequenced and has sufficiently high sequence divergence at the species-level. Methodology/Principal Findings Here, a global plant DNA barcode system is evaluated by comparing universal application and degree of sequence divergence for nine putative barcode loci, including coding and non-coding regions, singly and in pairs across a phylogenetically diverse set of 48 genera (two species per genus). No single locus could discriminate among species in a pair in more than 79% of genera, whereas discrimination increased to nearly 88% when the non-coding trnH-psbA spacer was paired with one of three coding loci, including rbcL. In silico trials were conducted in which DNA sequences from GenBank were used to further evaluate the discriminatory power of a subset of these loci. These trials supported the earlier observation that trnH-psbA coupled with rbcL can correctly identify and discriminate among related species. Conclusions/Significance A combination of the non-coding trnH-psbA spacer region and a portion of the coding rbcL gene is recommended as a two-locus global land plant barcode that provides the necessary universality and species discrimination. PMID:17551588

  16. Exploring root symbiotic programs in the model legume Medicago truncatula using EST analysis.

    PubMed

    Journet, Etienne-Pascal; van Tuinen, Diederik; Gouzy, Jérome; Crespeau, Hervé; Carreau, Véronique; Farmer, Mary-Jo; Niebel, Andreas; Schiex, Thomas; Jaillon, Olivier; Chatagnier, Odile; Godiard, Laurence; Micheli, Fabienne; Kahn, Daniel; Gianinazzi-Pearson, Vivienne; Gamas, Pascal

    2002-12-15

    We report on a large-scale expressed sequence tag (EST) sequencing and analysis program aimed at characterizing the sets of genes expressed in roots of the model legume Medicago truncatula during interactions with either of two microsymbionts, the nitrogen-fixing bacterium Sinorhizobium meliloti or the arbuscular mycorrhizal fungus Glomus intraradices. We have designed specific tools for in silico analysis of EST data, in relation to chimeric cDNA detection, EST clustering, encoded protein prediction, and detection of differential expression. Our 21 473 5'- and 3'-ESTs could be grouped into 6359 EST clusters, corresponding to distinct virtual genes, along with 52 498 other M.truncatula ESTs available in the dbEST (NCBI) database that were recruited in the process. These clusters were manually annotated, using a specifically developed annotation interface. Analysis of EST cluster distribution in various M.truncatula cDNA libraries, supported by a refined R test to evaluate statistical significance and by 'electronic northern' representation, enabled us to identify a large number of novel genes predicted to be up- or down-regulated during either symbiotic root interaction. These in silico analyses provide a first global view of the genetic programs for root symbioses in M.truncatula. A searchable database has been built and can be accessed through a public interface.

  17. A communal catalogue reveals Earth’s multiscale microbial diversity

    DOE PAGES

    Thompson, Luke R.; Sanders, Jon G.; McDonald, Daniel; ...

    2017-11-01

    Our growing awareness of the importance and diversity of the microbial world contrasts starkly with our limited understanding of its fundamental structure. Despite remarkable advances in DNA sequence generation, a lack of standardized protocols and common analytical framework impede useful comparison between studies, hindering development of global inferences about microbial life on Earth. Here, we show that with coordinated protocols, exact microbial 16S rRNA gene sequences can be followed across scores of individual studies, revealing patterns of diversity, community structure, and life history strategy at a planetary scale. Using 27,751 crowdsourced environmental samples comprising more than 2.2 billion reads, wemore » find sharp divides between host-associated and free-living communities. We show that the distribution of taxonomic and sequence diversity follows consistent trends across samples types and along gradients of environmental parameters, highlighting some of the global evolutionary patterns and ecological principles that underpin Earth’s microbiome. Here, this dataset provides the most complete environmental survey of our microbial world to date, and serves as a growing reference to provide immediate global context to future microbial surveys.« less

  18. A communal catalogue reveals Earth’s multiscale microbial diversity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Thompson, Luke R.; Sanders, Jon G.; McDonald, Daniel

    Our growing awareness of the importance and diversity of the microbial world contrasts starkly with our limited understanding of its fundamental structure. Despite remarkable advances in DNA sequence generation, a lack of standardized protocols and common analytical framework impede useful comparison between studies, hindering development of global inferences about microbial life on Earth. Here, we show that with coordinated protocols, exact microbial 16S rRNA gene sequences can be followed across scores of individual studies, revealing patterns of diversity, community structure, and life history strategy at a planetary scale. Using 27,751 crowdsourced environmental samples comprising more than 2.2 billion reads, wemore » find sharp divides between host-associated and free-living communities. We show that the distribution of taxonomic and sequence diversity follows consistent trends across samples types and along gradients of environmental parameters, highlighting some of the global evolutionary patterns and ecological principles that underpin Earth’s microbiome. Here, this dataset provides the most complete environmental survey of our microbial world to date, and serves as a growing reference to provide immediate global context to future microbial surveys.« less

  19. Chronology of Eocene-Miocene sequences on the New Jersey shallow shelf: implications for regional, interregional, and global correlations

    USGS Publications Warehouse

    Browning, James V.; Miller, Kenneth G.; Sugarman, Peter J.; Barron, John; McCarthy, Francine M.G.; Kulhanek, Denise K.; Katz, Miriam E.; Feigenson, Mark D.

    2013-01-01

    Integrated Ocean Drilling Program Expedition 313 continuously cored and logged latest Eocene to early-middle Miocene sequences at three sites (M27, M28, and M29) on the inner-middle continental shelf offshore New Jersey, providing an opportunity to evaluate the ages, global correlations, and significance of sequence boundaries. We provide a chronology for these sequences using integrated strontium isotopic stratigraphy and biostratigraphy (primarily calcareous nannoplankton, diatoms, and dinocysts [dinoflagellate cysts]). Despite challenges posed by shallow-water sediments, age resolution is typically ±0.5 m.y. and in many sequences is as good as ±0.25 m.y. Three Oligocene sequences were sampled at Site M27 on sequence bottomsets. Fifteen early to early-middle Miocene sequences were dated at Sites M27, M28, and M29 across clinothems in topsets, foresets (where the sequences are thickest), and bottomsets. A few sequences have coarse (∼1 m.y.) or little age constraint due to barren zones; we constrain the age estimates of these less well dated sequences by applying the principle of superposition, i.e., sediments above sequence boundaries in any site are younger than the sediments below the sequence boundaries at other sites. Our age control provides constraints on the timing of deposition in the clinothem; sequences on the topsets are generally the youngest in the clinothem, whereas the bottomsets generally are the oldest. The greatest amount of time is represented on foresets, although we have no evidence for a correlative conformity. Our chronology provides a baseline for regional and interregional correlations and sea-level reconstructions: (1) we correlate a major increase in sedimentation rate precisely with the timing of the middle Miocene climate changes associated with the development of a permanent East Antarctic Ice Sheet; and (2) the timing of sequence boundaries matches the deep-sea oxygen isotopic record, implicating glacioeustasy as a major driver for forming sequence boundaries.

  20. Towards global patterns in the diversity and community structure of ectomycorrhizal fungi.

    PubMed

    Tedersoo, Leho; Bahram, Mohammad; Toots, Märt; Diédhiou, Abdala G; Henkel, Terry W; Kjøller, Rasmus; Morris, Melissa H; Nara, Kazuhide; Nouhra, Eduardo; Peay, Kabir G; Põlme, Sergei; Ryberg, Martin; Smith, Matthew E; Kõljalg, Urmas

    2012-09-01

    Global species richness patterns of soil micro-organisms remain poorly understood compared to macro-organisms. We use a global analysis to disentangle the global determinants of diversity and community composition for ectomycorrhizal (EcM) fungi-microbial symbionts that play key roles in plant nutrition in most temperate and many tropical forest ecosystems. Host plant family has the strongest effect on the phylogenetic community composition of fungi, whereas temperature and precipitation mostly affect EcM fungal richness that peaks in the temperate and boreal forest biomes, contrasting with latitudinal patterns of macro-organisms. Tropical ecosystems experience rapid turnover of organic material and have weak soil stratification, suggesting that poor habitat conditions may contribute to the relatively low richness of EcM fungi, and perhaps other soil biota, in most tropical ecosystems. For EcM fungi, greater evolutionary age and larger total area of EcM host vegetation may also contribute to the higher diversity in temperate ecosystems. Our results provide useful biogeographic and ecological hypotheses for explaining the distribution of fungi that remain to be tested by involving next-generation sequencing techniques and relevant soil metadata. © 2012 Blackwell Publishing Ltd.

