Sample records for global spatial coverage

  1. Operational Interoperable Web Coverage Service for Earth Observing Satellite Data: Issues and Lessons Learned

    NASA Astrophysics Data System (ADS)

    Yang, W.; Min, M.; Bai, Y.; Lynnes, C.; Holloway, D.; Enloe, Y.; di, L.

    2008-12-01

    In the past few years, there have been growing interests, among major earth observing satellite (EOS) data providers, in serving data through the interoperable Web Coverage Service (WCS) interface protocol, developed by the Open Geospatial Consortium (OGC). The interface protocol defined in WCS specifications allows client software to make customized requests of multi-dimensional EOS data, including spatial and temporal subsetting, resampling and interpolation, and coordinate reference system (CRS) transformation. A WCS server describes an offered coverage, i.e., a data product, through a response to a client's DescribeCoverage request. The description includes the offered coverage's spatial/temporal extents and resolutions, supported CRSs, supported interpolation methods, and supported encoding formats. Based on such information, a client can request the entire or a subset of coverage in any spatial/temporal resolutions and in any one of the supported CRSs, formats, and interpolation methods. When implementing a WCS server, a data provider has different approaches to present its data holdings to clients. One of the most straightforward, and commonly used, approaches is to offer individual physical data files as separate coverages. Such implementation, however, will result in too many offered coverages for large data holdings and it also cannot fully present the relationship among different, but spatially and/or temporally associated, data files. It is desirable to disconnect offered coverages from physical data files so that the former is more coherent, especially in spatial and temporal domains. Therefore, some servers offer one single coverage for a set of spatially coregistered time series data files such as a daily global precipitation coverage linked to many global single- day precipitation files; others offer one single coverage for multiple temporally coregistered files together forming a large spatial extent. In either case, a server needs to assemble an output coverage real-time by combining potentially large number of physical files, which can be operationally difficult. The task becomes more challenging if an offered coverage involves spatially and temporally un-registered physical files. In this presentation, we will discuss issues and lessons learned in providing NASA's AIRS Level 2 atmospheric products, which are in satellite swath CRS and in 6-minute segment granule files, as virtual global coverages. We"ll discuss the WCS server's on- the-fly georectification, mosaicking, quality screening, performance, and scalability.

  2. Globalization and multi-spatial trends in the coverage of protected-area conservation (1980-2000).

    PubMed

    Zimmerer, Karl S; Galt, Ryan E; Buck, Margaret V

    2004-12-01

    This study is focused on the global expansion of protected-area coverage that occurred during the 1980--2000 period. We examine the multi-scale patterning of four of the basic facets of this expansion: i) estimated increases at the world-regional and country-level scales of total protected-area coverage; ii) transboundary protected areas; iii) conservation corridor projects; and iv) type of conservation management. Geospatial patterning of protected-area designations is a reflection of the priorities of global conservation organizations and the globalization of post-Cold War political and economic arrangements. Local and national-level factors (political leadership and infrastructure) as well as international relations such as multilateral and bilateral aid combine with these globalization processes to impact the extent, type, and location of protected-area designations. We conclude that the interaction of these factors led to the creation and reinforcement of marked spatial differences (rather than tendencies toward worldwide evenness or homogenization) in the course of protected-area expansion during the 1980--2000 period.

  3. SSE Global Data

    Atmospheric Science Data Center

    2018-04-12

    SSE Global Data Text files of monthly averaged data for the entire ... Version:  V6 Location:  Global Spatial Coverage:  (90N, 90S)(180W,180E) ... File Format:  ASCII Order Data:  SSE Global Data: Order Data SCAR-B Block:  ...

  4. Satellite Remote Sensing of Cirrus: An Overview

    NASA Technical Reports Server (NTRS)

    Minnis, Patrick

    1998-01-01

    The determination of cirrus properties over relatively large spatial and temporal scales will, in most instances, require the use of satellite data. Global coverage, at resolutions as high as several meters are attainable with Landsat, while temporal coverage at 1-min intervals is now available with the latest Geostationary Operational Environmental Satellite (GOES) imagers. Cirrus can be analyzed via interpretation of the radiation that they reflect or emit over a wide range of the electromagnetic spectrum. Many of these spectra and high-resolution satellite data can be used to understand certain aspects of cirrus clouds in particular situations. Production of a global climatology of cirrus clouds, however, requires compromises in spatial, temporal, and spectral coverage. This paper summarizes the state of the art and the potential for future passive remote sensing systems for both understanding cirrus formation and acquiring sufficient statistics to constrain and refine weather and climate models.

  5. A Global Map of Thermal Inertia from Mars Global Surveyor Mapping-Mission Data

    NASA Technical Reports Server (NTRS)

    Mellon, M. T.; Kretke, K. A.; Smith, M. D.; Pelkey, S. M.

    2002-01-01

    TES (thermal emission spectrometry) has obtained high spatial resolution surface temperature observations from which thermal inertia has been derived. Seasonal coverage of these data now provides a nearly global view of Mars, including the polar regions, at high resolution. Additional information is contained in the original extended abstract.

  6. Estimating Morning Change in Land Surface Temperature from MODIS Day/Night Observations: Applications for Surface Energy Balance Modeling.

    PubMed

    Hain, Christopher R; Anderson, Martha C

    2017-10-16

    Observations of land surface temperature (LST) are crucial for the monitoring of surface energy fluxes from satellite. Methods that require high temporal resolution LST observations (e.g., from geostationary orbit) can be difficult to apply globally because several geostationary sensors are required to attain near-global coverage (60°N to 60°S). While these LST observations are available from polar-orbiting sensors, providing global coverage at higher spatial resolutions, the temporal sampling (twice daily observations) can pose significant limitations. For example, the Atmosphere Land Exchange Inverse (ALEXI) surface energy balance model, used for monitoring evapotranspiration and drought, requires an observation of the morning change in LST - a quantity not directly observable from polar-orbiting sensors. Therefore, we have developed and evaluated a data-mining approach to estimate the mid-morning rise in LST from a single sensor (2 observations per day) of LST from the Moderate Resolution Imaging Spectroradiometer (MODIS) sensor on the Aqua platform. In general, the data-mining approach produced estimates with low relative error (5 to 10%) and statistically significant correlations when compared against geostationary observations. This approach will facilitate global, near real-time applications of ALEXI at higher spatial and temporal coverage from a single sensor than currently achievable with current geostationary datasets.

  7. Industrial application for global quantum communication

    NASA Astrophysics Data System (ADS)

    Mirza, A.; Petruccione, F.

    2012-09-01

    In the last decade the quantum communication community has witnessed great advances in photonic quantum cryptography technology with the research, development and commercialization of automated Quantum Key Distribution (QKD) devices. These first generation devices are however bottlenecked by the achievable spatial coverage. This is due to the intrinsic absorption of the quantum particle into the communication medium. As QKD is of paramount importance in the future ICT landscape, various innovative solutions have been developed and tested to expand the spatial coverage of these networks such as the Quantum City initiative in Durban, South Africa. To expand this further into a global QKD-secured network, recent efforts have focussed on high-altitude free-space techniques through the use of satellites. This couples the QKD-secured Metropolitan Area Networks (MANs) with secured ground-tosatellite links as access points to a global network. Such a solution, however, has critical limitations that reduce its commercial feasibility. As parallel step to the development of satellitebased global QKD networks, we investigate the use of the commercial aircrafts' network as secure transport mechanisms in a global QKD network. This QKD-secured global network will provide a robust infrastructure to create, distribute and manage encryption keys between the MANs of the participating cities.

  8. Changes in Arctic and Antarctic Sea Ice as a Microcosm of Global Climate Change

    NASA Technical Reports Server (NTRS)

    Parkinson, Claire L.

    2014-01-01

    Polar sea ice is a key element of the climate system and has now been monitored through satellite observations for over three and a half decades. The satellite observations reveal considerable information about polar ice and its changes since the late 1970s, including a prominent downward trend in Arctic sea ice coverage and a much lesser upward trend in Antarctic sea ice coverage, illustrative of the important fact that climate change entails spatial contrasts. The decreasing ice coverage in the Arctic corresponds well with contemporaneous Arctic warming and exhibits particularly large decreases in the summers of 2007 and 2012, influenced by both preconditioning and atmospheric conditions. The increasing ice coverage in the Antarctic is not as readily explained, but spatial differences in the Antarctic trends suggest a possible connection with atmospheric circulation changes that have perhaps been influenced by the Antarctic ozone hole. The changes in the polar ice covers and the issues surrounding those changes have many commonalities with broader climate changes and their surrounding issues, allowing the sea ice changes to be viewed in some important ways as a microcosm of global climate change.

  9. Global Monitoring of Terrestrial Chlorophyll Fluorescence from Moderate-spectral-resolution Near-infrared Satellite Measurements: Methodology, Simulations, and Application to GOME-2

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Gaunter, L.; Lindstrot, R.; Voigt, M.; Vasilkov, A. P.; Middleton, E. M.; Huemmrich, K. F.; Yoshida, Y.; Frankenberg, C.

    2013-01-01

    Globally mapped terrestrial chlorophyll fluorescence retrievals are of high interest because they can provide information on the functional status of vegetation including light-use efficiency and global primary productivity that can be used for global carbon cycle modeling and agricultural applications. Previous satellite retrievals of fluorescence have relied solely upon the filling-in of solar Fraunhofer lines that are not significantly affected by atmospheric absorption. Although these measurements provide near-global coverage on a monthly basis, they suffer from relatively low precision and sparse spatial sampling. Here, we describe a new methodology to retrieve global far-red fluorescence information; we use hyperspectral data with a simplified radiative transfer model to disentangle the spectral signatures of three basic components: atmospheric absorption, surface reflectance, and fluorescence radiance. An empirically based principal component analysis approach is employed, primarily using cloudy data over ocean, to model and solve for the atmospheric absorption. Through detailed simulations, we demonstrate the feasibility of the approach and show that moderate-spectral-resolution measurements with a relatively high signal-to-noise ratio can be used to retrieve far-red fluorescence information with good precision and accuracy. The method is then applied to data from the Global Ozone Monitoring Instrument 2 (GOME-2). The GOME-2 fluorescence retrievals display similar spatial structure as compared with those from a simpler technique applied to the Greenhouse gases Observing SATellite (GOSAT). GOME-2 enables global mapping of far-red fluorescence with higher precision over smaller spatial and temporal scales than is possible with GOSAT. Near-global coverage is provided within a few days. We are able to show clearly for the first time physically plausible variations in fluorescence over the course of a single month at a spatial resolution of 0.5 deg × 0.5 deg. We also show some significant differences between fluorescence and coincident normalized difference vegetation indices (NDVI) retrievals.

  10. Global Monitoring of Terrestrial Chlorophyll Fluorescence from Moderate-Spectral-Resolution Near-Infrared Satellite Measurements: Methodology, Simulations, and Application to GOME-2

    NASA Technical Reports Server (NTRS)

    Joiner, J.; Guanter, L.; Lindstrot, R.; Voigt, M.; Vasilkov, A. P.; Middleton, E. M.; Huemmrich, K. F.; Yoshida, Y.; Frankenberg, C.

    2013-01-01

    Globally mapped terrestrial chlorophyll fluorescence retrievals are of high interest because they can provide information on the functional status of vegetation including light-use efficiency and global primary productivity that can be used for global carbon cycle modeling and agricultural applications. Previous satellite retrievals of fluorescence have relied solely upon the filling-in of solar Fraunhofer lines that are not significantly affected by atmospheric absorption. Although these measurements provide near-global coverage on a monthly basis, they suffer from relatively low precision and sparse spatial sampling. Here, we describe a new methodology to retrieve global far-red fluorescence information; we use hyperspectral data with a simplified radiative transfer model to disentangle the spectral signatures of three basic components: atmospheric absorption, surface reflectance, and fluorescence radiance. An empirically based principal component analysis approach is employed, primarily using cloudy data over ocean, to model and solve for the atmospheric absorption. Through detailed simulations, we demonstrate the feasibility of the approach and show that moderate-spectral-resolution measurements with a relatively high signal-to-noise ratio can be used to retrieve far-red fluorescence information with good precision and accuracy. The method is then applied to data from the Global Ozone Monitoring Instrument 2 (GOME-2). The GOME-2 fluorescence retrievals display similar spatial structure as compared with those from a simpler technique applied to the Greenhouse gases Observing SATellite (GOSAT). GOME-2 enables global mapping of far-red fluorescence with higher precision over smaller spatial and temporal scales than is possible with GOSAT. Near-global coverage is provided within a few days. We are able to show clearly for the first time physically plausible variations in fluorescence over the course of a single month at a spatial resolution of 0.5 0.5. We also show some significant differences between fluorescence and coincident normalized difference vegetation indices (NDVI) retrievals.

  11. Spatial assessment of land degradation through key ecosystem services: The role of globally available data.

    PubMed

    Cerretelli, Stefania; Poggio, Laura; Gimona, Alessandro; Yakob, Getahun; Boke, Shiferaw; Habte, Mulugeta; Coull, Malcolm; Peressotti, Alessandro; Black, Helaina

    2018-07-01

    Land degradation is a serious issue especially in dry and developing countries leading to ecosystem services (ESS) degradation due to soil functions' depletion. Reliably mapping land degradation spatial distribution is therefore important for policy decisions. The main objectives of this paper were to infer land degradation through ESS assessment and compare the modelling results obtained using different sets of data. We modelled important physical processes (sediment erosion and nutrient export) and the equivalent ecosystem services (sediment and nutrient retention) to infer land degradation in an area in the Ethiopian Great Rift Valley. To model soil erosion/retention capability, and nitrogen export/retention capability, two datasets were used: a 'global' dataset derived from existing global-coverage data and a hybrid dataset where global data were integrated with data from local surveys. The results showed that ESS assessments can be used to infer land degradation and identify priority areas for interventions. The comparison between the modelling results of the two different input datasets showed that caution is necessary if only global-coverage data are used at a local scale. In remote and data-poor areas, an approach that integrates global data with targeted local sampling campaigns might be a good compromise to use ecosystem services in decision-making. Copyright © 2018. Published by Elsevier B.V.

  12. On the Nexus of the Spatial Dynamics of Global Urbanization and the Age of the City

    PubMed Central

    Scheuer, Sebastian; Haase, Dagmar; Volk, Martin

    2016-01-01

    A number of concepts exist regarding how urbanization can be described as a process. Understanding this process that affects billions of people and its future development in a spatial manner is imperative to address related issues such as human quality of life. In the focus of spatially explicit studies on urbanization is typically a city, a particular urban region, an agglomeration. However, gaps remain in spatially explicit global models. This paper addresses that issue by examining the spatial dynamics of urban areas over time, for a full coverage of the world. The presented model identifies past, present and potential future hotspots of urbanization as a function of an urban area's spatial variation and age, whose relation could be depicted both as a proxy and as a path of urban development. PMID:27490199

  13. On the Nexus of the Spatial Dynamics of Global Urbanization and the Age of the City.

    PubMed

    Scheuer, Sebastian; Haase, Dagmar; Volk, Martin

    2016-01-01

    A number of concepts exist regarding how urbanization can be described as a process. Understanding this process that affects billions of people and its future development in a spatial manner is imperative to address related issues such as human quality of life. In the focus of spatially explicit studies on urbanization is typically a city, a particular urban region, an agglomeration. However, gaps remain in spatially explicit global models. This paper addresses that issue by examining the spatial dynamics of urban areas over time, for a full coverage of the world. The presented model identifies past, present and potential future hotspots of urbanization as a function of an urban area's spatial variation and age, whose relation could be depicted both as a proxy and as a path of urban development.

  14. Recent developments and future directions in the monitoring of terrestrial sun-induced chlorophyll fluorescence from space

    NASA Astrophysics Data System (ADS)

    Guanter, L.

    2017-12-01

    Sun-induced chlorophyll fluorescence (SIF) is an electromagnetic signal emitted by the chlorophyll-a of assimilating plants in the 650-850 nm spectral range. The SIF emission has a mechanistic link to photosynthesis and responds instantaneously to perturbations in environmental conditions such as light and water stress, which makes it a powerful proxy for plants' photosynthetic activity. Global measurements of SIF from space have been available since late 2011 from four different atmospheric satellite missions (chronologically, GOSAT, SCIAMACHY, GOME-2 and OCO-2). The potential of the derived SIF data sets to represent the photosynthetic activity of different ecosystems, including large crop belts worldwide, the Amazon rainforest and boreal evergreen forests has been demonstrated in the relatively short life-time of global SIF data. Despite the demonstrated potential of SIF data as a proxy for global terrestrial gross primary production, current observations are partly hampered by a coarse spatial resolution or the lack of spatial coverage. For this reason, great expectations are put on the upcoming TROPOMI instrument onboard the Copernicus' Sentinel 5-Precursor mission to be launched by mid-end of 2017. TROPOMI will provide daily global coverage with a spatial resolution between 3 and 7 km and continuous spectral coverage of the visible and near-infrared part of the spectrum. The recent selection of FLEX as the ESA Earth Explorer 8 to be launched around 2022 and several upcoming geostationary missions (TEMPO, Sentinel-4 and GeoCARB, covering Europe and the Americas) with potential for SIF retrievals complete an exciting near-future scenario for the monitoring of SIF from space. In this contribution, we will provide an overview of recent developments in the global monitoring of SIF and will introduce the near-future observational scenario with especial emphasis on TROPOMI and the geostationary missions to be launched in the coming years.

  15. Measuring the extent and effectiveness of protected areas as an indicator for meeting global biodiversity targets

    PubMed Central

    Chape, S; Harrison, J; Spalding, M; Lysenko, I

    2005-01-01

    There are now over 100 000 protected areas worldwide, covering over 12% of the Earth's land surface. These areas represent one of the most significant human resource use allocations on the planet. The importance of protected areas is reflected in their widely accepted role as an indicator for global targets and environmental assessments. However, measuring the number and extent of protected areas only provides a unidimensional indicator of political commitment to biodiversity conservation. Data on the geographic location and spatial extent of protected areas will not provide information on a key determinant for meeting global biodiversity targets: ‘effectiveness’ in conserving biodiversity. Although tools are being devised to assess management effectiveness, there is no globally accepted metric. Nevertheless, the numerical, spatial and geographic attributes of protected areas can be further enhanced by investigation of the biodiversity coverage of these protected areas, using species, habitats or biogeographic classifications. This paper reviews the current global extent of protected areas in terms of geopolitical and habitat coverage, and considers their value as a global indicator of conservation action or response. The paper discusses the role of the World Database on Protected Areas and collection and quality control issues, and identifies areas for improvement, including how conservation effectiveness indicators may be included in the database to improve the value of protected areas data as an indicator for meeting global biodiversity targets. PMID:15814356

  16. High Spatial Resolution Europa Coverage by the Galileo Near Infrared Mapping Spectrometer NIMS

    NASA Image and Video Library

    1998-03-26

    NASA Galileo spacecraft, which was used to map the mineral and ice properties over the surfaces of the Jovian moons, producing global spectral images for small selected regions on the satellites in 1996-97.

  17. Combining XCO2 Measurements Derived from SCIAMACHY and GOSAT for Potentially Generating Global CO2 Maps with High Spatiotemporal Resolution

    PubMed Central

    Wang, Tianxing; Shi, Jiancheng; Jing, Yingying; Zhao, Tianjie; Ji, Dabin; Xiong, Chuan

    2014-01-01

    Global warming induced by atmospheric CO2 has attracted increasing attention of researchers all over the world. Although space-based technology provides the ability to map atmospheric CO2 globally, the number of valid CO2 measurements is generally limited for certain instruments owing to the presence of clouds, which in turn constrain the studies of global CO2 sources and sinks. Thus, it is a potentially promising work to combine the currently available CO2 measurements. In this study, a strategy for fusing SCIAMACHY and GOSAT CO2 measurements is proposed by fully considering the CO2 global bias, averaging kernel, and spatiotemporal variations as well as the CO2 retrieval errors. Based on this method, a global CO2 map with certain UTC time can also be generated by employing the pattern of the CO2 daily cycle reflected by Carbon Tracker (CT) data. The results reveal that relative to GOSAT, the global spatial coverage of the combined CO2 map increased by 41.3% and 47.7% on a daily and monthly scale, respectively, and even higher when compared with that relative to SCIAMACHY. The findings in this paper prove the effectiveness of the combination method in supporting the generation of global full-coverage XCO2 maps with higher temporal and spatial sampling by jointly using these two space-based XCO2 datasets. PMID:25119468

  18. Competition between plant functional types in the Canadian Terrestrial Ecosystem Model (CTEM) v. 2.0

    NASA Astrophysics Data System (ADS)

    Melton, J. R.; Arora, V. K.

    2015-06-01

    The Canadian Terrestrial Ecosystem Model (CTEM) is the interactive vegetation component in the Earth system model of the Canadian Centre for Climate Modelling and Analysis. CTEM models land-atmosphere exchange of CO2 through the response of carbon in living vegetation, and dead litter and soil pools, to changes in weather and climate at timescales of days to centuries. Version 1.0 of CTEM uses prescribed fractional coverage of plant functional types (PFTs) although, in reality, vegetation cover continually adapts to changes in climate, atmospheric composition, and anthropogenic forcing. Changes in the spatial distribution of vegetation occur on timescales of years to centuries as vegetation distributions inherently have inertia. Here, we present version 2.0 of CTEM which includes a representation of competition between PFTs based on a modified version of the Lotka-Volterra (L-V) predator-prey equations. Our approach is used to dynamically simulate the fractional coverage of CTEM's seven natural, non-crop PFTs which are then compared with available observation-based estimates. Results from CTEM v. 2.0 show the model is able to represent the broad spatial distributions of its seven PFTs at the global scale. However, differences remain between modelled and observation-based fractional coverages of PFTs since representing the multitude of plant species globally, with just seven non-crop PFTs, only captures the large scale climatic controls on PFT distributions. As expected, PFTs that exist in climate niches are difficult to represent either due to the coarse spatial resolution of the model, and the corresponding driving climate, or the limited number of PFTs used. We also simulate the fractional coverages of PFTs using unmodified L-V equations to illustrate its limitations. The geographic and zonal distributions of primary terrestrial carbon pools and fluxes from the versions of CTEM that use prescribed and dynamically simulated fractional coverage of PFTs compare reasonably well with each other and observation-based estimates. The parametrization of competition between PFTs in CTEM v. 2.0 based on the modified L-V equations behaves in a reasonably realistic manner and yields a tool with which to investigate the changes in spatial distribution of vegetation in response to future changes in climate.

  19. Competition between plant functional types in the Canadian Terrestrial Ecosystem Model (CTEM) v. 2.0

    NASA Astrophysics Data System (ADS)

    Melton, J. R.; Arora, V. K.

    2016-01-01

    The Canadian Terrestrial Ecosystem Model (CTEM) is the interactive vegetation component in the Earth system model of the Canadian Centre for Climate Modelling and Analysis. CTEM models land-atmosphere exchange of CO2 through the response of carbon in living vegetation, and dead litter and soil pools, to changes in weather and climate at timescales of days to centuries. Version 1.0 of CTEM uses prescribed fractional coverage of plant functional types (PFTs) although, in reality, vegetation cover continually adapts to changes in climate, atmospheric composition and anthropogenic forcing. Changes in the spatial distribution of vegetation occur on timescales of years to centuries as vegetation distributions inherently have inertia. Here, we present version 2.0 of CTEM, which includes a representation of competition between PFTs based on a modified version of the Lotka-Volterra (L-V) predator-prey equations. Our approach is used to dynamically simulate the fractional coverage of CTEM's seven natural, non-crop PFTs, which are then compared with available observation-based estimates. Results from CTEM v. 2.0 show the model is able to represent the broad spatial distributions of its seven PFTs at the global scale. However, differences remain between modelled and observation-based fractional coverage of PFTs since representing the multitude of plant species globally, with just seven non-crop PFTs, only captures the large-scale climatic controls on PFT distributions. As expected, PFTs that exist in climate niches are difficult to represent either due to the coarse spatial resolution of the model, and the corresponding driving climate, or the limited number of PFTs used. We also simulate the fractional coverage of PFTs using unmodified L-V equations to illustrate its limitations. The geographic and zonal distributions of primary terrestrial carbon pools and fluxes from the versions of CTEM that use prescribed and dynamically simulated fractional coverage of PFTs compare reasonably well with each other and observation-based estimates. The parametrization of competition between PFTs in CTEM v. 2.0 based on the modified L-V equations behaves in a reasonably realistic manner and yields a tool with which to investigate the changes in spatial distribution of vegetation in response to future changes in climate.

  20. Mars Operational Environmental Satellite (MOES): A post-Mars Observer discovery mission

    NASA Technical Reports Server (NTRS)

    Limaye, Sanjay S.

    1993-01-01

    Mars Operational Environmental Satellite (MOES) is a Discovery concept mission that is designed to observe the global short-term weather phenomena on Mars in a systematic fashion. Even after the Mariner, Viking, and, soon, Mars Observer missions, crucial aspects of the martian atmosphere will remain unobserved systematically. Achieving a better understanding of the cycles of dust, water vapor, and ices on Mars requires detailed information about atmospheric transports of those quantities associated with the weather systems, particularly those arising in mid latitudes during fall and winter. It also requires a quantitive understanding of the processes responsible for the onset and evolution of dust storms on all scales. Whereas on Earth the system of geosynchronous and polar orbiting satellites provides continuous coverage of the weather systems, on Mars the time history of important events such as regional and global dust storms remains unobserved. To understand the transport of tracers in the martian atmosphere and particularly to identify their sources and sinks, it is necessary to have systematic global, synoptic observations that have yet to be attained. Clearly these requirements are not easy to achieve from a single spacecraft in orbit, but if we focus on specific regions of the planet, e.g., polar vs. low and mid latitudes, then it is possible to attain a nearly ideal coverage at a reasonable spatial and temporal resolution with a system of just two satellites. Mars Observer is about to yield good coverage of the polar latitudes, so we focus initially on the region not covered well in terms of diurnal coverage, and in terms of desired observations will provide the initial data for the numerical models of the martian weather and climate that can be verified only with better temporal and spatial data.

  1. International Satellite Cloud Climatology Project (ISCCP) Ice Snow Product in Native (NAT) Format (ISCCP_ICESNOW_NAT)

    NASA Technical Reports Server (NTRS)

    Rossow, William B. (Principal Investigator)

    Since 1983 an international group of institutions has collected and analyzed satellite radiance measurements from up to five geostationary and two polar orbiting satellites to infer the global distribution of cloud properties and their diurnal, seasonal and interannual variations. The primary focus of the first phase of the project (1983-1995) was the elucidation of the role of clouds in the radiation budget (top of the atmosphere and surface). In the second phase of the project (1995 onwards) the analysis also concerns improving understanding of clouds in the global hydrological cycle. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1983-07-01; Stop_Date=] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=112 Km; Longitude_Resolution=112 Km; Temporal_Resolution=5-day].

  2. Spatially-explicit models of global tree density.

    PubMed

    Glick, Henry B; Bettigole, Charlie; Maynard, Daniel S; Covey, Kristofer R; Smith, Jeffrey R; Crowther, Thomas W

    2016-08-16

    Remote sensing and geographic analysis of woody vegetation provide means of evaluating the distribution of natural resources, patterns of biodiversity and ecosystem structure, and socio-economic drivers of resource utilization. While these methods bring geographic datasets with global coverage into our day-to-day analytic spheres, many of the studies that rely on these strategies do not capitalize on the extensive collection of existing field data. We present the methods and maps associated with the first spatially-explicit models of global tree density, which relied on over 420,000 forest inventory field plots from around the world. This research is the result of a collaborative effort engaging over 20 scientists and institutions, and capitalizes on an array of analytical strategies. Our spatial data products offer precise estimates of the number of trees at global and biome scales, but should not be used for local-level estimation. At larger scales, these datasets can contribute valuable insight into resource management, ecological modelling efforts, and the quantification of ecosystem services.

  3. Multiscale site-response mapping: A case study of Parkfield, California

    USGS Publications Warehouse

    Thompson, E.M.; Baise, L.G.; Kayen, R.E.; Morgan, E.C.; Kaklamanos, J.

    2011-01-01

    The scale of previously proposed methods for mapping site-response ranges from global coverage down to individual urban regions. Typically, spatial coverage and accuracy are inversely related.We use the densely spaced strong-motion stations in Parkfield, California, to estimate the accuracy of different site-response mapping methods and demonstrate a method for integrating multiple site-response estimates from the site to the global scale. This method is simply a weighted mean of a suite of different estimates, where the weights are the inverse of the variance of the individual estimates. Thus, the dominant site-response model varies in space as a function of the accuracy of the different models. For mapping applications, site-response models should be judged in terms of both spatial coverage and the degree of correlation with observed amplifications. Performance varies with period, but in general the Parkfield data show that: (1) where a velocity profile is available, the square-rootof- impedance (SRI) method outperforms the measured VS30 (30 m divided by the S-wave travel time to 30 m depth) and (2) where velocity profiles are unavailable, the topographic slope method outperforms surficial geology for short periods, but geology outperforms slope at longer periods. We develop new equations to estimate site response from topographic slope, derived from the Next Generation Attenuation (NGA) database.

  4. Evaluation of the global MODIS 30 arc-second spatially and temporally complete snow-free land surface albedo and reflectance anisotropy dataset

    NASA Astrophysics Data System (ADS)

    Sun, Qingsong; Wang, Zhuosen; Li, Zhan; Erb, Angela; Schaaf, Crystal B.

    2017-06-01

    Land surface albedo is an essential variable for surface energy and climate modeling as it describes the proportion of incident solar radiant flux that is reflected from the Earth's surface. To capture the temporal variability and spatial heterogeneity of the land surface, satellite remote sensing must be used to monitor albedo accurately at a global scale. However, large data gaps caused by cloud or ephemeral snow have slowed the adoption of satellite albedo products by the climate modeling community. To address the needs of this community, we used a number of temporal and spatial gap-filling strategies to improve the spatial and temporal coverage of the global land surface MODIS BRDF, albedo and NBAR products. A rigorous evaluation of the gap-filled values shows good agreement with original high quality data (RMSE = 0.027 for the NIR band albedo, 0.020 for the red band albedo). This global snow-free and cloud-free MODIS BRDF and albedo dataset (established from 2001 to 2015) offers unique opportunities to monitor and assess the impact of the changes on the Earth's land surface.

  5. Science Objectives of EOS-Aura's Ozone Monitoring Instrument (OMI)

    NASA Technical Reports Server (NTRS)

    Levelt, P. F.; Veefkind, J. P.; Stammes, P.; Hilsenrath, E.; Bhartia, P. K.; Chance, K. V.; Leppelmeier, G. W.; Maelkki, A.; Bhartia, Pawan (Technical Monitor)

    2002-01-01

    OMI is a UV/VIS nadir solar backscatter spectrograph, which provides near global coverage in one day with a spatial resolution of 13 x 24 sq km. OMI is a new instrument, with a heritage from the European satellite instruments GOME, GOMOS and SCIAMACHY. OMI's unique capabilities for measuring important trace gases with a small footprint and daily global coverage, in conjunction with the other Aura instruments, will make a major contribution to our understanding of stratospheric and tropospheric chemistry and climate change. OMI will measure solar irradiance and Earth radiances in the wavelength range of 270 to 500 nm with spectral resolution of about 0.5 nm and a spectral sampling of about 2-3 per FWHM. From these observations, total columns of O3, NO2, BrO and SO2 will be derived from the back-scattered solar radiance using differential absorption spectroscopy (DOAS). The TOMS total ozone record will also be continued by employing the well established TOMS algorithm. Because of the high accuracy and spatial resolution of the measurements, a good estimate of tropospheric amounts of ozone and NO2 are expected. Ozone profiles will be derived using the optimal estimation method. The spectral aerosol optical depth will be determined from measurements between 340 and 500 nm. This will provide information on aerosol concentration, aerosol size distribution and aerosol type. This wavelength range makes it possible to retrieve aerosol information over both land and sea. OMI observations will also allow retrievals of cloud coverage and cloud heights. From these products, the UV-B flux at the surface can then be derived with high spatial resolution.

  6. Making management recommendations from annual bird point count data

    Treesearch

    Gary M. Peters

    2005-01-01

    In the past decade, more than one hundred thousand breeding bird occurrences have been recorded on Southern National Forests in the United Sates. The majority of these occurrences have been geo-referenced using global positioning satellite (GPS) technology. This spatial information is available for use as a coverage in several geographic information system (GIS)...

  7. Internal Consistency of the NVAP Water Vapor Dataset

    NASA Technical Reports Server (NTRS)

    Suggs, Ronnie J.; Jedlovec, Gary J.; Arnold, James E. (Technical Monitor)

    2001-01-01

    The NVAP (NASA Water Vapor Project) dataset is a global dataset at 1 x 1 degree spatial resolution consisting of daily, pentad, and monthly atmospheric precipitable water (PW) products. The analysis blends measurements from the Television and Infrared Operational Satellite (TIROS) Operational Vertical Sounder (TOVS), the Special Sensor Microwave/Imager (SSM/I), and radiosonde observations into a daily collage of PW. The original dataset consisted of five years of data from 1988 to 1992. Recent updates have added three additional years (1993-1995) and incorporated procedural and algorithm changes from the original methodology. Since each of the PW sources (TOVS, SSM/I, and radiosonde) do not provide global coverage, each of these sources compliment one another by providing spatial coverage over regions and during times where the other is not available. For this type of spatial and temporal blending to be successful, each of the source components should have similar or compatible accuracies. If this is not the case, regional and time varying biases may be manifested in the NVAP dataset. This study examines the consistency of the NVAP source data by comparing daily collocated TOVS and SSM/I PW retrievals with collocated radiosonde PW observations. The daily PW intercomparisons are performed over the time period of the dataset and for various regions.

  8. Combined Landsat-8 and Sentinel-2 Burned Area Mapping

    NASA Astrophysics Data System (ADS)

    Huang, H.; Roy, D. P.; Zhang, H.; Boschetti, L.; Yan, L.; Li, Z.

    2017-12-01

    Fire products derived from coarse spatial resolution satellite data have become an important source of information for the multiple user communities involved in fire science and applications. The advent of the MODIS on NASA's Terra and Aqua satellites enabled systematic production of 500m global burned area maps. There is, however, an unequivocal demand for systematically generated higher spatial resolution burned area products, in particular to examine the role of small-fires for various applications. Moderate spatial resolution contemporaneous satellite data from Landsat-8 and the Sentinel-2A and -2B sensors provide the opportunity for detailed spatial mapping of burned areas. Combined, these polar-orbiting systems provide 10m to 30m multi-spectral global coverage more than once every three days. This NASA funded research presents results to prototype a combined Landsat-8 Sentinel-2 burned area product. The Landsat-8 and Sentinel-2 pre-processing, the time-series burned area mapping algorithm, and preliminary results and validation using high spatial resolution commercial satellite data over Africa are presented.

  9. Mentoring Temporal and Spatial Variations in Rainfall across Wadi Ar-Rumah, Saudi Arabia

    NASA Astrophysics Data System (ADS)

    Alharbi, T.; Ahmed, M.

    2015-12-01

    Across the Kingdom of Saudi Arabia (KSA), the fresh water resources are limited only to those found in aquifer systems. Those aquifers were believed to be recharged during the previous wet climatic period but still receiving modest local recharge in interleaving dry periods such as those prevailing at present. Quantifying temporal and spatial variabilities in rainfall patterns, magnitudes, durations, and frequencies is of prime importance when it comes to sustainable management of such aquifer systems. In this study, an integrated approach, using remote sensing and field data, was used to assess the past, the current, and the projected spatial and temporal variations in rainfall over one of the major watersheds in KSA, Wadi Ar-Rumah. This watershed was selected given its larger areal extent and population intensity. Rainfall data were extracted from (1) the Climate Prediction Centers (CPC) Merged Analysis of Precipitation (CMAP; spatial coverage: global; spatial resolution: 2.5° × 2.5°; temporal coverage: January 1979 to April 2015; temporal resolution: monthly), and (2) the Tropical Rainfall Measuring Mission (TRMM; spatial coverage: 50°N to 50°S; spatial resolution: 0.25° × 0.25°; temporal coverage: January 1998 to March 2015; temporal resolution: 3 hours) and calibrated against rainfall measurements extracted from rain gauges. Trends in rainfall patterns were examined over four main investigation periods: period I (01/1979 to 12/1985), period II (01/1986 to 12/1992), period III (01/1993 to 12/2002), and period IV (01/2003 to 12/2014). Our findings indicate: (1) a significant increase (+14.19 mm/yr) in rainfall rates were observed during period I, (2) a significant decrease in rainfall rates were observed during periods II (-5.80 mm/yr), III (-9.38 mm/yr), and IV (-2.46 mm/yr), and (3) the observed variations in rainfall rates are largely related to the temporal variations in the northerlies (also called northwesterlies) and the monsoonal wind regimes.

  10. Spatial Metadata for Global Change Investigations Using Remote Sensing

    NASA Technical Reports Server (NTRS)

    Emerson, Charles W.; Quattrochi, Dale A.; Lam, Nina Siu-Ngan; Arnold, James E. (Technical Monitor)

    2002-01-01

    Satellite and aircraft-borne remote sensors have gathered petabytes of data over the past 30+ years. These images are an important resource for establishing cause and effect relationships between human-induced land cover changes and alterations in climate and other biophysical patterns at local to global scales. However, the spatial, temporal, and spectral characteristics of these datasets vary, thus complicating long-term studies involving several types of imagery. As the geographical and temporal coverage, the spectral and spatial resolution, and the number of individual sensors increase, the sheer volume and complexity of available data sets will complicate management and use of the rapidly growing archive of earth imagery. Mining this vast data resource for images that provide the necessary information for climate change studies becomes more difficult as more sensors are launched and more imagery is obtained.

  11. Landsat Data Continuity Mission

    USGS Publications Warehouse

    ,

    2012-01-01

    The Landsat Data Continuity Mission (LDCM) is a partnership formed between the National Aeronautics and Space Administration (NASA) and the U.S. Geological Survey (USGS) to place the next Landsat satellite in orbit in January 2013. The Landsat era that began in 1972 will become a nearly 41-year global land record with the successful launch and operation of the LDCM. The LDCM will continue the acquisition, archiving, and distribution of multispectral imagery affording global, synoptic, and repetitive coverage of the Earth's land surfaces at a scale where natural and human-induced changes can be detected, differentiated, characterized, and monitored over time. The mission objectives of the LDCM are to (1) collect and archive medium resolution (30-meter spatial resolution) multispectral image data affording seasonal coverage of the global landmasses for a period of no less than 5 years; (2) ensure that LDCM data are sufficiently consistent with data from the earlier Landsat missions in terms of acquisition geometry, calibration, coverage characteristics, spectral characteristics, output product quality, and data availability to permit studies of landcover and land-use change over time; and (3) distribute LDCM data products to the general public on a nondiscriminatory basis at no cost to the user.

  12. Airborne Instrument Simulator for the Lidar Surface Topography (LIST) Mission

    NASA Technical Reports Server (NTRS)

    Yu, Anthony W.; Krainak, Michael A.; Harding, David J.; Abshire, James B.; Sun, Xiaoli; Cavanaugh, John; Valett, Susan; Ramos-Izquierdo, Luis

    2010-01-01

    In 2007, the National Research Council (NRC) completed its first decadal survey for Earth science at the request of NASA, NOAA, and USGS. The Lidar Surface Topography (LIST) mission is one of fifteen missions recommended by NRC, whose primary objectives are to map global topography and vegetation structure at 5 m spatial resolution, and to acquire global coverage with a few years. NASA Goddard conducted an initial mission concept study for the LIST mission 2007, and developed the initial measurement requirements for the mission.

  13. The NASA Marshall Space Flight Center Earth Global Reference Atmospheric Model-2010 Version

    NASA Technical Reports Server (NTRS)

    Leslie, F. W.; Justus, C. G.

    2011-01-01

    Reference or standard atmospheric models have long been used for design and mission planning of various aerospace systems. The NASA Marshall Space Flight Center Global Reference Atmospheric Model was developed in response to the need for a design reference atmosphere that provides complete global geographical variability and complete altitude coverage (surface to orbital altitudes), as well as complete seasonal and monthly variability of the thermodynamic variables and wind components. In addition to providing the geographical, height, and monthly variation of the mean atmospheric state, it includes the ability to simulate spatial and temporal perturbations.

  14. A spatial evaluation of global wildfire-water risks to human and natural systems

    Treesearch

    Francois-Nicolas Robinne; Kevin D. Bladon; Carol Miller; Marc-Andre Parisien; Jerome Mathieu; Mike D. Flannigan

    2017-01-01

    The large mediatic coverage of recent massive wildfires across the world has emphasized the vulnerability of freshwater resources. The extensive hydrogeomorphic effects from a wildfire can impair the ability of watersheds to provide safe drinking water to downstream communities and high-quality water to maintain riverine ecosystem health. Safeguarding water use for...

  15. The HYSPIRI Decadal Survey Mission: Update on the Mission Concept and Science Objectives for Global Imaging Spectroscopy and Multi-Spectral Thermal Measurements

    NASA Technical Reports Server (NTRS)

    Green, Robert O.; Hook, Simon J.; Middleton, Elizabeth; Turner, Woody; Ungar, Stephen; Knox, Robert

    2012-01-01

    The NASA HyspIRI mission is planned to provide global solar reflected energy spectroscopic measurement of the terrestrial and shallow water regions of the Earth every 19 days will all measurements downlinked. In addition, HyspIRI will provide multi-spectral thermal measurements with a single band in the 4 micron region and seven bands in the 8 to 12 micron region with 5 day day/night coverage. A direct broadcast capability for measurement subsets is also planned. This HyspIRI mission is one of those designated in the 2007 National Research Council (NRC) Decadal Survey: Earth Science and Applications from Space. In the Decadal Survey, HyspIRI was recognized as relevant to a range of Earth science and science applications, including climate: "A hyperspectral sensor (e.g., FLORA) combined with a multispectral thermal sensor (e.g., SAVII) in low Earth orbit (LEO) is part of an integrated mission concept [described in Parts I and II] that is relevant to several panels, especially the climate variability panel." The HyspIRI science study group was formed in 2008 to evaluate and refine the mission concept. This group has developed a series of HyspIRI science objectives: (1) Climate: Ecosystem biochemistry, condition & feedback; spectral albedo; carbon/dust on snow/ice; biomass burning; evapotranspiration (2) Ecosystems: Global plant functional types, physiological condition, and biochemistry including agricultural lands (3) Fires: Fuel status, fire frequency, severity, emissions, and patterns of recovery globally (4) Coral reef and coastal habitats: Global composition and status (5) Volcanoes: Eruptions, emissions, regional and global impact (6) Geology and resources: Global distributions of surface mineral resources and improved understanding of geology and related hazards These objectives are achieved with the following measurement capabilities. The HyspIRI imaging spectrometer provides: full spectral coverage from 380 to 2500 at 10 nm sampling; 60 m spatial sampling with a 150 km swath; and fully downlinked coverage of the Earth's terrestrial and shallow water regions every 19 days to provide seasonal cloud-free coverage of the terrestrial surface. The HyspIRI Multi-Spectral Thermal instrument provides: 8 spectral bands from 4 to 12 microns; 60 m spatial sampling with a 600 km swath; and fully downlinked coverage of the Earth's terrestrial shallow water regions every 5 days (day/night) to provide nominally cloud-free monthly coverage. The HyspIRI mission also includes an on-board processing and direct broadcast capability, referred to as the Intelligent Payload Module (IPM), which will allow users with the appropriate antenna to download a subset of the HyspIRI data stream to a local ground station. These science and science application objectives are critical today and uniquely addressed by the combined imaging spectroscopy, thermal infrared measurements, and IPM direct broadcast capability of HyspIRI. Two key objectives are: (1) The global HyspIRI spectroscopic measurements of the terrestrial biosphere including vegetation composition and function to constrain and reduce the uncertainty in climate-carbon interactions and terrestrial biosphere feedback. (2) The global 8 band thermal measurements to provide improved constraint of fire related emissions. In this paper the current HyspIRI mission concept that has been reviewed and refined to its current level of maturity with a Data Products Symposium, Science Workshop and NASA HWorkshop is presented including traceability between the measurements and the science and science application objectives.

  16. Mapping wood density globally using remote sensing and climatological data

    NASA Astrophysics Data System (ADS)

    Moreno, A.; Camps-Valls, G.; Carvalhais, N.; Kattge, J.; Robinson, N.; Reichstein, M.; Allred, B. W.; Running, S. W.

    2017-12-01

    Wood density (WD) is defined as the oven-dry mass divided by fresh volume, varies between individuals, and describes the carbon investment per unit volume of stem. WD has been proven to be a key functional trait in carbon cycle research and correlates with numerous morphological, mechanical, physiological, and ecological properties. In spite of the utility and importance of this trait, there is a lack of an operational framework to spatialize plant WD measurements at a global scale. In this work, we present a consistent modular processing chain to derive global maps (500 m) of WD using modern machine learning techniques along with optical remote sensing data (MODIS/Landsat) and climate data using the Google Earth Engine platform. The developed approach uses a hierarchical Bayesian approach to fill in gaps in the plant measured WD data set to maximize its global representativeness. WD plant species are then aggregated to Plant Functional Types (PFT). The spatial abundance of PFT at 500 m spatial resolution (MODIS) is calculated using a high resolution (30 m) PFT map developed using Landsat data. Based on these PFT abundances, representative WD values are estimated for each MODIS pixel with nearby measured data. Finally, random forests are used to globally estimate WD from these MODIS pixels using remote sensing and climate. The validation and assessment of the applied methods indicate that the model explains more than 72% of the spatial variance of the calculated community aggregated WD estimates with virtually unbiased estimates and low RMSE (<15%). The maps thus offer new opportunities to study and analyze the global patterns of variation of WD at an unprecedented spatial coverage and spatial resolution.

  17. Global patterns of current and future road infrastructure

    NASA Astrophysics Data System (ADS)

    Meijer, Johan R.; Huijbregts, Mark A. J.; Schotten, Kees C. G. J.; Schipper, Aafke M.

    2018-06-01

    Georeferenced information on road infrastructure is essential for spatial planning, socio-economic assessments and environmental impact analyses. Yet current global road maps are typically outdated or characterized by spatial bias in coverage. In the Global Roads Inventory Project we gathered, harmonized and integrated nearly 60 geospatial datasets on road infrastructure into a global roads dataset. The resulting dataset covers 222 countries and includes over 21 million km of roads, which is two to three times the total length in the currently best available country-based global roads datasets. We then related total road length per country to country area, population density, GDP and OECD membership, resulting in a regression model with adjusted R 2 of 0.90, and found that that the highest road densities are associated with densely populated and wealthier countries. Applying our regression model to future population densities and GDP estimates from the Shared Socioeconomic Pathway (SSP) scenarios, we obtained a tentative estimate of 3.0–4.7 million km additional road length for the year 2050. Large increases in road length were projected for developing nations in some of the world’s last remaining wilderness areas, such as the Amazon, the Congo basin and New Guinea. This highlights the need for accurate spatial road datasets to underpin strategic spatial planning in order to reduce the impacts of roads in remaining pristine ecosystems.

  18. Spatio-temporal variation of vegetation coverage and its response to climate change in North China plain in the last 33 years

    NASA Astrophysics Data System (ADS)

    A, Duo; Zhao, Wenji; Qu, Xinyuan; Jing, Ran; Xiong, Kai

    2016-12-01

    Global climate change has led to significant vegetation changes in the past half century. North China Plain, the most important grain production base of china, is undergoing a process of prominent warming and drying. The vegetation coverage, which is used to monitor vegetation change, can respond to climate change (temperature and precipitation). In this study, GIMMS (Global Inventory Modelling and Mapping Studies)-NDVI (Normalized Difference Vegetation Index) data, MODIS (Moderate-resolution Imaging Spectroradiometer) - NDVI data and climate data, during 1981-2013, were used to investigate the spatial distribution and changes of vegetation. The relationship between climate and vegetation on different spatial (agriculture, forest and grassland) and temporal (yearly, decadal and monthly) scales were also analyzed in North China Plain. (1) It was found that temperature exhibiting a slight increase trend (0.20 °C/10a, P < 0.01). This may be due to the disappearance of 0 °C isotherm, the rise of spring temperature. At the same time, precipitation showed a significant reduction trend (-1.75 mm/10a, P > 0.05). The climate mutation period was during 1991-1994. (2) Vegetation coverage slight increase was observed in the 55% of total study area, with a change rate of 0.00039/10a. Human activities may not only accelerate the changes of the vegetation coverage, but also c effect to the rate of these changes. (3) Overall, the correlation between the vegetation coverage and climatic factor is higher in monthly scale than yearly scale. The correlation analysis between vegetation coverage and climate changes showed that annual vegetation coverage was better correlatend with precipitation in grassland biome; but it showed a better correlated with temperature i the agriculture biome and forest biome. In addition, the vegetation coverage had sensitive time-effect respond to precipitation. (4) The vegetation coverage showed the same increasing trend before and after the climatic variations, but the rate of increase slowed down. From the vegetation coverage point of view, the grassland ecological zone had an obvious response to the climatic variations, but the agricultural ecological zones showed a significant response from the vegetation coverage change rate point of view. The effect of human activity in degradation region was higher than that in improvement area. But after the climate abruptly changing, the effect of human activity in improvement area was higher than that in degradation region, and the influence of human activity will continue in the future.

  19. Global yellow fever vaccination coverage from 1970 to 2016: an adjusted retrospective analysis.

    PubMed

    Shearer, Freya M; Moyes, Catherine L; Pigott, David M; Brady, Oliver J; Marinho, Fatima; Deshpande, Aniruddha; Longbottom, Joshua; Browne, Annie J; Kraemer, Moritz U G; O'Reilly, Kathleen M; Hombach, Joachim; Yactayo, Sergio; de Araújo, Valdelaine E M; da Nóbrega, Aglaêr A; Mosser, Jonathan F; Stanaway, Jeffrey D; Lim, Stephen S; Hay, Simon I; Golding, Nick; Reiner, Robert C

    2017-11-01

    Substantial outbreaks of yellow fever in Angola and Brazil in the past 2 years, combined with global shortages in vaccine stockpiles, highlight a pressing need to assess present control strategies. The aims of this study were to estimate global yellow fever vaccination coverage from 1970 through to 2016 at high spatial resolution and to calculate the number of individuals still requiring vaccination to reach population coverage thresholds for outbreak prevention. For this adjusted retrospective analysis, we compiled data from a range of sources (eg, WHO reports and health-service-provider registeries) reporting on yellow fever vaccination activities between May 1, 1939, and Oct 29, 2016. To account for uncertainty in how vaccine campaigns were targeted, we calculated three population coverage values to encompass alternative scenarios. We combined these data with demographic information and tracked vaccination coverage through time to estimate the proportion of the population who had ever received a yellow fever vaccine for each second level administrative division across countries at risk of yellow fever virus transmission from 1970 to 2016. Overall, substantial increases in vaccine coverage have occurred since 1970, but notable gaps still exist in contemporary coverage within yellow fever risk zones. We estimate that between 393·7 million and 472·9 million people still require vaccination in areas at risk of yellow fever virus transmission to achieve the 80% population coverage threshold recommended by WHO; this represents between 43% and 52% of the population within yellow fever risk zones, compared with between 66% and 76% of the population who would have required vaccination in 1970. Our results highlight important gaps in yellow fever vaccination coverage, can contribute to improved quantification of outbreak risk, and help to guide planning of future vaccination efforts and emergency stockpiling. The Rhodes Trust, Bill & Melinda Gates Foundation, the Wellcome Trust, the National Library of Medicine of the National Institutes of Health, the European Union's Horizon 2020 research and innovation programme. Copyright © 2017 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY 4.0 license. Published by Elsevier Ltd.. All rights reserved.

  20. Evaluation of satellite-retrieved extreme precipitation using gauge observations

    NASA Astrophysics Data System (ADS)

    Lockhoff, M.; Zolina, O.; Simmer, C.; Schulz, J.

    2012-04-01

    Precipitation extremes have already been intensively studied employing rain gauge datasets. Their main advantage is that they represent a direct measurement with a relatively high temporal coverage. Their main limitation however is their poor spatial coverage and thus a low representativeness in many parts of the world. In contrast, satellites can provide global coverage and there are meanwhile data sets available that are on one hand long enough to be used for extreme value analysis and that have on the other hand the necessary spatial and temporal resolution to capture extremes. However, satellite observations provide only an indirect mean to determine precipitation and there are many potential observational and methodological weaknesses in particular over land surfaces that may constitute doubts concerning their usability for the analysis of precipitation extremes. By comparing basic climatological metrics of precipitation (totals, intensities, number of wet days) as well as respective characteristics of PDFs, absolute and relative extremes of satellite and observational data this paper aims at assessing to which extent satellite products are suitable for analysing extreme precipitation events. In a first step the assessment focuses on Europe taking into consideration various satellite products available, e.g. data sets provided by the Global Precipitation Climatology Project (GPCP). First results indicate that satellite-based estimates do not only represent the monthly averaged precipitation very similar to rain gauge estimates but they also capture the day-to-day occurrence fairly well. Larger differences can be found though when looking at the corresponding intensities.

  1. Landsat Data Continuity Mission

    USGS Publications Warehouse

    ,

    2007-01-01

    The Landsat Data Continuity Mission (LDCM) is a partnership between the National Aeronautics and Space Administration (NASA) and the U.S. Geological Survey (USGS) to place the next Landsat satellite in orbit by late 2012. The Landsat era that began in 1972 will become a nearly 45-year global land record with the successful launch and operation of the LDCM. The LDCM will continue the acquisition, archival, and distribution of multispectral imagery affording global, synoptic, and repetitive coverage of the Earth's land surfaces at a scale where natural and human-induced changes can be detected, differentiated, characterized, and monitored over time. The mission objectives of the LDCM are to (1) collect and archive medium resolution (circa 30-m spatial resolution) multispectral image data affording seasonal coverage of the global landmasses for a period of no less than 5 years; (2) ensure that LDCM data are sufficiently consistent with data from the earlier Landsat missions, in terms of acquisition geometry, calibration, coverage characteristics, spectral characteristics, output product quality, and data availability to permit studies of land-cover and land-use change over time; and (3) distribute LDCM data products to the general public on a nondiscriminatory basis and at a price no greater than the incremental cost of fulfilling a user request. Distribution of LDCM data over the Internet at no cost to the user is currently planned.

  2. Assimilation of global versus local data sets into a regional model of the Gulf Stream system. 1. Data effectiveness

    NASA Astrophysics Data System (ADS)

    Malanotte-Rizzoli, Paola; Young, Roberta E.

    1995-12-01

    The primary objective of this paper is to assess the relative effectiveness of data sets with different space coverage and time resolution when they are assimilated into an ocean circulation model. We focus on obtaining realistic numerical simulations of the Gulf Stream system typically of the order of 3-month duration by constructing a "synthetic" ocean simultaneously consistent with the model dynamics and the observations. The model used is the Semispectral Primitive Equation Model. The data sets are the "global" Optimal Thermal Interpolation Scheme (OTIS) 3 of the Fleet Numerical Oceanography Center providing temperature and salinity fields with global coverage and with bi-weekly frequency, and the localized measurements, mostly of current velocities, from the central and eastern array moorings of the Synoptic Ocean Prediction (SYNOP) program, with daily frequency but with a very small spatial coverage. We use a suboptimal assimilation technique ("nudging"). Even though this technique has already been used in idealized data assimilation studies, to our knowledge this is the first study in which the effectiveness of nudging is tested by assimilating real observations of the interior temperature and salinity fields. This is also the first work in which a systematic assimilation is carried out of the localized, high-quality SYNOP data sets in numerical experiments longer than 1-2 weeks, that is, not aimed to forecasting. We assimilate (1) the global OTIS 3 alone, (2) the local SYNOP observations alone, and (3) both OTIS 3 and SYNOP observations. We assess the success of the assimilations with quantitative measures of performance, both on the global and local scale. The results can be summarized as follows. The intermittent assimilation of the global OTIS 3 is necessary to keep the model "on track" over 3-month simulations on the global scale. As OTIS 3 is assimilated at every model grid point, a "gentle" weight must be prescribed to it so as not to overconstrain the model. However, in these assimilations the predicted velocity fields over the SYNOP arrays are greatly in error. The continuous assimilation of the localized SYNOP data sets with a strong weight is necessary to obtain local realistic evolutions. Then assimilation of velocity measurements alone recovers the density structure over the array area. However, the spatial coverage of the SYNOP measurements is too small to constrain the model on the global scale. Thus the blending of both types of datasets is necessary in the assimilation as they constrain different time and space scales. Our choice of "gentle" nudging weight for the global OTIS 3 and "strong" weight for the local SYNOP data provides for realistic simulations of the Gulf Stream system, both globally and locally, on the 3- to 4-month-long timescale, the one governed by the Gulf Stream jet internal dynamics.

  3. Isotopic constraints on global atmospheric methane sources and sinks: a critical assessment of recent findings and new data

    NASA Astrophysics Data System (ADS)

    Schwietzke, S.; Sherwood, O.; Michel, S. E.; Bruhwiler, L.; Dlugokencky, E. J.; Tans, P. P.

    2017-12-01

    Methane isotopic data have increasingly been used in recent studies to help constrain global atmospheric methane sources and sinks. The added scientific contributions to this field include (i) careful comparisons and merging of atmospheric isotope measurement datasets to increase spatial coverage, (ii) in-depth analyses of observed isotopic spatial gradients and seasonal patterns, and (iii) improved datasets of isotopic source signatures. Different interpretations have been made regarding the utility of the isotopic data on the diagnosis of methane sources and sinks. Some studies have found isotopic evidence of a largely microbial source causing the renewed growth in global atmospheric methane since 2007, and underestimated global fossil fuel methane emissions compared to most previous studies. However, other studies have challenged these conclusions by pointing out substantial spatial variability in isotopic source signatures as well as open questions in atmospheric sinks and biomass burning trends. This presentation will review and contrast the main arguments and evidence for the different conclusions. The analysis will distinguish among the different research objectives including (i) global methane budget source attribution in steady-state, (ii) source attribution of recent global methane trends, and (iii) identifying specific methane sources in individual plumes during field campaigns. Additional comparisons of model experiments with atmospheric measurements and updates on isotopic source signature data will complement the analysis.

  4. The Global Precipitation Climatology Project: First Algorithm Intercomparison Project

    NASA Technical Reports Server (NTRS)

    Arkin, Phillip A.; Xie, Pingping

    1994-01-01

    The Global Precipitation Climatology Project (GPCP) was established by the World Climate Research Program to produce global analyses of the area- and time-averaged precipitation for use in climate research. To achieve the required spatial coverage, the GPCP uses simple rainfall estimates derived from IR and microwave satellite observations. In this paper, we describe the GPCP and its first Algorithm Intercomparison Project (AIP/1), which compared a variety of rainfall estimates derived from Geostationary Meteorological Satellite visible and IR observations and Special Sensor Microwave/Imager (SSM/I) microwave observations with rainfall derived from a combination of radar and raingage data over the Japanese islands and the adjacent ocean regions during the June and mid-July through mid-August periods of 1989. To investigate potential improvements in the use of satellite IR data for the estimation of large-scale rainfall for the GPCP, the relationship between rainfall and the fractional coverage of cold clouds in the AIP/1 dataset is examined. Linear regressions between fractional coverage and rainfall are analyzed for a number of latitude-longitude areas and for a range of averaging times. The results show distinct differences in the character of the relationship for different portions of the area. These results suggest that the simple IR-based estimation technique currently used in the GPCP can be used to estimate rainfall for global tropical and subtropical areas, provided that a method for adjusting the proportional coefficient for varying areas and seasons can be determined.

  5. Spatial Distribution of Trends and Seasonality in the Hemispheric Sea Ice Covers

    NASA Technical Reports Server (NTRS)

    Gloersen, P.; Parkinson, C. L.; Cavalieri, D. J.; Cosmiso, J. C.; Zwally, H. J.

    1998-01-01

    We extend earlier analyses of a 9-year sea ice data set that described the local seasonal and trend variations in each of the hemispheric sea ice covers to the recently merged 18.2-year sea ice record from four satellite instruments. The seasonal cycle characteristics remain essentially the same as for the shorter time series, but the local trends are markedly different, in some cases reversing sign. The sign reversal reflects the lack of a consistent long-term trend and could be the result of localized long-term oscillations in the hemispheric sea ice covers. By combining the separate hemispheric sea ice records into a global one, we have shown that there are statistically significant net decreases in the sea ice coverage on a global scale. The change in the global sea ice extent, is -0.01 +/- 0.003 x 10(exp 6) sq km per decade. The decrease in the areal coverage of the sea ice is only slightly smaller, so that the difference in the two, the open water within the packs, has no statistically significant change.

  6. Assessment of the NASA-USGS Global Land Survey (GLS) Datasets

    USGS Publications Warehouse

    Gutman, Garik; Huang, Chengquan; Chander, Gyanesh; Noojipady, Praveen; Masek, Jeffery G.

    2013-01-01

    The Global Land Survey (GLS) datasets are a collection of orthorectified, cloud-minimized Landsat-type satellite images, providing near complete coverage of the global land area decadally since the early 1970s. The global mosaics are centered on 1975, 1990, 2000, 2005, and 2010, and consist of data acquired from four sensors: Enhanced Thematic Mapper Plus, Thematic Mapper, Multispectral Scanner, and Advanced Land Imager. The GLS datasets have been widely used in land-cover and land-use change studies at local, regional, and global scales. This study evaluates the GLS datasets with respect to their spatial coverage, temporal consistency, geodetic accuracy, radiometric calibration consistency, image completeness, extent of cloud contamination, and residual gaps. In general, the three latest GLS datasets are of a better quality than the GLS-1990 and GLS-1975 datasets, with most of the imagery (85%) having cloud cover of less than 10%, the acquisition years clustered much more tightly around their target years, better co-registration relative to GLS-2000, and better radiometric absolute calibration. Probably, the most significant impediment to scientific use of the datasets is the variability of image phenology (i.e., acquisition day of year). This paper provides end-users with an assessment of the quality of the GLS datasets for specific applications, and where possible, suggestions for mitigating their deficiencies.

  7. Strategies for satellite-based monitoring of CO2 from distributed area and point sources

    NASA Astrophysics Data System (ADS)

    Schwandner, Florian M.; Miller, Charles E.; Duren, Riley M.; Natraj, Vijay; Eldering, Annmarie; Gunson, Michael R.; Crisp, David

    2014-05-01

    Atmospheric CO2 budgets are controlled by the strengths, as well as the spatial and temporal variabilities of CO2 sources and sinks. Natural CO2 sources and sinks are dominated by the vast areas of the oceans and the terrestrial biosphere. In contrast, anthropogenic and geogenic CO2 sources are dominated by distributed area and point sources, which may constitute as much as 70% of anthropogenic (e.g., Duren & Miller, 2012), and over 80% of geogenic emissions (Burton et al., 2013). Comprehensive assessments of CO2 budgets necessitate robust and highly accurate satellite remote sensing strategies that address the competing and often conflicting requirements for sampling over disparate space and time scales. Spatial variability: The spatial distribution of anthropogenic sources is dominated by patterns of production, storage, transport and use. In contrast, geogenic variability is almost entirely controlled by endogenic geological processes, except where surface gas permeability is modulated by soil moisture. Satellite remote sensing solutions will thus have to vary greatly in spatial coverage and resolution to address distributed area sources and point sources alike. Temporal variability: While biogenic sources are dominated by diurnal and seasonal patterns, anthropogenic sources fluctuate over a greater variety of time scales from diurnal, weekly and seasonal cycles, driven by both economic and climatic factors. Geogenic sources typically vary in time scales of days to months (geogenic sources sensu stricto are not fossil fuels but volcanoes, hydrothermal and metamorphic sources). Current ground-based monitoring networks for anthropogenic and geogenic sources record data on minute- to weekly temporal scales. Satellite remote sensing solutions would have to capture temporal variability through revisit frequency or point-and-stare strategies. Space-based remote sensing offers the potential of global coverage by a single sensor. However, no single combination of orbit and sensor provides the full range of temporal sampling needed to characterize distributed area and point source emissions. For instance, point source emission patterns will vary with source strength, wind speed and direction. Because wind speed, direction and other environmental factors change rapidly, short term variabilities should be sampled. For detailed target selection and pointing verification, important lessons have already been learned and strategies devised during JAXA's GOSAT mission (Schwandner et al, 2013). The fact that competing spatial and temporal requirements drive satellite remote sensing sampling strategies dictates a systematic, multi-factor consideration of potential solutions. Factors to consider include vista, revisit frequency, integration times, spatial resolution, and spatial coverage. No single satellite-based remote sensing solution can address this problem for all scales. It is therefore of paramount importance for the international community to develop and maintain a constellation of atmospheric CO2 monitoring satellites that complement each other in their temporal and spatial observation capabilities: Polar sun-synchronous orbits (fixed local solar time, no diurnal information) with agile pointing allow global sampling of known distributed area and point sources like megacities, power plants and volcanoes with daily to weekly temporal revisits and moderate to high spatial resolution. Extensive targeting of distributed area and point sources comes at the expense of reduced mapping or spatial coverage, and the important contextual information that comes with large-scale contiguous spatial sampling. Polar sun-synchronous orbits with push-broom swath-mapping but limited pointing agility may allow mapping of individual source plumes and their spatial variability, but will depend on fortuitous environmental conditions during the observing period. These solutions typically have longer times between revisits, limiting their ability to resolve temporal variations. Geostationary and non-sun-synchronous low-Earth-orbits (precessing local solar time, diurnal information possible) with agile pointing have the potential to provide, comprehensive mapping of distributed area sources such as megacities with longer stare times and multiple revisits per day, at the expense of global access and spatial coverage. An ad hoc CO2 remote sensing constellation is emerging. NASA's OCO-2 satellite (launch July 2014) joins JAXA's GOSAT satellite in orbit. These will be followed by GOSAT-2 and NASA's OCO-3 on the International Space Station as early as 2017. Additional polar orbiting satellites (e.g., CarbonSat, under consideration at ESA) and geostationary platforms may also become available. However, the individual assets have been designed with independent science goals and requirements, and limited consideration of coordinated observing strategies. Every effort must be made to maximize the science return from this constellation. We discuss the opportunities to exploit the complementary spatial and temporal coverage provided by these assets as well as the crucial gaps in the capabilities of this constellation. References Burton, M.R., Sawyer, G.M., and Granieri, D. (2013). Deep carbon emissions from volcanoes. Rev. Mineral. Geochem. 75: 323-354. Duren, R.M., Miller, C.E. (2012). Measuring the carbon emissions of megacities. Nature Climate Change 2, 560-562. Schwandner, F.M., Oda, T., Duren, R., Carn, S.A., Maksyutov, S., Crisp, D., Miller, C.E. (2013). Scientific Opportunities from Target-Mode Capabilities of GOSAT-2. NASA Jet Propulsion Laboratory, California Institute of Technology, Pasadena CA, White Paper, 6p., March 2013.

  8. Mars Global Surveyor Thermal Emission Spectrometer (TES) Observations of Dust Opacity During Aerobraking and Science Phasing

    NASA Technical Reports Server (NTRS)

    Smith, Michael D.; Pearl, John C.; Conrath, Barney J.; Christensen, Philip R.

    1999-01-01

    The Mars Global Surveyor (MGS) arrived at Mars in September 1997 near Mars southern spring equinox and has now provided monitoring of conditions in the Mars atmosphere for more than half a Mars year. The large majority of the spectra taken by the Thermal Emission Spectrometer (TES) are in a nadir geometry (downward looking mode) where Mars is observed through the atmosphere. Most of these contain the distinct spectral signature of atmospheric dust. For these nadir-geometry spectra we retrieve column-integrated infrared aerosol (dust) opacities. TES observations during the aerobraking and science-phasing portions of the MGS mission cover the seasonal range L(sub s)=184 deg - 28 deg. Excellent spatial coverage was obtained in the southern hemisphere. Northern hemisphere coverage is generally limited to narrow strips taken during the periapsis pass but is still very valuable. At the beginning of the mission the 9-(micron)meter dust opacity at midsouthern latitudes was low (0.15-0.25). As the season advanced through southern spring and into summer, TES observed several regional dust storms (including the Noachis dust storm of November 1997) where peak 9-(micron)meter dust opacities approached or exceeded unity, as well as numerous smaller local storms. Both large and small dust storms exhibited significant changes in both spatial coverage and intensity over a timescale of a day. Throughout southern spring and summer the region at the edge of the retreating southern seasonal polar ice cap was observed to be consistently more dusty than other latitudes.

  9. The Cyclone Global Navigation Satellite System (CYGNSS) - Analysis and Data Assimilation for Tropical Convection

    NASA Technical Reports Server (NTRS)

    Li, Xuanli; Lang, Timothy J.; Mecikalski, John; Castillo, Tyler; Hoover, Kacie; Chronis, Themis

    2017-01-01

    Cyclone Global Navigation Satellite System (CYGNSS): a constellation of 8 micro-satellite observatories launched in November 2016, to measure near-surface oceanic wind speed. Main goal: To monitor surface wind fields of the Tropical Cyclones' inner core, including regions beneath the intense eye wall and rain bands that could not previously be measured from space; Cover 38 deg S -38 deg N with unprecedented temporal resolution and spatial coverage, under all precipitating conditions Low flying satellite: Pass over ocean surface more frequently than one large satellite. A median(mean) revisit time of 2.8(7.2) hrs.

  10. Issues in Data Fusion for Satellite Aerosol Measurements for Applications with GIOVANNI System at NASA GES DISC

    NASA Technical Reports Server (NTRS)

    Gopalan, Arun; Zubko, Viktor; Leptoukh, Gregory G.

    2008-01-01

    We look at issues, barriers and approaches for Data Fusion of satellite aerosol data as available from the GES DISC GIOVANNI Web Service. Daily Global Maps of AOT from a single satellite sensor alone contain gaps that arise due to various sources (sun glint regions, clouds, orbital swath gaps at low latitudes, bright underlying surfaces etc.). The goal is to develop a fast, accurate and efficient method to improve the spatial coverage of the Daily AOT data to facilitate comparisons with Global Models. Data Fusion may be supplemented by Optimal Interpolation (OI) as needed.

  11. CERES Monthly TOA and SRB Averages (SRBAVG) data in HDF-EOS Grid (CER_SRBAVG_Terra-FM2-MODIS_Edition2C)

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A. (Principal Investigator)

    The Monthly TOA/Surface Averages (SRBAVG) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SRBAVG is also produced for combinations of scanner instruments. The monthly average regional flux is estimated using diurnal models and the 1-degree regional fluxes at the hour of observation from the CERES SFC product. A second set of monthly average fluxes are estimated using concurrent diurnal information from geostationary satellites. These fluxes are given for both clear-sky and total-sky scenes and are spatially averaged from 1-degree regions to 1-degree zonal averages and a global average. For each region, the SRBAVG also contains hourly average fluxes for the month and an overall monthly average. The cloud properties from SFC are column averaged and are included on the SRBAVG. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-02-01; Stop_Date=2003-02-28] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree; Horizontal_Resolution_Range=100 km - < 250 km or approximately 1 degree - < 2.5 degrees; Temporal_Resolution=1 month; Temporal_Resolution_Range=Monthly - < Annual].

  12. CERES Monthly TOA and SRB Averages (SRBAVG) data in HDF-EOS Grid (CER_SRBAVG_TRMM-PFM-VIRS_Edition2B)

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A. (Principal Investigator)

    The Monthly TOA/Surface Averages (SRBAVG) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SRBAVG is also produced for combinations of scanner instruments. The monthly average regional flux is estimated using diurnal models and the 1-degree regional fluxes at the hour of observation from the CERES SFC product. A second set of monthly average fluxes are estimated using concurrent diurnal information from geostationary satellites. These fluxes are given for both clear-sky and total-sky scenes and are spatially averaged from 1-degree regions to 1-degree zonal averages and a global average. For each region, the SRBAVG also contains hourly average fluxes for the month and an overall monthly average. The cloud properties from SFC are column averaged and are included on the SRBAVG. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-02-01; Stop_Date=2000-03-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree; Horizontal_Resolution_Range=100 km - < 250 km or approximately 1 degree - < 2.5 degrees; Temporal_Resolution=1 month; Temporal_Resolution_Range=Monthly - < Annual].

  13. CERES Monthly TOA and SRB Averages (SRBAVG) data in HDF-EOS Grid (CER_SRBAVG_Terra-FM1-MODIS_Edition2C)

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A. (Principal Investigator)

    The Monthly TOA/Surface Averages (SRBAVG) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SRBAVG is also produced for combinations of scanner instruments. The monthly average regional flux is estimated using diurnal models and the 1-degree regional fluxes at the hour of observation from the CERES SFC product. A second set of monthly average fluxes are estimated using concurrent diurnal information from geostationary satellites. These fluxes are given for both clear-sky and total-sky scenes and are spatially averaged from 1-degree regions to 1-degree zonal averages and a global average. For each region, the SRBAVG also contains hourly average fluxes for the month and an overall monthly average. The cloud properties from SFC are column averaged and are included on the SRBAVG. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-02-01; Stop_Date=2003-02-28] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree; Horizontal_Resolution_Range=100 km - < 250 km or approximately 1 degree - < 2.5 degrees; Temporal_Resolution=1 month; Temporal_Resolution_Range=Monthly - < Annual].

  14. CERES Monthly TOA and SRB Averages (SRBAVG) data in HDF-EOS Grid (CER_SRBAVG_Terra-FM1-MODIS_Edition2D)

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A. (Principal Investigator)

    The Monthly TOA/Surface Averages (SRBAVG) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SRBAVG is also produced for combinations of scanner instruments. The monthly average regional flux is estimated using diurnal models and the 1-degree regional fluxes at the hour of observation from the CERES SFC product. A second set of monthly average fluxes are estimated using concurrent diurnal information from geostationary satellites. These fluxes are given for both clear-sky and total-sky scenes and are spatially averaged from 1-degree regions to 1-degree zonal averages and a global average. For each region, the SRBAVG also contains hourly average fluxes for the month and an overall monthly average. The cloud properties from SFC are column averaged and are included on the SRBAVG. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-02-01; Stop_Date=2004-05-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree; Horizontal_Resolution_Range=100 km - < 250 km or approximately 1 degree - < 2.5 degrees; Temporal_Resolution=1 month; Temporal_Resolution_Range=Monthly - < Annual].

  15. Surface Meteorology and Solar Energy (SSE) Data Release 5.1

    NASA Technical Reports Server (NTRS)

    Stackhouse, Paul W. (Principal Investigator)

    The Surface meteorology and Solar Energy (SSE) data set contains over 200 parameters formulated for assessing and designing renewable energy systems.The SSE data set is formulated from NASA satellite- and reanalysis-derived insolation and meteorological data for the 10-year period July 1983 through June 1993. Results are provided for 1 degree latitude by 1 degree longitude grid cells over the globe. Average daily and monthly measurements for 1195 World Radiation Data Centre ground sites are also available. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1983-07-01; Stop_Date=1993-06-30] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree].

  16. The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions

    NASA Astrophysics Data System (ADS)

    Hugelius, G.; Tarnocai, C.; Broll, G.; Canadell, J. G.; Kuhry, P.; Swanson, D. K.

    2012-08-01

    High latitude terrestrial ecosystems are key components in the global carbon (C) cycle. Estimates of global soil organic carbon (SOC), however, do not include updated estimates of SOC storage in permafrost-affected soils or representation of the unique pedogenic processes that affect these soils. The Northern Circumpolar Soil Carbon Database (NCSCD) was developed to quantify the SOC stocks in the circumpolar permafrost region (18.7 × 106 km2). The NCSCD is a polygon-based digital database compiled from harmonized regional soil classification maps in which data on soil order coverage has been linked to pedon data (n = 1647) from the northern permafrost regions to calculate SOC content and mass. In addition, new gridded datasets at different spatial resolutions have been generated to facilitate research applications using the NCSCD (standard raster formats for use in Geographic Information Systems and Network Common Data Form files common for applications in numerical models). This paper describes the compilation of the NCSCD spatial framework, the soil sampling and soil analyses procedures used to derive SOC content in pedons from North America and Eurasia and the formatting of the digital files that are available online. The potential applications and limitations of the NCSCD in spatial analyses are also discussed. The database has the doi:10.5879/ecds/00000001. An open access data-portal with all the described GIS-datasets is available online at: http://dev1.geo.su.se/bbcc/dev/ncscd/.

  17. The Northern Circumpolar Soil Carbon Database: spatially distributed datasets of soil coverage and soil carbon storage in the northern permafrost regions

    NASA Astrophysics Data System (ADS)

    Hugelius, G.; Tarnocai, C.; Broll, G.; Canadell, J. G.; Kuhry, P.; Swanson, D. K.

    2013-01-01

    High-latitude terrestrial ecosystems are key components in the global carbon (C) cycle. Estimates of global soil organic carbon (SOC), however, do not include updated estimates of SOC storage in permafrost-affected soils or representation of the unique pedogenic processes that affect these soils. The Northern Circumpolar Soil Carbon Database (NCSCD) was developed to quantify the SOC stocks in the circumpolar permafrost region (18.7 × 106 km2). The NCSCD is a polygon-based digital database compiled from harmonized regional soil classification maps in which data on soil order coverage have been linked to pedon data (n = 1778) from the northern permafrost regions to calculate SOC content and mass. In addition, new gridded datasets at different spatial resolutions have been generated to facilitate research applications using the NCSCD (standard raster formats for use in geographic information systems and Network Common Data Form files common for applications in numerical models). This paper describes the compilation of the NCSCD spatial framework, the soil sampling and soil analytical procedures used to derive SOC content in pedons from North America and Eurasia and the formatting of the digital files that are available online. The potential applications and limitations of the NCSCD in spatial analyses are also discussed. The database has the doi:10.5879/ecds/00000001. An open access data portal with all the described GIS-datasets is available online at: http://www.bbcc.su.se/data/ncscd/.

  18. Spatially Varying Spectrally Thresholds for MODIS Cloud Detection

    NASA Technical Reports Server (NTRS)

    Haines, S. L.; Jedlovec, G. J.; Lafontaine, F.

    2004-01-01

    The EOS science team has developed an elaborate global MODIS cloud detection procedure, and the resulting MODIS product (MOD35) is used in the retrieval process of several geophysical parameters to mask out clouds. While the global application of the cloud detection approach appears quite robust, the product has some shortcomings on the regional scale, often over determining clouds in a variety of settings, particularly at night. This over-determination of clouds can cause a reduction in the spatial coverage of MODIS derived clear-sky products. To minimize this problem, a new regional cloud detection method for use with MODIS data has been developed at NASA's Global Hydrology and Climate Center (GHCC). The approach is similar to that used by the GHCC for GOES data over the continental United States. Several spatially varying thresholds are applied to MODIS spectral data to produce a set of tests for detecting clouds. The thresholds are valid for each MODIS orbital pass, and are derived from 20-day composites of GOES channels with similar wavelengths to MODIS. This paper and accompanying poster will introduce the GHCC MODIS cloud mask, provide some examples, and present some preliminary validation.

  19. Integrating stations from the North America Gravity Database into a local GPS-based land gravity survey

    USGS Publications Warehouse

    Shoberg, Thomas G.; Stoddard, Paul R.

    2013-01-01

    The ability to augment local gravity surveys with additional gravity stations from easily accessible national databases can greatly increase the areal coverage and spatial resolution of a survey. It is, however, necessary to integrate such data seamlessly with the local survey. One challenge to overcome in integrating data from national databases is that these data are typically of unknown quality. This study presents a procedure for the evaluation and seamless integration of gravity data of unknown quality from a national database with data from a local Global Positioning System (GPS)-based survey. The starting components include the latitude, longitude, elevation and observed gravity at each station location. Interpolated surfaces of the complete Bouguer anomaly are used as a means of quality control and comparison. The result is an integrated dataset of varying quality with many stations having GPS accuracy and other reliable stations of unknown origin, yielding a wider coverage and greater spatial resolution than either survey alone.

  20. QBCov: A Linked Data interface for Discrete Global Grid Systems, a new approach to delivering coverage data on the web

    NASA Astrophysics Data System (ADS)

    Zhang, Z.; Toyer, S.; Brizhinev, D.; Ledger, M.; Taylor, K.; Purss, M. B. J.

    2016-12-01

    We are witnessing a rapid proliferation of geoscientific and geospatial data from an increasing variety of sensors and sensor networks. This data presents great opportunities to resolve cross-disciplinary problems. However, working with it often requires an understanding of file formats and protocols seldom used outside of scientific computing, potentially limiting the data's value to other disciplines. In this paper, we present a new approach to serving satellite coverage data on the web, which improves ease-of-access using the principles of linked data. Linked data adapts the concepts and protocols of the human-readable web to machine-readable data; the number of developers familiar with web technologies makes linked data a natural choice for bringing coverages to a wider audience. Our approach to using linked data also makes it possible to efficiently service high-level SPARQL queries: for example, "Retrieve all Landsat ETM+ observations of San Francisco between July and August 2016" can easily be encoded in a single query. We validate the new approach, which we call QBCov, with a reference implementation of the entire stack, including a simple web-based client for interacting with Landsat observations. In addition to demonstrating the utility of linked data for publishing coverages, we investigate the heretofore unexplored relationship between Discrete Global Grid Systems (DGGS) and linked data. Our conclusions are informed by the aforementioned reference implementation of QBCov, which is backed by a hierarchical file format designed around the rHEALPix DGGS. Not only does the choice of a DGGS-based representation provide an efficient mechanism for accessing large coverages at multiple scales, but the ability of DGGS to produce persistent, unique identifiers for spatial regions is especially valuable in a linked data context. This suggests that DGGS has an important role to play in creating sustainable and scalable linked data infrastructures. QBCov is being developed as a contribution to the Spatial Data on the Web working group--a joint activity of the Open Geospatial Consortium and World Wide Web Consortium.

  1. In need of combined topography and bathymetry DEM

    NASA Astrophysics Data System (ADS)

    Kisimoto, K.; Hilde, T.

    2003-04-01

    In many geoscience applications, digital elevation models (DEMs) are now more commonly used at different scales and greater resolution due to the great advancement in computer technology. Increasing the accuracy/resolution of the model and the coverage of the terrain (global model) has been the goal of users as mapping technology has improved and computers get faster and cheaper. The ETOPO5 (5 arc minutes spatial resolution land and seafloor model), initially developed in 1988 by Margo Edwards, then at Washington University, St. Louis, MO, has been the only global terrain model for a long time, and it is now being replaced by three new topographic and bathymetric DEMs, i.e.; the ETOPO2 (2 arc minutes spatial resolution land and seafloor model), the GTOPO30 land model with a spatial resolution of 30 arc seconds (c.a. 1km at equator) and the 'GEBCO 1-MINUTE GLOBAL BATHYMETRIC GRID' ocean floor model with a spatial resolution of 1 arc minute (c.a. 2 km at equator). These DEMs are products of projects through which compilation and reprocessing of existing and/or new datasets were made to meet user's new requirements. These ongoing efforts are valuable and support should be continued to refine and update these DEMs. On the other hand, a different approach to create a global bathymetric (seafloor) database exists. A method to estimate the seafloor topography from satellite altimetry combined with existing ships' conventional sounding data was devised and a beautiful global seafloor database created and made public by W.H. Smith and D.T. Sandwell in 1997. The big advantage of this database is the uniformity of coverage, i.e. there is no large area where depths are missing. It has a spatial resolution of 2 arc minute. Another important effort is found in making regional, not global, seafloor databases with much finer resolutions in many countries. The Japan Hydrographic Department has compiled and released a 500m-grid topography database around Japan, J-EGG500, in 1999. Although the coverage of this database is only a small portion of the Earth, the database has been highly appreciated in the academic community, and accepted in surprise by the general public when the database was displayed in 3D imagery to show its quality. This database could be rather smoothly combined with the finer land DEM of 250m spatial resolution (Japan250m.grd, K. Kisimoto, 2000). One of the most important applications of this combined DEM of topography and bathymetry is tsunami modeling. Understanding of the coastal environment, management and development of the coastal region are other fields in need of these data. There is, however, an important issue to consider when we create a combined DEM of topography and bathymetry in finer resolutions. The problem arises from the discrepancy of the standard datum planes or reference levels used for topographic leveling and bathymetric sounding. Land topography (altitude) is defined by leveling from the single reference point determined by average mean sea level, in other words, land height is measured from the geoid. On the other hand, depth charts are made based on depth measured from locally determined reference sea surface level, and this value of sea surface level is taken from the long term average of the lowest tidal height. So, to create a combined DEM of topography and bathymetry in very fine scale, we need to avoid this inconsistency between height and depth across the coastal region. Height and depth should be physically continuous relative to a single reference datum across the coast within such new high resolution DEMs. (N.B. Coast line is not equal to 'altitude-zero line' nor 'depth-zero line'. It is defined locally as the long term average of the highest tide level.) All of this said, we still need a lot of work on the ocean side. Global coverage with detailed bathymetric mapping is still poor. Seafloor imaging and other geophysical measurements/experiments should be organized and conducted internationally and interdisciplinary ways more than ever. We always need greater technological advancement and application of this technology in marine sciences, and more enthusiastic minds of seagoing researchers as well. Recent seafloor mapping technology/quality both in bathymetry and imagery is very promising and even favorably compared with the terrain mapping. We discuss and present on recent achievement and needs on the seafloor mapping using several most up-to-date global- and regional- DEMs available for science community at the poster session.

  2. Global-scale surface spectral variations on Titan seen from Cassini/VIMS

    USGS Publications Warehouse

    Barnes, J.W.; Brown, R.H.; Soderblom, L.; Buratti, B.J.; Sotin, Christophe; Rodriguez, S.; Le, Mouelic S.; Baines, K.H.; Clark, R.; Nicholson, P.

    2007-01-01

    We present global-scale maps of Titan from the Visual and Infrared Mapping Spectrometer (VIMS) instrument on Cassini. We map at 64 near-infrared wavelengths simultaneously, covering the atmospheric windows at 0.94, 1.08, 1.28, 1.6, 2.0, 2.8, and 5 ??m with a typical resolution of 50 km/pixel or a typical total integration time of 1 s. Our maps have five to ten times the resolution of ground-based maps, better spectral resolution across most windows, coverage in multiple atmospheric windows, and represent the first spatially resolved maps of Titan at 5 ??m. The VIMS maps provide context and surface spectral information in support of other Cassini instruments. We note a strong latitudinal dependence in the spectral character of Titan's surface, and partition the surface into 9 spectral units that we describe in terms of spectral and spatial characteristics. ?? 2006 Elsevier Inc. All rights reserved.

  3. Ten years of OMI observations: scientific highlights and impacts on the new generation of UV/VIS satellite instrumentation

    NASA Astrophysics Data System (ADS)

    Levelt, Pieternel; Veefkind, Pepijn; Bhartia, Pawan; Joiner, Joanna; Tamminen, Johanna; OMI Science Team

    2014-05-01

    On July 15, 2004 Ozone Monitoring Instrument (OMI) was successfully launched from the Vandenberg military air force basis in California, USA, on NASA's EOS-Aura spacecraft. OMI is the first of a new generation of UV/VIS nadir solar backscatter imaging spectrometers, which provides nearly global coverage in one day with an unprecedented spatial resolution of 13 x 24 km2. OMI measures solar irradiance and Earth radiances in the wavelength range of 270 to 500 nm with a spectral resolution of about 0.5 nm. OMI is designed and built by the Netherlands and Finland and is also a third party mission of ESA. The major step that was made in the OMI instrument compared to its predecessors is the use of 2-dimensional detector arrays (CCDs) in a highly innovative small optical design. These innovations enable the combination of a high spatial resolution and a good spectral resolution with daily global coverage. OMI measures a range of trace gases (O3, NO2, SO2, HCHO, BrO, OClO, H2O), clouds and aerosols. Albeit OMI is already 5 years over its design lifetime, the instrument is still fully operational. The successor of OMI is TROPOMI (TROPOspheric Monitoring Instrument) on the Copernicus Sentinel-5 precursor mission, planned for launch in 2015. OMI's unique capabilities rely in measuring tropospheric trace gases with a small footprint and daily global coverage. The unprecedented spatial resolution of the instrument revealed for the first time tropospheric pollution maps on a daily basis with urban scale resolution leading to improved air quality forecasts. The OMI measurements also improve our understanding of air quality and the interaction between air quality and climate change by combining measurements of air pollutants and aerosols. In recent years the data are also used for obtaining high-resolution global emission maps using inverse modelling or related techniques, challenging the bottom-up inventories based emission maps. In addition to scientific research, OMI also contributes to several operational services, including volcanic plume warning systems for aviation, UV forecasts and the air quality forecasts. In this invited talk an overview will be given of unique findings and new scientific results based on OMI data over the last 10 years and which unique OMI instrument features are recurring in the new generation of UV/VIS satellite instrumentation in Europe, USA and Asia.

  4. Developing spectral, structural, and phenological diversity proxies for monitoring biodiversity change across space and time using ESA's Sentinel satellites

    NASA Astrophysics Data System (ADS)

    Ma, X.; Mahecha, M. D.; Migliavacca, M.; Luo, Y.; Urban, M.; Bohn, F. J.; Huth, A.; Reichstein, M.

    2017-12-01

    A key challenge for monitoring biodiversity change is the lack of consistent measures of biodiversity across space and time. This challenge may be addressed by exploring the potentials provided by novel remote sensing observations. By continuously observing broad-scale patterns of vegetation and land surface parameters, remote sensing can complement the restricted coverage afforded by field measurements. Here we develop methods to infer spatial patterns of biodiversity at ecosystem level from ESA's next-generation Sentinel sensors (Sentinel-1: C-band radar & Sentinel-2: multispectral). Both satellites offer very high spatial (10 m) and temporal resolutions (5 days) measurements with global coverage. We propose and test several ecosystem biodiversity proxies, including landscape spectral diversity, phenological diversity, and canopy structural diversity. These diversity proxies are highly related to some key aspects of essential biodiversity variables (EBVs) as defined by GEO-BON, such as habitat structure, community composition, ecosystem function and structure. We verify spaceborne retrievals of these biodiversity proxies with in situ measurements from drone (spectral diversity), phenocam (phenological diversity), and airborne LiDAR (canopy structural diversity) over multiple flux tower sites within the Mediterranean region. We further compare our remote sensing retrievals of biodiversity proxies against several biodiversity indices as derived from field measurements (incl. ⍺-/β- diversity and Shannon-index) to explore the limitations and potentials of extending the RS proxies to a greater spatial extent. We expect the new concept as to maximize the potential of remote sensing information might help to monitor key aspects of EBVs on a global scale.

  5. Spatial scaling of bacterial community diversity at shallow hydrothermal vents: a global comparison

    NASA Astrophysics Data System (ADS)

    Pop Ristova, P.; Hassenrueck, C.; Molari, M.; Fink, A.; Bühring, S. I.

    2016-02-01

    Marine shallow hydrothermal vents are extreme environments, often characterized by discharge of fluids with e.g. high temperatures, low pH, and laden with elements toxic to higher organisms. They occur at continental margins around the world's oceans, but represent fragmented, isolated habitats of locally small areal coverage. Microorganisms contribute the main biomass at shallow hydrothermal vent ecosystems and build the basis of the food chain by autotrophic fixation of carbon both via chemosynthesis and photosynthesis, occurring simultaneously. Despite their importance and unique capacity to adapt to these extreme environments, little is known about the spatial scales on which the alpha- and beta-diversity of microbial communities vary at shallow vents, and how the geochemical habitat heterogeneity influences shallow vent biodiversity. Here for the first time we investigated the spatial scaling of microbial biodiversity patterns and their interconnectivity at geochemically diverse shallow vents on a global scale. This study presents data on the comparison of bacterial community structures on large (> 1000 km) and small (0.1 - 100 m) spatial scales as derived from ARISA and Illumina sequencing. Despite the fragmented global distribution of shallow hydrothermal vents, similarity of vent bacterial communities decreased with geographic distance, confirming the ubiquity of distance-decay relationship. Moreover, at all investigated vents, pH was the main factor locally structuring these communities, while temperature influenced both the alpha- and beta-diversity.

  6. MISR Level 2 TOA/Cloud Classifier parameters (MIL2TCCL_V2)

    NASA Technical Reports Server (NTRS)

    Diner, David J. (Principal Investigator)

    The TOA/Cloud Classifiers contain the Angular Signature Cloud Mask (ASCM), a scene classifier calculated using support vector machine technology (SVM) both of which are on a 1.1 km grid, and cloud fractions at 17.6 km resolution that are available in different height bins (low, middle, high) and are also calculated on an angle-by-angle basis. [Location=GLOBAL] [Temporal_Coverage: Start_Date=2000-02-24; Stop_Date=] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=17.6 km; Longitude_Resolution=17.6 km; Horizontal_Resolution_Range=10 km - < 50 km or approximately .09 degree - < .5 degree; Temporal_Resolution=about 15 orbits/day; Temporal_Resolution_Range=Daily - < Weekly, Daily - < Weekly].

  7. Mapping the Distribution of Anthrax in Mainland China, 2005-2013.

    PubMed

    Chen, Wan-Jun; Lai, Sheng-Jie; Yang, Yang; Liu, Kun; Li, Xin-Lou; Yao, Hong-Wu; Li, Yu; Zhou, Hang; Wang, Li-Ping; Mu, Di; Yin, Wen-Wu; Fang, Li-Qun; Yu, Hong-Jie; Cao, Wu-Chun

    2016-04-01

    Anthrax, a global re-emerging zoonotic disease in recent years is enzootic in mainland China. Despite its significance to the public health, spatiotemporal distributions of the disease in human and livestock and its potential driving factors remain poorly understood. Using the national surveillance data of human and livestock anthrax from 2005 to 2013, we conducted a retrospective epidemiological study and risk assessment of anthrax in mainland China. The potential determinants for the temporal and spatial distributions of human anthrax were also explored. We found that the majority of human anthrax cases were located in six provinces in western and northeastern China, and five clustering areas with higher incidences were identified. The disease mostly peaked in July or August, and males aged 30-49 years had higher incidence than other subgroups. Monthly incidence of human anthrax was positively correlated with monthly average temperature, relative humidity and monthly accumulative rainfall with lags of 0-2 months. A boosted regression trees (BRT) model at the county level reveals that densities of cattle, sheep and human, coverage of meadow, coverage of typical grassland, elevation, coverage of topsoil with pH > 6.1, concentration of organic carbon in topsoil, and the meteorological factors have contributed substantially to the spatial distribution of the disease. The model-predicted probability of occurrence of human cases in mainland China was mapped at the county level. Anthrax in China was characterized by significant seasonality and spatial clustering. The spatial distribution of human anthrax was largely driven by livestock husbandry, human density, land cover, elevation, topsoil features and climate. Enhanced surveillance and intervention for livestock and human anthrax in the high-risk regions, particularly on the Qinghai-Tibetan Plateau, is the key to the prevention of human infections.

  8. Mapping the Distribution of Anthrax in Mainland China, 2005–2013

    PubMed Central

    Yang, Yang; Liu, Kun; Li, Xin-Lou; Yao, Hong-Wu; Li, Yu; Zhou, Hang; Wang, Li-Ping; Mu, Di; Yin, Wen-Wu; Fang, Li-Qun; Yu, Hong-Jie; Cao, Wu-Chun

    2016-01-01

    Background Anthrax, a global re-emerging zoonotic disease in recent years is enzootic in mainland China. Despite its significance to the public health, spatiotemporal distributions of the disease in human and livestock and its potential driving factors remain poorly understood. Methodology/Principal Findings Using the national surveillance data of human and livestock anthrax from 2005 to 2013, we conducted a retrospective epidemiological study and risk assessment of anthrax in mainland China. The potential determinants for the temporal and spatial distributions of human anthrax were also explored. We found that the majority of human anthrax cases were located in six provinces in western and northeastern China, and five clustering areas with higher incidences were identified. The disease mostly peaked in July or August, and males aged 30–49 years had higher incidence than other subgroups. Monthly incidence of human anthrax was positively correlated with monthly average temperature, relative humidity and monthly accumulative rainfall with lags of 0–2 months. A boosted regression trees (BRT) model at the county level reveals that densities of cattle, sheep and human, coverage of meadow, coverage of typical grassland, elevation, coverage of topsoil with pH > 6.1, concentration of organic carbon in topsoil, and the meteorological factors have contributed substantially to the spatial distribution of the disease. The model-predicted probability of occurrence of human cases in mainland China was mapped at the county level. Conclusions/Significance Anthrax in China was characterized by significant seasonality and spatial clustering. The spatial distribution of human anthrax was largely driven by livestock husbandry, human density, land cover, elevation, topsoil features and climate. Enhanced surveillance and intervention for livestock and human anthrax in the high-risk regions, particularly on the Qinghai-Tibetan Plateau, is the key to the prevention of human infections. PMID:27097318

  9. High Spatial Resolution Europa Coverage by the Galileo Near Infrared Mapping Spectrometer (NIMS)

    NASA Technical Reports Server (NTRS)

    1997-01-01

    The NIMS instrument on the Galileo spacecraft, which is being used to map the mineral and ice properties over the surfaces of the Jovian moons, produces global spectral images at modest spatial resolution and high resolution spectral images for small selected regions on the satellites. This map illustrates the high resolution coverage of Europa obtained by NIMS through the April 1997 G7 orbit.

    The areas covered are displayed on a Voyager-derived map. A good sampling of the dark trailing-side material (180 to 360 degrees) has been obtained, with less coverage of Europa's leading side.

    The false-color composites use red, green and blue to represent the infrared brightnesses at 0.7, 1.51 and 1.82 microns respectively. Considerable variations are evident and are related to the composition and sizes of the surface grains.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    The Jet Propulsion Laboratory, Pasadena, CA manages the mission for NASA's Office of Space Science, Washington, DC.

    This image and other images and data received from Galileo are posted on the World Wide Web, on the Galileo mission home page at URL http://galileo.jpl.nasa.gov.

  10. Spatial-temporal event detection in climate parameter imagery.

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    McKenna, Sean Andrew; Gutierrez, Karen A.

    Previously developed techniques that comprise statistical parametric mapping, with applications focused on human brain imaging, are examined and tested here for new applications in anomaly detection within remotely-sensed imagery. Two approaches to analysis are developed: online, regression-based anomaly detection and conditional differences. These approaches are applied to two example spatial-temporal data sets: data simulated with a Gaussian field deformation approach and weekly NDVI images derived from global satellite coverage. Results indicate that anomalies can be identified in spatial temporal data with the regression-based approach. Additionally, la Nina and el Nino climatic conditions are used as different stimuli applied to themore » earth and this comparison shows that el Nino conditions lead to significant decreases in NDVI in both the Amazon Basin and in Southern India.« less

  11. Superposed epoch analysis of ion temperatures during CME- and CIR/HSS-driven storms

    NASA Astrophysics Data System (ADS)

    Keesee, A. M.; Scime, E. E.

    2012-12-01

    The NASA Two Wide-angle Imaging Neutral atom Spectrometers (TWINS) Mission provides a global view of the magnetosphere with near-continuous coverage. Utilizing a novel technique to calculate ion temperatures from the TWINS energetic neutral atom (ENA) measurements, we generate ion temperature maps of the magnetosphere. These maps can be used to study ion temperature evolution during geomagnetic storms. A superposed epoch analysis of the ion temperature evolution during 48 storms will be presented. Zaniewski et al. [2006] performed a superposed epoch analysis of ion temperatures by storm interval using data from the MENA instrument on the IMAGE mission, demonstrating significant dayside ion heating during the main phase. The TWINS measurements provide more continuous coverage and improved spatial and temporal resolution. Denton and Borovsky [2008] noted differences in ion temperature evolution at geosynchronous orbit between coronal mass ejection (CME)- and corotating interaction region (CIR)/high speed stream (HSS)- driven storms. Using our global ion temperature maps, we have found consistent results for select individual storms [Keesee et al., 2012]. We will present superposed epoch analyses for the subgroups of CME- and CIR/HSS-driven storms to compare global ion temperature evolution during the two types of storms.

  12. FLO1K, global maps of mean, maximum and minimum annual streamflow at 1 km resolution from 1960 through 2015

    NASA Astrophysics Data System (ADS)

    Barbarossa, Valerio; Huijbregts, Mark A. J.; Beusen, Arthur H. W.; Beck, Hylke E.; King, Henry; Schipper, Aafke M.

    2018-03-01

    Streamflow data is highly relevant for a variety of socio-economic as well as ecological analyses or applications, but a high-resolution global streamflow dataset is yet lacking. We created FLO1K, a consistent streamflow dataset at a resolution of 30 arc seconds (~1 km) and global coverage. FLO1K comprises mean, maximum and minimum annual flow for each year in the period 1960-2015, provided as spatially continuous gridded layers. We mapped streamflow by means of artificial neural networks (ANNs) regression. An ensemble of ANNs were fitted on monthly streamflow observations from 6600 monitoring stations worldwide, i.e., minimum and maximum annual flows represent the lowest and highest mean monthly flows for a given year. As covariates we used the upstream-catchment physiography (area, surface slope, elevation) and year-specific climatic variables (precipitation, temperature, potential evapotranspiration, aridity index and seasonality indices). Confronting the maps with independent data indicated good agreement (R2 values up to 91%). FLO1K delivers essential data for freshwater ecology and water resources analyses at a global scale and yet high spatial resolution.

  13. Detect signals of interdecadal climate variations from an enhanced suite of reconstructed precipitation products since 1850 using the historical station data from Global Historical Climatology Network and the dynamical patterns derived from Global Precipitation Climatology Project

    NASA Astrophysics Data System (ADS)

    Shen, S. S.

    2015-12-01

    This presentation describes the detection of interdecadal climate signals in a newly reconstructed precipitation data from 1850-present. Examples are on precipitation signatures of East Asian Monsoon (EAM), Pacific Decadal Oscillation (PDO) and Atlantic Multidecadal Oscillations (AMO). The new reconstruction dataset is an enhanced edition of a suite of global precipitation products reconstructed by Spectral Optimal Gridding of Precipitation Version 1.0 (SOGP 1.0). The maximum temporal coverage is 1850-present and the spatial coverage is quasi-global (75S, 75N). This enhanced version has three different temporal resolutions (5-day, monthly, and annual) and two different spatial resolutions (2.5 deg and 5.0 deg). It also has a friendly Graphical User Interface (GUI). SOGP uses a multivariate regression method using an empirical orthogonal function (EOF) expansion. The Global Precipitation Climatology Project (GPCP) precipitation data from 1981-20010 are used to calculate the EOFs. The Global Historical Climatology Network (GHCN) gridded data are used to calculate the regression coefficients for reconstructions. The sampling errors of the reconstruction are analyzed according to the number of EOF modes used in the reconstruction. Our reconstructed 1900-2011 time series of the global average annual precipitation shows a 0.024 (mm/day)/100a trend, which is very close to the trend derived from the mean of 25 models of the CMIP5 (Coupled Model Intercomparison Project Phase 5). Our reconstruction has been validated by GPCP data after 1979. Our reconstruction successfully displays the 1877 El Nino (see the attached figure), which is considered a validation before 1900. Our precipitation products are publically available online, including digital data, precipitation animations, computer codes, readme files, and the user manual. This work is a joint effort of San Diego State University (Sam Shen, Gregori Clarke, Christian Junjinger, Nancy Tafolla, Barbara Sperberg, and Melanie Thorn), UCLA (Yongkang Xue), and University of Maryland (Tom Smith and Phil Arkin) and supported in part by the U.S. National Science Foundation (Awards No. AGS-1419256 and AGS-1015957).

  14. Spatial-temporal Evolution of Vegetation Coverage and Analysis of it’s Future Trends in Wujiang River Basin

    NASA Astrophysics Data System (ADS)

    Xiao, Jianyong; Bai, Xiaoyong; Zhou, Dequan; Qian, Qinghuan; Zeng, Cheng; Chen, Fei

    2018-01-01

    Vegetation coverage dynamics is affected by climatic, topography and human activities, which is an important indicator reflecting the regional ecological environment. Revealing the spatial-temporal characteristics of vegetation coverage is of great significance to the protection and management of ecological environment. Based on MODIS NDVI data and the Maximum Value Composites (MVC), we excluded soil spectrum interference to calculate Fractional Vegetation Coverage (FVC). Then the long-term FVC was used to calculate the spatial pattern and temporal variation of vegetation in Wujiang River Basin from 2000 to 2016 by using Trend analysis and Hurst index. The relationship between topography and spatial distribution of FVC was analyzed. The main conclusions are as follows: (1) The multi-annual mean vegetation coverage reveals a spatial distribution variation characteristic of low value in midstream and high level in other parts of the basin, owing a mean value of 0.6567. (2) From 2000 to 2016, the FVC of the Wujiang River Basin fluctuated between 0.6110 and 0.7380, and the overall growth rate of FVC was 0.0074/a. (3) The area of vegetation coverage tending to improve is more than that going to degrade in the future. Grass land, Arable land and Others improved significantly; karst rocky desertification comprehensive management project lead to persistent vegetation coverage improvement of Grass land, Arable land and Others. Residential land is covered with obviously degraded vegetation, resulting of urban sprawl; (4) The spatial distribution of FVC is positively correlated with TNI. Researches of spatial-temporal evolution of vegetation coverage have significant meaning for the ecological environment protection and management of the Wujiang River Basin.

  15. High-Resolution Spatial Distribution and Estimation of Access to Improved Sanitation in Kenya.

    PubMed

    Jia, Peng; Anderson, John D; Leitner, Michael; Rheingans, Richard

    2016-01-01

    Access to sanitation facilities is imperative in reducing the risk of multiple adverse health outcomes. A distinct disparity in sanitation exists among different wealth levels in many low-income countries, which may hinder the progress across each of the Millennium Development Goals. The surveyed households in 397 clusters from 2008-2009 Kenya Demographic and Health Surveys were divided into five wealth quintiles based on their national asset scores. A series of spatial analysis methods including excess risk, local spatial autocorrelation, and spatial interpolation were applied to observe disparities in coverage of improved sanitation among different wealth categories. The total number of the population with improved sanitation was estimated by interpolating, time-adjusting, and multiplying the surveyed coverage rates by high-resolution population grids. A comparison was then made with the annual estimates from United Nations Population Division and World Health Organization /United Nations Children's Fund Joint Monitoring Program for Water Supply and Sanitation. The Empirical Bayesian Kriging interpolation produced minimal root mean squared error for all clusters and five quintiles while predicting the raw and spatial coverage rates of improved sanitation. The coverage in southern regions was generally higher than in the north and east, and the coverage in the south decreased from Nairobi in all directions, while Nyanza and North Eastern Province had relatively poor coverage. The general clustering trend of high and low sanitation improvement among surveyed clusters was confirmed after spatial smoothing. There exists an apparent disparity in sanitation among different wealth categories across Kenya and spatially smoothed coverage rates resulted in a closer estimation of the available statistics than raw coverage rates. Future intervention activities need to be tailored for both different wealth categories and nationally where there are areas of greater needs when resources are limited.

  16. Overcoming Spatial and Temporal Barriers to Public Access Defibrillators Via Optimization

    PubMed Central

    Sun, Christopher L. F.; Demirtas, Derya; Brooks, Steven C.; Morrison, Laurie J.; Chan, Timothy C.Y.

    2016-01-01

    BACKGROUND Immediate access to an automated external defibrillator (AED) increases the chance of survival from out-of-hospital cardiac arrest (OHCA). Current deployment usually considers spatial AED access, assuming AEDs are available 24 h a day. OBJECTIVES We sought to develop an optimization model for AED deployment, accounting for spatial and temporal accessibility, to evaluate if OHCA coverage would improve compared to deployment based on spatial accessibility alone. METHODS This was a retrospective population-based cohort study using data from the Toronto Regional RescuNET cardiac arrest database. We identified all nontraumatic public-location OHCAs in Toronto, Canada (January 2006 through August 2014) and obtained a list of registered AEDs (March 2015) from Toronto emergency medical services. We quantified coverage loss due to limited temporal access by comparing the number of OHCAs that occurred within 100 meters of a registered AED (assumed 24/7 coverage) with the number that occurred both within 100 meters of a registered AED and when the AED was available (actual coverage). We then developed a spatiotemporal optimization model that determined AED locations to maximize OHCA actual coverage and overcome the reported coverage loss. We computed the coverage gain between the spatiotemporal model and a spatial-only model using 10-fold cross-validation. RESULTS We identified 2,440 atraumatic public OHCAs and 737 registered AED locations. A total of 451 OHCAs were covered by registered AEDs under assumed 24/7 coverage, and 354 OHCAs under actual coverage, representing a coverage loss of 21.5% (p < 0.001). Using the spatiotemporal model to optimize AED deployment, a 25.3% relative increase in actual coverage was achieved over the spatial-only approach (p < 0.001). CONCLUSIONS One in 5 OHCAs occurred near an inaccessible AED at the time of the OHCA. Potential AED use was significantly improved with a spatiotemporal optimization model guiding deployment. PMID:27539176

  17. International river basins of the world

    USGS Publications Warehouse

    Wolf, Aaron T.; Natharius, Jeffrey A.; Danielson, Jeffrey J.; Ward, Brian S.; Pender, Jan K.

    1999-01-01

    It is becoming acknowledged that water is likely to be the most pressing environmental concern of the next century. Difficulties in river basin management are only exacerbated when the resource crosses international boundaries. One critical aid in the assessment of international waters has been the Register of International Rivers a compendium which listed 214 international waterways that cover 47% of the earth's continental land surface. The Register, though, was last updated in 1978 by the now defunct United Nations Department of Economic and Social Affairs. The purpose of this paper is to update the Register in order to reflect the quantum changes that have taken place over the last 22 years, both in global geopolitics and in map coverage and technology. By accessing digital elevation models at spatial resolutions of 30 arc seconds, corroborating at a unified global map coverage of at least 1:1 000 000, and superimposing the results over complete coverage of current political boundaries, we are able to provide a new register which lists 261 international rivers, covering 45.3% of the land surface of the earth (excluding Antarctica). This paper lists all international rivers with their watershed areas, the nations which share each watershed,their respective territorial percentages, and notes on changes in or disputes over international boundaries since 1978.

  18. [Responses of plant community structure and species composition to warming and N addition in an alpine meadow, northern Tibetan Plateau, China].

    PubMed

    Zong, Ning; Chai, Xi; Shi, Pei Li; Jiang, Jing; Niu, Ben; Zhang, Xian Zhou; He, Yong Tao

    2016-12-01

    Global climate warming and increasing nitrogen (N) deposition, as controversial global environmental issues, may distinctly affect the functions and processes of terrestrial ecosystems. It has been reported that the Qinghai-Tibet Plateau has been experiencing significant warming in recent decades, especially in winter. Previous studies have mainly focused on the effects of warming all the year round; however, few studies have tested the effects of winter warming. To investigate the effects of winter warming and N addition on plant community structure and species composition of alpine meadow, long-term N addition and simulated warming experiment was conducted in alpine meadow from 2010 in Damxung, northern Tibet. The experiment consisted of three warming patterns: Year-round warming (YW), winter warming (WW) and control (NW), crossed respectively with five N gradients: 0, 10, 20, 40, 80 kg N·hm -2 ·a -1 . From 2012 to 2014, both warming and N addition significantly affected the total coverage of plant community. Specifically, YW significantly decreased the total coverage of plant community. Without N addition, WW remarkably reduced the vegetation coverage. However, with N addition, the total vegetation coverage gradually increased with the increase of N level. Warming and N addition had different effects on plants from different functional groups. Warming significantly reduced the plant coverage of grasses and sedges, while N addition significantly enhanced the plant coverage of grasses. Regression analyses showed that the total coverage of plant community was positively related to soil water content in vigorous growth stages, indicating that the decrease in soil water content resulted from warming during dry seasons might be the main reason for the decline of total community coverage. As soil moisture in semi-arid alpine meadow is mainly regulated by rainfalls, our results indicated that changes in spatial and temporal patterns of rainfalls under the future climate change scenarios would dramatically influence the vegetation coverage and species composition. Additionally, the effects of increasing atmospheric N deposition on vegetation community might also depend on the change of rainfall patterns.

  19. Spatial heterogeneity study of vegetation coverage at Heihe River Basin

    NASA Astrophysics Data System (ADS)

    Wu, Lijuan; Zhong, Bo; Guo, Liyu; Zhao, Xiangwei

    2014-11-01

    Spatial heterogeneity of the animal-landscape system has three major components: heterogeneity of resource distributions in the physical environment, heterogeneity of plant tissue chemistry, heterogeneity of movement modes by the animal. Furthermore, all three different types of heterogeneity interact each other and can either reinforce or offset one another, thereby affecting system stability and dynamics. In previous studies, the study areas are investigated by field sampling, which costs a large amount of manpower. In addition, uncertain in sampling affects the quality of field data, which leads to unsatisfactory results during the entire study. In this study, remote sensing data is used to guide the sampling for research on heterogeneity of vegetation coverage to avoid errors caused by randomness of field sampling. Semi-variance and fractal dimension analysis are used to analyze the spatial heterogeneity of vegetation coverage at Heihe River Basin. The spherical model with nugget is used to fit the semivariogram of vegetation coverage. Based on the experiment above, it is found, (1)there is a strong correlation between vegetation coverage and distance of vegetation populations within the range of 0-28051.3188m at Heihe River Basin, but the correlation loses suddenly when the distance greater than 28051.3188m. (2)The degree of spatial heterogeneity of vegetation coverage at Heihe River Basin is medium. (3)Spatial distribution variability of vegetation occurs mainly on small scales. (4)The degree of spatial autocorrelation is 72.29% between 25% and 75%, which means that spatial correlation of vegetation coverage at Heihe River Basin is medium high.

  20. Observability of global rivers with future SWOT observations

    NASA Astrophysics Data System (ADS)

    Fisher, Colby; Pan, Ming; Wood, Eric

    2017-04-01

    The Surface Water and Ocean Topography (SWOT) mission is designed to provide global observations of water surface elevation and slope from which river discharge can be estimated using a data assimilation system. This mission will provide increased spatial and temporal coverage compared to current altimeters, with an expected accuracy for water level elevations of 10 cm on rivers greater than 100 m wide. Within the 21-day repeat cycle, a river reach will be observed 2-4 times on average. Due to the relationship between the basin orientation and the orbit, these observations are not evenly distributed in time, which will impact the derived discharge values. There is, then, a need for a better understanding of how the mission will observe global river basins. In this study, we investigate how SWOT will observe global river basins and how the temporal and spatial sampling impacts the discharge estimated from assimilation. SWOT observations can be assimilated using the Inverse Streamflow Routing (ISR) model of Pan and Wood [2013] with a fixed interval Kalman smoother. Previous work has shown that the ISR assimilation method can be used to reproduce the spatial and temporal dynamics of discharge within many global basins: however, this performance was strongly impacted by the spatial and temporal availability of discharge observations. In this study, we apply the ISR method to 32 global basins with different geometries and crossing patterns for the future orbit, assimilating theoretical SWOT-retrieved "gauges". Results show that the model performance varies significantly across basins and is driven by the orientation, flow distance, and travel time in each. Based on these properties, we quantify the "observability" of each basin and relate this to the performance of the assimilation. Applying this metric globally to a large variety of basins we can gain a better understanding of the impact that SWOT observations may have across basin scales. By determining the availability of SWOT observations in this manner, hydrologic data assimilation approaches like ISR can be optimized to provide useful discharge estimates in sparsely gauged regions where spatially and temporally consistent discharge records are most valuable. Pan, M; Wood, E F 2013 Inverse streamflow routing, HESS 17(11):4577-4588

  1. Landscape Characterization and Representativeness Analysis for Understanding Sampling Network Coverage

    DOE Data Explorer

    Maddalena, Damian; Hoffman, Forrest; Kumar, Jitendra; Hargrove, William

    2014-08-01

    Sampling networks rarely conform to spatial and temporal ideals, often comprised of network sampling points which are unevenly distributed and located in less than ideal locations due to access constraints, budget limitations, or political conflict. Quantifying the global, regional, and temporal representativeness of these networks by quantifying the coverage of network infrastructure highlights the capabilities and limitations of the data collected, facilitates upscaling and downscaling for modeling purposes, and improves the planning efforts for future infrastructure investment under current conditions and future modeled scenarios. The work presented here utilizes multivariate spatiotemporal clustering analysis and representativeness analysis for quantitative landscape characterization and assessment of the Fluxnet, RAINFOR, and ForestGEO networks. Results include ecoregions that highlight patterns of bioclimatic, topographic, and edaphic variables and quantitative representativeness maps of individual and combined networks.

  2. Optimal allocation of Red List assessments to guide conservation of biodiversity in a rapidly changing world.

    PubMed

    Hermoso, Virgilio; Januchowski-Hartley, Stephanie Renee; Linke, Simon; Dudgeon, David; Petry, Paulo; McIntyre, Peter

    2017-09-01

    The IUCN Red List is the most extensive source of conservation status assessments for species worldwide, but important gaps in coverage remain. Here, we demonstrate the use of a spatial prioritization approach to efficiently prioritize species assessments to achieve increased and up-to-date coverage efficiently. We focus on freshwater fishes, which constitute a significant portion of vertebrate diversity, although comprehensive assessments are available for only 46% of species. We used marxan to identify ecoregions for future assessments that maximize the coverage of species while accounting for anthropogenic stress. We identified a set of priority regions that would help assess one-third (ca 4000 species) of all freshwater fishes in need of assessment by 2020. Such assessments could be achieved without increasing current investment levels. Our approach is suitable for any taxon and can help ensure that species threat assessments are sufficiently complete to guide global conservation efforts in a rapidly changing world. © 2017 John Wiley & Sons Ltd.

  3. Global patterns of kelp forest change over the past half-century.

    PubMed

    Krumhansl, Kira A; Okamoto, Daniel K; Rassweiler, Andrew; Novak, Mark; Bolton, John J; Cavanaugh, Kyle C; Connell, Sean D; Johnson, Craig R; Konar, Brenda; Ling, Scott D; Micheli, Fiorenza; Norderhaug, Kjell M; Pérez-Matus, Alejandro; Sousa-Pinto, Isabel; Reed, Daniel C; Salomon, Anne K; Shears, Nick T; Wernberg, Thomas; Anderson, Robert J; Barrett, Nevell S; Buschmann, Alejandro H; Carr, Mark H; Caselle, Jennifer E; Derrien-Courtel, Sandrine; Edgar, Graham J; Edwards, Matt; Estes, James A; Goodwin, Claire; Kenner, Michael C; Kushner, David J; Moy, Frithjof E; Nunn, Julia; Steneck, Robert S; Vásquez, Julio; Watson, Jane; Witman, Jon D; Byrnes, Jarrett E K

    2016-11-29

    Kelp forests (Order Laminariales) form key biogenic habitats in coastal regions of temperate and Arctic seas worldwide, providing ecosystem services valued in the range of billions of dollars annually. Although local evidence suggests that kelp forests are increasingly threatened by a variety of stressors, no comprehensive global analysis of change in kelp abundances currently exists. Here, we build and analyze a global database of kelp time series spanning the past half-century to assess regional and global trends in kelp abundances. We detected a high degree of geographic variation in trends, with regional variability in the direction and magnitude of change far exceeding a small global average decline (instantaneous rate of change = -0.018 y -1 ). Our analysis identified declines in 38% of ecoregions for which there are data (-0.015 to -0.18 y -1 ), increases in 27% of ecoregions (0.015 to 0.11 y -1 ), and no detectable change in 35% of ecoregions. These spatially variable trajectories reflected regional differences in the drivers of change, uncertainty in some regions owing to poor spatial and temporal data coverage, and the dynamic nature of kelp populations. We conclude that although global drivers could be affecting kelp forests at multiple scales, local stressors and regional variation in the effects of these drivers dominate kelp dynamics, in contrast to many other marine and terrestrial foundation species.

  4. Global patterns of kelp forest change over the past half-century

    PubMed Central

    Krumhansl, Kira A.; Okamoto, Daniel K.; Rassweiler, Andrew; Novak, Mark; Bolton, John J.; Cavanaugh, Kyle C.; Connell, Sean D.; Johnson, Craig R.; Konar, Brenda; Ling, Scott D.; Micheli, Fiorenza; Norderhaug, Kjell M.; Pérez-Matus, Alejandro; Sousa-Pinto, Isabel; Reed, Daniel C.; Salomon, Anne K.; Shears, Nick T.; Wernberg, Thomas; Anderson, Robert J.; Barrett, Nevell S.; Buschmann, Alejandro H.; Carr, Mark H.; Caselle, Jennifer E.; Derrien-Courtel, Sandrine; Edgar, Graham J.; Edwards, Matt; Estes, James A.; Goodwin, Claire; Kenner, Michael C.; Kushner, David J.; Nunn, Julia; Steneck, Robert S.; Vásquez, Julio; Watson, Jane; Witman, Jon D.

    2016-01-01

    Kelp forests (Order Laminariales) form key biogenic habitats in coastal regions of temperate and Arctic seas worldwide, providing ecosystem services valued in the range of billions of dollars annually. Although local evidence suggests that kelp forests are increasingly threatened by a variety of stressors, no comprehensive global analysis of change in kelp abundances currently exists. Here, we build and analyze a global database of kelp time series spanning the past half-century to assess regional and global trends in kelp abundances. We detected a high degree of geographic variation in trends, with regional variability in the direction and magnitude of change far exceeding a small global average decline (instantaneous rate of change = −0.018 y−1). Our analysis identified declines in 38% of ecoregions for which there are data (−0.015 to −0.18 y−1), increases in 27% of ecoregions (0.015 to 0.11 y−1), and no detectable change in 35% of ecoregions. These spatially variable trajectories reflected regional differences in the drivers of change, uncertainty in some regions owing to poor spatial and temporal data coverage, and the dynamic nature of kelp populations. We conclude that although global drivers could be affecting kelp forests at multiple scales, local stressors and regional variation in the effects of these drivers dominate kelp dynamics, in contrast to many other marine and terrestrial foundation species. PMID:27849580

  5. A comparison of performance of automatic cloud coverage assessment algorithm for Formosat-2 image using clustering-based and spatial thresholding methods

    NASA Astrophysics Data System (ADS)

    Hsu, Kuo-Hsien

    2012-11-01

    Formosat-2 image is a kind of high-spatial-resolution (2 meters GSD) remote sensing satellite data, which includes one panchromatic band and four multispectral bands (Blue, Green, Red, near-infrared). An essential sector in the daily processing of received Formosat-2 image is to estimate the cloud statistic of image using Automatic Cloud Coverage Assessment (ACCA) algorithm. The information of cloud statistic of image is subsequently recorded as an important metadata for image product catalog. In this paper, we propose an ACCA method with two consecutive stages: preprocessing and post-processing analysis. For pre-processing analysis, the un-supervised K-means classification, Sobel's method, thresholding method, non-cloudy pixels reexamination, and cross-band filter method are implemented in sequence for cloud statistic determination. For post-processing analysis, Box-Counting fractal method is implemented. In other words, the cloud statistic is firstly determined via pre-processing analysis, the correctness of cloud statistic of image of different spectral band is eventually cross-examined qualitatively and quantitatively via post-processing analysis. The selection of an appropriate thresholding method is very critical to the result of ACCA method. Therefore, in this work, We firstly conduct a series of experiments of the clustering-based and spatial thresholding methods that include Otsu's, Local Entropy(LE), Joint Entropy(JE), Global Entropy(GE), and Global Relative Entropy(GRE) method, for performance comparison. The result shows that Otsu's and GE methods both perform better than others for Formosat-2 image. Additionally, our proposed ACCA method by selecting Otsu's method as the threshoding method has successfully extracted the cloudy pixels of Formosat-2 image for accurate cloud statistic estimation.

  6. NARSTO NE MODEL

    Atmospheric Science Data Center

    2018-04-09

    ... UV Ozone Detector Location:  Northeastern United States Spatial Coverage:  Data are provided from seven ... Related Data:  Spatial Coverage: Northeastern United States NARSTO Northeast SCAR-B Block:  ...

  7. The Mpi-M Aerosol Climatology (MAC)

    NASA Astrophysics Data System (ADS)

    Kinne, S.

    2014-12-01

    Monthly gridded global data-sets for aerosol optical properties (AOD, SSA and g) and for aerosol microphysical properties (CCN and IN) offer a (less complex) alternate path to include aerosol radiative effects and aerosol impacts on cloud-microphysics in global simulations. Based on merging AERONET sun-/sky-photometer data onto background maps provided by AeroCom phase 1 modeling output and AERONET sun-/the MPI-M Aerosol Climatology (MAC) version 1 was developed and applied in IPCC simulations with ECHAM and as ancillary data-set in satellite-based global data-sets. An updated version 2 of this climatology will be presented now applying central values from the more recent AeroCom phase 2 modeling and utilizing the better global coverage of trusted sun-photometer data - including statistics from the Marine Aerosol network (MAN). Applications include spatial distributions of estimates for aerosol direct and aerosol indirect radiative effects.

  8. Transferring Error Characteristics of Satellite Rainfall Data from Ground Validation (gauged) into Non-ground Validation (ungauged)

    NASA Astrophysics Data System (ADS)

    Tang, L.; Hossain, F.

    2009-12-01

    Understanding the error characteristics of satellite rainfall data at different spatial/temporal scales is critical, especially when the scheduled Global Precipitation Mission (GPM) plans to provide High Resolution Precipitation Products (HRPPs) at global scales. Satellite rainfall data contain errors which need ground validation (GV) data for characterization, while satellite rainfall data will be most useful in the regions that are lacking in GV. Therefore, a critical step is to develop a spatial interpolation scheme for transferring the error characteristics of satellite rainfall data from GV regions to Non-GV regions. As a prelude to GPM, The TRMM Multi-satellite Precipitation Analysis (TMPA) products of 3B41RT and 3B42RT (Huffman et al., 2007) over the US spanning a record of 6 years are used as a representative example of satellite rainfall data. Next Generation Radar (NEXRAD) Stage IV rainfall data are used as the reference for GV data. Initial work by the authors (Tang et al., 2009, GRL) has shown promise in transferring error from GV to Non-GV regions, based on a six-year climatologic average of satellite rainfall data assuming only 50% of GV coverage. However, this transfer of error characteristics needs to be investigated for a range of GV data coverage. In addition, it is also important to investigate if proxy-GV data from an accurate space-borne sensor, such as the TRMM PR (or the GPM DPR), can be leveraged for the transfer of error at sparsely gauged regions. The specific question we ask in this study is, “what is the minimum coverage of GV data required for error transfer scheme to be implemented at acceptable accuracy in hydrological relevant scale?” Three geostatistical interpolation methods are compared: ordinary kriging, indicator kriging and disjunctive kriging. Various error metrics are assessed for transfer such as, Probability of Detection for rain and no rain, False Alarm Ratio, Frequency Bias, Critical Success Index, RMSE etc. Understanding the proper space-time scales at which these metrics can be reasonably transferred is also explored in this study. Keyword: Satellite rainfall, error transfer, spatial interpolation, kriging methods.

  9. Vegetation Coverage and Impervious Surface Area Estimated Based on the Estarfm Model and Remote Sensing Monitoring

    NASA Astrophysics Data System (ADS)

    Hu, Rongming; Wang, Shu; Guo, Jiao; Guo, Liankun

    2018-04-01

    Impervious surface area and vegetation coverage are important biophysical indicators of urban surface features which can be derived from medium-resolution images. However, remote sensing data obtained by a single sensor are easily affected by many factors such as weather conditions, and the spatial and temporal resolution can not meet the needs for soil erosion estimation. Therefore, the integrated multi-source remote sensing data are needed to carry out high spatio-temporal resolution vegetation coverage estimation. Two spatial and temporal vegetation coverage data and impervious data were obtained from MODIS and Landsat 8 remote sensing images. Based on the Enhanced Spatial and Temporal Adaptive Reflectance Fusion Model (ESTARFM), the vegetation coverage data of two scales were fused and the data of vegetation coverage fusion (ESTARFM FVC) and impervious layer with high spatiotemporal resolution (30 m, 8 day) were obtained. On this basis, the spatial variability of the seepage-free surface and the vegetation cover landscape in the study area was measured by means of statistics and spatial autocorrelation analysis. The results showed that: 1) ESTARFM FVC and impermeable surface have higher accuracy and can characterize the characteristics of the biophysical components covered by the earth's surface; 2) The average impervious surface proportion and the spatial configuration of each area are different, which are affected by natural conditions and urbanization. In the urban area of Xi'an, which has typical characteristics of spontaneous urbanization, landscapes are fragmented and have less spatial dependence.

  10. Fabricated World Class: Global University League Tables, Status Differentiation and Myths of Global Competition

    ERIC Educational Resources Information Center

    David, Matthew

    2016-01-01

    UK media coverage of global university league tables shows systematic bias towards the Russell Group, although also highlighting tensions within its membership. Coverage positions UK "elite" institutions between US superiority and Asian ascent. Coverage claims that league table results warrant UK university funding reform. However,…

  11. Recent Regional Climate State and Change - Derived through Downscaling Homogeneous Large-scale Components of Re-analyses

    NASA Astrophysics Data System (ADS)

    Von Storch, H.; Klehmet, K.; Geyer, B.; Li, D.; Schubert-Frisius, M.; Tim, N.; Zorita, E.

    2015-12-01

    Global re-analyses suffer from inhomogeneities, as they process data from networks under development. However, the large-scale component of such re-analyses is mostly homogeneous; additional observational data add in most cases to a better description of regional details and less so on large-scale states. Therefore, the concept of downscaling may be applied to homogeneously complementing the large-scale state of the re-analyses with regional detail - wherever the condition of homogeneity of the large-scales is fulfilled. Technically this can be done by using a regional climate model, or a global climate model, which is constrained on the large scale by spectral nudging. This approach has been developed and tested for the region of Europe, and a skillful representation of regional risks - in particular marine risks - was identified. While the data density in Europe is considerably better than in most other regions of the world, even here insufficient spatial and temporal coverage is limiting risk assessments. Therefore, downscaled data-sets are frequently used by off-shore industries. We have run this system also in regions with reduced or absent data coverage, such as the Lena catchment in Siberia, in the Yellow Sea/Bo Hai region in East Asia, in Namibia and the adjacent Atlantic Ocean. Also a global (large scale constrained) simulation has been. It turns out that spatially detailed reconstruction of the state and change of climate in the three to six decades is doable for any region of the world.The different data sets are archived and may freely by used for scientific purposes. Of course, before application, a careful analysis of the quality for the intended application is needed, as sometimes unexpected changes in the quality of the description of large-scale driving states prevail.

  12. Global Coastal and Marine Spatial Planning (CMSP) from Space Based AIS Ship Tracking

    NASA Astrophysics Data System (ADS)

    Schwehr, K. D.; Foulkes, J. A.; Lorenzini, D.; Kanawati, M.

    2011-12-01

    All nations need to be developing long term integrated strategies for how to use and preserve our natural resources. As a part of these strategies, we must evalutate how communities of users react to changes in rules and regulations of ocean use. Global characterization of the vessel traffic on our Earth's oceans is essential to understanding the existing uses to develop international Coast and Marine Spatial Planning (CMSP). Ship traffic within 100-200km is beginning to be effectively covered in low latitudes by ground based receivers collecting position reports from the maritime Automatic Identification System (AIS). Unfortunately, remote islands, high latitudes, and open ocean Marine Protected Areas (MPA) are not covered by these ground systems. Deploying enough autonomous airborne (UAV) and surface (USV) vessels and buoys to provide adequate coverage is a difficult task. While the individual device costs are plummeting, a large fleet of AIS receivers is expensive to maintain. The global AIS coverage from SpaceQuest's low Earth orbit satellite receivers combined with the visualization and data storage infrastructure of Google (e.g. Maps, Earth, and Fusion Tables) provide a platform that enables researchers and resource managers to begin answer the question of how ocean resources are being utilized. Near real-time vessel traffic data will allow managers of marine resources to understand how changes to education, enforcement, rules, and regulations alter usage and compliance patterns. We will demonstrate the potential for this system using a sample SpaceQuest data set processed with libais which stores the results in a Fusion Table. From there, the data is imported to PyKML and visualized in Google Earth with a custom gx:Track visualization utilizing KML's extended data functionality to facilitate ship track interrogation. Analysts can then annotate and discuss vessel tracks in Fusion Tables.

  13. Validation of Salinity Data from the Soil Moisture and Ocean Salinity (SMOS) and Aquarius Satellites in the Agulhas Current System

    NASA Astrophysics Data System (ADS)

    Button, N.

    2016-02-01

    The Agulhas Current System is an important western boundary current, particularly due to its vital role in the transport of heat and salt from the Indian Ocean to the Atlantic Ocean, such as through Agulhas rings. Accurate measurements of salinity are necessary for assessing the role of the Agulhas Current System and these rings in the global climate system are necessary. With ESA's Soil Moisture and Ocean Salinity (SMOS) and NASA's Aquarius/SAC-D satellites, we now have complete spatial and temporal (since 2009 and 2011, respectively) coverage of salinity data. To use this data to understand the role of the Agulhas Current System in the context of salinity within the global climate system, we must first understand validate the satellite data using in situ and model comparisons. In situ comparisons are important because of the accuracy, but they lack in the spatial and temporal coverage to validate the satellite data. For example, there are approximately 100 floats in the Agulhas Return Current. Therefore, model comparisons, such as the Hybrid Coordinate Ocean Model (HYCOM), are used along with the in situ data for the validation. For the validation, the satellite data, Argo float data, and HYCOM simulations were compared within box regions both inside and outside of the Agulhas Current. These boxed regions include the main Agulhas Current, Agulhas Return Current, Agulhas Retroflection, and Agulhas rings, as well as a low salinity and high salinity region outside of the current system. This analysis reveals the accuracy of the salinity measurements from the Aquarius/SAC-D and SMOS satellites within the Agulhas Current, which then provides accurate salinity data that can then be used to understand the role of the Agulhas Current System in the global climate system.

  14. Overcoming Spatial and Temporal Barriers to Public Access Defibrillators Via Optimization.

    PubMed

    Sun, Christopher L F; Demirtas, Derya; Brooks, Steven C; Morrison, Laurie J; Chan, Timothy C Y

    2016-08-23

    Immediate access to an automated external defibrillator (AED) increases the chance of survival for out-of-hospital cardiac arrest (OHCA). Current deployment usually considers spatial AED access, assuming AEDs are available 24 h a day. The goal of this study was to develop an optimization model for AED deployment, accounting for spatial and temporal accessibility, to evaluate if OHCA coverage would improve compared with deployment based on spatial accessibility alone. This study was a retrospective population-based cohort trial using data from the Toronto Regional RescuNET Epistry cardiac arrest database. We identified all nontraumatic public location OHCAs in Toronto, Ontario, Canada (January 2006 through August 2014) and obtained a list of registered AEDs (March 2015) from Toronto Paramedic Services. Coverage loss due to limited temporal access was quantified by comparing the number of OHCAs that occurred within 100 meters of a registered AED (assumed coverage 24 h per day, 7 days per week) with the number that occurred both within 100 meters of a registered AED and when the AED was available (actual coverage). A spatiotemporal optimization model was then developed that determined AED locations to maximize OHCA actual coverage and overcome the reported coverage loss. The coverage gain between the spatiotemporal model and a spatial-only model was computed by using 10-fold cross-validation. A total of 2,440 nontraumatic public OHCAs and 737 registered AED locations were identified. A total of 451 OHCAs were covered by registered AEDs under assumed coverage 24 h per day, 7 days per week, and 354 OHCAs under actual coverage, representing a coverage loss of 21.5% (p < 0.001). Using the spatiotemporal model to optimize AED deployment, a 25.3% relative increase in actual coverage was achieved compared with the spatial-only approach (p < 0.001). One in 5 OHCAs occurred near an inaccessible AED at the time of the OHCA. Potential AED use was significantly improved with a spatiotemporal optimization model guiding deployment. Copyright © 2016 American College of Cardiology Foundation. Published by Elsevier Inc. All rights reserved.

  15. A Revisit of Global Dimming and Brightening Based on the Sunshine Duration

    NASA Astrophysics Data System (ADS)

    He, Yanyi; Wang, Kaicun; Zhou, Chunlüe; Wild, Martin

    2018-05-01

    Observations show that the surface incident solar radiation (Rs) decreased over land from the 1950s to the 1980s and increased thereafter, known as global dimming and brightening. This claim has been questioned due to the inhomogeneity and low spatial-temporal coverage of Rs observations. Based on direct comparisons of 200 observed and sunshine duration (SunDu) derived Rs station pairs, meeting data record lengths exceeding 60 months and spatial distances less than 110 km, we show that meteorological observations of SunDu can be used as a proxy for measured Rs. Our revised results from 2,600 stations show global dimming from the 1950s to the 1980s over China (-1.90 W/m2 per decade), Europe (-1.36 W/m2 per decade), and the United States (-1.10 W/m2 per decade), brightening from 1980 to 2009 in Europe (1.66 W/m2 per decade) and a decline from 1994 to 2010 in China (-1.06 W/m2 per decade). Even if 1994-2010 is well known as a period of global brightening, the observed and SunDu-derived Rs over China still exhibit declining trends. Trends in Rs from 1923 to 1950 are also found over Europe (1.91 W/m2 per decade) and the United States (-1.31 W/m2 per decade), but the results in Europe may not well represent the actual trend for the European continent due to poor spatial sampling.

  16. Coverage-dependent amplifiers of vegetation change on global water cycle dynamics

    NASA Astrophysics Data System (ADS)

    Feng, Huihui; Zou, Bin; Luo, Juhua

    2017-07-01

    The terrestrial water cycle describes the circulation of water worldwide from one store to another via repeated evapotranspiration (E) from land and precipitation (P) back to the surface. The cycle presents significant spatial variability, which is strongly affected by natural climate and anthropogenic influences. As one of the major anthropogenic influences, vegetation change unavoidably alters surface property and subsequent the terrestrial water cycle, while its contribution is yet difficult to isolate from the mixed influences. Here, we use satellite and in-situ datasets to identify the terrestrial water cycle dynamics in spatial detail and to evaluate the impact of vegetation change. Methodologically, the water cycle is identified by the indicator of difference between evapotranspiration and precipitation (E-P). Then the scalar form of the indicator's trend (ΔE + ΔP) is used for evaluating the dynamics of water cycle, with the positive value means acceleration and negative means deceleration. Then, the contributions of climate and vegetation change are isolated by the trajectory-based method. Our results indicate that 4 accelerating and 4 decelerating water cycles can be identified, affecting 42.11% of global land. The major water cycle type is characterized by non-changing precipitation and increasing evapotranspiration (PNO-EIN), which covers 20.88% of globally land. Vegetation change amplifies both accelerating and decelerating water cycles. It tends to intensify the trend of the decelerating water cycles, while climate change weakens the trend. In the accelerating water cycles, both vegetation and climate change present positive effect to intensify the trend. The effect of plant cover change varies with the coverage. In particular, vegetation change intensifies the water cycle in moderately vegetated regions (0.1 < NDVI < 0.6), but weakens the cycle in sparsely or highly vegetated regions (NDVI < 0.1 or 0.6 < NDVI < 0.8). In extremely vegetated regions (NDVI > 0.85), the water cycle is accelerated because of the significant increase of precipitation. We conclude that vegetation change acts as an amplifier for both accelerating and decelerating terrestrial water cycles, depending on the degree of vegetation coverage.

  17. Constellation Coverage Analysis

    NASA Technical Reports Server (NTRS)

    Lo, Martin W. (Compiler)

    1997-01-01

    The design of satellite constellations requires an understanding of the dynamic global coverage provided by the constellations. Even for a small constellation with a simple circular orbit propagator, the combinatorial nature of the analysis frequently renders the problem intractable. Particularly for the initial design phase where the orbital parameters are still fluid and undetermined, the coverage information is crucial to evaluate the performance of the constellation design. We have developed a fast and simple algorithm for determining the global constellation coverage dynamically using image processing techniques. This approach provides a fast, powerful and simple method for the analysis of global constellation coverage.

  18. TOPEX/POSEIDON - Mapping the ocean surface

    NASA Technical Reports Server (NTRS)

    Yamarone, C. A.; Rosell, S.; Farless, D. L.

    1986-01-01

    Global efforts are under way to model the earth as a complete planet so that weather patterns may be predicted on time scales of months and years. A major limitation in developing models of global weather is the inability to model the circulation of the oceans including the geostrophic surface currents. NASA will soon be initiating a satellite program to correct this deficiency by directly measuring these currents using the science of radar altimetry. Measurement of the ocean topography with broad, frequent coverage of all ocean basins for a long period of time will allow the derivation of the spatial and temporal behavior of surface ocean currents. The TOPEX/POSEIDON mission is a cooperative effort between NASA and the French Centre National d'Etudes Spatiales. This paper describes the goals of this research mission, the data type to be acquired, the satellite and sensors to be used to acquire the data, and the methods by which the data are to be processed and utilized.

  19. Next generation of global land cover characterization, mapping, and monitoring

    USGS Publications Warehouse

    Giri, Chandra; Pengra, Bruce; Long, J.; Loveland, Thomas R.

    2013-01-01

    Land cover change is increasingly affecting the biophysics, biogeochemistry, and biogeography of the Earth's surface and the atmosphere, with far-reaching consequences to human well-being. However, our scientific understanding of the distribution and dynamics of land cover and land cover change (LCLCC) is limited. Previous global land cover assessments performed using coarse spatial resolution (300 m–1 km) satellite data did not provide enough thematic detail or change information for global change studies and for resource management. High resolution (∼30 m) land cover characterization and monitoring is needed that permits detection of land change at the scale of most human activity and offers the increased flexibility of environmental model parameterization needed for global change studies. However, there are a number of challenges to overcome before producing such data sets including unavailability of consistent global coverage of satellite data, sheer volume of data, unavailability of timely and accurate training and validation data, difficulties in preparing image mosaics, and high performance computing requirements. Integration of remote sensing and information technology is needed for process automation and high-performance computing needs. Recent developments in these areas have created an opportunity for operational high resolution land cover mapping, and monitoring of the world. Here, we report and discuss these advancements and opportunities in producing the next generations of global land cover characterization, mapping, and monitoring at 30-m spatial resolution primarily in the context of United States, Group on Earth Observations Global 30 m land cover initiative (UGLC).

  20. Ensembles of satellite aerosol retrievals based on three AATSR algorithms within aerosol_cci

    NASA Astrophysics Data System (ADS)

    Kosmale, Miriam; Popp, Thomas

    2016-04-01

    Ensemble techniques are widely used in the modelling community, combining different modelling results in order to reduce uncertainties. This approach could be also adapted to satellite measurements. Aerosol_cci is an ESA funded project, where most of the European aerosol retrieval groups work together. The different algorithms are homogenized as far as it makes sense, but remain essentially different. Datasets are compared with ground based measurements and between each other. Three AATSR algorithms (Swansea university aerosol retrieval, ADV aerosol retrieval by FMI and Oxford aerosol retrieval ORAC) provide within this project 17 year global aerosol records. Each of these algorithms provides also uncertainty information on pixel level. Within the presented work, an ensembles of the three AATSR algorithms is performed. The advantage over each single algorithm is the higher spatial coverage due to more measurement pixels per gridbox. A validation to ground based AERONET measurements shows still a good correlation of the ensemble, compared to the single algorithms. Annual mean maps show the global aerosol distribution, based on a combination of the three aerosol algorithms. In addition, pixel level uncertainties of each algorithm are used for weighting the contributions, in order to reduce the uncertainty of the ensemble. Results of different versions of the ensembles for aerosol optical depth will be presented and discussed. The results are validated against ground based AERONET measurements. A higher spatial coverage on daily basis allows better results in annual mean maps. The benefit of using pixel level uncertainties is analysed.

  1. Accuracy and impact of spatial aids based upon satellite enumeration to improve indoor residual spraying spatial coverage.

    PubMed

    Bridges, Daniel J; Pollard, Derek; Winters, Anna M; Winters, Benjamin; Sikaala, Chadwick; Renn, Silvia; Larsen, David A

    2018-02-23

    Indoor residual spraying (IRS) is a key tool in the fight to control, eliminate and ultimately eradicate malaria. IRS protection is based on a communal effect such that an individual's protection primarily relies on the community-level coverage of IRS with limited protection being provided by household-level coverage. To ensure a communal effect is achieved through IRS, achieving high and uniform community-level coverage should be the ultimate priority of an IRS campaign. Ensuring high community-level coverage of IRS in malaria-endemic areas is challenging given the lack of information available about both the location and number of households needing IRS in any given area. A process termed 'mSpray' has been developed and implemented and involves use of satellite imagery for enumeration for planning IRS and a mobile application to guide IRS implementation. This study assessed (1) the accuracy of the satellite enumeration and (2) how various degrees of spatial aid provided through the mSpray process affected community-level IRS coverage during the 2015 spray campaign in Zambia. A 2-stage sampling process was applied to assess accuracy of satellite enumeration to determine number and location of sprayable structures. Results indicated an overall sensitivity of 94% for satellite enumeration compared to finding structures on the ground. After adjusting for structure size, roof, and wall type, households in Nchelenge District where all types of satellite-based spatial aids (paper-based maps plus use of the mobile mSpray application) were used were more likely to have received IRS than Kasama district where maps used were not based on satellite enumeration. The probability of a household being sprayed in Nchelenge district where tablet-based maps were used, did not differ statistically from that of a household in Samfya District, where detailed paper-based spatial aids based on satellite enumeration were provided. IRS coverage from the 2015 spray season benefited from the use of spatial aids based upon satellite enumeration. These spatial aids can guide costly IRS planning and implementation leading to attainment of higher spatial coverage, and likely improve disease impact.

  2. A Note on the Temporary Misregistration of Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi Spectral Instrument (MSI) Imagery

    NASA Technical Reports Server (NTRS)

    Storey, James; Roy, David P.; Masek, Jeffrey; Gascon, Ferran; Dwyer, John; Choate, Michael

    2016-01-01

    The Landsat-8 and Sentinel-2 sensors provide multi-spectral image data with similar spectral and spatial characteristics that together provide improved temporal coverage globally. Both systems are designed to register Level 1 products to a reference image framework, however, the Landsat-8 framework, based upon the Global Land Survey images, contains residual geolocation errors leading to an expected sensor-to-sensor misregistration of 38 m (2sigma). These misalignments vary geographically but should be stable for a given area. The Landsat framework will be readjusted for consistency with the Sentinel-2 Global Reference Image, with completion expected in 2018. In the interim, users can measure Landsat-to-Sentinel tie points to quantify the misalignment in their area of interest and if appropriate to reproject the data to better alignment.

  3. A note on the temporary misregistration of Landsat-8 Operational Land Imager (OLI) and Sentinel-2 Multi Spectral Instrument (MSI) imagery

    USGS Publications Warehouse

    Storey, James C.; Roy, David P.; Masek, Jeffrey; Gascon, Ferran; Dwyer, John L.; Choate, Michael J.

    2016-01-01

    The Landsat-8 and Sentinel-2 sensors provide multi-spectral image data with similar spectral and spatial characteristics that together provide improved temporal coverage globally. Both systems are designed to register Level 1 products to a reference image framework, however, the Landsat-8 framework, based upon the Global Land Survey images, contains residual geolocation errors leading to an expected sensor-to-sensor misregistration of 38 m (2σ). These misalignments vary geographically but should be stable for a given area. The Landsat framework will be readjusted for consistency with the Sentinel-2 Global Reference Image, with completion expected in 2018. In the interim, users can measure Landsat-to-Sentinel tie points to quantify the misalignment in their area of interest and if appropriate to reproject the data to better alignment.

  4. Terrestrial remote sensing science and algorithms planned for EOS/MODIS

    USGS Publications Warehouse

    Running, S. W.; Justice, C.O.; Salomonson, V.V.; Hall, D.; Barker, J.; Kaufmann, Y. J.; Strahler, Alan H.; Huete, A.R.; Muller, Jan-Peter; Vanderbilt, V.; Wan, Z.; Teillet, P.; Carneggie, David M. Geological Survey (U.S.) Ohlen

    1994-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) will be the primary daily global monitoring sensor on the NASA Earth Observing System (EOS) satellites, scheduled for launch on the EOS-AM platform in June 1998 and the EOS-PM platform in December 2000. MODIS is a 36 channel radiometer covering 0·415-14·235 μm wavelengths, with spatial resolution from 250 m to 1 km at nadir. MODIS will be the primary EOS sensor for providing data on terrestrial biospheric dynamics and process activity. This paper presents the suite of global land products currently planned for EOSDIS implementation, to be developed by the authors of this paper, the MODIS land team (MODLAND). These include spectral albedo, land cover, spectral vegetation indices, snow and ice cover, surface temperature and fire, and a number of biophysical variables that will allow computation of global carbon cycles, hydrologic balances and biogeochemistry of critical greenhouse gases. Additionally, the regular global coverage of these variables will allow accurate surface change detection, a fundamental determinant of global change.

  5. Modeling Global Biogenic Emission of Isoprene: Exploration of Model Drivers

    NASA Technical Reports Server (NTRS)

    Alexander, Susan E.; Potter, Christopher S.; Coughlan, Joseph C.; Klooster, Steven A.; Lerdau, Manuel T.; Chatfield, Robert B.; Peterson, David L. (Technical Monitor)

    1996-01-01

    Vegetation provides the major source of isoprene emission to the atmosphere. We present a modeling approach to estimate global biogenic isoprene emission. The isoprene flux model is linked to a process-based computer simulation model of biogenic trace-gas fluxes that operates on scales that link regional and global data sets and ecosystem nutrient transformations Isoprene emission estimates are determined from estimates of ecosystem specific biomass, emission factors, and algorithms based on light and temperature. Our approach differs from an existing modeling framework by including the process-based global model for terrestrial ecosystem production, satellite derived ecosystem classification, and isoprene emission measurements from a tropical deciduous forest. We explore the sensitivity of model estimates to input parameters. The resulting emission products from the global 1 degree x 1 degree coverage provided by the satellite datasets and the process model allow flux estimations across large spatial scales and enable direct linkage to atmospheric models of trace-gas transport and transformation.

  6. Space-based Swath Imaging Laser Altimeter for Cryospheric Topographic and Surface Property Mapping

    NASA Technical Reports Server (NTRS)

    Abshire, James; Harding, David; Shuman, Chris; Sun, Xiaoli; Dabney, Phil; Krainak, Michael; Scambos, Ted

    2005-01-01

    Uncertainties in the response of the Greenland and Antarctic polar ice sheets to global climatic change inspired the development of ICESat/GLAS as part of NASA's Earth Observing System. ICESat's primary purpose is the measurement of ice sheet surface elevation profiles with sufficient accuracy, spatial density, and temporal coverage so that elevation changes can be derived with an accuracy of <1.5 cm/year for averages of measurements over the ice sheets with areas of 100 x 100 km. The primary means to achieve this elevation change detection is spatial averaging of elevation differences at cross-overs between ascending and descending profiles in areas of low ice surface slope. Additional information is included in the original extended abstract.

  7. Regional positioning using a low Earth orbit satellite constellation

    NASA Astrophysics Data System (ADS)

    Shtark, Tomer; Gurfil, Pini

    2018-02-01

    Global and regional satellite navigation systems are constellations orbiting the Earth and transmitting radio signals for determining position and velocity of users around the globe. The state-of-the-art navigation satellite systems are located in medium Earth orbits and geosynchronous Earth orbits and are characterized by high launching, building and maintenance costs. For applications that require only regional coverage, the continuous and global coverage that existing systems provide may be unnecessary. Thus, a nano-satellites-based regional navigation satellite system in Low Earth Orbit (LEO), with significantly reduced launching, building and maintenance costs, can be considered. Thus, this paper is aimed at developing a LEO constellation optimization and design method, using genetic algorithms and gradient-based optimization. The preliminary results of this study include 268 LEO constellations, aimed at regional navigation in an approximately 1000 km × 1000 km area centered at the geographic coordinates [30, 30] degrees. The constellations performance is examined using simulations, and the figures of merit include total coverage time, revisit time, and geometric dilution of precision (GDOP) percentiles. The GDOP is a quantity that determines the positioning solution accuracy and solely depends on the spatial geometry of the satellites. Whereas the optimization method takes into account only the Earth's second zonal harmonic coefficient, the simulations include the Earth's gravitational field with zonal and tesseral harmonics up to degree 10 and order 10, Solar radiation pressure, drag, and the lunisolar gravitational perturbation.

  8. Enhancing Spatial Resolution of Remotely Sensed Imagery Using Deep Learning

    NASA Astrophysics Data System (ADS)

    Beck, J. M.; Bridges, S.; Collins, C.; Rushing, J.; Graves, S. J.

    2017-12-01

    Researchers at the Information Technology and Systems Center at the University of Alabama in Huntsville are using Deep Learning with Convolutional Neural Networks (CNNs) to develop a method for enhancing the spatial resolutions of moderate resolution (10-60m) multispectral satellite imagery. This enhancement will effectively match the resolutions of imagery from multiple sensors to provide increased global temporal-spatial coverage for a variety of Earth science products. Our research is centered on using Deep Learning for automatically generating transformations for increasing the spatial resolution of remotely sensed images with different spatial, spectral, and temporal resolutions. One of the most important steps in using images from multiple sensors is to transform the different image layers into the same spatial resolution, preferably the highest spatial resolution, without compromising the spectral information. Recent advances in Deep Learning have shown that CNNs can be used to effectively and efficiently upscale or enhance the spatial resolution of multispectral images with the use of an auxiliary data source such as a high spatial resolution panchromatic image. In contrast, we are using both the spatial and spectral details inherent in low spatial resolution multispectral images for image enhancement without the use of a panchromatic image. This presentation will discuss how this technology will benefit many Earth Science applications that use remotely sensed images with moderate spatial resolutions.

  9. Dynamics of Phenanthrenequinone on Carbon Nano-Onion Surfaces Probed by Quasielastic Neutron Scattering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Anjos, Daniela M; Mamontov, Eugene; Brown, Gilbert M

    We used quasielastic neutron scattering (QENS) to study the dynamics of phenanthrenequinone (PQ) on the surface of onion-like carbon (OLC), or so called carbon onions, as a function of surface coverage and temperature. For both the high- and low-coverage samples, we observed two diffusion processes; a faster process and nearly an order of magnitude slower process. On the high-coverage surface, the slow diffusion process is of long-range translational character, whereas the fast diffusion process is spatially localized on the length scale of ~ 4.7 . On the low-coverage surface, both diffusion processes are spatially localized; on the same length scalemore » of ~ 4.7 for the fast diffusion and a somewhat larger length scale for the slow diffusion. Arrhenius temperature dependence is observed except for the long-range diffusion on the high-coverage surface. We attribute the fast diffusion process to the generic localized in-cage dynamics of PQ molecules, and the slow diffusion process to the long-range translational dynamics of PQ molecules, which, depending on the coverage, may be either spatially restricted, or long-range. On the low-coverage surface, uniform surface coverage is not attained, and the PQ molecules experience the effect of spatial constraints on their long-range translational dynamics. Unexpectedly, the dynamics of PQ molecules on OLC as a function of temperature and surface coverage bears qualitative resemblance to the dynamics of water molecules on oxide surfaces, including practically temperature-independent residence times for the low-coverage surface. The dynamics features that we observed may be universal across different classes of surface adsorbates.« less

  10. Sub-national variation in measles vaccine coverage and outbreak risk: a case study from a 2010 outbreak in Malawi.

    PubMed

    Kundrick, Avery; Huang, Zhuojie; Carran, Spencer; Kagoli, Matthew; Grais, Rebecca Freeman; Hurtado, Northan; Ferrari, Matthew

    2018-06-15

    Despite progress towards increasing global vaccination coverage, measles continues to be one of the leading, preventable causes of death among children worldwide. Whether and how to target sub-national areas for vaccination campaigns continues to remain a question. We analyzed three metrics for prioritizing target areas: vaccination coverage, susceptible birth cohort, and the effective reproductive ratio (R E ) in the context of the 2010 measles epidemic in Malawi. Using case-based surveillance data from the 2010 measles outbreak in Malawi, we estimated vaccination coverage from the proportion of cases reporting with a history of prior vaccination at the district and health facility catchment scale. Health facility catchments were defined as the set of locations closer to a given health facility than to any other. We combined these estimates with regional birth rates to estimate the size of the annual susceptible birth cohort. We also estimated the effective reproductive ratio, R E , at the health facility polygon scale based on the observed rate of exponential increase of the epidemic. We combined these estimates to identify spatial regions that would be of high priority for supplemental vaccination activities. The estimated vaccination coverage across all districts was 84%, but ranged from 61 to 99%. We found that 8 districts and 354 health facility catchments had estimated vaccination coverage below 80%. Areas that had highest birth cohort size were frequently large urban centers that had high vaccination coverage. The estimated R E ranged between 1 and 2.56. The ranking of districts and health facility catchments as priority areas varied depending on the measure used. Each metric for prioritization may result in discrete target areas for vaccination campaigns; thus, there are tradeoffs to choosing one metric over another. However, in some cases, certain areas may be prioritized by all three metrics. These areas should be treated with particular concern. Furthermore, the spatial scale at which each metric is calculated impacts the resulting prioritization and should also be considered when prioritizing areas for vaccination campaigns. These methods may be used to allocate effort for prophylactic campaigns or to prioritize response for outbreak response vaccination.

  11. Evolution of Satellite Imagers and Sounders for Low Earth Orbit and Technology Directions at NASA

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; McClain, Charles R.

    2010-01-01

    Imagers and Sounders for Low Earth Orbit (LEO) provide fundamental global daily observations of the Earth System for scientists, researchers, and operational weather agencies. The imager provides the nominal 1-2 km spatial resolution images with global coverage in multiple spectral bands for a wide range of uses including ocean color, vegetation indices, aerosol, snow and cloud properties, and sea surface temperature. The sounder provides vertical profiles of atmospheric temperature, water vapor cloud properties, and trace gases including ozone, carbon monoxide, methane and carbon dioxide. Performance capabilities of these systems has evolved with the optical and sensing technologies of the decade. Individual detectors were incorporated on some of the first imagers and sounders that evolved to linear array technology in the '80's. Signal-to-noise constraints limited these systems to either broad spectral resolution as in the case of the imager, or low spatial resolution as in the case of the sounder. Today's area 2-dimensional large format array technology enables high spatial and high spectral resolution to be incorporated into a single instrument. This places new constraints on the design of these systems and enables new capabilities for scientists to examine the complex processes governing the Earth System.

  12. A Relationship Between Visible and Near-IR Global Spectral Reflectance based on DSCOVR/EPIC

    NASA Astrophysics Data System (ADS)

    Wen, G.; Marshak, A.; Song, W.; Knyazikhin, Y.

    2017-12-01

    The launch of Deep Space Climate Observatory (DSCOVR) to the Earth's first Lagrange point (L1) allows us to see a new perspective of the Earth. The Earth Polychromatic Imaging Camera (EPIC) on the DSCOVR measures the back scattered radiation of the entire sunlit side of the Earth at 10 narrow band wavelengths ranging from ultraviolet to visible and near-infrared. We analyzed EPIC global averaged reflectance data. We found that the global averaged visible reflectance has a unique non-linear relationship with near infrared (NIR) reflectance. This non-linear relationship was not observed by any other satellite observations due to a limited spatial and temporal coverage of either low earth orbit (LEO) or geostationary satellite. The non-linear relationship is associated with the changing in the coverages of ocean, cloud, land, and vegetation as the Earth rotates. We used Terra and Aqua MODIS daily global radiance data to simulate EPIC observations. Since MODIS samples the Earth in a limited swath (2330km cross track) at a specific local time (10:30 am for Terra, 1:30 pm for Aqua) with approximately 15 orbits per day, the global average reflectance at a given time may be approximated by averaging the reflectance in the MODIS nearest-time swaths in the sunlit hemisphere. We found that MODIS simulated global visible and NIR spectral reflectance captured the major feature of the EPIC observed non-linear relationship with some errors. The difference between the two is mainly due to the sampling limitation of polar satellite. This suggests that that EPIC observations can be used to reconstruct MODIS global average reflectance time series for studying Earth system change in the past decade.

  13. Small Spacecraft Constellation Concept for Mars Atmospheric Radio Occultations

    NASA Astrophysics Data System (ADS)

    Asmar, S. W.; Mannucci, A. J.; Ao, C. O.; Kobayashi, M. M.; Lazio, J.; Marinan, A.; Massone, G.; McCandless, S. E.; Preston, R. A.; Seubert, J.; Williamson, W.

    2017-12-01

    First demonstrated in 1965 when Mariner IV flew by Mars and determined the salient features of its atmosphere, radio occultation experiments have been carried out on numerous planetary missions with great discoveries. These experiments utilize the now classic configuration of a signal from a single planetary spacecraft to Earth receiving stations, where the science data are acquired. The Earth science community advanced the technique to utilizing a constellation of spacecraft with the radio occultation links between the spacecraft, enabled by the infrastructure of the Global Positioning System. With the advent of small and less costly spacecraft, such as planetary CubeSats and other variations, such as the anticipated innovative Mars Cube One mission, crosslinks among small spacecraft can be used to study other planets in the near future. Advantages of this type of experiment include significantly greater geographical coverage, which could reach global coverage over a few weeks with a small number of spacecraft. Repeatability of the global coverage can lead to examining temperature-pressure profiles and ionospheric electron density profiles, on daily, seasonal, annual, or other time scales of interest. The higher signal-to-noise ratio for inter-satellite links, compared to a link to Earth, decreases the design demands on the instrumentation (smaller antennas and transmitters, etc.). After an actual Mars crosslink demonstration, this concept has been in development using Mars as a possible target. Scientific objectives, delivery methods, operational scenarios and end-to-end configuration have been documented. Science objectives include determining the state and variability of the lower Martian atmosphere, which has been an identified as a high priority objective by the Mars Exploration Program Analysis Group, particularly as it relates to entry, descent, and landing and ascent for future crewed and robotic missions. This paper will present the latest research on the proposed mission concept including the possible spatial and temporal coverage, resolution of observables, mission design and expected results.

  14. The moderate resolution imaging spectrometer (MODIS) science and data system requirements

    NASA Technical Reports Server (NTRS)

    Ardanuy, Philip E.; Han, Daesoo; Salomonson, Vincent V.

    1991-01-01

    The Moderate Resolution Imaging Spectrometer (MODIS) has been designated as a facility instrument on the first NASA polar orbiting platform as part of the Earth Observing System (EOS) and is scheduled for launch in the late 1990s. The near-global daily coverage of MODIS, combined with its continuous operation, broad spectral coverage, and relatively high spatial resolution, makes it central to the objectives of EOS. The development, implementation, production, and validation of the core MODIS data products define a set of functional, performance, and operational requirements on the data system that operate between the sensor measurements and the data products supplied to the user community. The science requirements guiding the processing of MODIS data are reviewed, and the aspects of an operations concept for the production of data products from MODIS for use by the scientific community are discussed.

  15. Ocean surface partitioning strategies using ocean colour remote Sensing: A review

    NASA Astrophysics Data System (ADS)

    Krug, Lilian Anne; Platt, Trevor; Sathyendranath, Shubha; Barbosa, Ana B.

    2017-06-01

    The ocean surface is organized into regions with distinct properties reflecting the complexity of interactions between environmental forcing and biological responses. The delineation of these functional units, each with unique, homogeneous properties and underlying ecosystem structure and dynamics, can be defined as ocean surface partitioning. The main purposes and applications of ocean partitioning include the evaluation of particular marine environments; generation of more accurate satellite ocean colour products; assimilation of data into biogeochemical and climate models; and establishment of ecosystem-based management practices. This paper reviews the diverse approaches implemented for ocean surface partition into functional units, using ocean colour remote sensing (OCRS) data, including their purposes, criteria, methods and scales. OCRS offers a synoptic, high spatial-temporal resolution, multi-decadal coverage of bio-optical properties, relevant to the applications and value of ocean surface partitioning. In combination with other biotic and/or abiotic data, OCRS-derived data (e.g., chlorophyll-a, optical properties) provide a broad and varied source of information that can be analysed using different delineation methods derived from subjective, expert-based to unsupervised learning approaches (e.g., cluster, fuzzy and empirical orthogonal function analyses). Partition schemes are applied at global to mesoscale spatial coverage, with static (time-invariant) or dynamic (time-varying) representations. A case study, the highly heterogeneous area off SW Iberian Peninsula (NE Atlantic), illustrates how the selection of spatial coverage and temporal representation affects the discrimination of distinct environmental drivers of phytoplankton variability. Advances in operational oceanography and in the subject area of satellite ocean colour, including development of new sensors, algorithms and products, are among the potential benefits from extended use, scope and applications of ocean surface partitioning using OCRS.

  16. Application of Spaceborne Scatterometer to Study Typhoon, Tropical Hydrologic Balance and El Nino

    NASA Technical Reports Server (NTRS)

    Liu, W. Timothy

    1995-01-01

    The high spatial resolution and global coverage of a spaceborne microwave scatterometer make it a power instrument to study phenomena ranging from typhoon to El Nino Southern Oscillation which have regional and short term economic and ecological impacts as well as effects on long term and global climate changes. In this report, the application of scatterometer data, by itself, to study the intensity and the evolution of typhoon is demonstrated. The potential of combining wind vector and precipitable water derived from two spaceborne sensors to study the hydrologic balance in the tropics is discussed. The role of westerly wind bursts as a precursor of anomalous warming in the equatorial Pacific is investigated with coincident data from microwave scatterometer, altimeter and radiometer.

  17. Where have all the people gone? Enhancing global conservation using night lights and social media.

    PubMed

    Levin, Noam; Kark, Salit; Crandall, David

    2015-12-01

    Conservation prioritization at large scales is complex, combining biological, environmental, and social factors. While conservation scientists now more often aim to incorporate human-related factors, a critical yet unquantified challenge remains: to identify which areas people use for recreation outside urban centers. To address this gap in applied ecology and conservation, we developed a novel approach for quantifying human presence beyond populated areas by combining social media "big data" and remote sensing tools. We used data from the Flickr photo-sharing website as a surrogate for identifying spatial variation in visitation globally, and complemented this estimate with spatially explicit information on stable night lights between 2004 and 2012, used as a proxy for identifying urban and industrial centers. Natural and seminatural areas attracting visitors were defined as areas both highly photographed and non-lit. The number of Flickr photographers within protected areas was found to be a reliable surrogate for estimating visitor numbers as confirmed by local authority censuses (r = 0.8). Half of all visitors' photos taken in protected areas originated from under 1% of all protected areas on Earth (250 of -27 000). The most photographed protected areas globally included Yosemite and Yellowstone National Parks (USA), and the Lake and Peak Districts (UK). Factors explaining the spatial variation in protected areas Flickr photo coverage included their type (e.g., UNESCO World Heritage sites have higher visitation) and accessibility to roads and trails. Using this approach, we identified photography hotspots, which draw many visitors and are also unlit (i.e., are located outside urban centers), but currently remain largely unprotected, such as Brazil's Pantanal and Bolivia's Salar de Uyuni. The integrated big data approach developed here demonstrates the benefits of combining remote sensing sources and novel geo-tagged and crowd-sourced information from social media in future efforts to identify spatial conservation gaps and pressures in real time, and their spatial and temporal variation globally.

  18. The impact of transport model differences on CO2 surface flux estimates from OCO-2 retrievals of column average CO2

    NASA Astrophysics Data System (ADS)

    Basu, Sourish; Baker, David F.; Chevallier, Frédéric; Patra, Prabir K.; Liu, Junjie; Miller, John B.