  1. Random variability explains apparent global clustering of large earthquakes

    USGS Publications Warehouse

    Michael, A.J.

    2011-01-01

    The occurrence of 5 Mw ≥ 8.5 earthquakes since 2004 has created a debate over whether or not we are in a global cluster of large earthquakes, temporarily raising risks above long-term levels. I use three classes of statistical tests to determine if the record of M ≥ 7 earthquakes since 1900 can reject a null hypothesis of independent random events with a constant rate plus localized aftershock sequences. The data cannot reject this null hypothesis. Thus, the temporal distribution of large global earthquakes is well-described by a random process, plus localized aftershocks, and apparent clustering is due to random variability. Therefore the risk of future events has not increased, except within ongoing aftershock sequences, and should be estimated from the longest possible record of events.

  2. Phylogeny of mycoplasmalike organisms (phytoplasmas): a basis for their classification.

    PubMed Central

    Gundersen, D E; Lee, I M; Rehner, S A; Davis, R E; Kingsbury, D T

    1994-01-01

    A global phylogenetic analysis using parsimony of 16S rRNA gene sequences from 46 mollicutes, 19 mycoplasmalike organisms (MLOs) (new trivial name, phytoplasmas), and several related bacteria placed the MLOs definitively among the members of the class Mollicutes and revealed that MLOs form a large discrete monophyletic clade, paraphyletic to the Acholeplasma species, within the Anaeroplasma clade. Within the MLO clade resolved in the global mollicutes phylogeny and a comprehensive MLO phylogeny derived by parsimony analyses of 16S rRNA gene sequences from 30 diverse MLOs representative of nearly all known distinct MLO groups, five major phylogenetic groups with a total of 11 distinct subclades (monophyletic groups or taxa) could be recognized. These MLO subclades (roman numerals) and designated type strains were as follows: i, Maryland aster yellows AY1; ii, apple proliferation AP-A; iii, peanut witches'-broom PnWB; iv, Canada peach X CX; v, rice yellow dwarf RYD; vi, pigeon pea witches'-broom PPWB; vii, palm lethal yellowing LY; viii, ash yellows AshY; ix, clover proliferation CP; x, elm yellows EY; and xi, loofah witches'-broom LfWB. The designations of subclades and their phylogenetic positions within the MLO clade were supported by a congruent phylogeny derived by parsimony analyses of ribosomal protein L22 gene sequences from most representative MLOs. On the basis of the phylogenies inferred in the present study, we propose that MLOs should be represented taxonomically at the minimal level of genus and that each phylogenetically distinct MLO subclade identified should represent at least a distinct species under this new genus. Images PMID:8071198

  3. Global Analysis of Gene Expression Profiles in Developing Physic Nut (Jatropha curcas L.) Seeds

    PubMed Central

    Jiang, Huawu; Wu, Pingzhi; Zhang, Sheng; Song, Chi; Chen, Yaping; Li, Meiru; Jia, Yongxia; Fang, Xiaohua; Chen, Fan; Wu, Guojiang

    2012-01-01

    Background Physic nut (Jatropha curcas L.) is an oilseed plant species with high potential utility as a biofuel. Furthermore, following recent sequencing of its genome and the availability of expressed sequence tag (EST) libraries, it is a valuable model plant for studying carbon assimilation in endosperms of oilseed plants. There have been several transcriptomic analyses of developing physic nut seeds using ESTs, but they have provided limited information on the accumulation of stored resources in the seeds. Methodology/Principal Findings We applied next-generation Illumina sequencing technology to analyze global gene expression profiles of developing physic nut seeds 14, 19, 25, 29, 35, 41, and 45 days after pollination (DAP). The acquired profiles reveal the key genes, and their expression timeframes, involved in major metabolic processes including: carbon flow, starch metabolism, and synthesis of storage lipids and proteins in the developing seeds. The main period of storage reserves synthesis in the seeds appears to be 29–41 DAP, and the fatty acid composition of the developing seeds is consistent with relative expression levels of different isoforms of acyl-ACP thioesterase and fatty acid desaturase genes. Several transcription factor genes whose expression coincides with storage reserve deposition correspond to those known to regulate the process in Arabidopsis. Conclusions/Significance The results will facilitate searches for genes that influence de novo lipid synthesis, accumulation and their regulatory networks in developing physic nut seeds, and other oil seeds. Thus, they will be helpful in attempts to modify these plants for efficient biofuel production. PMID:22574177

  4. Genetic diversity of the Plasmodium falciparum apical membrane antigen I gene in parasite population from the China-Myanmar border area.

    PubMed

    Zhu, Xiaotong; Zhao, Zhenjun; Feng, Yonghui; Li, Peipei; Liu, Fei; Liu, Jun; Yang, Zhaoqing; Yan, Guiyun; Fan, Qi; Cao, Yaming; Cui, Liwang

    2016-04-01

    To investigate the genetic diversity of the Plasmodium falciparum apical membrane antigen 1 (PfAMA1) gene in Southeast Asia, we determined PfAMA1 sequences from 135 field isolates collected from the China-Myanmar border area and compared them with 956 publically available PfAMA1 sequences from seven global P. falciparum populations. This analysis revealed high genetic diversity of PfAMA1 in global P. falciparum populations with a total of 229 haplotypes identified. The genetic diversity of PfAMA1 gene from the China-Myanmar border is not evenly distributed in the different domains of this gene. Sequence diversity in PfAMA1 from the China-Myanmar border is lower than that observed in Thai, African and Oceanian populations, but higher than that in the South American population. This appeared to correlate well with the levels of endemicity of different malaria-endemic regions, where hyperendemic regions favor genetic cross of the parasite isolates and generation of higher genetic diversity. Neutrality tests show significant departure from neutrality in the entire ectodomain and Domain I of PfAMA1 in the China-Myanmar border parasite population. We found evidence supporting a substantial continent-wise genetic structure among P. falciparum populations, with the highest genetic differentiation detected between the China-Myanmar border and the South American populations. Whereas no alleles were unique to a specific region, there were considerable geographical differences in major alleles and their frequencies, highlighting further necessity to include more PfAMA1 alleles in vaccine designs. Copyright © 2016 Elsevier B.V. All rights reserved.

  5. Deep sequencing reveals distinct patterns of DNA methylation in prostate cancer.

    PubMed

    Kim, Jung H; Dhanasekaran, Saravana M; Prensner, John R; Cao, Xuhong; Robinson, Daniel; Kalyana-Sundaram, Shanker; Huang, Christina; Shankar, Sunita; Jing, Xiaojun; Iyer, Matthew; Hu, Ming; Sam, Lee; Grasso, Catherine; Maher, Christopher A; Palanisamy, Nallasivam; Mehra, Rohit; Kominsky, Hal D; Siddiqui, Javed; Yu, Jindan; Qin, Zhaohui S; Chinnaiyan, Arul M

    2011-07-01

    Beginning with precursor lesions, aberrant DNA methylation marks the entire spectrum of prostate cancer progression. We mapped the global DNA methylation patterns in select prostate tissues and cell lines using MethylPlex-next-generation sequencing (M-NGS). Hidden Markov model-based next-generation sequence analysis identified ∼68,000 methylated regions per sample. While global CpG island (CGI) methylation was not differential between benign adjacent and cancer samples, overall promoter CGI methylation significantly increased from ~12.6% in benign samples to 19.3% and 21.8% in localized and metastatic cancer tissues, respectively (P-value < 2 × 10(-16)). We found distinct patterns of promoter methylation around transcription start sites, where methylation occurred not only on the CGIs, but also on flanking regions and CGI sparse promoters. Among the 6691 methylated promoters in prostate tissues, 2481 differentially methylated regions (DMRs) are cancer-specific, including numerous novel DMRs. A novel cancer-specific DMR in the WFDC2 promoter showed frequent methylation in cancer (17/22 tissues, 6/6 cell lines), but not in the benign tissues (0/10) and normal PrEC cells. Integration of LNCaP DNA methylation and H3K4me3 data suggested an epigenetic mechanism for alternate transcription start site utilization, and these modifications segregated into distinct regions when present on the same promoter. Finally, we observed differences in repeat element methylation, particularly LINE-1, between ERG gene fusion-positive and -negative cancers, and we confirmed this observation using pyrosequencing on a tissue panel. This comprehensive methylome map will further our understanding of epigenetic regulation in prostate cancer progression.