    2018-05-01

    We estimate the uncertainty of CO2 flux estimates in atmospheric inversions stemming from differences between different global transport models. Using a set of observing system simulation experiments (OSSEs), we estimate this uncertainty as represented by the spread between five different state-of-the-art global transport models (ACTM, LMDZ, GEOS-Chem, PCTM and TM5), for both traditional in situ CO2 inversions and inversions of XCO2 estimates from the Orbiting Carbon Observatory 2 (OCO-2). We find that, in the absence of relative biases between in situ CO2 and OCO-2 XCO2, OCO-2 estimates of terrestrial flux for TRANSCOM-scale land regions can be more robust to transport model differences than corresponding in situ CO2 inversions. This is due to a combination of the increased spatial coverage of OCO-2 samples and the total column nature of OCO-2 estimates. We separate the two effects by constructing hypothetical in situ networks with the coverage of OCO-2 but with only near-surface samples. We also find that the transport-driven uncertainty in fluxes is comparable between well-sampled northern temperate regions and poorly sampled tropical regions. Furthermore, we find that spatiotemporal differences in sampling, such as between OCO-2 land and ocean soundings, coupled with imperfect transport, can produce differences in flux estimates that are larger than flux uncertainties due to transport model differences. This highlights the need for sampling with as complete a spatial and temporal coverage as possible (e.g., using both land and ocean retrievals together for OCO-2) to minimize the impact of selective sampling. Finally, our annual and monthly estimates of transport-driven uncertainties can be used to evaluate the robustness of conclusions drawn from real OCO-2 and in situ CO2 inversions.

  19. Satellite Estimates of the Direct Radiative Forcing of Biomass Burning Aerosols Over South America and Africa

    NASA Technical Reports Server (NTRS)

    Christopher, Sundar A.; Wang, Min; Kliche, Donna V.; Berendes, Todd; Welch, Ronald M.; Yang, S.K.

    1997-01-01

    Atmospheric aerosol particles, both natural and anthropogenic are important to the earth's radiative balance. Therefore it is important to provide adequate validation information on the spatial, temporal and radiative properties of aerosols. This will enable us to predict realistic global estimates of aerosol radiative effects more confidently. The current study utilizes 66 AVHRR LAC (Local Area Coverage) and coincident Earth Radiation Budget Experiment (ERBE) images to characterize the fires, smoke and radiative forcings of biomass burning aerosols over four major ecosystems of South America.

  20. A Malaria Ecology Index Predicted Spatial and Temporal Variation of Malaria Burden and Efficacy of Antimalarial Interventions Based on African Serological Data.

    PubMed

    McCord, Gordon C; Anttila-Hughes, Jesse K

    2017-03-01

    Reducing the global health burden of malaria is complicated by weak reporting systems for infectious diseases and a paucity of vital statistics registration. This limits our ability to predict changes in malaria health burden intensity, target antimalarial resources where needed, and identify malaria impacts in retrospective data. We refined and deployed a temporally and spatially varying Malaria Ecology Index (MEI) incorporating climatological and ecological data to estimate malaria transmission strength and validate it against cross-sectional serology data from 39,875 children from seven sub-Saharan African countries. The MEI is strongly associated with malaria burden; a 1 standard deviation higher MEI is associated with a 50-117% increase in malaria risk and a 3-5 g/dL lower level of Hg. Results show that the relationship between malaria ecology and disease burden is attenuated with sufficient coverage of insecticide treated nets (ITNs) or indoor residual spraying (IRS). Having both ITNs and IRS reduce the added risk from adverse malaria ecology conditions by half. Readily available climate and ecology data can be used to estimate the spatial and temporal variation in malaria disease burden, providing a feasible alternative to direct surveillance. This will help target resources for malaria programs in the absence of national coverage of active case detection systems, and facilitate malaria research using retrospective health data.

  1. Enabling Technologies for High-accuracy Multiangle Spectropolarimetric Imaging from Space

    NASA Technical Reports Server (NTRS)

    Diner, David J.; Macenka, Steven A.; Seshndri, Suresh; Bruce, Carl E; Jau, Bruno; Chipman, Russell A.; Cairns, Brian; Christoph, Keller; Foo, Leslie D.

    2004-01-01

    Satellite remote sensing plays a major role in measuring the optical and radiative properties, environmental impact, and spatial and temporal distribution of tropospheric aerosols. In this paper, we envision a new generation of spaceborne imager that integrates the unique strengths of multispectral, multiangle, and polarimetric approaches, thereby achieving better accuracies in aerosol optical depth and particle properties than can be achieved using any one method by itself. Design goals include spectral coverage from the near-UV to the shortwave infrared; global coverage within a few days; intensity and polarimetric imaging simultaneously at multiple view angles; kilometer to sub-kilometer spatial resolution; and measurement of the degree of linear polarization for a subset of the spectral complement with an uncertainty of 0.5% or less. The latter requirement is technically the most challenging. In particular, an approach for dealing with inter-detector gain variations is essential to avoid false polarization signals. We propose using rapid modulation of the input polarization state to overcome this problem, using a high-speed variable retarder in the camera design. Technologies for rapid retardance modulation include mechanically rotating retarders, liquid crystals, and photoelastic modulators (PEMs). We conclude that the latter are the most suitable.

  2. CERES Monthly Gridded Single Satellite TOA and Surfaces/Clouds (SFC) data in HDF (CER_SFC_TRMM-PFM-VIRS_Beta4)

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A. (Principal Investigator)

    The Monthly Gridded TOA/Surface Fluxes and Clouds (SFC) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SFC is also produced for combinations of scanner instruments. All instantaneous shortwave, longwave, and window fluxes at the Top-of-the-Atmosphere (TOA) and surface from the CERES SSF product for a month are sorted by 1-degree spatial regions and by the local hour of observation. The mean of the instantaneous fluxes for a given region-hour bin is determined and recorded on the SFC along with other flux statistics and scene information. These average fluxes are given for both clear-sky and total-sky scenes. The regional cloud properties are column averaged and are included on the SFC. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2000-03-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=100] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree; Horizontal_Resolution_Range=100 km - < 250 km or approximately 1 degree - < 2.5 degrees; Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].

  3. BOREAS RSS-10 TOMS Circumpolar One-Degree PAR Images

    NASA Technical Reports Server (NTRS)

    Dye, Dennis G.; Holben, Brent; Nickeson, Jaime (Editor); Hall, Forrest G. (Editor); Smith, David E. (Technical Monitor)

    2000-01-01

    The Boreal Ecosystem-Atmosphere Study (BOREAS) Remote Sensing Science (RSS)-10 team investigated the magnitude of daily, seasonal, and yearly variations of Photosynthetically Active Radiation (PAR) from ground and satellite observations. This data set contains satellite estimates of surface-incident PAR (400-700 nm, MJ/sq m) at one-degree spatial resolution. The spatial coverage is circumpolar from latitudes of 41 to 66 degrees north. The temporal coverage is from May through September for years 1979 through 1989. Eleven-year statistics are also provided: (1) mean, (2) standard deviation, and (3) coefficient of variation for 1979-89. The PAR estimates were derived from the global gridded ultraviolet reflectivity data product (average of 360, 380 nm) from the Nimbus-7 Total Ozone Mapping Spectrometer (TOMS). Image mask data are provided for identifying the boreal forest zone, and ocean/land and snow/ice-covered areas. The data are available as binary image format data files. The PAR data are available from the Earth Observing System Data and Information System (EOSDIS) Oak Ridge National Laboratory (ORNL) Distributed Active Archive Center (DAAC). The data files are available on a CD-ROM (see document number 20010000884).

  4. SPARTAN: a global network to evaluate and enhance satellite-based estimates of ground-level particulate matter for global health applications

    NASA Astrophysics Data System (ADS)

    Snider, G.; Weagle, C. L.; Martin, R. V.; van Donkelaar, A.; Conrad, K.; Cunningham, D.; Gordon, C.; Zwicker, M.; Akoshile, C.; Artaxo, P.; Anh, N. X.; Brook, J.; Dong, J.; Garland, R. M.; Greenwald, R.; Griffith, D.; He, K.; Holben, B. N.; Kahn, R.; Koren, I.; Lagrosas, N.; Lestari, P.; Ma, Z.; Vanderlei Martins, J.; Quel, E. J.; Rudich, Y.; Salam, A.; Tripathi, S. N.; Yu, C.; Zhang, Q.; Zhang, Y.; Brauer, M.; Cohen, A.; Gibson, M. D.; Liu, Y.

    2015-01-01

    Ground-based observations have insufficient spatial coverage to assess long-term human exposure to fine particulate matter (PM2.5) at the global scale. Satellite remote sensing offers a promising approach to provide information on both short- and long-term exposure to PM2.5 at local-to-global scales, but there are limitations and outstanding questions about the accuracy and precision with which ground-level aerosol mass concentrations can be inferred from satellite remote sensing alone. A key source of uncertainty is the global distribution of the relationship between annual average PM2.5 and discontinuous satellite observations of columnar aerosol optical depth (AOD). We have initiated a global network of ground-level monitoring stations designed to evaluate and enhance satellite remote sensing estimates for application in health-effects research and risk assessment. This Surface PARTiculate mAtter Network (SPARTAN) includes a global federation of ground-level monitors of hourly PM2.5 situated primarily in highly populated regions and collocated with existing ground-based sun photometers that measure AOD. The instruments, a three-wavelength nephelometer and impaction filter sampler for both PM2.5 and PM10, are highly autonomous. Hourly PM2.5 concentrations are inferred from the combination of weighed filters and nephelometer data. Data from existing networks were used to develop and evaluate network sampling characteristics. SPARTAN filters are analyzed for mass, black carbon, water-soluble ions, and metals. These measurements provide, in a variety of regions around the world, the key data required to evaluate and enhance satellite-based PM2.5 estimates used for assessing the health effects of aerosols. Mean PM2.5 concentrations across sites vary by more than 1 order of magnitude. Our initial measurements indicate that the ratio of AOD to ground-level PM2.5 is driven temporally and spatially by the vertical profile in aerosol scattering. Spatially this ratio is also strongly influenced by the mass scattering efficiency.

  5. Oceanic primary production 2. Estimation at global scale from satellite (coastal zone color scanner) chlorophyll

    NASA Astrophysics Data System (ADS)

    Antoine, David; André, Jean-Michel; Morel, André

    A fast method has been proposed [Antoine and Morel, this issue] to compute the oceanic primary production from the upper ocean chlorophyll-like pigment concentration, as it can be routinely detected by a spaceborne ocean color sensor. This method is applied here to the monthly global maps of the photosynthetic pigments that were derived from the coastal zone color scanner (CZCS) data archive [Feldman et al., 1989]. The photosynthetically active radiation (PAR) field is computed from the astronomical constant and by using an atmospheric model, thereafter combined with averaged cloud information, derived from the International Satellite Cloud Climatology Project (ISCCP). The aim is to assess the seasonal evolution, as well as the spatial distribution of the photosynthetic carbon fixation within the world ocean and for a ``climatological year,'' to the extent that both the chlorophyll information and the cloud coverage statistics actually are averages obtained over several years. The computed global annual production actually ranges between 36.5 and 45.6 Gt C yr-1 according to the assumption which is made (0.8 or 1) about the ratio of active-to-total pigments (recall that chlorophyll and pheopigments are not radiometrically resolved by CZCS). The relative contributions to the global productivity of the various oceans and zonal belts are examined. By considering the hypotheses needed in such computations, the nature of the data used as inputs, and the results of the sensitivity studies, the global numbers have to be cautiously considered. Improving the reliability of the primary production estimates implies (1) new global data sets allowing a higher temporal resolution and a better coverage, (2) progress in the knowledge of physiological responses of phytoplankton and therefore refinements of the time and space dependent parameterizations of these responses.

  6. Application of global datasets for hydrological modelling of a remote, snowmelt driven catchment in the Canadian Sub-Arctic

    NASA Astrophysics Data System (ADS)

    Casson, David; Werner, Micha; Weerts, Albrecht; Schellekens, Jaap; Solomatine, Dimitri

    2017-04-01

    Hydrological modelling in the Canadian Sub-Arctic is hindered by the limited spatial and temporal coverage of local meteorological data. Local watershed modelling often relies on data from a sparse network of meteorological stations with a rough density of 3 active stations per 100,000 km2. Global datasets hold great promise for application due to more comprehensive spatial and extended temporal coverage. A key objective of this study is to demonstrate the application of global datasets and data assimilation techniques for hydrological modelling of a data sparse, Sub-Arctic watershed. Application of available datasets and modelling techniques is currently limited in practice due to a lack of local capacity and understanding of available tools. Due to the importance of snow processes in the region, this study also aims to evaluate the performance of global SWE products for snowpack modelling. The Snare Watershed is a 13,300 km2 snowmelt driven sub-basin of the Mackenzie River Basin, Northwest Territories, Canada. The Snare watershed is data sparse in terms of meteorological data, but is well gauged with consistent discharge records since the late 1970s. End of winter snowpack surveys have been conducted every year from 1978-present. The application of global re-analysis datasets from the EU FP7 eartH2Observe project are investigated in this study. Precipitation data are taken from Multi-Source Weighted-Ensemble Precipitation (MSWEP) and temperature data from Watch Forcing Data applied to European Reanalysis (ERA)-Interim data (WFDEI). GlobSnow-2 is a global Snow Water Equivalent (SWE) measurement product funded by the European Space Agency (ESA) and is also evaluated over the local watershed. Downscaled precipitation, temperature and potential evaporation datasets are used as forcing data in a distributed version of the HBV model implemented in the WFLOW framework. Results demonstrate the successful application of global datasets in local watershed modelling, but that validation of actual frozen precipitation and snowpack conditions is very difficult. The distributed hydrological model shows good streamflow simulation performance based on statistical model evaluation techniques. Results are also promising for inter-annual variability, spring snowmelt onset and time to peak flows. It is expected that data assimilation of stream flow using an Ensemble Kalman Filter will further improve model performance. This study shows that global re-analysis datasets hold great potential for understanding the hydrology and snowpack dynamics of the expansive and data sparse sub-Arctic. However, global SWE products will require further validation and algorithm improvements, particularly over boreal forest and lake-rich regions.

  7. CarbonSat -Quantification of natural and man-made greenhouse gas surface fluxes from satellite observations of atmospheric CO2 and CH4 column amounts

    NASA Astrophysics Data System (ADS)

    Bovensmann, Heinrich; Buchwitz, M.; Burrows, J. P.; Notholt, J.; Bovensmann, H.; Reuter, M.; Trautmann, T.; Ehret, G.; Heimann, M.; Monks, P.; B&Ü, H.; Sch; Harding, R.; Quegan, S.; Rayner, P.; Breon, F. M.; Bergam-O Aschi, P.; Dittus, H. J.; Erzinger, J.; Crisp, D.

    Surprisingly and in spite of their exceptional driving role in climate change, our knowledge about the variable sources and sinks of the greenhouse gases CO2 and CH4 is currently inadequate. For example, the ability of the Earth-atmosphere system to buffer increasing anthropogenic emissions into the atmosphere has large uncertainties and emissions from many sources (geo-logic, anthropogenic, biogenic) are to a large degree uncertain. An adequate knowledge of the sources and sinks of CO2 and CH4 and their response to a changing climate is a pre-requisite for the accurate prediction of the regional variation of the climate of our planet. CarbonSat is a new mission concept to quantify and monitor CO2 and CH4 sources and sinks at the regional to local scale. The data will allow a better understanding of the processes that control the Carbon Cycle dynamics and an independent estimate of local greenhouse gas emissions (fossil fuel, geological CO2 and CH4, etc.). This will be achieved by a unique combination of high spatial resolution passive and active compact remote sensing with inverse modeling techniques. CarbonSat will accurately measure column-averaged mixing ratios of CO2 and CH4, i.e., XCO2 and XCH4, at a spatial resolution of 2 x 2 km2 (500 km continuous swath) with 0.5 percent goal (1 percent threshold) single measurement precision and global coverage within 3-6 days. Beside the quantification of sources and sinks on the regional scale, one key and innovative aim of the CarbonSat mission is to go a step forward towards quantifying local emission hot spots (fossil fuel emissions by power plants, gas/oil production, geological sources etc.). The core sensor will be a compact Imaging NIR/SWIR spectrometer (SCIAMACHY, OCO her-itage) whose measurements yield global data sets of XCO2 and XCH4 with at least one order of magnitude higher number of cloud free measurements than GOSAT and OCO and one order of magnitude better spatial coverage than OCO, due to CarbonSat's 500 km swath continuous across track coverage with 2 x 2 km2 spatial resolution. Ideally, the imaging spectrometer will be accompanied by a compact CH4 Lidar, to derive complementary accurate XCH4 -especially in high northern latitudes -as well as information on clouds and vegetation height. The overall mission concept will be presented.

  8. CarbonSat - Quantification of natural and man-made greenhouse gas surface fluxes from satellite observations of atmospheric CO2 and CH4 column amounts

    NASA Astrophysics Data System (ADS)

    Bovensmann, Heinrich; Buchwitz, Michael

    2010-05-01

    Surprisingly and in spite of their exceptional driving role in climate change, our knowledge about the variable sources and sinks of the greenhouse gases CO2 and CH4 is currently inadequate. For example, the ability of the Earth-atmosphere system to buffer increasing anthropogenic emissions into the atmosphere has large uncertainties and emissions from many sources (geologic, anthropogenic, biogenic) are to a large degree uncertain. An adequate knowledge of the sources and sinks of CO2 and CH4 and their response to a changing climate is a pre-requisite for the accurate prediction of the regional variation of the climate of our planet. CarbonSat is a new mission concept to quantify and monitor CO2 and CH4 sources and sinks at the regional to local scale. The data will allow a better understanding of the processes that control the Carbon Cycle dynamics and an independent estimate of local greenhouse gas emissions (fossil fuel, geological CO2 and CH4, etc.). This will be achieved by a unique combination of high spatial resolution passive and active compact remote sensing with inverse modeling techniques. CarbonSat will accurately measure column-averaged mixing ratios of CO2 and CH4, i.e., XCO2 and XCH4, at a spatial resolution of 2 x 2 km2 (500 km continuous swath) with 0.5% goal (1%, threshold) single measurement precision and global coverage within 3-6 days. Beside the quantification of sources and sinks on the regional scale, one key and innovative aim of the CarbonSat mission is to go a step forward towards quantifying local emission hot spots (fossil fuel emissions by power plants, gas/oil production, geological sources etc.). The core sensor will be a compact Imaging NIR/SWIR spectrometer (SCIAMACHY, OCO heritage) whose measurements yield global data sets of XCO2 and XCH4 with at least one order of magnitude higher number of cloud free measurements than GOSAT and OCO and one order of magnitude better spatial coverage than OCO, due to CarbonSat's 500 km swath continuous across track coverage with 2 x 2 km2 spatial resolution. Ideally, the imaging spectrometer will be accompanied by a compact CH4 Lidar, to derive complementary accurate XCH4 - especially in high northern latitudes - as well as information on clouds and vegetation height. The overall mission concept, the expected data quality and selected application areas will be presented.

  9. Wetland monitoring with Global Navigation Satellite System reflectometry

    PubMed Central

    Zuffada, Cinzia; Shah, Rashmi; Chew, Clara; Lowe, Stephen T.; Mannucci, Anthony J.; Cardellach, Estel; Brakenridge, G. Robert; Geller, Gary; Rosenqvist, Ake

    2017-01-01

    Abstract Information about wetland dynamics remains a major missing gap in characterizing, understanding, and projecting changes in atmospheric methane and terrestrial water storage. A review of current satellite methods to delineate and monitor wetland change shows some recent advances, but much improved sensing technologies are still needed for wetland mapping, not only to provide more accurate global inventories but also to examine changes spanning multiple decades. Global Navigation Satellite Systems Reflectometry (GNSS‐R) signatures from aircraft over the Ebro River Delta in Spain and satellite measurements over the Mississippi River and adjacent watersheds demonstrate that inundated wetlands can be identified under different vegetation conditions including a dense rice canopy and a thick forest with tall trees, where optical sensors and monostatic radars provide limited capabilities. Advantages as well as constraints of GNSS‐R are presented, and the synergy with various satellite observations are considered to achieve a breakthrough capability for multidecadal wetland dynamics monitoring with frequent global coverage at multiple spatial and temporal scales. PMID:28331894

  10. Multifaceted diversity-area relationships reveal global hotspots of mammalian species, trait and lineage diversity.

    PubMed

    Mazel, Florent; Guilhaumon, François; Mouquet, Nicolas; Devictor, Vincent; Gravel, Dominique; Renaud, Julien; Cianciaruso, Marcus Vinicius; Loyola, Rafael Dias; Diniz-Filho, José Alexandre Felizola; Mouillot, David; Thuiller, Wilfried

    2014-08-01

    To define biome-scale hotspots of phylogenetic and functional mammalian biodiversity (PD and FD, respectively) and compare them to 'classical' hotspots based on species richness (SR) only. Global. SR, PD & FD were computed for 782 terrestrial ecoregions using distribution ranges of 4616 mammalian species. We used a set of comprehensive diversity indices unified by a recent framework that incorporates the species relative coverage in each ecoregion. We build large-scale multifaceted diversity-area relationships to rank ecoregions according to their levels of biodiversity while accounting for the effect of area on each diversity facet. Finally we defined hotspots as the top-ranked ecoregions. While ignoring species relative coverage led to a relative good congruence between biome top ranked SR, PD and FD hotspots, ecoregions harboring a rich and abundantly represented evolutionary history and functional diversity did not match with top ranked ecoregions defined by species richness. More importantly PD and FD hotspots showed important spatial mismatches. We also found that FD and PD generally reached their maximum values faster than species richness as a function of area. The fact that PD/FD reach faster their maximal value than SR may suggest that the two former facets might be less vulnerable to habitat loss than the latter. While this point is expected, it is the first time that it is quantified at global scale and should have important consequences in conservation. Incorporating species relative coverage into the delineation of multifaceted hotspots of diversity lead to weak congruence between SR, PD and FD hotspots. This means that maximizing species number may fail at preserving those nodes (in the phylogenetic or functional tree) that are relatively abundant in the ecoregion. As a consequence it may be of prime importance to adopt a multifaceted biodiversity perspective to inform conservation strategies at global scale.

  11. Multifaceted diversity-area relationships reveal global hotspots of mammalian species, trait and lineage diversity

    PubMed Central

    Mazel, Florent; Guilhaumon, François; Mouquet, Nicolas; Devictor, Vincent; Gravel, Dominique; Renaud, Julien; Cianciaruso, Marcus Vinicius; Loyola, Rafael Dias; Diniz-Filho, José Alexandre Felizola; Mouillot, David; Thuiller, Wilfried

    2014-01-01

    Aim To define biome-scale hotspots of phylogenetic and functional mammalian biodiversity (PD and FD, respectively) and compare them to ‘classical’ hotspots based on species richness (SR) only. Location Global Methods SR, PD & FD were computed for 782 terrestrial ecoregions using distribution ranges of 4616 mammalian species. We used a set of comprehensive diversity indices unified by a recent framework that incorporates the species relative coverage in each ecoregion. We build large-scale multifaceted diversity-area relationships to rank ecoregions according to their levels of biodiversity while accounting for the effect of area on each diversity facet. Finally we defined hotspots as the top-ranked ecoregions. Results While ignoring species relative coverage led to a relative good congruence between biome top ranked SR, PD and FD hotspots, ecoregions harboring a rich and abundantly represented evolutionary history and functional diversity did not match with top ranked ecoregions defined by species richness. More importantly PD and FD hotspots showed important spatial mismatches. We also found that FD and PD generally reached their maximum values faster than species richness as a function of area. Main conclusions The fact that PD/FD reach faster their maximal value than SR may suggest that the two former facets might be less vulnerable to habitat loss than the latter. While this point is expected, it is the first time that it is quantified at global scale and should have important consequences in conservation. Incorporating species relative coverage into the delineation of multifaceted hotspots of diversity lead to weak congruence between SR, PD and FD hotspots. This means that maximizing species number may fail at preserving those nodes (in the phylogenetic or functional tree) that are relatively abundant in the ecoregion. As a consequence it may be of prime importance to adopt a multifaceted biodiversity perspective to inform conservation strategies at global scale. PMID:25071413

  12. InSAR constraints on soil moisture evolution after the March 2015 extreme precipitation event in Chile.

    PubMed

    Scott, C P; Lohman, R B; Jordan, T E

    2017-07-07

    Constraints on soil moisture can guide agricultural practices, act as input into weather, flooding and climate models and inform water resource policies. Space-based interferometric synthetic aperture radar (InSAR) observations provide near-global coverage, even in the presence of clouds, of proxies for soil moisture derived from the amplitude and phase content of radar imagery. We describe results from a 1.5 year-long InSAR time series spanning the March, 2015 extreme precipitation event in the hyperarid Atacama desert of Chile, constraining the immediate increase in soil moisture and drying out over the following months, as well as the response to a later, smaller precipitation event. The inferred temporal evolution of soil moisture is remarkably consistent between independent, overlapping SAR tracks covering a region ~100 km in extent. The unusually large rain event, combined with the extensive spatial and temporal coverage of the SAR dataset, present an unprecedented opportunity to image the time-evolution of soil characteristics over different surface types. Constraints on the timescale of shallow water storage after precipitation events are increasingly valuable as global water resources continue to be stretched to their limits and communities continue to develop in flood-prone areas.

  13. CERES Clouds and Radiative Swath (CRS) data in HDF. (CER_CRS_Terra-FM2-MODIS_Edition2B)

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A. (Principal Investigator)

    The Clouds and Radiative Swath (CRS) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The CRS contains all of the CERES SSF product data. For each CERES footprint on the SSF the CRS also contains vertical flux profiles evaluated at four levels in the atmosphere: the surface, 500-, 70-, and 1-hPa. The CRS fluxes and cloud parameters are adjusted for consistency with a radiative transfer model and adjusted fluxes are evaluated at the four atmospheric levels for both clear-sky and total-sky. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2001-10-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].

  14. CERES Clouds and Radiative Swath (CRS) data in HDF (CER_CRS_TRMM-PFM-VIRS_Edition2C)

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A. (Principal Investigator)

    The Clouds and Radiative Swath (CRS) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The CRS contains all of the CERES SSF product data. For each CERES footprint on the SSF the CRS also contains vertical flux profiles evaluated at four levels in the atmosphere: the surface, 500-, 70-, and 1-hPa. The CRS fluxes and cloud parameters are adjusted for consistency with a radiative transfer model and adjusted fluxes are evaluated at the four atmospheric levels for both clear-sky and total-sky. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2000-03-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].

  15. CERES Clouds and Radiative Swath (CRS) data in HDF. (CER_CRS_Terra-FM2-MODIS_Edition2A

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A. (Principal Investigator)

    The Clouds and Radiative Swath (CRS) product contains one hour of instantaneous Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The CRS contains all of the CERES SSF product data. For each CERES footprint on the SSF the CRS also contains vertical flux profiles evaluated at four levels in the atmosphere: the surface, 500-, 70-, and 1-hPa. The CRS fluxes and cloud parameters are adjusted for consistency with a radiative transfer model and adjusted fluxes are evaluated at the four atmospheric levels for both clear-sky and total-sky. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2001-10-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].

  16. The future for domestic communications satellites - Lease or buy

    NASA Astrophysics Data System (ADS)

    Rooney, K. J.

    1982-04-01

    The demand for leased satellite communications services is growing at such a rate that a dedicated leasing satellite system is envisioned to deal with the demand. The most economical solution would be three similarly designed 24-channel capacity satellites with on-orbit antenna beam reconfiguration offering regional C-band coverage and situated over America, Africa, and Asia. Spatial frequency reuse is not considered necessary until at least the next generation. A two-meter antenna projecting a three dB beamwidth nearly three degrees in diameter at 4 GHz can achieve global coverage with only 19 adjacent beams at the aforementioned locations. Circular polarization will be continued in leasing. It is proposed to operate dual orthogonal polarization frequency reuse for uplink and downlink to increase the available capacity. The communications repeater is discussed in detail together with a glossary of terms and an economic analysis of the competition from dedicated domestic satellites.

  17. Filling in the GAPS: evaluating completeness and coverage of open-access biodiversity databases in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Troia, Matthew J.; McManamay, Ryan A.

    Primary biodiversity data constitute observations of particular species at given points in time and space. Open-access electronic databases provide unprecedented access to these data, but their usefulness in characterizing species distributions and patterns in biodiversity depend on how complete species inventories are at a given survey location and how uniformly distributed survey locations are along dimensions of time, space, and environment. Our aim was to compare completeness and coverage among three open-access databases representing ten taxonomic groups (amphibians, birds, freshwater bivalves, crayfish, freshwater fish, fungi, insects, mammals, plants, and reptiles) in the contiguous United States. We compiled occurrence records frommore » the Global Biodiversity Information Facility (GBIF), the North American Breeding Bird Survey (BBS), and federally administered fish surveys (FFS). In this study, we aggregated occurrence records by 0.1° × 0.1° grid cells and computed three completeness metrics to classify each grid cell as well-surveyed or not. Next, we compared frequency distributions of surveyed grid cells to background environmental conditions in a GIS and performed Kolmogorov–Smirnov tests to quantify coverage through time, along two spatial gradients, and along eight environmental gradients. The three databases contributed >13.6 million reliable occurrence records distributed among >190,000 grid cells. The percent of well-surveyed grid cells was substantially lower for GBIF (5.2%) than for systematic surveys (BBS and FFS; 82.5%). Still, the large number of GBIF occurrence records produced at least 250 well-surveyed grid cells for six of nine taxonomic groups. Coverages of systematic surveys were less biased across spatial and environmental dimensions but were more biased in temporal coverage compared to GBIF data. GBIF coverages also varied among taxonomic groups, consistent with commonly recognized geographic, environmental, and institutional sampling biases. Lastly, this comprehensive assessment of biodiversity data across the contiguous United States provides a prioritization scheme to fill in the gaps by contributing existing occurrence records to the public domain and planning future surveys.« less

  18. Filling in the GAPS: evaluating completeness and coverage of open-access biodiversity databases in the United States

    DOE PAGES

    Troia, Matthew J.; McManamay, Ryan A.

    2016-06-12

    Primary biodiversity data constitute observations of particular species at given points in time and space. Open-access electronic databases provide unprecedented access to these data, but their usefulness in characterizing species distributions and patterns in biodiversity depend on how complete species inventories are at a given survey location and how uniformly distributed survey locations are along dimensions of time, space, and environment. Our aim was to compare completeness and coverage among three open-access databases representing ten taxonomic groups (amphibians, birds, freshwater bivalves, crayfish, freshwater fish, fungi, insects, mammals, plants, and reptiles) in the contiguous United States. We compiled occurrence records frommore » the Global Biodiversity Information Facility (GBIF), the North American Breeding Bird Survey (BBS), and federally administered fish surveys (FFS). In this study, we aggregated occurrence records by 0.1° × 0.1° grid cells and computed three completeness metrics to classify each grid cell as well-surveyed or not. Next, we compared frequency distributions of surveyed grid cells to background environmental conditions in a GIS and performed Kolmogorov–Smirnov tests to quantify coverage through time, along two spatial gradients, and along eight environmental gradients. The three databases contributed >13.6 million reliable occurrence records distributed among >190,000 grid cells. The percent of well-surveyed grid cells was substantially lower for GBIF (5.2%) than for systematic surveys (BBS and FFS; 82.5%). Still, the large number of GBIF occurrence records produced at least 250 well-surveyed grid cells for six of nine taxonomic groups. Coverages of systematic surveys were less biased across spatial and environmental dimensions but were more biased in temporal coverage compared to GBIF data. GBIF coverages also varied among taxonomic groups, consistent with commonly recognized geographic, environmental, and institutional sampling biases. Lastly, this comprehensive assessment of biodiversity data across the contiguous United States provides a prioritization scheme to fill in the gaps by contributing existing occurrence records to the public domain and planning future surveys.« less

  19. A global database of ant species abundances

    USGS Publications Warehouse

    Gibb, Heloise; Dunn, Rob R.; Sanders, Nathan J.; Grossman, Blair F.; Photakis, Manoli; Abril, Silvia; Agosti, Donat; Andersen, Alan N.; Angulo, Elena; Armbrecht, Ingre; Arnan, Xavier; Baccaro, Fabricio B.; Bishop, Tom R.; Boulay, Raphael; Bruhl, Carsten; Castracani, Cristina; Cerda, Xim; Del Toro, Israel; Delsinne, Thibaut; Diaz, Mireia; Donoso, David A.; Ellison, Aaron M.; Enriquez, Martha L.; Fayle, Tom M.; Feener Jr., Donald H.; Fisher, Brian L.; Fisher, Robert N.; Fitpatrick, Matthew C.; Gomez, Cristanto; Gotelli, Nicholas J.; Gove, Aaron; Grasso, Donato A.; Groc, Sarah; Guenard, Benoit; Gunawardene, Nihara; Heterick, Brian; Hoffmann, Benjamin; Janda, Milan; Jenkins, Clinton; Kaspari, Michael; Klimes, Petr; Lach, Lori; Laeger, Thomas; Lattke, John; Leponce, Maurice; Lessard, Jean-Philippe; Longino, John; Lucky, Andrea; Luke, Sarah H.; Majer, Jonathan; McGlynn, Terrence P.; Menke, Sean; Mezger, Dirk; Mori, Alessandra; Moses, Jimmy; Munyai, Thinandavha Caswell; Pacheco, Renata; Paknia, Omid; Pearce-Duvet, Jessica; Pfeiffer, Martin; Philpott, Stacy M.; Resasco, Julian; Retana, Javier; Silva, Rogerio R.; Sorger, Magdalena D.; Souza, Jorge; Suarez, Andrew V.; Tista, Melanie; Vasconcelos, Heraldo L.; Vonshak, Merav; Weiser, Michael D.; Yates, Michelle; Parr, Catherine L.

    2017-01-01

    What forces structure ecological assemblages? A key limitation to general insights about assemblage structure is the availability of data that are collected at a small spatial grain (local assemblages) and a large spatial extent (global coverage). Here, we present published and unpublished data from 51,388 ant abundance and occurrence records of more than 2693 species and 7953 morphospecies from local assemblages collected at 4212 locations around the world. Ants were selected because they are diverse and abundant globally, comprise a large fraction of animal biomass in most terrestrial communities, and are key contributors to a range of ecosystem functions. Data were collected between 1949 and 2014, and include, for each geo-referenced sampling site, both the identity of the ants collected and details of sampling design, habitat type and degree of disturbance. The aim of compiling this dataset was to provide comprehensive species abundance data in order to test relationships between assemblage structure and environmental and biogeographic factors. Data were collected using a variety of standardised methods, such as pitfall and Winkler traps, and will be valuable for studies investigating large-scale forces structuring local assemblages. Understanding such relationships is particularly critical under current rates of global change. We encourage authors holding additional data on systematically collected ant assemblages, especially those in dry and cold, and remote areas, to contact us and contribute their data to this growing dataset.

  20. Implementation of a global-scale operational data assimilation system for satellite-based soil moisture retrievals

    NASA Astrophysics Data System (ADS)

    Bolten, J.; Crow, W.; Zhan, X.; Reynolds, C.

    2008-08-01

    Timely and accurate monitoring of global weather anomalies and drought conditions is essential for assessing global crop conditions. Soil moisture observations are particularly important for crop yield fluctuations provided by the US Department of Agriculture (USDA) Production Estimation and Crop Assessment Division (PECAD). The current system utilized by PECAD estimates soil moisture from a 2-layer water balance model based on precipitation and temperature data from World Meteorological Organization (WMO) and US Air Force Weather Agency (AFWA). The accuracy of this system is highly dependent on the data sources used; particularly the accuracy, consistency, and spatial and temporal coverage of the land and climatic data input into the models. However, many regions of the globe lack observations at the temporal and spatial resolutions required by PECAD. This study incorporates NASA's soil moisture remote sensing product provided by the EOS Advanced Microwave Scanning Radiometer (AMSR-E) into the U.S. Department of Agriculture Crop Assessment and Data Retrieval (CADRE) decision support system. A quasi-global-scale operational data assimilation system has been designed and implemented to provide CADRE a daily product of integrated AMSR-E soil moisture observations with the PECAD two-layer soil moisture model forecasts. A methodology of the system design and a brief evaluation of the system performance over the Conterminous United States (CONUS) is presented.

  1. Spatially Complete Surface Albedo Data Sets: Value-Added Products Derived from Terra MODIS Land Products

    NASA Technical Reports Server (NTRS)

    Moody, E. G.; King, M. D.; Platnick, S.; Schaaf, C. B.; Gao, F.

    2004-01-01

    Spectral land surface albedo is an important parameter for describing the radiative properties of the Earth. Accordingly it reflects the consequences of natural and human interactions, such as anthropogenic, meteorological, and phenological effects, on global and local climatological trends. Consequently, albedos are integral parts in a variety of research areas, such as general circulation models (GCMs), energy balance studies, modeling of land use and land use change, and biophysical, oceanographic, and meteorological studies. The availability of global albedo data over a large range of spectral channels and at high spatial resolution has dramatically improved with the launch of the Moderate Resolution Imaging Spectroradiometer (MODIS) instrument aboard NASA s Earth Observing System (EOS) Terra spacecraft in December 1999. However, lack of spatial and temporal coverage due to cloud and snow effects can preclude utilization of official products in production and research studies. We report on a technique used to fill incomplete MOD43 albedo data sets with the intention of providing complete value-added maps. The technique is influenced by the phenological concept that within a certain area, a pixel s ecosystem class should exhibit similar growth cycle events over the same time period. The shape of an area s phenological temporal curve can be imposed upon existing pixel-level data to fill missing temporal points. The methodology will be reviewed by showcasing 2001 global and regional results of complete albedo and NDVl data sets.

  2. Global Monitoring of Air Pollution Using Spaceborne Sensors

    NASA Technical Reports Server (NTRS)

    Chu, D. A.; Kaufman, Y. J.; Tanre, D.; Remer, L. A.; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The MODIS sensor onboard EOS-Terra satellite provides not only daily global coverage but also high spectral (36 channels from 0.41 to 14 microns wavelength) and spatial (250m, 500m and 1km) resolution measurements. A similar MODIS instrument will be also configured into EOS-Aqua satellite to be launched soon. Using the complementary EOS-Terra and EOS-Aqua sun-synchronous orbits (10:30 AM and 1:30 PM equator-crossing time respectively), it enables us also to study the diurnal changes of the Earth system. It is unprecedented for the derivation of aerosol properties with such high spatial resolution and daily global converge. Aerosol optical depth and other aerosol properties, e.g., Angstrom coefficient over land and particle size over ocean, are derived as standard products at a spatial resolution of 10 x 10 sq km. The high resolution results are found surprisingly useful in detecting aerosols in both urban and rural regions as a result of urban/industrial pollution and biomass burning. For long-lived aerosols, the ability to monitoring the evolution of these aerosol events could help us to establish an system of air quality especially for highly populated areas. Aerosol scenarios with city pollution and biomass burning will be presented. Also presented are the method used in the derivation of aerosol optical properties and preliminary results will be presented, and issue as well as obstacles in validating aerosol optical depth with AERONET ground-based observations.

  3. Microbial diversity drives multifunctionality in terrestrial ecosystems

    PubMed Central

    Delgado-Baquerizo, Manuel; Maestre, Fernando T.; Reich, Peter B.; Jeffries, Thomas C.; Gaitan, Juan J.; Encinar, Daniel; Berdugo, Miguel; Campbell, Colin D.; Singh, Brajesh K.

    2016-01-01

    Despite the importance of microbial communities for ecosystem services and human welfare, the relationship between microbial diversity and multiple ecosystem functions and services (that is, multifunctionality) at the global scale has yet to be evaluated. Here we use two independent, large-scale databases with contrasting geographic coverage (from 78 global drylands and from 179 locations across Scotland, respectively), and report that soil microbial diversity positively relates to multifunctionality in terrestrial ecosystems. The direct positive effects of microbial diversity were maintained even when accounting simultaneously for multiple multifunctionality drivers (climate, soil abiotic factors and spatial predictors). Our findings provide empirical evidence that any loss in microbial diversity will likely reduce multifunctionality, negatively impacting the provision of services such as climate regulation, soil fertility and food and fibre production by terrestrial ecosystems. PMID:26817514

  4. Microbial diversity drives multifunctionality in terrestrial ecosystems.

    PubMed

    Delgado-Baquerizo, Manuel; Maestre, Fernando T; Reich, Peter B; Jeffries, Thomas C; Gaitan, Juan J; Encinar, Daniel; Berdugo, Miguel; Campbell, Colin D; Singh, Brajesh K

    2016-01-28

    Despite the importance of microbial communities for ecosystem services and human welfare, the relationship between microbial diversity and multiple ecosystem functions and services (that is, multifunctionality) at the global scale has yet to be evaluated. Here we use two independent, large-scale databases with contrasting geographic coverage (from 78 global drylands and from 179 locations across Scotland, respectively), and report that soil microbial diversity positively relates to multifunctionality in terrestrial ecosystems. The direct positive effects of microbial diversity were maintained even when accounting simultaneously for multiple multifunctionality drivers (climate, soil abiotic factors and spatial predictors). Our findings provide empirical evidence that any loss in microbial diversity will likely reduce multifunctionality, negatively impacting the provision of services such as climate regulation, soil fertility and food and fibre production by terrestrial ecosystems.

  5. Simulation of the spatial frequency-dependent sensitivities of Acoustic Emission sensors

    NASA Astrophysics Data System (ADS)

    Boulay, N.; Lhémery, A.; Zhang, F.

    2018-05-01

    Typical configurations of nondestructive testing by Acoustic Emission (NDT/AE) make use of multiple sensors positioned on the tested structure for detecting evolving flaws and possibly locating them by triangulation. Sensors positions must be optimized for ensuring global coverage sensitivity to AE events and minimizing their number. A simulator of NDT/AE is under development to provide help with designing testing configurations and with interpreting measurements. A global model performs sub-models simulating the various phenomena taking place at different spatial and temporal scales (crack growth, AE source and radiation, wave propagation in the structure, reception by sensors). In this context, accurate modelling of sensors behaviour must be developed. These sensors generally consist of a cylindrical piezoelectric element of radius approximately equal to its thickness, without damping and bonded to its case. Sensors themselves are bonded to the structure being tested. Here, a multiphysics finite element simulation tool is used to study the complex behaviour of AE sensor. The simulated behaviour is shown to accurately reproduce the high-amplitude measured contributions used in the AE practice.

  6. Monitoring Earth's Shortwave Reflectance: GEO Instrument Concept

    NASA Technical Reports Server (NTRS)

    Brageot, Emily; Mercury, Michael; Green, Robert; Mouroulis, Pantazis; Gerwe, David

    2015-01-01

    In this paper we present a GEO instrument concept dedicated to monitoring the Earth's global spectral reflectance with a high revisit rate. Based on our measurement goals, the ideal instrument needs to be highly sensitive (SNR greater than 100) and to achieve global coverage with spectral sampling (less than or equal to 10nm) and spatial sampling (less than or equal to 1km) over a large bandwidth (380-2510 nm) with a revisit time (greater than or equal to greater than or equal to 3x/day) sufficient to fully measure the spectral-radiometric-spatial evolution of clouds and confounding factor during daytime. After a brief study of existing instruments and their capabilities, we choose to use a GEO constellation of up to 6 satellites as a platform for this instrument concept in order to achieve the revisit time requirement with a single launch. We derive the main parameters of the instrument and show the above requirements can be fulfilled while retaining an instrument architecture as compact as possible by controlling the telescope aperture size and using a passively cooled detector.

  7. Temporal and Spatial Distribution of Liquid Water and Ice Clouds Observed by MODIS Onboard the Terra and Aqua Satellites

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Platnick, S.; Gray, M. A.; Hubanks, P. A.

    2004-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODE) was developed by NASA and launched onboard the Terra spacecraft on December 18,1999 and the Aqua spacecraft on April 26,2002. MODIS scans a swath width sufficient to provide nearly complete global coverage every two days from each polar-orbiting, sun-synchronous, platform at an altitude of 705 km, and provides images in 36 spectral bands between 0.415 and 14.235 pm with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). In this paper, we describe the radiative properties of clouds as currently determined from satellites (cloud fraction, optical thickness, cloud top pressure, and cloud effective radius), and highlight the global and regional cloud microphysical properties currently available for assessing climate variability and forcing. These include the latitudinal distribution of cloud optical and radiative properties of both liquid water and ice clouds, as well as joint histograms of cloud optical thickness and effective radius for selected geographical locations around the globe.

  8. TES/Aura L3 Atmospheric Temperatures Daily V5 (TL3ATD)

    Atmospheric Science Data Center

    2018-05-08

    ... Platform:  TES Aura L1B Nadir/Limb Spatial Coverage:  (-180, 180)(-90, 90) Spatial Resolution:  0.5 x 5 km nadir 2.3 x 23 km limb Temporal Coverage:  07/15/2004 - Present Temporal Resolution:  ...

  9. Bridging the Past with Today's Microwave Remote Sensing: A Case Study of Long Term Inundation Patterns in Two River Deltas

    NASA Astrophysics Data System (ADS)

    McDonald, K. C.; Jensen, K.; Schroeder, R.; Tessler, Z. D.

    2016-12-01

    Surface inundation extent and its predictability vary tremendously across the globe. This dynamic is being and has been captured by three general categories of satellite imagery: a) low-spatial-resolution microwave sensors with global coverage and a long record of observations (e.g., SSM/I), b) optical sensors with high spatial and temporal resolution and global coverage as well, but with cloud contamination (e.g. MODIS), and also c) less frequently in ``snapshot'' form by high-resolution synthetic aperture radar (SAR) sensors. We explore the ability to bridge techniques that can exploit the higher spatial resolution of more recent data products back in time with the help of the temporal evolution of lower resolution products. We present a study of long term (20+ yrs) inundation patterns in two river deltas: (1) the Mekong, and (2) the Ganges-Brahmaputra. This research utilizes baseline observations from the Surface Water Microwave Product Series (SWAMPS), an inundation area fraction product derived at 25km scale from active and passive microwave instruments (ERS, QuikSCAT, ASCAT, and SSM/I) that spans from Jan 1992 to the present. Every hydrological basin has unique characteristics - such as its topography, land cover / land use, and spatio-temporal variability - thus, a downscaling algorithm needs to take into account these idiosyncrasies. We merge SWAMPS with topographical information derived from 30m SRTM DEM, river networks from USGS HydroSHEDS, and train a downscaling algorithm to learn from two sets of classified SAR data: (1) L-band imaging radar from ALOS PALSAR, 2007-2010, and (2) more recent C-band imagery from the Sentinel-1 mission (2014 to present). We present an accuracy assessment of retrospective downscaled flood extent with Landsat imagery and address potential sources of biases. With a higher spatial resolution of past flooding extent, we can improve our understanding of how delta surface hydrology has responded to climate events and human activities. This is important both in the short-term for accurate flood prediction, as well as on longer-term planning horizons.

  10. On the relationship between land surface infrared emissivity and soil moisture

    NASA Astrophysics Data System (ADS)

    Zhou, Daniel K.; Larar, Allen M.; Liu, Xu

    2018-01-01

    The relationship between surface infrared (IR) emissivity and soil moisture content has been investigated based on satellite measurements. Surface soil moisture content can be estimated by IR remote sensing, namely using the surface parameters of IR emissivity, temperature, vegetation coverage, and soil texture. It is possible to separate IR emissivity from other parameters affecting surface soil moisture estimation. The main objective of this paper is to examine the correlation between land surface IR emissivity and soil moisture. To this end, we have developed a simple yet effective scheme to estimate volumetric soil moisture (VSM) using IR land surface emissivity retrieved from satellite IR spectral radiance measurements, assuming those other parameters impacting the radiative transfer (e.g., temperature, vegetation coverage, and surface roughness) are known for an acceptable time and space reference location. This scheme is applied to a decade of global IR emissivity data retrieved from MetOp-A infrared atmospheric sounding interferometer measurements. The VSM estimated from these IR emissivity data (denoted as IR-VSM) is used to demonstrate its measurement-to-measurement variations. Representative 0.25-deg spatially-gridded monthly-mean IR-VSM global datasets are then assembled to compare with those routinely provided from satellite microwave (MW) multisensor measurements (denoted as MW-VSM), demonstrating VSM spatial variations as well as seasonal-cycles and interannual variability. Initial positive agreement is shown to exist between IR- and MW-VSM (i.e., R2 = 0.85). IR land surface emissivity contains surface water content information. So, when IR measurements are used to estimate soil moisture, this correlation produces results that correspond with those customarily achievable from MW measurements. A decade-long monthly-gridded emissivity atlas is used to estimate IR-VSM, to demonstrate its seasonal-cycle and interannual variation, which is spatially coherent and consistent with that from MW measurements, and, moreover, to achieve our objective of investigating the relationship between land surface IR emissivity and soil moisture.

  11. Optimal A-Train Data Utilization: A Use Case of Aura OMI L2G and MERRA-2 Aerosol Products

    NASA Technical Reports Server (NTRS)

    Zeng, Jian; Shen, Suhung; Wei, Jennifer; Meyer, David J.

    2017-01-01

    Ozone Monitoring Instrument (OMI) aboard NASA's Aura mission measures ozone column and profile, aerosols, clouds, surface UV irradiance, and the trace gases including NO2, SO2, HCHO, BrO, and OClO using UltraViolet electromagnetic spectrum (280 - 400 nm) with a daily global coverage and a pixel spatial resolution of 13 km × 24 km at nadir, and it's been one of the key instruments to study the Earth's atmospheric composition and chemistry. The second Modern-Era Retrospective analysis for Research and Applications (MERRA-2) is NASA's atmospheric reanalysis using an upgraded version of Goddard Earth Observing System Model, version 5 (GEOS-5) data assimilation system. Compared to its predecessor MERRA, MERRA-2 is enhanced with more aspects of the Earth system among which is aerosol assimilation. When comparing between satellite pixel measurements and modeled grid data, how to properly handle counterpart pairing is critical considering their spatial and temporal variations. The comparison between satellite and model data by simply using Level 3 (L3) products may result biases due to lack of detailed temporal information. It has been preferred to inter-compare or implement satellite derived physical quantity (i.e., Level 2 (L2) Swath type) directly with/to model measurements with higher temporal and spatial resolution as possible. However, this has posed a challenge in the community to handle. Rather than directly handling the L2 or L3 data, there is a Level 2G (L2G) product conserving L2 pixel scientific data quality but in Grid type with the global coverage. In this presentation, we would like to demonstrate the optimal utilization of OMI L2G daily aerosol products by comparing with MERRA-2 hourly aerosol simulations matched well in both space and time.

  12. The 'Book of Life' in the press: comparing German and Irish media discourse on human genome research.

    PubMed

    O'Mahony, Patrick; Schäfer, Mike Steffen

    2005-02-01

    The essay compares German and Irish media coverage of human genome research in the year 2000, using qualitative and quantitative frame analysis of a print media corpus. Drawing from a media-theoretical account of science communication, the study examines four analytic dimensions: (1) the influence of global and national sources of discourse; (2) the nature of elaboration on important themes; (3) the extent of societal participation in discourse production; (4) the cultural conditions in which the discourse resonates. The analysis shows that a global discursive package, emphasizing claims of scientific achievement and medical progress, dominates media coverage in both countries. However, German coverage is more extensive and elaborate, and includes a wider range of participants. Irish coverage more often incorporates the global package without further elaboration. These finding indicate that the global package is 'localized' differently due to national patterns of interests, German participation in human genome research, traditions of media coverage, and the domestic resonance of the issue.

  13. Southern Ocean Seasonal Net Production from Satellite, Atmosphere, and Ocean Data Sets

    NASA Technical Reports Server (NTRS)

    Keeling, Ralph F.; Campbell, J. (Technical Monitor)

    2002-01-01

    A new climatology of monthly air-sea O2 flux was developed using the net air-sea heat flux as a template for spatial and temporal interpolation of sparse hydrographic data. The climatology improves upon the previous climatology of Najjar and Keeling in the Southern Hemisphere, where the heat-based approach helps to overcome limitations due to sparse data coverage. The climatology is used to make comparisons with productivity derived from CZCS images. The climatology is also used in support of an investigation of the plausible impact of recent global warming an oceanic O2 inventories.

  14. Merging Ocean Color Data from Multiple Missions. Chapter 12

    NASA Technical Reports Server (NTRS)

    Gregg, Watson W.

    2001-01-01

    Oceanic phytoplankton may play an important role in the cycling of carbon on the Earth, through the uptake of carbon dioxide in the process of photosynthesis. Although they are ubiquitous in the global oceans, their abundances and dynamics are difficult to estimate, primarily due to the vast spatial extent of the oceans and the short time scales over which their abundances can change. Consequently, the effects of oceanic phytoplankton on biogeochemical cycling, climate change, and fisheries are not well known. In response to the potential importance of phytoplankton in the global carbon cycle and the lack of comprehensive data, the National Aeronautics and Space Administration (NASA) and the international community have established high priority satellite missions designed to acquire and produce high quality ocean color data. Seven of the missions are routine global observational missions: the Ocean Color and Temperature Sensor (OCTS), the Polarization and Directionality of the Earth's Reflectances sensor (POLDER), Sea-viewing Wide Field-of-view Sensor (SeaWiFS), Moderate Resolution Imaging Spectrometer-AM (MODIS-AM), Medium Resolution Imaging Spectrometer (MERIS), Global Imager (GLI), and MODIS-PM. In addition, there are several other missions capable of providing ocean color data on smaller scales. Most of these missions contain the spectral band complement considered necessary to derive oceanic pigment concentrations (i.e., phytoplankton abundance) and other related parameters. Many contain additional bands that can provide important ancillary information about the optical and biological state of the oceans. Any individual ocean color mission is limited in ocean coverage due to sun glint and clouds. For example, one of the first proposed missions, the SeaWiFS, can provide about 45% coverage of the global ocean in four days and only about 15% in one day.

  15. A simple model for the evolution of melt pond coverage on permeable Arctic sea ice

    NASA Astrophysics Data System (ADS)

    Popović, Predrag; Abbot, Dorian

    2017-05-01

    As the melt season progresses, sea ice in the Arctic often becomes permeable enough to allow for nearly complete drainage of meltwater that has collected on the ice surface. Melt ponds that remain after drainage are hydraulically connected to the ocean and correspond to regions of sea ice whose surface is below sea level. We present a simple model for the evolution of melt pond coverage on such permeable sea ice floes in which we allow for spatially varying ice melt rates and assume the whole floe is in hydrostatic balance. The model is represented by two simple ordinary differential equations, where the rate of change of pond coverage depends on the pond coverage. All the physical parameters of the system are summarized by four strengths that control the relative importance of the terms in the equations. The model both fits observations and allows us to understand the behavior of melt ponds in a way that is often not possible with more complex models. Examples of insights we can gain from the model are that (1) the pond growth rate is more sensitive to changes in bare sea ice albedo than changes in pond albedo, (2) ponds grow slower on smoother ice, and (3) ponds respond strongest to freeboard sinking on first-year ice and sidewall melting on multiyear ice. We also show that under a global warming scenario, pond coverage would increase, decreasing the overall ice albedo and leading to ice thinning that is likely comparable to thinning due to direct forcing. Since melt pond coverage is one of the key parameters controlling the albedo of sea ice, understanding the mechanisms that control the distribution of pond coverage will help improve large-scale model parameterizations and sea ice forecasts in a warming climate.

  16. Understanding Spatial and Temporal Variations of Arctic Circulation Using Oxygen Isotopes of Seawater

    NASA Astrophysics Data System (ADS)

    Yin, L.; Kopans-Johnson, C. R.; LeGrande, A. N.; Kelly, S.

    2015-12-01

    The isotopic ratio of 18O to 16O in seawater (2005ppm in ocean water is defined as 𝛿18Oseawater≡0 permil or 0‰) is a fundamental ocean tracer due to its distinct linear relationship with salinity(𝛿18O -S) from regional inland freshwater sources. As opposed to salinity alone, 𝛿18O distinguishes river runoff from sea-ice melt and traces ocean circulation pathways from coastal to open waters and surface to deep waters. Observations from the past 60 years of 𝛿18O seawater were compiled into a database by Schimdt et al. (1999), and subsequently used to calculate a 3-dimensional 1°x1° 𝛿18O global gridded dataset by LeGrande and Schmidt (2006). Although the Schmidt et al. (1999) Global Seawater Oxygen-18 Database (𝛿18Oobs) contains 25,514 measurements used to calculate the global gridded dataset, LeGrande and Schmidt (2006) point out that, "data coverage varies greatly from region to region," with seasonal variability creating biases in areas where sea ice is present. Python Pandas is used to automate the addition of 2,942 records to the Schmidt et al. (1999) Global Seawater Oxygen-18 Database (𝛿18Oobs), and examine the spatial and temporal distributions of 18O in the Arctic Ocean. 10 initial water masses are defined using spatial and temporal trends, clusters of observations, and Arctic surface circulation. Jackknife slope analysis of water mass 𝛿18O -S is used to determine anomalous data points and regional hydrology, resulting in 4 distinct Arctic water masses. These techniques are used to improve the gridded 𝛿18Oseawater dataset by distinguishing unique water masses, and accounting for seasonal variability of complex high latitude areas.

  17. A merged surface reflectance product from the Landsat and Sentinel-2 Missions

    NASA Astrophysics Data System (ADS)

    Vermote, E.; Claverie, M.; Masek, J. G.; Becker-Reshef, I.; Justice, C. O.

    2013-12-01

    This project is aimed at producing a merged surface product from the Landsat and Sentinel-2 missions to ultimately achieve high temporal coverage (~2 days repeat cycle) at high spatial resolution (20-60m). The goal is to achieve a seamless/consistent stream of surface reflectance data from the different sensors. The first part of this presentation discusses the basic requirements of such a product and the necessary processing steps: mainly calibration, atmospheric corrections, BRDF effect corrections, spectral band pass adjustments and gridding. We demonstrate the performance of those different corrections by using MODIS and VIIRS (Climate Modeling Grid at 0.05deg) data globally as well as Formosat-2 (8m spatial resolution) data (one crop site in South of France where 105 scenes were acquired during 2006-2010). The consistency of the surface reflectance product from MODIS and Formosat-2 ranges from 6 to 8% relative depending on the spectral bands (Green to NIR) with a bias between 2% (NIR) to 5% (green), which is acceptable given the cumulated limitation in cross-calibration, atmospheric correction and BRDF correction. The second part is devoted to the simulation of the merged Landsat and Sentinel-2 mission by using Landsat-7, LDCM (early) and SPOT-4 Take 5 dataset. SPOT-4 Take 5 dataset is a collection of 42 sites distributed globally and systematically acquired by SPOT-4 HRV every 5 days during the decommissioning phase of the SPOT4 mission (February-May 2013). Finally, the benefits of such a merged surface reflectance at high spatial and temporal resolution are discussed within the context of the agricultural monitoring, in particular in the perspective of the GEOGLAM (Global Earth Observation for Global Land Agriculture Monitoring) project.

  18. TES/Aura L3 Atmospheric Temperatures Daily V4 (TL3ATD)

    Atmospheric Science Data Center

    2018-05-09

    ... Platform:  TES Aura L1B Nadir/Limb Spatial Coverage:  5.3 x 8.5 km nadir 37 x 23 km limb Spatial ... 0.5 x 5 km nadir 2.3 x 23 km limb Temporal Coverage:  08/22/2004 - present Temporal Resolution:  ...

  19. Evaluation of Uncertainty in Precipitation Datasets for New Mexico, USA

    NASA Astrophysics Data System (ADS)

    Besha, A. A.; Steele, C. M.; Fernald, A.

    2014-12-01

    Climate change, population growth and other factors are endangering water availability and sustainability in semiarid/arid areas particularly in the southwestern United States. Wide coverage of spatial and temporal measurements of precipitation are key for regional water budget analysis and hydrological operations which themselves are valuable tool for water resource planning and management. Rain gauge measurements are usually reliable and accurate at a point. They measure rainfall continuously, but spatial sampling is limited. Ground based radar and satellite remotely sensed precipitation have wide spatial and temporal coverage. However, these measurements are indirect and subject to errors because of equipment, meteorological variability, the heterogeneity of the land surface itself and lack of regular recording. This study seeks to understand precipitation uncertainty and in doing so, lessen uncertainty propagation into hydrological applications and operations. We reviewed, compared and evaluated the TRMM (Tropical Rainfall Measuring Mission) precipitation products, NOAA's (National Oceanic and Atmospheric Administration) Global Precipitation Climatology Centre (GPCC) monthly precipitation dataset, PRISM (Parameter elevation Regression on Independent Slopes Model) data and data from individual climate stations including Cooperative Observer Program (COOP), Remote Automated Weather Stations (RAWS), Soil Climate Analysis Network (SCAN) and Snowpack Telemetry (SNOTEL) stations. Though not yet finalized, this study finds that the uncertainty within precipitation estimates datasets is influenced by regional topography, season, climate and precipitation rate. Ongoing work aims to further evaluate precipitation datasets based on the relative influence of these phenomena so that we can identify the optimum datasets for input to statewide water budget analysis.

  20. HIRIS (High-Resolution Imaging Spectrometer: Science opportunities for the 1990s. Earth observing system. Volume 2C: Instrument panel report

    NASA Technical Reports Server (NTRS)

    1987-01-01

    The high-resolution imaging spectrometer (HIRIS) is an Earth Observing System (EOS) sensor developed for high spatial and spectral resolution. It can acquire more information in the 0.4 to 2.5 micrometer spectral region than any other sensor yet envisioned. Its capability for critical sampling at high spatial resolution makes it an ideal complement to the MODIS (moderate-resolution imaging spectrometer) and HMMR (high-resolution multifrequency microwave radiometer), lower resolution sensors designed for repetitive coverage. With HIRIS it is possible to observe transient processes in a multistage remote sensing strategy for Earth observations on a global scale. The objectives, science requirements, and current sensor design of the HIRIS are discussed along with the synergism of the sensor with other EOS instruments and data handling and processing requirements.

  1. Comparison of Envisat ASAR GM, AMSR-E Passive Microwave, and MODIS Optical Remote Sensing for Flood Monitoring in Australia

    NASA Astrophysics Data System (ADS)

    Ticehurst, C. J.; Bartsch, A.; Doubkova, M.; van Dijk, A. I. J. M.

    2009-11-01

    Continuous flood monitoring can support emergency response, water management and environmental monitoring. Optical sensors such as MODIS allow inundation mapping with high spatial and temporal resolution (250-1000 m, twice daily) but are affected by cloud cover. Passive microwave sensors also acquire observations at high temporal resolution, but coarser spatial resolution (e.g. ca. 5-70 km for AMSR-E) and smaller footprints are also affected by cloud and/or rain. ScanSAR systems allow all-weather monitoring but require spatial resolution to be traded off against coverage and/or temporal resolution; e.g. the ENVISAT ASAR Global Mode observes at ca. 1 km over large regions about twice a week. The complementary role of the AMSR-E and ASAR GM data to that of MODIS is here introduced for three flood events and locations across Australia. Additional improvements can be made by integrating digital elevation models and stream flow gauging data.

  2. Estimating planktonic diversity through spatial dominance patterns in a model ocean.

    PubMed

    Soccodato, Alice; d'Ovidio, Francesco; Lévy, Marina; Jahn, Oliver; Follows, Michael J; De Monte, Silvia

    2016-10-01

    In the open ocean, the observation and quantification of biodiversity patterns is challenging. Marine ecosystems are indeed largely composed by microbial planktonic communities whose niches are affected by highly dynamical physico-chemical conditions, and whose observation requires advanced methods for morphological and molecular classification. Optical remote sensing offers an appealing complement to these in-situ techniques. Global-scale coverage at high spatiotemporal resolution is however achieved at the cost of restrained information on the local assemblage. Here, we use a coupled physical and ecological model ocean simulation to explore one possible metrics for comparing measures performed on such different scales. We show that a large part of the local diversity of the virtual plankton ecosystem - corresponding to what accessible by genomic methods - can be inferred from crude, but spatially extended, information - as conveyed by remote sensing. Shannon diversity of the local community is indeed highly correlated to a 'seascape' index, which quantifies the surrounding spatial heterogeneity of the most abundant functional group. The error implied in drastically reducing the resolution of the plankton community is shown to be smaller in frontal regions as well as in regions of intermediate turbulent energy. On the spatial scale of hundreds of kms, patterns of virtual plankton diversity are thus largely sustained by mixing communities that occupy adjacent niches. We provide a proof of principle that in the open ocean information on spatial variability of communities can compensate for limited local knowledge, suggesting the possibility of integrating in-situ and satellite observations to monitor biodiversity distribution at the global scale. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. High resolution age-structured mapping of childhood vaccination coverage in low and middle income countries.

    PubMed

    Utazi, C Edson; Thorley, Julia; Alegana, Victor A; Ferrari, Matthew J; Takahashi, Saki; Metcalf, C Jessica E; Lessler, Justin; Tatem, Andrew J

    2018-03-14

    The expansion of childhood vaccination programs in low and middle income countries has been a substantial public health success story. Indicators of the performance of intervention programmes such as coverage levels and numbers covered are typically measured through national statistics or at the scale of large regions due to survey design, administrative convenience or operational limitations. These mask heterogeneities and 'coldspots' of low coverage that may allow diseases to persist, even if overall coverage is high. Hence, to decrease inequities and accelerate progress towards disease elimination goals, fine-scale variation in coverage should be better characterized. Using measles as an example, cluster-level Demographic and Health Surveys (DHS) data were used to map vaccination coverage at 1 km spatial resolution in Cambodia, Mozambique and Nigeria for varying age-group categories of children under five years, using Bayesian geostatistical techniques built on a suite of publicly available geospatial covariates and implemented via Markov Chain Monte Carlo (MCMC) methods. Measles vaccination coverage was found to be strongly predicted by just 4-5 covariates in geostatistical models, with remoteness consistently selected as a key variable. The output 1 × 1 km maps revealed significant heterogeneities within the three countries that were not captured using province-level summaries. Integration with population data showed that at the time of the surveys, few districts attained the 80% coverage, that is one component of the WHO Global Vaccine Action Plan 2020 targets. The elimination of vaccine-preventable diseases requires a strong evidence base to guide strategies and inform efficient use of limited resources. The approaches outlined here provide a route to moving beyond large area summaries of vaccination coverage that mask epidemiologically-important heterogeneities to detailed maps that capture subnational vulnerabilities. The output datasets are built on open data and methods, and in flexible format that can be aggregated to more operationally-relevant administrative unit levels. Copyright © 2018 The Author(s). Published by Elsevier Ltd.. All rights reserved.

  4. Overview of Global Monitoring of Terrestrial Chlorophyll Fluorescence from Space

    NASA Technical Reports Server (NTRS)

    Guanter, Luis; Zhang, Yongguang; Kohler, Philipp; Walther, Sophia; Frankenberg, Christian; Joiner, Joanna

    2016-01-01

    Despite the critical importance of photosynthesis for the Earth system, understanding how it is influenced by factors such as climate variability, disturbance history, and water or nutrient availability remains a challenge because of the complex interactions and the lack of GPP measurements at various temporal and spatial scales. Space observations of the sun-induced chlorophyll fluorescence (SIF) electromagnetic signal emitted by plants in the 650-850nm spectral range hold the promise of providing a new view of vegetation photosynthesis on a global basis. Global retrievals of SIF from space have recently been achieved from a number of spaceborne spectrometers originally intended for atmospheric research. Despite not having been designed for land applications, such instruments have turned out to provide the necessary spectral and radiometric sensitivity for SIF retrieval from space. The first global measurements of SIF were achieved in 2011 from spectra acquired by the Japanese GOSAT mission launched in 2009. The retrieval takes advantage of the high spectral resolution provided by GOSATs Fourier Transform Spectrometer (FTS) which allows the evaluation of the in-filling of solar Fraunhofer lines by SIF. Unfortunately, GOSAT only provides a sparse spatial sampling with individual soundings separated by several hundred kilometers. Complementary, the Global Ozone Monitoring Experiment-2 (GOME-2) instruments onboard MetOp-A and MetOp-B enable SIF retrievals since 2007 with a continuous and global spatial coverage. GOME-2 measures in the red and near-infrared (NIR) spectral regions with a spectral resolution of 0.5 nm and a pixel size of up to 40x40 km2. Most recently, another global and spatially continuous data set of SIF retrievals at 740 nm spanning the 2003-2012 time frame has been produced from ENVISATSCIAMACHY. This observational scenario has been completed by the first fluorescence data from the NASA-JPL OCO-2 mission (launched in July 2014) and the upcoming Copernicus' Sentinel 5-Precursor to be launched in early 2016. OCO-2 and TROPOMI offer the possibility of monitoring SIF globally with a 100-fold improvement in spatial and temporal resolution with respect to the current measurements from the GOSAT, GOME-2 and SCIAMACHY missions. In this contribution, we will provide an overview of existing global SIF data sets derived from space-based atmospheric spectrometers and will demonstrate the potential of such data to improve our knowledge of vegetation photosynthesis and gross primary production at the synoptic scale. We will show examples of ongoing research exploiting SIF data for an improved monitoring of photosynthetic activity in different ecosystems, including large crop belts worldwide, the Amazon rainforest and boreal evergreen forests.

  5. Surface radiant flux densities inferred from LAC and GAC AVHRR data

    NASA Astrophysics Data System (ADS)

    Berger, F.; Klaes, D.

    To infer surface radiant flux densities from current (NOAA-AVHRR, ERS-1/2 ATSR) and future meteorological (Envisat AATSR, MSG, METOP) satellite data, the complex, modular analysis scheme SESAT (Strahlungs- und Energieflüsse aus Satellitendaten) could be developed (Berger, 2001). This scheme allows the determination of cloud types, optical and microphysical cloud properties as well as surface and TOA radiant flux densities. After testing of SESAT in Central Europe and the Baltic Sea catchment (more than 400scenes U including a detailed validation with various surface measurements) it could be applied to a large number of NOAA-16 AVHRR overpasses covering the globe.For the analysis, two different spatial resolutions U local area coverage (LAC) andwere considered. Therefore, all inferred results, like global area coverage (GAC) U cloud cover, cloud properties and radiant properties, could be intercompared. Specific emphasis could be made to the surface radiant flux densities (all radiative balance compoments), where results for different regions, like Southern America, Southern Africa, Northern America, Europe, and Indonesia, will be presented. Applying SESAT, energy flux densities, like latent and sensible heat flux densities could also be determined additionally. A statistical analysis of all results including a detailed discussion for the two spatial resolutions will close this study.

  6. CERES Monthly Gridded Single Satellite TOA and Surfaces/Clouds (SFC) data in HDF (CER_SFC_Terra-FM2-MODIS_Edition2A)

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A. (Principal Investigator)

    The Monthly Gridded TOA/Surface Fluxes and Clouds (SFC) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SFC is also produced for combinations of scanner instruments. All instantaneous shortwave, longwave, and window fluxes at the Top-of-the-Atmosphere (TOA) and surface from the CERES SSF product for a month are sorted by 1-degree spatial regions and by the local hour of observation. The mean of the instantaneous fluxes for a given region-hour bin is determined and recorded on the SFC along with other flux statistics and scene information. These average fluxes are given for both clear-sky and total-sky scenes. The regional cloud properties are column averaged and are included on the SFC. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2003-12-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=100] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree; Horizontal_Resolution_Range=100 km - < 250 km or approximately 1 degree - < 2.5 degrees; Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].

  7. CERES Monthly Gridded Single Satellite TOA and Surfaces/Clouds (SFC) data in HDF (CER_SFC_Terra-FM2-MODIS_Edition2C)

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A. (Principal Investigator)

    The Monthly Gridded TOA/Surface Fluxes and Clouds (SFC) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SFC is also produced for combinations of scanner instruments. All instantaneous shortwave, longwave, and window fluxes at the Top-of-the-Atmosphere (TOA) and surface from the CERES SSF product for a month are sorted by 1-degree spatial regions and by the local hour of observation. The mean of the instantaneous fluxes for a given region-hour bin is determined and recorded on the SFC along with other flux statistics and scene information. These average fluxes are given for both clear-sky and total-sky scenes. The regional cloud properties are column averaged and are included on the SFC. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2005-12-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=100] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree; Horizontal_Resolution_Range=100 km - < 250 km or approximately 1 degree - < 2.5 degrees; Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].

  8. CERES Monthly Gridded Single Satellite TOA and Surfaces/Clouds (SFC) data in HDF (CER_SFC_Terra-FM1-MODIS_Edition2B)

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A. (Principal Investigator)

    The Monthly Gridded TOA/Surface Fluxes and Clouds (SFC) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SFC is also produced for combinations of scanner instruments. All instantaneous shortwave, longwave, and window fluxes at the Top-of-the-Atmosphere (TOA) and surface from the CERES SSF product for a month are sorted by 1-degree spatial regions and by the local hour of observation. The mean of the instantaneous fluxes for a given region-hour bin is determined and recorded on the SFC along with other flux statistics and scene information. These average fluxes are given for both clear-sky and total-sky scenes. The regional cloud properties are column averaged and are included on the SFC. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2003-10-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=100] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree; Horizontal_Resolution_Range=100 km - < 250 km or approximately 1 degree - < 2.5 degrees; Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].

  9. CERES Monthly Gridded Single Satellite TOA and Surfaces/Clouds (SFC) data in HDF (CER_SFC_Aqua-FM3-MODIS_Edition2A)

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A. (Principal Investigator)

    The Monthly Gridded TOA/Surface Fluxes and Clouds (SFC) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The SFC is also produced for combinations of scanner instruments. All instantaneous shortwave, longwave, and window fluxes at the Top-of-the-Atmosphere (TOA) and surface from the CERES SSF product for a month are sorted by 1-degree spatial regions and by the local hour of observation. The mean of the instantaneous fluxes for a given region-hour bin is determined and recorded on the SFC along with other flux statistics and scene information. These average fluxes are given for both clear-sky and total-sky scenes. The regional cloud properties are column averaged and are included on the SFC. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2005-12-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=100] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree; Horizontal_Resolution_Range=100 km - < 250 km or approximately 1 degree - < 2.5 degrees; Temporal_Resolution=1 hour; Temporal_Resolution_Range=Hourly - < Daily].

  10. Inefficiency, heterogeneity and spillover effects in maternal care in India: a spatial stochastic frontier analysis.

    PubMed

    Kinfu, Yohannes; Sawhney, Monika

    2015-03-25

    Institutional delivery is one of the key and proven strategies to reduce maternal deaths. Since the 1990s, the government of India has made substantial investment on maternal care to reduce the huge burden of maternal deaths in the country. However, despite the effort access to institutional delivery in India remains below the global average. In addition, even in places where health investments have been comparable, inter- and intra-state difference in access to maternal care services remain wide and substantial. This raises a fundamental question on whether the sub-national units themselves differ in terms of the efficiency with which they use available resources, and if so, why? Data obtained from round 3 of the country's District Level Health and Facility Survey was analyzed to measure the level and determinants of inefficiency of institutional delivery in the country. Analysis was conducted using spatial stochastic frontier models that correct for heterogeneity and spatial interactions between sub-national units. Inefficiency differences in maternal care services between and within states are substantial. The top one third of districts in the country has a mean efficiency score of 90 per cent or more, while the bottom 10 per cent of districts exhibit mean inefficiency score of as high as over 75 per cent or more. Overall mean inefficiency is about 30 per cent. The result also reveals the existence of both heterogeneity and spatial correlation in institutional delivery in the country. Given the high level of inefficiency in the system, further progress in improving coverage of institutional delivery in the country should focus both on improving the efficiency of resource utilization--especially where inefficiency levels are extremely high--and on bringing new resources in to the system. The additional investment should specifically focus on those parts of the country where coverage rates are still low but efficiency levels are already at a high level. In addition, given that inefficiency was also associated inversely with literacy and urbanization and positively related with proportion of households belonging to poor households, investment in these areas can also improve coverage of institutional delivery in the country.

  11. Small Fire Detection Algorithm Development using VIIRS 375m Imagery: Application to Agricultural Fires in Eastern China

    NASA Astrophysics Data System (ADS)

    Zhang, Tianran; Wooster, Martin

    2016-04-01

    Until recently, crop residues have been the second largest industrial waste product produced in China and field-based burning of crop residues is considered to remain extremely widespread, with impacts on air quality and potential negative effects on health, public transportation. However, due to the small size and perhaps short-lived nature of the individual burns, the extent of the activity and its spatial variability remains somewhat unclear. Satellite EO data has been used to gauge the timing and magnitude of Chinese crop burning, but current approaches very likely miss significant amounts of the activity because the individual burned areas are either too small to detect with frequently acquired moderate spatial resolution data such as MODIS. The Visible Infrared Imaging Radiometer Suite (VIIRS) on-board Suomi-NPP (National Polar-orbiting Partnership) satellite launched on October, 2011 has one set of multi-spectral channels providing full global coverage at 375 m nadir spatial resolutions. It is expected that the 375 m spatial resolution "I-band" imagery provided by VIIRS will allow active fires to be detected that are ~ 10× smaller than those that can be detected by MODIS. In this study the new small fire detection algorithm is built based on VIIRS-I band global fire detection algorithm and hot spot detection algorithm for the BIRD satellite mission. VIIRS-I band imagery data will be used to identify agricultural fire activity across Eastern China. A 30 m spatial resolution global land cover data map is used for false alarm masking. The ground-based validation is performed using images taken from UAV. The fire detection result is been compared with active fire product from the long-standing MODIS sensor onboard the TERRA and AQUA satellites, which shows small fires missed from traditional MODIS fire product may count for over 1/3 of total fire energy in Eastern China.

  12. Determination of Interannual to Decadal Changes in Ice Sheet Mass Balance from Satellite Altimetry

    NASA Technical Reports Server (NTRS)

    Zwally, H. Jay; Busalacchi, Antonioa J. (Technical Monitor)

    2001-01-01

    A major uncertainty in predicting sea level rise is the sensitivity of ice sheet mass balance to climate change, as well as the uncertainty in present mass balance. Since the annual water exchange is about 8 mm of global sea level equivalent, the +/- 25% uncertainty in current mass balance corresponds to +/- 2 mm/yr in sea level change. Furthermore, estimates of the sensitivity of the mass balance to temperature change range from perhaps as much as - 10% to + 10% per K. Although the overall ice mass balance and seasonal and inter-annual variations can be derived from time-series of ice surface elevations from satellite altimetry, satellite radar altimeters have been limited in spatial coverage and elevation accuracy. Nevertheless, new data analysis shows mixed patterns of ice elevation increases and decreases that are significant in terms of regional-scale mass balances. In addition, observed seasonal and interannual variations in elevation demonstrate the potential for relating the variability in mass balance to changes in precipitation, temperature, and melting. From 2001, NASA's ICESat laser altimeter mission will provide significantly better elevation accuracy and spatial coverage to 86 deg latitude and to the margins of the ice sheets. During 3 to 5 years of ICESat-1 operation, an estimate of the overall ice sheet mass balance and sea level contribution will be obtained. The importance of continued ice monitoring after the first ICESat is illustrated by the variability in the area of Greenland surface melt observed over 17-years and its correlation with temperature. In addition, measurement of ice sheet changes, along with measurements of sea level change by a series of ocean altimeters, should enable direct detection of ice level and global sea level correlations.

  13. Towards a meaningful assessment of marine ecological impacts in life cycle assessment (LCA).

    PubMed

    Woods, John S; Veltman, Karin; Huijbregts, Mark A J; Verones, Francesca; Hertwich, Edgar G

    2016-01-01

    Human demands on marine resources and space are currently unprecedented and concerns are rising over observed declines in marine biodiversity. A quantitative understanding of the impact of industrial activities on the marine environment is thus essential. Life cycle assessment (LCA) is a widely applied method for quantifying the environmental impact of products and processes. LCA was originally developed to assess the impacts of land-based industries on mainly terrestrial and freshwater ecosystems. As such, impact indicators for major drivers of marine biodiversity loss are currently lacking. We review quantitative approaches for cause-effect assessment of seven major drivers of marine biodiversity loss: climate change, ocean acidification, eutrophication-induced hypoxia, seabed damage, overexploitation of biotic resources, invasive species and marine plastic debris. Our review shows that impact indicators can be developed for all identified drivers, albeit at different levels of coverage of cause-effect pathways and variable levels of uncertainty and spatial coverage. Modeling approaches to predict the spatial distribution and intensity of human-driven interventions in the marine environment are relatively well-established and can be employed to develop spatially-explicit LCA fate factors. Modeling approaches to quantify the effects of these interventions on marine biodiversity are less well-developed. We highlight specific research challenges to facilitate a coherent incorporation of marine biodiversity loss in LCA, thereby making LCA a more comprehensive and robust environmental impact assessment tool. Research challenges of particular importance include i) incorporation of the non-linear behavior of global circulation models (GCMs) within an LCA framework and ii) improving spatial differentiation, especially the representation of coastal regions in GCMs and ocean-carbon cycle models. Copyright © 2016 Elsevier Ltd. All rights reserved.

  14. Global spatially explicit CO2 emission metrics at 0.25° horizontal resolution for forest bioenergy

    NASA Astrophysics Data System (ADS)

    Cherubini, F.

    2015-12-01

    Bioenergy is the most important renewable energy option in studies designed to align with future RCP projections, reaching approximately 250 EJ/yr in RCP2.6, 145 EJ/yr in RCP4.5 and 180 EJ/yr in RCP8.5 by the end of the 21st century. However, many questions enveloping the direct carbon cycle and climate response to bioenergy remain partially unexplored. Bioenergy systems are largely assessed under the default climate neutrality assumption and the time lag between CO2 emissions from biomass combustion and CO2 uptake by vegetation is usually ignored. Emission metrics of CO2 from forest bioenergy are only available on a case-specific basis and their quantification requires processing of a wide spectrum of modelled or observed local climate and forest conditions. On the other hand, emission metrics are widely used to aggregate climate impacts of greenhouse gases to common units such as CO2-equivalents (CO2-eq.), but a spatially explicit analysis of emission metrics with global forest coverage is today lacking. Examples of emission metrics include the global warming potential (GWP), the global temperature change potential (GTP) and the absolute sustained emission temperature (aSET). Here, we couple a global forest model, a heterotrophic respiration model, and a global climate model to produce global spatially explicit emission metrics for CO2 emissions from forest bioenergy. We show their applications to global emissions in 2015 and until 2100 under the different RCP scenarios. We obtain global average values of 0.49 ± 0.03 kgCO2-eq. kgCO2-1 (mean ± standard deviation), 0.05 ± 0.05 kgCO2-eq. kgCO2-1, and 2.14·10-14 ± 0.11·10-14 °C (kg yr-1)-1, and 2.14·10-14 ± 0.11·10-14 °C (kg yr-1)-1 for GWP, GTP and aSET, respectively. We also present results aggregated at a grid, national and continental level. The metrics are found to correlate with the site-specific turnover times and local climate variables like annual mean temperature and precipitation. Simplified equations are derived to infer metric values from the turnover time of the biomass feedstock and the fraction of forest residues left on site after harvest. Our results provide a basis for assessing CO2 emissions from forest bioenergy under different indicators and across various spatial and temporal scales.

  15. Global Coverage from Ad-Hoc Constellations in Rideshare Orbits

    NASA Technical Reports Server (NTRS)

    Ellis, Armin; Mercury, Michael; Brown, Shannon

    2012-01-01

    A promising area of small satellite development is in providing higher temporal resolution than larger satellites. Traditional constellations have required specific orbits and dedicated launch vehicles. In this paper we discuss an alternative architecture in which the individual elements of the constellation are launched as rideshare opportunities. We compare the coverage of such an ad-hoc constellation with more traditional constellations. Coverage analysis is based on actual historical data from rideshare opportunities. Our analysis includes ground coverage and temporal revisits for Polar, Tropics, Temperate, and Global regions, comparing ad-hoc and Walker constellation.

  16. Validation of NH3 satellite observations by ground-based FTIR measurements

    NASA Astrophysics Data System (ADS)

    Dammers, Enrico; Palm, Mathias; Van Damme, Martin; Shephard, Mark; Cady-Pereira, Karen; Capps, Shannon; Clarisse, Lieven; Coheur, Pierre; Erisman, Jan Willem

    2016-04-01

    Global emissions of reactive nitrogen have been increasing to an unprecedented level due to human activities and are estimated to be a factor four larger than pre-industrial levels. Concentration levels of NOx are declining, but ammonia (NH3) levels are increasing around the globe. While NH3 at its current concentrations poses significant threats to the environment and human health, relatively little is known about the total budget and global distribution. Surface observations are sparse and mainly available for north-western Europe, the United States and China and are limited by the high costs and poor temporal and spatial resolution. Since the lifetime of atmospheric NH3 is short, on the order of hours to a few days, due to efficient deposition and fast conversion to particulate matter, the existing surface measurements are not sufficient to estimate global concentrations. Advanced space-based IR-sounders such as the Tropospheric Emission Spectrometer (TES), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared Sounder (CrIS) enable global observations of atmospheric NH3 that help overcome some of the limitations of surface observations. However, the satellite NH3 retrievals are complex requiring extensive validation. Presently there have only been a few dedicated satellite NH3 validation campaigns performed with limited spatial, vertical or temporal coverage. Recently a retrieval methodology was developed for ground-based Fourier Transform Infrared Spectroscopy (FTIR) instruments to obtain vertical concentration profiles of NH3. Here we show the applicability of retrieved columns from nine globally distributed stations with a range of NH3 pollution levels to validate satellite NH3 products.

  17. Analysis of the global ISCCP TOVS water vapor climatology

    NASA Technical Reports Server (NTRS)

    Wittmeyer, Ian L.; Vonder Haar, Thomas H.

    1994-01-01

    A climatological examination of the global water vapor field based on a multiyear period of successfull satellite-based observations is presented. Results from the multiyear global ISCCP TIROS Operational Vertical Sounder (TOVS) water vapor dataset as operationally produced by NESDIS and ISCCP are shown. The methods employed for the retrieval of precipitable water content (PWC) utilize infrared measurements collected by the TOVS instrument package flown aboard the NOAA series of operational polar-orbiting satellites. Strengths of this dataset include the nearly global daily coverage, availability for a multiyear period, operational internal quality checks, and its description of important features in the mean state of the atmosphere. Weaknesses of this PWC dataset include that the infrared sensors are unable to collect data in cloudy regions, the retrievals are strongly biased toward a land-based radiosonde first-guess dataset, and the description of high spatial and temporal variability is inadequate. Primary consequences of these factors are seen in the underestimation of ITCZ water vapor maxima, and underestimation of midlatitude water vapor mean and standard deviation values where transient atmospheric phenomena contribute significantly toward time means. A comparison of TOVS analyses to SSM/I data over ocean for the month of July 1988 shows fair agreement in the magnitude and distribution of the monthly mean values, but the TOVS fields exhibit much less temporal and spatial variability on a daily basis in comparison to the SSM/I analyses. The emphasis of this paper is on the presentation and documentation of an early satellite-based water vapor climatology, and description of factors that prevent a more accurate representation of the global water vapor field.

  18. A Constellation of CubeSat InSAR Sensors for Rapid-Revisit Surface Deformation Studies

    NASA Astrophysics Data System (ADS)

    Wye, L.; Lee, S.; Yun, S. H.; Zebker, H. A.; Stock, J. D.; Wicks, C. W., Jr.; Doe, R.

    2016-12-01

    The 2007 NRC Decadal Survey for Earth Sciences highlights three major Earth surface deformation themes: 1) solid-earth hazards and dynamics; 2) human health and security; and 3) land-use change, ecosystem dynamics and biodiversity. Space-based interferometric synthetic aperture radar (InSAR) is a key change detection tool for addressing these themes. Here, we describe the mission and radar payload design for a constellation of S-band InSAR sensors specifically designed to provide the global, high temporal resolution, sub-cm level deformation accuracy needed to address some of the major Earth system goals. InSAR observations with high temporal resolution are needed to properly monitor certain nonlinearly time-varying features (e.g., unstable volcanoes, active fault lines, and heavily-used groundwater or hydrocarbon reservoirs). Good temporal coverage is also needed to reduce atmospheric artifacts by allowing multiple acquisitions to be averaged together, since each individual SAR measurement is corrupted by up to several cm of atmospheric noise. A single InSAR platform is limited in how often it can observe a given scene without sacrificing global spatial coverage. Multiple InSAR platforms provide the spatial-temporal flexibility required to maximize the science return. However, building and launching multiple InSAR platforms is cost-prohibitive for traditional satellites. SRI International (SRI) and our collaborators are working to exploit developments in nanosatellite technology, in particular the emergence of the CubeSat standard, to provide high-cadence InSAR capabilities in an affordable package. The CubeSat Imaging Radar for Earth Science (CIRES) subsystem, a prototype SAR elec­tronics package developed by SRI with support from a 2014 NASA ESTO ACT award, is specifically scaled to be a drop-in radar solution for resource-limited delivery systems like CubeSats and small airborne vehicles. Here, we present our mission concept and flow-down requirements for a constellation of 6U InSAR sensors that individually approach the performance capabilities of existing instruments, but collectively surpass the temporal coverage capabilities of single-platform sensors. We discuss the key applications addressed by this constellation and the capabilities that the constellation enables.

  19. Utilizing Multi-Ensemble of Downscaled CMIP5 GCMs to Investigate Trends and Spatial and Temporal Extent of Drought in Willamette Basin

    NASA Astrophysics Data System (ADS)

    Ahmadalipour, A.; Beal, B.; Moradkhani, H.

    2015-12-01

    Changing climate and potential future increases in global temperature are likely to have impacts on drought characteristics and hydrologic cylce. In this study, we analyze changes in temporal and spatial extent of meteorological and hydrological droughts in future, and their trends. Three statistically downscaled datasets from NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP), Multivariate Adaptive Constructed Analogs (MACA), and Bias Correction and Spatial Disagregation (BCSD-PSU) each consisting of 10 CMIP5 Global Climate Models (GCM) are utilized for RCP4.5 and RCP8.5 scenarios. Further, Precipitation Runoff Modeling System (PRMS) hydrologic model is used to simulate streamflow from GCM inputs and assess the hydrological drought characteristics. Standard Precipitation Index (SPI) and Streamflow Drought Index (SDI) are the two indexes used to investigate meteorological and hydrological drought, respectively. Study is done for Willamette Basin with a drainage area of 29,700 km2 accommodating more than 3 million inhabitants and 25 dams. We analyze our study for annual time scale as well as three future periods of near future (2010-2039), intermediate future (2040-2069), and far future (2070-2099). Large uncertainty is found from GCM predictions. Results reveal that meteorological drought events are expected to increase in near future. Severe to extreme drought with large areal coverage and several years of occurance is predicted around year 2030 with the likelihood of exceptional drought for both drought types. SPI is usually showing positive trends, while SDI indicates negative trends in most cases.

  20. Climatology and Interannual Variability of Quasi-Global Intense Precipitation Using Satellite Observations

    NASA Technical Reports Server (NTRS)

    Ricko, Martina; Adler, Robert F.; Huffman, George J.

    2016-01-01

    Climatology and variations of recent mean and intense precipitation over a near-global (50 deg. S 50 deg. N) domain on a monthly and annual time scale are analyzed. Data used to derive daily precipitation to examine the effects of spatial and temporal coverage of intense precipitation are from the current Tropical Rainfall Measuring Mission (TRMM) Multisatellite Precipitation Analysis (TMPA) 3B42 version 7 precipitation product, with high spatial and temporal resolution during 1998 - 2013. Intense precipitation is defined by several different parameters, such as a 95th percentile threshold of daily precipitation, a mean precipitation that exceeds that percentile, or a fixed threshold of daily precipitation value [e.g., 25 and 50 mm day(exp -1)]. All parameters are used to identify the main characteristics of spatial and temporal variation of intense precipitation. High correlations between examined parameters are observed, especially between climatological monthly mean precipitation and intense precipitation, over both tropical land and ocean. Among the various parameters examined, the one best characterizing intense rainfall is a fraction of daily precipitation Great than or equal to 25 mm day(exp. -1), defined as a ratio between the intense precipitation above the used threshold and mean precipitation. Regions that experience an increase in mean precipitation likely experience a similar increase in intense precipitation, especially during the El Nino Southern Oscillation (ENSO) events. Improved knowledge of this intense precipitation regime and its strong connection to mean precipitation given by the fraction parameter can be used for monitoring of intense rainfall and its intensity on a global to regional scale.

  1. Forest Attributes from Radar Interferometric Structure and its Fusion with Optical Remote Sensing

    NASA Technical Reports Server (NTRS)

    Treuhaft, Robert N.; Law, Beverly E.; Asner, Gregory P.

    2004-01-01

    The possibility of global, three-dimensional remote sensing of forest structure with interferometric synthetic aperture radar (InSAR) bears on important forest ecological processes, particularly the carbon cycle. InSAR supplements two-dimensional remote sensing with information in the vertical dimension. Its strengths in potential for global coverage complement those of lidar (light detecting and ranging), which has the potential for high-accuracy vertical profiles over small areas. InSAR derives its sensitivity to forest vertical structure from the differences in signals received by two, spatially separate radar receivers. Estimation of parameters describing vertical structure requires multiple-polarization, multiple-frequency, or multiple-baseline InSAR. Combining InSAR with complementary remote sensing techniques, such as hyperspectral optical imaging and lidar, can enhance vertical-structure estimates and consequent biophysical quantities of importance to ecologists, such as biomass. Future InSAR experiments will supplement recent airborne and spaceborne demonstrations, and together with inputs from ecologists regarding structure, they will suggest designs for future spaceborne strategies for measuring global vegetation structure.

  2. Comparing Goldstone Solar System Radar Earth-based Observations of Mars with Orbital Datasets

    NASA Technical Reports Server (NTRS)

    Haldemann, A. F. C.; Larsen, K. W.; Jurgens, R. F.; Slade, M. A.

    2005-01-01

    The Goldstone Solar System Radar (GSSR) has collected a self-consistent set of delay-Doppler near-nadir radar echo data from Mars since 1988. Prior to the Mars Global Surveyor (MGS) Mars Orbiter Laser Altimeter (MOLA) global topography for Mars, these radar data provided local elevation information, along with radar scattering information with global coverage. Two kinds of GSSR Mars delay-Doppler data exist: low 5 km x 150 km resolution and, more recently, high (5 to 10 km) spatial resolution. Radar data, and non-imaging delay-Doppler data in particular, requires significant data processing to extract elevation, reflectivity and roughness of the reflecting surface. Interpretation of these parameters, while limited by the complexities of electromagnetic scattering, provide information directly relevant to geophysical and geomorphic analyses of Mars. In this presentation we want to demonstrate how to compare GSSR delay-Doppler data to other Mars datasets, including some idiosyncracies of the radar data. Additional information is included in the original extended abstract.

  3. The Soil Moisture Active and Passive Mission (SMAP): Science and Applications

    NASA Technical Reports Server (NTRS)

    Entekhabi, Dara; O'Neill, Peggy; Njoku, Eni

    2009-01-01

    The Soil Moisture Active and Passive mission (SMAP) will provide global maps of soil moisture content and surface freeze/thaw state. Global measurements of these variables are critical for terrestrial water and carbon cycle applications. The SMAP observatory consists of two multipolarization L-band sensors, a radar and radiometer, that share a deployable-mesh reflector antenna. The combined observations from the two sensors will allow accurate estimation of soil moisture at hydrometeorological (10 km) and hydroclimatological (40 km) spatial scales. The rotating antenna configuration provides conical scans of the Earth surface at a constant look angle. The wide-swath (1000 km) measurements will allow global mapping of soil moisture and its freeze/thaw state with 2-3 days revisit. Freeze/thaw in boreal latitudes will be mapped using the radar at 3 km resolution with 1-2 days revisit. The synergy of active and passive observations enables measurements of soil moisture and freeze/thaw state with unprecedented resolution, sensitivity, area coverage and revisit.

  4. Global Mapping Project - Applications and Development of Version 2 Dataset

    NASA Astrophysics Data System (ADS)

    Ubukawa, T.; Nakamura, T.; Otsuka, T.; Iimura, T.; Kishimoto, N.; Nakaminami, K.; Motojima, Y.; Suga, M.; Yatabe, Y.; Koarai, M.; Okatani, T.

    2012-07-01

    The Global Mapping Project aims to develop basic geospatial information of the whole land area of the globe, named Global Map, through the cooperation of National Mapping Organizations (NMOs) around the world. The Global Map data can be a base of global geospatial infrastructure and is composed of eight layers: Boundaries, Drainage, Transportation, Population Centers, Elevation, Land Use, Land Cover and Vegetation. The Global Map Version 1 was released in 2008, and the Version 2 will be released in 2013 as the data are to be updated every five years. In 2009, the International Steering Committee for Global Mapping (ISCGM) adopted new Specifications to develop the Global Map Version 2 with a change of its format so that it is compatible with the international standards, namely ISO 19136 and ISO 19115. With the support of the secretariat of ISCGM, the project participating countries are accelerating their data development toward the completion of the global coverage in 2013, while some countries have already released their Global Map version 2 datasets since 2010. Global Map data are available from the Internet free of charge for non-commercial purposes, which can be used to predict, assess, prepare for and cope with global issues by combining with other spatial data. There are a lot of Global Map applications in various fields, and further utilization of Global Map is expected. This paper summarises the activities toward the development of the Global Map Version 2 as well as some examples of the Global Map applications in various fields.

  5. Global effects of land use on local terrestrial biodiversity.

    PubMed

    Newbold, Tim; Hudson, Lawrence N; Hill, Samantha L L; Contu, Sara; Lysenko, Igor; Senior, Rebecca A; Börger, Luca; Bennett, Dominic J; Choimes, Argyrios; Collen, Ben; Day, Julie; De Palma, Adriana; Díaz, Sandra; Echeverria-Londoño, Susy; Edgar, Melanie J; Feldman, Anat; Garon, Morgan; Harrison, Michelle L K; Alhusseini, Tamera; Ingram, Daniel J; Itescu, Yuval; Kattge, Jens; Kemp, Victoria; Kirkpatrick, Lucinda; Kleyer, Michael; Correia, David Laginha Pinto; Martin, Callum D; Meiri, Shai; Novosolov, Maria; Pan, Yuan; Phillips, Helen R P; Purves, Drew W; Robinson, Alexandra; Simpson, Jake; Tuck, Sean L; Weiher, Evan; White, Hannah J; Ewers, Robert M; Mace, Georgina M; Scharlemann, Jörn P W; Purvis, Andy

    2015-04-02

    Human activities, especially conversion and degradation of habitats, are causing global biodiversity declines. How local ecological assemblages are responding is less clear--a concern given their importance for many ecosystem functions and services. We analysed a terrestrial assemblage database of unprecedented geographic and taxonomic coverage to quantify local biodiversity responses to land use and related changes. Here we show that in the worst-affected habitats, these pressures reduce within-sample species richness by an average of 76.5%, total abundance by 39.5% and rarefaction-based richness by 40.3%. We estimate that, globally, these pressures have already slightly reduced average within-sample richness (by 13.6%), total abundance (10.7%) and rarefaction-based richness (8.1%), with changes showing marked spatial variation. Rapid further losses are predicted under a business-as-usual land-use scenario; within-sample richness is projected to fall by a further 3.4% globally by 2100, with losses concentrated in biodiverse but economically poor countries. Strong mitigation can deliver much more positive biodiversity changes (up to a 1.9% average increase) that are less strongly related to countries' socioeconomic status.

  6. Book Review: Regional Hydrological Response to Climate Change

    NASA Technical Reports Server (NTRS)

    Koster, Randal

    1998-01-01

    The book being reviewed, Regional Hydrological Response to Climate Change, addresses the effects of global climate change, particularly global warming induced by greenhouse gas emissions, on hydrological budgets at the regional scale. As noted in its preface, the book consists of peer-reviewed papers delivered at scientific meetings held by the International Geographical Union Working Group on Regional Hydrological Response to Climate Change and Global Warming, supplemented with some additional chapters that round out coverage of the topic. The editors hope that this book will serve as "not only a record of current achievements, but also a stimulus to further hydrological research as the detail and spatial resolution of Global Climate Models improves". The reviewer found the background material on regional climatology to be valuable and the methodologies presented to be of interest. The value of the book is significantly diminished, however by the dated nature of some of the material and by large uncertainties in the predictions of regional precipitation change. The book would have been improved by a much more extensive documentation of the uncertainty associated with each step of the prediction process.

  7. Global effects of land use on local terrestrial biodiversity

    NASA Astrophysics Data System (ADS)

    Newbold, Tim; Hudson, Lawrence N.; Hill, Samantha L. L.; Contu, Sara; Lysenko, Igor; Senior, Rebecca A.; Börger, Luca; Bennett, Dominic J.; Choimes, Argyrios; Collen, Ben; Day, Julie; de Palma, Adriana; Díaz, Sandra; Echeverria-Londoño, Susy; Edgar, Melanie J.; Feldman, Anat; Garon, Morgan; Harrison, Michelle L. K.; Alhusseini, Tamera; Ingram, Daniel J.; Itescu, Yuval; Kattge, Jens; Kemp, Victoria; Kirkpatrick, Lucinda; Kleyer, Michael; Correia, David Laginha Pinto; Martin, Callum D.; Meiri, Shai; Novosolov, Maria; Pan, Yuan; Phillips, Helen R. P.; Purves, Drew W.; Robinson, Alexandra; Simpson, Jake; Tuck, Sean L.; Weiher, Evan; White, Hannah J.; Ewers, Robert M.; Mace, Georgina M.; Scharlemann, Jörn P. W.; Purvis, Andy

    2015-04-01

    Human activities, especially conversion and degradation of habitats, are causing global biodiversity declines. How local ecological assemblages are responding is less clear--a concern given their importance for many ecosystem functions and services. We analysed a terrestrial assemblage database of unprecedented geographic and taxonomic coverage to quantify local biodiversity responses to land use and related changes. Here we show that in the worst-affected habitats, these pressures reduce within-sample species richness by an average of 76.5%, total abundance by 39.5% and rarefaction-based richness by 40.3%. We estimate that, globally, these pressures have already slightly reduced average within-sample richness (by 13.6%), total abundance (10.7%) and rarefaction-based richness (8.1%), with changes showing marked spatial variation. Rapid further losses are predicted under a business-as-usual land-use scenario; within-sample richness is projected to fall by a further 3.4% globally by 2100, with losses concentrated in biodiverse but economically poor countries. Strong mitigation can deliver much more positive biodiversity changes (up to a 1.9% average increase) that are less strongly related to countries' socioeconomic status.

  8. Climate and Ozone Response to Increased Stratospheric Water Vapor

    NASA Technical Reports Server (NTRS)

    Shindell, Drew T.

    2001-01-01

    Stratospheric water vapor abundance affects ozone, surface climate, and stratospheric temperatures. From 30-50 km altitude, temperatures show global decreases of 3-6 K over recent decades. These may be a proxy for water vapor increases, as the Goddard Institute for Space Studies (GISS) climate model reproduces these trends only when stratospheric water vapor is allowed to increase. Observations suggest that stratospheric water vapor is indeed increasing, however, measurements are extremely limited in either spatial coverage or duration. The model results suggest that the observed changes may be part of a global, long-term trend. Furthermore, the required water vapor change is too large to be accounted for by increased production within the stratosphere, suggesting that ongoing climate change may be altering tropospheric input. The calculated stratospheric water vapor increase contributes an additional approximately equals 24% (approximately equals 0.2 W/m(exp 2)) to the global warming from well-mixed greenhouse gases over the past two decades. Observed ozone depletion is also better reproduced when destruction due to increased water vapor is included. If the trend continues, it could increase future global warming and impede stratospheric ozone recovery.

  9. A global database of ant species abundances.

    PubMed

    Gibb, Heloise; Dunn, Rob R; Sanders, Nathan J; Grossman, Blair F; Photakis, Manoli; Abril, Silvia; Agosti, Donat; Andersen, Alan N; Angulo, Elena; Armbrecht, Inge; Arnan, Xavier; Baccaro, Fabricio B; Bishop, Tom R; Boulay, Raphaël; Brühl, Carsten; Castracani, Cristina; Cerda, Xim; Del Toro, Israel; Delsinne, Thibaut; Diaz, Mireia; Donoso, David A; Ellison, Aaron M; Enriquez, Martha L; Fayle, Tom M; Feener, Donald H; Fisher, Brian L; Fisher, Robert N; Fitzpatrick, Matthew C; Gómez, Crisanto; Gotelli, Nicholas J; Gove, Aaron; Grasso, Donato A; Groc, Sarah; Guenard, Benoit; Gunawardene, Nihara; Heterick, Brian; Hoffmann, Benjamin; Janda, Milan; Jenkins, Clinton; Kaspari, Michael; Klimes, Petr; Lach, Lori; Laeger, Thomas; Lattke, John; Leponce, Maurice; Lessard, Jean-Philippe; Longino, John; Lucky, Andrea; Luke, Sarah H; Majer, Jonathan; McGlynn, Terrence P; Menke, Sean; Mezger, Dirk; Mori, Alessandra; Moses, Jimmy; Munyai, Thinandavha Caswell; Pacheco, Renata; Paknia, Omid; Pearce-Duvet, Jessica; Pfeiffer, Martin; Philpott, Stacy M; Resasco, Julian; Retana, Javier; Silva, Rogerio R; Sorger, Magdalena D; Souza, Jorge; Suarez, Andrew; Tista, Melanie; Vasconcelos, Heraldo L; Vonshak, Merav; Weiser, Michael D; Yates, Michelle; Parr, Catherine L

    2017-03-01

    What forces structure ecological assemblages? A key limitation to general insights about assemblage structure is the availability of data that are collected at a small spatial grain (local assemblages) and a large spatial extent (global coverage). Here, we present published and unpublished data from 51 ,388 ant abundance and occurrence records of more than 2,693 species and 7,953 morphospecies from local assemblages collected at 4,212 locations around the world. Ants were selected because they are diverse and abundant globally, comprise a large fraction of animal biomass in most terrestrial communities, and are key contributors to a range of ecosystem functions. Data were collected between 1949 and 2014, and include, for each geo-referenced sampling site, both the identity of the ants collected and details of sampling design, habitat type, and degree of disturbance. The aim of compiling this data set was to provide comprehensive species abundance data in order to test relationships between assemblage structure and environmental and biogeographic factors. Data were collected using a variety of standardized methods, such as pitfall and Winkler traps, and will be valuable for studies investigating large-scale forces structuring local assemblages. Understanding such relationships is particularly critical under current rates of global change. We encourage authors holding additional data on systematically collected ant assemblages, especially those in dry and cold, and remote areas, to contact us and contribute their data to this growing data set. © 2016 by the Ecological Society of America.

  10. Determination of Earth outgoing radiation using a constellation of satellites

    NASA Astrophysics Data System (ADS)

    Gristey, Jake; Chiu, Christine; Gurney, Robert; Han, Shin-Chan; Morcrette, Cyril

    2017-04-01

    The outgoing radiation fluxes at the top of the atmosphere, referred to as Earth outgoing radiation (EOR), constitute a vital component of the Earth's energy budget. This EOR exhibits strong diurnal signatures and is inherently connected to the rapidly evolving scene from which the radiation originates, so our ability to accurately monitor EOR with sufficient temporal resolution and spatial coverage is crucial for weather and climate studies. Despite vast improvements in satellite observations in recent decades, achieving these criteria remains challenging from current measurements. A technology revolution in small satellites and sensor miniaturisation has created a new and exciting opportunity for a novel, viable and sustainable observation strategy from a constellation of satellites, capable of providing both global coverage and high temporal resolution simultaneously. To explore the potential of a constellation approach for observing EOR we perform a series of theoretical simulation experiments. Using the results from these simulation experiments, we will demonstrate a baseline constellation configuration capable of accurately monitoring global EOR at unprecedented temporal resolution. We will also show whether it is possible to reveal synoptic scale, fast evolving phenomena by applying a deconvolution technique to the simulated measurements. The ability to observe and understand the relationship between these phenomena and changes in EOR is of fundamental importance in constraining future warming of our climate system.

  11. Open Earth Observation Data for Measuring Anthropogenic Development in Coastal Zones at Continental Scales

    NASA Astrophysics Data System (ADS)

    Du, X.; Leinenkugel, P.; Guo, H.; Kuenzer, C.

    2017-12-01

    During the recent decades, global coasts are undergoing tremendous change due to accelerating socio-economic growth, which has severe effects on the functioning of global coastal systems. In view of this, accurate, timely, and area-wide global information on natural as well as anthropogenic processes in the coastal zone are of paramount importance for sustainable coastal development. A broad range of freely available satellite derived products, and open geo-datasets, as well as statistics with global coverage exist that have not yet been fully exploited to evaluate human development patterns in coastal areas. In this study, we demonstrate the potential of freely and openly available EO and GEO data sets for characterizing and evaluating human development in coastal zones on large scales. Therefore, different geo-spatial dataset such as Global Urban Footprint (GUF), Open Street Map (OSM), time series of Global Human Settlement Layer (GHSL) and Climate Change Initiative (CCI) Land cover were acquired for the entire continental coast of Asia, defined as the terrestrial area 100 km from the coastline. In order to extract indices for the coastline, a reference structure was developed allowing the integration of a 2D spatial pattern of a given parameter to a certain location along the coast line. Based on this reference structure statistics for the coast were calculated every 5 km parallel to the coast line as well as for four different distance intervals from the coast. The results demonstrate the highly unequal distribution of coastal development with respect to urban and agricultural usage in Asia, with large differences between and within different countries. China coasts show the highest overall patterns of urban development, while countries such as Pakistan and Myanmar show comparably low levels with nearly no development evident absence from coastal metropolitan areas. Furthermore, a clear trend of decreasing urban development is evident with increasing distance from the coast. This study highlights the potential of global geo-spatial data products for deriving anthropogenic development indicators that can support the evaluation and monitoring for sustainable development of coastal zones, while also discussing the shortcomings of these datasets for such purposes.

  12. Time-Distance Helioseismology with the HMI Instrument

    NASA Technical Reports Server (NTRS)

    Duvall, Thomas L., Jr.

    2010-01-01

    We expect considerable improvement of time-distance results from the Helioseismic and Magnetic Imager (HMI) instrument as opposed to the earlier MDI and GONG data. The higher data rate makes possible several improvements, including faster temporal sampling (45 sec), smaller spatial pixels (0.5 arc sec), better wavelength coverage (6 samples across the line all transmitted to the ground), and year-round coverage of the full disk. The higher spatial resolution makes possible better longitude coverage of active regions and supergranulation and also better latitude coverage. Doppler, continuum, and line depth images have a strong granulation signal. Line core images show little granulation. Analyses to test the limits of these new capabilities will be presented.

  13. Partisan differences in the relationship between newspaper coverage and concern over global warming.

    PubMed

    Zhao, Xiaoquan; Rolfe-Redding, Justin; Kotcher, John E

    2016-07-01

    The effects of news media on public opinion about global warming have been a topic of much interest in both academic and popular discourse. Empirical evidence in this regard, however, is still limited and somewhat mixed. This study used data from the 2006 General Social Survey in combination with a content analysis of newspaper coverage of the same time period to examine the relationship between general news climate and public concern about global warming. Results showed a pattern of political polarization, with increased coverage associated with growing divergence between Democrats and Republicans. Further analysis also showed evidence of reactivity in partisan response to coverage from different news outlets. These findings point to a particular form of politically motivated, biased processing of news information. © The Author(s) 2014.

  14. [Spatial and temporal analysis of the coverage for neonatal hearing screening in Brazil (2008-2015)].

    PubMed

    Paschoal, Monique Ramos; Cavalcanti, Hannalice Gottschalck; Ferreira, Maria Ângela Fernandes

    2017-11-01

    This article seeks to establish the coverage of neonatal hearing screening in Brazil between January 2008 and June 2015. It is an ecological study that uses the country, through the Urban Articulation Regions, as a base. To calculate the screening coverage percentage, the Live Births Information System, the Outpatient Information System and the Beneficiaries of the National Supplementary Health Agency Information System were used. An exploratory analysis of maps and spatial statistical analysis was conducted using TerraView 4.2.2 software. The coverage of neonatal hearing screening saw an increase of 9.3% to 37.2% during the study period. In 2008-2009 it was observed that the percentage of coverage ranged from 0% to 79.92%, but most areas received coverage from 0% to 20%, though in 2014-2015 coverage ranged from 0% to 171.77%, and there was a visible increase in the percentage of coverage in the country, mainly in the Southern Region. The screening coverage has increased over time, but is still low with an uneven distribution in the territory, which may be explained by local laws and policies and by the existence of different types of auditory health service in the country.

  15. Spatiotemporal variations in the difference between satellite-observed daily maximum land surface temperature and station-based daily maximum near-surface air temperature

    NASA Astrophysics Data System (ADS)

    Lian, Xu; Zeng, Zhenzhong; Yao, Yitong; Peng, Shushi; Wang, Kaicun; Piao, Shilong

    2017-02-01

    There is an increasing demand to integrate land surface temperature (LST) into climate research due to its global coverage, which requires a comprehensive knowledge of its distinctive characteristics compared to near-surface air temperature (Tair). Using satellite observations and in situ station-based data sets, we conducted a global-scale assessment of the spatial and seasonal variations in the difference between daily maximum LST and daily maximum Tair (δT, LST - Tair) during 2003-2014. Spatially, LST is generally higher than Tair over arid and sparsely vegetated regions in the middle-low latitudes, but LST is lower than Tair in tropical rainforests due to strong evaporative cooling, and in the high-latitude regions due to snow-induced radiative cooling. Seasonally, δT is negative in tropical regions throughout the year, while it displays a pronounced seasonality in both the midlatitudes and boreal regions. The seasonality in the midlatitudes is a result of the asynchronous responses of LST and Tair to the seasonal cycle of radiation and vegetation abundance, whereas in the boreal regions, seasonality is mainly caused by the change in snow cover. Our study identified substantial spatial heterogeneity and seasonality in δT, as well as its determinant environmental drivers, and thus provides a useful reference for monitoring near-surface air temperature changes using remote sensing, particularly in remote regions.

  16. The use of PROBA-V data for Global Agricultural Monitoring

    NASA Astrophysics Data System (ADS)

    Bydekerke, Lieven; Gilliams, Sven; Kempeneers, Pieter; Piccard, Isabelle; Deronde, Bart; Eerens, Herman; Gobin, Anne

    2015-04-01

    Land conversion, forest cutting, urban growth, agricultural expansion, take place at an unprecedented rate and scale such that they have a strong economic and environmental impact. Understanding and measuring dynamics becomes a prerequisite for companies, governments, agencies, NGO's, research institutes and society in general. In many cases the temporal frequency of the information is a requirement to detect phenomena that can occur within a few days and at a certain geographic scale. For example frequent updates on crop condition and projected production are needed to stabilise agricultural markets. Large initiatives such as the GEOGLAM AMIS (Group on Earth Observations Global Agricultural Monitoring - Agricultural Market Information System) respond to this increased need. Observations over large areas are available through satellites, however, the following challenges remain: • obtaining frequent and consistent observations at sufficient level of detail to identify spatial phenomena. At present, no single mission is capable of providing near daily information of any place in the world at scales appropriate to detect land cover/use changes in a consistent manner. • the need for a historical reference. For agricultural monitoring and early warning purposes the comparison of the actual data with a historical reference is of the utmost importance. The PROBA-V mission is an important attempt to overcome these challenges. From its design and within the GIO-Global Land component a lot of work has been done to ensure the consistency between the PROBA-V data and the 15 years historical archive of SPOT-VEGETATION. In this respect PROBA-V observations are comparable with the SPOT-VEGETATION historical baseline and will therefore ensure the continuation of the standard agricultural monitoring products. Next to this integration with the historical archive, PROBA -V also provides an increase in spatial resolution from 1km to 300m and even 100m. The latter ensures a global coverage every 5 days, while daily global coverage is provided at 1 km and 300 m. Within the framework of the FP7 SIGMA project (Stimulating Innovation for Global Monitoring of Agriculture), currently Europe's largest contribution to the abovementioned GEOGLAM initiative, the use of the 100m data set for agricultural monitoring is investigated. To overcome the problem of the reduced revisit time of the 100 m data, the SIGMA projects foresees in a data assimilation of the 100 m and 300 m products. The data assimilation is based on a Kalman filter approach developed by Sedano et al. (2014). As an output, a cloud free composite is produced every ten days at a spatial resolution of 100 m. References Sedano, Fernando, Pieter Kempeneers, and George Hurtt. "A Kalman Filter-Based Method to Generate Continuous Time Series of Medium-Resolution NDVI Images." Remote Sensing 6.12 (2014): 12381-12408. http://proba-v.vgt.vito.be/ http://www.geoglam-sigma.info/

  17. Users guide for the hydroacoustic coverage assessment model (HydroCAM)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farrell, T., LLNL

    1997-12-01

    A model for predicting the detection and localization performance of hydroacoustic monitoring networks has been developed. The model accounts for major factors affecting global-scale acoustic propagation in the ocean. including horizontal refraction, travel time variability due to spatial and temporal fluctuations in the ocean, and detailed characteristics of the source. Graphical user interfaces are provided to setup the models and visualize the results. The model produces maps of network detection coverage and localization area of uncertainty, as well as intermediate results such as predicted path amplitudes, travel time and travel time variance. This Users Guide for the model is organizedmore » into three sections. First a summary of functionality available in the model is presented, including example output products. The second section provides detailed descriptions of each of models contained in the system. The last section describes how to run the model, including a summary of each data input form in the user interface.« less

  18. Jovian aurora from Juno perijove passes: comparison of ultraviolet and infrared images

    NASA Astrophysics Data System (ADS)

    Gérard, J.-C.; Bonfond, B.; Adriani, A.; Gladstone, G. R.; Mura, A.; Grodent, D.; Versteeg, M. H.; Greathouse, T. K.; Hue, V.; Altieri, F.; Dinelli, B. M.; Moriconi, M. L.; Migliorini, A.; Radioti, A.; Bolton, S. J.; Connerney, J. E. P.; Levin, S. M.; Fabiano, F.

    2017-09-01

    The electromagnetic radiation emitted by the Jovian aurora extends from the X-Rays presumably caused by heavy ion precipitation and electron bremsstrahlung to thermal infrared radiation resulting from enhanced heating by high-energy charged particles. Many observations have been made since the 1990s with the Hubble Space Telescope, which was able to image the H2 Lyman and Werner bands that are directly excited by collisions of auroral electrons with H2. Ground-based telescopes obtained spectra and images of the thermal H3+ emission produced by charge transfer between H2+ and H+ ions and neutral H2 molecules in the lower thermosphere. However, so far the geometry of the observations limited the coverage from Earth orbit and only one case of simultaneous UV and infrared emissions has been described in the literature. The Juno mission provides the unique advantage to observe both Jovian hemispheres simultaneously in the two wavelength regions simultaneously and offers a more global coverage with unprecedented spatial resolution. This was the case.

  19. A global inventory of small floating plastic debris

    NASA Astrophysics Data System (ADS)

    van Sebille, Erik; Wilcox, Chris; Lebreton, Laurent; Maximenko, Nikolai; Hardesty, Britta Denise; van Franeker, Jan A.; Eriksen, Marcus; Siegel, David; Galgani, Francois; Lavender Law, Kara

    2015-12-01

    Microplastic debris floating at the ocean surface can harm marine life. Understanding the severity of this harm requires knowledge of plastic abundance and distributions. Dozens of expeditions measuring microplastics have been carried out since the 1970s, but they have primarily focused on the North Atlantic and North Pacific accumulation zones, with much sparser coverage elsewhere. Here, we use the largest dataset of microplastic measurements assembled to date to assess the confidence we can have in global estimates of microplastic abundance and mass. We use a rigorous statistical framework to standardize a global dataset of plastic marine debris measured using surface-trawling plankton nets and coupled this with three different ocean circulation models to spatially interpolate the observations. Our estimates show that the accumulated number of microplastic particles in 2014 ranges from 15 to 51 trillion particles, weighing between 93 and 236 thousand metric tons, which is only approximately 1% of global plastic waste estimated to enter the ocean in the year 2010. These estimates are larger than previous global estimates, but vary widely because the scarcity of data in most of the world ocean, differences in model formulations, and fundamental knowledge gaps in the sources, transformations and fates of microplastics in the ocean.

  20. Cultured Construction: Global Evidence of the Impact of National Values on Piped-to-Premises Water Infrastructure Development.

    PubMed

    Kaminsky, Jessica A

    2016-07-19

    In 2016, the global community undertook the Sustainable Development Goals. One of these goals seeks to achieve universal and equitable access to safe and affordable drinking water for all people by the year 2030. In support of this undertaking, this paper seeks to discover the cultural work done by piped water infrastructure across 33 nations with developed and developing economies that have experienced change in the percentage of population served by piped-to-premises water infrastructure at the national level of analysis. To do so, I regressed the 1990-2012 change in piped-to-premises water infrastructure coverage against Hofstede's cultural dimensions, controlling for per capita GDP, the 1990 baseline level of coverage, percent urban population, overall 1990-2012 change in improved sanitation (all technologies), and per capita freshwater resources. Separate analyses were carried out for the urban, rural, and aggregate national contexts. Hofstede's dimensions provide a measure of cross-cultural difference; high or low scores are not in any way intended to represent better or worse but rather serve as a quantitative way to compare aggregate preferences for ways of being and doing. High scores in the cultural dimensions of Power Distance, Individualism-Collectivism, and Uncertainty Avoidance explain increased access to piped-to-premises water infrastructure in the rural context. Higher Power Distance and Uncertainty Avoidance scores are also statistically significant for increased coverage in the urban and national aggregate contexts. These results indicate that, as presently conceived, piped-to-premises water infrastructure fits best with spatial contexts that prefer hierarchy and centralized control. Furthermore, water infrastructure is understood to reduce uncertainty regarding the provision of individually valued benefits. The results of this analysis identify global trends that enable engineers and policy makers to design and manage more culturally appropriate and socially sustainable water infrastructure by better fitting technologies to user preferences.

  1. The Ozone Monitoring Instrument: overview of 14 years in space

    NASA Astrophysics Data System (ADS)

    Levelt, Pieternel F.; Joiner, Joanna; Tamminen, Johanna; Pepijn Veefkind, J.; Bhartia, Pawan K.; Stein Zweers, Deborah C.; Duncan, Bryan N.; Streets, David G.; Eskes, Henk; van der A, Ronald; McLinden, Chris; Fioletov, Vitali; Carn, Simon; de Laat, Jos; DeLand, Matthew; Marchenko, Sergey; McPeters, Richard; Ziemke, Jerald; Fu, Dejian; Liu, Xiong; Pickering, Kenneth; Apituley, Arnoud; González Abad, Gonzalo; Arola, Antti; Boersma, Folkert; Miller, Christopher Chan; Chance, Kelly; de Graaf, Martin; Hakkarainen, Janne; Hassinen, Seppo; Ialongo, Iolanda; Kleipool, Quintus; Krotkov, Nickolay; Li, Can; Lamsal, Lok; Newman, Paul; Nowlan, Caroline; Suleiman, Raid; Gijsbert Tilstra, Lieuwe; Torres, Omar; Wang, Huiqun; Wargan, Krzysztof

    2018-04-01

    This overview paper highlights the successes of the Ozone Monitoring Instrument (OMI) on board the Aura satellite spanning a period of nearly 14 years. Data from OMI has been used in a wide range of applications and research resulting in many new findings. Due to its unprecedented spatial resolution, in combination with daily global coverage, OMI plays a unique role in measuring trace gases important for the ozone layer, air quality, and climate change. With the operational very fast delivery (VFD; direct readout) and near real-time (NRT) availability of the data, OMI also plays an important role in the development of operational services in the atmospheric chemistry domain.

  2. The Ozone Monitoring Instrument: overview of 14 years in space

    NASA Technical Reports Server (NTRS)

    Tamminen, Johanna; Veefkind, J. Pepijn; van der A, Ronald; Miller, Christopher Chan; Ialongo, Iolanda; Kleipool, Quintus; Lamsal, Lok N.; Wang, Huiqun; Bhartia, Pawan K.; Zweers, Deborah C. Stein; hide

    2018-01-01

    This overview paper highlights the successes of the Ozone Monitoring Instrument (OMI) on board the Aura satellite spanning a period of nearly 14 years. Data from OMI has been used in a wide range of applications and research resulting in many new findings. Due to its unprecedented spatial resolution, in combination with daily global coverage, OMI plays a unique role in measuring trace gases important for the ozone layer, air quality, and climate change. With the operational very fast delivery (VFD; direct readout) and near real-time (NRT) availability of the data, OMI also plays an important role in the development of operational services in the atmospheric chemistry domain.

  3. CELL5M: A geospatial database of agricultural indicators for Africa South of the Sahara.

    PubMed

    Koo, Jawoo; Cox, Cindy M; Bacou, Melanie; Azzarri, Carlo; Guo, Zhe; Wood-Sichra, Ulrike; Gong, Queenie; You, Liangzhi

    2016-01-01

    Recent progress in large-scale georeferenced data collection is widening opportunities for combining multi-disciplinary datasets from biophysical to socioeconomic domains, advancing our analytical and modeling capacity. Granular spatial datasets provide critical information necessary for decision makers to identify target areas, assess baseline conditions, prioritize investment options, set goals and targets and monitor impacts. However, key challenges in reconciling data across themes, scales and borders restrict our capacity to produce global and regional maps and time series. This paper provides overview, structure and coverage of CELL5M-an open-access database of geospatial indicators at 5 arc-minute grid resolution-and introduces a range of analytical applications and case-uses. CELL5M covers a wide set of agriculture-relevant domains for all countries in Africa South of the Sahara and supports our understanding of multi-dimensional spatial variability inherent in farming landscapes throughout the region.

  4. Implementing a combined polar-geostationary algorithm for smoke emissions estimation in near real time

    NASA Astrophysics Data System (ADS)

    Hyer, E. J.; Schmidt, C. C.; Hoffman, J.; Giglio, L.; Peterson, D. A.

    2013-12-01

    Polar and geostationary satellites are used operationally for fire detection and smoke source estimation by many near-real-time operational users, including operational forecast centers around the globe. The input satellite radiance data are processed by data providers to produce Level-2 and Level -3 fire detection products, but processing these data into spatially and temporally consistent estimates of fire activity requires a substantial amount of additional processing. The most significant processing steps are correction for variable coverage of the satellite observations, and correction for conditions that affect the detection efficiency of the satellite sensors. We describe a system developed by the Naval Research Laboratory (NRL) that uses the full raster information from the entire constellation to diagnose detection opportunities, calculate corrections for factors such as angular dependence of detection efficiency, and generate global estimates of fire activity at spatial and temporal scales suitable for atmospheric modeling. By incorporating these improved fire observations, smoke emissions products, such as NRL's FLAMBE, are able to produce improved estimates of global emissions. This talk provides an overview of the system, demonstrates the achievable improvement over older methods, and describes challenges for near-real-time implementation.

  5. Examination of global correlations in ground deformation for terrestrial reference frame estimation

    NASA Astrophysics Data System (ADS)

    Chin, T. M.; Abbondanza, C.; Argus, D. F.; Gross, R. S.; Heflin, M. B.; Parker, J. W.; Wu, X.

    2016-12-01

    The KALman filter for REFerence frames (KALREF, Wu et al. 2015) has been developed to produce terrestrial reference frame (TRF) solutions. TRFs consist of precise position coordinates and velocity vectors of terrestrial reference sites (with the geocenter as the origin) along with the Earth orientation parameters, and they are produced by combining decades worth of space geodetic data using site tie data. To perform the combination, KALREF relies on stochastic models of the geophysical processes that are causing the Earth's surface to deform and reference sites to be displaced. We are investigating application of the GRACE data to improve the KALREF stochastic models by determining spatial statistics of the deformation of the Earth's surface caused by mass loading. A potential target of improvement is the non-uniform distribution of the geodetic observation sites, which can introduce bias in TRF estimates of the geocenter. The global and relatively uniform coverage of the GRACE measurements is expected to be free of such bias and allow us to improve physical realism of the stochastic model. For such a goal, we examine the spatial correlations in ground deformation derived from several GRACE data sets.[Wu et al. 2015: Journal of Geophysical Research (Solid Earth) 120:3775-3802

  6. Upper-Tropospheric Winds Derived from Geostationary Satellite Water Vapor Observations

    NASA Technical Reports Server (NTRS)

    Velden, Christopher S.; Hayden, Christopher M.; Nieman, Steven J.; Menzel, W. Paul; Wanzong, Steven; Goerss, James S.

    1997-01-01

    The coverage and quality of remotely sensed upper-tropospheric moisture parameters have improved considerably with the deployment of a new generation of operational geostationary meteorological satellites: GOES-8/9 and GMS-5. The GOES-8/9 water vapor imaging capabilities have increased as a result of improved radiometric sensitivity and higher spatial resolution. The addition of a water vapor sensing channel on the latest GMS permits nearly global viewing of upper-tropospheric water vapor (when joined with GOES and Meteosat) and enhances the commonality of geostationary meteorological satellite observing capabilities. Upper-tropospheric motions derived from sequential water vapor imagery provided by these satellites can be objectively extracted by automated techniques. Wind fields can be deduced in both cloudy and cloud-free environments. In addition to the spatially coherent nature of these vector fields, the GOES-8/9 multispectral water vapor sensing capabilities allow for determination of wind fields over multiple tropospheric layers in cloud-free environments. This article provides an update on the latest efforts to extract water vapor motion displacements over meteorological scales ranging from subsynoptic to global. The potential applications of these data to impact operations, numerical assimilation and prediction, and research studies are discussed.

  7. Variability of Upper-Tropospheric Precipitable from Satellite and Model Reanalysis Datasets

    NASA Technical Reports Server (NTRS)

    Jedlovec, Gary J.; Iwai, Hisaki

    1999-01-01

    Numerous datasets have been used to quantify water vapor and its variability in the upper-troposphere from satellite and model reanalysis data. These investigations have shown some usefulness in monitoring seasonal and inter-annual variations in moisture either globally, with polar orbiting satellite data or global model output analysis, or regionally, with the higher spatial and temporal resolution geostationary measurements. The datasets are not without limitations, however, due to coverage or limited temporal sampling, and may also contain bias in their representation of moisture processes. The research presented in this conference paper inter-compares the NVAP, NCEP/NCAR and DAO reanalysis models, and GOES satellite measurements of upper-tropospheric,precipitable water for the period from 1988-1994. This period captures several dramatic swings in climate events associated with ENSO events. The data are evaluated for temporal and spatial continuity, inter-compared to assess reliability and potential bias, and analyzed in light of expected trends due to changes in precipitation and synoptic-scale weather features. This work is the follow-on to previous research which evaluated total precipitable water over the same period. The relationship between total and upper-level precipitable water in the datasets will be discussed as well.

  8. Spatial Coverage Planning for Exploration Robots

    NASA Technical Reports Server (NTRS)

    Gaines, Daniel; Estlin, Tara; Chouinard, Caroline

    2007-01-01

    A report discusses an algorithm for an onboard planning and execution technology to support the exploration and characterization of geological features by autonomous rovers. A rover that is capable of deciding which observations are more important relieves the engineering team from much of the burden of attempting to make accurate predictions of what the available rover resources will be in the future. Instead, the science and engineering teams can uplink a set of observation requests that may potentially oversubscribe resources and let the rover use observation priorities and its current assessment of available resources to make decisions about which observations to perform and when to perform them. The algorithm gives the rover the ability to model spatial coverage quality based on data from different scientific instruments, to assess the impact of terrain on coverage quality, to incorporate user-defined priorities among subregions of the terrain to be covered, and to update coverage quality rankings of observations when terrain knowledge changes. When the rover is exploring large geographical features such as craters, channels, or boundaries between two different regions, an important factor in assessing the quality of a mission plan is how the set of chosen observations spatially cover the area of interest. The algorithm allows the rover to evaluate which observation to perform and to what extent the candidate observation will increase the spatial coverage of the plan.

  9. A spatial evaluation of global wildfire-water risks to human and natural systems.

    PubMed

    Robinne, François-Nicolas; Bladon, Kevin D; Miller, Carol; Parisien, Marc-André; Mathieu, Jérôme; Flannigan, Mike D

    2018-01-01

    The large mediatic coverage of recent massive wildfires across the world has emphasized the vulnerability of freshwater resources. The extensive hydrogeomorphic effects from a wildfire can impair the ability of watersheds to provide safe drinking water to downstream communities and high-quality water to maintain riverine ecosystem health. Safeguarding water use for human activities and ecosystems is required for sustainable development; however, no global assessment of wildfire impacts on water supply is currently available. Here, we provide the first global evaluation of wildfire risks to water security, in the form of a spatially explicit index. We adapted the Driving forces-Pressure-State-Impact-Response risk analysis framework to select a comprehensive set of indicators of fire activity and water availability, which we then aggregated to a single index of wildfire-water risk using a simple additive weighted model. Our results show that water security in many regions of the world is potentially vulnerable, regardless of socio-economic status. However, in developing countries, a critical component of the risk is the lack of socio-economic capability to respond to disasters. Our work highlights the importance of addressing wildfire-induced risks in the development of water security policies; the geographic differences in the components of the overall risk could help adapting those policies to different regional contexts. Crown Copyright © 2017. Published by Elsevier B.V. All rights reserved.

  10. Global Seismic Cross-Correlation Results: Characterizing Repeating Seismic Events

    NASA Astrophysics Data System (ADS)

    Vieceli, R.; Dodge, D. A.; Walter, W. R.

    2016-12-01

    Increases in seismic instrument quality and coverage have led to increased knowledge of earthquakes, but have also revealed the complex and diverse nature of earthquake ruptures. Nonetheless, some earthquakes are sufficiently similar to each other that they produce correlated waveforms. Such repeating events have been used to investigate interplate coupling of subduction zones [e.g. Igarashi, 2010; Yu, 2013], study spatio-temporal changes in slip rate at plate boundaries [e.g. Igarashi et al., 2003], observe variations in seismic wave propagation velocities in the crust [e.g. Schaff and Beroza, 2004; Sawazaki et al., 2015], and assess inner core rotation [e.g. Yu, 2016]. The characterization of repeating events on a global scale remains a very challenging problem. An initial global seismic cross-correlation study used over 310 million waveforms from nearly 3.8 million events recorded between 1970 and 2013 to determine an initial look at global correlated seismicity [Dodge and Walter, 2015]. In this work, we analyze the spatial and temporal distribution of the most highly correlated event clusters or "multiplets" from the Dodge and Walter [2015] study. We examine how the distributions and characteristics of multiplets are effected by tectonic environment, source-station separation, and frequency band. Preliminary results suggest that the distribution of multiplets does not correspond to the tectonic environment in any obvious way, nor do they always coincide with the occurrence of large earthquakes. Future work will focus on clustering correlated pairs and working to reduce the bias introduced by non-uniform seismic station coverage and data availability. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  11. Effects of finite coverage on global polarization observables in heavy ion collisions

    NASA Astrophysics Data System (ADS)

    Lan, Shaowei; Lin, Zi-Wei; Shi, Shusu; Sun, Xu

    2018-05-01

    In non-central relativistic heavy ion collisions, the created matter possesses a large initial orbital angular momentum. Particles produced in the collisions could be polarized globally in the direction of the orbital angular momentum due to spin-orbit coupling. Recently, the STAR experiment has presented polarization signals for Λ hyperons and possible spin alignment signals for ϕ mesons. Here we discuss the effects of finite coverage on these observables. The results from a multi-phase transport and a toy model both indicate that a pseudorapidity coverage narrower than | η | < ∼ 1 will generate a larger value for the extracted ϕ-meson ρ00 parameter; thus a finite coverage can lead to an artificial deviation of ρ00 from 1/3. We also show that a finite η and pT coverage affect the extracted pH parameter for Λ hyperons when the real pH value is non-zero. Therefore proper corrections are necessary to reliably quantify the global polarization with experimental observables.

  12. CarbonSat Constellation

    NASA Astrophysics Data System (ADS)

    Sun, Wei; Tobehn, Carsten; Ernst, Robert; Bovensmann, Heinrich; Buchwitz, Michael; Burrows, John P.; Notholt, John

    1 Carbon dioxide (CO2) and methane (CH4) are the most important manmade greenhouse gases (GHGs) which are driving global climate change. Currently, the CO2 measurements from the ground observing network are still the main sources of information but due to the limited number of measurement stations the coverage is limited. In addition, CO2 monitoring and trading is often based mainly on bottom-up calculations and an independent top down verification is limited due to the lack of global measurement data with local resolution. The first CO2 and CH4 mapping from SCIAMACHY on ENVISAT shows that satellites add important missing global information. Current GHG measurement satellites (GOSAT)are limited either in spatial or temporal resolution and coverage. These systems have to collect data over a year or even longer to produce global regional fluxes products. Conse-quently global, timely, higher spatial resolution and high accuracy measurement are required for: 1. A good understanding of the CO2 and CH4 sources and sinks for reliable climate predic-tion; and 2. Independent and transparent verification of accountable sources and sinks in supporting Kyoto and upcoming protocols The CarbonSat constellation idea comes out the trade off of resolution and swath width during CarbonSat mission definition studies. In response to the urgent need to support the Kyoto and upcoming protocols, a feasibility study has been carried out. The proposed solution is a constellation of five CarbonSat satellites in 614km LTAN 13:00, which is able to provide global, daily CO2 and CH4 measurement everywhere on the Earth with high spatial resolution 2 × 2 km and low uncertainty lt;2ppm (CO2) and lt;8ppb (CH4). The unique global daily measurement capability significantly increases the number of cloud free measurements, which enables more reliable services associated with reduced uncertainty, e.g. to 0.15ppm (CO2) per month in 10km and even more timely products. The CarbonSat Constellation in combination with inverse modelling techniques will be able to provide information services, such as global quarterly 1. CO2 and CH4 regional flux updates 2. CO2 emission reporting from hot spots e.g. the power plant 3. CH4 emission reporting from hot spots e.g. the pipeline/oil and gas fields. The team led by the industry partner -OHB now promotes an internationally coordinated CarbonSat constellation to provide operational services contributing to the independent iden-tification and verification of man-made & natural CO2 and CH4 emissions and claimed carbon sinks. It is proposed that the CarbonSat Constellation will be implemented through an internation-ally coordinated constellation. Each country contributes one satellite in the constellation and establishes its own ground station to provide data for national applications. A central coordi-nation will be set up for the constellation operation, data calibration and international data distribution. The proposed approach provides independence for each partner and is financially more feasible. In addition, the CarbonSat Constellation consortium could be a bridge/forum between developed countries and developing countries in establishing common understandings of and actions on the global climate change. The world wide transparency provided by this international forum is also critical in supporting Kyoto protocol and upcoming international agreement in man-made Greenhouse emission reduction. The paper will present the CarbonSat Constellation design and the proposed products/ services to verify CO2 and CH4 sources and sinks from a constellation of five CarbonSat satellites through a multilateral collaboration.

  13. Environmental risk of leptospirosis infections in the Netherlands: Spatial modelling of environmental risk factors of leptospirosis in the Netherlands.

    PubMed

    Rood, Ente J J; Goris, Marga G A; Pijnacker, Roan; Bakker, Mirjam I; Hartskeerl, Rudy A

    2017-01-01

    Leptospirosis is a globally emerging zoonotic disease, associated with various climatic, biotic and abiotic factors. Mapping and quantifying geographical variations in the occurrence of leptospirosis and the surrounding environment offer innovative methods to study disease transmission and to identify associations between the disease and the environment. This study aims to investigate geographic variations in leptospirosis incidence in the Netherlands and to identify associations with environmental factors driving the emergence of the disease. Individual case data derived over the period 1995-2012 in the Netherlands were geocoded and aggregated by municipality. Environmental covariate data were extracted for each municipality and stored in a spatial database. Spatial clusters were identified using kernel density estimations and quantified using local autocorrelation statistics. Associations between the incidence of leptospirosis and the local environment were determined using Simultaneous Autoregressive Models (SAR) explicitly modelling spatial dependence of the model residuals. Leptospirosis incidence rates were found to be spatially clustered, showing a marked spatial pattern. Fitting a spatial autoregressive model significantly improved model fit and revealed significant association between leptospirosis and the coverage of arable land, built up area, grassland and sabulous clay soils. The incidence of leptospirosis in the Netherlands could effectively be modelled using a combination of soil and land-use variables accounting for spatial dependence of incidence rates per municipality. The resulting spatially explicit risk predictions provide an important source of information which will benefit clinical awareness on potential leptospirosis infections in endemic areas.

  14. Environmental risk of leptospirosis infections in the Netherlands: Spatial modelling of environmental risk factors of leptospirosis in the Netherlands

    PubMed Central

    Goris, Marga G. A.; Pijnacker, Roan; Bakker, Mirjam I.; Hartskeerl, Rudy A.

    2017-01-01

    Leptospirosis is a globally emerging zoonotic disease, associated with various climatic, biotic and abiotic factors. Mapping and quantifying geographical variations in the occurrence of leptospirosis and the surrounding environment offer innovative methods to study disease transmission and to identify associations between the disease and the environment. This study aims to investigate geographic variations in leptospirosis incidence in the Netherlands and to identify associations with environmental factors driving the emergence of the disease. Individual case data derived over the period 1995–2012 in the Netherlands were geocoded and aggregated by municipality. Environmental covariate data were extracted for each municipality and stored in a spatial database. Spatial clusters were identified using kernel density estimations and quantified using local autocorrelation statistics. Associations between the incidence of leptospirosis and the local environment were determined using Simultaneous Autoregressive Models (SAR) explicitly modelling spatial dependence of the model residuals. Leptospirosis incidence rates were found to be spatially clustered, showing a marked spatial pattern. Fitting a spatial autoregressive model significantly improved model fit and revealed significant association between leptospirosis and the coverage of arable land, built up area, grassland and sabulous clay soils. The incidence of leptospirosis in the Netherlands could effectively be modelled using a combination of soil and land-use variables accounting for spatial dependence of incidence rates per municipality. The resulting spatially explicit risk predictions provide an important source of information which will benefit clinical awareness on potential leptospirosis infections in endemic areas. PMID:29065186

  15. POPSCAN: A CNES Geo-Information Study for Re-Entry Risk Assessment

    NASA Astrophysics Data System (ADS)

    Fuentes, N.; Tholey, N.; Battiston, S.; Montabord, M.; Studer, M.

    2013-09-01

    Within the framework of the FSOA, French Space Operations Act (referred to as the "Loi relative aux Opérations Spatiales" or LOS in French), including in particular the monitoring of safety requirements for people and property, one major parameter to consider is Geographic Information (GI) on population distribution, human activity, and land occupation.This article gives an overview of the set of geographic and demographic data examined for CNES control offices, outlining the advantages and limits of each one : coverage, precision, update frequency, availability, distribution, ...It focuses on the two major available global population databases: GPW-GRUMP from CIESIN of COLUMBIA University and LandScan from ORNL. The work engaged on POPSCAN integrates digital analysis about these two world population grids and also comparisons on other databases such as GLOBAL- INSIGHT, VMAP0, ESRI, DMSP-ISA, GLOBCOVER, OpenFlights, ... for urban areas, communication networks, sensitive human activities and land use.

  16. Global, quantitative and dynamic mapping of protein subcellular localization.

    PubMed

    Itzhak, Daniel N; Tyanova, Stefka; Cox, Jürgen; Borner, Georg Hh

    2016-06-09

    Subcellular localization critically influences protein function, and cells control protein localization to regulate biological processes. We have developed and applied Dynamic Organellar Maps, a proteomic method that allows global mapping of protein translocation events. We initially used maps statically to generate a database with localization and absolute copy number information for over 8700 proteins from HeLa cells, approaching comprehensive coverage. All major organelles were resolved, with exceptional prediction accuracy (estimated at >92%). Combining spatial and abundance information yielded an unprecedented quantitative view of HeLa cell anatomy and organellar composition, at the protein level. We subsequently demonstrated the dynamic capabilities of the approach by capturing translocation events following EGF stimulation, which we integrated into a quantitative model. Dynamic Organellar Maps enable the proteome-wide analysis of physiological protein movements, without requiring any reagents specific to the investigated process, and will thus be widely applicable in cell biology.

  17. Dynamic Assessment on the Landscape Patterns and Spatio-temporal Change in the mainstream of Tarim River

    NASA Astrophysics Data System (ADS)

    Zhang, Hui; Xue, Lianqing; Yang, Changbing; Chen, Xinfang; Zhang, Luochen; Wei, Guanghui

    2018-01-01

    The Tarim River (TR), as the longest inland river at an arid area in China, is a typical regions of vegetation variation research and plays a crucial role in the sustainable development of regional ecological environment. In this paper, the newest dataset of MODND1M NDVI, at a resolution of 500m, were applied to calculate vegetation index in growing season during the period 2000-2015. Using a vegetation coverage index, a trend line analysis, and the local spatial autocorrelation analysis, this paper investigated the landscape patterns and spatio-temporal variation of vegetation coverage at regional and pixel scales over mainstream of the Tarim River, Xinjiang. The results showed that (1) The bare land area on both sides of Tarim River appeared to have a fluctuated downward trend and there were two obvious valley values in 2005 and 2012. (2) Spatially, the vegetation coverage improved areas is mostly distributed in upstream and the degraded areas is mainly distributed in the left bank of midstream and the end of Tarim River during 2000-2005. (3) The local spatial auto-correlation analysis revealed that vegetation coverage was spatially positive autocorrelated and spatial concentrated. The high-high self-related areas are mainly distributed in upstream, where vegetation cover are relatively good, and the low-low self-related areas are mostly with lower vegetation cover in the lower reaches of Tarim River.

  18. Four barriers to the global understanding of biodiversity conservation: wealth, language, geographical location and security.

    PubMed

    Amano, Tatsuya; Sutherland, William J

    2013-04-07

    Global biodiversity conservation is seriously challenged by gaps and heterogeneity in the geographical coverage of existing information. Nevertheless, the key barriers to the collection and compilation of biodiversity information at a global scale have yet to be identified. We show that wealth, language, geographical location and security each play an important role in explaining spatial variations in data availability in four different types of biodiversity databases. The number of records per square kilometre is high in countries with high per capita gross domestic product (GDP), high proportion of English speakers and high security levels, and those located close to the country hosting the database; but these are not necessarily countries with high biodiversity. These factors are considered to affect data availability by impeding either the activities of scientific research or active international communications. Our results demonstrate that efforts to solve environmental problems at a global scale will gain significantly by focusing scientific education, communication, research and collaboration in low-GDP countries with fewer English speakers and located far from Western countries that host the global databases; countries that have experienced conflict may also benefit. Findings of this study may be broadly applicable to other fields that require the compilation of scientific knowledge at a global level.

  19. Effect of the Global Alliance for Vaccines and Immunisation on diphtheria, tetanus, and pertussis vaccine coverage: an independent assessment.

    PubMed

    Lu, Chunling; Michaud, Catherine M; Gakidou, Emmanuela; Khan, Kashif; Murray, Christopher J L

    2006-09-23

    The Global Alliance for Vaccines and Immunisation (GAVI) was created in 1999 to enable even the poorest countries to provide vaccines to all children. We aimed to assess the effect of GAVI on combined diphtheria, tetanus, and pertussis vaccine (DTP3) coverage. We examined the relation between DTP3 coverage for GAVI recipient countries from 1995 to 2004 and immunisation services support (ISS) and non-ISS expenditure per surviving child, controlling for income per head and local political governance variables. We analysed DTP3 coverage reported by governments and estimated by WHO/UNICEF. We also investigated the effect of GAVI on country reporting behaviour. In countries with DTP3 coverage of 65% or less at baseline, ISS spending per surviving child had a significant positive effect on DTP3 coverage (p=0.0005). This effect was not present in countries with DTP3 coverage of 65-80% or 80% or more at baseline. If ISS expenditure only is assessed, the estimated cost per additional child immunised in countries with baseline coverage of 65% or less is US$14 and if ISS and non-ISS expenditures are included the cost per child is almost $20. The success of ISS funding in countries with baseline DTP3 coverage of 65% or less provides evidence that a public-private partnership can work to reverse a negative trend in global health and that performance-related disbursement can work in some settings. Because ISS funding seems to have no effect in countries with baseline coverage greater than 65%, GAVI should consider redistributing its resources to countries with the lowest coverage.

  20. Overview of Global, Regional, and National Routine Vaccination Coverage Trends and Growth Patterns From 1980 to 2009: Implications for Vaccine-Preventable Disease Eradication and Elimination Initiatives

    PubMed Central

    Wallace, Aaron S.; Ryman, Tove K.; Dietz, Vance

    2015-01-01

    Background Review of the historical growth in annual vaccination coverage across countries and regions can better inform decision makers’ development of future goals and strategies to improve routine vaccination services. Methods Using the World Health Organization (WHO) and the United Nations Children's Fund estimates of annual national third dose of diphtheria-tetanus-pertussis–containing vaccine (DTP3) and third dose of polio vaccine (POL3) coverage for 1980–2009, we calculated the mean absolute annual rate of change in national DTP3 coverage among all countries (globally) and among countries within each WHO region, as well as the number of years taken by each region to reach specific regional coverage levels. Last, we assessed differences in mean absolute annual rate of change in DTP3 coverage, stratified by baseline level of DTP3 coverage. Results During the 1980s, global DTP3 coverage increased a mean of 5.3 percentage points/year. Annual rate of change decreased to 0.5 percentage points/year in the 1990s and then increased to 0.9 percentage points/year during the 2000s. Mean annual rate of change in coverage across all countries was highest (9.2 percentage points) when national coverage levels were 26%–30% and lowest (−0.9 percentage points) when national coverage levels were 96%–100%. Regional differences existed as both WHO South-East Asia Region and WHO African Region countries experienced mean negative DTP3 coverage growth at lower coverage levels (81%–85%) than other regions. The regions that have achieved 95% DTP3 coverage (Americas, Western Pacific, and European) took 25–29 years to reach that level from a level of 50% DTP3 coverage. POL3 coverage change trends were similar to described DTP3 coverage change trends. Conclusions Mean national coverage growth patterns across all regions are nonlinear as coverage levels increase. Saturation points of mean 0 percentage-point growth in annual coverage varies by region and require further investigation. The achievement of >90% routine coverage is observed to take decades, which has implications for disease eradication and elimination initiatives. PMID:25316875

  1. Initial Validation of NDVI time seriesfrom AVHRR, VEGETATION, and MODIS

    NASA Technical Reports Server (NTRS)

    Morisette, Jeffrey T.; Pinzon, Jorge E.; Brown, Molly E.; Tucker, Jim; Justice, Christopher O.

    2004-01-01

    The paper will address Theme 7: Multi-sensor opportunities for VEGETATION. We present analysis of a long-term vegetation record derived from three moderate resolution sensors: AVHRR, VEGETATION, and MODIS. While empirically based manipulation can ensure agreement between the three data sets, there is a need to validate the series. This paper uses atmospherically corrected ETM+ data available over the EOS Land Validation Core Sites as an independent data set with which to compare the time series. We use ETM+ data from 15 globally distributed sites, 7 of which contain repeat coverage in time. These high-resolution data are compared to the values of each sensor by spatially aggregating the ETM+ to each specific sensors' spatial coverage. The aggregated ETM+ value provides a point estimate for a specific site on a specific date. The standard deviation of that point estimate is used to construct a confidence interval for that point estimate. The values from each moderate resolution sensor are then evaluated with respect to that confident interval. Result show that AVHRR, VEGETATION, and MODIS data can be combined to assess temporal uncertainties and address data continuity issues and that the atmospherically corrected ETM+ data provide an independent source with which to compare that record. The final product is a consistent time series climate record that links historical observations to current and future measurements.

  2. Seven-Year SSM/I-Derived Global Ocean Surface Turbulent Fluxes

    NASA Technical Reports Server (NTRS)

    Chou, Shu-Hsien; Shie, Chung-Lin; Atlas, Robert M.; Ardizzone, Joe

    2000-01-01

    A 7.5-year (July 1987-December 1994) dataset of daily surface specific humidity and turbulent fluxes (momentum, latent heat, and sensible heat) over global oceans has been retrieved from the Special Sensor Microwave/Imager (SSM/I) data and other data. It has a spatial resolution of 2.0 deg.x 2.5 deg. latitude-longitude. The retrieved surface specific humidity is generally accurate over global oceans as validated against the collocated radiosonde observations. The retrieved daily wind stresses and latent heat fluxes show useful accuracy as verified by those measured by the RV Moana Wave and IMET buoy in the western equatorial Pacific. The derived turbulent fluxes and input variables are also found to agree generally with the global distributions of annual-and seasonal-means of those based on 4-year (1990-93) comprehensive ocean-atmosphere data set (COADS) with adjustment in wind speeds and other climatological studies. The COADS has collected the most complete surface marine observations, mainly from merchant ships. However, ship measurements generally have poor accuracy, and variable spatial coverages. Significant differences between the retrieved and COADS-based are found in some areas of the tropical and southern extratropical oceans, reflecting the paucity of ship observations outside the northern extratropical oceans. Averaged over the global oceans, the retrieved wind stress is smaller but the latent heat flux is larger than those based on COADS. The former is suggested to be mainly due to overestimation of the adjusted ship-estimated wind speeds (depending on sea states), while the latter is suggested to be mainly due to overestimation of ship-measured dew point temperatures. The study suggests that the SSM/I-derived turbulent fluxes can be used for climate studies and coupled model validations.

  3. Effects of daily, high spatial resolution a priori profiles of satellite-derived NOx emissions

    NASA Astrophysics Data System (ADS)

    Laughner, J.; Zare, A.; Cohen, R. C.

    2016-12-01

    The current generation of space-borne NO2 column observations provides a powerful method of constraining NOx emissions due to the spatial resolution and global coverage afforded by the Ozone Monitoring Instrument (OMI). The greater resolution available in next generation instruments such as TROPOMI and the capabilities of geosynchronous platforms TEMPO, Sentinel-4, and GEMS will provide even greater capabilities in this regard, but we must apply lessons learned from the current generation of retrieval algorithms to make the best use of these instruments. Here, we focus on the effect of the resolution of the a priori NO2 profiles used in the retrieval algorithms. We show that for an OMI retrieval, using daily high-resolution a priori profiles results in changes in the retrieved VCDs up to 40% when compared to a retrieval using monthly average profiles at the same resolution. Further, comparing a retrieval with daily high spatial resolution a priori profiles to a more standard one, we show that emissions derived increase by 100% when using the optimized retrieval.

  4. Mapping Impervious Surfaces Globally at 30m Resolution Using Global Land Survey Data

    NASA Technical Reports Server (NTRS)

    DeColstoun, Eric Brown; Huang, Chengquan; Tan, Bin; Smith, Sarah Elizabeth; Phillips, Jacqueline; Wang, Panshi; Ling, Pui-Yu; Zhan, James; Li, Sike; Taylor, Michael P.; hide

    2013-01-01

    Impervious surfaces, mainly artificial structures and roads, cover less than 1% of the world's land surface (1.3% over USA). Regardless of the relatively small coverage, impervious surfaces have a significant impact on the environment. They are the main source of the urban heat island effect, and affect not only the energy balance, but also hydrology and carbon cycling, and both land and aquatic ecosystem services. In the last several decades, the pace of converting natural land surface to impervious surfaces has increased. Quantitatively monitoring the growth of impervious surface expansion and associated urbanization has become a priority topic across both the physical and social sciences. The recent availability of consistent, global scale data sets at 30m resolution such as the Global Land Survey from the Landsat satellites provides an unprecedented opportunity to map global impervious cover and urbanization at this resolution for the first time, with unprecedented detail and accuracy. Moreover, the spatial resolution of Landsat is absolutely essential to accurately resolve urban targets such a buildings, roads and parking lots. With long term GLS data now available for the 1975, 1990, 2000, 2005 and 2010 time periods, the land cover/use changes due to urbanization can now be quantified at this spatial scale as well. In the Global Land Survey - Imperviousness Mapping Project (GLS-IMP), we are producing the first global 30 m spatial resolution impervious cover data set. We have processed the GLS 2010 data set to surface reflectance (8500+ TM and ETM+ scenes) and are using a supervised classification method using a regression tree to produce continental scale impervious cover data sets. A very large set of accurate training samples is the key to the supervised classifications and is being derived through the interpretation of high spatial resolution (approx. 2 m or less) commercial satellite data (Quickbird and Worldview2) available to us through the unclassified archive of the National Geospatial Intelligence Agency (NGA). For each continental area several million training pixels are derived by analysts using image segmentation algorithms and tools and then aggregated to the 30m resolution of Landsat. Here we will discuss the production/testing of this massive data set for Europe, North and South America and Africa, including assessments of the 2010 surface reflectance data. This type of analysis is only possible because of the availability of long term 30m data sets from GLS and shows much promise for integration of Landsat 8 data in the future.

  5. Mapping Impervious Surfaces Globally at 30m Resolution Using Landsat Global Land Survey Data

    NASA Astrophysics Data System (ADS)

    Brown de Colstoun, E.; Huang, C.; Wolfe, R. E.; Tan, B.; Tilton, J.; Smith, S.; Phillips, J.; Wang, P.; Ling, P.; Zhan, J.; Xu, X.; Taylor, M. P.

    2013-12-01

    Impervious surfaces, mainly artificial structures and roads, cover less than 1% of the world's land surface (1.3% over USA). Regardless of the relatively small coverage, impervious surfaces have a significant impact on the environment. They are the main source of the urban heat island effect, and affect not only the energy balance, but also hydrology and carbon cycling, and both land and aquatic ecosystem services. In the last several decades, the pace of converting natural land surface to impervious surfaces has increased. Quantitatively monitoring the growth of impervious surface expansion and associated urbanization has become a priority topic across both the physical and social sciences. The recent availability of consistent, global scale data sets at 30m resolution such as the Global Land Survey from the Landsat satellites provides an unprecedented opportunity to map global impervious cover and urbanization at this resolution for the first time, with unprecedented detail and accuracy. Moreover, the spatial resolution of Landsat is absolutely essential to accurately resolve urban targets such a buildings, roads and parking lots. With long term GLS data now available for the 1975, 1990, 2000, 2005 and 2010 time periods, the land cover/use changes due to urbanization can now be quantified at this spatial scale as well. In the Global Land Survey - Imperviousness Mapping Project (GLS-IMP), we are producing the first global 30 m spatial resolution impervious cover data set. We have processed the GLS 2010 data set to surface reflectance (8500+ TM and ETM+ scenes) and are using a supervised classification method using a regression tree to produce continental scale impervious cover data sets. A very large set of accurate training samples is the key to the supervised classifications and is being derived through the interpretation of high spatial resolution (~2 m or less) commercial satellite data (Quickbird and Worldview2) available to us through the unclassified archive of the National Geospatial Intelligence Agency (NGA). For each continental area several million training pixels are derived by analysts using image segmentation algorithms and tools and then aggregated to the 30m resolution of Landsat. Here we will discuss the production/testing of this massive data set for Europe, North and South America and Africa, including assessments of the 2010 surface reflectance data. This type of analysis is only possible because of the availability of long term 30m data sets from GLS and shows much promise for integration of Landsat 8 data in the future.

  6. High Temporal and Spatial Resolution Coverage of Earth from Commercial AVSTAR Systems in Geostationary Orbit

    NASA Astrophysics Data System (ADS)

    Lecompte, M. A.; Heaps, J. F.; Williams, F. H.

    Imaging the earth from Geostationary Earth Orbit (GEO) allows frequent updates of environmental conditions within an observable hemisphere at time and spatial scales appropriate to the most transient observable terrestrial phenomena. Coverage provided by current GEO Meteorological Satellites (METSATS) fails to fully exploit this advantage due primarily to obsolescent technology and also institutional inertia. With the full benefit of GEO based imaging unrealized, rapidly evolving phenomena, occurring at the smallest spatial and temporal scales that frequently have significant environmental impact remain unobserved. These phenomena may be precursors for the most destructive natural processes that adversely effect society. Timely distribution of information derived from "real-time" observations thus may provide opportunities to mitigate much of the damage to life and property that would otherwise occur. AstroVision International's AVStar Earth monitoring system is designed to overcome the current limitations if GEO Earth coverage and to provide real time monitoring of changes to the Earth's complete atmospheric, land and marine surface environments including fires, volcanic events, lightning and meteoritic events on a "live," true color, and multispectral basis. The understanding of severe storm dynamics and its coupling to the earth's electro-sphere will be greatly enhanced by observations at unprecedented sampling frequencies and spatial resolution. Better understanding of these natural phenomena and AVStar operational real-time coverage may also benefit society through improvements in severe weather prediction and warning. AstroVision's AVStar system, designed to provide this capability with the first of a constellation of GEO- based commercial environmental monitoring satellites to be launched in late 2003 will be discussed, including spatial and temporal resolution, spectral coverage with applications and an inventory of the potential benefits to society, science, commerce and education.

  7. BrO, OClO and HCHO Observations from the EOS-Aura Ozone Monitoring Instrument

    NASA Astrophysics Data System (ADS)

    Kurosu, T. P.; Chance, K.; Sioris, C. E.

    2004-12-01

    The Ozone Monitoring Instrument (OMI) was launched on 15 July 2004 on the EOS-Aura platform into a sun-synchronous, polar orbit with an equator crossing time of 13:45h (ascending node). OMI is a nadir-viewing near-UV/Visible spectrometer, covering the spectral region of 270 nm to 500 nm with a resolution between 0.45 nm and 1.0 nm and a nominal ground footprint of 13 km×24 km. Global coverage is achieved in one day. The very high spatial resolution of OMI measurements sets a new standard for trace gas and air quality monitoring from space. Combined with daily global coverage, this significantly advances our ability to answer outstanding questions on air pollution, including the determination of BrO sources in mid and low latitudes, BrO--O3 anti-correlations as a function of latitude, and the production of formaldehyde in cities of the developing world. We introduce the design of the OMI operational retrieval algorithm for BrO, OClO and HCHO. Based on a direct (non-DOAS) non-linear fitting approach, it includes wavelength calibration for radiances and irradiances, an undersampling correction, and the characterization of the instrument slit function. We will present results of BrO (global distribution, and tropospheric contributions from the break-up ice shelves and volcanic emissions), formaldehyde (over regions of isoprene emissions, forest fires, and heavy urban pollution), and, contingent upon the availability of suitable OMI observations, OClO (under ozone hole conditions). Where available, trace gas retrievals from OMI will be compared to results from the SCIAMACHY and GOME instruments.

  8. Stable Satellite Orbits for Global Coverage of the Moon

    NASA Technical Reports Server (NTRS)

    Ely, Todd; Lieb, Erica

    2006-01-01

    A document proposes a constellation of spacecraft to be placed in orbit around the Moon to provide navigation and communication services with global coverage required for exploration of the Moon. There would be six spacecraft in inclined elliptical orbits: three in each of two orthogonal orbital planes, suggestive of a linked-chain configuration. The orbits have been chosen to (1) provide 99.999-percent global coverage for ten years and (2) to be stable under perturbation by Earth gravitation and solar-radiation pressure, so that no deterministic firing of thrusters would be needed to maintain the orbits. However, a minor amount of orbit control might be needed to correct for such unmodeled effects as outgassing of the spacecraft.

  9. Using spatial analysis to demonstrate the heterogeneity of the cardiovascular drug-prescribing pattern in Taiwan

    PubMed Central

    2011-01-01

    Background Geographic Information Systems (GIS) combined with spatial analytical methods could be helpful in examining patterns of drug use. Little attention has been paid to geographic variation of cardiovascular prescription use in Taiwan. The main objective was to use local spatial association statistics to test whether or not the cardiovascular medication-prescribing pattern is homogenous across 352 townships in Taiwan. Methods The statistical methods used were the global measures of Moran's I and Local Indicators of Spatial Association (LISA). While Moran's I provides information on the overall spatial distribution of the data, LISA provides information on types of spatial association at the local level. LISA statistics can also be used to identify influential locations in spatial association analysis. The major classes of prescription cardiovascular drugs were taken from Taiwan's National Health Insurance Research Database (NHIRD), which has a coverage rate of over 97%. The dosage of each prescription was converted into defined daily doses to measure the consumption of each class of drugs. Data were analyzed with ArcGIS and GeoDa at the township level. Results The LISA statistics showed an unusual use of cardiovascular medications in the southern townships with high local variation. Patterns of drug use also showed more low-low spatial clusters (cold spots) than high-high spatial clusters (hot spots), and those low-low associations were clustered in the rural areas. Conclusions The cardiovascular drug prescribing patterns were heterogeneous across Taiwan. In particular, a clear pattern of north-south disparity exists. Such spatial clustering helps prioritize the target areas that require better education concerning drug use. PMID:21609462

  10. Mapping of CO2 at High Spatiotemporal Resolution using Satellite Observations: Global distributions from OCO-2

    NASA Technical Reports Server (NTRS)

    Hammerling, Dorit M.; Michalak, Anna M.; Kawa, S. Randolph

    2012-01-01

    Satellite observations of CO2 offer new opportunities to improve our understanding of the global carbon cycle. Using such observations to infer global maps of atmospheric CO2 and their associated uncertainties can provide key information about the distribution and dynamic behavior of CO2, through comparison to atmospheric CO2 distributions predicted from biospheric, oceanic, or fossil fuel flux emissions estimates coupled with atmospheric transport models. Ideally, these maps should be at temporal resolutions that are short enough to represent and capture the synoptic dynamics of atmospheric CO2. This study presents a geostatistical method that accomplishes this goal. The method can extract information about the spatial covariance structure of the CO2 field from the available CO2 retrievals, yields full coverage (Level 3) maps at high spatial resolutions, and provides estimates of the uncertainties associated with these maps. The method does not require information about CO2 fluxes or atmospheric transport, such that the Level 3 maps are informed entirely by available retrievals. The approach is assessed by investigating its performance using synthetic OCO-2 data generated from the PCTM/ GEOS-4/CASA-GFED model, for time periods ranging from 1 to 16 days and a target spatial resolution of 1deg latitude x 1.25deg longitude. Results show that global CO2 fields from OCO-2 observations can be predicted well at surprisingly high temporal resolutions. Even one-day Level 3 maps reproduce the large-scale features of the atmospheric CO2 distribution, and yield realistic uncertainty bounds. Temporal resolutions of two to four days result in the best performance for a wide range of investigated scenarios, providing maps at an order of magnitude higher temporal resolution relative to the monthly or seasonal Level 3 maps typically reported in the literature.

  11. A suite of global reconstructed precipitation products and their error estimate by multivariate regression using empirical orthogonal functions: 1850-present

    NASA Astrophysics Data System (ADS)

    Shen, S. S.

    2014-12-01

    This presentation describes a suite of global precipitation products reconstructed by a multivariate regression method using an empirical orthogonal function (EOF) expansion. The sampling errors of the reconstruction are estimated for each product datum entry. The maximum temporal coverage is 1850-present and the spatial coverage is quasi-global (75S, 75N). The temporal resolution ranges from 5-day, monthly, to seasonal and annual. The Global Precipitation Climatology Project (GPCP) precipitation data from 1979-2008 are used to calculate the EOFs. The Global Historical Climatology Network (GHCN) gridded data are used to calculate the regression coefficients for reconstructions. The sampling errors of the reconstruction are analyzed in detail for different EOF modes. Our reconstructed 1900-2011 time series of the global average annual precipitation shows a 0.024 (mm/day)/100a trend, which is very close to the trend derived from the mean of 25 models of the CMIP5 (Coupled Model Intercomparison Project Phase 5). Our reconstruction examples of 1983 El Niño precipitation and 1917 La Niña precipitation (Figure 1) demonstrate that the El Niño and La Niña precipitation patterns are well reflected in the first two EOFs. The validation of our reconstruction results with GPCP makes it possible to use the reconstruction as the benchmark data for climate models. This will help the climate modeling community to improve model precipitation mechanisms and reduce the systematic difference between observed global precipitation, which hovers at around 2.7 mm/day for reconstructions and GPCP, and model precipitations, which have a range of 2.6-3.3 mm/day for CMIP5. Our precipitation products are publically available online, including digital data, precipitation animations, computer codes, readme files, and the user manual. This work is a joint effort between San Diego State University (Sam Shen, Nancy Tafolla, Barbara Sperberg, and Melanie Thorn) and University of Maryland (Phil Arkin, Tom Smith, Li Ren, and Li Dai) and supported in part by the U.S. National Science Foundation (Awards No. AGS-1015926 and AGS-1015957).