  6. Bacterial diversity in a glacier foreland of the high Arctic.

    PubMed

    Schütte, Ursel M E; Abdo, Zaid; Foster, James; Ravel, Jacques; Bunge, John; Solheim, Bjørn; Forney, Larry J

    2010-03-01

    Over the past 100 years, Arctic temperatures have increased at almost twice the global average rate. One consequence is the acceleration of glacier retreat, exposing new habitats that are colonized by microorganisms whose diversity and function are unknown. Here, we characterized bacterial diversity along two approximately parallel chronosequences in an Arctic glacier forefield that span six time points following glacier retreat. We assessed changes in phylotype richness, evenness and turnover rate through the analysis of 16S rRNA gene sequences recovered from 52 samples taken from surface layers along the chronosequences. An average of 4500 sequences was obtained from each sample by 454 pyrosequencing. Using parametric methods, it was estimated that bacterial phylotype richness was high, and that it increased significantly from an average of 4000 (at a threshold of 97% sequence similarity) at locations exposed for 5 years to an average of 7050 phylotypes per 0.5 g of soil at sites that had been exposed for 150 years. Phylotype evenness also increased over time, with an evenness of 0.74 for 150 years since glacier retreat reflecting large proportions of rare phylotypes. The bacterial species turnover rate was especially high between sites exposed for 5 and 19 years. The level of bacterial diversity present in this High Arctic glacier foreland was comparable with that found in temperate and tropical soils, raising the question whether global patterns of bacterial species diversity parallel that of plants and animals, which have been found to form a latitudinal gradient and be lower in polar regions compared with the tropics.

  7. A paleomagnetic record in loess-paleosol sequences since late Pleistocene in the arid Central Asia

    NASA Astrophysics Data System (ADS)

    Li, Guanhua; Xia, Dunsheng; Appel, Erwin; Wang, Youjun; Jia, Jia; Yang, Xiaoqiang

    2018-03-01

    Geomagnetic excursions during Brunhes epoch have been brought to the forefront topic in paleomagnetic study, as they provide key information about Earth's interior dynamics and could serve as another tool for stratigraphic correlation among different lithology. Loess-paleosol sequences provide good archives for decoding geomagnetic excursions. However, the detailed pattern of these excursions was not sufficiently clarified due to pedogenic influence. In this study, paleomagnetic analysis was performed in loess-paleosol sequences on the northern piedmont of the Tianshan Mountains (northwestern China). By radiocarbon and luminance dating, the loess section was chronologically constrained to mainly the last c.130 ka, a period when several distinct geomagnetic excursions were involved. The rock magnetic properties in this loess section are dominated by magnetite and maghemite in a pseudo-single-domain state. The rock magnetic properties and magnetic anisotropy indicate weakly pedogenic influence for magnetic record. The stable component of remanent magnetization derived from thermal demagnetization revealed the presence of two intervals of directional anomalies with corresponding intensity lows in the Brunhes epoch. The age control in the key layers indicates these anomalies are likely associated with the Laschamp and Blake excursions, respectively. In addition, relative paleointensity in the loess section is basically compatible with other regional and global relative paleointensity records and indicates two low-paleointensity zones, possibly corresponding to the Blake and Laschamp excursions, respectively. As a result, this study suggests that the loess section may have the potential to record short-lived excursions, which largely reflect the variation of dipole components in the global archives.

  8. Investigating the molecular underpinnings underlying morphology and changes in carbon partitioning during tension wood formation in Eucalyptus.

    PubMed

    Mizrachi, Eshchar; Maloney, Victoria J; Silberbauer, Janine; Hefer, Charles A; Berger, Dave K; Mansfield, Shawn D; Myburg, Alexander A

    2015-06-01

    Tension wood has distinct physical and chemical properties, including altered fibre properties, cell wall composition and ultrastructure. It serves as a good system for investigating the genetic regulation of secondary cell wall biosynthesis and wood formation. The reference genome sequence for Eucalyptus grandis allows investigation of the global transcriptional reprogramming that accompanies tension wood formation in this global wood fibre crop. We report the first comprehensive analysis of physicochemical wood property changes in tension wood of Eucalyptus measured in a hybrid (E. grandis × Eucalyptus urophylla) clone, as well as genome-wide gene expression changes in xylem tissues 3 wk post-induction using RNA sequencing. We found that Eucalyptus tension wood in field-grown trees is characterized by an increase in cellulose, a reduction in lignin, xylose and mannose, and a marked increase in galactose. Gene expression profiling in tension wood-forming tissue showed corresponding down-regulation of monolignol biosynthetic genes, and differential expression of several carbohydrate active enzymes. We conclude that alterations of cell wall traits induced by tension wood formation in Eucalyptus are a consequence of a combination of down-regulation of lignin biosynthesis and hemicellulose remodelling, rather than the often proposed up-regulation of the cellulose biosynthetic pathway. © 2014 University of Pretoria New Phytologist © 2014 New Phytologist Trust.

  9. Molecular Epidemiology of HIV-1 Subtype B Reveals Heterogeneous Transmission Risk: Implications for Intervention and Control

    PubMed Central

    Le Vu, Stephane; Ratmann, Oliver; Tostevin, Anna; Dunn, David; Orkin, Chloe; O’Shea, Siobhan; Delpech, Valerie; Brown, Alison; Gill, Noel; Fraser, Christophe

    2018-01-01

    Abstract Background The impact of HIV pre-exposure prophylaxis (PrEP) depends on infections averted by protecting vulnerable individuals as well as infections averted by preventing transmission by those who would have been infected if not receiving PrEP. Analysis of HIV phylogenies reveals risk factors for transmission, which we examine as potential criteria for allocating PrEP. Methods We analyzed 6912 HIV-1 partial pol sequences from men who have sex with men (MSM) in the United Kingdom combined with global reference sequences and patient-level metadata. Population genetic models were developed that adjust for stage of infection, global migration of HIV lineages, and changing incidence of infection through time. Models were extended to simulate the effects of providing susceptible MSM with PrEP. Results We found that young age <25 years confers higher risk of HIV transmission (relative risk = 2.52 [95% confidence interval, 2.32–2.73]) and that young MSM are more likely to transmit to one another than expected by chance. Simulated interventions indicate that 4-fold more infections can be averted over 5 years by focusing PrEP on young MSM. Conclusions Concentrating PrEP doses on young individuals can avert more infections than random allocation. PMID:29506269

  10. Interpretable dimensionality reduction of single cell transcriptome data with deep generative models.

    PubMed

    Ding, Jiarui; Condon, Anne; Shah, Sohrab P

    2018-05-21

    Single-cell RNA-sequencing has great potential to discover cell types, identify cell states, trace development lineages, and reconstruct the spatial organization of cells. However, dimension reduction to interpret structure in single-cell sequencing data remains a challenge. Existing algorithms are either not able to uncover the clustering structures in the data or lose global information such as groups of clusters that are close to each other. We present a robust statistical model, scvis, to capture and visualize the low-dimensional structures in single-cell gene expression data. Simulation results demonstrate that low-dimensional representations learned by scvis preserve both the local and global neighbor structures in the data. In addition, scvis is robust to the number of data points and learns a probabilistic parametric mapping function to add new data points to an existing embedding. We then use scvis to analyze four single-cell RNA-sequencing datasets, exemplifying interpretable two-dimensional representations of the high-dimensional single-cell RNA-sequencing data.

  11. Survey of local and global biological network alignment: the need to reconcile the two sides of the same coin.

    PubMed

    Guzzi, Pietro Hiram; Milenkovic, Tijana

    2018-05-01

    Analogous to genomic sequence alignment that allows for across-species transfer of biological knowledge between conserved sequence regions, biological network alignment can be used to guide the knowledge transfer between conserved regions of molecular networks of different species. Hence, biological network alignment can be used to redefine the traditional notion of a sequence-based homology to a new notion of network-based homology. Analogous to genomic sequence alignment, there exist local and global biological network alignments. Here, we survey prominent and recent computational approaches of each network alignment type and discuss their (dis)advantages. Then, as it was recently shown that the two approach types are complementary, in the sense that they capture different slices of cellular functioning, we discuss the need to reconcile the two network alignment types and present a recent first step in this direction. We conclude with some open research problems on this topic and comment on the usefulness of network alignment in other domains besides computational biology.