  12. The Global Precipitation Mission

    NASA Technical Reports Server (NTRS)

    Braun, Scott; Kummerow, Christian

    2000-01-01

    The Global Precipitation Mission (GPM), expected to begin around 2006, is a follow-up to the Tropical Rainfall Measuring Mission (TRMM). Unlike TRMM, which primarily samples the tropics, GPM will sample both the tropics and mid-latitudes. The primary, or core, satellite will be a single, enhanced TRMM satellite that can quantify the 3-D spatial distributions of precipitation and its associated latent heat release. The core satellite will be complemented by a constellation of very small and inexpensive drones with passive microwave instruments that will sample the rainfall with sufficient frequency to be not only of climate interest, but also have local, short-term impacts by providing global rainfall coverage at approx. 3 h intervals. The data is expected to have substantial impact upon quantitative precipitation estimation/forecasting and data assimilation into global and mesoscale numerical models. Based upon previous studies of rainfall data assimilation, GPM is expected to lead to significant improvements in forecasts of extratropical and tropical cyclones. For example, GPM rainfall data can provide improved initialization of frontal systems over the Pacific and Atlantic Oceans. The purpose of this talk is to provide information about GPM to the USWRP (U.S. Weather Research Program) community and to discuss impacts on quantitative precipitation estimation/forecasting and data assimilation.

  13. Monitoring Precipitation from Space: targeting Hydrology Community?

    NASA Astrophysics Data System (ADS)

    Hong, Y.; Turk, J.

    2005-12-01

    During the past decades, advances in space, sensor and computer technology have made it possible to estimate precipitation nearly globally from a variety of observations in a relatively direct manner. The success of Tropical Precipitation Measuring Mission (TRMM) has been a significant advance for modern precipitation estimation algorithms to move toward daily quarter degree measurements, while the need for precipitation data at temporal-spatial resolutions compatible with hydrologic modeling has been emphasized by the end user: hydrology community. Can the future deployment of Global Precipitation Measurement constellation of low-altitude orbiting satellites (covering 90% of the global with a sampling interval of less than 3-hours), in conjunction with the existing suite of geostationary satellites, results in significant improvements in scale and accuracy of precipitation estimates suitable for hydrology applications? This presentation will review the current state of satellite-derived precipitation estimation and demonstrate the early results and primary barriers to full global high-resolution precipitation coverage. An attempt to facilitate the communication between data producers and users will be discussed by developing an 'end-to-end' uncertainty propagation analysis framework to quantify both the precipitation estimation error structure and the error influence on hydrological modeling.

  14. Sentinel-3 coverage-driven mission design: Coupling of orbit selection and instrument design

    NASA Astrophysics Data System (ADS)

    Cornara, S.; Pirondini, F.; Palmade, J. L.

    2017-11-01

    The first satellite of the Sentinel-3 series was launched in February 2016. Sentinel-3 payload suite encompasses the Ocean and Land Colour Instrument (OLCI) with a swath of 1270 km, the Sea and Land Surface Temperature Radiometer (SLSTR) yielding a dual-view scan with swaths of 1420 km (nadir) and 750 km (oblique view), the Synthetic Aperture Radar Altimeter (SRAL) working in Ku-band and C-band, and the dual-frequency Microwave Radiometer (MWR). In the early stages of mission and system design, the main driver for the Sentinel-3 reference orbit selection was the requirement to achieve a revisit time of two days or less globally over ocean areas with two satellites (i.e. 4-day global coverage with one satellite). The orbit selection was seamlessly coupled with the OLCI instrument design in terms of field of view (FoV) definition driven by the observation zenith angle (OZA) and sunglint constraints applied to ocean observations. The criticality of the global coverage requirement for ocean monitoring derives from the sunglint phenomenon, i.e. the impact on visible channels of the solar ray reflection on the water surface. This constraint was finally overcome thanks to the concurrent optimisation of the orbit parameters, notably the Local Time at Descending Node (LTDN), and the OLCI instrument FoV definition. The orbit selection process started with the identification of orbits with short repeat cycle (2-4 days), firstly to minimise the time required to achieve global coverage with existing constraints, and then to minimise the swath required to obtain global coverage and the maximum required OZA. This step yielded the selection of a 4-day repeat cycle orbit, thus allowing 2-day coverage with two adequately spaced satellites. Then suitable candidate orbits with higher repeat cycles were identified in the proximity of the selected altitudes and the reference orbit was ultimately chosen. Rationale was to keep the swath for global coverage as close as possible to the previous optimum value, but to tailor the repeat cycle length (i.e. the ground-track grid) to optimise the topography mission performances. The final choice converged on the sun-synchronous orbit 14 + 7/27, reference altitude ∼800 km, LTDN = 10h00. Extensive coverage analyses were carried out to characterise the mission performance and the fulfilment of the requirements, encompassing revisit time, number of acquisitions, observation viewing geometry and swath properties. This paper presents a comprehensive overview of the Sentinel-3 orbit selection, starting from coverage requirements and highlighting the close interaction with the instrument design activity.

  15. Interdisciplinary science for future governance and management of forests.

    PubMed

    Nordin, Annika; Sandström, Camilla

    2016-02-01

    The sustainable use of forests constitutes one of the great challenges for the future due to forests' large spatial coverage, long-term planning horizons and inclusion of many ecosystem services. The mission of the Future Forests programme is to provide a scientifically robust knowledge base for sustainable governance and management of forests preparing for a future characterized by globalization and climate change. In this introduction to the Special Issue, we describe the interdisciplinary science approach developed in close collaboration with actors in the Future Forests programme, and discuss the potential impacts of this science on society. In addition, we introduce the 13 scientific articles and present results produced by the programme.

  16. Riometer based Neural Network Prediction of Kp

    NASA Astrophysics Data System (ADS)

    Arnason, K. M.; Spanswick, E.; Chaddock, D.; Tabrizi, A. F.; Behjat, L.

    2017-12-01

    The Canadian Geospace Observatory Riometer Array is a network of 11 wide-beam riometers deployed across Central and Northern Canada. The geographic coverage of the network affords a near continent scale view of high energy (>30keV) electron precipitation at a very course spatial resolution. In this paper we present the first results from a neural network based analysis of riometer data. Trained on decades of riometer data, the neural network is tuned to predict a simple index of global geomagnetic activity (Kp) based solely on the information provided by the high energy electron precipitation over Canada. We present results from various configurations of training and discuss the applicability of this technique for short term prediction of geomagnetic activity.

  17. Spatiotemporal Variations in the Difference between Satellite-observed Land Surface Temperature and Station-based Near-surface Air Temperature

    NASA Astrophysics Data System (ADS)

    Lian, X.

    2016-12-01

    There is an increasing demand to integrate land surface temperature (LST) into climate research due to its global coverage, which requires a comprehensive knowledge of its distinctive characteristics compared to near-surface air temperature ( ). Using satellite observations and in-situ station-based datasets, we conducted a global-scale assessment of the spatial, seasonal, and interannual variations in the difference between daytime maximum LST and daytime maximum ( , LST - ) during 2003-2014. Spatially, LST is generally higher than over arid and sparsely vegetated regions in the mid-low latitudes, but LST is lower than in the tropical rainforests due to strong evaporative cooling, and in the high-latitude regions due to snow-induced radiative cooling. Seasonally, is negative in tropical regions throughout the year, while it displays a pronounced seasonality in both the mid-latitudes and boreal regions. The seasonality in the mid-latitudes is a result of the asynchronous responses of LST and to the seasonal cycle of radiation and vegetation abundance, whereas in the boreal regions, seasonality is mainly caused by the change in snow cover. At an interannual scale, only a small proportion of the land surface displays a statistically significant trend (P <0.05) due to the short time span of current measurements. Our study identified substantial spatial heterogeneity and seasonality in , as well as its determinant environmental drivers, and thus provides a useful reference for monitoring near-surface temperature changes using remote sensing, particularly in remote regions.

  18. sPlot - the new global vegetation-plot database for addressing trait-environment relationships across the world's biomes

    NASA Astrophysics Data System (ADS)

    Purschke, Oliver; Dengler, Jürgen; Bruelheide, Helge; Chytrý, Milan; Jansen, Florian; Hennekens, Stephan; Jandt, Ute; Jiménez-Alfaro, Borja; Kattge, Jens; De Patta Pillar, Valério; Sandel, Brody; Winter, Marten

    2015-04-01

    The trait composition of plant communities is determined by abiotic, biotic and historical factors, but the importance of macro-climatic factors in explaining trait-environment relationships at the local scale remains unclear. Such knowledge is crucial for biogeographical and ecological theory but also relevant to devise management measures to mitigate the negative effects of climate change. To address these questions, an iDiv Working Group has established the first global vegetation-plot database (sPlot). sPlot currently contains ~700,000 plots from over 50 countries and all biomes, and is steadily growing. Approx. 70% of the most frequent species are represented by at least one trait in the global trait database TRY and gap-filled data will become available for the most common traits. We will give an overview about the structure and present content of sPlot in terms of spatial distribution, data properties and trait coverage. We will explain next steps and perspectives, present first cross-biome analyses of community-weighted mean traits and trait variability, and highlight some ecological questions that can be addressed with sPlot.

  19. Ocean heat content estimation from in situ observations at the National Centers for Environmental Information: Improvements and Uncertainties

    NASA Astrophysics Data System (ADS)

    Boyer, T.; Locarnini, R. A.; Mishonov, A. V.; Reagan, J. R.; Seidov, D.; Zweng, M.; Levitus, S.

    2017-12-01

    Ocean heat uptake is the major factor in sequestering the Earth's Energy Imbalance (EEI). Since 2000, the National Centers for Environmental Information (NCEI) have been estimating historical ocean heat content (OHC) changes back to the 1950s, as well as monitoring recent OHC. Over these years, through worldwide community efforts, methods of calculating OHC have substantially improved. Similarly, estimation of the uncertainty of ocean heat content calculations provide new insight into how well EEI estimates can be constrained using in situ measurements and models. The changing ocean observing system, especially with the near-global year-round coverage afforded by Argo, has also allowed more confidence in regional and global OHC estimates and provided a benchmark for better understanding of historical OHC changes. NCEI is incorporating knowledge gained through these global efforts into the basic methods, instrument bias corrections, uncertainty measurements, and temporal and spatial resolution capabilities of historic OHC change estimation and recent monitoring. The nature of these improvements and their consequences for estimation of OHC in relation to the EEI will be discussed.

  20. AirMSPI ORACLES Terrain Data V006

    Atmospheric Science Data Center

    2018-05-05

    ... ER-2 Instrument:  AirMSPI Spatial Coverage:  United States, California, Georgia, Africa, Southern Africa, ... 10/25 meters per pixel Temporal Coverage:  07/28/2016 - 10/06/2016 Temporal Resolution:  ...

  1. Historical record of Landsat global coverage

    USGS Publications Warehouse

    Goward, Samuel; Arvidson, Terry; Williams, Darrel; Faundeen, John; Irons, James; Franks, Shannon

    2006-01-01

    The long-term, 34+ year record of global Landsat remote sensing data is a critical resource to study the Earth system and human impacts on this system. The National Satellite Land Remote Sensing Data Archive (NSLRSDA) is charged by public law to: “maintain a permanent, comprehensive Government archive of global Landsat and other land remote sensing data for long-term monitoring and study of the changing global environment” (U.S. Congress, 1992). The advisory committee for NSLRSDA requested a detailed analysis of observation coverage within the U.S. Landsat holdings, as well as that acquired and held by International Cooperator (IC) stations. Our analyses, to date, have found gaps of varying magnitude in U.S. holdings of Landsat global coverage data, which appear to reflect technical or administrative variations in mission operations. In many cases it may be possible to partially fill these gaps in U.S. holdings through observations that were acquired and are now being held at International Cooperator stations.

  2. Spatial assessment of intertidal seagrass meadows using optical imaging systems and a lightweight drone

    NASA Astrophysics Data System (ADS)

    Duffy, James P.; Pratt, Laura; Anderson, Karen; Land, Peter E.; Shutler, Jamie D.

    2018-01-01

    Seagrass ecosystems are highly sensitive to environmental change. They are also in global decline and under threat from a variety of anthropogenic factors. There is now an urgency to establish robust monitoring methodologies so that changes in seagrass abundance and distribution in these sensitive coastal environments can be understood. Typical monitoring approaches have included remote sensing from satellites and airborne platforms, ground based ecological surveys and snorkel/scuba surveys. These techniques can suffer from temporal and spatial inconsistency, or are very localised making it hard to assess seagrass meadows in a structured manner. Here we present a novel technique using a lightweight (sub 7 kg) drone and consumer grade cameras to produce very high spatial resolution (∼4 mm pixel-1) mosaics of two intertidal sites in Wales, UK. We present a full data collection methodology followed by a selection of classification techniques to produce coverage estimates at each site. We trialled three classification approaches of varying complexity to investigate and illustrate the differing performance and capabilities of each. Our results show that unsupervised classifications perform better than object-based methods in classifying seagrass cover. We also found that the more sparsely vegetated of the two meadows studied was more accurately classified - it had lower root mean squared deviation (RMSD) between observed and classified coverage (9-9.5%) compared to a more densely vegetated meadow (RMSD 16-22%). Furthermore, we examine the potential to detect other biotic features, finding that lugworm mounds can be detected visually at coarser resolutions such as 43 mm pixel-1, whereas smaller features such as cockle shells within seagrass require finer grained data (<17 mm pixel-1).

  3. Tertiary Institutions in Ghana Curriculum Coverage on Climate Change: Implications for Climate Change Awareness

    ERIC Educational Resources Information Center

    Boateng, C. A.

    2015-01-01

    Global problems such as climate change, which have deeper implications for survival of mankind on this planet, needs to be given wider attention in the quest for knowledge. It is expected that, improved knowledge derived from curriculum coverage may promote greater public awareness of such important global issue. This research aims at examining…

  4. Optical Detection of Lightning from Space

    NASA Technical Reports Server (NTRS)

    Boccippio, Dennis J.; Christian, Hugh J.

    1998-01-01

    Optical sensors have been developed to detect lightning from space during both day and night. These sensors have been fielded in two existing satellite missions and may be included on a third mission in 2002. Satellite-hosted, optically-based lightning detection offers three unique capabilities: (1) the ability to reliably detect lightning over large, often remote, spatial regions, (2) the ability to sample all (IC and CG) lightning, and (3) the ability to detect lightning with uniform (i.e., not range-dependent) sensitivity or detection efficiency. These represent significant departures from conventional RF-based detection techniques, which typically have strong range dependencies (biases) or range limitations in their detection capabilities. The atmospheric electricity team of the NASA Marshall Space Flight Center's Global Hydrology and Climate Center has implemented a three-step satellite lightning research program which includes three phases: proof-of-concept/climatology, science algorithm development, and operational application. The first instrument in the program, the Optical Transient Detector (OTD), is deployed on a low-earth orbit (LEO) satellite with near-polar inclination, yielding global coverage. The sensor has a 1300 x 1300 sq km field of view (FOV), moderate detection efficiency, moderate localization accuracy, and little data bias. The OTD is a proof-of-concept instrument and its mission is primarily a global lightning climatology. The limited spatial accuracy of this instrument makes it suboptimal for use in case studies, although significant science knowledge has been gained from the instrument as deployed.

  5. Global Moon Coverage via Hyperbolic Flybys

    NASA Technical Reports Server (NTRS)

    Buffington, Brent; Strange, Nathan; Campagnola, Stefano

    2012-01-01

    The scientific desire for global coverage of moons such as Jupiter's Galilean moons or Saturn's Titan has invariably led to the design of orbiter missions. These orbiter missions require a large amount of propellant needed to insert into orbit around such small bodies, and for a given launch vehicle, the additional propellant mass takes away from mass that could otherwise be used for scientific instrumentation on a multiple flyby-only mission. This paper will present methods--expanding upon techniques developed for the design of the Cassini prime and extended missions--to obtain near global moon coverage through multiple flybys. Furthermore we will show with proper instrument suite selection, a flyby-only mission can provide science return similar (and in some cases greater) to that of an orbiter mission.

  6. Cloud Statistics and Discrimination in the Polar Regions

    NASA Astrophysics Data System (ADS)

    Chan, M.; Comiso, J. C.

    2012-12-01

    Despite their important role in the climate system, cloud cover and their statistics are poorly known, especially in the polar regions, where clouds are difficult to discriminate from snow covered surfaces. The advent of the A-train, which included Aqua/MODIS, CALIPSO/CALIOP and CloudSat/CPR sensors has provided an opportunity to improve our ability to accurately characterize the cloud cover. MODIS provides global coverage at a relatively good temporal and spatial resolution while CALIOP and CPR provide limited nadir sampling but accurate characterization of the vertical structure and phase of the cloud cover. Over the polar regions, cloud detection from a passive sensors like MODIS is challenging because of the presence of cold and highly reflective surfaces such as snow, sea-ice, glaciers, and ice-sheet, which have surface signatures similar to those of clouds. On the other hand, active sensors such as CALIOP and CPR are not only very sensitive to the presence of clouds but can also provide information about its microphysical characteristics. However, these nadir-looking sensors have sparse spatial coverage and their global data can have data spatial gaps of up to 100 km. We developed a polar cloud detection system for MODIS that is trained using collocated data from CALIOP and CPR. In particular, we employ a machine learning system that reads the radiative profile observed by MODIS and determine whether the field of view is cloudy or clear. Results have shown that the improved cloud detection scheme performs better than typical cloud mask algorithms using a validation data set not used for training. A one-year data set was generated and results indicate that daytime cloud detection accuracies improved from 80.1% to 92.6% (over sea-ice) and 71.2% to 87.4% (over ice-sheet) with CALIOP data used as the baseline. Significant improvements are also observed during nighttime, where cloud detection accuracies increase by 19.8% (over sea-ice) and 11.6% (over ice-sheet). The immediate impact of the new algorithm is that it can minimize large biases of MODIS-derived cloud amount over the Polar Regions and thus a more realistic and high quality global cloud statistics. In particular, our results show that cloud fraction in the Arctic is typically 81.2 % during daytime and 84.0% during nighttime. This is significantly higher than the 71.8% and 58.5%, respectively, derived from standard MODIS cloud product.

  7. MGS TES Measurements of Dust and Ice Aerosol Behaviors

    NASA Astrophysics Data System (ADS)

    Clancy, R. T.; Wolff, M. J.; Christensen, P. R.

    2000-10-01

    The Thermal Emission Spectrometer (TES, Christensen et al., Science, v279, 1692-1697, 1998) on board the Mars Global Surveyor obtains simultaneous solar band and thermal IR spectral emission-phase-function (EPF) observations with global spatial coverage and continuous seasonal sampling. These measurements allow the first comprehensive study of the coupled visible scattering and thermal IR absorption properties of Mars atmospheric aerosols, a fundamental requirement towards defining opacities, particle sizes, and particle shapes for separable dust and water ice aerosol components. Furthermore, TES limb sounding at solar band and IR wavelengths may be analyzed in the context of these EPF column determinations to constrain the distinctive vertical profile behaviors of dust and ice clouds. We present initial radiative transfer analyses of TES visible and IR EPFs, which indicate surprisingly complex dust and ice aerosol behaviors over all latitudes and seasons. Distinctive backscattering peaks of variable intensity are observed for several types of water ice clouds, along with evidence for ice-coated dust aerosols. We will present a broad spatial and temporal sampling of solar band and spectral IR results for Mars atmospheric ice and dust aerosols observed over the 1998-2000 period. This research is supported by the MGS Participating Scientist and MED Science Data Analysis programs.

  8. Largely Increased Nitrous Oxide Emission from Global Livestock Sector during 1860-2014: A geospatial-temporal analysis

    NASA Astrophysics Data System (ADS)

    Zhang, B.; Tian, H.; Xu, R.; Yang, J.; Pan, S.; Chen, G.

    2017-12-01

    The atmospheric concentration of nitrous oxide (N2O), one of major greenhouse gases, has increased over 121% compared with the preindustrial level, and most of the increase arises from anthropogenic activities. The shift of human diet and the ever-increasing human population pose a huge pressure on the demand of growing livestock population. Of particular interest is how changes in livestock population could alter the environmental health through emissions of greenhouse gases, especially nitrous oxide. Moreover, the quantification of livestock induced nitrous oxide emission with global coverage that characterize consecutive inter-annual variations during historical period is lacking. Thus, in this study, we tried to quantify the magnitude, temporal and spatial variations of livestock-induced nitrous oxide emission during 1860-2014. We include both direct and indirect emission of nitrous oxide from managed soils. We also further analyze the relative contribution of major livestock types on nitrous oxide emission. The results indicated that there was a significant increasing trend of livestock-induced nitrous oxide during 1860-2014. Changes in nitrous oxide emission exhibited highly spatial variability and concentrated in several hotspots during the study period. Less meat consumption is not only good for human health, but also favors for environment-friendly development.

  9. Spatial and temporal contrasts in the distribution of crops and pastures across Amazonia: A new agricultural land use data set from census data since 1950

    PubMed Central

    Imbach, P; Manrow, M; Barona, E; Barretto, A; Hyman, G; Ciais, P

    2015-01-01

    Amazonia holds the largest continuous area of tropical forests with intense land use change dynamics inducing water, carbon, and energy feedbacks with regional and global impacts. Much of our knowledge of land use change in Amazonia comes from studies of the Brazilian Amazon, which accounts for two thirds of the region. Amazonia outside of Brazil has received less attention because of the difficulty of acquiring consistent data across countries. We present here an agricultural statistics database of the entire Amazonia region, with a harmonized description of crops and pastures in geospatial format, based on administrative boundary data at the municipality level. The spatial coverage includes countries within Amazonia and spans censuses and surveys from 1950 to 2012. Harmonized crop and pasture types are explored by grouping annual and perennial cropping systems, C3 and C4 photosynthetic pathways, planted and natural pastures, and main crops. Our analysis examined the spatial pattern of ratios between classes of the groups and their correlation with the agricultural extent of crops and pastures within administrative units of the Amazon, by country, and census/survey dates. Significant correlations were found between all ratios and the fraction of agricultural lands of each administrative unit, with the exception of planted to natural pastures ratio and pasture lands extent. Brazil and Peru in most cases have significant correlations for all ratios analyzed even for specific census and survey dates. Results suggested improvements, and potential applications of the database for carbon, water, climate, and land use change studies are discussed. The database presented here provides an Amazon-wide improved data set on agricultural dynamics with expanded temporal and spatial coverage. Key Points Agricultural census database covers Amazon basin municipalities from 1950 to 2012Harmonized database groups crops and pastures by cropping system, C3/C4, and main cropsWe explored correlations between groups and the extent of agricultural lands PMID:26709335

  10. Spatial and temporal contrasts in the distribution of crops and pastures across Amazonia: A new agricultural land use data set from census data since 1950.

    PubMed

    Imbach, P; Manrow, M; Barona, E; Barretto, A; Hyman, G; Ciais, P

    2015-06-01

    Amazonia holds the largest continuous area of tropical forests with intense land use change dynamics inducing water, carbon, and energy feedbacks with regional and global impacts. Much of our knowledge of land use change in Amazonia comes from studies of the Brazilian Amazon, which accounts for two thirds of the region. Amazonia outside of Brazil has received less attention because of the difficulty of acquiring consistent data across countries. We present here an agricultural statistics database of the entire Amazonia region, with a harmonized description of crops and pastures in geospatial format, based on administrative boundary data at the municipality level. The spatial coverage includes countries within Amazonia and spans censuses and surveys from 1950 to 2012. Harmonized crop and pasture types are explored by grouping annual and perennial cropping systems, C3 and C4 photosynthetic pathways, planted and natural pastures, and main crops. Our analysis examined the spatial pattern of ratios between classes of the groups and their correlation with the agricultural extent of crops and pastures within administrative units of the Amazon, by country, and census/survey dates. Significant correlations were found between all ratios and the fraction of agricultural lands of each administrative unit, with the exception of planted to natural pastures ratio and pasture lands extent. Brazil and Peru in most cases have significant correlations for all ratios analyzed even for specific census and survey dates. Results suggested improvements, and potential applications of the database for carbon, water, climate, and land use change studies are discussed. The database presented here provides an Amazon-wide improved data set on agricultural dynamics with expanded temporal and spatial coverage. Agricultural census database covers Amazon basin municipalities from 1950 to 2012Harmonized database groups crops and pastures by cropping system, C3/C4, and main cropsWe explored correlations between groups and the extent of agricultural lands.

  11. 15 years of zooming in and zooming out: Developing a new single scale national active fault database of New Zealand

    NASA Astrophysics Data System (ADS)

    Ries, William; Langridge, Robert; Villamor, Pilar; Litchfield, Nicola; Van Dissen, Russ; Townsend, Dougal; Lee, Julie; Heron, David; Lukovic, Biljana

    2014-05-01

    In New Zealand, we are currently reconciling multiple digital coverages of mapped active faults into a national coverage at a single scale (1:250,000). This seems at first glance to be a relatively simple task. However, methods used to capture data, the scale of capture, and the initial purpose of the fault mapping, has produced datasets that have very different characteristics. The New Zealand digital active fault database (AFDB) was initially developed as a way of managing active fault locations and fault-related features within a computer-based spatial framework. The data contained within the AFDB comes from a wide range of studies, from plate tectonic (1:500,000) to cadastral (1:2,000) scale. The database was designed to allow capture of field observations and remotely sourced data without a loss in data resolution. This approach has worked well as a method for compiling a centralised database for fault information but not for providing a complete national coverage at a single scale. During the last 15 years other complementary projects have used and also contributed data to the AFDB, most notably the QMAP project (a national series of geological maps completed over 19 years that include coverage of active and inactive faults at 1:250,000). AFDB linework and attributes was incorporated into this series but simplification of linework and attributes has occurred to maintain map clarity at 1:250,000 scale. Also, during this period on-going mapping of active faults has improved upon these data. Other projects of note that have used data from the AFDB include the National Seismic Hazard Model of New Zealand and the Global Earthquake Model (GEM). The main goal of the current project has been to provide the best digital spatial representation of a fault trace at 1:250,000 scale and combine this with the most up to date attributes. In some areas this has required a simplification of very fine detailed data and in some cases new mapping to provide a complete coverage. Where datasets have conflicting line work and/or attributes, data was reviewed through consultation with authors or review of published research to ensure the most to date representation was maintained. The current project aims to provide a coverage that will be consistent between the AFDB and QMAP digital and provide a free download of these data on the AFDB website (http://data.gns.cri.nz/af/).

  12. Microwat : a new Earth Explorer mission proposal to measure the Sea surface Temperature and the Sea Ice Concentration

    NASA Astrophysics Data System (ADS)

    Prigent, Catherine; Aires, Filipe; Heygster, Georg

    2017-04-01

    Ocean surface characterization from satellites is required to understand, monitor and predict the general circulation of the ocean and atmosphere. With more than 70% global cloud coverage at any time, visible and infrared satellite observations only provide limited information. The polar regions are particularly vulnerable to the climate changes and are home to complex mesoscale mechanisms that are still poorly understood. They are also under very persis- tent cloudiness. Passive microwave observations can provide surface information such as Sea Surface Temperature (SST) and Sea Ice Concentration (SIC) regardless of the cloud cover, but up to now they were limited in spatial resolution. Here, we propose a passive microwave conically scanning imager, MICROWAT, in a polar orbit, for the retrieval of the SST and SIC, with a spatial resolution of 15km. It observes at 6 and 10GHz, with low-noise dual polarization receivers, and a foldable mesh antenna of 5m-diameter. Furthermore, MICROWAT will fly in tandem with MetOp-SG B to benefit from the synergy with scatterometers (SCA) and microwave imagers (MWI). MICROWAT will provide global SST estimates, twice daily, regardless of cloud cover, with an accuracy of 0.3K and a spatial resolution of 15km. The SIC will be derived with an accuracy of 3%. With its unprecedented "all weather" accurate SST and SIC at 15km, MICROWAT will provide the atmospheric and oceanic forecasting sys- tems with products compatible with their increasing spatial resolution and complexity, with impact for societal applications. It will also answer fundamental science questions related to the ocean, the atmosphere and their interactions. * Prigent, Aires, Bernardo, Orlhac, Goutoule, Roquet, & Donlon, Analysis of the potential and limitations of microwave radiometry for the retrieval of sea surface temperature: Definition

  13. Impacts of environment on human diseases: a web service for the human exposome

    NASA Astrophysics Data System (ADS)

    Karssenberg, Derek; Vaartjes, Ilonca; Kamphuis, Carlijn; Strak, Maciek; Schmitz, Oliver; Soenario, Ivan; de Jong, Kor

    2017-04-01

    The exposome is the totality of human environmental exposures from conception onwards. Identifying the contribution of the exposome to human diseases and health is a key issue in health research. Examples include the effect of air pollution exposure on cardiovascular diseases, the impact of disease vectors (mosquitos) and surface hydrology exposure on malaria, and the effect of fast food restaurant exposure on obesity. Essential to health research is to disentangle the effects of the exposome and genome on health. Ultimately this requires quantifying the totality of all human exposures, for each individual in the studied human population. This poses a massive challenge to geoscientists, as environmental data are required at a high spatial and temporal resolution, with a large spatial and temporal coverage representing the area inhabited by the population studied and the time span representing several decades. Then, these data need to be combined with space-time paths of individuals to calculate personal exposures for each individual in the population. The Global and Geo Health Data Centre is taking this challenge by providing a web service capable of enriching population data with exposome information. Our web service can generate environmental information either from archived national (up to 5 m spatial and 1 h temporal resolution) and global environmental information or generated on the fly using environmental models running as microservices. On top of these environmental data services runs an individual exposure service enabling health researchers to select different spatial and temporal aggregation methods and to upload space-time paths of individuals. These are then enriched with personal exposures and eventually returned to the user. We illustrate the service in an example of individual exposures to air pollutants calculated from hyper resolution air pollution data and various approaches to estimate space-time paths of individuals.

  14. A SmallSat constellation mission architecture for a GRACE-type mission design

    NASA Astrophysics Data System (ADS)

    Deccia, C. M. A.; Nerem, R. S.; Yunck, T.

    2017-12-01

    The Gravity Recovery and Climate Experiment (GRACE) launched in 2002 and has been providing invaluable information of Earth's time-varying gravity field and GRACE-FO will continue this time series. For this work, we focus on architectures of future post-GRACE-FO like missions. Single pairs of satellites like GRACE and GRACE-FO are inherently limited in their spatio-temporal coverage. Full global coverage for a single pair can take up to 30 days for spatial resolutions of a few hundred kilometers, thus a single satellite pair is unable to observe sub-monthly signals in the Earth's time varying gravity field (e.g. hydrologic signals, etc.). Small satellite systems are becoming increasingly affordable and will soon allow a constellation of GRACE-type satellites to be deployed, with the capability to range between multiple satellites. Here, using simulation studies, we investigate the performance of such a constellation for different numbers of satellites (N) and different orbital configurations, in order to understand the improved performance that might be gained from such future mission architectures.

  15. CRISM Multispectral and Hyperspectral Mapping Data - A Global Data Set for Hydrated Mineral Mapping

    NASA Astrophysics Data System (ADS)

    Seelos, F. P.; Hash, C. D.; Murchie, S. L.; Lim, H.

    2017-12-01

    The Compact Reconnaissance Imaging Spectrometer for Mars (CRISM) is a visible through short-wave infrared hyperspectral imaging spectrometer (VNIR S-detector: 364-1055 nm; IR L-detector: 1001-3936 nm; 6.55 nm sampling) that has been in operation on the Mars Reconnaissance Orbiter (MRO) since 2006. Over the course of the MRO mission, CRISM has acquired 290,000 individual mapping observation segments (mapping strips) with a variety of observing modes and data characteristics (VNIR/IR; 100/200 m/pxl; multi-/hyper-spectral band selection) over a wide range of observing conditions (atmospheric state, observation geometry, instrument state). CRISM mapping data coverage density varies primarily with latitude and secondarily due to seasonal and operational considerations. The aggregate global IR mapping data coverage currently stands at 85% ( 80% at the equator with 40% repeat sampling), which is sufficient spatial sampling density to support the assembly of empirically optimized radiometrically consistent mapping mosaic products. The CRISM project has defined a number of mapping mosaic data products (e.g. Multispectral Reduced Data Record (MRDR) map tiles) with varying degrees of observation-specific processing and correction applied prior to mosaic assembly. A commonality among the mosaic products is the presence of inter-observation radiometric discrepancies which are traceable to variable observation circumstances or associated atmospheric/photometric correction residuals. The empirical approach to radiometric reconciliation leverages inter-observation spatial overlaps and proximal relationships to construct a graph that encodes the mosaic structure and radiometric discrepancies. The graph theory abstraction allows the underling structure of the msaic to be evaluated and the corresponding optimization problem configured so it is well-posed. Linear and non-linear least squares optimization is then employed to derive a set of observation- and wavelength- specific model parameters for a series of transform functions that minimize the total radiometric discrepancy across the mosaic. This empirical approach to CRISM data radiometric reconciliation and the utility of the resulting mapping data mosaic products for hydrated mineral mapping will be presented.

  16. Solar-Induced Plant Fluorescence as seen from space-borne instruments

    NASA Astrophysics Data System (ADS)

    Khosravi, Narges; Vountas, Marco; Rozanov, Vladimir V.; Bracher, Astrid; Burrows, John P.

    2015-04-01

    Solar induced chlorophyll fluorescence (SIF) retrieval can be linked to vegetation correspondence to global carbon cycle, and could be useful for terrestrial carbon budget assessment as well as agricultural and environmental purposes. There have been several investigations using space-borne SIF retrieval due to its good spatial coverage and time efficiency. These methods are mainly based on the fact that plant leaves absorb sunlight mainly within the visible spectral range and use it either for photosynthesis and/or release it as heat or fluorescence (in red and Near Infra Red, NIR, spectral region) back to the atmosphere. As a result, SIF can be considered an additive signal on top of the ground reflectance reaching TOA (Top Of the Atmosphere). Chlorophyll fluorescence is mainly emitted in the spectral range of red to the near-infrared with a pronounced peak at 690 and another at 740 nm. Although it is a very weak signal and two orders of magnitude smaller than the received radiance at TOA, it is feasible to retrieve it within spectral wavelength windows in the NIR. We developed a novel SIF retrieval method based on a modeled assumption of the emitted fluorescence spectrum at canopy level as it would be seen at TOA. The application of it to 10 years of SCIAMACHY (Scanning Imaging Absorption Spectrometer for Atmospheric CHartographY) data showed promising results. Comparing our SIF retrieval with results from other studies showed that SIF values of our retrieval are in a general agreement with them. With some variations. As there is no validated SIF retrieval, it is difficult to judge the retrieval quality. Our approach is of generic nature and therefore, could be applied to other data sets as well. Hence, the method is being applied on GOME-2 level 1 data, as the instrument has a better spatial resolution (in the wavelength range needed) and a better global coverage.

  17. High-resolution whole-brain DCE-MRI using constrained reconstruction: Prospective clinical evaluation in brain tumor patients.

    PubMed

    Guo, Yi; Lebel, R Marc; Zhu, Yinghua; Lingala, Sajan Goud; Shiroishi, Mark S; Law, Meng; Nayak, Krishna

    2016-05-01

    To clinically evaluate a highly accelerated T1-weighted dynamic contrast-enhanced (DCE) MRI technique that provides high spatial resolution and whole-brain coverage via undersampling and constrained reconstruction with multiple sparsity constraints. Conventional (rate-2 SENSE) and experimental DCE-MRI (rate-30) scans were performed 20 minutes apart in 15 brain tumor patients. The conventional clinical DCE-MRI had voxel dimensions 0.9 × 1.3 × 7.0 mm(3), FOV 22 × 22 × 4.2 cm(3), and the experimental DCE-MRI had voxel dimensions 0.9 × 0.9 × 1.9 mm(3), and broader coverage 22 × 22 × 19 cm(3). Temporal resolution was 5 s for both protocols. Time-resolved images and blood-brain barrier permeability maps were qualitatively evaluated by two radiologists. The experimental DCE-MRI scans showed no loss of qualitative information in any of the cases, while achieving substantially higher spatial resolution and whole-brain spatial coverage. Average qualitative scores (from 0 to 3) were 2.1 for the experimental scans and 1.1 for the conventional clinical scans. The proposed DCE-MRI approach provides clinically superior image quality with higher spatial resolution and coverage than currently available approaches. These advantages may allow comprehensive permeability mapping in the brain, which is especially valuable in the setting of large lesions or multiple lesions spread throughout the brain.

  18. Atmospheric Variability of CO2 impact on space observation Requirements

    NASA Astrophysics Data System (ADS)

    Swanson, A. L.; Sen, B.; Newhart, L.; Segal, G.

    2009-12-01

    If International governments are to reduce GHG levels by 80% by 2050, as recommended by most scientific bodies concerned with avoiding the most hazardous changes in climate, then massive investments in infrastructure and new technology will be required over the coming decades. Such an investment will be a huge commitment by governments and corporations, and while it will offer long-term dividends in lower energy costs, a healthier environment and averted additional global warming, the shear magnitude of upfront costs will drive a call for a monitoring and verification system. Such a system will be required to offer accountability to signatories of governing bodies, as well as, for the global public. Measuring the average global distribution of CO2 is straight forward, as exemplified by the long running station measurements managed by NOAA’s Global Monitoring Division that includes the longterm Keeling record. However, quantifying anthropogenic and natural source/sink distributions and atmospheric mixing have been much more difficult to constrain. And, yet, an accurate accounting of all anthropogenic source strengths is required for Global Treaty verification. The only way to accurately assess Global GHG emissions is to construct an integrated system of ground, air and space based observations with extensive chemical modeling capabilities. We look at the measurement requirements for the space based component of the solutions. To determine what space sensor performance requirements for ground resolution, coverage, and revisit, we have analyzed regional CO2 distributions and variability using NASA and NOAA aircraft flight campaigns. The results of our analysis are presented as variograms showing average spatial variability over several Northern Hemispheric regions. There are distinct regional differences with the starkest contrast between urban versus rural and Coastal Asia versus Coastal US. The results suggest specific consequences on what spatial and temporal requirements might need to be for space based observations.

  19. Global stability of a two-mediums rumor spreading model with media coverage

    NASA Astrophysics Data System (ADS)

    Huo, Liang'an; Wang, Li; Song, Guoxiang

    2017-09-01

    Rumor spreading is a typical form of social communication and plays a significant role in social life, and media coverage has a great influence on the spread of rumor. In this paper, we present a new model with two media coverage to investigate the impact of the different mediums on rumor spreading. Then, we calculate the equilibria of the model and construct the reproduction number ℜ0. And we prove the global asymptotic stability of equilibria by using Lyapunov functions. Finally, we can conclude that the transition rate of the ignorants between two mediums has a direct effect on the scale of spreaders, and different media coverage has significant effects on the dynamics behaviors of rumor spreading.

  20. Capabilities and Limitations of Space-Borne Passive Remote Sensing of Dust

    NASA Technical Reports Server (NTRS)

    Kalashnikova, Olga

    2008-01-01

    Atmospheric dust particles have significant effects on the climate and the environment and despite notable recent advances in modeling and observation, wind-blown dust radiative effects remain poorly quantified in both magnitude and sign [IPCC, 2001]. To address this issue, many scientists are using passive satellite observations to study dust properties and to constrain emission/transport models, because the information provided is both time-resolved and global in coverage. In order to assess the effects of individual dust outbreaks on atmospheric radiation and circulation, relatively high temporal resolution (of the order of hours or days) is required in the observational data. Data should also be available over large geographical areas, as dust clouds may cover hundreds of thousands of square kilometers and will exhibit significant spatial variation in their vertical structure, composition and optical properties, both between and within dust events. Spatial and temporal data continuity is necessary if the large-scale impact of dust loading on climate over periods ranging from hours to months is to be assessed.

  1. Comparison of ocean mass content change from direct and inversion based approaches

    NASA Astrophysics Data System (ADS)

    Uebbing, Bernd; Kusche, Jürgen; Rietbroek, Roelof

    2017-04-01

    The GRACE satellite mission provides an indispensable tool for measuring oceanic mass variations. Such time series are essential to separate global mean sea level rise in thermosteric and mass driven contributions, and thus to constrain ocean heat content and (deep) ocean warming when viewed together with altimetry and Argo data. However, published estimates over the GRACE era differ, not only depending on the time window considered. Here, we will look into sources of such differences with direct and inverse approaches. Deriving ocean mass time series requires several processing steps; choosing a GRACE (and altimetry and Argo) product, data coverage, masks and filters to be applied in either spatial or spectral domain, corrections related to spatial leakage, GIA and geocenter motion need to be accounted for. In this study, we quantify the effects of individual processing choices and assumptions of the direct and inversion based approaches to derive ocean mass content change. Furthermore, we compile the different estimates from existing literature and sources, to highlight the differences.

  2. InSAR imaging of volcanic deformation over cloud-prone areas - Aleutian islands

    USGS Publications Warehouse

    Lu, Zhong

    2007-01-01

    Interferometric synthetic aperture radar (INSAR) is capable of measuring ground-surface deformation with centimeter-tosubcentimeter precision and spatial resolution of tens-of meters over a relatively large region. With its global coverage and all-weather imaging capability, INSAR is an important technique for measuring ground-surface deformation of volcanoes over cloud-prone and rainy regions such as the Aleutian Islands, where only less than 5 percent of optical imagery is usable due to inclement weather conditions. The spatial distribution of surface deformation data, derived from INSAR images, enables the construction of detailed mechanical models to enhance the study of magmatic processes. This paper reviews the basics of INSAR for volcanic deformation mapping and the INSAR studies of ten Aleutian volcanoes associated with both eruptive and noneruptive activity. These studies demonstrate that all-weather INSAR imaging can improve our understanding of how the Aleutian volcanoes work and enhance our capability to predict future eruptions and associated hazards.

  3. Spatial fingerprints of community structure in human interaction network for an extensive set of large-scale regions.

    PubMed

    Kallus, Zsófia; Barankai, Norbert; Szüle, János; Vattay, Gábor

    2015-01-01

    Human interaction networks inferred from country-wide telephone activity recordings were recently used to redraw political maps by projecting their topological partitions into geographical space. The results showed remarkable spatial cohesiveness of the network communities and a significant overlap between the redrawn and the administrative borders. Here we present a similar analysis based on one of the most popular online social networks represented by the ties between more than 5.8 million of its geo-located users. The worldwide coverage of their measured activity allowed us to analyze the large-scale regional subgraphs of entire continents and an extensive set of examples for single countries. We present results for North and South America, Europe and Asia. In our analysis we used the well-established method of modularity clustering after an aggregation of the individual links into a weighted graph connecting equal-area geographical pixels. Our results show fingerprints of both of the opposing forces of dividing local conflicts and of uniting cross-cultural trends of globalization.

  4. Cloud and Aerosol Properties, Precipitable Water, and Profiles of Temperature and Water Vapor from MODIS

    NASA Technical Reports Server (NTRS)

    King, Michael D.; Menzel, W. Paul; Kaufman, Yoram J.; Tanre, Didier; Gao, Bo-Cai; Platnick, Steven; Ackerman, Steven A.; Remer, Lorraine A.; Pincus, Robert; Hubanks, Paul A.

    2003-01-01

    The Moderate Resolution Imaging Spectroradiometer (MODIS) is an earth-viewing sensor that flies on the Earth Observing System (EOS) Terra and Aqua satellites, launched in 1999 and 2002, respectively. MODIS scans a swath width of 2330 km that is sufficiently wide to provide nearly complete global coverage every two days from a polar-orbiting, sun-synchronous, platform at an altitude of 705 km. MODIS provides images in 36 spectral bands between 0.415 and 14.235 pm with spatial resolutions of 250 m (2 bands), 500 m (5 bands) and 1000 m (29 bands). These bands have been carefully selected to en- able advanced studies of land, ocean, and atmospheric properties. Twenty-six bands are used to derive atmospheric properties such as cloud mask, atmospheric profiles, aerosol properties, total precipitable water, and cloud properties. In this paper we describe each of these atmospheric data products, including characteristics of each of these products such as file size, spatial resolution used in producing the product, and data availability.

  5. Quantifying Spatial and Seasonal Variability in Atmospheric Ammonia with In Situ and Space-Based Observations

    NASA Technical Reports Server (NTRS)

    Pinder, Robert W.; Walker, John T.; Bash, Jesse O.; Cady-Pereira, Karen E.; Henze, Daven K.; Luo, Mingzhao; Osterman, Gregory B.; Shepard, Mark W.

    2011-01-01

    Ammonia plays an important role in many biogeochemical processes, yet atmospheric mixing ratios are not well known. Recently, methods have been developed for retrieving NH3 from space-based observations, but they have not been compared to in situ measurements. We have conducted a field campaign combining co-located surface measurements and satellite special observations from the Tropospheric Emission Spectrometer (TES). Our study includes 25 surface monitoring sites spanning 350 km across eastern North Carolina, a region with large seasonal and spatial variability in NH3. From the TES spectra, we retrieve a NH3 representative volume mixing ratio (RVMR), and we restrict our analysis to times when the region of the atmosphere observed by TES is representative of the surface measurement. We find that the TES NH3 RVMR qualitatively captures the seasonal and spatial variability found in eastern North Carolina. Both surface measurements and TES NH3 show a strong correspondence with the number of livestock facilities within 10 km of the observation. Furthermore, we find that TES H3 RVMR captures the month-to-month variability present in the surface observations. The high correspondence with in situ measurements and vast spatial coverage make TES NH3 RVMR a valuable tool for understanding regional and global NH3 fluxes.

  6. Geo-spatial reporting for monitoring of household immunization coverage through mobile phones: Findings from a feasibility study.

    PubMed

    Kazi, A M; Ali, M; K, Ayub; Kalimuddin, H; Zubair, K; Kazi, A N; A, Artani; Ali, S A

    2017-11-01

    The addition of Global Positioning System (GPS) to a mobile phone makes it a very powerful tool for surveillance and monitoring coverage of health programs. This technology enables transfer of data directly into computer applications and cross-references to Geographic Information Systems (GIS) maps, which enhances assessment of coverage and trends. Utilization of these systems in low and middle income countries is currently limited, particularly for immunization coverage assessments and polio vaccination campaigns. We piloted the use of this system and discussed its potential to improve the efficiency of field-based health providers and health managers for monitoring of the immunization program. Using "30×7" WHO sampling technique, a survey of children less than five years of age was conducted in random clusters of Karachi, Pakistan in three high risk towns where a polio case was detected in 2011. Center point of the cluster was calculated by the application on the mobile. Data and location coordinates were collected through a mobile phone. This data was linked with an automated mHealth based monitoring system for monitoring of Supplementary Immunization Activities (SIAs) in Karachi. After each SIA, a visual report was generated according to the coordinates collected from the survey. A total of 3535 participants consented to answer to a baseline survey. We found that the mobile phones incorporated with GIS maps can improve efficiency of health providers through real-time reporting and replacing paper based questionnaire for collection of data at household level. Visual maps generated from the data and geospatial analysis can also give a better assessment of the immunization coverage and polio vaccination campaigns. The study supports a model system in resource constrained settings that allows routine capture of individual level data through GPS enabled mobile phone providing actionable information and geospatial maps to local public health managers, policy makers and study staff monitoring immunization coverage. Copyright © 2017 Elsevier B.V. All rights reserved.

  7. A global flash flood forecasting system

    NASA Astrophysics Data System (ADS)

    Baugh, Calum; Pappenberger, Florian; Wetterhall, Fredrik; Hewson, Tim; Zsoter, Ervin

    2016-04-01

    The sudden and devastating nature of flash flood events means it is imperative to provide early warnings such as those derived from Numerical Weather Prediction (NWP) forecasts. Currently such systems exist on basin, national and continental scales in Europe, North America and Australia but rely on high resolution NWP forecasts or rainfall-radar nowcasting, neither of which have global coverage. To produce global flash flood forecasts this work investigates the possibility of using forecasts from a global NWP system. In particular we: (i) discuss how global NWP can be used for flash flood forecasting and discuss strengths and weaknesses; (ii) demonstrate how a robust evaluation can be performed given the rarity of the event; (iii) highlight the challenges and opportunities in communicating flash flood uncertainty to decision makers; and (iv) explore future developments which would significantly improve global flash flood forecasting. The proposed forecast system uses ensemble surface runoff forecasts from the ECMWF H-TESSEL land surface scheme. A flash flood index is generated using the ERIC (Enhanced Runoff Index based on Climatology) methodology [Raynaud et al., 2014]. This global methodology is applied to a series of flash floods across southern Europe. Results from the system are compared against warnings produced using the higher resolution COSMO-LEPS limited area model. The global system is evaluated by comparing forecasted warning locations against a flash flood database of media reports created in partnership with floodlist.com. To deal with the lack of objectivity in media reports we carefully assess the suitability of different skill scores and apply spatial uncertainty thresholds to the observations. To communicate the uncertainties of the flash flood system output we experiment with a dynamic region-growing algorithm. This automatically clusters regions of similar return period exceedence probabilities, thus presenting the at-risk areas at a spatial resolution appropriate to the NWP system. We then demonstrate how these warning areas could eventually complement existing global systems such as the Global Flood Awareness System (GloFAS), to give warnings of flash floods. This work demonstrates the possibility of creating a global flash flood forecasting system based on forecasts from existing global NWP systems. Future developments, in post-processing for example, will need to address an under-prediction bias, for extreme point rainfall, that is innate to current-generation global models.

  8. Using Moran's I and GIS to study spatial pattern of forest litter carbon density in typical subtropical region, China

    NASA Astrophysics Data System (ADS)

    Fu, W. J.; Jiang, P. K.; Zhou, G. M.; Zhao, K. L.

    2013-12-01

    The spatial variation of forest litter carbon (FLC) density in the typical subtropical forests in southeast China was investigated using Moran's I, geostatistics and a geographical information system (GIS). A total of 839 forest litter samples were collected based on a 12 km (South-North) × 6 km (East-West) grid system in Zhejiang Province. Forest litter carbon density values were very variable, ranging from 10.2 kg ha-1 to 8841.3 kg ha-1, with an average of 1786.7 kg ha-1. The aboveground biomass had the strongest positive correlation with FLC density, followed by forest age and elevation. Global Moran's I revealed that FLC density had significant positive spatial autocorrelation. Clear spatial patterns were observed using Local Moran's I. A spherical model was chosen to fit the experimental semivariogram. The moderate "nugget-to-sill" (0.536) value revealed that both natural and anthropogenic factors played a key role in spatial heterogeneity of FLC density. High FLC density values were mainly distributed in northwestern and western part of Zhejiang province, which were related to adopting long-term policy of forest conservation in these areas. While Hang-Jia-Hu (HJH) Plain, Jin-Qu (JQ) basin and coastal areas had low FLC density due to low forest coverage and intensive management of economic forests. These spatial patterns in distribution map were in line with the spatial-cluster map described by local Moran's I. Therefore, Moran's I, combined with geostatistics and GIS could be used to study spatial patterns of environmental variables related to forest ecosystem.

  9. [Estimation of desert vegetation coverage based on multi-source remote sensing data].

    PubMed

    Wan, Hong-Mei; Li, Xia; Dong, Dao-Rui

    2012-12-01

    Taking the lower reaches of Tarim River in Xinjiang of Northwest China as study areaAbstract: Taking the lower reaches of Tarim River in Xinjiang of Northwest China as study area and based on the ground investigation and the multi-source remote sensing data of different resolutions, the estimation models for desert vegetation coverage were built, with the precisions of different estimation methods and models compared. The results showed that with the increasing spatial resolution of remote sensing data, the precisions of the estimation models increased. The estimation precision of the models based on the high, middle-high, and middle-low resolution remote sensing data was 89.5%, 87.0%, and 84.56%, respectively, and the precisions of the remote sensing models were higher than that of vegetation index method. This study revealed the change patterns of the estimation precision of desert vegetation coverage based on different spatial resolution remote sensing data, and realized the quantitative conversion of the parameters and scales among the high, middle, and low spatial resolution remote sensing data of desert vegetation coverage, which would provide direct evidence for establishing and implementing comprehensive remote sensing monitoring scheme for the ecological restoration in the study area.

  10. Evaluation and Validation of Updated MODIS C6 and VIIRS LAI/FPAR

    NASA Astrophysics Data System (ADS)

    Yan, K.; Park, T.; Chen, C.; Yang, B.; Yan, G.; Knyazikhin, Y.; Myneni, R. B.; CHOI, S.

    2015-12-01

    Leaf Area Index (LAI) and Fraction of Photosynthetically Active Radiation (0.4-0.7 μm) absorbed by vegetation (FPAR) play a key role in characterizing vegetation canopy functioning and energy absorption capacity. With radiative transfer realization, MODIS onboard NASA EOS Terra and Aqua satellites has provided globally continuous LAI/FPAR since 2000 and continuously updated the products with better quality. And NPP VIIRS shows the measurement capability to extend high-quality LAI/FPAR time series data records as a successor of MODIS. The primary objectives of this study are 1) to evaluate and validate newly updated MODIS Collection 6 (C6) LAI/FPAR product which has finer resolution (500m) and improved biome type input, and 2) to examine and adjust VIIRS LAI/FPAR algorithm for continuity with MODIS'. For MODIS C6 investigation, we basically measure the spatial coverage (i.e., main radiative transfer algorithm execution), continuity and consistency with Collection 5 (C5), and accuracy with field measured LAI/FPAR. And we also validate C6 LAI/FPAR via comparing other possible global LAI/FPAR products (e.g., GLASS and CYCLOPES) and capturing co-varying seasonal signatures with climatic variables (e.g., temperature and precipitation). For VIIRS evaluation and adjustment, we first quantify possible difference between C5 and MODIS heritage based VIIRS LAI/FPAR. Then based on the radiative transfer theory of canopy spectral invariants, we find VIIRS- and biome-specific configurable parameters (single scattering albedo and uncertainty). These two practices for MODIS C6 and VIIRS LAI/FPAR products clearly suggest that (a) MODIS C6 has better coverage and accuracy than C5, (b) C6 shows consistent spatiotemporal pattern with C5, (c) VIIRS has the potential for producing MODIS-like global LAI/FPAR Earth System Data Records.

  11. Reconstructing Global-scale Ionospheric Outflow With a Satellite Constellation

    NASA Astrophysics Data System (ADS)

    Liemohn, M. W.; Welling, D. T.; Jahn, J. M.; Valek, P. W.; Elliott, H. A.; Ilie, R.; Khazanov, G. V.; Glocer, A.; Ganushkina, N. Y.; Zou, S.

    2017-12-01

    The question of how many satellites it would take to accurately map the spatial distribution of ionospheric outflow is addressed in this study. Given an outflow spatial map, this image is then reconstructed from a limited number virtual satellite pass extractions from the original values. An assessment is conducted of the goodness of fit as a function of number of satellites in the reconstruction, placement of the satellite trajectories relative to the polar cap and auroral oval, season and universal time (i.e., dipole tilt relative to the Sun), geomagnetic activity level, and interpolation technique. It is found that the accuracy of the reconstructions increases sharply from one to a few satellites, but then improves only marginally with additional spacecraft beyond 4. Increased dwell time of the satellite trajectories in the auroral zone improves the reconstruction, therefore a high-but-not-exactly-polar orbit is most effective for this task. Local time coverage is also an important factor, shifting the auroral zone to different locations relative to the virtual satellite orbit paths. The expansion and contraction of the polar cap and auroral zone with geomagnetic activity influences the coverage of the key outflow regions, with different optimal orbit configurations for each level of activity. Finally, it is found that reconstructing each magnetic latitude band individually produces a better fit to the original image than 2-D image reconstruction method (e.g., triangulation). A high-latitude, high-altitude constellation mission concept is presented that achieves acceptably accurate outflow reconstructions.

  12. CERES Monthly Gridded Single Satellite Fluxes and Clouds (FSW) in HDF (CER_FSW_TRMM-PFM-VIRS_Beta1)

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A. (Principal Investigator); Barkstrom, Bruce R. (Principal Investigator)

    The Monthly Gridded Radiative Fluxes and Clouds (FSW) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The FSW is also produced for combinations of scanner instruments. All instantaneous fluxes from the CERES CRS product for a month are sorted by 1-degree spatial regions and by the Universal Time (UT) hour of observation. The mean of the instantaneous fluxes for a given region-hour bin is determined and recorded on the FSW along with other flux statistics and scene information. The mean adjusted fluxes at the four atmospheric levels defined by CRS are also included for both clear-sky and total-sky scenes. In addition, four cloud height categories are defined by dividing the atmosphere into four intervals with boundaries at the surface, 700-, 500-, 300-hPa, and the Top-of-the-Atmosphere (TOA). The cloud layers from CRS are put into one of the cloud height categories and averaged over the region. The cloud properties are also column averaged and included on the FSW. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2000-03-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree; Horizontal_Resolution_Range=100 km - < 250 km or approximately 1 degree - < 2.5 degrees; Temporal_Resolution=1 month; Temporal_Resolution_Range=Monthly - < Annual].

  13. CERES Monthly Gridded Single Satellite Fluxes and Clouds (FSW) in HDF (CER_FSW_Terra-FM1-MODIS_Edition2C)

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A. (Principal Investigator); Barkstrom, Bruce R. (Principal Investigator)

    The Monthly Gridded Radiative Fluxes and Clouds (FSW) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The FSW is also produced for combinations of scanner instruments. All instantaneous fluxes from the CERES CRS product for a month are sorted by 1-degree spatial regions and by the Universal Time (UT) hour of observation. The mean of the instantaneous fluxes for a given region-hour bin is determined and recorded on the FSW along with other flux statistics and scene information. The mean adjusted fluxes at the four atmospheric levels defined by CRS are also included for both clear-sky and total-sky scenes. In addition, four cloud height categories are defined by dividing the atmosphere into four intervals with boundaries at the surface, 700-, 500-, 300-hPa, and the Top-of-the-Atmosphere (TOA). The cloud layers from CRS are put into one of the cloud height categories and averaged over the region. The cloud properties are also column averaged and included on the FSW. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2005-12-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree; Horizontal_Resolution_Range=100 km - < 250 km or approximately 1 degree - < 2.5 degrees; Temporal_Resolution=1 month; Temporal_Resolution_Range=Monthly - < Annual].

  14. CERES) Monthly Gridded Single Satellite Fluxes and Clouds (FSW) in HDF (CER_FSW_Terra-FM2-MODIS_Edition2C)

    NASA Technical Reports Server (NTRS)

    Wielicki, Bruce A. (Principal Investigator); Barkstrom, Bruce R. (Principal Investigator)

    The Monthly Gridded Radiative Fluxes and Clouds (FSW) product contains a month of space and time averaged Clouds and the Earth's Radiant Energy System (CERES) data for a single scanner instrument. The FSW is also produced for combinations of scanner instruments. All instantaneous fluxes from the CERES CRS product for a month are sorted by 1-degree spatial regions and by the Universal Time (UT) hour of observation. The mean of the instantaneous fluxes for a given region-hour bin is determined and recorded on the FSW along with other flux statistics and scene information. The mean adjusted fluxes at the four atmospheric levels defined by CRS are also included for both clear-sky and total-sky scenes. In addition, four cloud height categories are defined by dividing the atmosphere into four intervals with boundaries at the surface, 700-, 500-, 300-hPa, and the Top-of-the-Atmosphere (TOA). The cloud layers from CRS are put into one of the cloud height categories and averaged over the region. The cloud properties are also column averaged and included on the FSW. [Location=GLOBAL] [Temporal_Coverage: Start_Date=1998-01-01; Stop_Date=2001-10-31] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180] [Data_Resolution: Latitude_Resolution=1 degree; Longitude_Resolution=1 degree; Horizontal_Resolution_Range=100 km - < 250 km or approximately 1 degree - < 2.5 degrees; Temporal_Resolution=1 month; Temporal_Resolution_Range=Monthly - < Annual].

  15. Cecil: A Moment or a Movement? Analysis of Media Coverage of the Death of a Lion, Panthera leo

    PubMed Central

    Macdonald, David W.; Jacobsen, Kim S.; Burnham, Dawn; Johnson, Paul J.; Loveridge, Andrew J.

    2016-01-01

    Simple Summary We provide chronology of events following the death of a lion nicknamed “Cecil” and analyse the global media coverage of the event spatially and temporally. We recruited a media monitoring company to explore patterns in both social and editorial media globally, regionally and by country. The number of articles in the editorial media mentioning Cecil the lion peaked at 11,788 on 29 July. There was remarkable global synchrony in this “spike”, so the world media appeared to respond as a globalised entity. We used media saturation, a relative measure of the number of mentions of the Cecil story, as a proxy for estimating the level of interest in the Cecil story. Regionally, saturation levels were high in North America. Interest was also high in Australia and parts of South America and Africa. This opposes the common assumption that interest in the Cecil story was the prerogative of wealthy nations. The social media response to Cecil’s death, was much larger than that in the editorial media in terms of the number of mentions of Cecil (87,533 mentions), but the time to the peak was very similar to that of the editorial media. We compared the development of coverage of the event in the three largest social media platforms (Facebook, Twitter and YouTube) to see whether they played identifiably different roles in the development of the story through time. All peaked at the same time, so there was no evidence that any one platform was responsible for precipitating the spread of the story in advance of the others. The editorial and social media also peaked in synchrony, neither one being a forerunner or follower in the coverage of the Cecil story. Instead, our results reveal a highly interconnected media universe: with the story going viral synchronously across media channels and geographically across the globe over the span of about two days. We consider whether the preoccupying interest in Cecil displayed by the millions of people who followed the story may betray a personal, and thus potentially political, value not just for Cecil, and not just for lions, but for wildlife, conservation and the environment. If so, then for those concerned with how wildlife is to live alongside the human enterprise, this is a moment not to be squandered and one which might have the potential to herald a significant shift in society’s interaction with nature. Abstract The killing of a satellite-tagged male lion by a trophy hunter in Zimbabwe in July 2015 provoked an unprecedented media reaction. We analyse the global media response to the trophy hunting of the lion, nicknamed “Cecil”, a study animal in a long-term project run by Oxford University’s Wildlife Conservation Research Unit (WildCRU). We collaborated with a media-monitoring company to investigate the development of the media coverage spatially and temporally. Relevant articles were identified using a Boolean search for the terms Cecil AND lion in 127 languages. Stories about Cecil the Lion in the editorial media increased from approximately 15 per day to nearly 12,000 at its peak, and mentions of Cecil the Lion in social media reached 87,533 at its peak. We found that, while there were clear regional differences in the level of media saturation of the Cecil story, the patterns of the development of the coverage of this story were remarkably similar across the globe, and that there was no evidence of a lag between the social media and the editorial media. Further, all the main social media platforms appeared to react in synchrony. This story appears to have spread synchronously across media channels and geographically across the globe over the span of about two days. For lion conservation in particular, and perhaps for wildlife conservation more generally, we speculate that the atmosphere may have been changed significantly. We consider the possible reasons why this incident provoked a reaction unprecedented in the conservation sector. PMID:27120625

  16. SweepSAR Sensor Technology for Dense Spatial and Temporal Coverage of Earth Change

    NASA Astrophysics Data System (ADS)

    Rosen, P. A.

    2016-12-01

    Since the 2007 National Academy of Science "Decadal Survey" report, NASA has been studying concepts for a Synthetic Aperture Radar (SAR) mission to determine Earth change in three disciplines - ecosystems, solid earth, and cryospheric sciences. NASA has joined forces with the Indian Space Research Organisation (ISRO) to fulfill these objectives. The NASA-ISRO SAR (NISAR) mission is now in development for a launch in 2021. The mission's primary science objectives are codified in a set of science requirements to study Earth land and ice deformation, and ecosystems, globally with 12-day sampling over all land and ice-covered surfaces throughout the mission life. The US and Indian science teams share global science objectives; in addition, India has developed a set of local objectives in agricultural biomass estimation, Himalayan glacier characterization, and coastal ocean measurements in and around India. Both the US and India have identified agricultural and infrastructure monitoring, and disaster response as high priority applications for the mission. With this range of science and applications objectives, NISAR has demanding coverage, sampling, and accuracy requirements. The system requires a swath of over 240 km at 3-10 m SAR imaging resolution, using full polarimetry where needed. Given the broad range of phenomena and wide range of sensitivities needed, NISAR carries two radars, one operating at L-band (24 cm wavelength) and the other at S-band (10 cm wavelength). The system uses a new "scan-on-receive" ("SweepSAR") technology at both L-band and S-band, that enables full swath coverage without loss of resolution or polarimetric diversity. Both radars can operate simultaneously. The L-band system is being designed to operate up to 50 minutes per orbit, and the S-band system up to 10 minutes per orbit. The orbit will be controlled to within 300 m for repeat-pass interferometry measurements. This unprecedented coverage in space, time, polarimetry, and frequency, will add a new and rich data set to the international constellation of sensors studying Earth surface change. In this talk, we will describe the mission's expected contributions to geodetic imaging in support of time-series analysis of dynamic changes of Earth's surface.

  17. Permafrost and lakes control river isotope composition across a boreal Arctic transect in the Western Siberian lowlands

    NASA Astrophysics Data System (ADS)

    Ala-aho, P.; Soulsby, C.; Pokrovsky, O. S.; Kirpotin, S. N.; Karlsson, J.; Serikova, S.; Manasypov, R.; Lim, A.; Krickov, I.; Kolesnichenko, L. G.; Laudon, H.; Tetzlaff, D.

    2018-03-01

    The Western Siberian Lowlands (WSL) store large quantities of organic carbon that will be exposed and mobilized by the thawing of permafrost. The fate of mobilized carbon, however, is not well understood, partly because of inadequate knowledge of hydrological controls in the region which has a vast low-relief surface area, extensive lake and wetland coverage and gradually increasing permafrost influence. We used stable water isotopes to improve our understanding of dominant landscape controls on the hydrology of the WSL. We sampled rivers along a 1700 km South-North transect from permafrost-free to continuous permafrost repeatedly over three years, and derived isotope proxies for catchment hydrological responsiveness and connectivity. We found correlations between the isotope proxies and catchment characteristics, suggesting that lakes and wetlands are intimately connected to rivers, and that permafrost increases the responsiveness of the catchment to rainfall and snowmelt events, reducing catchment mean transit times. Our work provides rare isotope-based field evidence that permafrost and lakes/wetlands influence hydrological pathways across a wide range of spatial scales (10-105 km2) and permafrost coverage (0%-70%). This has important implications, because both permafrost extent and lake/wetland coverage are affected by permafrost thaw in the changing climate. Changes in these hydrological landscape controls are likely to alter carbon export and emission via inland waters, which may be of global significance.

  18. Data management support for selected climate data sets using the climate data access system

    NASA Technical Reports Server (NTRS)

    Reph, M. G.

    1983-01-01

    The functional capabilities of the Goddard Space Flight Center (GSFC) Climate Data Access System (CDAS), an interactive data storage and retrieval system, and the archival data sets which this system manages are discussed. The CDAS manages several climate-related data sets, such as the First Global Atmospheric Research Program (GARP) Global Experiment (FGGE) Level 2-b and Level 3-a data tapes. CDAS data management support consists of three basic functions: (1) an inventory capability which allows users to search or update a disk-resident inventory describing the contents of each tape in a data set, (2) a capability to depict graphically the spatial coverage of a tape in a data set, and (3) a data set selection capability which allows users to extract portions of a data set using criteria such as time, location, and data source/parameter and output the data to tape, user terminal, or system printer. This report includes figures that illustrate menu displays and output listings for each CDAS function.

  19. Satellite Imagery Analysis for Automated Global Food Security Forecasting

    NASA Astrophysics Data System (ADS)

    Moody, D.; Brumby, S. P.; Chartrand, R.; Keisler, R.; Mathis, M.; Beneke, C. M.; Nicholaeff, D.; Skillman, S.; Warren, M. S.; Poehnelt, J.

    2017-12-01

    The recent computing performance revolution has driven improvements in sensor, communication, and storage technology. Multi-decadal remote sensing datasets at the petabyte scale are now available in commercial clouds, with new satellite constellations generating petabytes/year of daily high-resolution global coverage imagery. Cloud computing and storage, combined with recent advances in machine learning, are enabling understanding of the world at a scale and at a level of detail never before feasible. We present results from an ongoing effort to develop satellite imagery analysis tools that aggregate temporal, spatial, and spectral information and that can scale with the high-rate and dimensionality of imagery being collected. We focus on the problem of monitoring food crop productivity across the Middle East and North Africa, and show how an analysis-ready, multi-sensor data platform enables quick prototyping of satellite imagery analysis algorithms, from land use/land cover classification and natural resource mapping, to yearly and monthly vegetative health change trends at the structural field level.

  20. Global, quantitative and dynamic mapping of protein subcellular localization

    PubMed Central

    Itzhak, Daniel N; Tyanova, Stefka; Cox, Jürgen; Borner, Georg HH

    2016-01-01

    Subcellular localization critically influences protein function, and cells control protein localization to regulate biological processes. We have developed and applied Dynamic Organellar Maps, a proteomic method that allows global mapping of protein translocation events. We initially used maps statically to generate a database with localization and absolute copy number information for over 8700 proteins from HeLa cells, approaching comprehensive coverage. All major organelles were resolved, with exceptional prediction accuracy (estimated at >92%). Combining spatial and abundance information yielded an unprecedented quantitative view of HeLa cell anatomy and organellar composition, at the protein level. We subsequently demonstrated the dynamic capabilities of the approach by capturing translocation events following EGF stimulation, which we integrated into a quantitative model. Dynamic Organellar Maps enable the proteome-wide analysis of physiological protein movements, without requiring any reagents specific to the investigated process, and will thus be widely applicable in cell biology. DOI: http://dx.doi.org/10.7554/eLife.16950.001 PMID:27278775

  1. Altimeter measurements for the determination of the Earth's gravity field

    NASA Technical Reports Server (NTRS)

    Tapley, B. D.; Schutz, B. E.; Shum, C. K.

    1987-01-01

    The ability of satellite-borne radar altimeter data to measure the global ocean surface with high precision and dense spatial coverage provides a unique tool for the mapping of the Earth's gravity field and its geoid. The altimeter crossover measurements, created by differencing direct altimeter measurements at the subsatellite points where the orbit ground tracks intersect, have the distinct advantage of eliminating geoid error and other nontemporal or long period oceanographic features. In the 1990's, the joint U.S./French TOPEX/POSEIDON mission and the European Space Agency's ERS-1 mission will carry radar altimeter instruments capable of global ocean mapping with high precision. This investigation aims at the development and application of dynamically consistent direct altimeter and altimeter crossover measurement models to the simultaneous mapping of the Earth's gravity field and its geoid, the ocean tides and the quasi-stationary component of the dynamic sea surface topography. Altimeter data collected by SEASAT, GEOS-3, and GEOSAT are used for the investigation.

  2. Estimating crop yields and crop evapotranspiration distributions from remote sensing and geospatial agricultural data

    NASA Astrophysics Data System (ADS)

    Smith, T.; McLaughlin, D.

    2017-12-01

    Growing more crops to provide a secure food supply to an increasing global population will further stress land and water resources that have already been significantly altered by agriculture. The connection between production and resource use depends on crop yields and unit evapotranspiration (UET) rates that vary greatly, over both time and space. For regional and global analyses of food security it is appropriate to treat yield and UET as uncertain variables conditioned on climatic and soil properties. This study describes how probability distributions of these variables can be estimated by combining remotely sensed land use and evapotranspiration data with in situ agronomic and soils data, all available at different resolutions and coverages. The results reveal the influence of water and temperature stress on crop yield at large spatial scales. They also provide a basis for stochastic modeling and optimization procedures that explicitly account for uncertainty in the environmental factors that affect food production.

  3. Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER) Overview

    USGS Publications Warehouse

    ,

    2008-01-01

    The National Aeronautics and Space Administration (NASA) launched Terra, the Earth Observing System's (EOS) flagship satellite platform on December 18, 1999. The polar-orbiting Terra contains five remote sensing instruments, which enable the scientific study and analyses of global terrestrial processes and manifestations of global change. One of the five instruments is the multispectral Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), which is built in Japan by a consortium of government, industry, and research groups. It has three spectral bands in the visible near-infrared region (VNIR), six bands in the shortwave infrared region (SWIR), and five bands in the thermal infrared region (TIR), with 15-, 30-, and 90-meter ground resolutions, respectively. This combination of wide spectral coverage and high spatial resolution allows ASTER to discriminate among a wide variety of surface materials. The VNIR subsystem also has a backward-viewing telescope for high-resolution (15-meter) stereoscopic observation in the along-track direction, which facilitates the generation of digital elevation models (DEM).

  4. Large-Scale Ocean Circulation-Cloud Interactions Reduce the Pace of Transient Climate Change

    NASA Technical Reports Server (NTRS)

    Trossman, D. S.; Palter, J. B.; Merlis, T. M.; Huang, Y.; Xia, Y.

    2016-01-01

    Changes to the large scale oceanic circulation are thought to slow the pace of transient climate change due, in part, to their influence on radiative feedbacks. Here we evaluate the interactions between CO2-forced perturbations to the large-scale ocean circulation and the radiative cloud feedback in a climate model. Both the change of the ocean circulation and the radiative cloud feedback strongly influence the magnitude and spatial pattern of surface and ocean warming. Changes in the ocean circulation reduce the amount of transient global warming caused by the radiative cloud feedback by helping to maintain low cloud coverage in the face of global warming. The radiative cloud feedback is key in affecting atmospheric meridional heat transport changes and is the dominant radiative feedback mechanism that responds to ocean circulation change. Uncertainty in the simulated ocean circulation changes due to CO2 forcing may contribute a large share of the spread in the radiative cloud feedback among climate models.

  5. A contemporary decennial global Landsat sample of changing agricultural field sizes

    NASA Astrophysics Data System (ADS)

    White, Emma; Roy, David

    2014-05-01

    Agriculture has caused significant human induced Land Cover Land Use (LCLU) change, with dramatic cropland expansion in the last century and significant increases in productivity over the past few decades. Satellite data have been used for agricultural applications including cropland distribution mapping, crop condition monitoring, crop production assessment and yield prediction. Satellite based agricultural applications are less reliable when the sensor spatial resolution is small relative to the field size. However, to date, studies of agricultural field size distributions and their change have been limited, even though this information is needed to inform the design of agricultural satellite monitoring systems. Moreover, the size of agricultural fields is a fundamental description of rural landscapes and provides an insight into the drivers of rural LCLU change. In many parts of the world field sizes may have increased. Increasing field sizes cause a subsequent decrease in the number of fields and therefore decreased landscape spatial complexity with impacts on biodiversity, habitat, soil erosion, plant-pollinator interactions, and impacts on the diffusion of herbicides, pesticides, disease pathogens, and pests. The Landsat series of satellites provide the longest record of global land observations, with 30m observations available since 1982. Landsat data are used to examine contemporary field size changes in a period (1980 to 2010) when significant global agricultural changes have occurred. A multi-scale sampling approach is used to locate global hotspots of field size change by examination of a recent global agricultural yield map and literature review. Nine hotspots are selected where significant field size change is apparent and where change has been driven by technological advancements (Argentina and U.S.), abrupt societal changes (Albania and Zimbabwe), government land use and agricultural policy changes (China, Malaysia, Brazil), and/or constrained by historic patterns of LCLU (Albania, France and India). Landsat images sensed in two time periods, up to 25 years apart, are used to extract field object classifications at each hotspot using a multispectral image segmentation approach. The field size distributions for the two periods are compared statistically and quantify examples of significant increasing field size associated primarily with agricultural technological innovation (Argentina and U.S.) and decreasing field size associated with rapid societal changes (Albania and Zimbabwe). The implications of this research, and the potential of higher spatial resolution data from planned global coverage satellites, to provide improved agricultural monitoring are discussed.

  6. Satellite Monitoring of Long Term Changes in Intertidal Thermal Conditions

    NASA Astrophysics Data System (ADS)

    Purvis, C. L.; Lakshmi, V.; Helmuth, B.

    2006-12-01

    Documented trends of global climate change have implications for species dynamics, range boundaries and mortality rates. A generalized assumption about global warming is that species will shift poleward in response to the increased temperatures, thereby displacing pre-existing species at higher latitudes. However, studies such as those conducted along the rocky shorelines of the U.S. have shown that such a simplified ecosystem response is unrealistic. Habitat alterations due to climate change are greatly influenced by local conditions, resulting in a patchwork of varying responses to temperature changes all along the intertidal. In order to capture these spatially- and temporally-dependent dynamics, satellite observations of land and sea surface temperatures (LST and SST) have been assimilated for the Pacific coast from Vancouver Island to southern California. Images from three satellite sensors were included in the study: MODIS/Terra, MODIS/Aqua and ASTER/Terra. MODIS has a spatial resolution of 1km (LST) and 4km (SST), daily coverage and overpass times of 10:30am and 1:30pm. ASTER has a spatial resolution of 90m (LST), sporadic temporal coverage due to an on-demand status and a 10:30am crossing time. The remotely sensed data were statistically compared to nearly 10 years of in situ measurements of body temperature of the California mussel along the Pacific coast. This species is prevalent among the rocky intertidal areas, physiologically well studied in terms of heat response and situated in a thermally harsh environment which demonstrates strong responses to climate change. A regression was performed to account for noise such as tidal signals, changes in latitude among sites as well as seasonal fluctuations in body temperature. Comparisons show that while the satellite data are unable to capture many of the daily maximum body temperatures (due to overpass times), they do offer a fairly accurate method of capturing high temporal resolution temperatures over large areas. In addition, satellite measurements were utilized to investigate the spatial distribution of intertidal mussels in Humboldt Bay, CA. In situ measurements are not prevalent enough to explain the potentially heat-driven range of mussels in this critical habitat, and therefore remotely sensed data will be used to gather new insight into thermally-regulated range boundaries of this species. By incorporating satellite measurements into in-depth habitat studies, long term thermal variations due to climate change can be monitored over large regions and aid in capturing larger-scale impacts which cannot be accomplished by tedious, site-specific in situ studies.

  7. SCIAMACHY and FTS CO2 Retrievals Using the OCO Retrieval Algorithm

    NASA Technical Reports Server (NTRS)

    Boesch, Hartmut; Buchwitz, M.; Sen, Bhaswar; Toon, Geoffrey C.; Washenfelder, Rebecca A.; Wennberg, Paul O.

    2005-01-01

    The Orbiting Carbon Observatory (OCO) mission will make the first global, space-based measurements of atmospheric C02 with the precision and coverage needed to characterize C02 sources and sinks on regional scales. OCO will make spectrally and spatially highly resolved measurements of reflected sunlight in the 02A -band and two near-infrared C02 bands. To test the OCO retrieval algorithm, SCIAMACHY and ground-based Fourier Transform Spectrometer (FTS) measurements at Park Falls, Wisconsin have been analyzed. Good agreement between SCIAMACHY and FTS C02 columns has been found with SCIAMACHY showing a much larger scatter than FTS measurements. Both SCIAMACHY and FTS overestimate the surface pressure by a few percent which significantly impacts retrieved C02 columns.

  8. Merging Station Observations with Large-Scale Gridded Data to Improve Hydrological Predictions over Chile

    NASA Astrophysics Data System (ADS)

    Peng, L.; Sheffield, J.; Verbist, K. M. J.

    2016-12-01

    Hydrological predictions at regional-to-global scales are often hampered by the lack of meteorological forcing data. The use of large-scale gridded meteorological data is able to overcome this limitation, but these data are subject to regional biases and unrealistic values at local scale. This is especially challenging in regions such as Chile, where climate exhibits high spatial heterogeneity as a result of long latitude span and dramatic elevation changes. However, regional station-based observational datasets are not fully exploited and have the potential of constraining biases and spatial patterns. This study aims at adjusting precipitation and temperature estimates from the Princeton University global meteorological forcing (PGF) gridded dataset to improve hydrological simulations over Chile, by assimilating 982 gauges from the Dirección General de Aguas (DGA). To merge station data with the gridded dataset, we use a state-space estimation method to produce optimal gridded estimates, considering both the error of the station measurements and the gridded PGF product. The PGF daily precipitation, maximum and minimum temperature at 0.25° spatial resolution are adjusted for the period of 1979-2010. Precipitation and temperature gauges with long and continuous records (>70% temporal coverage) are selected, while the remaining stations are used for validation. The leave-one-out cross validation verifies the robustness of this data assimilation approach. The merged dataset is then used to force the Variable Infiltration Capacity (VIC) hydrological model over Chile at daily time step which are compared to the observations of streamflow. Our initial results show that the station-merged PGF precipitation effectively captures drizzle and the spatial pattern of storms. Overall the merged dataset has significant improvements compared to the original PGF with reduced biases and stronger inter-annual variability. The invariant spatial pattern of errors between the station data and the gridded product opens up the possibility of merging real-time satellite and intermittent gauge observations to produce more accurate real-time hydrological predictions.

  9. From blockchain technology to global health equity: can cryptocurrencies finance universal health coverage?

    PubMed

    Till, Brian M; Peters, Alexander W; Afshar, Salim; Meara, John

    2017-01-01

    Blockchain technology and cryptocurrencies could remake global health financing and usher in an era global health equity and universal health coverage. We outline and provide examples for at least four important ways in which this potential disruption of traditional global health funding mechanisms could occur: universal access to financing through direct transactions without third parties; novel new multilateral financing mechanisms; increased security and reduced fraud and corruption; and the opportunity for open markets for healthcare data that drive discovery and innovation. We see these issues as a paramount to the delivery of healthcare worldwide and relevant for payers and providers of healthcare at state, national and global levels; for government and non-governmental organisations; and for global aid organisations, including the WHO, International Monetary Fund and World Bank Group.

  10. Developing a Scorecard to Assess Global Progress in Scaling Up Diarrhea Control Tools: A Qualitative Study of Academic Leaders and Implementers

    PubMed Central

    Rosinski, Alexander Anthony; Narine, Steven; Yamey, Gavin

    2013-01-01

    Background In 2010, diarrhea caused 0.75 million child deaths, accounting for nearly 12% of all under-five mortality worldwide. Many evidence-based interventions can reduce diarrhea mortality, including oral rehydration solution (ORS), zinc, and improved sanitation. Yet global coverage levels of such interventions remain low. A new scorecard of diarrhea control, showing how different countries are performing in their control efforts, could draw greater attention to the low coverage levels of proven interventions. Methods We conducted in-depth qualitative interviews with 21 experts, purposively sampled for their relevant academic or implementation expertise, to explore their views on (a) the value of a scorecard of global diarrhea control and (b) which indicators should be included in such a scorecard. We then conducted a ranking exercise in which we compiled a list of all 49 indicators suggested by the experts, sent the list to the 21 experts, and asked them to choose 10 indicators that they would include and 10 that they would exclude from such a scorecard. Finally, we created a “prototype” scorecard based on the 9 highest-ranked indicators. Results Key themes that emerged from coding the interview transcripts were: a scorecard could facilitate country comparisons; it could help to identify best practices, set priorities, and spur donor action; and it could help with goal-setting and accountability in diarrhea control. The nine highest ranking indicators, in descending order, were ORS coverage, rotavirus vaccine coverage, zinc coverage, diarrhea-specific mortality rate, diarrhea prevalence, proportion of population with access to improved sanitation, proportion with access to improved drinking water, exclusive breastfeeding coverage, and measles vaccine coverage. Conclusion A new scorecard of global diarrhea control could help track progress, focus prevention and treatment efforts on the most effective interventions, establish transparency and accountability, and alert donors and ministries of health to inadequacies in diarrhea control efforts. PMID:23874412

  11. Using Moran's I and GIS to study the spatial pattern of forest litter carbon density in a subtropical region of southeastern China

    NASA Astrophysics Data System (ADS)

    Fu, W. J.; Jiang, P. K.; Zhou, G. M.; Zhao, K. L.