  12. Potential aquaculture probiont Lactococcus lactis TW34 produces nisin Z and inhibits the fish pathogen Lactococcus garvieae.

    PubMed

    Sequeiros, Cynthia; Garcés, Marisa E; Vallejo, Marisol; Marguet, Emilio R; Olivera, Nelda L

    2015-04-01

    Bacteriocin-producing Lactococcus lactis TW34 was isolated from marine fish. TW34 bacteriocin inhibited the growth of the fish pathogen Lactococcus garvieae at 5 AU/ml (minimum inhibitory concentration), whereas the minimum bactericidal concentration was 10 AU/ml. Addition of TW34 bacteriocin to L. garvieae cultures resulted in a decrease of six orders of magnitude of viable cells counts demonstrating a bactericidal mode of action. The direct detection of the bacteriocin activity by Tricine-SDS-PAGE showed an active peptide with a molecular mass ca. 4.5 kDa. The analysis by MALDI-TOF-MS detected a strong signal at m/z 2,351.2 that corresponded to the nisin leader peptide mass without the initiating methionine, whose sequence STKDFNLDLVSVSKKDSGASPR was confirmed by MS/MS. Sequence analysis of nisin structural gene confirmed that L. lactis TW34 was a nisin Z producer. This nisin Z-producing strain with probiotic properties might be considered as an alternative in the prevention of lactococcosis, a global disease in aquaculture systems.

  13. Evolution-Based Functional Decomposition of Proteins

    PubMed Central

    Rivoire, Olivier; Reynolds, Kimberly A.; Ranganathan, Rama

    2016-01-01

    The essential biological properties of proteins—folding, biochemical activities, and the capacity to adapt—arise from the global pattern of interactions between amino acid residues. The statistical coupling analysis (SCA) is an approach to defining this pattern that involves the study of amino acid coevolution in an ensemble of sequences comprising a protein family. This approach indicates a functional architecture within proteins in which the basic units are coupled networks of amino acids termed sectors. This evolution-based decomposition has potential for new understandings of the structural basis for protein function. To facilitate its usage, we present here the principles and practice of the SCA and introduce new methods for sector analysis in a python-based software package (pySCA). We show that the pattern of amino acid interactions within sectors is linked to the divergence of functional lineages in a multiple sequence alignment—a model for how sector properties might be differentially tuned in members of a protein family. This work provides new tools for studying proteins and for generally testing the concept of sectors as the principal units of function and adaptive variation. PMID:27254668

  14. It's all relative: ranking the diversity of aquatic bacterial communities.

    PubMed

    Shaw, Allison K; Halpern, Aaron L; Beeson, Karen; Tran, Bao; Venter, J Craig; Martiny, Jennifer B H

    2008-09-01

    The study of microbial diversity patterns is hampered by the enormous diversity of microbial communities and the lack of resources to sample them exhaustively. For many questions about richness and evenness, however, one only needs to know the relative order of diversity among samples rather than total diversity. We used 16S libraries from the Global Ocean Survey to investigate the ability of 10 diversity statistics (including rarefaction, non-parametric, parametric, curve extrapolation and diversity indices) to assess the relative diversity of six aquatic bacterial communities. Overall, we found that the statistics yielded remarkably similar rankings of the samples for a given sequence similarity cut-off. This correspondence, despite the different underlying assumptions of the statistics, suggests that diversity statistics are a useful tool for ranking samples of microbial diversity. In addition, sequence similarity cut-off influenced the diversity ranking of the samples, demonstrating that diversity statistics can also be used to detect differences in phylogenetic structure among microbial communities. Finally, a subsampling analysis suggests that further sequencing from these particular clone libraries would not have substantially changed the richness rankings of the samples.

  15. Leptospiral Pathogenomics

    PubMed Central

    Lehmann, Jason S.; Matthias, Michael A.; Vinetz, Joseph M.; Fouts, Derrick E.

    2014-01-01

    Leptospirosis, caused by pathogenic spirochetes belonging to the genus Leptospira, is a zoonosis with important impacts on human and animal health worldwide. Research on the mechanisms of Leptospira pathogenesis has been hindered due to slow growth of infectious strains, poor transformability, and a paucity of genetic tools. As a result of second generation sequencing technologies, there has been an acceleration of leptospiral genome sequencing efforts in the past decade, which has enabled a concomitant increase in functional genomics analyses of Leptospira pathogenesis. A pathogenomics approach, by coupling of pan-genomic analysis of multiple isolates with sequencing of experimentally attenuated highly pathogenic Leptospira, has resulted in the functional inference of virulence factors. The global Leptospira Genome Project supported by the U.S. National Institute of Allergy and Infectious Diseases to which key scientific contributions have been made from the international leptospirosis research community has provided a new roadmap for comprehensive studies of Leptospira and leptospirosis well into the future. This review describes functional genomics approaches to apply the data generated by the Leptospira Genome Project towards deepening our knowledge of virulence factors of Leptospira using the emerging discipline of pathogenomics. PMID:25437801

  16. Long-term flow forecasts based on climate and hydrologic modeling: Uruguay River basin

    NASA Astrophysics Data System (ADS)

    Tucci, Carlos Eduardo Morelli; Clarke, Robin Thomas; Collischonn, Walter; da Silva Dias, Pedro Leite; de Oliveira, Gilvan Sampaio

    2003-07-01

    This paper describes a procedure for predicting seasonal flow in the Rio Uruguay drainage basin (area 75,000 km2, lying in Brazilian territory), using sequences of future daily rainfall given by the global climate model (GCM) of the Brazilian agency for climate prediction (Centro de Previsão de Tempo e Clima, or CPTEC). Sequences of future daily rainfall given by this model were used as input to a rainfall-runoff model appropriate for large drainage basins. Forecasts of flow in the Rio Uruguay were made for the period 1995-2001 of the full record, which began in 1940. Analysis showed that GCM forecasts underestimated rainfall over almost all the basin, particularly in winter, although interannual variability in regional rainfall was reproduced relatively well. A statistical procedure was used to correct for the underestimation of rainfall. When the corrected rainfall sequences were transformed to flow by the hydrologic model, forecasts of flow in the Rio Uruguay basin were better than forecasts based on historic mean or median flows by 37% for monthly flows and by 54% for 3-monthly flows.

  17. Multiple vehicle tracking in aerial video sequence using driver behavior analysis and improved deterministic data association

    NASA Astrophysics Data System (ADS)

    Zhang, Xunxun; Xu, Hongke; Fang, Jianwu

    2018-01-01

    Along with the rapid development of the unmanned aerial vehicle technology, multiple vehicle tracking (MVT) in aerial video sequence has received widespread interest for providing the required traffic information. Due to the camera motion and complex background, MVT in aerial video sequence poses unique challenges. We propose an efficient MVT algorithm via driver behavior-based Kalman filter (DBKF) and an improved deterministic data association (IDDA) method. First, a hierarchical image registration method is put forward to compensate the camera motion. Afterward, to improve the accuracy of the state estimation, we propose the DBKF module by incorporating the driver behavior into the Kalman filter, where artificial potential field is introduced to reflect the driver behavior. Then, to implement the data association, a local optimization method is designed instead of global optimization. By introducing the adaptive operating strategy, the proposed IDDA method can also deal with the situation in which the vehicles suddenly appear or disappear. Finally, comprehensive experiments on the DARPA VIVID data set and KIT AIS data set demonstrate that the proposed algorithm can generate satisfactory and superior results.