    2014-04-01

    Spatial pattern information of carbon density in forest ecosystem including forest litter carbon (FLC) plays an important role in evaluating carbon sequestration potentials. The spatial variation of FLC density in the typical subtropical forests in southeastern China was investigated using Moran's I, geostatistics and a geographical information system (GIS). A total of 839 forest litter samples were collected based on a 12 km (south-north) × 6 km (east-west) grid system in Zhejiang province. Forest litter carbon density values were very variable, ranging from 10.2 kg ha-1 to 8841.3 kg ha-1, with an average of 1786.7 kg ha-1. The aboveground biomass had the strongest positive correlation with FLC density, followed by forest age and elevation. Global Moran's I revealed that FLC density had significant positive spatial autocorrelation. Clear spatial patterns were observed using local Moran's I. A spherical model was chosen to fit the experimental semivariogram. The moderate "nugget-to-sill" (0.536) value revealed that both natural and anthropogenic factors played a key role in spatial heterogeneity of FLC density. High FLC density values were mainly distributed in northwestern and western part of Zhejiang province, which were related to adopting long-term policy of forest conservation in these areas, while Hang-Jia-Hu (HJH) Plain, Jin-Qu (JQ) Basin and coastal areas had low FLC density due to low forest coverage and intensive management of economic forests. These spatial patterns were in line with the spatial-cluster map described by local Moran's I. Therefore, Moran's I, combined with geostatistics and GIS, could be used to study spatial patterns of environmental variables related to forest ecosystem.

  12. Spatial and Temporal Ionospheric Monitoring Using Broadband Sferic Measurements

    NASA Astrophysics Data System (ADS)

    McCormick, J. C.; Cohen, M. B.; Gross, N. C.; Said, R. K.

    2018-04-01

    The D region of the ionosphere (60-90 km altitude) is highly variable on timescales from fractions of a second to many hours, and on spatial scales up to many hundreds of kilometers. Very low frequency (VLF) and low-frequency (LF) (3-30 kHz and 30-300 kHz) radio waves are guided to global distances by reflections from the ground and the D region. Therefore, information about its current state is encoded in received VLF/LF signals. VLF transmitters have been used in the past for D region studies, with ionospheric disturbances manifesting as perturbations in amplitude and/or phase. The return stroke of lightning is an impulsive VLF radiator, but unlike VLF transmitters, lightning events are distributed broadly in space allowing for much greater spatial coverage of the D region compared to VLF transmitter-based remote sensing in addition to the broadband spectral advantage over the narrowband transmitters. The challenge is that individual lightning-generated waveforms, or "sferics," vary due to the lightning current parameters and uncertainty in the time/location information, in addition to D region ionospheric variability. These factors make it difficult to utilize the VLF/LF emissions from lightning in a straightforward manner. We describe a technique to recover the time domain and amplitude/phase spectra for both Bϕ and Br with high fidelity and consider the utility of our technique with ambient and varied ionospheric conditions. We demonstrate a technique to simulate sferics and infer a parameterized ionosphere with the Wait and Spies parameters (h' and β) offering all of the tools needed for a global measurement.

  13. Application of GPS radio occultation to the assessment of temperature profile retrievals from microwave and infrared sounders

    NASA Astrophysics Data System (ADS)

    Feltz, M.; Knuteson, R.; Ackerman, S.; Revercomb, H.

    2014-05-01

    Comparisons of satellite temperature profile products from GPS radio occultation (RO) and hyperspectral infrared (IR)/microwave (MW) sounders are made using a previously developed matchup technique. The profile matchup technique matches GPS RO and IR/MW sounder profiles temporally, within 1 h, and spatially, taking into account the unique RO profile geometry and theoretical spatial resolution by calculating a ray-path averaged sounder profile. The comparisons use the GPS RO dry temperature product. Sounder minus GPS RO differences are computed and used to calculate bias and RMS profile statistics, which are created for global and 30° latitude zones for selected time periods. These statistics are created from various combinations of temperature profile data from the Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC) network, Global Navigation Satellite System Receiver for Atmospheric Sounding (GRAS) instrument, and the Atmospheric Infrared Sounder (AIRS)/Advanced Microwave Sounding Unit (AMSU), Infrared Atmospheric Sounding Interferometer (IASI)/AMSU, and Crosstrack Infrared Sounder (CrIS)/Advanced Technology Microwave Sounder (ATMS) sounding systems. By overlaying combinations of these matchup statistics for similar time and space domains, comparisons of different sounders' products, sounder product versions, and GPS RO products can be made. The COSMIC GPS RO network has the spatial coverage, time continuity, and stability to provide a common reference for comparison of the sounder profile products. The results of this study demonstrate that GPS RO has potential to act as a common temperature reference and can help facilitate inter-comparison of sounding retrieval methods and also highlight differences among sensor product versions.

  14. Application of GPS radio occultation to the assessment of temperature profile retrievals from microwave and infrared sounders

    NASA Astrophysics Data System (ADS)

    Feltz, M.; Knuteson, R.; Ackerman, S.; Revercomb, H.

    2014-11-01

    Comparisons of satellite temperature profile products from GPS radio occultation (RO) and hyperspectral infrared (IR)/microwave (MW) sounders are made using a previously developed matchup technique. The profile matchup technique matches GPS RO and IR/MW sounder profiles temporally, within 1 h, and spatially, taking into account the unique RO profile geometry and theoretical spatial resolution by calculating a ray-path averaged sounder profile. The comparisons use the GPS RO dry temperature product. Sounder minus GPS RO differences are computed and used to calculate bias and rms profile statistics, which are created for global and 30° latitude zones for selected time periods. These statistics are created from various combinations of temperature profile data from the Constellation Observing System for Meteorology, Ionosphere & Climate (COSMIC) network, Global Navigation Satellite System Receiver for Atmospheric Sounding (GRAS) instrument, and the Atmospheric Infrared Sounder (AIRS)/Advanced Microwave Sounding Unit (AMSU), Infrared Atmospheric Sounding Interferometer (IASI)/AMSU, and Crosstrack Infrared Sounder (CrIS)/Advanced Technology Microwave Sounder (ATMS) sounding systems. By overlaying combinations of these matchup statistics for similar time and space domains, comparisons of different sounders' products, sounder product versions, and GPS RO products can be made. The COSMIC GPS RO network has the spatial coverage, time continuity, and stability to provide a common reference for comparison of the sounder profile products. The results of this study demonstrate that GPS RO has potential to act as a common temperature reference and can help facilitate inter-comparison of sounding retrieval methods and also highlight differences among sensor product versions.

  15. Global precipitation measurement (GPM) preliminary design

    NASA Astrophysics Data System (ADS)

    Neeck, Steven P.; Kakar, Ramesh K.; Azarbarzin, Ardeshir A.; Hou, Arthur Y.

    2008-10-01

    The overarching Earth science mission objective of the Global Precipitation Measurement (GPM) mission is to develop a scientific understanding of the Earth system and its response to natural and human-induced changes. This will enable improved prediction of climate, weather, and natural hazards for present and future generations. The specific scientific objectives of GPM are advancing: Precipitation Measurement through combined use of active and passive remote-sensing techniques, Water/Energy Cycle Variability through improved knowledge of the global water/energy cycle and fresh water availability, Climate Prediction through better understanding of surface water fluxes, soil moisture storage, cloud/precipitation microphysics and latent heat release, Weather Prediction through improved numerical weather prediction (NWP) skills from more accurate and frequent measurements of instantaneous rain rates with better error characterizations and improved assimilation methods, Hydrometeorological Prediction through better temporal sampling and spatial coverage of highresolution precipitation measurements and innovative hydro-meteorological modeling. GPM is a joint initiative with the Japan Aerospace Exploration Agency (JAXA) and other international partners and is the backbone of the Committee on Earth Observation Satellites (CEOS) Precipitation Constellation. It will unify and improve global precipitation measurements from a constellation of dedicated and operational active/passive microwave sensors. GPM is completing the Preliminary Design Phase and is advancing towards launch in 2013 and 2014.

  16. Global Earth Outgoing Radiation From A Constellation Of Satellites: Proof-Of-Concept Study

    NASA Astrophysics Data System (ADS)

    Gristey, J. J.; Chiu, J. Y. C.; Gurney, R. J.; Han, S. C.; Morcrette, C. J.

    2017-12-01

    The flux of radiation exiting at the top of the atmosphere, referred to as Earth Outgoing Radiation (EOR), constitutes a vital component of the Earth's energy budget. Since EOR is inherently connected to the rapidly evolving scene from which the radiation originates and exhibits large regional variations, it is of paramount importance that we can monitor EOR at a sufficient frequency and spatial scale for weather and climate studies. Achieving these criteria remains challenging using traditional measurement techniques. However, explosive development in small satellite technology and sensor miniaturisation has paved a viable route for measurements to be made from a constellation of satellites in different orbits. This offers an exciting new opportunity to make observations of EOR with both global coverage and high temporal resolution for the first time. To assess the potential of the constellation approach for observing EOR we perform a series of observing system simulation experiments. We will outline a baseline constellation configuration capable of sampling the Earth with unprecedented temporal resolution. Using this configuration and a sophisticated deconvolution technique, we demonstrate how to recover synoptic-scale global EOR to the accuracy required to understand Earth's global energy budget. Finally, we will reveal the impact of various modifications to the constellation configuration and provide recommendations for the community.

  17. High-resolution whole-brain DCE-MRI using constrained reconstruction: Prospective clinical evaluation in brain tumor patients

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Yi, E-mail: yiguo@usc.edu; Zhu, Yinghua; Lingala, Sajan Goud

    Purpose: To clinically evaluate a highly accelerated T1-weighted dynamic contrast-enhanced (DCE) MRI technique that provides high spatial resolution and whole-brain coverage via undersampling and constrained reconstruction with multiple sparsity constraints. Methods: Conventional (rate-2 SENSE) and experimental DCE-MRI (rate-30) scans were performed 20 minutes apart in 15 brain tumor patients. The conventional clinical DCE-MRI had voxel dimensions 0.9 × 1.3 × 7.0 mm{sup 3}, FOV 22 × 22 × 4.2 cm{sup 3}, and the experimental DCE-MRI had voxel dimensions 0.9 × 0.9 × 1.9 mm{sup 3}, and broader coverage 22 × 22 × 19 cm{sup 3}. Temporal resolution was 5 smore » for both protocols. Time-resolved images and blood–brain barrier permeability maps were qualitatively evaluated by two radiologists. Results: The experimental DCE-MRI scans showed no loss of qualitative information in any of the cases, while achieving substantially higher spatial resolution and whole-brain spatial coverage. Average qualitative scores (from 0 to 3) were 2.1 for the experimental scans and 1.1 for the conventional clinical scans. Conclusions: The proposed DCE-MRI approach provides clinically superior image quality with higher spatial resolution and coverage than currently available approaches. These advantages may allow comprehensive permeability mapping in the brain, which is especially valuable in the setting of large lesions or multiple lesions spread throughout the brain.« less

  18. Satellite-based PM concentrations and their application to COPD in Cleveland, OH

    PubMed Central

    Kumar, Naresh; Liang, Dong; Comellas, Alejandro; Chu, Allen D.; Abrams, Thad

    2014-01-01

    A hybrid approach is proposed to estimate exposure to fine particulate matter (PM2.5) at a given location and time. This approach builds on satellite-based aerosol optical depth (AOD), air pollution data from sparsely distributed Environmental Protection Agency (EPA) sites and local time–space Kriging, an optimal interpolation technique. Given the daily global coverage of AOD data, we can develop daily estimate of air quality at any given location and time. This can assure unprecedented spatial coverage, needed for air quality surveillance and management and epidemiological studies. In this paper, we developed an empirical relationship between the 2 km AOD and PM2.5 data from EPA sites. Extrapolating this relationship to the study domain resulted in 2.3 million predictions of PM2.5 between 2000 and 2009 in Cleveland Metropolitan Statistical Area (MSA). We have developed local time–space Kriging to compute exposure at a given location and time using the predicted PM2.5. Daily estimates of PM2.5 were developed for Cleveland MSA between 2000 and 2009 at 2.5 km spatial resolution; 1.7 million (~79.8%) of 2.13 million predictions required for multiyear and geographic domain were robust. In the epidemiological application of the hybrid approach, admissions for an acute exacerbation of chronic obstructive pulmonary disease (AECOPD) was examined with respect to time–space lagged PM2.5 exposure. Our analysis suggests that the risk of AECOPD increases 2.3% with a unit increase in PM2.5 exposure within 9 days and 0.05° (~5 km) distance lags. In the aggregated analysis, the exposed groups (who experienced exposure to PM2.5 >15.4 μg/m3) were 54% more likely to be admitted for AECOPD than the reference group. The hybrid approach offers greater spatiotemporal coverage and reliable characterization of ambient concentration than conventional in situ monitoring-based approaches. Thus, this approach can potentially reduce exposure misclassification errors in the conventional air pollution epidemiology studies. PMID:24045428

  19. Estimating PM2.5 speciation concentrations using prototype 4.4 km-resolution MISR aerosol properties over Southern California

    NASA Astrophysics Data System (ADS)

    Meng, Xia; Garay, Michael J.; Diner, David J.; Kalashnikova, Olga V.; Xu, Jin; Liu, Yang

    2018-05-01

    Research efforts to better characterize the differential toxicity of PM2.5 (particles with aerodynamic diameters less than or equal to 2.5 μm) speciation are often hindered by the sparse or non-existent coverage of ground monitors. The Multi-angle Imaging SpectroRadiometer (MISR) aboard NASA's Terra satellite is one of few satellite aerosol sensors providing information of aerosol shape, size and extinction globally for a long and continuous period that can be used to estimate PM2.5 speciation concentrations since year 2000. Currently, MISR only provides a 17.6 km product for its entire mission with global coverage every 9 days, a bit too coarse for air pollution health effects research and to capture local spatial variability of PM2.5 speciation. In this study, generalized additive models (GAMs) were developed using MISR prototype 4.4 km-resolution aerosol data with meteorological variables and geographical indicators, to predict ground-level concentrations of PM2.5 sulfate, nitrate, organic carbon (OC) and elemental carbon (EC) in Southern California between 2001 and 2015 at the daily level. The GAMs are able to explain 66%, 62%, 55% and 58% of the daily variability in PM2.5 sulfate, nitrate, OC and EC concentrations during the whole study period, respectively. Predicted concentrations capture large regional patterns as well as fine gradients of the four PM2.5 species in urban areas of Los Angeles and other counties, as well as in the Central Valley. This study is the first attempt to use MISR prototype 4.4 km-resolution AOD (aerosol optical depth) components data to predict PM2.5 sulfate, nitrate, OC and EC concentrations at the sub-regional scale. In spite of its low temporal sampling frequency, our analysis suggests that the MISR 4.4 km fractional AODs provide a promising way to capture the spatial hotspots and long-term temporal trends of PM2.5 speciation, understand the effectiveness of air quality controls, and allow our estimated PM2.5 speciation data to be linked with common spatial units such as census tract or zip code in epidemiological studies. This modeling strategy needs to be validated in other regions when more MISR 4.4 km data becoming available in the future.

  20. Spatiotemporal characteristics of sleep spindles depend on cortical location.

    PubMed

    Piantoni, Giovanni; Halgren, Eric; Cash, Sydney S

    2017-02-01

    Since their discovery almost one century ago, sleep spindles, 0.5-2s long bursts of oscillatory activity at 9-16Hz during NREM sleep, have been thought to be global and relatively uniform throughout the cortex. Recent work, however, has brought this concept into question but it remains unclear to what degree spindles are global or local and if their properties are uniform or location-dependent. We addressed this question by recording sleep in eight patients undergoing evaluation for epilepsy with intracranial electrocorticography, which combines high spatial resolution with extensive cortical coverage. We find that spindle characteristics are not uniform but are strongly influenced by the underlying cortical regions, particularly for spindle density and fundamental frequency. We observe both highly isolated and spatially distributed spindles, but in highly skewed proportions: while most spindles are restricted to one or very few recording channels at any given time, there are spindles that occur over widespread areas, often involving lateral prefrontal cortices and superior temporal gyri. Their co-occurrence is affected by a subtle but significant propagation of spindles from the superior prefrontal regions and the temporal cortices towards the orbitofrontal cortex. This work provides a brain-wide characterization of sleep spindles as mostly local graphoelements with heterogeneous characteristics that depend on the underlying cortical area. We propose that the combination of local characteristics and global organization reflects the dual properties of the thalamo-cortical generators and provides a flexible framework to support the many functions ascribed to sleep in general and spindles specifically. Copyright © 2016 Elsevier Inc. All rights reserved.

  1. Development of absorbing aerosol index simulator based on TM5-M7

    NASA Astrophysics Data System (ADS)

    Sun, Jiyunting; van Velthoven, Peter; Veefkind, Pepijn

    2017-04-01

    Aerosols alter the Earth's radiation budget directly by scattering and absorbing solar and thermal radiation, or indirectly by perturbing clouds formation and lifetime. These mechanisms offset the positive radiative forcing ascribed to greenhouse gases. In particular, absorbing aerosols such as black carbon and dust strongly enhance global warming. To quantify the impact of absorbing aerosol on global radiative forcing is challenging. In spite of wide spatial and temporal coverage space-borne instruments (we will use the Ozone Monitoring Instrument, OMI) are unable to derive complete information on aerosol distribution, composition, etc. The retrieval of aerosol optical properties also partly depends on additional information derived from other measurements or global atmospheric chemistry models. Common quantities of great interest presenting the amount of absorbing aerosol are AAOD (absorbing aerosol optical depth), the extinction due to absorption of aerosols under cloud free conditions; and AAI (absorbing aerosol index), a measure of aerosol absorption more directly derivable from UV band observations than AAOD. When comparing model simulations and satellite observations, resemblance is good in terms of the spatial distribution of both parameters. However, the quantitative discrepancy is considerable, indicating possible underestimates of simulated AAI by a factor of 2 to 3. Our research, hence, has started by evaluating to what extent aerosol models, such as our TM5-M7 model, represent the satellite measurements and by identifying the reasons for discrepancies. As a next step a transparent methodology for the comparison between model simulations and satellite observations is under development in the form of an AAI simulator based on TM5-M7.

  2. 33 Years of Near-Global Daily Precipitation from Multisatellite Observations and its Application to Drought Monitoring

    NASA Astrophysics Data System (ADS)

    Ashouri, H.; Hsu, K.; Sorooshian, S.; Braithwaite, D.; Knapp, K. R.; Cecil, L. D.

    2013-12-01

    PERSIANN Climate Data Record (PERSIANN-CDR) is a new retrospective satellite-based precipitation data set that is constructed for long-term hydrological and climate studies. The PERSIANN-CDR is a near-global (60°S-60°N) long-term (1980-2012), multi-satellite, high-resolution precipitation product that provides rain rate estimates at 0.25° and daily spatiotemporal resolution. PERSIANN-CDR is aimed at addressing the need for a consistent, long-term, high resolution precipitation data set for studying the spatial and temporal variations and changes of precipitation patterns, particularly in a scale relevant to climate extremes at the global scale. PERSIANN-CDR is generated from the PERSIANN algorithm using GridSat-B1 infrared data from the International Satellite Cloud Climatology Project (ISCCP). PERSIANN-CDR is adjusted using the Global Precipitation Climatology Project (GPCP) monthly precipitation to maintain consistency of two data sets at 2.5° monthly scale throughout the entire reconstruction period. PERSIANN-CDR daily precipitation data demonstrates considerable consistency with both GPCP monthly and GPCP 1DD precipitation products. Verification studies over Hurricane Katrina show that PERSIANN-CDR has a good agreement with NCEP Stage IV radar data, noting that PERSIANN-CDR has better spatial coverage. In addition, the Probability Density Function (PDF) of PERSIANN-CDR over the contiguous United States was compared with the PDFs extracted from CPC gauge data and the TMPA precipitation product. The experiment also shows good agreement of the PDF of PERSIANN-CDR with the PDFs of TMPA and CPC gauge data. The application of PERSIANN-CDR in regional and global drought monitoring is investigated. Consisting of more than three decades of high-resolution precipitation data, PERSIANN-CDR makes us capable of long-term assessment of droughts at a higher resolution (0.25°) than previously possible. The results will be presented at the meeting.

  3. Global deformation of the Earth, surface mass anomalies, and the geodetic infrastructure required to study these processes

    NASA Astrophysics Data System (ADS)

    Kusche, J.; Rietbroek, R.; Gunter, B.; Mark-Willem, J.

    2008-12-01

    Global deformation of the Earth can be linked to loading caused by mass changes in the atmosphere, the ocean and the terrestrial hydrosphere. World-wide geodetic observation systems like GPS, e.g., the global IGS network, can be used to study the global deformation of the Earth directly and, when other effects are properly modeled, provide information regarding the surface loading mass (e.g., to derive geo-center motion estimates). Vice versa, other observing systems that monitor mass change, either through gravitational changes (GRACE) or through a combination of in-situ and modeled quantities (e.g., the atmosphere, ocean or hydrosphere), can provide indirect information on global deformation. In the framework of the German 'Mass transport and mass distribution' program, we estimate surface mass anomalies at spherical harmonic resolution up to degree and order 30 by linking three complementary data sets in a least squares approach. Our estimates include geo-center motion and the thickness of a spatially uniform layer on top of the ocean surface (that is otherwise estimated from surface fluxes, evaporation and precipitation, and river run-off) as a time-series. As with all current Earth observing systems, each dataset has its own limitations and do not realize homogeneous coverage over the globe. To assess the impact that these limitations might have on current and future deformation and loading mass solutions, a sensitivity study was conducted. Simulated real-case and idealized solutions were explored in which the spatial distribution and quality of GPS, GRACE and OBP data sets were varied. The results show that significant improvements, e.g., over the current GRACE monthly gravity fields, in particular at the low degrees, can be achieved when these solutions are combined with present day GPS and OBP products. Our idealized scenarios also provide quantitative implications on how much surface mass change estimates may improve in the future when improved observing systems become available.

  4. A Review of Global Precipitation Data Sets: Data Sources, Estimation, and Intercomparisons

    NASA Astrophysics Data System (ADS)

    Sun, Qiaohong; Miao, Chiyuan; Duan, Qingyun; Ashouri, Hamed; Sorooshian, Soroosh; Hsu, Kuo-Lin

    2018-03-01

    In this paper, we present a comprehensive review of the data sources and estimation methods of 30 currently available global precipitation data sets, including gauge-based, satellite-related, and reanalysis data sets. We analyzed the discrepancies between the data sets from daily to annual timescales and found large differences in both the magnitude and the variability of precipitation estimates. The magnitude of annual precipitation estimates over global land deviated by as much as 300 mm/yr among the products. Reanalysis data sets had a larger degree of variability than the other types of data sets. The degree of variability in precipitation estimates also varied by region. Large differences in annual and seasonal estimates were found in tropical oceans, complex mountain areas, northern Africa, and some high-latitude regions. Overall, the variability associated with extreme precipitation estimates was slightly greater at lower latitudes than at higher latitudes. The reliability of precipitation data sets is mainly limited by the number and spatial coverage of surface stations, the satellite algorithms, and the data assimilation models. The inconsistencies described limit the capability of the products for climate monitoring, attribution, and model validation.

  5. Complementarity and Area-Efficiency in the Prioritization of the Global Protected Area Network.

    PubMed

    Kullberg, Peter; Toivonen, Tuuli; Montesino Pouzols, Federico; Lehtomäki, Joona; Di Minin, Enrico; Moilanen, Atte

    2015-01-01

    Complementarity and cost-efficiency are widely used principles for protected area network design. Despite the wide use and robust theoretical underpinnings, their effects on the performance and patterns of priority areas are rarely studied in detail. Here we compare two approaches for identifying the management priority areas inside the global protected area network: 1) a scoring-based approach, used in recently published analysis and 2) a spatial prioritization method, which accounts for complementarity and area-efficiency. Using the same IUCN species distribution data the complementarity method found an equal-area set of priority areas with double the mean species ranges covered compared to the scoring-based approach. The complementarity set also had 72% more species with full ranges covered, and lacked any coverage only for half of the species compared to the scoring approach. Protected areas in our complementarity-based solution were on average smaller and geographically more scattered. The large difference between the two solutions highlights the need for critical thinking about the selected prioritization method. According to our analysis, accounting for complementarity and area-efficiency can lead to considerable improvements when setting management priorities for the global protected area network.

  6. Multisatellite systems with linear structure and their application for continuous coverage of the earth

    NASA Astrophysics Data System (ADS)

    Saulskiy, V. K.

    2005-01-01

    Multisatellite systems with linear structure (SLS) are defined, and their application for a continuous global or zonal coverage of the Earth’s surface is justified. It is demonstrated that in some cases these systems turned out to be better than usually recommended kinematically regular systems by G.V. Mozhaev, delta systems of J.G. Walker, and polar systems suggested by F.W. Gobets, L. Rider, and W.S. Adams. When a comparison is made using the criterion of a minimum radius of one-satellite coverage circle, the SLS beat the other systems for the majority of satellite numbers from the range 20 63, if the global continuous single coverage of the Earth is required. In the case of a zonal continuous single coverage of the latitude belt ±65°, the SLS are preferable at almost all numbers of satellites from 38 to 100, and further at any values up to 200 excluding 144.

  7. Great expectations for the World Health Organization: a Framework Convention on Global Health to achieve universal health coverage.

    PubMed

    Ooms, G; Marten, R; Waris, A; Hammonds, R; Mulumba, M; Friedman, E A

    2014-02-01

    Establishing a reform agenda for the World Health Organization (WHO) requires understanding its role within the wider global health system and the purposes of that wider global health system. In this paper, the focus is on one particular purpose: achieving universal health coverage (UHC). The intention is to describe why achieving UHC requires something like a Framework Convention on Global Health (FCGH) that have been proposed elsewhere,(1) why WHO is in a unique position to usher in an FCGH, and what specific reforms would help enable WHO to assume this role. Copyright © 2013 The Royal Society for Public Health. Published by Elsevier Ltd. All rights reserved.

  8. Operational satellites and the global monitoring of snow and ice

    NASA Technical Reports Server (NTRS)

    Walsh, John E.

    1991-01-01

    The altitudinal dependence of the global warming projected by global climate models is at least partially attributable to the albedo-temperature feedback involving snow and ice, which must be regarded as key variables in the monitoring for global change. Statistical analyses of data from IR and microwave sensors monitoring the areal coverage and extent of sea ice have led to mixed conclusions about recent trends of hemisphere sea ice coverage. Seasonal snow cover has been mapped for over 20 years by NOAA/NESDIS on the basis of imagery from a variety of satellite sensors. Multichannel passive microwave data show some promise for the routine monitoring of snow depth over unforested land areas.

  9. VO-ESD: a virtual observatory approach to describe the geomagnetic field temporal variations with application to Swarm data

    NASA Astrophysics Data System (ADS)

    Saturnino, Diana; Langlais, Benoit; Amit, Hagay; Mandea, Mioara; Civet, François; Beucler, Éric

    2017-04-01

    A complete description of the main geomagnetic field temporal variation is crucial to understand dynamics in the core. This variation, termed secular variation (SV), is known with high accuracy at ground magnetic observatory locations. However the description of its spatial variability is hampered by the globally uneven distribution of the observatories. For the past two decades a global coverage of the field changes has been allowed by satellites. Their surveys of the geomagnetic field have been used to derive and improve global spherical harmonic (SH) models through some strict data selection schemes to minimise external field contributions. But discrepancies remain between ground measurements and field predictions by these models. Indeed, the global models do not reproduce small spatial scales of the field temporal variations. To overcome this problem we propose a modified Virtual Observatory (VO) approach by defining a globally homogeneous mesh of VOs at satellite altitude. With this approach we directly extract time series of the field and its temporal variation from satellite measurements as it is done at observatory locations. As satellite measurements are acquired at different altitudes a correction for the altitude is needed. Therefore, we apply an Equivalent Source Dipole (ESD) technique for each VO and each given time interval to reduce all measurements to a unique location, leading to time series similar to those available at ground magnetic observatories. Synthetic data is first used to validate the new VO-ESD approach. Then, we apply our scheme to measurements from the Swarm mission. For the first time, a 2.5 degrees resolution global mesh of VO times series is built. The VO-ESD derived time series are locally compared to ground observations as well as to satellite-based model predictions. The approach is able to describe detailed temporal variations of the field at local scales. The VO-ESD time series are also used to derive global SH models. Without regularization these models describe well the secular trend of the magnetic field. The derivation of longer VO-ESD time series, as more data will be made available, will allow the study of field temporal variations features such as geomagnetic jerks.

  10. From blockchain technology to global health equity: can cryptocurrencies finance universal health coverage?

    PubMed Central

    Till, Brian M; Peters, Alexander W; Afshar, Salim; Meara, John G

    2017-01-01

    Blockchain technology and cryptocurrencies could remake global health financing and usher in an era global health equity and universal health coverage. We outline and provide examples for at least four important ways in which this potential disruption of traditional global health funding mechanisms could occur: universal access to financing through direct transactions without third parties; novel new multilateral financing mechanisms; increased security and reduced fraud and corruption; and the opportunity for open markets for healthcare data that drive discovery and innovation. We see these issues as a paramount to the delivery of healthcare worldwide and relevant for payers and providers of healthcare at state, national and global levels; for government and non-governmental organisations; and for global aid organisations, including the WHO, International Monetary Fund and World Bank Group. PMID:29177101

  11. State of equity: childhood immunization in the World Health Organization African Region.

    PubMed

    Casey, Rebecca Mary; Hampton, Lee McCalla; Anya, Blanche-Philomene Melanga; Gacic-Dobo, Marta; Diallo, Mamadou Saliou; Wallace, Aaron Stuart

    2017-01-01

    In 2010, the Global Vaccine Action Plan called on all countries to reach and sustain 90% national coverage and 80% coverage in all districts for the third dose of diphtheria-tetanus-pertussis vaccine (DTP3) by 2015 and for all vaccines in national immunization schedules by 2020. The aims of this study are to analyze recent trends in national vaccination coverage in the World Health Organization African Region andto assess how these trends differ by country income category. We compared national vaccination coverage estimates for DTP3 and the first dose of measles-containing vaccine (MCV) obtained from the World Health Organization (WHO)/United Nations Children's Fund (UNICEF) joint estimates of national immunization coverage for all African Region countries. Using United Nations (UN) population estimates of surviving infants and country income category for the corresponding year, we calculated population-weighted average vaccination coverage by country income category (i.e., low, lower middle, and upper middle-income) for the years 2000, 2005, 2010 and 2015. DTP3 coverage in the African Region increased from 52% in 2000 to 76% in 2015,and MCV1 coverage increased from 53% to 74% during the same period, but with considerable differences among countries. Thirty-six African Region countries were low income in 2000 with an average DTP3 coverage of 50% while 26 were low income in 2015 with an average coverage of 80%. Five countries were lower middle-income in 2000 with an average DTP3 coverage of 84% while 12 were lower middle-income in 2015 with an average coverage of 69%. Five countries were upper middle-income in 2000 with an average DTP3 coverage of 73% and eight were upper middle-income in 2015 with an average coverage of 76%. Disparities in vaccination coverage by country persist in the African Region, with countries that were lower middle-income having the lowest coverage on average in 2015. Monitoring and addressing these disparities is essential for meeting global immunization targets.

  12. In the hot seat : Insolation and ENSO controls on vegetation productivity in tropical Africa inferred from NDVI

    NASA Astrophysics Data System (ADS)

    Ivory, S.; Russell, J. L.; Cohen, A. S.

    2010-12-01

    Threats to tropical biodiversity with serious and costly implications for both ecosystems and human well-being in Africa have led the IPCC to classify this region as vulnerable to negative impacts from climate change. Yet little is known about how vegetation communities respond to altered patterns of rainfall and evaporation. Paleoclimate records within the tropics can help answer questions about how vegetation response to climate forcing changes over time. However, sparse spatial extent of records and uncertainty surrounding the climate-vegetation relationship complicate these insights. Understanding the climatic mechanisms involved in landscape change at all temporal scales creates the need for quantitative constraints of the modern relationship between climatic controls, hydrology, and vegetation. Though modern observational data can help elucidate this relationship, low resolution and complicated rainfall/vegetation associations make them less than ideal. Satellite data of vegetation productivity (NDVI) with continuous high-resolution spatial coverage provides a robust and elegant tool for identifying the link between global and regional controls and vegetation. We use regression analyses of variables either previously proposed or potentially important in regulating Afro-tropical vegetation (insolation, out-going long-wave radiation, geopotential height, Southern Oscillation Index, Indian Ocean Dipole, Indian Monsoon precipitation, sea-level pressure, surface wind, sea-surface temperature) on continuous, time-varying spatial fields of 8km NDVI for sub-Saharan Africa. These analyses show the importance of global atmospheric controls in producing regional intra-annual and inter-annual vegetation variability. Dipole patterns emerge primarily correlated with both the seasonal and inter-annual extent of the Intertropical Convergence Zone (ITCZ). Inter-annual ITCZ variability drives patterns in African vegetation resulting from the effect of insolation anomalies and ENSO events on atmospheric circulation rather than sea surface temperatures or teleconnections to mid/high latitudes. Global controls on tropical atmospheric circulation regulate vegetation throughout sub-Saharan Africa on many time scales through alteration of dry season length and moisture convergence, rather than precipitation amount.

  13. Validation of Satellite Retrieved Land Surface Variables

    NASA Technical Reports Server (NTRS)

    Lakshmi, Venkataraman; Susskind, Joel

    1999-01-01

    The effective use of satellite observations of the land surface is limited by the lack of high spatial resolution ground data sets for validation of satellite products. Recent large scale field experiments include FIFE, HAPEX-Sahel and BOREAS which provide us with data sets that have large spatial coverage and long time coverage. It is the objective of this paper to characterize the difference between the satellite estimates and the ground observations. This study and others along similar lines will help us in utilization of satellite retrieved data in large scale modeling studies.

  14. Coverage vs Frequency : Is Spatial Coverage or Temporal Frequency More Impactful on Transit Ridership?

    DOT National Transportation Integrated Search

    2017-08-01

    Transit ridership has long been studied, and the findings are concisely elucidated by Taylor & Fink (2003) when they say To sum, transit ridership is largely, though not completely, a product of factors outside the control of transit managers. ...

  15. Regional reanalysis without local data: Exploiting the downscaling paradigm

    NASA Astrophysics Data System (ADS)

    von Storch, Hans; Feser, Frauke; Geyer, Beate; Klehmet, Katharina; Li, Delei; Rockel, Burkhardt; Schubert-Frisius, Martina; Tim, Nele; Zorita, Eduardo

    2017-08-01

    This paper demonstrates two important aspects of regional dynamical downscaling of multidecadal atmospheric reanalysis. First, that in this way skillful regional descriptions of multidecadal climate variability may be constructed in regions with little or no local data. Second, that the concept of large-scale constraining allows global downscaling, so that global reanalyses may be completed by additions of consistent detail in all regions of the world. Global reanalyses suffer from inhomogeneities. However, their large-scale componenst are mostly homogeneous; Therefore, the concept of downscaling may be applied to homogeneously complement the large-scale state of the reanalyses with regional detail—wherever the condition of homogeneity of the description of large scales is fulfilled. Technically, this can be done by dynamical downscaling using a regional or global climate model, which's large scales are constrained by spectral nudging. This approach has been developed and tested for the region of Europe, and a skillful representation of regional weather risks—in particular marine risks—was identified. We have run this system in regions with reduced or absent local data coverage, such as Central Siberia, the Bohai and Yellow Sea, Southwestern Africa, and the South Atlantic. Also, a global simulation was computed, which adds regional features to prescribed global dynamics. Our cases demonstrate that spatially detailed reconstructions of the climate state and its change in the recent three to six decades add useful supplementary information to existing observational data for midlatitude and subtropical regions of the world.

  16. Implications of MOLA Global Roughness, Statistics, and Topography

    NASA Technical Reports Server (NTRS)

    Aharonson, O.; Zuber, M. T.; Neumann, G. A.

    1999-01-01

    New insights are emerging as the ongoing high-quality measurements of the Martian surface topography by Mars Orbiter Laser Altimeter (MOLA) on board the Mars Global Surveyor (MGS) spacecraft increase in coverage, resolution, and diversity. For the first time, a global characterization of the statistical properties of topography is possible. The data were collected during the aerobreaking hiatus, science phasing, and mapping orbits of MGS, and have a resolution of 300-400 m along track, a range resolution of 37.5 cm, a range precision of 1-10 m for surface slopes up to 30 deg., and an absolute accuracy of topography of 13 m. The spacecraft's orbit inclination dictates that nadir observations have latitude coverage of about 87.1S to 87.1N; the addition of observations obtained during a period of off-nadir pointing over the north pole extended coverage to 90N. Additional information is contained in the original extended abstract.

  17. Unsupervised DInSAR processing chain for multi-scale displacement analysis

    NASA Astrophysics Data System (ADS)

    Casu, Francesco; Manunta, Michele

    2016-04-01

    Earth Observation techniques can be very helpful for the estimation of several sources of ground deformation due to their characteristics of large spatial coverage, high resolution and cost effectiveness. In this scenario, Differential Synthetic Aperture Radar Interferometry (DInSAR) is one of the most effective methodologies for its capability to generate spatially dense deformation maps at both global and local spatial scale, with centimeter to millimeter accuracy. DInSAR exploits the phase difference (interferogram) between SAR image pairs relevant to acquisitions gathered at different times, but with the same illumination geometry and from sufficiently close flight tracks, whose separation is typically referred to as baseline. Among several, the SBAS algorithm is one of the most used DInSAR approaches and it is aimed at generating displacement time series at a multi-scale level by exploiting a set of small baseline interferograms. SBAS, and generally DInSAR, has taken benefit from the large availability of spaceborne SAR data collected along years by several satellite systems, with particular regard to the European ERS and ENVISAT sensors, which have acquired SAR images worldwide during approximately 20 years. Moreover, since 2014 the new generation of Copernicus Sentinel satellites has started to acquire data with a short revisit time (12 days) and a global coverage policy, thus flooding the scientific EO community with an unprecedent amount of data. To efficiently manage such amount of data, proper processing facilities (as those coming from the emerging Cloud Computing technologies) have to be used, as well as novel algorithms aimed at their efficient exploitation have to be developed. In this work we present a set of results achieved by exploiting a recently proposed implementation of the SBAS algorithm, namely Parallel-SBAS (P-SBAS), which allows us to effectively process, in an unsupervised way and in a limited time frame, a huge number of SAR images, thus leading to the generation of Interferometric products for both global and local scale displacement analysis. Among several examples, we will show a wide displacement SBAS processing, carried out over the southern California, during which the whole ascending ENVISAT data set of more than 740 images has been fully processed on a Cloud Computing environment in less than 9 hours, leading to the generation of a displacement map of about 150,000 square kilometres. The P-SBAS characteristics allowed also us to integrate the algorithm within the ESA Geohazard Exploitation Platform (GEP), which is based on the use of GRID and Cloud Computing facilities, thus making freely available to the EO community a web tool for massive and systematic interferometric displacement time series generation. This work has been partially supported by: the Italian MIUR under the RITMARE project; the CNR-DPC agreement and the ESA GEP project.

  18. Reconstruction of Arctic surface temperature in past 100 years using DINEOF

    NASA Astrophysics Data System (ADS)

    Zhang, Qiyi; Huang, Jianbin; Luo, Yong

    2015-04-01

    Global annual mean surface temperature has not risen apparently since 1998, which is described as global warming hiatus in recent years. However, measuring of temperature variability in Arctic is difficult because of large gaps in coverage of Arctic region in most observed gridded datasets. Since Arctic has experienced a rapid temperature change in recent years that called polar amplification, and temperature risen in Arctic is faster than global mean, the unobserved temperature in central Arctic will result in cold bias in both global and Arctic temperature measurement compared with model simulations and reanalysis datasets. Moreover, some datasets that have complete coverage in Arctic but short temporal scale cannot show Arctic temperature variability for long time. Data Interpolating Empirical Orthogonal Function (DINEOF) were applied to fill the coverage gap of NASA's Goddard Institute for Space Studies Surface Temperature Analysis (GISTEMP 250km smooth) product in Arctic with IABP dataset which covers entire Arctic region between 1979 and 1998, and to reconstruct Arctic temperature in 1900-2012. This method provided temperature reconstruction in central Arctic and precise estimation of both global and Arctic temperature variability with a long temporal scale. Results have been verified by extra independent station records in Arctic by statistical analysis, such as variance and standard deviation. The result of reconstruction shows significant warming trend in Arctic in recent 30 years, as the temperature trend in Arctic since 1997 is 0.76°C per decade, compared with 0.48°C and 0.67°C per decade from 250km smooth and 1200km smooth of GISTEMP. And global temperature trend is two times greater after using DINEOF. The discrepancies above stress the importance of fully consideration of temperature variance in Arctic because gaps of coverage in Arctic cause apparent cold bias in temperature estimation. The result of global surface temperature also proves that global warming in recent years is not as slow as thought.

  19. Downscaling SMAP Soil Moisture Using Geoinformation Data and Geostatistics

    NASA Astrophysics Data System (ADS)

    Xu, Y.; Wang, L.

    2017-12-01

    Soil moisture is important for agricultural and hydrological studies. However, ground truth soil moisture data for wide area is difficult to achieve. Microwave remote sensing such as Soil Moisture Active Passive (SMAP) can offer a solution for wide coverage. However, existing global soil moisture products only provide observations at coarse spatial resolutions, which often limit their applications in regional agricultural and hydrological studies. This paper therefore aims to generate fine scale soil moisture information and extend soil moisture spatial availability. A statistical downscaling scheme is presented that incorporates multiple fine scale geoinformation data into the downscaling of coarse scale SMAP data in the absence of ground measurement data. Geoinformation data related to soil moisture patterns including digital elevation model (DEM), land surface temperature (LST), land use and normalized difference vegetation index (NDVI) at a fine scale are used as auxiliary environmental variables for downscaling SMAP data. Generalized additive model (GAM) and regression tree are first conducted to derive statistical relationships between SMAP data and auxiliary geoinformation data at an original coarse scale, and residuals are then downscaled to a finer scale via area-to-point kriging (ATPK) by accounting for the spatial correlation information of the input residuals. The results from standard validation scores as well as the triple collocation (TC) method against soil moisture in-situ measurements show that the downscaling method can significantly improve the spatial details of SMAP soil moisture while maintain the accuracy.

  20. L-band Soil Moisture Mapping using Small UnManned Aerial Systems

    NASA Astrophysics Data System (ADS)

    Dai, E.

    2015-12-01

    Soil moisture is of fundamental importance to many hydrological, biological and biogeochemical processes, plays an important role in the development and evolution of convective weather and precipitation, and impacts water resource management, agriculture, and flood runoff prediction. The launch of NASA's Soil Moisture Active/Passive (SMAP) mission in 2015 promises to provide global measurements of soil moisture and surface freeze/thaw state at fixed crossing times and spatial resolutions as low as 5 km for some products. However, there exists a need for measurements of soil moisture on smaller spatial scales and arbitrary diurnal times for SMAP validation, precision agriculture and evaporation and transpiration studies of boundary layer heat transport. The Lobe Differencing Correlation Radiometer (LDCR) provides a means of mapping soil moisture on spatial scales as small as several meters (i.e., the height of the platform) .Compared with various other proposed methods of validation based on either situ measurements [1,2] or existing airborne sensors suitable for manned aircraft deployment [3], the integrated design of the LDCR on a lightweight small UAS (sUAS) is capable of providing sub-watershed (~km scale) coverage at very high spatial resolution (~15 m) suitable for scaling scale studies, and at comparatively low operator cost. The LDCR on Tempest unit can supply the soil moisture mapping with different resolution which is of order the Tempest altitude.

  1. Shaped saturation with inherent radiofrequency-power-efficient trajectory design in parallel transmission.

    PubMed

    Schneider, Rainer; Haueisen, Jens; Pfeuffer, Josef

    2014-10-01

    A target-pattern-driven (TD) trajectory design is introduced in combination with parallel transmit (pTX) radiofrequency (RF) pulses to provide localized suppression of unwanted signals. The design incorporates target-pattern and B1+ information to adjust denser sampling and coverage in k-space regions where the main pattern information lies. Based on this approach, two-dimensional RF spiral saturation pulses sensitive to RF power limits were applied in vivo for the first time. The TD method was compared with two state-of-the-art spiral design methods. Simulations at different spatial fidelities, acceleration factors and anatomical regions were carried out for an eight-channel pTX 3 Tesla (T) coil. Human in vivo experiments were performed on a two-channel pTX 3T scanner saturating shaped patterns in the brain, heart, and thoracic spine. Using the TD trajectory, RF pulse power can be substantially reduced by up to 34% compared with other trajectory designs with the same spatial accuracy. Local and global specific absorption rates are decreased in most cases. The TD trajectory design uses available a priori information to enhance RF power efficiency and spatial response of the RF pulses. Shaped saturation pulses show improved spatial accuracy and saturation performance. Thus, RF pulses can be designed more efficiently and can be further accelerated. Copyright © 2013 Wiley Periodicals, Inc.

  2. Downscaling climate information for local disease mapping.

    PubMed

    Bernardi, M; Gommes, R; Grieser, J

    2006-06-01

    The study of the impacts of climate on human health requires the interdisciplinary efforts of health professionals, climatologists, biologists, and social scientists to analyze the relationships among physical, biological, ecological, and social systems. As the disease dynamics respond to variations in regional and local climate, climate variability affects every region of the world and the diseases are not necessarily limited to specific regions, so that vectors may become endemic in other regions. Climate data at local level are thus essential to evaluate the dynamics of vector-borne disease through health-climate models and most of the times the climatological databases are not adequate. Climate data at high spatial resolution can be derived by statistical downscaling using historical observations but the method is limited by the availability of historical data at local level. Since the 90s', the statistical interpolation of climate data has been an important priority of the Agrometeorology Group of the Food and Agriculture Organization of the United Nations (FAO), as they are required for agricultural planning and operational activities at the local level. Since 1995, date of the first FAO spatial interpolation software for climate data, more advanced applications have been developed such as SEDI (Satellite Enhanced Data Interpolation) for the downscaling of climate data, LOCCLIM (Local Climate Estimator) and the NEW_LOCCLIM in collaboration with the Deutscher Wetterdienst (German Weather Service) to estimate climatic conditions at locations for which no observations are available. In parallel, an important effort has been made to improve the FAO climate database including at present more than 30,000 stations worldwide and expanding the database from developing countries coverage to global coverage.

  3. Evapotranspiration based on equilibrated relative humidity (ETRHEQ): Evaluation over the continental U.S.

    NASA Astrophysics Data System (ADS)

    Rigden, Angela J.; Salvucci, Guido D.

    2015-04-01

    A novel method of estimating evapotranspiration (ET), referred to as the ETRHEQ method, is further developed, validated, and applied across the U.S. from 1961 to 2010. The ETRHEQ method estimates the surface conductance to water vapor transport, which is the key rate-limiting parameter of typical ET models, by choosing the surface conductance that minimizes the vertical variance of the calculated relative humidity profile averaged over the day. The ETRHEQ method, which was previously tested at five AmeriFlux sites, is modified for use at common weather stations and further validated at 20 AmeriFlux sites that span a wide range of climates and limiting factors. Averaged across all sites, the daily latent heat flux RMSE is ˜26 W·m-2 (or 15%). The method is applied across the U.S. at 305 weather stations and spatially interpolated using ANUSPLIN software. Gridded annual mean ETRHEQ ET estimates are compared with four data sets, including water balance-derived ET, machine-learning ET estimates based on FLUXNET data, North American Land Data Assimilation System project phase 2 ET, and a benchmark product that integrates 14 global ET data sets, with RMSEs ranging from 8.7 to 12.5 cm·yr-1. The ETRHEQ method relies only on data measured at weather stations, an estimate of vegetation height derived from land cover maps, and an estimate of soil thermal inertia. These data requirements allow it to have greater spatial coverage than direct measurements, greater historical coverage than satellite methods, significantly less parameter specification than most land surface models, and no requirement for calibration.

  4. Crop classification using temporal stacks of multispectral satellite imagery

    NASA Astrophysics Data System (ADS)

    Moody, Daniela I.; Brumby, Steven P.; Chartrand, Rick; Keisler, Ryan; Longbotham, Nathan; Mertes, Carly; Skillman, Samuel W.; Warren, Michael S.

    2017-05-01

    The increase in performance, availability, and coverage of multispectral satellite sensor constellations has led to a drastic increase in data volume and data rate. Multi-decadal remote sensing datasets at the petabyte scale are now available in commercial clouds, with new satellite constellations generating petabytes/year of daily high-resolution global coverage imagery. The data analysis capability, however, has lagged behind storage and compute developments, and has traditionally focused on individual scene processing. We present results from an ongoing effort to develop satellite imagery analysis tools that aggregate temporal, spatial, and spectral information and can scale with the high-rate and dimensionality of imagery being collected. We investigate and compare the performance of pixel-level crop identification using tree-based classifiers and its dependence on both temporal and spectral features. Classification performance is assessed using as ground-truth Cropland Data Layer (CDL) crop masks generated by the US Department of Agriculture (USDA). The CDL maps contain 30m spatial resolution, pixel-level labels for around 200 categories of land cover, but are however only available post-growing season. The analysis focuses on McCook county in South Dakota and shows crop classification using a temporal stack of Landsat 8 (L8) imagery over the growing season, from April through October. Specifically, we consider the temporal L8 stack depth, as well as different normalized band difference indices, and evaluate their contribution to crop identification. We also show an extension of our algorithm to map corn and soy crops in the state of Mato Grosso, Brazil.

  5. Exploring vegetation in the fourth dimension.

    PubMed

    Mitchell, Fraser J G

    2011-01-01

    Much ecological research focuses on changes in vegetation on spatial scales from stands to landscapes; however, capturing data on vegetation change over relevant timescales remains a challenge. Pollen analysis offers unrivalled access to data with global coverage over long timescales. Robust techniques have now been developed that enable pollen data to be converted into vegetation data in terms of individual taxa, plant communities or biomes, with the possibility of deriving from those data a range of plant attributes and ecological indicators. In this review, I discuss how coupling pollen with macrofossil, charcoal and genetic data opens up the extensive pollen databases to investigation of the drivers of vegetation change over time and also provides extensive data sets for testing hypotheses with wide ecological relevance. © 2010 Elsevier Ltd. All rights reserved.

  6. The Politics of Universal Health Coverage in Low- and Middle-Income Countries: A Framework for Evaluation and Action.

    PubMed

    Fox, Ashley M; Reich, Michael R

    2015-10-01

    Universal health coverage has recently become a top item on the global health agenda pressed by multilateral and donor organizations, as disenchantment grows with vertical, disease-specific health programs. This increasing focus on universal health coverage has brought renewed attention to the role of domestic politics and the interaction between domestic and international relations in the health reform process. This article proposes a theory-based framework for analyzing the politics of health reform for universal health coverage, according to four stages in the policy cycle (agenda setting, design, adoption, and implementation) and four variables that affect reform (interests, institutions, ideas, and ideology). This framework can assist global health policy researchers, multilateral organization officials, and national policy makers in navigating the complex political waters of health reforms aimed at achieving universal health coverage. To derive the framework, we critically review the theoretical and applied literature on health policy reform in developing countries and illustrate the framework with examples of health reforms moving toward universal coverage in low- and middle-income countries. We offer a series of lessons stemming from these experiences to date. Copyright © 2015 by Duke University Press.

  7. Developing Information Services and Tools to Access and Evaluate Data Quality in Global Satellite-based Precipitation Products

    NASA Astrophysics Data System (ADS)

    Liu, Z.; Shie, C. L.; Meyer, D. J.

    2017-12-01

    Global satellite-based precipitation products have been widely used in research and applications around the world. Compared to ground-based observations, satellite-based measurements provide precipitation data on a global scale, especially in remote continents and over oceans. Over the years, satellite-based precipitation products have evolved from single sensor and single algorithm to multi-sensors and multi-algorithms. As a result, many satellite-based precipitation products have been enhanced such as spatial and temporal coverages. With inclusion of ground-based measurements, biases of satellite-based precipitation products have been significantly reduced. However, data quality issues still exist and can be caused by many factors such as observations, satellite platform anomaly, algorithms, production, calibration, validation, data services, etc. The NASA Goddard Earth Sciences (GES) Data and Information Services Center (DISC) is home to NASA global precipitation product archives including the Tropical Rainfall Measuring Mission (TRMM), the Global Precipitation Measurement (GPM), as well as other global and regional precipitation products. Precipitation is one of the top downloaded and accessed parameters in the GES DISC data archive. Meanwhile, users want to easily locate and obtain data quality information at regional and global scales to better understand how precipitation products perform and how reliable they are. As data service providers, it is necessary to provide an easy access to data quality information, however, such information normally is not available, and when it is available, it is not in one place and difficult to locate. In this presentation, we will present challenges and activities at the GES DISC to address precipitation data quality issues.

  8. Spatial fuel data products of the LANDFIRE Project

    Treesearch

    Matt Reeves; Kevin C. Ryan; Matthew G. Rollins; Thomas G. Thompson

    2009-01-01

    The Landscape Fire and Resource Management Planning Tools (LANDFIRE) Project is mapping wildland fuels, vegetation, and fire regime characteristics across the United States. The LANDFIRE project is unique because of its national scope, creating an integrated product suite at 30-m spatial resolution and complete spatial coverage of all lands within the 50...

  9. An update to the Surface Ocean CO2 Atlas (SOCAT version 2)

    NASA Astrophysics Data System (ADS)

    Bakker, D. C. E.; Pfeil, B.; Smith, K.; Hankin, S.; Olsen, A.; Alin, S. R.; Cosca, C.; Harasawa, S.; Kozyr, A.; Nojiri, Y.; O'Brien, K. M.; Schuster, U.; Telszewski, M.; Tilbrook, B.; Wada, C.; Akl, J.; Barbero, L.; Bates, N. R.; Boutin, J.; Bozec, Y.; Cai, W.-J.; Castle, R. D.; Chavez, F. P.; Chen, L.; Chierici, M.; Currie, K.; de Baar, H. J. W.; Evans, W.; Feely, R. A.; Fransson, A.; Gao, Z.; Hales, B.; Hardman-Mountford, N. J.; Hoppema, M.; Huang, W.-J.; Hunt, C. W.; Huss, B.; Ichikawa, T.; Johannessen, T.; Jones, E. M.; Jones, S. D.; Jutterström, S.; Kitidis, V.; Körtzinger, A.; Landschützer, P.; Lauvset, S. K.; Lefèvre, N.; Manke, A. B.; Mathis, J. T.; Merlivat, L.; Metzl, N.; Murata, A.; Newberger, T.; Omar, A. M.; Ono, T.; Park, G.-H.; Paterson, K.; Pierrot, D.; Ríos, A. F.; Sabine, C. L.; Saito, S.; Salisbury, J.; Sarma, V. V. S. S.; Schlitzer, R.; Sieger, R.; Skjelvan, I.; Steinhoff, T.; Sullivan, K. F.; Sun, H.; Sutton, A. J.; Suzuki, T.; Sweeney, C.; Takahashi, T.; Tjiputra, J.; Tsurushima, N.; van Heuven, S. M. A. C.; Vandemark, D.; Vlahos, P.; Wallace, D. W. R.; Wanninkhof, R.; Watson, A. J.

    2014-03-01

    The Surface Ocean CO2 Atlas (SOCAT), an activity of the international marine carbon research community, provides access to synthesis and gridded fCO2 (fugacity of carbon dioxide) products for the surface oceans. Version 2 of SOCAT is an update of the previous release (version 1) with more data (increased from 6.3 million to 10.1 million surface water fCO2 values) and extended data coverage (from 1968-2007 to 1968-2011). The quality control criteria, while identical in both versions, have been applied more strictly in version 2 than in version 1. The SOCAT website (http://www.socat.info/) has links to quality control comments, metadata, individual data set files, and synthesis and gridded data products. Interactive online tools allow visitors to explore the richness of the data. Applications of SOCAT include process studies, quantification of the ocean carbon sink and its spatial, seasonal, year-to-year and longerterm variation, as well as initialisation or validation of ocean carbon models and coupled climate-carbon models. Data coverage Repository-References: Individual data set files and synthesis product: doi:10.1594/PANGAEA.811776 Gridded products: doi:10.3334/CDIAC/OTG.SOCAT_V2_GRID Available at: http://www.socat.info/ Coverage: 79° S to 90° N; 180° W to 180° E Location Name: Global Oceans and Coastal Seas Date/Time Start: 16 November 1968 ate/Time End: 26 December 2011

  10. Cloud-to-Ground Lightning Estimates Derived from SSMI Microwave Remote Sensing and NLDN

    NASA Technical Reports Server (NTRS)

    Winesett, Thomas; Magi, Brian; Cecil, Daniel

    2015-01-01

    Lightning observations are collected using ground-based and satellite-based sensors. The National Lightning Detection Network (NLDN) in the United States uses multiple ground sensors to triangulate the electromagnetic signals created when lightning strikes the Earth's surface. Satellite-based lightning observations have been made from 1998 to present using the Lightning Imaging Sensor (LIS) on the NASA Tropical Rainfall Measuring Mission (TRMM) satellite, and from 1995 to 2000 using the Optical Transient Detector (OTD) on the Microlab-1 satellite. Both LIS and OTD are staring imagers that detect lightning as momentary changes in an optical scene. Passive microwave remote sensing (85 and 37 GHz brightness temperatures) from the TRMM Microwave Imager (TMI) has also been used to quantify characteristics of thunderstorms related to lightning. Each lightning detection system has fundamental limitations. TRMM satellite coverage is limited to the tropics and subtropics between 38 deg N and 38 deg S, so lightning at the higher latitudes of the northern and southern hemispheres is not observed. The detection efficiency of NLDN sensors exceeds 95%, but the sensors are only located in the USA. Even if data from other ground-based lightning sensors (World Wide Lightning Location Network, the European Cooperation for Lightning Detection, and Canadian Lightning Detection Network) were combined with TRMM and NLDN, there would be enormous spatial gaps in present-day coverage of lightning. In addition, a globally-complete time history of observed lightning activity is currently not available either, with network coverage and detection efficiencies varying through the years. Previous research using the TRMM LIS and Microwave Imager (TMI) showed that there is a statistically significant correlation between lightning flash rates and passive microwave brightness temperatures. The physical basis for this correlation emerges because lightning in a thunderstorm occurs where ice is first present in the cloud and electric charge separation occurs. These ice particles efficiently scatter the microwave radiation at the 85 and 37 GHz frequencies, thus leading to large brightness temperature depressions. Lightning flash rate is related to the total amount of ice passing through the convective updraft regions of thunderstorms. Confirmation of this relationship using TRMM LIS and TMI data, however, remains constrained to TRMM observational limits of the tropics and subtropics. Satellites from the Defense Meteorology Satellite Program (DMSP) have global coverage and are equipped with passive microwave imagers that, like TMI, observe brightness temperatures at 85 and 37 GHz. Unlike the TRMM satellite, however, DMSP satellites do not have a lightning sensor, and the DMSP microwave data has never been used to derive global lightning. In this presentation, a relationship between DMSP Special Sensor Microwave Imager (SSMI) data and ground-based cloud-to-ground (CG) lightning data from NLDN is investigated to derive a spatially complete time history of CG lightning for the USA study area. This relationship is analogous to the established using TRMM LIS and TMI data. NLDN has the most spatially and temporally complete CG lightning data for the USA, and therefore provides the best opportunity to find geospatially coincident observations with SSMI sensors. The strongest thunderstorms generally have minimum 85 GHz Polarized Corrected brightness Temperatures (PCT) less than 150 K. Archived radar data was used to resolve the spatial extent of the individual storms. NLDN data for that storm spatial extent defined by radar data was used to calculate the CG flash rate for the storm. Similar to results using TRMM sensors, a linear model best explained the relationship between storm-specific CG flash rates and minimum 85 GHz PCT. However, the results in this study apply only to CG lightning. To extend the results to weaker storms, the probability of CG lightning (instead of the flash rate) was calculated for storms having 85 GHz PCT greater than 150 K. NLDN data was used to determine if a CG strike occurred for a storm. This probability of CG lightning was plotted as a function of minimum 85 GHz PCT and minimum 37 GHz PCT. These probabilities were used in conjunction with the linear model to estimate the CG flash rate for weaker storms with minimum 85 GHz PCTs greater than 150 K. Results from the investigation of CG lightning and passive microwave radiation signals agree with the previous research investigating total lightning and brightness temperature. Future work will take the established relationships and apply them to the decades of available DMSP data for the USA to derive a map of CG lightning flash rates. Validation of this method and uncertainty analysis will be done by comparing the derived maps of CG lightning flash rates against existing NLDN maps of CG lightning flash rates.

  11. Reconstructing spatial-temporal continuous MODIS land surface temperature using the DINEOF method

    NASA Astrophysics Data System (ADS)

    Zhou, Wang; Peng, Bin; Shi, Jiancheng

    2017-10-01

    Land surface temperature (LST) is one of the key states of the Earth surface system. Remote sensing has the capability to obtain high-frequency LST observations with global coverage. However, mainly due to cloud cover, there are always gaps in the remotely sensed LST product, which hampers the application of satellite-based LST in data-driven modeling of surface energy and water exchange processes. We explored the suitability of the data interpolating empirical orthogonal functions (DINEOF) method in moderate resolution imaging spectroradiometer LST reconstruction around Ali on the Tibetan Plateau. To validate the reconstruction accuracy, synthetic clouds during both daytime and nighttime are created. With DINEOF reconstruction, the root mean square error and bias under synthetic clouds in daytime are 4.57 and -0.0472 K, respectively, and during the nighttime are 2.30 and 0.0045 K, respectively. The DINEOF method can well recover the spatial pattern of LST. Time-series analysis of LST before and after DINEOF reconstruction from 2002 to 2016 shows that the annual and interannual variabilities of LST can be well reconstructed by the DINEOF method.

  12. Spatial Fingerprints of Community Structure in Human Interaction Network for an Extensive Set of Large-Scale Regions

    PubMed Central

    Kallus, Zsófia; Barankai, Norbert; Szüle, János; Vattay, Gábor

    2015-01-01

    Human interaction networks inferred from country-wide telephone activity recordings were recently used to redraw political maps by projecting their topological partitions into geographical space. The results showed remarkable spatial cohesiveness of the network communities and a significant overlap between the redrawn and the administrative borders. Here we present a similar analysis based on one of the most popular online social networks represented by the ties between more than 5.8 million of its geo-located users. The worldwide coverage of their measured activity allowed us to analyze the large-scale regional subgraphs of entire continents and an extensive set of examples for single countries. We present results for North and South America, Europe and Asia. In our analysis we used the well-established method of modularity clustering after an aggregation of the individual links into a weighted graph connecting equal-area geographical pixels. Our results show fingerprints of both of the opposing forces of dividing local conflicts and of uniting cross-cultural trends of globalization. PMID:25993329

  13. Landsat-Derived, Time-Series Remote Sensing Analysis of Fire Regime, Microclimate, and Urbanization's Influence on Biodiversity in the Santa Monica Mountain Coastal Range

    NASA Astrophysics Data System (ADS)

    Ma, J.; Dmochowski, J. E.

    2016-12-01

    Southern California's Santa Monica Mountain coastal range hosts chaparral and coastal sage scrub ecosystems with distinct, local variations in their fire regime, microclimate, and proximity to urbanization. The high biodiversity combined with ongoing human impact make monitoring the ecological and land cover changes crucial. Due to their extensive, continuous temporal coverage and high spatial resolution, Landsat data are well suited to this purpose. Landsat-derived time-series NDVI data and classification maps have been compiled to identify regions most sensitive to change in order to determine the effects of fire regime, geography, and urbanization on vegetative changes; and assess the encroachment of non-native grasses. Spatial analysis of the classification maps identified the factors more conducive to land-cover changes as native shrubs were replaced with non-native grasses. Understanding the dynamics that govern semi-arid resilience, overall greening, and fire regime is important to predicting and managing large scale ecosystem changes as pressures from global climate change and urbanization intensify.

  14. Spatial distribution of soil organic carbon and total nitrogen based on GIS and geostatistics in a small watershed in a hilly area of northern China.

    PubMed

    Peng, Gao; Bing, Wang; Guangpo, Geng; Guangcan, Zhang

    2013-01-01

    The spatial variability of soil organic carbon (SOC) and total nitrogen (STN) levels is important in both global carbon-nitrogen cycle and climate change research. There has been little research on the spatial distribution of SOC and STN at the watershed scale based on geographic information systems (GIS) and geostatistics. Ninety-seven soil samples taken at depths of 0-20 cm were collected during October 2010 and 2011 from the Matiyu small watershed (4.2 km(2)) of a hilly area in Shandong Province, northern China. The impacts of different land use types, elevation, vegetation coverage and other factors on SOC and STN spatial distributions were examined using GIS and a geostatistical method, regression-kriging. The results show that the concentration variations of SOC and STN in the Matiyu small watershed were moderate variation based on the mean, median, minimum and maximum, and the coefficients of variation (CV). Residual values of SOC and STN had moderate spatial autocorrelations, and the Nugget/Sill were 0.2% and 0.1%, respectively. Distribution maps of regression-kriging revealed that both SOC and STN concentrations in the Matiyu watershed decreased from southeast to northwest. This result was similar to the watershed DEM trend and significantly correlated with land use type, elevation and aspect. SOC and STN predictions with the regression-kriging method were more accurate than those obtained using ordinary kriging. This research indicates that geostatistical characteristics of SOC and STN concentrations in the watershed were closely related to both land-use type and spatial topographic structure and that regression-kriging is suitable for investigating the spatial distributions of SOC and STN in the complex topography of the watershed.

  15. Spatial Distribution of Soil Organic Carbon and Total Nitrogen Based on GIS and Geostatistics in a Small Watershed in a Hilly Area of Northern China

    PubMed Central

    Peng, Gao; Bing, Wang; Guangpo, Geng; Guangcan, Zhang

    2013-01-01

    The spatial variability of soil organic carbon (SOC) and total nitrogen (STN) levels is important in both global carbon-nitrogen cycle and climate change research. There has been little research on the spatial distribution of SOC and STN at the watershed scale based on geographic information systems (GIS) and geostatistics. Ninety-seven soil samples taken at depths of 0–20 cm were collected during October 2010 and 2011 from the Matiyu small watershed (4.2 km2) of a hilly area in Shandong Province, northern China. The impacts of different land use types, elevation, vegetation coverage and other factors on SOC and STN spatial distributions were examined using GIS and a geostatistical method, regression-kriging. The results show that the concentration variations of SOC and STN in the Matiyu small watershed were moderate variation based on the mean, median, minimum and maximum, and the coefficients of variation (CV). Residual values of SOC and STN had moderate spatial autocorrelations, and the Nugget/Sill were 0.2% and 0.1%, respectively. Distribution maps of regression-kriging revealed that both SOC and STN concentrations in the Matiyu watershed decreased from southeast to northwest. This result was similar to the watershed DEM trend and significantly correlated with land use type, elevation and aspect. SOC and STN predictions with the regression-kriging method were more accurate than those obtained using ordinary kriging. This research indicates that geostatistical characteristics of SOC and STN concentrations in the watershed were closely related to both land-use type and spatial topographic structure and that regression-kriging is suitable for investigating the spatial distributions of SOC and STN in the complex topography of the watershed. PMID:24391791

  16. Biophysical controls on carbon and water vapor fluxes across a grassland climatic gradient in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wagle, Pradeep; Xiao, Xiangming; Scott, Russell L.

    Understanding of the underlying causes of spatial variation in exchange of carbon and water vapor fluxes between grasslands and the atmosphere is crucial for accurate estimates of regional and global carbon and water budgets, and for predicting the impact of climate change on biosphere–atmosphere feedbacks of grasslands. We used ground-based eddy flux and meteorological data, and the Moderate Resolution Imaging Spectroradiometer (MODIS) enhanced vegetation index (EVI) from 12 grasslands across the United States to examine the spatial variability in carbon and water vapor fluxes and to evaluate the biophysical controls on the spatial patterns of fluxes. Precipitation was strongly associatedmore » with spatial and temporal variability in carbon and water vapor fluxes and vegetation productivity. Grasslands with annual average precipitation <600 mm generally had neutral annual carbon balance or emitted small amount of carbon to the atmosphere. Despite strong coupling between gross primary production (GPP)and evapotranspiration (ET) across study sites, GPP showed larger spatial variation than ET, and EVI had a greater effect on GPP than on ET. Consequently, large spatial variation in ecosystem water use efficiency (EWUE = annual GPP/ET; varying from 0.67 ± 0.55 to 2.52 ± 0.52 g C mm⁻¹ET) was observed. Greater reduction in GPP than ET at high air temperature and vapor pressure deficit caused a reduction in EWUE in dry years, indicating a response which is opposite than what has been reported for forests. Our results show that spatial and temporal variations in ecosystem carbon uptake, ET, and water use efficiency of grasslands were strongly associated with canopy greenness and coverage, as indicated by EVI.« less

  17. Reliability of Navigation Service Provided by the Global Positioning System

    DOT National Transportation Integrated Search

    1985-09-01

    The planned NAVSTAR/GPS satellite constellation of 18 satellites plus 3 active will provide excellent coverage over the continental United States (CONUS) if all are operating properly. This report examines the coverage under conditions of one satelli...

  18. Making sense of global warming: Norwegians appropriating knowledge of anthropogenic climate change.

    PubMed

    Ryghaug, Marianne; Sørensen, Knut Holtan; Naess, Robert

    2011-11-01

    This paper studies how people reason about and make sense of human-made global warming, based on ten focus group interviews with Norwegian citizens. It shows that the domestication of climate science knowledge was shaped through five sense-making devices: news media coverage of changes in nature, particularly the weather, the coverage of presumed experts' disagreement about global warming, critical attitudes towards media, observations of political inaction, and considerations with respect to everyday life. These sense-making devices allowed for ambiguous outcomes, and the paper argues four main outcomes with respect to the domestication processes: the acceptors, the tempered acceptors, the uncertain and the sceptics.

  19. Seasonal Water Storage Variations as Impacted by Water Abstractions: Comparing the Output of a Global Hydrological Model with GRACE and GPS Observations

    NASA Astrophysics Data System (ADS)

    Döll, Petra; Fritsche, Mathias; Eicker, Annette; Müller Schmied, Hannes

    2014-11-01

    Better quantification of continental water storage variations is expected to improve our understanding of water flows, including evapotranspiration, runoff and river discharge as well as human water abstractions. For the first time, total water storage (TWS) on the land area of the globe as computed by the global water model WaterGAP (Water Global Assessment and Prognosis) was compared to both gravity recovery and climate experiment (GRACE) and global positioning system (GPS) observations. The GRACE satellites sense the effect of TWS on the dynamic gravity field of the Earth. GPS reference points are displaced due to crustal deformation caused by time-varying TWS. Unfortunately, the worldwide coverage of the GPS tracking network is irregular, while GRACE provides global coverage albeit with low spatial resolution. Detrended TWS time series were analyzed by determining scaling factors for mean annual amplitude ( f GRACE) and time series of monthly TWS ( f GPS). Both GRACE and GPS indicate that WaterGAP underestimates seasonal variations of TWS on most of the land area of the globe. In addition, seasonal maximum TWS occurs 1 month earlier according to WaterGAP than according to GRACE on most land areas. While WaterGAP TWS is sensitive to the applied climate input data, none of the two data sets result in a clearly better fit to the observations. Due to the low number of GPS sites, GPS observations are less useful for validating global hydrological models than GRACE observations, but they serve to support the validity of GRACE TWS as observational target for hydrological modeling. For unknown reasons, WaterGAP appears to fit better to GPS than to GRACE. Both GPS and GRACE data, however, are rather uncertain due to a number of reasons, in particular in dry regions. It is not possible to benefit from either GPS or GRACE observations to monitor and quantify human water abstractions if only detrended (seasonal) TWS variations are considered. Regarding GRACE, this is mainly caused by the attenuation of the TWS differences between water abstraction variants due to the filtering required for GRACE TWS. Regarding GPS, station density is too low. Only if water abstractions lead to long-term changes in TWS by depletion or restoration of water storage in groundwater or large surface water bodies, GRACE may be used to support the quantification of human water abstractions.

  20. AirMISR WISCONSIN

    Atmospheric Science Data Center

    2014-04-25

    AirMISR WISCONSIN 2000 Project Title:  AirMISR Discipline:  ... Platform:  ER-2 Spatial Coverage:  Wisconsin (35.92, 43.79)(-97.94, -90.23) Spatial Resolution:  ... Order Data Readme Files:  Readme Wisconsin Read Software Files :  IDL Code ...

  1. Multi-angle Imaging SpectroRadiometer

    NASA Technical Reports Server (NTRS)

    Diner, David J. (Principal Investigator)

    MISR views the sunlit Earth simultaneously at nine widely spaced angles and provides ongoing global coverage with high spatial detail. Its imagery is carefully calibrated to provide accurate measures of the brightness, contrast, and color of reflected sunlight. MISR provides new types of information for scientists studying Earth's climate, such as the regional and global distribution of different types of atmospheric particles and aerosols. The change in reflection at different view angles provides the means to distinguish aerosol types, cloud forms, and land surface cover. Combined with stereoscopic techniques, this enables construction of 3-D cloud models and estimation of the total amount of sunlight reflected by Earth's diverse environments. MISR was built for NASA by the Jet Propulsion Laboratory (JPL) in Pasadena, California. It is part of NASA's first Earth Observing System (EOS) spacecraft, the Terra spacecraft, which was launched into polar orbit from Vandenberg Air Force Base on December 18, 1999. MISR has been continuously providing data since February 24, 2000. [Mission Objectives] The MISR instrument acquires systematic multi-angle measurements for global monitoring of top-of-atmosphere and surface albedos and for measuring the shortwave radiative properties of aerosols, clouds, and surface scenes in order to characterize their impact on the Earth's climate. The Earth's climate is constantly changing -- as a consequence of both natural processes and human activities. Scientists care a great deal about even small changes in Earth's climate, since they can affect our comfort and well-being, and possibly our survival. A few years of below-average rainfall, an unusually cold winter, or a change in emissions from a coal-burning power plant, can influence the quality of life of people, plants, and animals in the region involved. The goal of NASA's Earth Observing System (EOS) is to increase our understanding of the climate changes that are occurring on our planet, and the reasons for these changes, so we are better equipped to anticipate and prepare for the future. The MISR instrument is a part of EOS. Its role is to measure the amount of sunlight scattered in different directions under natural conditions. These measurements will help quantify the amount of solar energy that heats the Earth's surface and atmosphere, and the changes that occur in them over the lifetime of the MISR instrument. From the MISR observations, we are also learning more about those components of the Earth's environment that scatter sunlight: particles in the atmosphere, the planet's surface, and clouds. MISR monitors changes in surface reflection properties, in atmospheric aerosol content and composition, and in cloudiness. Scientists use these data to study land use changes, air pollution, volcanic eruptions, as well as processes such as desertification, deforestation, and soil erosion. As part of the EOS program, computer models that predict future climate will be improved by the results of these studies. [Temporal_Coverage: Start_Date=2000-02-24; Stop_Date=] [Spatial_Coverage: Southernmost_Latitude=-90; Northernmost_Latitude=90; Westernmost_Longitude=-180; Easternmost_Longitude=180].

  2. The influence of competition between plant functional types in the Canadian Terrestrial Ecosystem Model (CTEM) v. 2.0

    NASA Astrophysics Data System (ADS)

    Melton, Joe; Arora, Vivek

    2015-04-01

    The Canadian Terrestrial Ecosystem Model (CTEM) is the interactive vegetation component in the earth system modelling framework of the Canadian Centre for Climate Modelling and Analysis (CCCma). In its current framework, CTEM uses prescribed fractional coverage of plant functional types (PFTs) in each grid cell. In reality, vegetation cover is continually adjusting to changes in climate, atmospheric composition, and anthropogenic forcing, for example, through human-caused fires and CO2 fertilization. These changes in vegetation spatial patterns occur over timescales of years to centuries as tree migration is a slow process and vegetation distributions inherently have inertia. Here, we present version 2.0 of CTEM that includes a representation of competition between PFTs through a modified version of the Lotka-Volterra (L-V) predator-prey equations. The simulated areal extents of CTEM's seven non-crop PFTs are compared with available observation-based estimates, and simulations using unmodified L-V equations (similar to other models like TRIFFID), to demonstrate that the model is able to represent the broad spatial distributions of its seven PFTs at the global scale. Differences remain, however, since representing the multitude of plant species with just seven non-crop PFTs only allows the large scale climatic controls on the distributions of PFTs to be captured. As expected, PFTs that exist in climate niches are difficult to represent either due to the coarse spatial resolution of the model and the corresponding driving climate or the limited number of PFTs used to model the terrestrial ecosystem processes. The geographic and zonal distributions of primary terrestrial carbon pools and fluxes from the versions of CTEM that use prescribed and dynamically simulated fractional coverage of PFTs compare reasonably with each other and observation-based estimates. These results illustrate that the parametrization of competition between PFTs in CTEM behaves in a reasonably realistic manner while the use of unmodified L-V equations results in unrealistic plant distributions.

  3. A closer look at temperature changes with remote sensing

    NASA Astrophysics Data System (ADS)

    Metz, Markus; Rocchini, Duccio; Neteler, Markus

    2014-05-01

    Temperature is a main driver for important ecological processes. Time series temperature data provide key environmental indicators for various applications and research fields. High spatial and temporal resolution is crucial in order to perform detailed analyses in various fields of research. While meteorological station data are commonly used, they often lack completeness or are not distributed in a representative way. Remotely sensed thermal images from polar orbiting satellites are considered to be a good alternative to the scarce meteorological data as they offer almost continuous coverage of the Earth with very high temporal resolution. A drawback of temperature data obtained by satellites is the occurrence of gaps (due to clouds, aerosols) that must be filled. We have reconstructed a seamless and gap-free time series for land surface temperature (LST) at continental scale for Europe from MODIS LST products (Moderate Resolution Imaging Sensor instruments onboard the Terra and Aqua satellites), keeping the temporal resolution of four records per day and enhancing the spatial resolution from 1 km to 250 m. Here we present a new procedure to reconstruct MODIS LST time series with unprecedented detail in space and time, at the same time providing continental coverage. Our method constitutes a unique new combination of weighted temporal averaging with statistical modeling and spatial interpolation. We selected as auxiliary variables datasets which are globally available in order to propose a worldwide reproducible method. Compared to existing similar datasets, the substantial quantitative difference translates to a qualitative difference in applications and results. We consider both our dataset and the new procedure for its creation to be of utmost interest to a broad interdisciplinary audience. Moreover, we provide examples for its implications and applications, such as disease risk assessment, epidemiology, environmental monitoring, and temperature anomalies. In the near future, aggregated derivatives of our dataset (following the BIOCLIM variable scheme) will be freely made online available for direct usage in GIS based applications.

  4. High-resolution surface velocity and strain rate mapping across the Alpine-Himalayan belt using InSAR and GNSS data

    NASA Astrophysics Data System (ADS)

    Weiss, J. R.; Walters, R. J.; Wright, T. J.; Hussain, E.; González, P. J.; Hooper, A. J.

    2017-12-01

    Accurate and high-resolution measurements of interseismic crustal velocity and the strain-rate fields derived from these measurements are an important input for the assessment of earthquake hazard. However, most strain-rate estimation methods and associated seismicity forecasts rely heavily on Global Navigation Satellite System (GNSS) networks with sparse and heterogeneous spatial coverage, limiting both accuracy and resolution. Interferometric Synthetic Aperture Radar (InSAR) provides remotely-sensed observations of surface motion, with accuracy comparable to GNSS data, and with a spatial resolution of a few tens of meters. The recently launched Sentinel-1 (S1) radar satellites can measure deformation at the tectonic-plate scale and across slowly straining regions where earthquake hazard is poorly characterised. We are producing large-scale crustal velocity and strain-rate fields for the Alpine-Himalayan belt (AHB) by augmenting global GNSS data compilations with InSAR-derived surface velocities. We are also systematically processing S1 interferograms for the AHB and these products are freely available to the geoscience community. We focus on the Anatolian microplate, where we have used both Envisat and S1 data to measure crustal velocity. We address some of the challenges associated with merging the complementary geodetic datasets including reference-frame issues, treatment of uncertainties, and comparison of different velocity/strain-rate inversion methods. We use synthetic displacement fields to illustrate how inclusion of InSAR can aid in identifying features such as unmapped active faults and fault segments that are creeping. From our preliminary results for Anatolia, we investigate the spatial distribution of strain and variation of strain rates during the seismic cycle.

  5. Analysis of ground-measured and passive-microwave-derived snow depth variations in midwinter across the Northern Great Plains

    USGS Publications Warehouse

    Chang, A.T.C.; Kelly, R.E.J.; Josberger, E.G.; Armstrong, R.L.; Foster, J.L.; Mognard, N.M.

    2005-01-01

    Accurate estimation of snow mass is important for the characterization of the hydrological cycle at different space and time scales. For effective water resources management, accurate estimation of snow storage is needed. Conventionally, snow depth is measured at a point, and in order to monitor snow depth in a temporally and spatially comprehensive manner, optimum interpolation of the points is undertaken. Yet the spatial representation of point measurements at a basin or on a larger distance scale is uncertain. Spaceborne scanning sensors, which cover a wide swath and can provide rapid repeat global coverage, are ideally suited to augment the global snow information. Satellite-borne passive microwave sensors have been used to derive snow depth (SD) with some success. The uncertainties in point SD and areal SD of natural snowpacks need to be understood if comparisons are to be made between a point SD measurement and satellite SD. In this paper three issues are addressed relating satellite derivation of SD and ground measurements of SD in the northern Great Plains of the United States from 1988 to 1997. First, it is shown that in comparing samples of ground-measured point SD data with satellite-derived 25 ?? 25 km2 pixels of SD from the Defense Meteorological Satellite Program Special Sensor Microwave Imager, there are significant differences in yearly SD values even though the accumulated datasets showed similarities. Second, from variogram analysis, the spatial variability of SD from each dataset was comparable. Third, for a sampling grid cell domain of 1?? ?? 1?? in the study terrain, 10 distributed snow depth measurements per cell are required to produce a sampling error of 5 cm or better. This study has important implications for validating SD derivations from satellite microwave observations. ?? 2005 American Meteorological Society.

  6. Sentinel-2A image quality commissioning phase final results: geometric calibration and performances

    NASA Astrophysics Data System (ADS)

    Languille, F.; Gaudel, A.; Dechoz, C.; Greslou, D.; de Lussy, F.; Trémas, T.; Poulain, V.; Massera, S.

    2016-10-01

    In the frame of the Copernicus program of the European Commission, Sentinel-2 offers multispectral high-spatial-resolution optical images over global terrestrial surfaces. In cooperation with ESA, the Centre National d'Etudes Spatiales (CNES) is in charge of the image quality of the project, and so ensures the CAL/VAL commissioning phase during the months following the launch. Sentinel-2 is a constellation of 2 satellites on a polar sun-synchronous orbit with a revisit time of 5 days (with both satellites), a high field of view - 290km, 13 spectral bands in visible and shortwave infrared, and high spatial resolution - 10m, 20m and 60m. The Sentinel-2 mission offers a global coverage over terrestrial surfaces. The satellites acquire systematically terrestrial surfaces under the same viewing conditions in order to have temporal images stacks. The first satellite was launched in June 2015. Following the launch, the CAL/VAL commissioning phase is then lasting during 6 months for geometrical calibration. This paper will point on observations and results seen on Sentinel-2 images during commissioning phase. It will provide explanations about Sentinel-2 products delivered with geometric corrections. This paper will detail calibration sites, and the methods used for geometrical parameters calibration and will present linked results. The following topics will be presented: viewing frames orientation assessment, focal plane mapping for all spectral bands, results on geolocation assessment, and multispectral registration. There is a systematic images recalibration over a same reference which is a set of S2 images produced during the 6 months of CAL/VAL. This set of images will be presented as well as the geolocation performance and the multitemporal performance after refining over this ground reference.