  18. Comparative genomics of citric-acid producing Aspergillus niger ATCC 1015 versus enzyme-producing CBS 513.88

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andersen, Mikael R.; Salazar, Margarita; Schaap, Peter

    2011-06-01

    The filamentous fungus Aspergillus niger exhibits great diversity in its phenotype. It is found globally, both as marine and terrestrial strains, produces both organic acids and hydrolytic enzymes in high amounts, and some isolates exhibit pathogenicity. Although the genome of an industrial enzyme-producing A. niger strain (CBS 513.88) has already been sequenced, the versatility and diversity of this species compels additional exploration. We therefore undertook whole genome sequencing of the acidogenic A. niger wild type strain (ATCC 1015), and produced a genome sequence of very high quality. Only 15 gaps are present in the sequence and half the telomeric regionsmore » have been elucidated. Moreover, sequence information from ATCC 1015 was utilized to improve the genome sequence of CBS 513.88. Chromosome-level comparisons uncovered several genome rearrangements, deletions, a clear case of strain-specific horizontal gene transfer, and identification of 0.8 megabase of novel sequence. Single nucleotide polymorphisms per kilobase (SNPs/kb) between the two strains were found to be exceptionally high (average: 7.8, maximum: 160 SNPs/kb). High variation within the species was confirmed with exo-metabolite profiling and phylogenetics. Detailed lists of alleles were generated, and genotypic differences were observed to accumulate in metabolic pathways essential to acid production and protein synthesis. A transcriptome analysis revealed up-regulation of the electron transport chain, specifically the alternative oxidative pathway in ATCC 1015, while CBS 513.88 showed significant up regulation of genes associated with biosynthesis of amino acids that are abundant in glucoamylase A, tRNA-synthases and protein transporters.« less

  19. Challenges in Whole-Genome Annotation of Pyrosequenced Eukaryotic Genomes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kuo, Alan; Grigoriev, Igor

    2009-04-17

    Pyrosequencing technologies such as 454/Roche and Solexa/Illumina vastly lower the cost of nucleotide sequencing compared to the traditional Sanger method, and thus promise to greatly expand the number of sequenced eukaryotic genomes. However, the new technologies also bring new challenges such as shorter reads and new kinds and higher rates of sequencing errors, which complicate genome assembly and gene prediction. At JGI we are deploying 454 technology for the sequencing and assembly of ever-larger eukaryotic genomes. Here we describe our first whole-genome annotation of a purely 454-sequenced fungal genome that is larger than a yeast (>30 Mbp). The pezizomycotine (filamentousmore » ascomycote) Aspergillus carbonarius belongs to the Aspergillus section Nigri species complex, members of which are significant as platforms for bioenergy and bioindustrial technology, as members of soil microbial communities and players in the global carbon cycle, and as agricultural toxigens. Application of a modified version of the standard JGI Annotation Pipeline has so far predicted ~;;10k genes. ~;;12percent of these preliminary annotations suffer a potential frameshift error, which is somewhat higher than the ~;;9percent rate in the Sanger-sequenced and conventionally assembled and annotated genome of fellow Aspergillus section Nigri member A. niger. Also,>90percent of A. niger genes have potential homologs in the A. carbonarius preliminary annotation. Weconclude, and with further annotation and comparative analysis expect to confirm, that 454 sequencing strategies provide a promising substrate for annotation of modestly sized eukaryotic genomes. We will also present results of annotation of a number of other pyrosequenced fungal genomes of bioenergy interest.« less

  20. Genetic diversity of porcine circovirus type 2 (PCV2) in Thailand during 2009-2015.

    PubMed

    Thangthamniyom, Nattarat; Sangthong, Pradit; Poolperm, Pariwat; Thanantong, Narut; Boonsoongnern, Alongkot; Hansoongnern, Payuda; Semkum, Ploypailin; Petcharat, Nantawan; Lekcharoensuk, Porntippa

    2017-09-01

    Porcine circovirus type 2 (PCV2), the essential cause of porcine circovirus associated disease (PCVAD), has evolved rapidly and it has been reported worldwide. However, genetic information of PCV2 in Thailand has not been available since 2011. Herein, we studied occurrence and genetic diversity of PCV2 in Thailand and their relationships to the global PCV2 based on ORF2 sequences. The results showed that 306 samples (44.09%) from 56 farms (80%) were PCV2 positive by PCR. Phylogenetic trees constructed by both neighbor-joining and Bayesian Inference yielded similar topology of the ORF2 sequences. Thai PCV2 comprise four clusters: PCV2a (5.5%), PCV2b (29.41%), intermediate clade 1 (IM1) PCV2b (11.03%) and PCV2d (54.41%). Genetic shift of PCV2 in Thailand has occurred similarly to the global situation. The shift from PCV2b to PCV2d was clearly observed during 2013-2014. The viruses with genetically similar to the first reported PCV2 in 2004 have still circulated in Thailand. The first Thai PCV2b and PCV2d were closely related to the neighboring countries. The haplotype network analysis revealed the relationship of PCV2 in Thailand and other countries. These results indicate that genetic diversity of PCV2 in Thailand is caused by genetic drift of the local strains and intermittent introduction of new strains or genotypes from other countries. Genetic evolution of PCV2 in Thailand is similar to that occurs globally. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Detection of longitudinal visual field progression in glaucoma using machine learning.

    PubMed

    Yousefi, Siamak; Kiwaki, Taichi; Zheng, Yuhui; Suigara, Hiroki; Asaoka, Ryo; Murata, Hiroshi; Lemij, Hans; Yamanishi, Kenji

    2018-06-16

    Global indices of standard automated perimerty are insensitive to localized losses, while point-wise indices are sensitive but highly variable. Region-wise indices sit in between. This study introduces a machine-learning-based index for glaucoma progression detection that outperforms global, region-wise, and point-wise indices. Development and comparison of a prognostic index. Visual fields from 2085 eyes of 1214 subjects were used to identify glaucoma progression patterns using machine learning. Visual fields from 133 eyes of 71 glaucoma patients were collected 10 times over 10 weeks to provide a no-change, test-retest dataset. The parameters of all methods were identified using visual field sequences in the test-retest dataset to meet fixed 95% specificity. An independent dataset of 270 eyes of 136 glaucoma patients and survival analysis were utilized to compare methods. The time to detect progression in 25% of the eyes in the longitudinal dataset using global mean deviation (MD) was 5.2 years (95% confidence interval, 4.1 - 6.5 years); 4.5 years (4.0 - 5.5) using region-wise, 3.9 years (3.5 - 4.6) using point-wise, and 3.5 years (3.1 - 4.0) using machine learning analysis. The time until 25% of eyes showed subsequently confirmed progression after two additional visits were included were 6.6 years (5.6 - 7.4 years), 5.7 years (4.8 - 6.7), 5.6 years (4.7 - 6.5), and 5.1 years (4.5 - 6.0) for global, region-wise, point-wise, and machine learning analyses, respectively. Machine learning analysis detects progressing eyes earlier than other methods consistently, with or without confirmation visits. In particular, machine learning detects more slowly progressing eyes than other methods. Copyright © 2018 Elsevier Inc. All rights reserved.

  2. Overcoming Species Boundaries in Peptide Identification with Bayesian Information Criterion-driven Error-tolerant Peptide Search (BICEPS)*

    PubMed Central

    Renard, Bernhard Y.; Xu, Buote; Kirchner, Marc; Zickmann, Franziska; Winter, Dominic; Korten, Simone; Brattig, Norbert W.; Tzur, Amit; Hamprecht, Fred A.; Steen, Hanno

    2012-01-01

    Currently, the reliable identification of peptides and proteins is only feasible when thoroughly annotated sequence databases are available. Although sequencing capacities continue to grow, many organisms remain without reliable, fully annotated reference genomes required for proteomic analyses. Standard database search algorithms fail to identify peptides that are not exactly contained in a protein database. De novo searches are generally hindered by their restricted reliability, and current error-tolerant search strategies are limited by global, heuristic tradeoffs between database and spectral information. We propose a Bayesian information criterion-driven error-tolerant peptide search (BICEPS) and offer an open source implementation based on this statistical criterion to automatically balance the information of each single spectrum and the database, while limiting the run time. We show that BICEPS performs as well as current database search algorithms when such algorithms are applied to sequenced organisms, whereas BICEPS only uses a remotely related organism database. For instance, we use a chicken instead of a human database corresponding to an evolutionary distance of more than 300 million years (International Chicken Genome Sequencing Consortium (2004) Sequence and comparative analysis of the chicken genome provide unique perspectives on vertebrate evolution. Nature 432, 695–716). We demonstrate the successful application to cross-species proteomics with a 33% increase in the number of identified proteins for a filarial nematode sample of Litomosoides sigmodontis. PMID:22493179

  3. Dose-Response Analysis of RNA-Seq Profiles in Archival ...

    EPA Pesticide Factsheets

    Use of archival resources has been limited to date by inconsistent methods for genomic profiling of degraded RNA from formalin-fixed paraffin-embedded (FFPE) samples. RNA-sequencing offers a promising way to address this problem. Here we evaluated transcriptomic dose responses using RNA-sequencing in paired FFPE and frozen (FROZ) samples from two archival studies in mice, one 20 years old. Experimental treatments included 3 different doses of di(2-ethylhexyl)phthalate or dichloroacetic acid for the recently archived and older studies, respectively. Total RNA was ribo-depleted and sequenced using the Illumina HiSeq platform. In the recently archived study, FFPE samples had 35% lower total counts compared to FROZ samples but high concordance in fold-change values of differentially expressed genes (DEGs) (r2 = 0.99), highly enriched pathways (90% overlap with FROZ), and benchmark dose estimates for preselected target genes (2% difference vs FROZ). In contrast, older FFPE samples had markedly lower total counts (3% of FROZ) and poor concordance in global DEGs and pathways. However, counts from FFPE and FROZ samples still positively correlated (r2 = 0.84 across all transcripts) and showed comparable dose responses for more highly expressed target genes. These findings highlight potential applications and issues in using RNA-sequencing data from FFPE samples. Recently archived FFPE samples were highly similar to FROZ samples in sequencing q

  4. Describing the diversity of Ag specific receptors in vertebrates: Contribution of repertoire deep sequencing.

    PubMed

    Castro, Rosario; Navelsaker, Sofie; Krasnov, Aleksei; Du Pasquier, Louis; Boudinot, Pierre

    2017-10-01

    During the last decades, gene and cDNA cloning identified TCR and Ig genes across vertebrates; genome sequencing of TCR and Ig loci in many species revealed the different organizations selected during evolution under the pressure of generating diverse repertoires of Ag receptors. By detecting clonotypes over a wide range of frequency, deep sequencing of Ig and TCR transcripts provides a new way to compare the structure of expressed repertoires in species of various sizes, at different stages of development, with different physiologies, and displaying multiple adaptations to the environment. In this review, we provide a short overview of the technologies currently used to produce global description of immune repertoires, describe how they have already been used in comparative immunology, and we discuss the future potential of such approaches. The development of these methodologies in new species holds promise for new discoveries concerning particular adaptations. As an example, understanding the development of adaptive immunity across metamorphosis in frogs has been made possible by such approaches. Repertoire sequencing is now widely used, not only in basic research but also in the context of immunotherapy and vaccination. Analysis of fish responses to pathogens and vaccines has already benefited from these methods. Finally, we also discuss potential advances based on repertoire sequencing of multigene families of immune sensors and effectors in invertebrates. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. Determining Late Pleistocene to Early Holocene deglaciation of the Baltic Ice Lake through sedimentological core sample analysis of IODP Site M0064

    NASA Astrophysics Data System (ADS)

    Kelly, A. L.; Passchier, S.

    2016-12-01

    This study investigates the deglaciation history of the Scandinavian Ice Sheet (SIS) within the Baltic Sea's Hanö Bay from the Late Pleistocene to the Holocene using samples from International Ocean Discovery Program (IODP) Site M0064. The research aims to understand how the speed of deglaciation influences Baltic Ice Lake (BIL) drainage patterns and relative sea level changes on a high-resolution timescale. Glacial history of the SIS has been studied through glacial till analysis, surface exposure dating, and modeling, encompassing its most recent deglaciation 20-14ka BP, and suggests ice retreated from the project site 16.7ka BP. Between 17 and 14ka BP global sea level rose 4 meters per century, accompanied by a dramatic increase in atmospheric carbon. This period of rapid sea level rise and global warming is a valuable analog for understanding the Earth's current and projected climate. This project uses particle size analysis to better understand the late-glacial depositional environment in Hanö Bay, and ICP-OES geochemical analysis for evidence pertaining to changing sediment provenance and bottom water oxygenation in the BIL. Diamicton is present between 47 and 9 mbsf in Hole M0064D. At 8 mbsf, the sediment exhibits a prominent upward transition from well-laminated cm-scale grey to more thinly laminated reddish brown rhythmites. With calculated Al/Ti ratios, we find that there is not much provenance change in the sequence, however we see fluctuations in Mn/Al ratios, implying shifts in sediment color may be chemical, possibly indicating redox changes in the water column during sediment deposition. Although we find that particle size in the varve sequence does not change, this factor may be driving chemical fluctuations in the diamicton. These results increase the understanding of ice retreat, paleocirculation and relative sea level changes in the Baltic Sea at the onset of the last deglaciation.

  6. Transcriptional analysis of the Arabidopsis ovule by massively parallel signature sequencing

    PubMed Central

    Sánchez-León, Nidia; Arteaga-Vázquez, Mario; Alvarez-Mejía, César; Mendiola-Soto, Javier; Durán-Figueroa, Noé; Rodríguez-Leal, Daniel; Rodríguez-Arévalo, Isaac; García-Campayo, Vicenta; García-Aguilar, Marcelina; Olmedo-Monfil, Vianey; Arteaga-Sánchez, Mario; Martínez de la Vega, Octavio; Nobuta, Kan; Vemaraju, Kalyan; Meyers, Blake C.; Vielle-Calzada, Jean-Philippe

    2012-01-01

    The life cycle of flowering plants alternates between a predominant sporophytic (diploid) and an ephemeral gametophytic (haploid) generation that only occurs in reproductive organs. In Arabidopsis thaliana, the female gametophyte is deeply embedded within the ovule, complicating the study of the genetic and molecular interactions involved in the sporophytic to gametophytic transition. Massively parallel signature sequencing (MPSS) was used to conduct a quantitative large-scale transcriptional analysis of the fully differentiated Arabidopsis ovule prior to fertilization. The expression of 9775 genes was quantified in wild-type ovules, additionally detecting >2200 new transcripts mapping to antisense or intergenic regions. A quantitative comparison of global expression in wild-type and sporocyteless (spl) individuals resulted in 1301 genes showing 25-fold reduced or null activity in ovules lacking a female gametophyte, including those encoding 92 signalling proteins, 75 transcription factors, and 72 RNA-binding proteins not reported in previous studies based on microarray profiling. A combination of independent genetic and molecular strategies confirmed the differential expression of 28 of them, showing that they are either preferentially active in the female gametophyte, or dependent on the presence of a female gametophyte to be expressed in sporophytic cells of the ovule. Among 18 genes encoding pentatricopeptide-repeat proteins (PPRs) that show transcriptional activity in wild-type but not spl ovules, CIHUATEOTL (At4g38150) is specifically expressed in the female gametophyte and necessary for female gametogenesis. These results expand the nature of the transcriptional universe present in the ovule of Arabidopsis, and offer a large-scale quantitative reference of global expression for future genomic and developmental studies. PMID:22442422

  7. Transcriptional analysis of the Arabidopsis ovule by massively parallel signature sequencing.

    PubMed

    Sánchez-León, Nidia; Arteaga-Vázquez, Mario; Alvarez-Mejía, César; Mendiola-Soto, Javier; Durán-Figueroa, Noé; Rodríguez-Leal, Daniel; Rodríguez-Arévalo, Isaac; García-Campayo, Vicenta; García-Aguilar, Marcelina; Olmedo-Monfil, Vianey; Arteaga-Sánchez, Mario; de la Vega, Octavio Martínez; Nobuta, Kan; Vemaraju, Kalyan; Meyers, Blake C; Vielle-Calzada, Jean-Philippe

    2012-06-01

    The life cycle of flowering plants alternates between a predominant sporophytic (diploid) and an ephemeral gametophytic (haploid) generation that only occurs in reproductive organs. In Arabidopsis thaliana, the female gametophyte is deeply embedded within the ovule, complicating the study of the genetic and molecular interactions involved in the sporophytic to gametophytic transition. Massively parallel signature sequencing (MPSS) was used to conduct a quantitative large-scale transcriptional analysis of the fully differentiated Arabidopsis ovule prior to fertilization. The expression of 9775 genes was quantified in wild-type ovules, additionally detecting >2200 new transcripts mapping to antisense or intergenic regions. A quantitative comparison of global expression in wild-type and sporocyteless (spl) individuals resulted in 1301 genes showing 25-fold reduced or null activity in ovules lacking a female gametophyte, including those encoding 92 signalling proteins, 75 transcription factors, and 72 RNA-binding proteins not reported in previous studies based on microarray profiling. A combination of independent genetic and molecular strategies confirmed the differential expression of 28 of them, showing that they are either preferentially active in the female gametophyte, or dependent on the presence of a female gametophyte to be expressed in sporophytic cells of the ovule. Among 18 genes encoding pentatricopeptide-repeat proteins (PPRs) that show transcriptional activity in wild-type but not spl ovules, CIHUATEOTL (At4g38150) is specifically expressed in the female gametophyte and necessary for female gametogenesis. These results expand the nature of the transcriptional universe present in the ovule of Arabidopsis, and offer a large-scale quantitative reference of global expression for future genomic and developmental studies.