  7. Whitecaps, sea-salt aerosols, and climate

    NASA Astrophysics Data System (ADS)

    Anguelova, Magdalena Dimitrova

    Oceanic whitecaps are the major source of sea-salt aerosols. Because these aerosols are dominant in remote marine air, they control the radiative properties of the clean background atmosphere by scattering sunlight, changing cloud properties and lifetime, and providing media for chemical reactions. Including sea-salt effects in climate models improves predictions, but simulating their generation is first necessary. To make the sea-salt generation function currently used in climate models more relevant for aerosol investigations, this study proposes two modifications. First, the conventional relation between whitecap coverage, W, and the 10-meter wind speed, U10, used in typical generation functions is expanded to include additional factors that affect whitecaps and sea-salt aerosol formation. Second, the sea-salt generation function is extended to smaller sizes; sea-salt aerosol with initial radii from 0.4 to 20 mum can now be modeled. To achieve these goals, this thesis develops a new method for estimating whitecap coverage on a global scale using satellite measurements of the brightness temperature of the ocean surface. Whitecap coverage evaluated with this method incorporates the effects of atmospheric stability, sea-surface temperature, salinity, wind fetch, wind duration, and the amount of surface-active material. Assimilating satellite-derived values for whitecap coverage in the sea-salt generation function incorporates the effects of all environmental factors on sea-salt production and predicts realistic sea-salt aerosol loadings into the atmosphere. An extensive database of whitecap coverage and sea-salt aerosol fluxes has been compiled with the new method and is used to investigate their spatial and temporal characteristics. The composite effect of all environmental factors suggests a more uniform latitudinal distribution of whitecaps and sea-salt aerosols than that predicted from wind speed alone. The effect of sea-surface temperature, TS, is parameterized for the first time using regression analysis. The resulting parameterization W( U10, TS) is a better predictor of whitecap coverage than the conventional W(U 10) relation. This thesis also considers the contribution of oceanic whitecaps to ocean albedo and CO2 transfer and evaluates the direct effect of sea-salt aerosols on climate, the sea-salt contribution to CCN formation, and the role of sea-salt aerosols in atmospheric chemistry.

  8. The New Destination Disadvantage: Disparities in Hispanic Health Insurance Coverage Rates in Metropolitan and Nonmetropolitan New and Established Destinations

    PubMed Central

    Monnat, Shannon M.

    2016-01-01

    Hispanics have the lowest health insurance rates of any racial/ethnic group, but rates vary significantly across the U.S. The unprecedented growth of the Hispanic population since 1990 in rural areas with previously small or non-existent Hispanic populations raises questions about disparities in access to health insurance coverage. Identifying spatial disparities in Hispanic health insurance rates can illuminate the specific contexts within which Hispanics are least likely to have health care access and inform policy approaches for increasing coverage in different spatial contexts. Using county-level data from the 2009/2013 American Community Survey, I find that early new destinations (i.e., those that experienced rapid Hispanic population growth during the 1990s) have the lowest Hispanic adult health insurance coverage rates, with little variation by metropolitan status. Conversely, among the most recent new destinations that experienced significant Hispanic population growth during the 2000s, metropolitan counties have Hispanic health insurance rates that are similar to established destinations, but rural counties have Hispanic health insurance rates that are significantly lower than those in established destinations. Findings demonstrate that the new destination disadvantage is driven entirely by higher concentrations of immigrant non-citizen Hispanics in these counties, but labor market conditions were salient drivers of the spatially uneven distribution of foreign-born non-citizen Hispanics to new destinations, particularly in rural areas. PMID:28479612

  9. Combining disparate data sources for improved poverty prediction and mapping.

    PubMed

    Pokhriyal, Neeti; Jacques, Damien Christophe

    2017-11-14

    More than 330 million people are still living in extreme poverty in Africa. Timely, accurate, and spatially fine-grained baseline data are essential to determining policy in favor of reducing poverty. The potential of "Big Data" to estimate socioeconomic factors in Africa has been proven. However, most current studies are limited to using a single data source. We propose a computational framework to accurately predict the Global Multidimensional Poverty Index (MPI) at a finest spatial granularity and coverage of 552 communes in Senegal using environmental data (related to food security, economic activity, and accessibility to facilities) and call data records (capturing individualistic, spatial, and temporal aspects of people). Our framework is based on Gaussian Process regression, a Bayesian learning technique, providing uncertainty associated with predictions. We perform model selection using elastic net regularization to prevent overfitting. Our results empirically prove the superior accuracy when using disparate data (Pearson correlation of 0.91). Our approach is used to accurately predict important dimensions of poverty: health, education, and standard of living (Pearson correlation of 0.84-0.86). All predictions are validated using deprivations calculated from census. Our approach can be used to generate poverty maps frequently, and its diagnostic nature is, likely, to assist policy makers in designing better interventions for poverty eradication. Copyright © 2017 the Author(s). Published by PNAS.

  10. Combining disparate data sources for improved poverty prediction and mapping

    PubMed Central

    2017-01-01

    More than 330 million people are still living in extreme poverty in Africa. Timely, accurate, and spatially fine-grained baseline data are essential to determining policy in favor of reducing poverty. The potential of “Big Data” to estimate socioeconomic factors in Africa has been proven. However, most current studies are limited to using a single data source. We propose a computational framework to accurately predict the Global Multidimensional Poverty Index (MPI) at a finest spatial granularity and coverage of 552 communes in Senegal using environmental data (related to food security, economic activity, and accessibility to facilities) and call data records (capturing individualistic, spatial, and temporal aspects of people). Our framework is based on Gaussian Process regression, a Bayesian learning technique, providing uncertainty associated with predictions. We perform model selection using elastic net regularization to prevent overfitting. Our results empirically prove the superior accuracy when using disparate data (Pearson correlation of 0.91). Our approach is used to accurately predict important dimensions of poverty: health, education, and standard of living (Pearson correlation of 0.84–0.86). All predictions are validated using deprivations calculated from census. Our approach can be used to generate poverty maps frequently, and its diagnostic nature is, likely, to assist policy makers in designing better interventions for poverty eradication. PMID:29087949

  11. Mapping the impacts of thermoelectric power generation: a global, spatially explicit database

    NASA Astrophysics Data System (ADS)

    Raptis, Catherine; Pfister, Stephan

    2017-04-01

    Thermoelectric power generation is associated with environmental pressures resulting from emissions to air and water, as well as water consumption. The need to achieve global coverage in related studies has become pressing in view of climate change. At the same time, the ability to quantify impacts from power production on a high resolution remains pertinent, given their highly regionalized nature, particularly when it comes to water-related impacts. Efforts towards global coverage have increased in recent years, but most work on the impacts of global electricity production presents a coarse geographical differentiation. Over the past few years we have begun a concerted effort to create and make available a global georeferenced inventory of thermoelectric power plant operational characteristics and emissions, by modelling the relevant processes on the highest possible level: that of a generating unit. Our work extends and enhances a commercially available global power plant database, and so far includes: - Georeferencing the generating units and populating the gaps in their steam properties. - Identifying the cooling system for 92% of the global installed thermoelectric power capacity. - Using the completed steam property data, along with local environmental temperature data, to systematically solve the Rankine cycle for each generating unit, involving: i) distinguishing between simple, reheat, and cogenerative cycles, and accounting for particularities in nuclear power cycles; ii) accounting for the effect of different cooling systems (once-through, recirculating (wet tower), dry cooling) on the thermodynamic cycle. One of the direct outcomes of solving the Rankine cycle is the cycle efficiency, an indispensable parameter in any study related to power production, including the quantification of air emissions and water consumption. Another direct output, for those units employing once-through cooling, is the rate of heat rejection to water, which can lead to thermal pollution. The opportunities afforded by the creation of this comprehensive database are numerous, including its use in integrated studies of electricity production and environmental burden, on local or global scales. The quantification, on the highest possible geographical and technological resolution, of all the different current impacts caused by thermoelectric power generation is crucial in order to conduct a proper assessment of the trade-offs in impacts in future scenario studies including technological changes, and to avoid burden-shifting. Here, we present the progress made in the building of the database so far, as well as the results of its application in a worldwide study of the thermal stress of rivers from the heat rejected by power plants using once-through cooling systems.

  12. Lunar geodesy and cartography: a new era

    NASA Astrophysics Data System (ADS)

    Duxbury, Thomas; Smith, David; Robinson, Mark; Zuber, Maria T.; Neumann, Gregory; Danton, Jacob; Oberst, Juergen; Archinal, Brent; Glaeser, Philipp

    The Lunar Reconnaissance Orbiter (LRO) ushers in a new era in precision lunar geodesy and cartography. LRO was launched in June, 2009, completed its Commissioning Phase in Septem-ber 2009 and is now in its Primary Mission Phase on its way to collecting high precision, global topographic and imaging data. Aboard LRO are the Lunar Orbiter Laser Altimeter (LOLA -Smith, et al., 2009) and the Lunar Reconnaissance Orbiter Camera (LROC -Robinson, et al., ). LOLA is a derivative of the successful MOLA at Mars that produced the global reference surface being used for all precision cartographic products. LOLA produces 5 altimetry spots having footprints of 5 m at a frequency of 28 Hz, significantly bettering MOLA that produced 1 spot having a footprint of 150 m at a frequency of 10 Hz. LROC has twin narrow angle cameras having pixel resolutions of 0.5 meters from a 50 km orbit and a wide-angle camera having a pixel resolution of 75 m and in up to 7 color bands. One of the two NACs looks to the right of nadir and the other looks to the left with a few hundred pixel overlap in the nadir direction. LOLA is mounted on the LRO spacecraft to look nadir, in the overlap region of the NACs. The LRO spacecraft has the ability to look nadir and build up global coverage as well as looking off-nadir to provide stereo coverage and fill in data gaps. The LROC wide-angle camera builds up global stereo coverage naturally from its large field-of-view overlap from orbit to orbit during nadir viewing. To date, the LROC WAC has already produced global stereo coverage of the lunar surface. This report focuses on the registration of LOLA altimetry to the LROC NAC images. LOLA has a dynamic range of tens of km while producing elevation data at sub-meter precision. LOLA also has good return in off-nadir attitudes. Over the LRO mission, multiple LOLA tracks will be in each of the NAC images at the lunar equator and even more tracks in the NAC images nearer the poles. The registration of LOLA altimetry to NAC images is aided by the 5 spots showing regional and local slopes, along and cross-track, that are easily correlated visually to features within the images. Once can precisely register each of the 5 LOLA spots to specific pixels in LROC images of distinct features such as craters and boulders. This can be performed routinely for features at the 100 m level and larger. However, even features at the several m level can also be registered if a single LOLA spots probes the depth of a small crater while the other 4 spots are on the surrounding surface or one spot returns from the top of a small boulder seen by NAC. The automatic registration of LOLA tracks with NAC stereo digital terrain models should provide for even higher accuracy. Also the LOLA pulse spread of the returned signal, which is sensitive to slopes and roughness, is an additional source of information to help match the LOLA tracks to the images As the global coverage builds, LOLA will provide absolute coordinates in latitude, longitude and radius of surface features with accuracy at the meter level or better. The NAC images will then be reg-istered to the LOLA reference surface in the production of precision, controlled photomosaics, having spatial resolutions as good as 0.5 m/pixel. For hundreds of strategic sites viewed in stereo, even higher precision and more complete surface coverage is possible for the produc-tion of digital terrain models and mosaics. LRO, with LOLA and LROC, will improve the relative and absolute accuracy of geodesy and cartography by orders of magnitude, ushering in a new era for lunar geodesy and cartography. Robinson, M., et al., Space Sci. Rev., DOI 10.1007/s11214-010-9634-2, Date: 2010-02-23, in press. Smith, D., et al., Space Sci. Rev., DOI 10.1007/s11214-009-9512-y, published online 16 May 2009.

  13. Communicating Climate Uncertainties: Challenges and Opportunities Related to Spatial Scales, Extreme Events, and the Warming 'Hiatus'

    NASA Astrophysics Data System (ADS)

    Casola, J. H.; Huber, D.

    2013-12-01

    Many media, academic, government, and advocacy organizations have achieved sophistication in developing effective messages based on scientific information, and can quickly translate salient aspects of emerging climate research and evolving observations. However, there are several ways in which valid messages can be misconstrued by decision makers, leading them to inaccurate conclusions about the risks associated with climate impacts. Three cases will be discussed: 1) Issues of spatial scale in interpreting climate observations: Local climate observations may contradict summary statements about the effects of climate change on larger regional or global spatial scales. Effectively addressing these differences often requires communicators to understand local and regional climate drivers, and the distinction between a 'signal' associated with climate change and local climate 'noise.' Hydrological statistics in Missouri and California are shown to illustrate this case. 2) Issues of complexity related to extreme events: Climate change is typically invoked following a wide range of damaging meteorological events (e.g., heat waves, landfalling hurricanes, tornadoes), regardless of the strength of the relationship between anthropogenic climate change and the frequency or severity of that type of event. Examples are drawn from media coverage of several recent events, contrasting useful and potentially confusing word choices and frames. 3) Issues revolving around climate sensitivity: The so-called 'pause' or 'hiatus' in global warming has reverberated strongly through political and business discussions of climate change. Addressing the recent slowdown in warming yields an important opportunity to raise climate literacy in these communities. Attempts to use recent observations as a wedge between climate 'believers' and 'deniers' is likely to be counterproductive. Examples are drawn from Congressional testimony and media stories. All three cases illustrate ways that decision makers can arrive at invalid conclusions from a seemingly valid scientific messages. Honest discussion of uncertainties, and recognition of the spatial and time scales associated with decision making, can work to combat this potential confusion.

  14. State of equity: childhood immunization in the World Health Organization African Region

    PubMed Central

    Casey, Rebecca Mary; Hampton, Lee McCalla; Anya, Blanche-philomene Melanga; Gacic-Dobo, Marta; Diallo, Mamadou Saliou; Wallace, Aaron Stuart

    2017-01-01

    Introduction In 2010, the Global Vaccine Action Plan called on all countries to reach and sustain 90% national coverage and 80% coverage in all districts for the third dose of diphtheria-tetanus-pertussis vaccine (DTP3) by 2015 and for all vaccines in national immunization schedules by 2020. The aims of this study are to analyze recent trends in national vaccination coverage in the World Health Organization African Region andto assess how these trends differ by country income category. Methods We compared national vaccination coverage estimates for DTP3 and the first dose of measles-containing vaccine (MCV) obtained from the World Health Organization (WHO)/United Nations Children’s Fund (UNICEF) joint estimates of national immunization coverage for all African Region countries. Using United Nations (UN) population estimates of surviving infants and country income category for the corresponding year, we calculated population-weighted average vaccination coverage by country income category (i.e., low, lower middle, and upper middle-income) for the years 2000, 2005, 2010 and 2015. Results DTP3 coverage in the African Region increased from 52% in 2000 to 76% in 2015,and MCV1 coverage increased from 53% to 74% during the same period, but with considerable differences among countries. Thirty-six African Region countries were low income in 2000 with an average DTP3 coverage of 50% while 26 were low income in 2015 with an average coverage of 80%. Five countries were lower middle-income in 2000 with an average DTP3 coverage of 84% while 12 were lower middle-income in 2015 with an average coverage of 69%. Five countries were upper middle-income in 2000 with an average DTP3 coverage of 73% and eight were upper middle-income in 2015 with an average coverage of 76%. Conclusion Disparities in vaccination coverage by country persist in the African Region, with countries that were lower middle-income having the lowest coverage on average in 2015. Monitoring and addressing these disparities is essential for meeting global immunization targets. PMID:29296140

  15. Application synergies between the NASA Pre- Aerosol Cloud and ocean Ecosystem (PACE) and Hyperspectral Infrared Imager (HyspIRI) missions

    NASA Astrophysics Data System (ADS)

    Lee, C. M.; Omar, A. H.; Hook, S. J.; Tzortziou, M.; Luvall, J. C.; Turner, W. W.

    2016-02-01

    Observations from the Pre-Aerosol Cloud and ocean Ecosystem (PACE) and Hyperspectral InfraRed Imager (HyspIRI) satellite missions are highly complementary and have the potential to significantly advance understanding of various science and applications challenges in the ocean sciences and water quality communities. Scheduled for launch in the 2022 timeframe, PACE is designed to make climate-quality global measurements essential for understanding ocean biology, biogeochemistry and ecology, and determining the role of the ocean in global biogeochemical cycling and ocean ecology, and how it affects and is affected by climate change. PACE will provide high signal-to-noise, hyperspectral observations over an extended spectral range (UV to SWIR) and will have global coverage every 1-2 days, at approximately 1 km spatial resolution; furthermore, PACE is currently designed to include a polarimeter, which will vastly improve atmospheric correction algorithms over water bodies. The PACE mission will enable advances in applications across a range of areas, including oceans, climate, water resources, ecological forecasting, disasters, human health and air quality. HyspIRI, with contiguous measurements in VSWIR, and multispectral measurements in TIR, will be able to provide detailed spectral observations and higher spatial resolution (30 to 60-m) over aquatic systems, but at a temporal resolution that is approximately 5-16 days. HyspIRI would enable improved, detailed studies of aquatic ecosystems, including benthic communities, algal blooms, coral reefs, and wetland species distribution as well as studies of water quality indicators or pollutants such as oil spills, suspended sediment, and colored dissolved organic matter. Together, PACE and HyspIRI will be able to address numerous applications and science priorities, including improving and extending climate data records, and studies of inland, coastal and ocean environments.

  16. Simulations of the future precipitation climate of the Central Andes using a coupled regional climate model

    NASA Astrophysics Data System (ADS)

    Nicholls, S.; Mohr, K. I.

    2014-12-01

    The meridional extent and complex orography of the South American continent contributes to a wide diversity of climate regimes ranging from hyper-arid deserts to tropical rainforests to sub-polar highland regions. Global climate models, although capable of resolving synoptic-scale South American climate features, are inadequate for fully-resolving the strong gradients between climate regimes and the complex orography which define the Tropical Andes given their low spatial and temporal resolution. Recent computational advances now make practical regional climate modeling with prognostic mesoscale atmosphere-ocean coupled models, such as the Coupled Ocean-Atmosphere-Wave-Sediment Transport (COAWST) modeling system, to climate research. Previous work has shown COAWST to reasonably simulate the both the entire 2003-2004 wet season (Dec-Feb) as validated against both satellite and model analysis data. More recently, COAWST simulations have also been shown to sensibly reproduce the entire annual cycle of rainfall (Oct 2003 - Oct 2004) with historical climate model input. Using future global climate model input for COAWST, the present work involves year-long cycle spanning October to October for the years 2031, 2059, and 2087 assuming the most likely regional climate pathway (RCP): RCP 6.0. COAWST output is used to investigate how global climate change impacts the spatial distribution, precipitation rates, and diurnal cycle of precipitation patterns in the Central Andes vary in these yearly "snapshots". Initial results show little change to precipitation coverage or its diurnal cycle, however precipitation amounts did tend drier over the Brazilian Plateau and wetter over the Western Amazon and Central Andes. These results suggest potential adjustments to large-scale climate features (such as the Bolivian High).

  17. Validity of vaccination cards and parental recall to estimate vaccination coverage: a systematic review of the literature.

    PubMed

    Miles, Melody; Ryman, Tove K; Dietz, Vance; Zell, Elizabeth; Luman, Elizabeth T

    2013-03-15

    Immunization programs frequently rely on household vaccination cards, parental recall, or both to calculate vaccination coverage. This information is used at both the global and national level for planning and allocating performance-based funds. However, the validity of household-derived coverage sources has not yet been widely assessed or discussed. To advance knowledge on the validity of different sources of immunization coverage, we undertook a global review of literature. We assessed concordance, sensitivity, specificity, positive and negative predictive value, and coverage percentage point difference when subtracting household vaccination source from a medical provider source. Median coverage difference per paper ranged from -61 to +1 percentage points between card versus provider sources and -58 to +45 percentage points between recall versus provider source. When card and recall sources were combined, median coverage difference ranged from -40 to +56 percentage points. Overall, concordance, sensitivity, specificity, positive and negative predictive value showed poor agreement, providing evidence that household vaccination information may not be reliable, and should be interpreted with care. While only 5 papers (11%) included in this review were from low-middle income countries, low-middle income countries often rely more heavily on household vaccination information for decision making. Recommended actions include strengthening quality of child-level data and increasing investments to improve vaccination card availability and card marking. There is also an urgent need for additional validation studies of vaccine coverage in low and middle income countries. Copyright © 2013. Published by Elsevier Ltd.

  18. Terrestrial Sediments of the Earth: Development of a Global Unconsolidated Sediments Map Database (GUM)

    NASA Astrophysics Data System (ADS)

    Börker, J.; Hartmann, J.; Amann, T.; Romero-Mujalli, G.

    2018-04-01

    Mapped unconsolidated sediments cover half of the global land surface. They are of considerable importance for many Earth surface processes like weathering, hydrological fluxes or biogeochemical cycles. Ignoring their characteristics or spatial extent may lead to misinterpretations in Earth System studies. Therefore, a new Global Unconsolidated Sediments Map database (GUM) was compiled, using regional maps specifically representing unconsolidated and quaternary sediments. The new GUM database provides insights into the regional distribution of unconsolidated sediments and their properties. The GUM comprises 911,551 polygons and describes not only sediment types and subtypes, but also parameters like grain size, mineralogy, age and thickness where available. Previous global lithological maps or databases lacked detail for reported unconsolidated sediment areas or missed large areas, and reported a global coverage of 25 to 30%, considering the ice-free land area. Here, alluvial sediments cover about 23% of the mapped total ice-free area, followed by aeolian sediments (˜21%), glacial sediments (˜20%), and colluvial sediments (˜16%). A specific focus during the creation of the database was on the distribution of loess deposits, since loess is highly reactive and relevant to understand geochemical cycles related to dust deposition and weathering processes. An additional layer compiling pyroclastic sediment is added, which merges consolidated and unconsolidated pyroclastic sediments. The compilation shows latitudinal abundances of sediment types related to climate of the past. The GUM database is available at the PANGAEA database (https://doi.org/10.1594/PANGAEA.884822).

  19. Feasibility Study For A Spaceborne Ozone/Aerosol Lidar System

    NASA Technical Reports Server (NTRS)

    Campbell, Richard E.; Browell, Edward V.; Ismail, Syed; Dudelzak, Alexander E.; Carswell, Allan I.; Ulitsky, Arkady

    1997-01-01

    Because ozone provides a shield against harmful ultraviolet radiation, determines the temperature profile in the stratosphere, plays important roles in tropospheric chemistry and climate, and is a health risk near the surface, changes in natural ozone layers at different altitudes and their global impact are being intensively researched. Global ozone coverage is currently provided by passive optical and microwave satellite sensors that cannot deliver high spatial resolution measurements and have particular limitations in the troposphere. Vertical profiling DIfferential Absorption Lidars (DIAL) have shown excellent range-resolved capabilities, but these systems have been large, inefficient, and have required continuous technical attention for long term operations. Recently, successful, autonomous DIAL measurements have been performed from a high-altitude aircraft (LASE - Lidar Atmospheric Sensing Experiment), and a space-qualified aerosol lidar system (LITE - Laser In-space Technology Experiment) has performed well on Shuttle. Based on the above successes, NASA and the Canadian Space Agency are jointly studying the feasibility of developing ORACLE (Ozone Research with Advanced Cooperative Lidar Experiments), an autonomously operated, compact DIAL instrument to be placed in orbit using a Pegasus class launch vehicle.

  20. Advancing Wetlands Mapping and Monitoring with GNSS Reflectometry

    NASA Astrophysics Data System (ADS)

    Zuffada, Cinzia; Chew, Clara; Nghiem, Son V.; Shah, Rashmi; Podest, Erika; Bloom, A. Anthony; Koning, Alexandra; Small, Eric; Schimel, David; Reager, J. T.; Mannucci, Anthony; Williamson, Walton; Cardellach, Estel

    2016-08-01

    Wetland dynamics is crucial to address changes in both atmospheric methane (CH4) and terrestrial water storage. Yet, both spatial distribution and temporal variability of wetlands remain highly unconstrained despite the existence of remote sensing products from past and present satellite sensors. An innovative approach to mapping wetlands is offered by the Global Navigation Satellite System Reflectometry (GNSS-R), which is a bistatic radar concept that takes advantage of the ever increasing number of GNSS transmitting satellites to yield many randomly distributed measurements with broad-area global coverage and rapid revisit time. Hence, this communication presents the science motivation for mapping of wetlands and monitoring of their dynamics, and shows the relevance of the GNSS-R technique in this context, relative to and in synergy with other existing measurement systems. Additionally, the communication discusses results of our data analysis on wetlands in the Amazon, specifically from the initial analysis of satellite data acquired by the TechDemoSat-1 mission launched in 2014. Finally, recommendations are provided for the design of a GNSS-R mission specifically to address wetlands science issues.

  1. Breaking new ground in mapping human settlements from space - The Global Urban Footprint

    NASA Astrophysics Data System (ADS)

    Esch, Thomas; Heldens, Wieke; Hirner, Andreas; Keil, Manfred; Marconcini, Mattia; Roth, Achim; Zeidler, Julian; Dech, Stefan; Strano, Emanuele

    2017-12-01

    Today, approximately 7.2 billion people inhabit the Earth and by 2050 this number will have risen to around nine billion, of which about 70% will be living in cities. The population growth and the related global urbanization pose one of the major challenges to a sustainable future. Hence, it is essential to understand drivers, dynamics, and impacts of the human settlements development. A key component in this context is the availability of an up-to-date and spatially consistent map of the location and distribution of human settlements. It is here that the Global Urban Footprint (GUF) raster map can make a valuable contribution. The new global GUF binary settlement mask shows a so far unprecedented spatial resolution of 0.4″ (∼ 12m) that provides - for the first time - a complete picture of the entirety of urban and rural settlements. The GUF has been derived by means of a fully automated processing framework - the Urban Footprint Processor (UFP) - that was used to analyze a global coverage of more than 180,000 TanDEM-X and TerraSAR-X radar images with 3 m ground resolution collected in 2011-2012. The UFP consists of five main technical modules for data management, feature extraction, unsupervised classification, mosaicking and post-editing. Various quality assessment studies to determine the absolute GUF accuracy based on ground truth data on the one hand and the relative accuracies compared to established settlements maps on the other hand, clearly indicate the added value of the new global GUF layer, in particular with respect to the representation of rural settlement patterns. The Kappa coefficient of agreement compared to absolute ground truth data, for instance, shows GUF accuracies which are frequently twice as high as those of established low resolution maps. Generally, the GUF layer achieves an overall absolute accuracy of about 85%, with observed minima around 65% and maxima around 98%. The GUF will be provided open and free for any scientific use in the full resolution and for any non-profit (but also non-scientific) use in a generalized version of 2.8″ (∼ 84m). Therewith, the new GUF layer can be expected to break new ground with respect to the analysis of global urbanization and peri-urbanization patterns, population estimation, vulnerability assessment, or the modeling of diseases and phenomena of global change in general.

  2. FIRE_CI2_ETL_RADAR

    Atmospheric Science Data Center

    2015-11-25

    FIRE_CI2_ETL_RADAR Project Title:  FIRE II CIRRUS Discipline:  ... Platform:  Ground Station Instrument:  Radar Spatial Coverage:  (37.06, -95.34) Spatial ... Order Data Guide Documents:  ETL_RADAR Guide Readme Files:  Readme ETL_RADAR (PS) ...

  3. Health Care Coverage Decision Making in Low- and Middle-Income Countries: Experiences from 25 Coverage Schemes.

    PubMed

    Gutierrez, Hialy; Shewade, Ashwini; Dai, Minghan; Mendoza-Arana, Pedro; Gómez-Dantés, Octavio; Jain, Nishant; Khonelidze, Irma; Nabyonga-Orem, Juliet; Saleh, Karima; Teerawattananon, Yot; Nishtar, Sania; Hornberger, John

    2015-08-01

    Lessons learned by countries that have successfully implemented coverage schemes for health services may be valuable for other countries, especially low- and middle-income countries (LMICs), which likewise are seeking to provide/expand coverage. The research team surveyed experts in population health management from LMICs for information on characteristics of health care coverage schemes and factors that influenced decision-making processes. The level of coverage provided by the different schemes varied. Nearly all the health care coverage schemes involved various representatives and stakeholders in their decision-making processes. Maternal and child health, cardiovascular diseases, cancer, and HIV were among the highest priorities guiding coverage development decisions. Evidence used to inform coverage decisions included medical literature, regional and global epidemiology, and coverage policies of other coverage schemes. Funding was the most commonly reported reason for restricting coverage. This exploratory study provides an overview of health care coverage schemes from participating LMICs and contributes to the scarce evidence base on coverage decision making. Sharing knowledge and experiences among LMICs can support efforts to establish systems for accessible, affordable, and equitable health care.

  4. Strengthening routine immunization systems to improve global vaccination coverage.

    PubMed

    Sodha, S V; Dietz, V

    2015-03-01

    Global coverage with the third dose of diphtheria-tetanus-pertussis vaccine among children under 1 year of age stagnated at ∼ 83-84% during 2008-13. Annual World Health Organization and UNICEF-derived national vaccination coverage estimates. Incomplete vaccination is associated with poor socioeconomic status, lower education, non-use of maternal-child health services, living in conflict-affected areas, missed immunization opportunities and cancelled vaccination sessions. Vaccination platforms must expand to include older ages including the second year of life. Immunization programmes, including eradication and elimination initiatives such as those for polio and measles, must integrate within the broader health system. The Global Vaccine Action Plan (GVAP) 2011-20 is a framework for strengthening immunization systems, emphasizing country ownership, shared responsibility, equity, integration, sustainability and innovation. Immunization programmes should identify, monitor and evaluate gaps and interventions within the GVAP framework. Published by Oxford University Press 2015. This work is written by (a) US Government employee(s) and is in the public domain in the US.

  5. Heterogeneity in the spread and control of infectious disease: consequences for the elimination of canine rabies

    NASA Astrophysics Data System (ADS)

    Ferguson, Elaine A.; Hampson, Katie; Cleaveland, Sarah; Consunji, Ramona; Deray, Raffy; Friar, John; Haydon, Daniel T.; Jimenez, Joji; Pancipane, Marlon; Townsend, Sunny E.

    2015-12-01

    Understanding the factors influencing vaccination campaign effectiveness is vital in designing efficient disease elimination programmes. We investigated the importance of spatial heterogeneity in vaccination coverage and human-mediated dog movements for the elimination of endemic canine rabies by mass dog vaccination in Region VI of the Philippines (Western Visayas). Household survey data was used to parameterise a spatially-explicit rabies transmission model with realistic dog movement and vaccination coverage scenarios, assuming a basic reproduction number for rabies drawn from the literature. This showed that heterogeneous vaccination reduces elimination prospects relative to homogeneous vaccination at the same overall level. Had the three vaccination campaigns completed in Region VI in 2010-2012 been homogeneous, they would have eliminated rabies with high probability. However, given the observed heterogeneity, three further campaigns may be required to achieve elimination with probability 0.95. We recommend that heterogeneity be reduced in future campaigns through targeted efforts in low coverage areas, even at the expense of reduced coverage in previously high coverage areas. Reported human-mediated dog movements did not reduce elimination probability, so expending limited resources on restricting dog movements is unnecessary in this endemic setting. Enhanced surveillance will be necessary post-elimination, however, given the reintroduction risk from long-distance dog movements.

  6. Modelling the global distribution and risk of small floating plastic debris

    NASA Astrophysics Data System (ADS)

    van Sebille, E.; Wilcox, C.; Lebreton, L.; Maximenko, N. A.; Sherman, P.; Hardesty, B. D.; van Franeker, J. A.; Eriksen, M.; Siegel, D.; Galgani, F.; Lavender Law, K. L.

    2016-02-01

    Microplastic debris floating at the ocean surface can harm marine life. Understanding the severity of this harm requires knowledge of plastic abundance and distributions. Dozens of expeditions measuring microplastics have been carried out since the 1970s, but they have primarily focused on the North Pacific and North Atlantic accumulation zones, with much sparser coverage elsewhere. Here, we use the largest dataset of microplastic measurements collated to date to assess the confidence we can have in global estimates of microplastic abundance and mass. We use a rigorous statistical framework to standardize a global dataset of plastic marine debris measured using surface-trawling plankton nets and coupled this with three different ocean circulation models to spatially interpolate the observations. Our estimates show that the accumulated number of microplastic particles in 2014 ranges from 15 to 51 trillion particles, weighing between 93 and 236 thousand metric tons, which is only approximately 1% of global plastic waste available to enter the ocean in the year 2010. These estimates are larger than previous global estimates, but vary widely because the scarcity of data in most of the world ocean, differences in model formulations, and fundamental knowledge gaps in the sources, transformations and fates of microplastics in the ocean. We then use this global distribution of small floating plastic debris to (i) map out where in the ocean the risk to marine life (seabirds, plankton growth) is greatest and to (ii) show that mitigation of the plastic problem can most aptly be done near coastlines, particularly in Asia, rather than in the centres of the gyres.

  7. An analytic algorithm for global coverage of the revisiting orbit and its application to the CFOSAT satellite

    NASA Astrophysics Data System (ADS)

    Xu, Ming; Huang, Li

    2014-08-01

    This paper addresses a new analytic algorithm for global coverage of the revisiting orbit and its application to the mission revisiting the Earth within long periods of time, such as Chinese-French Oceanic Satellite (abbr., CFOSAT). In the first, it is presented that the traditional design methodology of the revisiting orbit for some imaging satellites only on the single (ascending or descending) pass, and the repeating orbit is employed to perform the global coverage within short periods of time. However, the selection of the repeating orbit is essentially to yield the suboptimum from the rare measure of rational numbers of passes per day, which will lose lots of available revisiting orbits. Thus, an innovative design scheme is proposed to check both rational and irrational passes per day to acquire the relationship between the coverage percentage and the altitude. To improve the traditional imaging only on the single pass, the proposed algorithm is mapping every pass into its ascending and descending nodes on the specified latitude circle, and then is accumulating the projected width on the circle by the field of view of the satellite. The ergodic geometry of coverage percentage produced from the algorithm is affecting the final scheme, such as the optimal one owning the largest percentage, and the balance one possessing the less gradient in its vicinity, and is guiding to heuristic design for the station-keeping control strategies. The application of CFOSAT validates the feasibility of the algorithm.

  8. Response of Global Lightning Activity Observed by the TRMM/LIS During Warm and Cold ENSO Phases

    NASA Technical Reports Server (NTRS)

    Chronis, Themis G.; Cecil, Dan; Goodman, Steven J.; Buechler, Dennis

    2007-01-01

    This paper investigates the response of global lightning activity to the transition from the warm (January February March-JFM 1998) to the cold (JFM 1999) ENSO phase. The nine-year global lightning climatology for these months from the Tropical Rainfall Measuring Mission (TRMM) Lightning Imaging Sensor (LIS) provides the observational baseline. Flash rate density is computed on a 5.0x5.0 degree lat/lon grid within the LIS coverage area (between approx.37.5 N and S) for each three month period. The flash rate density anomalies from this climatology are examined for these months in 1998 and 1999. The observed lightning anomalies spatially match the documented general circulation features that accompany the warm and cold ENSO events. During the warm ENSO phase the dominant positive lightning anomalies are located mostly over the Western Hemisphere and more specifically over Gulf of Mexico, Caribbean and Northern Mid-Atlantic. We further investigate specifically the Northern Mid-Atlantic related anomaly features since these show strong relation to the North Atlantic Oscillation (NAO). Furthermore these observed anomaly patterns show strong spatial agreement with anomalous upper level (200 mb) cold core cyclonic circulations. Positive sea surface temperature anomalies during the warm ENSO phase also affect the lightning activity, but this is mostly observed near coastal environments. Over the open tropical oceans, there is climatologically less lightning and the anomalies are less pronounced. Warm ENSO related anomalies over the Eastern Hemisphere are most prominent over the South China coast. The transition to the cold ENSO phase illustrates the detected lightning anomalies to be more pronounced over East and West Pacific. A comparison of total global lightning between warm and cold ENSO phase reveals no significant difference, although prominent regional anomalies are located over mostly oceanic environments. All three tropical "chimneys" (Maritime Continent, Central Africa, and Amazon Basin) do not show any particular response to this transition.

  9. TES/Aura L3 Carbon Monoxide (CO) Monthly (TL3COM)

    Atmospheric Science Data Center

    2018-02-28

    ... TES Aura L1B Nadir Spatial Coverage:  5.3 x 8.5 km Spatial Resolution:  0.5 x 5 km ... Guide Documents:  Data User's Guide (PDF):  Level 3 Level 3 Algorithms, Requirements, & Products (PDF) ...

  10. A Spatial Heterodyne Spectrometer for Laboratory Astrophysics; First Interferogram

    NASA Technical Reports Server (NTRS)

    Lawler, J. E.; Labby, Z. E.; Roesler, F. L.; Harlander, J.

    2006-01-01

    A Spatial Heterodyne Spectrometer with broad spectral coverage across the VUV - UV region and with a high (> 500,000 ) spectral resolving power is being built for laboratory measurements of spectroscopic data including emission branching fractions, improved level energies, and hyperfine/isotopic parameters.

  11. Enhancing Political Will for Universal Health Coverage in Nigeria.

    PubMed

    Aregbeshola, Bolaji S

    2017-01-01

    Universal health coverage aims to increase equity in access to quality health care services and to reduce financial risk due to health care costs. It is a key component of international health agenda and has been a subject of worldwide debate. Despite differing views on its scope and pathways to reach it, there is a global consensus that all countries should work toward universal health coverage. The goal remains distant for many African countries, including Nigeria. This is mostly due to lack of political will and commitment among political actors and policymakers. Evidence from countries such as Ghana, Chile, Mexico, China, Thailand, Turkey, Rwanda, Vietnam and Indonesia, which have introduced at least some form of universal health coverage scheme, shows that political will and commitment are key to the adoption of new laws and regulations for reforming coverage. For Nigeria to improve people's health, reduce poverty and achieve prosperity, universal health coverage must be vigorously pursued at all levels. Political will and commitment to these goals must be expressed in legal mandates and be translated into policies that ensure increased public health care financing for the benefit of all Nigerians. Nigeria, as part of a global system, cannot afford to lag behind in striving for this overarching health goal.

  12. Superwide-angle coverage code-multiplexed optical scanner.

    PubMed

    Riza, Nabeel A; Arain, Muzammil A

    2004-05-01

    A superwide-angle coverage code-multiplexed optical scanner is presented that has the potential to provide 4 pi-sr coverage. As a proof-of-concept experiment, an angular scan range of 288 degrees for six randomly distributed beams is demonstrated. The proposed scanner achieves its superwide coverage by exploiting a combination of phase-encoded transmission and reflection holography within an in-line hologram recording-retrieval geometry. The basic scanner unit consists of one phase-only digital mode spatial light modulator for code entry (i.e., beam scan control) and a holographic material from which we obtained what we believe is the first-of-a-kind extremely wide coverage, low component count, high speed (e.g., microsecond domain), and large aperture (e.g., > 1-cm diameter) scanner.

  13. Geologic map of Io

    USGS Publications Warehouse

    Williams, David A.; Keszthelyi, Laszlo P.; Crown, David A.; Yff, Jessica A.; Jaeger, Windy L.; Schenk, Paul M.; Geissler, Paul E.; Becker, Tammy L.

    2011-01-01

    Io, discovered by Galileo Galilei on January 7–13, 1610, is the innermost of the four Galilean satellites of the planet Jupiter (Galilei, 1610). It is the most volcanically active object in the Solar System, as recognized by observations from six National Aeronautics and Space Administration (NASA) spacecraft: Voyager 1 (March 1979), Voyager 2 (July 1979), Hubble Space Telescope (1990–present), Galileo (1996–2001), Cassini (December 2000), and New Horizons (February 2007). The lack of impact craters on Io in any spacecraft images at any resolution attests to the high resurfacing rate (1 cm/yr) and the dominant role of active volcanism in shaping its surface. High-temperature hot spots detected by the Galileo Solid-State Imager (SSI), Near-Infrared Mapping Spectrometer (NIMS), and Photopolarimeter-Radiometer (PPR) usually correlate with darkest materials on the surface, suggesting active volcanism. The Voyager flybys obtained complete coverage of Io's subjovian hemisphere at 500 m/pixel to 2 km/pixel, and most of the rest of the satellite at 5–20 km/pixel. Repeated Galileo flybys obtained complementary coverage of Io's antijovian hemisphere at 5 m/pixel to 1.4 km/pixel. Thus, the Voyager and Galileo data sets were merged to enable the characterization of the whole surface of the satellite at a consistent resolution. The United States Geological Survey (USGS) produced a set of four global mosaics of Io in visible wavelengths at a spatial resolution of 1 km/pixel, released in February 2006, which we have used as base maps for this new global geologic map. Much has been learned about Io's volcanism, tectonics, degradation, and interior since the Voyager flybys, primarily during and following the Galileo Mission at Jupiter (December 1995–September 2003), and the results have been summarized in books published after the end of the Galileo Mission. Our mapping incorporates this new understanding to assist in map unit definition and to provide a global synthesis of Io's geology.

  14. The CrowdMag App - turning your smartphone into a travelling magnetic observatory

    NASA Astrophysics Data System (ADS)

    Saltus, Richard; Nair, Manoj

    2017-04-01

    In 2014, we started the "CrowdMag" Project to collect vector magnetic data from digital magnetometers in smartphones. In October 2014, we released our first-generation Android and iOS apps. Currently, the CrowdMag Project has more than 15,000 enthusiastic users contributing more than 12 million magnetic data points from around the world. NOAA's National Centers for Environmental Information (NCEI), in partnership with the University of Colorado's Cooperative Institute for Research in the Environmental Sciences (CIRES) develops magnetic field models to aid navigation, resource exploration and scientific research. We use observatories, satellites and ship/airborne surveys to measure the magnetic data. However, the measurements leave gaps in coverage, particularly for short-wavelength urban noise. Our ultimate goal is to use data from the CrowdMag Project to improve global magnetic data coverage. Here we present some early results from the analysis of the crowdsourced magnetic data. A global magnetic model derived solely based on CrowdMag data is generally consistent with satellite-derived models such as World Magnetic Model. A unique contribution of the CrowdMag Project is the collection of ground level magnetic data in densely populated regions with an unprecedented spatial resolution. For example, we show a magnetic map (by binning the data collected into 100x100m cells) of central Boulder using 170,000 data points collected by about 60 devices over the duration October 2014- January 2016. The median magnetic field value is consistent with the expected magnitude of the Earth's background magnetic field. The standard deviation of the CrowdMag total field (F) values is much higher than the expected natural (i.e., diurnal and geologic) magnetic field variation. However, the phone's magnetometer is sensitive enough to capture the larger magnitude magnetic signature from the urban magnetic sources. We discuss the reliability of crowdsourced magnetic maps and their applications to navigation, global models, and local geologic or environmental investigations.

  15. On the value of satellite-based river discharge and river flood data

    NASA Astrophysics Data System (ADS)

    Kettner, A. J.; Brakenridge, R.; van Praag, E.; Borrero, S.; Slayback, D. A.; Young, C.; Cohen, S.; Prades, L.; de Groeve, T.

    2015-12-01

    Flooding is the most common natural hazard worldwide. According to the World Resources Institute, floods impact 21 million people every year and affect the global GDP by $96 billion. Providing accurate flood maps in near-real time (NRT) is critical to their utility to first responders. Also, in times of flooding, river gauging stations on location, if any, are of less use to monitor stage height as an approximation for water surface area, as often the stations themselves get washed out or peak water levels reach much beyond their design measuring capacity. In a joint effort with NASA Goddard Space Flight Center, the European Commission Joint Research Centre and the University of Alabama, the Dartmouth Flood Observatory (DFO) measures NRT: 1) river discharges, and 2) water inundation extents, both with a global coverage on a daily basis. Satellite-based passive microwave sensors and hydrological modeling are utilized to establish 'remote-sensing based discharge stations'. Once calibrated, daily discharge time series span from 1998 to the present. Also, the two MODIS instruments aboard the NASA Terra and Aqua satellites provide daily floodplain inundation extent with global coverage at a spatial resolution of 250m. DFO's mission is to provide easy access to NRT river and flood data products. Apart from the DFO web portal, several water extent products can be ingested by utilizing a Web Map Service (WMS), such as is established with for Latin America and the Caribbean (LAC) region through the GeoSUR program portal. This effort includes implementing over 100 satellite discharge stations showing in NRT if a river is flooding, normal, or in low flow. New collaborative efforts have resulted in flood hazard maps which display flood extent as well as exceedance probabilities. The record length of our sensors allows mapping the 1.5 year, 5 year and 25 year flood extent. These can provide key information to water management and disaster response entities.

  16. Dissemination of satellite-based river discharge and flood data

    NASA Astrophysics Data System (ADS)

    Kettner, A. J.; Brakenridge, G. R.; van Praag, E.; de Groeve, T.; Slayback, D. A.; Cohen, S.

    2014-12-01

    In collaboration with NASA Goddard Spaceflight Center and the European Commission Joint Research Centre, the Dartmouth Flood Observatory (DFO) daily measures and distributes: 1) river discharges, and 2) near real-time flood extents with a global coverage. Satellite-based passive microwave sensors and hydrological modeling are utilized to establish 'remote-sensing based discharge stations', and observed time series cover 1998 to the present. The advantages over in-situ gauged discharges are: a) easy access to remote or due to political reasons isolated locations, b) relatively low maintenance costs to maintain a continuous observational record, and c) the capability to obtain measurements during floods, hazardous conditions that often impair or destroy in-situ stations. Two MODIS instruments aboard the NASA Terra and Aqua satellites provide global flood extent coverage at a spatial resolution of 250m. Cloud cover hampers flood extent detection; therefore we ingest 6 images (the Terra and Aqua images of each day, for three days), in combination with a cloud shadow filter, to provide daily global flood extent updates. The Flood Observatory has always made it a high priority to visualize and share its data and products through its website. Recent collaborative efforts with e.g. GeoSUR have enhanced accessibility of DFO data. A web map service has been implemented to automatically disseminate geo-referenced flood extent products into client-side GIS software. For example, for Latin America and the Caribbean region, the GeoSUR portal now displays current flood extent maps, which can be integrated and visualized with other relevant geographical data. Furthermore, the flood state of satellite-observed river discharge sites are displayed through the portal as well. Additional efforts include implementing Open Geospatial Consortium (OGC) standards to incorporate Water Markup Language (WaterML) data exchange mechanisms to further facilitate the distribution of the satellite gauged river discharge time series.

  17. Measuring Progress Toward Universal Health Coverage: Does the Monitoring Framework of Bangladesh Need Further Improvement?

    PubMed

    Gupta, Rajat Das; Shahabuddin, Asm

    2018-01-08

    This review aimed to compare Bangladesh's Universal Health Coverage (UHC) monitoring framework with the global-level recommendations and to find out the existing gaps of Bangladesh's UHC monitoring framework compared to the global recommendations. In order to reach the aims of the review, we systematically searched two electronic databases - PubMed and Google Scholar - by using appropriate keywords to select articles that describe issues related to UHC and the monitoring framework of UHC applied globally and particularly in Bangladesh. Four relevant documents were found and synthesized. The review found that Bangladesh incorporated all of the recommendations suggested by the global monitoring framework regarding mentoring the financial risk protection and equity perspective. However, a significant gap in the monitoring framework related to service coverage was observed. Although Bangladesh has a significant burden of mental illnesses, cataract, and neglected tropical diseases, indicators related to these issues were absent in Bangladesh's UHC framework. Moreover, palliative-care-related indicators were completely missing in the framework. The results of this review suggest that Bangladesh should incorporate these indicators in their UHC monitoring framework in order to track the progress of the country toward UHC more efficiently and in a robust way.

  18. Global circulation as the main source of cloud activity on Titan

    USGS Publications Warehouse

    Rodriguez, S.; Le, Mouelic S.; Rannou, P.; Tobie, G.; Baines, K.H.; Barnes, J.W.; Griffith, C.A.; Hirtzig, M.; Pitman, K.M.; Sotin, Christophe; Brown, R.H.; Buratti, B.J.; Clark, R.N.; Nicholson, P.D.

    2009-01-01

    Clouds on Titan result from the condensation of methane and ethane and, as on other planets, are primarily structured by circulation of the atmosphere. At present, cloud activity mainly occurs in the southern (summer) hemisphere, arising near the pole and at mid-latitudes from cumulus updrafts triggered by surface heating and/or local methane sources, and at the north (winter) pole, resulting from the subsidence and condensation of ethane-rich air into the colder troposphere. General circulation models predict that this distribution should change with the seasons on a 15-year timescale, and that clouds should develop under certain circumstances at temperate latitudes (40??) in the winter hemisphere. The models, however, have hitherto been poorly constrained and their long-term predictions have not yet been observationally verified. Here we report that the global spatial cloud coverage on Titan is in general agreement with the models, confirming that cloud activity is mainly controlled by the global circulation. The non-detection of clouds at latitude 40??N and the persistence of the southern clouds while the southern summer is ending are, however, both contrary to predictions. This suggests that Titans equator-to-pole thermal contrast is overestimated in the models and that its atmosphere responds to the seasonal forcing with a greater inertia than expected. ?? 2009 Macmillan Publishers Limited. All rights reserved.

  19. Development of multi-sensor global cloud and radiance composites for earth radiation budget monitoring from DSCOVR

    NASA Astrophysics Data System (ADS)

    Khlopenkov, Konstantin; Duda, David; Thieman, Mandana; Minnis, Patrick; Su, Wenying; Bedka, Kristopher

    2017-10-01

    The Deep Space Climate Observatory (DSCOVR) enables analysis of the daytime Earth radiation budget via the onboard Earth Polychromatic Imaging Camera (EPIC) and National Institute of Standards and Technology Advanced Radiometer (NISTAR). Radiance observations and cloud property retrievals from low earth orbit and geostationary satellite imagers have to be co-located with EPIC pixels to provide scene identification in order to select anisotropic directional models needed to calculate shortwave and longwave fluxes. A new algorithm is proposed for optimal merging of selected radiances and cloud properties derived from multiple satellite imagers to obtain seamless global hourly composites at 5-km resolution. An aggregated rating is employed to incorporate several factors and to select the best observation at the time nearest to the EPIC measurement. Spatial accuracy is improved using inverse mapping with gradient search during reprojection and bicubic interpolation for pixel resampling. The composite data are subsequently remapped into EPIC-view domain by convolving composite pixels with the EPIC point spread function defined with a half-pixel accuracy. PSF-weighted average radiances and cloud properties are computed separately for each cloud phase. The algorithm has demonstrated contiguous global coverage for any requested time of day with a temporal lag of under 2 hours in over 95% of the globe.

  20. Preliminary Correlations of Gravity and Topography from Mars Global Surveyor

    NASA Technical Reports Server (NTRS)

    Zuber, M. T.; Tyler, G. L.; Smith, D. E.; Balmino, G. S.; Johnson, G. L.; Lemoine, F. G.; Neumann, G. A.; Phillips, R. J.; Sjogren, W. L.; Solomon, S. C.

    1999-01-01

    The Mars Global Surveyor (MGS) spacecraft is currently in a 400-km altitude polar mapping orbit and scheduled to begin global mapping of Mars in March of 1999. Doppler tracking data collected in this Gravity Calibration Orbit prior to the nominal mapping mission combined with observations from the MGS Science Phasing Orbit in Spring - Summer 1999 and the Viking and mariner 9 orbiters has led to preliminary high resolution gravity fields. Spherical harmonic expansions have been performed to degree and order 70 and are characterized by the first high spatial resolution coverage of high latitudes. Topographic mapping by the Mars Orbiter Laser Altimeter on MGS is providing measurements of the height of the martian surface with sub-meter vertical resolution and 5-30 m absolute accuracy. Data obtained during the circular mapping phase are expected to provide the first high resolution measurements of surface heights in the southern hemisphere. The combination of gravity and topography measurements provides information on the structure of the planetary interior, i.e. the rigidity and distribution of internal density. The observations can also be used to address the mechanisms of support of surface topography. Preliminary results of correlations of gravity and topography at long planetary wavelengths will be presented and the implications for internal structure will be addressed.

  1. Development of Multi-Sensor Global Cloud and Radiance Composites for Earth Radiation Budget Monitoring from DSCOVR

    NASA Technical Reports Server (NTRS)

    Khlopenkov, Konstantin; Duda, David; Thieman, Mandana; Minnis, Patrick; Su, Wenying; Bedka, Kristopher

    2017-01-01

    The Deep Space Climate Observatory (DSCOVR) enables analysis of the daytime Earth radiation budget via the onboard Earth Polychromatic Imaging Camera (EPIC) and National Institute of Standards and Technology Advanced Radiometer (NISTAR). Radiance observations and cloud property retrievals from low earth orbit and geostationary satellite imagers have to be co-located with EPIC pixels to provide scene identification in order to select anisotropic directional models needed to calculate shortwave and longwave fluxes. A new algorithm is proposed for optimal merging of selected radiances and cloud properties derived from multiple satellite imagers to obtain seamless global hourly composites at 5-kilometer resolution. An aggregated rating is employed to incorporate several factors and to select the best observation at the time nearest to the EPIC measurement. Spatial accuracy is improved using inverse mapping with gradient search during reprojection and bicubic interpolation for pixel resampling. The composite data are subsequently remapped into EPIC-view domain by convolving composite pixels with the EPIC point spread function (PSF) defined with a half-pixel accuracy. PSF-weighted average radiances and cloud properties are computed separately for each cloud phase. The algorithm has demonstrated contiguous global coverage for any requested time of day with a temporal lag of under 2 hours in over 95 percent of the globe.

  2. GNSS, Satellite Altimetry and Formosat-3/COSMIC for Determination of Ionosphere Parameters

    NASA Astrophysics Data System (ADS)

    Mahdi Alizadeh Elizei, M.; Schuh, Harald; Schmidt, Michael; Todorova, Sonya

    The dispersion of ionosphere with respect to the microwave signals allows gaining information about the parameters of this medium in terms of the electron density (Ne), or the Total Elec-tron Content (TEC). In the last decade space geodetic techniques, such as Global Navigation Satellite System (GNSS), satellite altimetry missions, and Low Earth Orbiting (LEO) satel-lites have turned into a promising tool for remote sensing the ionosphere. The dual-frequency GNSS observations provide the main input data for development of Global Ionosphere Maps (GIM). However, the GNSS stations are heterogeneously distributed, with large gaps particu-larly over the sea surface, which lowers the precision of the GIM over these areas. Conversely, dual-frequency satellite altimetry missions provide information about the ionosphere precisely above the sea surface. In addition, LEO satellites such as Formosat-3/COSMIC (F-3/C) pro-vide well-distributed information of ionosphere around the world. In this study we developed GIMs of VTEC from combination of GNSS, satellite altimetry and F-3/C data with temporal resolution of 2 hours and spatial resolution of 5 degree in longitude and 2.5 degree in latitude. The combined GIMs provide a more homogeneous global coverage and higher precision and reliability than results of each individual technique.

  3. Globally significant greenhouse-gas emissions from African inland waters

    NASA Astrophysics Data System (ADS)

    Borges, Alberto V.; Bouillon, Steven

    2017-04-01

    The relevance of inland waters to global biogeochemical cycles is increasingly recognized, and of particular importance is their contribution of greenhouse gases to the atmosphere. The latter remain largely unreported in African inland waters. Here we report dissolved CO2, CH4 and N2O from 12 rivers in Sub-Saharan Africa acquired during >30 field expeditions and additional seasonally resolved sampling at >30 sites between 2006 and 2014. Fluxes were calculated from reported gas transfer velocity values, and upscaled using available spatial datasets, with an estimated uncertainty of about ±19%. CO2 equivalent emissions ( 0.4±0.1 PgC yr-1) match 2/3 of the overall net carbon sink previously reported for Africa. Including emissions from wetlands of the Congo, the putative total emission ( 0.9±0.1 PgC yr-1) is about half of the global oceanic or land carbon sinks. In-situ respiration supported <14% of riverine CO2 emissions, which must therefore largely be driven by mineralization in wetlands or uplands. Riverine CO2 and CH4 emissions were directly correlated to wetland coverage and aboveground vegetation biomass, implying that future changes in wetland and upland vegetation cover will strongly impact GHG emissions from African inland waters.

  4. Mapping spatial resources with GPS animal telemetry: foraging manatees locate seagrass beds in the Ten Thousand Islands, Florida, USA

    USGS Publications Warehouse

    Slone, Daniel H.; Reid, James P.; Kenworthy, W. Judson

    2013-01-01

    Turbid water conditions make the delineation and characterization of benthic habitats difficult by traditional in situ and remote sensing methods. Here, we develop and validate modeling and sampling methodology for detecting and characterizing seagrass beds by analyzing GPS telemetry records from radio-tagged manatees. Between October 2002 and October 2005, 14 manatees were tracked in the Ten Thousand Islands (TTI) in southwest Florida (USA) using Global Positioning System (GPS) tags. High density manatee use areas were found to occur off each island facing the open, nearshore waters of the Gulf of Mexico. We implemented a spatially stratified random sampling plan and used a camera-based sampling technique to observe and record bottom observations of seagrass and macroalgae presence and abundance. Five species of seagrass were identified in our study area: Halodule wrightii, Thalassia testudinum, Syringodium filiforme, Halophila engelmannii, and Halophila decipiens. A Bayesian model was developed to choose and parameterize a spatial process function that would describe the observed patterns of seagrass and macroalgae. The seagrasses were found in depths <2 m and in the higher manatee use strata, whereas macroalgae was found at moderate densities at all sampled depths and manatee use strata. The manatee spatial data showed a strong association with seagrass beds, a relationship that increased seagrass sampling efficiency. Our camera-based field sampling proved to be effective for assessing seagrass density and spatial coverage under turbid water conditions, and would be an effective monitoring tool to detect changes in seagrass beds.

  5. Initial results of the Global Thermospheric Mapping Study (GTMS)

    NASA Technical Reports Server (NTRS)

    Oliver, W. L.; Salah, J. E.; Musgrove, R. G.; Holt, J. M.; Wickwar, V. B.; Hernandez, G. J.; Roble, R. G.

    1986-01-01

    The Global Thermospheric Mapping Study (GTMS) is a multi-technique experimental study of the thermosphere designed to map simultaneously its spatial and temporal morphology with a thoroughness and diversity of measurement techniques heretofore unachieved. The GTMS is designed around the Incoherent Scatter Radar Chain in the western hemisphere. The European incoherent scatter radars and the worldwide communities of Fabry-Perot interferometers, meteor wind radars, partial reflection drifts radars, MST radars, and satellite probes are included to extend the spatial coverage and types of measurements available. Theoretical and modeling support in the areas of thermospheric and ionospheric structure, tides, and electric fields are included to aid in program planning and data interpretation. Solar activity was low on the three observation days (F10.7 = 97, 98, 96) and magnetic conditions were unsettled to active (A = 10, 12, 20). All six incoherent scatter radar facilities collected data. Each collected F region data day and night while Saint Santin and Millstone Hill additionally collected E region data during daylight hours. Initial results from Sondrestrom and Millstone Hill are presented. Good quality Fabry Perot data were collected at Fritz Peak and San Jose dos Campos. Weather conditions produced poor results at Arequipa and Arecibo. Initial results from Fritz Peak are presented. Mesosphere/lower-thermosphere observations were conducted under the ATMAP organization. The magnetometer chains also were operational during this campaign. Initial thermospheric general circulation model predictions were made for assumed solar-geophysical conditions, and selected results are presented.

  6. Temporal and spatial variation in the fouling of silicone coatings in Pearl Harbor, Hawaii.

    PubMed

    Holm, E R; Nedved, B T; Phillips, N; Deangelis, K L; Hadfield, M G; Smith, C M

    2000-01-01

    An antifouling or foul-release coating cannot be globally effective if it does not perform well in a range of environmental conditions, against a diversity of fouling organisms. From 1996 to 1998, the field test sites participating in the United States Navy's Office of Naval Research 6.2 Biofouling program examined global variation in the performance of 3 silicone foul-release coatings, viz. GE RTV11, Dow Corning RTV 3140, and Intersleek (International Coatings Ltd), together with a control anticorrosive coating (Ameron Protective Coatings F-150 series). At the University of Hawaii's test site in Pearl Harbor, significant differences were observed among the coatings in the rate of accumulation of fouling. The control coating failed rapidly; after 180-220 d immersion a community dominated by molluscs and sponges developed that persisted for the remainder of the experiment. Fouling of the GE and Dow Corning silicone coatings was slower, but eventually reached a similar community structure and coverage as the control coatings. The Intersleek coating remained lightly fouled throughout the experiment. Spatial variation in the structure of the community fouling the coatings was observed, but not in the extent of fouling. The rate of accumulation of fouling reflected differences among the coatings in adhesion of the tubeworm Hydroides elegans. The surface properties of these coatings may have affected the rate of fouling and the structure of the fouling community through their influence on larval settlement and subsequent interactions with other residents, predators, and the physical environment.

  7. Synergistic Opportunities for the Geostationary Satellite Constellation: Status of the CEOS Activity

    NASA Astrophysics Data System (ADS)

    Al-Saadi, J. A.; Zehner, C.

    2012-12-01

    This talk will summarize activities of the Committee on Earth Observation Satellites (CEOS) Atmospheric Composition Constellation (ACC) to collaboratively advance the next generation of air quality monitoring from space. Over the past 2 years, CEOS ACC have developed a position paper describing the benefits to be derived from such collaboration. The resulting ACC recommendations were endorsed by CEOS in May 2011. We will discuss next steps toward implementing this vision, starting with a new 3-year CEOS Action in 2012. Several countries and space agencies are currently planning to launch geostationary Earth orbit (GEO) missions in 2017-2022 to obtain atmospheric composition measurements for characterizing anthropogenic and natural distributions of tropospheric ozone, aerosols, and their precursors. These missions include Europe's ESA Sentinel-4 with EUMETSAT IRS, the United States' NASA GEO-CAPE, Korea's ME/MEST/KARI GEMS, and Japan's JAXA GMAP-Asia. GEO observations offer a quantum advance in air quality monitoring from space by providing measurements many times per day. However, a single GEO satellite views only a portion of the globe. These satellites, positioned to view Europe, East Asia, and North America, will collectively provide hourly coverage of the industrialized Northern Hemisphere at similar spatial resolutions. Planned low Earth orbit (LEO) missions will provide complementary daily global observations. Observations from a single LEO satellite will overlap those from each GEO satellite once per day, providing a means for combining the GEO observations and a necessary perspective for interpreting global impacts of smaller scale processes. The EUMETSAT Metop series, NOAA/NASA JPSS series, and ESA Sentinel-5 Precursor and Sentinel-5 missions will each provide such daily overlap with the GEO missions. The Canadian PCW PHEMOS mission will make an additional unique suite of observations. PCW will provide quasi-geostationary coverage over the Arctic that overlaps with each geostationary satellite over 30N - 60N, adding opportunities for intercalibration many times per day. The development of common data products, data distribution protocols, and calibration strategies will synergistically enable critically needed understanding of the interactions between regional and global atmospheric composition. Common air quality trace gas products will be tropospheric column O3, NO2, HCHO, and SO2 nominally at 8 km spatial resolution and 1 hour temporal frequency. Detection of aerosols in the UV will allow absorbing aerosols to be distinguished from total aerosol optical depth, providing information on aerosol speciation and particularly relevant to the air quality/climate interface associated with aerosol radiative forcing. Such activities directly address societal benefit areas of the Global Earth Observation System of Systems (GEOSS), including Health, Energy, Climate, Disasters, and Ecosystems, and are responsive to the requirements of each mission to provide advanced user services and societal benefits in their own regions.

  8. Application of Spectral Analysis Techniques in the Intercomparison of Aerosol Data. Part II: Using Maximum Covariance Analysis to Effectively Compare Spatiotemporal Variability of Satellite and AERONET Measured Aerosol Optical Depth

    NASA Technical Reports Server (NTRS)

    Li, Jing; Carlson, Barbara E.; Lacis, Andrew A.

    2014-01-01

    Moderate Resolution Imaging SpectroRadiometer (MODIS) and Multi-angle Imaging Spectroradiomater (MISR) provide regular aerosol observations with global coverage. It is essential to examine the coherency between space- and ground-measured aerosol parameters in representing aerosol spatial and temporal variability, especially in the climate forcing and model validation context. In this paper, we introduce Maximum Covariance Analysis (MCA), also known as Singular Value Decomposition analysis as an effective way to compare correlated aerosol spatial and temporal patterns between satellite measurements and AERONET data. This technique not only successfully extracts the variability of major aerosol regimes but also allows the simultaneous examination of the aerosol variability both spatially and temporally. More importantly, it well accommodates the sparsely distributed AERONET data, for which other spectral decomposition methods, such as Principal Component Analysis, do not yield satisfactory results. The comparison shows overall good agreement between MODIS/MISR and AERONET AOD variability. The correlations between the first three modes of MCA results for both MODIS/AERONET and MISR/ AERONET are above 0.8 for the full data set and above 0.75 for the AOD anomaly data. The correlations between MODIS and MISR modes are also quite high (greater than 0.9). We also examine the extent of spatial agreement between satellite and AERONET AOD data at the selected stations. Some sites with disagreements in the MCA results, such as Kanpur, also have low spatial coherency. This should be associated partly with high AOD spatial variability and partly with uncertainties in satellite retrievals due to the seasonally varying aerosol types and surface properties.

  9. Aerosol direct effect on solar radiation over the eastern Mediterranean Sea based on AVHRR satellite measurements

    NASA Astrophysics Data System (ADS)

    Georgakaki, Paraskevi; Papadimas, Christos D.; Hatzianastassiou, Nikos; Fotiadi, Aggeliki; Matsoukas, Christos; Stackhouse, Paul; Kanakidou, Maria; Vardavas, Ilias M.

    2017-04-01

    Despite the improved scientific understanding of the direct effect of aerosols on solar radiation (direct radiative effect, DRE) improvements are necessary, for example regarding the accuracy of the magnitude of estimated DREs and their spatial and temporal variability. This variability cannot be ensured by in-situ surface and airborne measurements, while it is also relatively difficult to capture through satellite observations. This becomes even more difficult when complete spatial coverage of extended areas is required, especially concerning areas that host various aerosol types with variable physico-chemical and optical aerosol properties. Better assessments of aerosol DREs are necessary, relying on aerosol optical properties with high spatial and temporal variation. The present study aims to provide a refined, along these lines, assessment of aerosol DREs over the eastern Mediterranean (EM) Sea, which is a key area for aerosol studies. Daily DREs are computed for 1˚ x1˚ latitude-longitude grids with the FORTH detailed spectral radiation transfer model (RTM) using input data for various atmospheric and surface parameters, such as clouds, water vapor, ozone and surface albedo, taken from the NASA-Langley Global Earth Observing System (GEOS) database. The model spectral aerosol optical depth (AOD), single scattering albedo and asymmetry parameter are taken from the Global Aerosol Data Set and the NOAA Climate Data Record (CDR) version 2 of Advanced Very High resolution Radiometer (AVHRR) AOD dataset which is available over oceans at 0.63 microns and at 0.1˚ x0.1˚ . The aerosol DREs are computed at the surface, the top-of-atmosphere and within the atmosphere, over the period 1985-1995. Preliminary model results for the period 1990-1993 reveal a significant spatial and temporal variability of DREs over the EM Sea, for example larger values over the Aegean and Black Seas, surrounded by land areas with significant anthropogenic aerosol sources, and over the southernmost parts of EM Sea, affected by frequent Saharan dust export. The mean regional annual AODs range from 0.17±0.05 to 0.23±0.06. The corresponding regional annual DREs at surface range from -14±3 to -18±4 W/m2 (surface radiative cooling), while in the atmosphere they vary between 7±2 and 10±2 W/m2 (atmospheric heating), yielding a planetary cooling above the EM Sea between -6±1 and -8±2 W/m2. However, these AOD and DRE values vary depending on the criteria of data spatial and temporal availability applied in the AOD and DRE calculation, because of the limited availability of retrieved AVHRR AOD over specific areas and in specific days. The DREs reach larger magnitudes at pixel-level; for example the surface DREs slightly exceed -30 W/m2, whereas they take larger values (magnitudes larger than -50 W/m2 in summer) when computed on a monthly basis, and even larger values on daily basis. The model results underline the high spatial and temporal variability of aerosol DREs, and the care that must be taken when averaging over space and time. It also points to the need for availability of aerosol data with concurrent high spatial and temporal coverage and resolution, which should be sought in ongoing and future satellite missions.

  10. Sea Surface Salinity Variability from Simulations and Observations: Preparing for Aquarius

    NASA Technical Reports Server (NTRS)

    Jacob, S. Daniel; LeVine, David M.

    2010-01-01

    Oceanic fresh water transport has been shown to play an important role in the global hydrological cycle. Sea surface salinity (SSS) is representative of the surface fresh water fluxes and the upcoming Aquarius mission scheduled to be launched in December 2010 will provide excellent spatial and temporal SSS coverage to better estimate the net exchange. In most ocean general circulation models, SSS is relaxed to climatology to prevent model drift. While SST remains a well observed variable, relaxing to SST reduces the range of SSS variability in the simulations (Fig.1). The main objective of the present study is to simulate surface tracers using a primitive equation ocean model for multiple forcing data sets to identify and establish a baseline SSS variability. The simulated variability scales are compared to those from near-surface argo salinity measurements.

  11. First aircraft test results of a compact, low cost hyperspectral imager for earth observation from space

    NASA Astrophysics Data System (ADS)

    de Goeij, B. T. G.; Otter, G. C. J.; van Wakeren, J. M. O.; Veefkind, J. P.; Vlemmix, T.; Ge, X.; Levelt, P. F.; Dirks, B. P. F.; Toet, P. M.; van der Wal, L. F.; Jansen, R.

    2017-09-01

    In recent years TNO has investigated and developed different innovative opto-mechanical designs to realize advanced spectrometers for space applications in a more compact and cost-effective manner. This offers multiple advantages: a compact instrument can be flown on a much smaller platform or as add-on on a larger platform; a low-cost instrument opens up the possibility to fly multiple instruments in a satellite constellation, improving both global coverage and temporal sampling (e.g. multiple overpasses per day to study diurnal processes); in this way a constellation of low-cost instruments may provide added value to the larger scientific and operational satellite missions (e.g. the Copernicus Sentinel missions); a small, lightweight spectrometer can easily be mounted on a small aircraft or high-altitude UAV (offering high spatial resolution).

  12. NO2 Total and Tropospheric Vertical Column Densities from OMI on EOS Aura: Update

    NASA Technical Reports Server (NTRS)

    Gleason, J.F.; Bucsela, E.J.; Celarier, E.A.; Veefkind, J.P.; Kim, S.W.; Frost, G.F.

    2009-01-01

    The Ozone Monitoring Instrument (OMI), which is on the EOS AURA satellite, retrieves vertical column densities (VCDs) of NO2, along with those of several other trace gases. The relatively high spatial resolution and daily global coverage of the instrument make it particularly well-suited to monitoring tropospheric pollution at scales on the order of 20 km. The OMI NO2 algorithm distinguishes polluted regions from background stratospheric NO2 using a separation algorithm that relies on the smoothly varying stratospheric NO2 and estimations of both stratospheric and tropospheric air mass factors (AMFs). Version 1 of OMI NO2 data has been released for public use. An overview of OMI NO2 data, some recent results and a description of the improvements for version 2 of the algorithm will be presented.

  13. Cherenkov detectors for spatial imaging applications using discrete-energy photons

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rose, Paul B.; Erickson, Anna S., E-mail: erickson@gatech.edu

    Cherenkov detectors can offer a significant advantage in spatial imaging applications when excellent timing response, low noise and cross talk, large area coverage, and the ability to operate in magnetic fields are required. We show that an array of Cherenkov detectors with crude energy resolution coupled with monochromatic photons resulting from a low-energy nuclear reaction can be used to produce a sharp image of material while providing large and inexpensive detector coverage. The analysis of the detector response to relative transmission of photons with various energies allows for reconstruction of material's effective atomic number further aiding in high-Z material identification.

  14. The Area Coverage of Geophysical Fields as a Function of Sensor Field-of View

    NASA Technical Reports Server (NTRS)

    Key, Jeffrey R.

    1994-01-01

    In many remote sensing studies of geophysical fields such as clouds, land cover, or sea ice characteristics, the fractional area coverage of the field in an image is estimated as the proportion of pixels that have the characteristic of interest (i.e., are part of the field) as determined by some thresholding operation. The effect of sensor field-of-view on this estimate is examined by modeling the unknown distribution of subpixel area fraction with the beta distribution, whose two parameters depend upon the true fractional area coverage, the pixel size, and the spatial structure of the geophysical field. Since it is often not possible to relate digital number, reflectance, or temperature to subpixel area fraction, the statistical models described are used to determine the effect of pixel size and thresholding operations on the estimate of area fraction for hypothetical geophysical fields. Examples are given for simulated cumuliform clouds and linear openings in sea ice, whose spatial structures are described by an exponential autocovariance function. It is shown that the rate and direction of change in total area fraction with changing pixel size depends on the true area fraction, the spatial structure, and the thresholding operation used.

  15. Continuous strife for better coverage and more details in ocean surface winds measurements - from Midori and ADEOS-2 to GCOM

    NASA Technical Reports Server (NTRS)

    Xie, X.; Liu, W.; Hu, H.; Tang, W.

    2001-01-01

    The series of joint U.S.-Japan spaceborne scatterometers missions to provide continuous measurements of ocean wind vectors is reviewed. Examples of the scientific impact of the continuous effort in improving spatial resolution and coverage are provided. The plan for the future is reviewed.

  16. Spatial pattern in Antarctica: what can we learn from Antarctic bacterial isolates?

    PubMed

    Chong, Chun Wie; Goh, Yuh Shan; Convey, Peter; Pearce, David; Tan, Irene Kit Ping

    2013-09-01

    A range of small- to moderate-scale studies of patterns in bacterial biodiversity have been conducted in Antarctica over the last two decades, most suggesting strong correlations between the described bacterial communities and elements of local environmental heterogeneity. However, very few of these studies have advanced interpretations in terms of spatially associated patterns, despite increasing evidence of patterns in bacterial biogeography globally. This is likely to be a consequence of restricted sampling coverage, with most studies to date focusing only on a few localities within a specific Antarctic region. Clearly, there is now a need for synthesis over a much larger spatial to consolidate the available data. In this study, we collated Antarctic bacterial culture identities based on the 16S rRNA gene information available in the literature and the GenBank database (n > 2,000 sequences). In contrast to some recent evidence for a distinct Antarctic microbiome, our phylogenetic comparisons show that a majority (~75 %) of Antarctic bacterial isolates were highly similar (≥99 % sequence similarity) to those retrieved from tropical and temperate regions, suggesting widespread distribution of eurythermal mesophiles in Antarctic environments. However, across different Antarctic regions, the dominant bacterial genera exhibit some spatially distinct diversity patterns analogous to those recently proposed for Antarctic terrestrial macroorganisms. Taken together, our results highlight the threat of cross-regional homogenisation in Antarctic biodiversity, and the imperative to include microbiota within the framework of biosecurity measures for Antarctica.

  17. TES/Aura L3 Methane (CH4) Monthly (TL3CH4M)

    Atmospheric Science Data Center

    2018-02-28

    ... TES Aura L1B Nadir Spatial Coverage:  5.3 x 8.5 km Spatial Resolution:  0.5 x 5 km ... Guide Documents:  Data User's Guide (PDF):  Level 3 Level 3 Algorithms, Requirements, & Products (PDF) ...

  18. Constellation analysis of an integrated AIS/remote sensing spaceborne system for ship detection

    NASA Astrophysics Data System (ADS)

    Graziano, Maria Daniela; D'Errico, Marco; Razzano, Elena

    2012-08-01

    A future system integrating data from remote sensing and upcoming AIS satellites is analyzed through the development of a novel design method for global, discontinuous coverage constellations. It is shown that 8 AIS satellites suffice to guarantee global coverage and a ship location update of 50 min if the spaceborne AIS receiver has a swath of 2800 nm. Furthermore, synergic utilization of COSMO/SkyMed and Radarsat-C data would provide a mean revisit time of 7 h, with AIS information available within 25 min from SAR data acquisition.

  19. Towards new constraints on the impacts of fires on air quality and the nitrogen cycle: Extending the nadir satellite record of peroxyacetyl nitrate (PAN) with CrIS

    NASA Astrophysics Data System (ADS)

    Fischer, E. V.; Payne, V.; Kulawik, S. S.; Fu, D.

    2017-12-01

    Peroxyacetyl nitrate (PAN) plays a critical role both in atmospheric chemistry and in the redistribution of nitrogen in the troposphere. As a thermally unstable reservoir for nitrogen oxide radicals (NOx) PAN allows NOxto be transported large distances from the original source, thereby extending the range of air quality impacts from fires. Satellite measurements of PAN from the nadir-viewing Aura Tropospheric Emission Spectrometer (TES) have shown large enhancements in PAN associated with fires, and have recently been used to shed new light on the role of fires, PAN precursor emissions and dynamics on the global distribution of PAN and long-range transport of ozone. TES PAN retrievals have also been used to explore interannual variability in PAN mixing ratios in the Western US. The Cross-track Infrared Sounder (CrIS) on S-NPP and the upcoming JPSS series provides a means to continue the satellite record of PAN from the nadir view, with increased spatial coverage. Retrievals of PAN from TES have so far relied on the PAN absorption feature centered at 1150 cm-1, a spectral region not covered by CrIS. Our team has recently developed an approach that would allow the use of another PAN spectral feature centered at 790 cm-1, a spectral region that is covered by CrIS. Here, we apply this approach to CrIS spectra and compare the characteristics of the CrIS PAN retrievals, including vertical sensitivity and uncertainty estimates, with those of the TES PAN product. The CrIS PAN measurements can offer improved spatial coverage, extend the existing satellite PAN record and provide new opportunities for validation of satellite PAN retrievals.

  20. Predicted Surface Displacements for Scenario Earthquakes in the San Francisco Bay Region

    USGS Publications Warehouse

    Murray-Moraleda, Jessica R.

    2008-01-01

    In the immediate aftermath of a major earthquake, the U.S. Geological Survey (USGS) will be called upon to provide information on the characteristics of the event to emergency responders and the media. One such piece of information is the expected surface displacement due to the earthquake. In conducting probabilistic hazard analyses for the San Francisco Bay Region, the Working Group on California Earthquake Probabilities (WGCEP) identified a series of scenario earthquakes involving the major faults of the region, and these were used in their 2003 report (hereafter referred to as WG03) and the recently released 2008 Uniform California Earthquake Rupture Forecast (UCERF). Here I present a collection of maps depicting the expected surface displacement resulting from those scenario earthquakes. The USGS has conducted frequent Global Positioning System (GPS) surveys throughout northern California for nearly two decades, generating a solid baseline of interseismic measurements. Following an earthquake, temporary GPS deployments at these sites will be important to augment the spatial coverage provided by continuous GPS sites for recording postseismic deformation, as will the acquisition of Interferometric Synthetic Aperture Radar (InSAR) scenes. The information provided in this report allows one to anticipate, for a given event, where the largest displacements are likely to occur. This information is valuable both for assessing the need for further spatial densification of GPS coverage before an event and prioritizing sites to resurvey and InSAR data to acquire in the immediate aftermath of the earthquake. In addition, these maps are envisioned to be a resource for scientists in communicating with emergency responders and members of the press, particularly during the time immediately after a major earthquake before displacements recorded by continuous GPS stations are available.

  1. Constellations of elliptical inclined lunar orbits providing polar and global coverage

    NASA Technical Reports Server (NTRS)

    Ely, Todd A.; Lieb, Erica

    2005-01-01

    Prior results have developed a methodology for selecting a long-lived constellation of 3 satellites that provide persistent, stable coverage to either the North or South Pole with no requirement for stationkeeping under the influence of only gravitational perturbations. In the present study, the sensitivity of this coverage in the presence of non-gravitational forces is determined, and a design strategy is formulated that minimizes any potential sensitivity to these accelerations.

  2. Public health surveillance and infectious disease detection.

    PubMed

    Morse, Stephen S

    2012-03-01

    Emerging infectious diseases, such as HIV/AIDS, SARS, and pandemic influenza, and the anthrax attacks of 2001, have demonstrated that we remain vulnerable to health threats caused by infectious diseases. The importance of strengthening global public health surveillance to provide early warning has been the primary recommendation of expert groups for at least the past 2 decades. However, despite improvements in the past decade, public health surveillance capabilities remain limited and fragmented, with uneven global coverage. Recent initiatives provide hope of addressing this issue, and new technological and conceptual advances could, for the first time, place capability for global surveillance within reach. Such advances include the revised International Health Regulations (IHR 2005) and the use of new data sources and methods to improve global coverage, sensitivity, and timeliness, which show promise for providing capabilities to extend and complement the existing infrastructure. One example is syndromic surveillance, using nontraditional and often automated data sources. Over the past 20 years, other initiatives, including ProMED-mail, GPHIN, and HealthMap, have demonstrated new mechanisms for acquiring surveillance data. In 2009 the U.S. Agency for International Development (USAID) began the Emerging Pandemic Threats (EPT) program, which includes the PREDICT project, to build global capacity for surveillance of novel infections that have pandemic potential (originating in wildlife and at the animal-human interface) and to develop a framework for risk assessment. Improved understanding of factors driving infectious disease emergence and new technological capabilities in modeling, diagnostics and pathogen identification, and communications, such as using the increasing global coverage of cellphones for public health surveillance, can further enhance global surveillance.

  3. The 5As: A practical taxonomy for the determinants of vaccine uptake.

    PubMed

    Thomson, Angus; Robinson, Karis; Vallée-Tourangeau, Gaëlle

    2016-02-17

    Suboptimal vaccine uptake in both childhood and adult immunisation programs limits their full potential impact on global health. A recent progress review of the Global Vaccine Action Plan stated that "countries should urgently identify barriers and bottlenecks and implement targeted approaches to increase and sustain coverage". However, vaccination coverage may be determined by a complex mix of demographic, structural, social and behavioral factors. To develop a practical taxonomy to organise the myriad possible root causes of a gap in vaccination coverage rates, we performed a narrative review of the literature and tested whether all non-socio-demographic determinants of coverage could be organised into 4 dimensions: Access, Affordability, Awareness and Acceptance. Forty-three studies were reviewed, from which we identified 23 primary determinants of vaccination uptake. We identified a fifth domain, Activation, which captured interventions such as SMS reminders which effectively nudge people towards getting vaccinated. The 5As taxonomy captured all identified determinants of vaccine uptake. This intuitive taxonomy has already facilitated mutual understanding of the primary determinants of suboptimal coverage within inter-sectorial working groups, a first step towards them developing targeted and effective solutions. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  4. Using temporal ICA to selectively remove global noise while preserving global signal in functional MRI data.

    PubMed

    Glasser, Matthew F; Coalson, Timothy S; Bijsterbosch, Janine D; Harrison, Samuel J; Harms, Michael P; Anticevic, Alan; Van Essen, David C; Smith, Stephen M

    2018-06-02

    Temporal fluctuations in functional Magnetic Resonance Imaging (fMRI) have been profitably used to study brain activity and connectivity for over two decades. Unfortunately, fMRI data also contain structured temporal "noise" from a variety of sources, including subject motion, subject physiology, and the MRI equipment. Recently, methods have been developed to automatically and selectively remove spatially specific structured noise from fMRI data using spatial Independent Components Analysis (ICA) and machine learning classifiers. Spatial ICA is particularly effective at removing spatially specific structured noise from high temporal and spatial resolution fMRI data of the type acquired by the Human Connectome Project and similar studies. However, spatial ICA is mathematically, by design, unable to separate spatially widespread "global" structured noise from fMRI data (e.g., blood flow modulations from subject respiration). No methods currently exist to selectively and completely remove global structured noise while retaining the global signal from neural activity. This has left the field in a quandary-to do or not to do global signal regression-given that both choices have substantial downsides. Here we show that temporal ICA can selectively segregate and remove global structured noise while retaining global neural signal in both task-based and resting state fMRI data. We compare the results before and after temporal ICA cleanup to those from global signal regression and show that temporal ICA cleanup removes the global positive biases caused by global physiological noise without inducing the network-specific negative biases of global signal regression. We believe that temporal ICA cleanup provides a "best of both worlds" solution to the global signal and global noise dilemma and that temporal ICA itself unlocks interesting neurobiological insights from fMRI data. Copyright © 2018 Elsevier Inc. All rights reserved.