  8. Spread and global population structure of the diamondback moth Plutella xylostella (Lepidoptera: Plutellidae) and its larval parasitoids Diadegma semiclausum and Diadegma fenestrale (Hymenoptera: Ichneumonidae) based on mtDNA.

    PubMed

    Juric, I; Salzburger, W; Balmer, O

    2017-04-01

    The diamondback moth (DBM) (Plutella xylostella) is one of the main pests of brassicaceous crops worldwide and shows resistance against a wide range of synthetic insecticides incurring millions of dollars in control costs every year. The DBM is a prime example of the introduction of an exotic species as a consequence of globalization. In this study we analyzed the genetic population structure of the DBM and two of its parasitic wasps, Diadegma semiclausum and Diadegma fenestrale, based on mitochondrial DNA sequences. We analyzed DBM samples from 13 regions worldwide (n = 278), and samples of the two wasp species from six European and African countries (n = 131), in an attempt to reconstruct the geographic origin and phylogeography of the DBM and its two parasitic wasps. We found high variability in COI sequences in the diamondback moth. Haplotype analysis showed three distinct genetic clusters, one of which could represent a cryptic species. Mismatch analysis confirmed the hypothesized recent spread of diamondback moths in North America, Australia and New Zealand. The highest genetic variability was found in African DBM samples. Our data corroborate prior claims of Africa as the most probable origin of the species but cannot preclude Asia as an alternative. No genetic variability was found in the two Diadegma species. The lack of variability in both wasp species suggests a very recent spread of bottlenecked populations, possibly facilitated by their use as biocontrol agents. Our data thus also contain no signals of host-parasitoid co-evolution.

  9. Score distributions of gapped multiple sequence alignments down to the low-probability tail

    NASA Astrophysics Data System (ADS)

    Fieth, Pascal; Hartmann, Alexander K.

    2016-08-01

    Assessing the significance of alignment scores of optimally aligned DNA or amino acid sequences can be achieved via the knowledge of the score distribution of random sequences. But this requires obtaining the distribution in the biologically relevant high-scoring region, where the probabilities are exponentially small. For gapless local alignments of infinitely long sequences this distribution is known analytically to follow a Gumbel distribution. Distributions for gapped local alignments and global alignments of finite lengths can only be obtained numerically. To obtain result for the small-probability region, specific statistical mechanics-based rare-event algorithms can be applied. In previous studies, this was achieved for pairwise alignments. They showed that, contrary to results from previous simple sampling studies, strong deviations from the Gumbel distribution occur in case of finite sequence lengths. Here we extend the studies to multiple sequence alignments with gaps, which are much more relevant for practical applications in molecular biology. We study the distributions of scores over a large range of the support, reaching probabilities as small as 10-160, for global and local (sum-of-pair scores) multiple alignments. We find that even after suitable rescaling, eliminating the sequence-length dependence, the distributions for multiple alignment differ from the pairwise alignment case. Furthermore, we also show that the previously discussed Gaussian correction to the Gumbel distribution needs to be refined, also for the case of pairwise alignments.

  10. Expression profiling of the mouse early embryo: Reflections and Perspectives

    PubMed Central

    Ko, Minoru S. H.

    2008-01-01

    Laboratory mouse plays important role in our understanding of early mammalian development and provides invaluable model for human early embryos, which are difficult to study for ethical and technical reasons. Comprehensive collection of cDNA clones, their sequences, and complete genome sequence information, which have been accumulated over last two decades, have provided even more advantages to mouse models. Here the progress in global gene expression profiling in early mouse embryos and, to some extent, stem cells are reviewed and the future directions and challenges are discussed. The discussions include the restatement of global gene expression profiles as snapshot of cellular status, and subsequent distinction between the differentiation state and physiological state of the cells. The discussions then extend to the biological problems that can be addressed only through global expression profiling, which include: bird’s-eye view of global gene expression changes, molecular index for developmental potency, cell lineage trajectory, microarray-guided cell manipulation, and the possibility of delineating gene regulatory cascades and networks. PMID:16739220

  11. Who Learns More? Cultural Differences in Implicit Sequence Learning

    PubMed Central

    Fu, Qiufang; Dienes, Zoltan; Shang, Junchen; Fu, Xiaolan

    2013-01-01

    Background It is well documented that East Asians differ from Westerners in conscious perception and attention. However, few studies have explored cultural differences in unconscious processes such as implicit learning. Methodology/Principal Findings The global-local Navon letters were adopted in the serial reaction time (SRT) task, during which Chinese and British participants were instructed to respond to global or local letters, to investigate whether culture influences what people acquire in implicit sequence learning. Our results showed that from the beginning British expressed a greater local bias in perception than Chinese, confirming a cultural difference in perception. Further, over extended exposure, the Chinese learned the target regularity better than the British when the targets were global, indicating a global advantage for Chinese in implicit learning. Moreover, Chinese participants acquired greater unconscious knowledge of an irrelevant regularity than British participants, indicating that the Chinese were more sensitive to contextual regularities than the British. Conclusions/Significance The results suggest that cultural biases can profoundly influence both what people consciously perceive and unconsciously learn. PMID:23940773

  12. Draft Genome Sequence of Pseudomonas putida CA-3, a Bacterium Capable of Styrene Degradation and Medium-Chain-Length Polyhydroxyalkanoate Synthesis

    PubMed Central

    Almeida, Eduardo L.; Margassery, Lekha M.; O’Leary, Niall

    2018-01-01

    ABSTRACT Pseudomonas putida strain CA-3 is an industrial bioreactor isolate capable of synthesizing biodegradable polyhydroxyalkanoate polymers via the metabolism of styrene and other unrelated carbon sources. The pathways involved are subject to regulation by global cellular processes. The draft genome sequence is 6,177,154 bp long and contains 5,608 predicted coding sequences. PMID:29371359

  13. Complete genome sequence of a ciprofloxacin resistant Salmonella enterica subsp. enterica serovar Kentucky sequence of a ciprofloxacin strain, PU131, isolated from a human patient in Washington State.

    USDA-ARS?s Scientific Manuscript database

    A ciprofloxacin resistant (CipR) Salmonella enterica subsp. enterica serovar Kentucky ST198 has rapidly and extensively disseminated globally to become a major food-safety and public health concern. Here, we report a complete genome sequence of a CipR S. Kentucky ST198 strain PU131 isolated from a ...

  14. Exome sequencing supports a de novo mutational paradigm for schizophrenia

    PubMed Central

    Xu, Bin; Roos, J. Louw; Dexheimer, Phillip; Boone, Braden; Plummer, Brooks; Levy, Shawn; Gogos, Joseph A.; Karayiorgou, Maria

    2011-01-01

    Despite high heritability, a large fraction of cases with schizophrenia do not have a family history of the disease (sporadic cases). Here, we examine the possibility that rare de novo protein-altering mutations contribute to the genetic component of schizophrenia by sequencing the exome of 53 sporadic cases, 22 unaffected controls and their parents. We identified 40 de novo mutations in 27 patients affecting 40 genes including a potentially disruptive mutation in DGCR2, a gene removed by the recurrent schizophrenia-predisposing 22q11.2 microdeletion. Comparison to rare inherited variants revealed that the identified de novo mutations show a large excess of nonsynonymous changes in cases, as well as a greater potential to affect protein structure and function. Our analysis reveals a major role of de novo mutations in schizophrenia and also a large mutational target, which together provide a plausible explanation for the high global incidence and persistence of the disease. PMID:21822266

  15. Development and expansion of high-quality control region databases to improve forensic mtDNA evidence interpretation.

    PubMed

    Irwin, Jodi A; Saunier, Jessica L; Strouss, Katharine M; Sturk, Kimberly A; Diegoli, Toni M; Just, Rebecca S; Coble, Michael D; Parson, Walther; Parsons, Thomas J

    2007-06-01

    In an effort to increase the quantity, breadth and availability of mtDNA databases suitable for forensic comparisons, we have developed a high-throughput process to generate approximately 5000 control region sequences per year from regional US populations, global populations from which the current US population is derived and global populations currently under-represented in available forensic databases. The system utilizes robotic instrumentation for all laboratory steps from pre-extraction through sequence detection, and a rigorous eight-step, multi-laboratory data review process with entirely electronic data transfer. Over the past 3 years, nearly 10,000 control region sequences have been generated using this approach. These data are being made publicly available and should further address the need for consistent, high-quality mtDNA databases for forensic testing.

  16. A global reference for human genetic variation

    PubMed Central

    2016-01-01

    The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies. PMID:26432245

  17. Clustering analysis of proteins from microbial genomes at multiple levels of resolution.

    PubMed

    Zaslavsky, Leonid; Ciufo, Stacy; Fedorov, Boris; Tatusova, Tatiana

    2016-08-31

    Microbial genomes at the National Center for Biotechnology Information (NCBI) represent a large collection of more than 35,000 assemblies. There are several complexities associated with the data: a great variation in sampling density since human pathogens are densely sampled while other bacteria are less represented; different protein families occur in annotations with different frequencies; and the quality of genome annotation varies greatly. In order to extract useful information from these sophisticated data, the analysis needs to be performed at multiple levels of phylogenomic resolution and protein similarity, with an adequate sampling strategy. Protein clustering is used to construct meaningful and stable groups of similar proteins to be used for analysis and functional annotation. Our approach is to create protein clusters at three levels. First, tight clusters in groups of closely-related genomes (species-level clades) are constructed using a combined approach that takes into account both sequence similarity and genome context. Second, clustroids of conservative in-clade clusters are organized into seed global clusters. Finally, global protein clusters are built around the the seed clusters. We propose filtering strategies that allow limiting the protein set included in global clustering. The in-clade clustering procedure, subsequent selection of clustroids and organization into seed global clusters provides a robust representation and high rate of compression. Seed protein clusters are further extended by adding related proteins. Extended seed clusters include a significant part of the data and represent all major known cell machinery. The remaining part, coming from either non-conservative (unique) or rapidly evolving proteins, from rare genomes, or resulting from low-quality annotation, does not group together well. Processing these proteins requires significant computational resources and results in a large number of questionable clusters. The developed filtering strategies allow to identify and exclude such peripheral proteins limiting the protein dataset in global clustering. Overall, the proposed methodology allows the relevant data at different levels of details to be obtained and data redundancy eliminated while keeping biologically interesting variations.

  18. A Novel Protocol for Model Calibration in Biological Wastewater Treatment

    PubMed Central

    Zhu, Ao; Guo, Jianhua; Ni, Bing-Jie; Wang, Shuying; Yang, Qing; Peng, Yongzhen

    2015-01-01

    Activated sludge models (ASMs) have been widely used for process design, operation and optimization in wastewater treatment plants. However, it is still a challenge to achieve an efficient calibration for reliable application by using the conventional approaches. Hereby, we propose a novel calibration protocol, i.e. Numerical Optimal Approaching Procedure (NOAP), for the systematic calibration of ASMs. The NOAP consists of three key steps in an iterative scheme flow: i) global factors sensitivity analysis for factors fixing; ii) pseudo-global parameter correlation analysis for non-identifiable factors detection; and iii) formation of a parameter subset through an estimation by using genetic algorithm. The validity and applicability are confirmed using experimental data obtained from two independent wastewater treatment systems, including a sequencing batch reactor and a continuous stirred-tank reactor. The results indicate that the NOAP can effectively determine the optimal parameter subset and successfully perform model calibration and validation for these two different systems. The proposed NOAP is expected to use for automatic calibration of ASMs and be applied potentially to other ordinary differential equations models. PMID:25682959

  19. Evaluation of SNS Beamline Shielding Configurations using MCNPX Accelerated by ADVANTG

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Risner, Joel M; Johnson, Seth R.; Remec, Igor

    2015-01-01

    Shielding analyses for the Spallation Neutron Source (SNS) at Oak Ridge National Laboratory pose significant computational challenges, including highly anisotropic high-energy sources, a combination of deep penetration shielding and an unshielded beamline, and a desire to obtain well-converged nearly global solutions for mapping of predicted radiation fields. The majority of these analyses have been performed using MCNPX with manually generated variance reduction parameters (source biasing and cell-based splitting and Russian roulette) that were largely based on the analyst's insight into the problem specifics. Development of the variance reduction parameters required extensive analyst time, and was often tailored to specific portionsmore » of the model phase space. We previously applied a developmental version of the ADVANTG code to an SNS beamline study to perform a hybrid deterministic/Monte Carlo analysis and showed that we could obtain nearly global Monte Carlo solutions with essentially uniform relative errors for mesh tallies that cover extensive portions of the model with typical voxel spacing of a few centimeters. The use of weight window maps and consistent biased sources produced using the FW-CADIS methodology in ADVANTG allowed us to obtain these solutions using substantially less computer time than the previous cell-based splitting approach. While those results were promising, the process of using the developmental version of ADVANTG was somewhat laborious, requiring user-developed Python scripts to drive much of the analysis sequence. In addition, limitations imposed by the size of weight-window files in MCNPX necessitated the use of relatively coarse spatial and energy discretization for the deterministic Denovo calculations that we used to generate the variance reduction parameters. We recently applied the production version of ADVANTG to this beamline analysis, which substantially streamlined the analysis process. We also tested importance function collapsing (in space and energy) capabilities in ADVANTG. These changes, along with the support for parallel Denovo calculations using the current version of ADVANTG, give us the capability to improve the fidelity of the deterministic portion of the hybrid analysis sequence, obtain improved weight-window maps, and reduce both the analyst and computational time required for the analysis process.« less

  20. Multilocus sequence typing of Lactococcus lactis from naturally fermented milk foods in ethnic minority areas of China.

    PubMed

    Xu, Haiyan; Sun, Zhihong; Liu, Wenjun; Yu, Jie; Song, Yuqin; Lv, Qiang; Zhang, Jiachao; Shao, Yuyu; Menghe, Bilige; Zhang, Heping

    2014-05-01

    To determine the genetic diversity and phylogenetic relationships among Lactococcus lactis isolates, 197 strains isolated from naturally homemade yogurt in 9 ethnic minority areas of 6 provinces of China were subjected to multilocus sequence typing (MLST). The MLST analysis was performed using internal fragment sequences of 12 housekeeping genes (carB, clpX, dnaA, groEL, murC, murE, pepN, pepX, pyrG, recA, rpoB, and pheS). Six (dnaA) to 8 (murC) different alleles were detected for these genes, which ranged from 33.62 (clpX) to 41.95% (recA) GC (guanine-cytosine) content. The nucleotide diversity (π) ranged from 0.00362 (murE) to 0.08439 (carB). Despite this limited allelic diversity, the allele combinations of each strain revealed 72 different sequence types, which denoted significant genotypic diversity. The dN/dS ratios (where dS is the number of synonymous substitutions per synonymous site, and dN is the number of nonsynonymous substitutions per nonsynonymous site) were lower than 1, suggesting potential negative selection for these genes. The standardized index of association of the alleles IA(S)=0.3038 supported the clonality of Lc. lactis, but the presence of network structure revealed by the split decomposition analysis of the concatenated sequence was strong evidence for intraspecies recombination. Therefore, this suggests that recombination contributed to the evolution of Lc. lactis. A minimum spanning tree analysis of the 197 isolates identified 14 clonal complexes and 23 singletons. Phylogenetic trees were constructed based on the sequence types, using the minimum evolution algorithm, and on the concatenated sequence (6,192 bp), using the unweighted pair-group method with arithmetic mean, and these trees indicated that the evolution of our Lc. lactis population was correlated with geographic origin. Taken together, our results demonstrated that MLST could provide a better understanding of Lc. lactis genome evolution, as well as useful information for future studies on global Lc. lactis structure and genetic evolution, which will lay the foundation for screening Lc. lactis as starter cultures in fermented dairy products. Copyright © 2014 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

Top