  5. [Correlationships between the coverage of vegetation and the quality of groundwater in the lower reaches of the Tarim River].

    PubMed

    Chen, Yong-jin; Chen, Ya-ning; Liu, Jia-zhen

    2010-03-01

    The variations vegetation coverage is the result of conjunct effects of inner and outer energy of the earth, however, the human activity always makes the coverage of vegetation change a lot. Based on the monitoring data of chemistry of groundwater and the coverage of vegetation from 2002 to 2007 in the lower reaches of Tarim River, relations between vegetation coverage and groundwater chemistry were studied. It is found that vegetation coverage at Sector A was more than 80%, and decreased from sector to sector, the coverage of Sector I was less than 10%. At the same sector, samples near to water source owned high coverage index, and samples far away from the river had low coverage index. The variations of pH in groundwater expressed similar regulation to vegetation coverage, that is, Sectors near the water source had higher pH index comparing than those far away. Regression between groundwater quality and vegetation coverage disclosed that the coverage of Populus euphratica climbed up along with increase of pH in groundwater, change of Tamarix ramosissima coverage expressed an opposite trend to the Populus euphratica with the same environmental factors. This phenomenon can interpret spatial distribution of Populus euphratica and Tamarix ramosissima in lower reaches of the Tarim River.

  6. Usability and Interoperability Improvements for an EASE-Grid 2.0 Passive Microwave Data Product Using CF Conventions

    NASA Astrophysics Data System (ADS)

    Hardman, M.; Brodzik, M. J.; Long, D. G.

    2017-12-01

    Beginning in 1978, the satellite passive microwave data record has been a mainstay of remote sensing of the cryosphere, providing twice-daily, near-global spatial coverage for monitoring changes in hydrologic and cryospheric parameters that include precipitation, soil moisture, surface water, vegetation, snow water equivalent, sea ice concentration and sea ice motion. Historical versions of the gridded passive microwave data sets were produced as flat binary files described in human-readable documentation. This format is error-prone and makes it difficult to reliably include all processing and provenance. Funded by NASA MEaSUREs, we have completely reprocessed the gridded data record that includes SMMR, SSM/I-SSMIS and AMSR-E. The new Calibrated Enhanced-Resolution Brightness Temperature (CETB) Earth System Data Record (ESDR) files are self-describing. Our approach to the new data set was to create netCDF4 files that use standard metadata conventions and best practices to incorporate file-level, machine- and human-readable contents, geolocation, processing and provenance metadata. We followed the flexible and adaptable Climate and Forecast (CF-1.6) Conventions with respect to their coordinate conventions and map projection parameters. Additionally, we made use of Attribute Conventions for Dataset Discovery (ACDD-1.3) that provided file-level conventions with spatio-temporal bounds that enable indexing software to search for coverage. Our CETB files also include temporal coverage and spatial resolution in the file-level metadata for human-readability. We made use of the JPL CF/ACDD Compliance Checker to guide this work. We tested our file format with real software, for example, netCDF Command-line Operators (NCO) power tools for unlimited control on spatio-temporal subsetting and concatenation of files. The GDAL tools understand the CF metadata and produce fully-compliant geotiff files from our data. ArcMap can then reproject the geotiff files on-the-fly and work with other geolocated data such as coastlines, with no special work required. We expect this combination of standards and well-tested interoperability to significantly improve the usability of this important ESDR for the Earth Science community.

  7. Hierarchical spatial models of abundance and occurrence from imperfect survey data

    USGS Publications Warehouse

    Royle, J. Andrew; Kery, M.; Gautier, R.; Schmid, Hans

    2007-01-01

    Many estimation and inference problems arising from large-scale animal surveys are focused on developing an understanding of patterns in abundance or occurrence of a species based on spatially referenced count data. One fundamental challenge, then, is that it is generally not feasible to completely enumerate ('census') all individuals present in each sample unit. This observation bias may consist of several components, including spatial coverage bias (not all individuals in the Population are exposed to sampling) and detection bias (exposed individuals may go undetected). Thus, observations are biased for the state variable (abundance, occupancy) that is the object of inference. Moreover, data are often sparse for most observation locations, requiring consideration of methods for spatially aggregating or otherwise combining sparse data among sample units. The development of methods that unify spatial statistical models with models accommodating non-detection is necessary to resolve important spatial inference problems based on animal survey data. In this paper, we develop a novel hierarchical spatial model for estimation of abundance and occurrence from survey data wherein detection is imperfect. Our application is focused on spatial inference problems in the Swiss Survey of Common Breeding Birds. The observation model for the survey data is specified conditional on the unknown quadrat population size, N(s). We augment the observation model with a spatial process model for N(s), describing the spatial variation in abundance of the species. The model includes explicit sources of variation in habitat structure (forest, elevation) and latent variation in the form of a correlated spatial process. This provides a model-based framework for combining the spatially referenced samples while at the same time yielding a unified treatment of estimation problems involving both abundance and occurrence. We provide a Bayesian framework for analysis and prediction based on the integrated likelihood, and we use the model to obtain estimates of abundance and occurrence maps for the European Jay (Garrulus glandarius), a widespread, elusive, forest bird. The naive national abundance estimate ignoring imperfect detection and incomplete quadrat coverage was 77 766 territories. Accounting for imperfect detection added approximately 18 000 territories, and adjusting for coverage bias added another 131 000 territories to yield a fully corrected estimate of the national total of about 227 000 territories. This is approximately three times as high as previous estimates that assume every territory is detected in each quadrat.

  8. TES/Aura L3 Ammonia (NH3) Daily V3 (TL3NH3D)

    Atmospheric Science Data Center

    2018-03-14

    ... TES Aura L1B Nadir Spatial Coverage:  5.3 x 8.5 km Spatial Resolution:  0.5 x 5 km ... Guide Documents:  Data User's Guide (PDF):  Level 3 Level 3 Algorithms, Requirements, & Products (PDF) ...

  9. Tide Corrections for Coastal Altimetry: Status and Prospects

    NASA Technical Reports Server (NTRS)

    Ray, Richard D.; Egbert, Gary D.

    2008-01-01

    Knowledge of global oceanic tides has markedly advanced over the last two decades, in no small part because of the near-global measurements provided by satellite altimeters, and especially the long and precise Topex/Poseidon time series e.g. [2]. Satellite altimetry in turn places very severe demands on the accuracy of tidal models. The reason is clear: tides are by far the largest contributor to the variance of sea-surface elevation, so any study of non-tidal ocean signals requires removal of this dominant tidal component. Efforts toward improving models for altimetric tide corrections have understandably focused on deep-water, open-ocean regions. These efforts have produced models thought to be generally accurate to about 2 cm rms. Corresponding tide predictions in shelf and near-coastal regions, however, are far less accurate. This paper discusses the status of our current abilities to provide near-global tidal predictions in shelf and near-coastal waters, highlights some of the difficulties that must be overcome, and attempts to divine a path toward some degree of progress. There are, of course, many groups worldwide who model tides over fairly localized shallow-water regions, and such work is extremely valuable for any altimeter study limited to those regions, but this paper considers the more global models necessary for the general user. There have indeed been efforts to patch local and global models together, but such work is difficult to maintain over many updates and can often encounter problems of proprietary or political nature. Such a path, however, might yet prove the most fruitful, and there are now new plans afoot to try again. As is well known, tides in shallow waters tend to be large, possibly nonlinear, and high wavenumber. The short spatial scales mean that current mapping capabilities with (multiple) nadir-oriented altimeters often yield inadequate coverage. This necessitates added reliance on numerical hydrodynamic models and data assimilation, which in turn necessitates very accurate bathymetry with high spatial resolution. Nonlinearity means that many additional compound tides and overtides must be accounted for in our predictions, which increases the degree of modeling effort and increases the amounts of data required to disentangle closely aliased tides.

  10. Dynamical Downscaling over Siberia: Is there an added value in representing recent climate conditions?

    NASA Astrophysics Data System (ADS)

    Klehmet, K.; Rockel, B.

    2012-04-01

    The analysis of long-term changes and variability of climate variables for the large areal extent of Siberia - covering arctic, subarctic and temperate northern latitudes - is hampered by the sparseness of in-situ observations. To counteract this deficiency we aimed to provide a reconstruction of regional climate for the period 1948-2010 getting homogenous, consistent fields of various terrestrial and atmospheric parameters for Siberia. In order to obtain in addition a higher temporal and spatial resolution than global datasets can provide, we performed the reconstruction using the regional climate model COSMO-CLM (climate mode of the limited area model COSMO developed by the German weather service). However, the question arises whether the dynamically downscaled data of reanalysis can improve the representation of recent climate conditions. As global forcing for the initialization and the regional boundaries we use NCEP-1 Reanalysis of the National Centers for Environmental Prediction since it has the longest temporal data coverage among the reanalysis products. Additionally, spectral nudging is applied to prevent the regional model from deviating from the prescribed large-scale circulation within the whole simulation domain. The area of interest covers a region in Siberia, spanning from the Laptev Sea and Kara Sea to Northern Mongolia and from the West Siberian Lowland to the border of Sea of Okhotsk. The current horizontal resolution is of about 50 km which is planned to be increased to 25 km. To answer the question, we investigate spatial and temporal characteristics of temperature and precipitation of the model output in comparison to global reanalysis data (NCEP-1, ERA40, ERA-Interim). As reference Russian station data from the "Global Summary of the Day" data set, provided by NCDC, is used. Temperature is analyzed with respect to its climatologically spatial patterns across the model domain and its variability of extremes based on climate indices derived from daily mean, maximum, minimum temperature (e.g. frost days) for different subregions. The decreasing number of frost days from north to south of the region, calculated from the reanalysis datasets and COSMO-CLM output, indicates the temperature gradient from the arctic to temperate latitudes. For most of the considered subregions NCEP-1 shows more frost days than ERA-Interim and COSMO-CLM.

  11. Local to Global Scale Time Series Analysis of US Dryland Degradation Using Landsat, AVHRR, and MODIS

    NASA Astrophysics Data System (ADS)

    Washington-Allen, R. A.; Ramsey, R. D.; West, N. E.; Kulawardhana, W.; Reeves, M. C.; Mitchell, J. E.; Van Niel, T. G.

    2011-12-01

    Drylands cover 41% of the terrestrial land surface and annually generate $1 trillion in ecosystem goods and services for 38% of the global population, yet estimates of the global extent of Dryland degradation is uncertain with a range of 10 - 80%. It is currently understood that Drylands exhibit topological complexity including self-organization of parameters of different levels-of-organization, e.g., ecosystem and landscape parameters such as soil and vegetation pattern and structure, that gradually or discontinuously shift to multiple basins of attraction in response to herbivory, fire, and climatic drivers at multiple spatial and temporal scales. Our research has shown that at large geographic scales, contemporaneous time series of 10 to 20 years for response and driving variables across two or more spatial scales is required to replicate and differentiate between the impact of climate and land use activities such as commercial grazing. For example, the Pacific Decadal Oscillation (PDO) is a major driver of Dryland net primary productivity (NPP), biodiversity, and ecological resilience with a 10-year return interval, thus 20 years of data are required to replicate its impact. Degradation is defined here as a change in physiognomic composition contrary to management goals, a persistent reduction in vegetation response, e.g., NPP, accelerated soil erosion, a decline in soil quality, and changes in landscape configuration and structure that lead to a loss of ecosystem function. Freely available Landsat, Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradimeter (MODIS) archives of satellite imagery exist that provide local to global spatial coverage and time series between 1972 to the present from which proxies of land degradation can be derived. This paper presents time series assessments between 1972 and 2011 of US Dryland degradation including early detection of dynamic regime shifts in the Mojave and landscape pattern and erosion state changes in the Intermountain region in response to the "Great North American Drought" in 1988, PDO and El Niño Southern Oscillation (ENSO) and commercial grazing. Additionally, we will show the discoveries in the last 10-years that US Drylands are "greening" despite the severe Southwestern drought and that commercial livestock are a driver of this response with an annual appropriation of some 58% of NPP.

  12. The pre-Argo ocean reanalyses may be seriously affected by the spatial coverage of moored buoys

    PubMed Central

    Sivareddy, S.; Paul, Arya; Sluka, Travis; Ravichandran, M.; Kalnay, Eugenia

    2017-01-01

    Assimilation methods, meant to constrain divergence of model trajectory from reality using observations, do not exactly satisfy the physical laws governing the model state variables. This allows mismatches in the analysis in the vicinity of observation locations where the effect of assimilation is most prominent. These mismatches are usually mitigated either by the model dynamics in between the analysis cycles and/or by assimilation at the next analysis cycle. However, if the observations coverage is limited in space, as it was in the ocean before the Argo era, these mechanisms may be insufficient to dampen the mismatches, which we call shocks, and they may remain and grow. Here we show through controlled experiments, using real and simulated observations in two different ocean models and assimilation systems, that such shocks are generated in the ocean at the lateral boundaries of the moored buoy network. They thrive and propagate westward as Rossby waves along these boundaries. However, these shocks are essentially eliminated by the assimilation of near-homogenous global Argo distribution. These findings question the fidelity of ocean reanalysis products in the pre-Argo era. For example, a reanalysis that ignores Argo floats and assimilates only moored buoys, wrongly represents 2008 as a negative Indian Ocean Dipole year. PMID:28429748

  13. Continuously amplified warming in the Alaskan Arctic: Implications for estimating global warming hiatus: SPATIAL COVERAGE AND BIAS IN TREND

    DOE PAGES

    Wang, Kang; Zhang, Tingjun; Zhang, Xiangdong; ...

    2017-09-13

    Historically, in-situ measurements have been notoriously sparse over the Arctic. As a consequence, the existing gridded data of Surface Air Temperature (SAT) may have large biases in estimating the warming trend in this region. Using data from an expanded monitoring network with 31 stations in the Alaskan Arctic, we demonstrate that the SAT has increased by 2.19 °C in this region, or at a rate of 0.23 °C/decade during 1921-2015. Mean- while, we found that the SAT warmed at 0.71 °C/decade over 1998-2015, which is two to three times faster than the rate established from the gridded datasets. Focusing onmore » the "hiatus" period 1998-2012 as identied by the Intergovernmental Panel on Climate Change (IPCC) report, the SAT has increased at 0.45 °C/decade, which captures more than 90% of the regional trend for 1951- 2012. We suggest that sparse in-situ measurements are responsible for underestimation of the SAT change in the gridded datasets. It is likely that enhanced climate warming may also have happened in the other regions of the Arctic since the late 1990s but left undetected because of incomplete observational coverage.« less

  14. Assessing the impacts of assimilating IASI and MOPITT CO retrievals using CESM-CAM-chem and DART

    NASA Astrophysics Data System (ADS)

    Barré, Jérôme; Gaubert, Benjamin; Arellano, Avelino F. J.; Worden, Helen M.; Edwards, David P.; Deeter, Merritt N.; Anderson, Jeffrey L.; Raeder, Kevin; Collins, Nancy; Tilmes, Simone; Francis, Gene; Clerbaux, Cathy; Emmons, Louisa K.; Pfister, Gabriele G.; Coheur, Pierre-François; Hurtmans, Daniel

    2015-10-01

    We show the results and evaluation with independent measurements from assimilating both MOPITT (Measurements Of Pollution In The Troposphere) and IASI (Infrared Atmospheric Sounding Interferometer) retrieved profiles into the Community Earth System Model (CESM). We used the Data Assimilation Research Testbed ensemble Kalman filter technique, with the full atmospheric chemistry CESM component Community Atmospheric Model with Chemistry. We first discuss the methodology and evaluation of the current data assimilation system with coupled meteorology and chemistry data assimilation. The different capabilities of MOPITT and IASI retrievals are highlighted, with particular attention to instrument vertical sensitivity and coverage and how these impact the analyses. MOPITT and IASI CO retrievals mostly constrain the CO fields close to the main anthropogenic, biogenic, and biomass burning CO sources. In the case of IASI CO assimilation, we also observe constraints on CO far from the sources. During the simulation time period (June and July 2008), CO assimilation of both instruments strongly improves the atmospheric CO state as compared to independent observations, with the higher spatial coverage of IASI providing better results on the global scale. However, the enhanced sensitivity of multispectral MOPITT observations to near surface CO over the main source regions provides synergistic effects at regional scales.

  15. Continuously amplified warming in the Alaskan Arctic: Implications for estimating global warming hiatus: SPATIAL COVERAGE AND BIAS IN TREND

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Kang; Zhang, Tingjun; Zhang, Xiangdong

    Historically, in-situ measurements have been notoriously sparse over the Arctic. As a consequence, the existing gridded data of Surface Air Temperature (SAT) may have large biases in estimating the warming trend in this region. Using data from an expanded monitoring network with 31 stations in the Alaskan Arctic, we demonstrate that the SAT has increased by 2.19 °C in this region, or at a rate of 0.23 °C/decade during 1921-2015. Mean- while, we found that the SAT warmed at 0.71 °C/decade over 1998-2015, which is two to three times faster than the rate established from the gridded datasets. Focusing onmore » the "hiatus" period 1998-2012 as identied by the Intergovernmental Panel on Climate Change (IPCC) report, the SAT has increased at 0.45 °C/decade, which captures more than 90% of the regional trend for 1951- 2012. We suggest that sparse in-situ measurements are responsible for underestimation of the SAT change in the gridded datasets. It is likely that enhanced climate warming may also have happened in the other regions of the Arctic since the late 1990s but left undetected because of incomplete observational coverage.« less

  16. Assessing Coverage of Population-Based and Targeted Fortification Programs with the Use of the Fortification Assessment Coverage Toolkit (FACT): Background, Toolkit Development, and Supplement Overview.

    PubMed

    Friesen, Valerie M; Aaron, Grant J; Myatt, Mark; Neufeld, Lynnette M

    2017-05-01

    Food fortification is a widely used approach to increase micronutrient intake in the diet. High coverage is essential for achieving impact. Data on coverage is limited in many countries, and tools to assess coverage of fortification programs have not been standardized. In 2013, the Global Alliance for Improved Nutrition developed the Fortification Assessment Coverage Toolkit (FACT) to carry out coverage assessments in both population-based (i.e., staple foods and/or condiments) and targeted (e.g., infant and young child) fortification programs. The toolkit was designed to generate evidence on program coverage and the use of fortified foods to provide timely and programmatically relevant information for decision making. This supplement presents results from FACT surveys that assessed the coverage of population-based and targeted food fortification programs across 14 countries. It then discusses the policy and program implications of the findings for the potential for impact and program improvement.

  17. Spatial Structure of Above-Ground Biomass Limits Accuracy of Carbon Mapping in Rainforest but Large Scale Forest Inventories Can Help to Overcome.

    PubMed

    Guitet, Stéphane; Hérault, Bruno; Molto, Quentin; Brunaux, Olivier; Couteron, Pierre

    2015-01-01

    Precise mapping of above-ground biomass (AGB) is a major challenge for the success of REDD+ processes in tropical rainforest. The usual mapping methods are based on two hypotheses: a large and long-ranged spatial autocorrelation and a strong environment influence at the regional scale. However, there are no studies of the spatial structure of AGB at the landscapes scale to support these assumptions. We studied spatial variation in AGB at various scales using two large forest inventories conducted in French Guiana. The dataset comprised 2507 plots (0.4 to 0.5 ha) of undisturbed rainforest distributed over the whole region. After checking the uncertainties of estimates obtained from these data, we used half of the dataset to develop explicit predictive models including spatial and environmental effects and tested the accuracy of the resulting maps according to their resolution using the rest of the data. Forest inventories provided accurate AGB estimates at the plot scale, for a mean of 325 Mg.ha-1. They revealed high local variability combined with a weak autocorrelation up to distances of no more than10 km. Environmental variables accounted for a minor part of spatial variation. Accuracy of the best model including spatial effects was 90 Mg.ha-1 at plot scale but coarse graining up to 2-km resolution allowed mapping AGB with accuracy lower than 50 Mg.ha-1. Whatever the resolution, no agreement was found with available pan-tropical reference maps at all resolutions. We concluded that the combined weak autocorrelation and weak environmental effect limit AGB maps accuracy in rainforest, and that a trade-off has to be found between spatial resolution and effective accuracy until adequate "wall-to-wall" remote sensing signals provide reliable AGB predictions. Waiting for this, using large forest inventories with low sampling rate (<0.5%) may be an efficient way to increase the global coverage of AGB maps with acceptable accuracy at kilometric resolution.

  18. Added-values of high spatiotemporal remote sensing data in crop yield estimation

    NASA Astrophysics Data System (ADS)

    Gao, F.; Anderson, M. C.

    2017-12-01

    Timely and accurate estimation of crop yield before harvest is critical for food market and administrative planning. Remote sensing derived parameters have been used for estimating crop yield by using either empirical or crop growth models. The uses of remote sensing vegetation index (VI) in crop yield modeling have been typically evaluated at regional and country scales using coarse spatial resolution (a few hundred to kilo-meters) data or assessed over a small region at field level using moderate resolution spatial resolution data (10-100m). Both data sources have shown great potential in capturing spatial and temporal variability in crop yield. However, the added value of data with both high spatial and temporal resolution data has not been evaluated due to the lack of such data source with routine, global coverage. In recent years, more moderate resolution data have become freely available and data fusion approaches that combine data acquired from different spatial and temporal resolutions have been developed. These make the monitoring crop condition and estimating crop yield at field scale become possible. Here we investigate the added value of the high spatial and temporal VI for describing variability of crop yield. The explanatory ability of crop yield based on high spatial and temporal resolution remote sensing data was evaluated in a rain-fed agricultural area in the U.S. Corn Belt. Results show that the fused Landsat-MODIS (high spatial and temporal) VI explains yield variability better than single data source (Landsat or MODIS alone), with EVI2 performing slightly better than NDVI. The maximum VI describes yield variability better than cumulative VI. Even though VI is effective in explaining yield variability within season, the inter-annual variability is more complex and need additional information (e.g. weather, water use and management). Our findings augment the importance of high spatiotemporal remote sensing data and supports new moderate resolution satellite missions for agricultural applications.

  19. Potential impact of spatially targeted adult tuberculosis vaccine in Gujarat, India

    PubMed Central

    Chatterjee, Susmita; Rao, Krishna D.; Dowdy, David W.

    2016-01-01

    Some of the most promising vaccines in the pipeline for tuberculosis (TB) target adolescents and adults. Unlike for childhood vaccines, high-coverage population-wide vaccination is significantly more challenging for adult vaccines. Here, we aimed to estimate the impact of vaccine delivery strategies that were targeted to high-incidence geographical ‘hotspots’ compared with randomly allocated vaccination. We developed a spatially explicit mathematical model of TB transmission that distinguished these hotspots from the general population. We evaluated the impact of targeted and untargeted vaccine delivery strategies in India—a country that bears more than 25% of global TB burden, and may be a potential early adopter of the vaccine. We collected TB notification data and conducted a demonstration study in the state of Gujarat to validate our estimates of heterogeneity in TB incidence. We then projected the impact of randomly vaccinating 8% of adults in a single mass campaign to a spatially targeted vaccination preferentially delivered to 80% of adults in the hotspots, with both strategies augmented by continuous adolescent vaccination. In consultation with vaccine developers, we considered a vaccine efficacy of 60%, and evaluated the population-level impact after 10 years of vaccination. Spatial heterogeneity in TB notification (per 100 000/year) was modest in Gujarat: 190 in the hotspots versus 125 in the remaining population. At this level of heterogeneity, the spatially targeted vaccination was projected to reduce TB incidence by 28% after 10 years, compared with a 24% reduction projected to achieve via untargeted vaccination—a 1.17-fold augmentation in the impact of vaccination by spatially targeting. The degree of the augmentation was robust to reasonable variation in natural history assumptions, but depended strongly on the extent of spatial heterogeneity and mixing between the hotspot and general population. Identifying high-incidence hotspots and quantifying spatial mixing patterns are critical to accurate estimation of the value of targeted intervention strategies. PMID:27009179

  20. Regional to Global Biogenic Isoprene Emission Responses to Changes in Vegetation From 2000 to 2015

    NASA Astrophysics Data System (ADS)

    Chen, W. H.; Guenther, A. B.; Wang, X. M.; Chen, Y. H.; Gu, D. S.; Chang, M.; Zhou, S. Z.; Wu, L. L.; Zhang, Y. Q.

    2018-04-01

    Isoprene, a dominant biogenic volatile organic compound that is mainly emitted by trees, has a significant impact on the atmospheric chemistry. Regional to global changes in biogenic isoprene emission associated with vegetation variations between 2000 and 2015 were estimated using the MEGAN model with satellite land cover data for inputs in this study. The satellite data estimates of land cover changes were compared to results from previous investigators that have either conducted regional studies or have used lower resolution land cover data. The analysis indicates that tree coverage increases of >5% occurred in 13% of locations including in central China and Europe. In contrast, a decrease of >5% was observed in about 5% of locations, especially in tropical regions. The trends in global tree coverage from 2000 to 2015 resulted in a global isoprene emission decrease of only 1.5%, but there were significant regional variations. Obvious decreases in tree coverage in some tropical areas (e.g., Amazon Basin, Western Africa, Southeast Asia) resulted in a 10% reduction of regional isoprene emission due to agricultural expansion. Distinct increments of isoprene emission (5-10%) were mainly found in Northeast China and India and were associated with afforestation efforts. Deforestation and afforestation associated with managed plantations does not only affect the total forest coverage but also impacts average isoprene emission capacity, which can result in accelerated isoprene emission variations. Consequently, isoprene variation assessments are needed that not only account for changes in vegetation fractions but also consider the changes in plant species compositions of forests and other landscapes.

  1. Universal Health Coverage - The Critical Importance of Global Solidarity and Good Governance Comment on "Ethical Perspective: Five Unacceptable Trade-offs on the Path to Universal Health Coverage".

    PubMed

    Reis, Andreas A

    2016-06-07

    This article provides a commentary to Ole Norheim' s editorial entitled "Ethical perspective: Five unacceptable trade-offs on the path to universal health coverage." It reinforces its message that an inclusive, participatory process is essential for ethical decision-making and underlines the crucial importance of good governance in setting fair priorities in healthcare. Solidarity on both national and international levels is needed to make progress towards the goal of universal health coverage (UHC). © 2016 by Kerman University of Medical Sciences.

  2. Monitoring Ocean CO2 Fluxes from Space: GOSAT and OCO-2

    NASA Technical Reports Server (NTRS)

    Crisp, David

    2012-01-01

    The ocean is a major component of the global carbon cycle, emitting over 330 billion tons of carbon dioxide (CO2) into the atmosphere each year, or about 10 times that emitted fossil fuel combustion and all other human activities [1, 2]. The ocean reabsorbs a comparable amount of CO2 each year, along with 25% of the CO2 emitted by these human activities. The nature and geographic distribution of the processes controlling these ocean CO2 fluxes are still poorly constrained by observations. A better understanding of these processes is essential to predict how this important CO2 sink may evolve as the climate changes.While in situ measurements of ocean CO2 fluxes can be very precise, the sampling density is far too sparse to quantify ocean CO2 sources and sinks over much of the globe. One way to improve the spatial resolution, coverage, and sampling frequency is to make observations of the column averaged CO2 dry air mole fraction, XCO2, from space [4, 5, 6]. Such measurements could provide global coverage at high resolution (< 100 km) on monthly time scales. High precision (< 1 part per million, ppm) is essential to resolve the small, near-surface CO2 variations associated with ocean fluxes and to better constrain the CO2 transport over the ocean. The Japanese Greenhouse gases Observing Satellite (GOSAT) and the NASA Orbiting Carbon Observatory (OCO) were first two space based sensors designed specifically for this task. GOSAT was successfully launched on January 23, 2009, and has been returning measurements of XCO2 since April 2009. The OCO mission was lost in February 2009, when its launch vehicle malfunctioned and failed to reach orbit. In early 2010, NASA authorized a re-flight of OCO, called OCO-2, which is currently under development.

  3. Total Ozone from the Ozone Monitoring System (OMI) using TOMS and DOAS Methods

    NASA Technical Reports Server (NTRS)

    Veefkind, J. P.; Bhartia, P. K.; Gleason, J.; deHaan, J. F.; Wellemeyer, C.; Levelt, P. F.

    2003-01-01

    The Ozone Monitoring Instrument (OMI) is the Dutch-Finnish contribution to NASA's EOS-Aura satellite scheduled for launch in January 2004. OMI is an imaging spectrometer that will measure the back-scattered Solar radiance in the wavelength range of 270 to 500 nm. The instrument provides near global coverage in one day with a spatial resolution of 13x24 square kilometers. OMI is a new instrument, with a heritage from TOMS, SBW, GOME, GOMOS and SCIAMACHY. OMI'S unique capabilities for measuring important trace gases and aerosols with a small footprint and daily global coverage, in conjunction with the other Aura instruments, will make a major contribution to our understanding of stratospheric and tropospheric chemistry and climate change. OMI will provide data continuity with the 23-year ozone record of TOMS. There are three ozone products planned for OMI: total column ozone, ozone profile and tropospheric column ozone. We are developing two different algorithms for total column ozone: one similar to the algorithm currently being used to process the TOMS data, and the other an improved version of the differential optical absorption spectroscopy (DOAS) method, which has been applied to GOME and SCIAMACHY data. The main reasons for starting with two algorithms for total ozone have to do with heritage and past experience; our long-term goal is to combine the two to develop a more accurate and reliable total ozone product for OMI. We will compare the performance of these two algorithms by applying both of them to the GOME data. We will examine where and how the results differ, and use the extensive TOMS-Dobson comparison studies to assess the performance of the DOAS algorithm.

  4. A Harmonized Landsat-Sentinel-2 Surface Reflectance product: a resource for Agricultural Monitoring

    NASA Astrophysics Data System (ADS)

    Masek, J. G.; Claverie, M.; Ju, J.; Vermote, E.; Justice, C. O.

    2015-12-01

    The combination of Landsat and Sentinel-2 data offers a unique opportunity to observe globally the land every 2-3 days at medium (<30m) spatial resolution. The Harmonized Landsat-Sentinel-2 (HLS) project is a NASA initiative aiming to produce surface reflectance data from Landsat and Sentinel-2 missions and to deliver them to the community in a combined, seamless form. The HLS will be beneficial for global agricultural monitoring applications that require medium spatial resolution and weekly or more frequent observations. In particular, the provided opportunity to track crop phenology at the scale of individual fields will support detailed mapping of crop type and type-specific vegetation conditions. To create a compatible set of radiometric measurements, the HLS product relies on rigorous pre- and post-launch cross-calibration (Landsat-8 OLI and Sentinel-2 MSI) activities. The processing chain includes the following components: atmospheric correction, cloud/shadow masking, nadir BRDF-adjustment, spectral-adjustment, regridding, and temporal composite. The atmospheric correction and cloud masking is based on the OLI atmospheric correction developed at NASA-GSFC and has been adapted to the MSI data. The BRDF-adjustment is based on a disaggregation technique using MODIS-based BRDF coefficients. The technique has been evaluated using the multi-angular acquisition from the SPOT 4 and 5 (Take5) experiments. The spectral-adjustment relies on a linear regression that has been calibrated and evaluated using synthetic data and surface reflectance processed from a large number of hyperspectral EO-1 Hyperion scenes. Finally, significant effort is placed on product validation and evaluation. The delivered data set will include surface reflectance products at different levels: Using the native gridding, i.e. UTM, 30m for Landsat-8, and UTM, 10-20m for Sentinel-2 Using a common global gridding (Sinusoidal, 30m) Temporal composite (Sinusoidal, 30m, 5-day) During the first year of operation of Sentinel-2A, the HLS will be prototyped over a selection of 30 sites that includes some of the JECAM sites, Aeronet sites and Cal/Val sites. Then, the HLS spatial coverage will be increased as more Sentinel-2A data become available.

  5. Analysis on Temporal-Spatial Changes of Vegetation Cverrge in Farming-Pastoral Ecotone of Inner Mongolia

    NASA Astrophysics Data System (ADS)

    Yan, X.; Li, J.; Yang, Z.

    2018-04-01

    Chen Barag Banner is located in the typical farming-pastoral ecotone of Inner Mongolia, and it is also the core area of Hulunbuir steppe. Typical agricultural and pastoral staggered production mode so that the vegetation growth of the region not only determines the local ecological environment, and animal husbandry production, but also have a significant impact on the whole Hulunbuir ecological security and economic development. Therefore, it is necessary to monitor the change of vegetation in this area. Based on 17 MODIS Normalized Difference Vegetation Index (NDVI) images, the authors reconstructed the dynamic change characteristics of Fraction vegetation coverage (FVC) in Chen Barag Banner from 2000 to 2016. In this paper, first at all, Pixel Decomposition Models was introduced to inversion FVC, and the time series of vegetation coverage was reconstructed. Then we analyzed the temporal-spatial changes of FVC by employing transition matrix. Finally, through image analyzing and processing, the results showed that the vegetation coverage in the study area was influenced by effectors including climate, topography and human actives. In the past 17 years, the overall effect of vegetation coverage showed a downward trend of fluctuation. The average vegetation coverage decreased from 58.81 % in 2000 to 48.14 % in 2016, and the area of vegetation cover degradation accounts for 40.09 % of the total change area. Therefore, the overall degradation trend was obvious.

  6. Greedy Sparse Approaches for Homological Coverage in Location Unaware Sensor Networks

    DTIC Science & Technology

    2017-12-08

    GlobalSIP); 2013 Dec; Austin , TX . p. 595– 598. 33. Farah C, Schwaner F, Abedi A, Worboys M. Distributed homology algorithm to detect topological events...ARL-TR-8235•DEC 2017 US Army Research Laboratory Greedy Sparse Approaches for Homological Coverage in Location-Unaware Sensor Net- works by Terrence...8235•DEC 2017 US Army Research Laboratory Greedy Sparse Approaches for Homological Coverage in Location-Unaware Sensor Net- works by Terrence J Moore

  7. Seeking consensus on universal health coverage indicators in the sustainable development goals.

    PubMed

    Reddock, Jennifer

    2017-01-01

    There is optimism that the inclusion of universal health coverage in the Sustainable Development Goals advances its prominence in global and national health policy. However, formulating indicators for Target 3.8 through the Inter-Agency Expert Group on Sustainable Development Indicators has been challenging. Achieving consensus on the conceptual and methodological aspects of universal health coverage is likely to take some time in multi-stakeholder fora compared with national efforts to select indicators.

  8. Multiscale Drivers of Global Environmental Health

    NASA Astrophysics Data System (ADS)

    Desai, Manish Anil

    In this dissertation, I motivate, develop, and demonstrate three such approaches for investigating multiscale drivers of global environmental health: (1) a metric for analyzing contributions and responses to climate change from global to sectoral scales, (2) a framework for unraveling the influence of environmental change on infectious diseases at regional to local scales, and (3) a model for informing the design and evaluation of clean cooking interventions at community to household scales. The full utility of climate debt as an analytical perspective will remain untapped without tools that can be manipulated by a wide range of analysts, including global environmental health researchers. Chapter 2 explains how international natural debt (IND) apportions global radiative forcing from fossil fuel carbon dioxide and methane, the two most significant climate altering pollutants, to individual entities -- primarily countries but also subnational states and economic sectors, with even finer scales possible -- as a function of unique trajectories of historical emissions, taking into account the quite different radiative efficiencies and atmospheric lifetimes of each pollutant. Owing to its straightforward and transparent derivation, IND can readily operationalize climate debt to consider issues of equity and efficiency and drive scenario exercises that explore the response to climate change at multiple scales. Collectively, the analyses presented in this chapter demonstrate how IND can inform a range of key question on climate change mitigation at multiple scales, compelling environmental health towards an appraisal of the causes and not just the consequences of climate change. The environmental change and infectious disease (EnvID) conceptual framework of Chapter 3 builds on a rich history of prior efforts in epidemiologic theory, environmental science, and mathematical modeling by: (1) articulating a flexible and logical system specification; (2) incorporating transmission groupings linked to public health intervention strategies; (3) emphasizing the intersection of proximal environmental characteristics and transmission cycles; (4) incorporating a matrix formulation to identify knowledge gaps and facilitate an integration of research; and (5) highlighting hypothesis generation amidst dynamic processes. A systems based approach leverages the reality that studies relevant to environmental change and infectious disease are embedded within a wider web of interactions. As scientific understanding advances, the EnvID framework can help integrate the various factors at play in determining environment-disease relationships and the connections between intrinsically multiscale causal networks. In Chapter 4, the coverage effect model functions primarily as a "proof of concept" analysis to address whether the efficacy of a clean cooking technology may be determined by the extent of not only household level use but also community level coverage. Such coverage dependent efficacy, or a "coverage effect," would transform how interventions are studied and deployed. Ensemble results are consistent with the concept that an appreciable coverage effect from clean cooking interventions can manifest within moderately dense communities. Benefits for users derive largely from direct effects; initially, at low coverage levels, almost exclusively so. Yet, as coverage expands within a user's community, a coverage effect becomes increasingly beneficial. In contrast, non users, despite also experiencing comparable exposure reductions from community-level intervention use, cannot proportionately benefit because their exposures remain overwhelmingly dominated by household-level use of traditional solid fuel cookstoves. The coverage effect model strengthens the rationale for public health programs and policies to encourage clean cooking technologies with an added incentive to realize high coverage within contiguous areas. The implications of the modeling exercise extend to priorities for data collection, underscoring the importance of outdoor pollution concentrations during, as well as before and/or after, community cooking windows and also routine measurement of ventilation, meteorology, time activity patterns, and cooking practices. The possibility of a coverage effect necessitates appropriate strategies to estimate not only direct effects but also coverage and total effects to avoid impaired conclusions. The specter of accelerating social and ecological change challenges efforts to respond to climate change, re/emerging infectious diseases, and household air pollution. Environmental health possesses a well-established and well-tested repertoire of methods but contending with multiscale drivers of risk requires complementary approaches, as well. Integrating metrics, frameworks, and models -- and their insights -- into its analytical arsenal can help global environmental health meet the challenges of today and tomorrow. (Abstract shortened by ProQuest.).

  9. Forecasted trends in vaccination coverage and correlations with socioeconomic factors: a global time-series analysis over 30 years.

    PubMed

    de Figueiredo, Alexandre; Johnston, Iain G; Smith, David M D; Agarwal, Sumeet; Larson, Heidi J; Jones, Nick S

    2016-10-01

    Incomplete immunisation coverage causes preventable illness and death in both developing and developed countries. Identification of factors that might modulate coverage could inform effective immunisation programmes and policies. We constructed a performance indicator that could quantitatively approximate measures of the susceptibility of immunisation programmes to coverage losses, with an aim to identify correlations between trends in vaccine coverage and socioeconomic factors. We undertook a data-driven time-series analysis to examine trends in coverage of diphtheria, tetanus, and pertussis (DTP) vaccination across 190 countries over the past 30 years. We grouped countries into six world regions according to WHO classifications. We used Gaussian process regression to forecast future coverage rates and provide a vaccine performance index: a summary measure of the strength of immunisation coverage in a country. Overall vaccine coverage increased in all six world regions between 1980 and 2010, with variation in volatility and trends. Our vaccine performance index identified that 53 countries had more than a 50% chance of missing the Global Vaccine Action Plan (GVAP) target of 90% worldwide coverage with three doses of DTP (DTP3) by 2015. These countries were mostly in sub-Saharan Africa and south Asia, but Austria and Ukraine also featured. Factors associated with DTP3 immunisation coverage varied by world region: personal income (Spearman's ρ=0·66, p=0·0011) and government health spending (0·66, p<0·0001) were informative of immunisation coverage in the Eastern Mediterranean between 1980 and 2010, whereas primary school completion was informative of coverage in Africa (0·56, p<0·0001) over the same period. The proportion of births attended by skilled health staff correlated significantly with immunisation coverage across many world regions. Our vaccine performance index highlighted countries at risk of failing to achieve the GVAP target of 90% coverage by 2015, and could aid policy makers' assessments of the strength and resilience of immunisation programmes. Weakening correlations with socioeconomic factors show a need to tackle vaccine confidence, whereas strengthening correlations point to clear factors to address. UK Engineering and Physical Sciences Research Council. Copyright © 2016 The Author(s). Published by Elsevier Ltd. This is an Open Access article under the CC BY license. Published by Elsevier Ltd.. All rights reserved.

  10. GLOBATO: An enhanced global relief model at 30 arc-seconds resolution

    NASA Astrophysics Data System (ADS)

    O'Leary, V.; Amante, C.

    2017-12-01

    The National Centers for Environmental Information (NCEI), an office of the National Oceanic and Atmospheric Administration (NOAA), first developed a digital bathymetric and elevation model, ETOPO5, from publicly available data in 1993. For nearly 25 years, NCEI's ETOPO family of global relief models have supported research at a planetary scale, including tsunami forecasting, ocean circulation modeling, visualization of the seafloor, understanding geological phenomena, and aiding the development of other global and regional elevation models. GLOBATO (GLObal BAThymetry and TOpography) is now the most detailed version released by NCEI with a horizontal resolution of 30 arc-seconds and succeeds ETOPO1 with the inclusion of several new or updated data-sets for the seafloor as well as land areas. GLOBATO is a compilation of data derived from models of satellite measurements, ship depth soundings, and multibeam surveys, as well as regional models developed for Greenland and Antarctica. These data were converted from different formats, resolutions, spatial distributions, and projections into a single global model using GDAL v2.2 and MB-System v5.5. As with previous NCEI models, GLOBATO is available in two formats, "bedrock elevation" (measured as the base of major ice sheets) and "ice surface elevation" (measured as the surface of major ice sheets) which provides comprehensive topographic and bathymetric coverage between +- 90 degrees latitude and +- 180 degrees longitude. Adhering to best practices, GLOBATO, all related digital products, and any supporting documentation are available online through the NCEI data portal. These new, high resolution models will better support the variety of research ETOPO1 has made possible.

  11. Spatial Coverage Planning for a Planetary Rover

    NASA Technical Reports Server (NTRS)

    Gaines, Daniel M.; Estlin, Tara; Chouinard, Caroline

    2008-01-01

    We are developing onboard planning and execution technologies to support the exploration and characterization of geological features by autonomous rovers. In order to generate high quality mission plans, an autonomous rover must reason about the relative importance of the observations it can perform. In this paper we look at the scientific criteria of selecting observations that improve the quality of the area covered by samples. Our approach makes use of a priori information, if available, and allows scientists to mark sub-regions of the area with relative priorities for exploration. We use an efficient algorithm for prioritizing observations based on spatial coverage that allows the system to update observation rankings as new information is gained during execution.

  12. Measuring Progress Toward Universal Health Coverage: Does the Monitoring Framework of Bangladesh Need Further Improvement?

    PubMed Central

    Shahabuddin, ASM

    2018-01-01

    This review aimed to compare Bangladesh’s Universal Health Coverage (UHC) monitoring framework with the global-level recommendations and to find out the existing gaps of Bangladesh’s UHC monitoring framework compared to the global recommendations. In order to reach the aims of the review, we systematically searched two electronic databases - PubMed and Google Scholar - by using appropriate keywords to select articles that describe issues related to UHC and the monitoring framework of UHC applied globally and particularly in Bangladesh. Four relevant documents were found and synthesized. The review found that Bangladesh incorporated all of the recommendations suggested by the global monitoring framework regarding mentoring the financial risk protection and equity perspective. However, a significant gap in the monitoring framework related to service coverage was observed. Although Bangladesh has a significant burden of mental illnesses, cataract, and neglected tropical diseases, indicators related to these issues were absent in Bangladesh’s UHC framework. Moreover, palliative-care-related indicators were completely missing in the framework. The results of this review suggest that Bangladesh should incorporate these indicators in their UHC monitoring framework in order to track the progress of the country toward UHC more efficiently and in a robust way. PMID:29541562

  13. Determinants of antiretroviral therapy coverage in Sub-Saharan Africa

    PubMed Central

    Hoque, Mohammad Zahirul

    2015-01-01

    Among 35 million people living with the human immunodeficiency virus (HIV) in 2013, only 37% had access to antiretroviral therapy (ART). Despite global concerted efforts to provide the universal access to the ART treatment, the ART coverage varies among countries and regions. At present, there is a lack of systematic empirical analyses on factors that determine the ART coverage. Therefore, the current study aimed to identify the determinants of the ART coverage in 41 countries in Sub-Saharan Africa. It employed statistical analyses for this purpose. Four elements, namely, the HIV prevalence, the level of national income, the level of medical expenditure and the number of nurses, were hypothesised to determine the ART coverage. The findings revealed that among the four proposed determinants only the HIV prevalence had a statistically significant impact on the ART coverage. In other words, the HIV prevalence was the sole determinant of the ART coverage in Sub-Saharan Africa. PMID:26664812

  14. Global threshold dynamics of an SIVS model with waning vaccine-induced immunity and nonlinear incidence.

    PubMed

    Yang, Junyuan; Martcheva, Maia; Wang, Lin

    2015-10-01

    Vaccination is the most effective method of preventing the spread of infectious diseases. For many diseases, vaccine-induced immunity is not life long and the duration of immunity is not always fixed. In this paper, we propose an SIVS model taking the waning of vaccine-induced immunity and general nonlinear incidence into consideration. Our analysis shows that the model exhibits global threshold dynamics in the sense that if the basic reproduction number is less than 1, then the disease-free equilibrium is globally asymptotically stable implying the disease dies out; while if the basic reproduction number is larger than 1, then the endemic equilibrium is globally asymptotically stable indicating that the disease persists. This global threshold result indicates that if the vaccination coverage rate is below a critical value, then the disease always persists and only if the vaccination coverage rate is above the critical value, the disease can be eradicated. Copyright © 2015 Elsevier Inc. All rights reserved.

  15. Geology of the Icy Galilean Satellites: Understanding Crustal Processes and Geologic Histories Through the JIMO Mission

    NASA Technical Reports Server (NTRS)

    Figueredo, P. H.; Tanaka, K.; Senske, D.; Greeley, R.

    2003-01-01

    Knowledge of the geology, style and time history of crustal processes on the icy Galilean satellites is necessary to understanding how these bodies formed and evolved. Data from the Galileo mission have provided a basis for detailed geologic and geo- physical analysis. Due to constrained downlink, Galileo Solid State Imaging (SSI) data consisted of global coverage at a -1 km/pixel ground sampling and representative, widely spaced regional maps at -200 m/pixel. These two data sets provide a general means to extrapolate units identified at higher resolution to lower resolution data. A sampling of key sites at much higher resolution (10s of m/pixel) allows evaluation of processes on local scales. We are currently producing the first global geological map of Europa using Galileo global and regional-scale data. This work is demonstrating the necessity and utility of planet-wide contiguous image coverage at global, regional, and local scales.

  16. New 4.4 km-resolution aerosol product from NASA's Multi-angle Imaging SpectroRadiometer: A user's guide

    NASA Astrophysics Data System (ADS)

    Nastan, A.; Garay, M. J.; Witek, M. L.; Seidel, F.; Bull, M. A.; Kahn, R. A.; Diner, D. J.

    2017-12-01

    The NASA Multi-angle Imaging SpectroRadiometer (MISR) instrument on NASA's Terra satellite has provided an 18-year-and-growing aerosol data record. MISR's V22 aerosol product has been used extensively in studies of regional and global climate and the health effects of particulate air pollution. The MISR team recently released a new version of this product (V23), which increases the spatial resolution from 17.6 km to 4.4 km, improves performance versus AERONET, and provides better spatial coverage, more accurate cloud screening, and improved radiometric conditioning relative to V22. The product formatting was also completely revamped to improve clarity and usability. Established and prospective users of the MISR aerosol product are invited to learn about the features and performance of the new product and to participate in one-on-one demonstrations of how to obtain, visualize, and analyze the new product. Because the aerosol product is used in generating atmospherically-corrected surface bidirectional reflectance factors, improvements in MISR's 1.1 km resolution land surface product are a by-product of the updated aerosol retrievals. Illustrative comparisons of the V22 and V23 aerosol and surface products will be shown.

  17. Mapping Planetary Volcanic Deposits: Identifying Vents and Distinguishing between Effects of Eruption Conditions and Local Storage and Release on Flow Field Morphology

    NASA Technical Reports Server (NTRS)

    Bleacher, J. E.; Eppler, D. B.; Skinner, J. A.; Evans, C. A.; Feng, W.; Gruener, J. E.; Hurwitz, D. M.; Whitson, P.; Janoiko, B.

    2014-01-01

    Terrestrial geologic mapping techniques are regularly used for "photogeologic" mapping of other planets, but these approaches are complicated by the diverse type, areal coverage, and spatial resolution of available data sets. When available, spatially-limited in-situ human and/or robotic surface observations can sometimes introduce a level of detail that is difficult to integrate with regional or global interpretations. To assess best practices for utilizing observations acquired from orbit and on the surface, our team conducted a comparative study of geologic mapping and interpretation techniques. We compared maps generated for the same area in the San Francisco Volcanic Field (SFVF) in northern Arizona using 1) data collected for reconnaissance before and during the 2010 Desert Research And Technology Studies campaign, and 2) during a traditional, terrestrial field geology study. The operations, related results, and direct mapping comparisons are discussed in companion LPSC abstracts. Here we present new geologic interpretations for a volcanic cone and related lava flows as derived from all approaches involved in this study. Mapping results indicate a need for caution when interpreting past eruption conditions on other planetary surfaces from orbital data alone.

  18. Mapping Planetary Volcanic Deposits: Identifying Vents and Distingushing between Effects of Eruption Conditions and Local Lava Storage and Release on Flow Field Morphology

    NASA Technical Reports Server (NTRS)

    Bleacher, J. E.; Eppler, D. B.; Skinner, J. A.; Evans, C. A.; Feng, W.; Gruener, J. E.; Hurwitz, D. M.; Whitson, P.; Janoiko, B.

    2014-01-01

    Terrestrial geologic mapping techniques are regularly used for "photogeologic" mapping of other planets, but these approaches are complicated by the diverse type, areal coverage, and spatial resolution of available data sets. When available, spatially-limited in-situ human and/or robotic surface observations can sometimes introduce a level of detail that is difficult to integrate with regional or global interpretations. To assess best practices for utilizing observations acquired from orbit and on the surface, our team conducted a comparative study of geologic mapping and interpretation techniques. We compared maps generated for the same area in the San Francisco Volcanic Field (SFVF) in northern Arizona using 1) data collected for reconnaissance before and during the 2010 Desert Research And Technology Studies campaign, and 2) during a traditional, terrestrial field geology study. The operations, related results, and direct mapping comparisons are discussed in companion LPSC abstracts [1-3]. Here we present new geologic interpretations for a volcanic cone and related lava flows as derived from all approaches involved in this study. Mapping results indicate a need for caution when interpreting past eruption conditions on other planetary surfaces from orbital data alone.

  19. Programming an Artificial Neural Network Tool for Spatial Interpolation in GIS - A Case Study for Indoor Radio Wave Propagation of WLAN.

    PubMed

    Sen, Alper; Gümüsay, M Umit; Kavas, Aktül; Bulucu, Umut

    2008-09-25

    Wireless communication networks offer subscribers the possibilities of free mobility and access to information anywhere at any time. Therefore, electromagnetic coverage calculations are important for wireless mobile communication systems, especially in Wireless Local Area Networks (WLANs). Before any propagation computation is performed, modeling of indoor radio wave propagation needs accurate geographical information in order to avoid the interruption of data transmissions. Geographic Information Systems (GIS) and spatial interpolation techniques are very efficient for performing indoor radio wave propagation modeling. This paper describes the spatial interpolation of electromagnetic field measurements using a feed-forward back-propagation neural network programmed as a tool in GIS. The accuracy of Artificial Neural Networks (ANN) and geostatistical Kriging were compared by adjusting procedures. The feedforward back-propagation ANN provides adequate accuracy for spatial interpolation, but the predictions of Kriging interpolation are more accurate than the selected ANN. The proposed GIS ensures indoor radio wave propagation model and electromagnetic coverage, the number, position and transmitter power of access points and electromagnetic radiation level. Pollution analysis in a given propagation environment was done and it was demonstrated that WLAN (2.4 GHz) electromagnetic coverage does not lead to any electromagnetic pollution due to the low power levels used. Example interpolated electromagnetic field values for WLAN system in a building of Yildiz Technical University, Turkey, were generated using the selected network architectures to illustrate the results with an ANN.

  20. Programming an Artificial Neural Network Tool for Spatial Interpolation in GIS - A Case Study for Indoor Radio Wave Propagation of WLAN

    PubMed Central

    Şen, Alper; Gümüşay, M. Ümit; Kavas, Aktül; Bulucu, Umut

    2008-01-01

    Wireless communication networks offer subscribers the possibilities of free mobility and access to information anywhere at any time. Therefore, electromagnetic coverage calculations are important for wireless mobile communication systems, especially in Wireless Local Area Networks (WLANs). Before any propagation computation is performed, modeling of indoor radio wave propagation needs accurate geographical information in order to avoid the interruption of data transmissions. Geographic Information Systems (GIS) and spatial interpolation techniques are very efficient for performing indoor radio wave propagation modeling. This paper describes the spatial interpolation of electromagnetic field measurements using a feed-forward back-propagation neural network programmed as a tool in GIS. The accuracy of Artificial Neural Networks (ANN) and geostatistical Kriging were compared by adjusting procedures. The feedforward back-propagation ANN provides adequate accuracy for spatial interpolation, but the predictions of Kriging interpolation are more accurate than the selected ANN. The proposed GIS ensures indoor radio wave propagation model and electromagnetic coverage, the number, position and transmitter power of access points and electromagnetic radiation level. Pollution analysis in a given propagation environment was done and it was demonstrated that WLAN (2.4 GHz) electromagnetic coverage does not lead to any electromagnetic pollution due to the low power levels used. Example interpolated electromagnetic field values for WLAN system in a building of Yildiz Technical University, Turkey, were generated using the selected network architectures to illustrate the results with an ANN. PMID:27873854

  1. Base flow calibration in a global hydrological model

    NASA Astrophysics Data System (ADS)

    van Beek, L. P.; Bierkens, M. F.

    2006-12-01

    Base flow constitutes an important water resource in many parts of the world. Its provenance and yield over time are governed by the storage capacity of local aquifers and the internal drainage paths, which are difficult to capture at the global scale. To represent the spatial and temporal variability in base flow adequately in a distributed global model at 0.5 degree resolution, we resorted to the conceptual model of aquifer storage of Kraaijenhoff- van de Leur (1958) that yields the reservoir coefficient for a linear groundwater store. This model was parameterised using global information on drainage density, climatology and lithology. Initial estimates of aquifer thickness, permeability and specific porosity from literature were linked to the latter two categories and calibrated to low flow data by means of simulated annealing so as to conserve the ordinal information contained by them. The observations used stem from the RivDis dataset of monthly discharge. From this dataset 324 stations were selected with at least 10 years of observations in the period 1958-1991 and an areal coverage of at least 10 cells of 0.5 degree. The dataset was split between basins into a calibration and validation set whilst preserving a representative distribution of lithology types and climate zones. Optimisation involved minimising the absolute differences between the simulated base flow and the lowest 10% of the observed monthly discharge. Subsequently, the reliability of the calibrated parameters was tested by reversing the calibration and validation sets.

  2. Global Precipitation Measurement. Report 7; Bridging from TRMM to GPM to 3-Hourly Precipitation Estimates

    NASA Technical Reports Server (NTRS)

    Shepherd, J. Marshall; Smith, Eric A.; Adams, W. James (Editor)

    2002-01-01

    Historically, multi-decadal measurements of precipitation from surface-based rain gauges have been available over continents. However oceans remained largely unobserved prior to the beginning of the satellite era. Only after the launch of the first Defense Meteorological Satellite Program (DMSP) satellite in 1987 carrying a well-calibrated and multi-frequency passive microwave radiometer called Special Sensor Microwave/Imager (SSM/I) have systematic and accurate precipitation measurements over oceans become available on a regular basis; see Smith et al. (1994, 1998). Recognizing that satellite-based data are a foremost tool for measuring precipitation, NASA initiated a new research program to measure precipitation from space under its Mission to Planet Earth program in the 1990s. As a result, the Tropical Rainfall Measuring Mission (TRMM), a collaborative mission between NASA and NASDA, was launched in 1997 to measure tropical and subtropical rain. See Simpson et al. (1996) and Kummerow et al. (2000). Motivated by the success of TRMM, and recognizing the need for more comprehensive global precipitation measurements, NASA and NASDA have now planned a new mission, i.e., the Global Precipitation Measurement (GPM) mission. The primary goal of GPM is to extend TRMM's rainfall time series while making substantial improvements in precipitation observations, specifically in terms of measurement accuracy, sampling frequency, Earth coverage, and spatial resolution. This report addresses four fundamental questions related to the transition from current to future global precipitation observations as denoted by the TRMM and GPM eras, respectively.

  3. Environmental Risk Factors for the Incidence of American Cutaneous Leishmaniasis in a Sub-Andean Zone of Colombia (Chaparral, Tolima)

    PubMed Central

    Valderrama-Ardila, Carlos; Alexander, Neal; Ferro, Cristina; Cadena, Horacio; Marín, Dairo; Holford, Theodore R.; Munstermann, Leonard E.; Ocampo, Clara B.

    2010-01-01

    Environmental risk factors for cutaneous leishmaniasis were investigated for the largest outbreak recorded in Colombia. The outbreak began in 2003 in Chaparral, and in the following five years produced 2,313 cases in a population of 56,228. Candidate predictor variables were land use, elevation, and climatic variables such as mean temperature and precipitation. Spatial analysis showed that incidence of cutaneous leishmaniasis was higher in townships with mean temperatures in the middle of the county's range. Incidence was independently associated with higher coverage with forest or shrubs (2.6% greater for each additional percent coverage, 95% credible interval [CI] = 0.5–4.9%), and lower population density (22% lower for each additional 100 persons/km2, 95% CI = 7–41%). The extent of forest or shrub coverage did not show major changes over time. These findings confirmed the roles of climate and land use in leishmaniasis transmission. However, environmental variables were not sufficient to explain the spatial variation in incidence. PMID:20134000

  4. Estimating Global Impervious Surface based on Social-economic Data and Satellite Observations

    NASA Astrophysics Data System (ADS)

    Zeng, Z.; Zhang, K.; Xue, X.; Hong, Y.

    2016-12-01

    Impervious surface areas around the globe are expanding and significantly altering the surface energy balance, hydrology cycle and ecosystem services. Many studies have underlined the importance of impervious surface, r from hydrological modeling to contaminant transport monitoring and urban development estimation. Therefore accurate estimation of the global impervious surface is important for both physical and social sciences. Given the limited coverage of high spatial resolution imagery and ground survey, using satellite remote sensing and geospatial data to estimate global impervious areas is a practical approach. Based on the previous work of area-weighted imperviousness for north branch of the Chicago River provided by HDR, this study developed a method to determine the percentage of impervious surface using latest global land cover categories from multi-source satellite observations, population density and gross domestic product (GDP) data. Percent impervious surface at 30-meter resolution were mapped. We found that 1.33% of the CONUS (105,814 km2) and 0.475% of the land surface (640,370km2) are impervious surfaces. To test the utility and practicality of the proposed method, National Land Cover Database (NLCD) 2011 percent developed imperviousness for the conterminous United States was used to evaluate our results. The average difference between the derived imperviousness from our method and the NLCD data across CONUS is 1.14%, while difference between our results and the NLCD data are within ±1% over 81.63% of the CONUS. The distribution of global impervious surface map indicates that impervious surfaces are primarily concentrated in China, India, Japan, USA and Europe where are highly populated and/or developed. This study proposes a straightforward way of mapping global imperviousness, which can provide useful information for hydrologic modeling and other applications.

  5. Exploring earthquake databases for the creation of magnitude-homogeneous catalogues: tools for application on a regional and global scale

    NASA Astrophysics Data System (ADS)

    Weatherill, G. A.; Pagani, M.; Garcia, J.

    2016-09-01

    The creation of a magnitude-homogenized catalogue is often one of the most fundamental steps in seismic hazard analysis. The process of homogenizing multiple catalogues of earthquakes into a single unified catalogue typically requires careful appraisal of available bulletins, identification of common events within multiple bulletins and the development and application of empirical models to convert from each catalogue's native scale into the required target. The database of the International Seismological Center (ISC) provides the most exhaustive compilation of records from local bulletins, in addition to its reviewed global bulletin. New open-source tools are developed that can utilize this, or any other compiled database, to explore the relations between earthquake solutions provided by different recording networks, and to build and apply empirical models in order to harmonize magnitude scales for the purpose of creating magnitude-homogeneous earthquake catalogues. These tools are described and their application illustrated in two different contexts. The first is a simple application in the Sub-Saharan Africa region where the spatial coverage and magnitude scales for different local recording networks are compared, and their relation to global magnitude scales explored. In the second application the tools are used on a global scale for the purpose of creating an extended magnitude-homogeneous global earthquake catalogue. Several existing high-quality earthquake databases, such as the ISC-GEM and the ISC Reviewed Bulletins, are harmonized into moment magnitude to form a catalogue of more than 562 840 events. This extended catalogue, while not an appropriate substitute for a locally calibrated analysis, can help in studying global patterns in seismicity and hazard, and is therefore released with the accompanying software.

  6. Progress Towards a Global Understanding of Plankton Dynamics: The Global Alliance of CPR Surveys (GACS)

    NASA Astrophysics Data System (ADS)

    Batten, S.; Richardson, A.; Melrose, C.; Muxagata, E.; Hosie, G.; Verheye, H.; Hall, J.; Edwards, M.; Koubbi, P.; Abu-Alhaija, R.; Chiba, S.; Wilson, W.; Nagappa, R.; Takahashi, K.

    2016-02-01

    The Continuous Plankton Recorder (CPR) was first used in 1931 to routinely sample plankton and its continued deployment now sustains the longest-running, and spatially most extensive marine biological sampling programme in the world. Towed behind, for the most part commercial, ships it collects plankton samples from the surface waters that are subsequently analysed to provide taxonomically-resolved abundance data on a broad range of planktonic organisms from the size of coccolithophores to euphausiids. Plankton appear to integrate changes in the physical environment and by underpinning most marine food-webs, pass on this variability to higher trophic levels which have societal value. CPRs are deployed increasingly around the globe in discrete regional surveys that until recently interacted in an informal way. In 2011 the Global Alliance of CPR Surveys (GACS) was launched to bring these surveys together to collaborate more productively and address issues such as: methodological standardization, data integration, capacity building, and data analysis. Early products include a combined global database and regularly-released global marine ecological status reports. There are, of course, limitations to the exploitation of CPR data as well as the current geographic coverage. A current focus of GACS is integration of the data with models to meaningfully extrapolate across time and space. In this way the output could be used to provide more robust synoptic representations of key plankton variables. Recent years have also seen the CPR used as a platform in itself with the inclusion of additional sensors and water samplers that can sample the microplankton. The archive of samples has already been used for some molecular investigations and curation of samples is maintained for future studies. Thus the CPR is a key element of any regional to global ocean observing system of biodiversity.

  7. Global-local visual biases correspond with visual-spatial orientation.

    PubMed

    Basso, Michael R; Lowery, Natasha

    2004-02-01

    Within the past decade, numerous investigations have demonstrated reliable associations of global-local visual processing biases with right and left hemisphere function, respectively (cf. Van Kleeck, 1989). Yet the relevance of these biases to other cognitive functions is not well understood. Towards this end, the present research examined the relationship between global-local visual biases and perception of visual-spatial orientation. Twenty-six women and 23 men completed a global-local judgment task (Kimchi and Palmer, 1982) and the Judgment of Line Orientation Test (JLO; Benton, Sivan, Hamsher, Varney, and Spreen, 1994), a measure of visual-spatial orientation. As expected, men had better performance on JLO. Extending previous findings, global biases were related to better visual-spatial acuity on JLO. The findings suggest that global-local biases and visual-spatial orientation may share underlying cerebral mechanisms. Implications of these findings for other visually mediated cognitive outcomes are discussed.

  8. Coniferous coverage as well as catchment steepness influences local stream nitrate concentrations within a nitrogen-saturated forest in central Japan.

    PubMed

    Watanabe, Mirai; Miura, Shingo; Hasegawa, Shun; Koshikawa, Masami K; Takamatsu, Takejiro; Kohzu, Ayato; Imai, Akio; Hayashi, Seiji

    2018-04-28

    High concentrations of nitrate have been detected in streams flowing from nitrogen-saturated forests; however, the spatial variations of nitrate leaching within those forests and its causes remain poorly explored. The aim of this study is to evaluate the influences of catchment topography and coniferous coverage on stream nitrate concentrations in a nitrogen-saturated forest. We measured nitrate concentrations in the baseflow of headwater streams at 40 montane forest catchments on Mount Tsukuba in central Japan, at three-month intervals for 1 year, and investigated their relationship with catchment topography and with coniferous coverage. Although stream nitrate concentrations varied from 0.5 to 3.0 mgN L -1 , those in 31 catchments consistently exceeded 1 mgN L -1 , indicating that this forest had experienced nitrogen saturation. A classification and regression tree analysis with multiple environmental factors showed that the mean slope gradient and coniferous coverage were the best and second best, respectively, at explaining inter-catchment variance of stream nitrate concentrations. This analysis suggested that the catchments with steep topography and high coniferous coverage tend to have high nitrate concentrations. Moreover, in the three-year observation period for five adjacent catchments, the two catchments with relatively higher coniferous coverage consistently had higher stream nitrate concentrations. Thus, the spatial variations in stream nitrate concentrations were primarily regulated by catchment steepness and, to a lesser extent, coniferous coverage in this nitrogen-saturated forest. Our results suggest that a decrease in coniferous coverage could potentially contribute to a reduction in nitrate leaching from this nitrogen-saturated forest, and consequently reduce the risk of nitrogen overload for the downstream ecosystems. This information will allow land managers and researchers to develop improved management plans for this and similar forests in Japan and elsewhere. Copyright © 2018 Elsevier B.V. All rights reserved.

  9. Quantifying Globalization in Social Work Research: A 10-Year Review of American Social Work Journals

    ERIC Educational Resources Information Center

    Agbényiga, DeBrenna L.; Huang, Lihua

    2014-01-01

    Measured by the prevalence of journal article contributions, geographic coverage, and international collaboration, this literature review found an increasing level of globalization with respect to American social work research and contribution to the social work profession from 2000-2009. Findings suggest changes are needed in global awareness and…

  10. Self-enforcing regional vaccination agreements

    PubMed Central

    Klepac, Petra; Grenfell, Bryan T.; Laxminarayan, Ramanan

    2016-01-01

    In a highly interconnected world, immunizing infections are a transboundary problem, and their control and elimination require international cooperation and coordination. In the absence of a global or regional body that can impose a universal vaccination strategy, each individual country sets its own strategy. Mobility of populations across borders can promote free-riding, because a country can benefit from the vaccination efforts of its neighbours, which can result in vaccination coverage lower than the global optimum. Here we explore whether voluntary coalitions that reward countries that join by cooperatively increasing vaccination coverage can solve this problem. We use dynamic epidemiological models embedded in a game-theoretic framework in order to identify conditions in which coalitions are self-enforcing and therefore stable, and thus successful at promoting a cooperative vaccination strategy. We find that countries can achieve significantly greater vaccination coverage at a lower cost by forming coalitions than when acting independently, provided a coalition has the tools to deter free-riding. Furthermore, when economically or epidemiologically asymmetric countries form coalitions, realized coverage is regionally more consistent than in the absence of coalitions. PMID:26790996

  11. Estimating Carbon Storage and Sequestration by Urban Trees at Multiple Spatial Resolutions

    NASA Astrophysics Data System (ADS)

    Wu, J.; Tran, A.; Liao, A.

    2010-12-01

    Urban forests are an important component of urban-suburban environments. Urban trees provide not only a full range of social and psychological benefits to city dwellers, but also valuable ecosystem services to communities, such as removing atmospheric carbon dioxide, improving air quality, and reducing storm water runoff. There is an urgent need for developing strategic conservation plans for environmentally sustainable urban-suburban development based on the scientific understanding of the extent and function of urban forests. However, several challenges remain to accurately quantify various environmental benefits provided by urban trees, among which is to deal with the effect of changing spatial resolution and/or scale. In this study, we intended to examine the uncertainties of carbon storage and sequestration associated with the tree canopy coverage of different spatial resolutions. Multi-source satellite imagery data were acquired for the City of Fullerton, located in Orange County of California. The tree canopy coverage of the study area was classified at three spatial resolutions, ranging from 30 m (Landsat-5 Thematic Mapper), 15 m (Advanced Spaceborne Thermal Emission and Reflection Radiometer), to 2.5 m (QuickBird). We calculated the amount of carbon stored in the trees represented on the individual tree coverage maps and the annual carbon taken up by the trees with a model (i.e., CITYgreen) developed by the U.S. Forest Service. The results indicate that urban trees account for significant proportions of land cover in the study area even with the low spatial resolution data. The estimated carbon fixation benefits vary greatly depending on the details of land use and land cover classification. The extrapolation of estimation from the fine-resolution stand-level to the low-resolution landscape-scale will likely not preserve reasonable accuracy.

  12. Universal Health Coverage – The Critical Importance of Global Solidarity and Good Governance

    PubMed Central

    Reis, Andreas A.

    2016-01-01

    This article provides a commentary to Ole Norheim’ s editorial entitled "Ethical perspective: Five unacceptable trade-offs on the path to universal health coverage." It reinforces its message that an inclusive, participatory process is essential for ethical decision-making and underlines the crucial importance of good governance in setting fair priorities in healthcare. Solidarity on both national and international levels is needed to make progress towards the goal of universal health coverage (UHC). PMID:27694683

  13. The Gradual Expansion Muscle Flap

    DTIC Science & Technology

    2014-01-01

    acute shortening and angulation of the tibia and rotational muscle flap coverage and split thickness skin grafting of the soft tissue defect...is also amenable to split-thickness skin grafting after tissue incorporation.11 In addition to donor site morbidity, free tissue transfer is dependent...necessary soft tissue coverage. In the second stage, after the flap has adequately set and overlying skin graft has full adherence, a Taylor Spatial

  14. Geographical Inequalities in Use of Improved Drinking Water Supply and Sanitation across Sub-Saharan Africa: Mapping and Spatial Analysis of Cross-sectional Survey Data

    PubMed Central

    Pullan, Rachel L.; Freeman, Matthew C.; Gething, Peter W.; Brooker, Simon J.

    2014-01-01

    Background Understanding geographic inequalities in coverage of drinking-water supply and sanitation (WSS) will help track progress towards universal coverage of water and sanitation by identifying marginalized populations, thus helping to control a large number of infectious diseases. This paper uses household survey data to develop comprehensive maps of WSS coverage at high spatial resolution for sub-Saharan Africa (SSA). Analysis is extended to investigate geographic heterogeneity and relative geographic inequality within countries. Methods and Findings Cluster-level data on household reported use of improved drinking-water supply, sanitation, and open defecation were abstracted from 138 national surveys undertaken from 1991–2012 in 41 countries. Spatially explicit logistic regression models were developed and fitted within a Bayesian framework, and used to predict coverage at the second administrative level (admin2, e.g., district) across SSA for 2012. Results reveal substantial geographical inequalities in predicted use of water and sanitation that exceed urban-rural disparities. The average range in coverage seen between admin2 within countries was 55% for improved drinking water, 54% for use of improved sanitation, and 59% for dependence upon open defecation. There was also some evidence that countries with higher levels of inequality relative to coverage in use of an improved drinking-water source also experienced higher levels of inequality in use of improved sanitation (rural populations r = 0.47, p = 0.002; urban populations r = 0.39, p = 0.01). Results are limited by the quantity of WSS data available, which varies considerably by country, and by the reliability and utility of available indicators. Conclusions This study identifies important geographic inequalities in use of WSS previously hidden within national statistics, confirming the necessity for targeted policies and metrics that reach the most marginalized populations. The presented maps and analysis approach can provide a mechanism for monitoring future reductions in inequality within countries, reflecting priorities of the post-2015 development agenda. Please see later in the article for the Editors' Summary PMID:24714528

  15. Geographical inequalities in use of improved drinking water supply and sanitation across Sub-Saharan Africa: mapping and spatial analysis of cross-sectional survey data.

    PubMed

    Pullan, Rachel L; Freeman, Matthew C; Gething, Peter W; Brooker, Simon J

    2014-04-01

    Understanding geographic inequalities in coverage of drinking-water supply and sanitation (WSS) will help track progress towards universal coverage of water and sanitation by identifying marginalized populations, thus helping to control a large number of infectious diseases. This paper uses household survey data to develop comprehensive maps of WSS coverage at high spatial resolution for sub-Saharan Africa (SSA). Analysis is extended to investigate geographic heterogeneity and relative geographic inequality within countries. Cluster-level data on household reported use of improved drinking-water supply, sanitation, and open defecation were abstracted from 138 national surveys undertaken from 1991-2012 in 41 countries. Spatially explicit logistic regression models were developed and fitted within a Bayesian framework, and used to predict coverage at the second administrative level (admin2, e.g., district) across SSA for 2012. Results reveal substantial geographical inequalities in predicted use of water and sanitation that exceed urban-rural disparities. The average range in coverage seen between admin2 within countries was 55% for improved drinking water, 54% for use of improved sanitation, and 59% for dependence upon open defecation. There was also some evidence that countries with higher levels of inequality relative to coverage in use of an improved drinking-water source also experienced higher levels of inequality in use of improved sanitation (rural populations r = 0.47, p = 0.002; urban populations r = 0.39, p = 0.01). Results are limited by the quantity of WSS data available, which varies considerably by country, and by the reliability and utility of available indicators. This study identifies important geographic inequalities in use of WSS previously hidden within national statistics, confirming the necessity for targeted policies and metrics that reach the most marginalized populations. The presented maps and analysis approach can provide a mechanism for monitoring future reductions in inequality within countries, reflecting priorities of the post-2015 development agenda. Please see later in the article for the Editors' Summary.

  16. Maritime User Requirements at High Latitudes - the MARENOR Project

    NASA Astrophysics Data System (ADS)

    Behlke, R.

    2014-12-01

    The ionosphere at high latitudes is characterised by a great variety of spatial and temporal variations that influence radio signals. In addition to navigation solutions that are based on Global Navigation Satellite Systems (GNSS), satellite communication systems also suffer from ionospheric degradation. This is worsened by harsh weather conditions, insufficient coverage by geostationary satellites and the absence of land-based augmentation infrastructure. Climate change will lead to a decrease in sea ice extent and thus to an increased use of trans-polar shipping routes, presence of gas and oil industries in the High Arctic and higher focus on Search-and-Rescue (SAR) as well as sovereignty issues. These moments usually require navigation and communication solutions that are accurate and reliable. We describe requirements presented by industrial operators on and around Svalbard. In addition, we present the MARENOR project that aims on evaluating navigation and communication systems at high latitudes including first results

  17. The Jupiter ONERA Electron (JOE) and Jupiter ONERA Proton (JOP) specification models

    NASA Astrophysics Data System (ADS)

    Bourdarie, S.; Sicard-Piet, A.

    2008-09-01

    The use of recent improvement in the understanding of the Jovian radiation belt structure has allowed to develop a more accurate engineering model of the Jovian electron and proton radiation belts. The basic idea was to combine the results of the Salammbô code when available (for proton and electron species) with the Divine and Garret model 1983 and/or with GIRE. The advantage of such an approach was that the resulting model is global in term of spatial and energy coverage, is optimised inside Europa orbit (the Divine and Garret model is not accurate inside Io orbit due to poor in-situ data there - note that inside Io is the region where ionizing radiation fluxes are maximum) and take advantage of the two models. The resulting JOE-JOP models will be presented, pro and cons will be listed and commented. Finally future plans to upgrade these models will be given.

  18. Local cooling and warming effects of forests based on satellite observations.

    PubMed

    Li, Yan; Zhao, Maosheng; Motesharrei, Safa; Mu, Qiaozhen; Kalnay, Eugenia; Li, Shuangcheng

    2015-03-31

    The biophysical effects of forests on climate have been extensively studied with climate models. However, models cannot accurately reproduce local climate effects due to their coarse spatial resolution and uncertainties, and field observations are valuable but often insufficient due to their limited coverage. Here we present new evidence acquired from global satellite data to analyse the biophysical effects of forests on local climate. Results show that tropical forests have a strong cooling effect throughout the year; temperate forests show moderate cooling in summer and moderate warming in winter with net cooling annually; and boreal forests have strong warming in winter and moderate cooling in summer with net warming annually. The spatiotemporal cooling or warming effects are mainly driven by the two competing biophysical effects, evapotranspiration and albedo, which in turn are strongly influenced by rainfall and snow. Implications of our satellite-based study could be useful for informing local forestry policies.

  19. Hydrologic Conditions Viewed by the Nimbus Meteorological Satellites

    NASA Technical Reports Server (NTRS)

    Rabchevsky, G. A.

    1971-01-01

    The unexploited value of the Nimbus meteorological sensor data relates to the satellites' ability for global, temporal, repetitive and uniform tonal and spatial coverage of the earth's surface. Examples are presented illustrating how synoptic views of large areas increase interpretive capability and enable focusing on large targets of interest. The effect of resolution of the Nimbus imaging systems on these observations is discussed, together with the assessment of the areal and temporal magnitude of changes observed by these systems. Two case studies are presented exemplifying the satellites' ability for repetitive observations enabling phenomena to be monitored under special conditions. One study deals with changes observed in the Antarctic ice conditions utilizing the Nimbus 2 and 3 television picture data. The other study deals with terrestrial changes in the Mississippi River Valley and the Niger River Valley (Africa), observed primarily in the 0.7 to 1.3 micron spectral band.

  20. Local cooling and warming effects of forests based on satellite observations

    PubMed Central

    Li, Yan; Zhao, Maosheng; Motesharrei, Safa; Mu, Qiaozhen; Kalnay, Eugenia; Li, Shuangcheng

    2015-01-01

    The biophysical effects of forests on climate have been extensively studied with climate models. However, models cannot accurately reproduce local climate effects due to their coarse spatial resolution and uncertainties, and field observations are valuable but often insufficient due to their limited coverage. Here we present new evidence acquired from global satellite data to analyse the biophysical effects of forests on local climate. Results show that tropical forests have a strong cooling effect throughout the year; temperate forests show moderate cooling in summer and moderate warming in winter with net cooling annually; and boreal forests have strong warming in winter and moderate cooling in summer with net warming annually. The spatiotemporal cooling or warming effects are mainly driven by the two competing biophysical effects, evapotranspiration and albedo, which in turn are strongly influenced by rainfall and snow. Implications of our satellite-based study could be useful for informing local forestry policies. PMID:25824529

  1. KSC-05PD-0554

    NASA Technical Reports Server (NTRS)

    2005-01-01

    KENNEDY SPACE CENTER, FLA. At the Cape Canaveral Air Force Station Skid Strip, workers inside a Russian Antonov AH-124-100 cargo airplane roll out the booster segment for a Lockheed Martin Atlas V. The Atlas V, designated AV-007, is the launch vehicle for the Mars Reconnaissance Orbiter (MRO). The MRO is designed for a series of global mapping, regional survey and targeted observations from a near-polar, low-altitude Mars orbit. These observations will be unprecedented in terms of the spatial resolution and coverage achieved by the orbiters instruments as they observe the atmosphere and surface of Mars while probing its shallow subsurface as part of a follow the water strategy. The orbiter is undergoing environmental tests in facilities at Lockheed Martin Space Systems in Denver, Colo., and is on schedule for a launch window that begins Aug. 10. Launch will be from Launch Pad 41 at Cape Canaveral Air Force Station in Florida.

  2. On the Reprocessing and Reanalysis of Observations for Climate

    NASA Technical Reports Server (NTRS)

    Bosilovich, Michael G.; Kennedy, John; Dee, Dick; ONeill, Alan

    2012-01-01

    The long observational record is critical to our understanding of the Earth s climate, but most observing systems were not developed with a climate objective in mind. As a result, tremendous efforts have gone into assessing and reprocessing the data records to improve their usefulness in climate studies. Many challenges remain, such as tracking the improvement of processing algorithms and limited spatial coverage. Reanalyses have fostered significant research, yet reliable global trends in many physical fields are not yet attainable, despite significant advances in data assimilation and numerical modeling. Communication of the strengths, limitations and uncertainties of reprocessed observations and reanalysis data, not only among the community of developers, but also with the extended research community, including the new generations of researchers and the decision makers is crucial for further advancement of the observational data records. WCRP provides the means to bridge the different motivating objectives on which national efforts focus.

  3. Compact Hyperspectral Mapper for Environmental Remote Sensing Applications (CHyMERA) End-of-phase Data Review Package

    NASA Technical Reports Server (NTRS)

    Janz, Scott J.; Hilsenrath, Ernest; Mount, George; Heath, Donald

    2000-01-01

    CHYMERA is an Instrument Incubator concept to design, build, and test an instrument that will reduce size, mass, and cost and increase science potential and flexibility for future atmospheric remote sensing missions within the focus of NASA's Earth Science Enterprise (ESE). The primary effort of the development plan will be on high spatial resolution ozone, N02, S02, aerosol, and cloud measurements, but it is hoped that the techniques developed will prove useful for other measurements as well. The core design will involve a high performance, wide field-of-view (FOV) front end telescope which will illuminate a filter/focal plane array (FFPA) package. The use of a non-dispersive optical configuration will reduce size, mass and complexity. The wide FOV optics will permit short duration global coverage (1-2 days) without the need for a scanner.

  4. Temporal and spatial analysis of vegetation coverage changes in Ordos area based on time series GIMMS-NDVI data

    NASA Astrophysics Data System (ADS)

    Han, Ruimei; Zou, Youfeng; Ma, Chao; Liu, Pei

    2014-11-01

    Ordos area is the desert-wind erosion desertification steppe transition zone and the complex ecological zone. As the research area, Ordos City has the similar natural geographic environment to ShenDong coalfield. To research its ecological patterns and natural evolution law, it has instructive to reveal temporal and spatial changes of ecological environment with artificial disturbance in western mining. In this paper, a time series of AVHRR-NDVI(Normalized Difference Vegetation Index) data was used to monitor the change of vegetation temporal and spatial dynamics from 1981 to 2006 in Ordos City and ShenDong coalfield, where were as the research area. The MVC (Maximum Value Composites) method, average operation, linear regression, and gradation for NDVI change trend were used to obtained some results, as follows: ¬vegetation coverage had obvious characteristics with periodic change in research area for 26 years, and vegetation growth peak appeared on August, while the lowest appeared on January. The extreme values in Ordos City were 0.2351 and 0.1176, while they were 0.2657 and 0.1272 in ShenDong coalfield. The NDVI value fluctuation was a modest rise trend overall in research area. The extreme values were 0.3071 and 0.1861 in Ordos City, while they were 0.3454 and 0.1904 in ShenDong coalfield. In spatial distribution, slight improvement area and slight degradation area were accounting for 42.49% and 8.37% in Ordos City, while slight improvement area moderate improvement area were accounting for 70.59% and 29.41% in ShenDong coalfield. Above of results indicated there was less vegetation coverage in research area, which reflected the characteristics of fragile natural geographical environment. In addition, vegetation coverage was with a modest rise on the whole, which reflected the natural environment change.

  5. Future opportunities and challenges in remote sensing of drought

    USGS Publications Warehouse

    Wardlow, Brian D.; Anderson, Martha C.; Sheffield, Justin; Doorn, Brad; Zhan, Xiwu; Rodell, Matt; Wardlow, Brian D.; Anderson, Martha C.; Verdin, James P.

    2012-01-01

    The value of satellite remote sensing for drought monitoring was first realized more than two decades ago with the application of Normalized Difference Index (NDVI) data from the Advanced Very High Resolution Radiometer (AVHRR) for assessing the effect of drought on vegetation. Other indices such as the Vegetation Health Index (VHI) were also developed during this time period, and applied to AVHRR NDVI and brightness temperature data for routine global monitoring of drought conditions. These early efforts demonstrated the unique perspective that global imagers such as AVHRR could provide for operational drought monitoring through their near-daily, global observations of Earth's land surface. However, the advancement of satellite remote sensing of drought was limited by the relatively few spectral bands of operational global sensors such as AVHRR, along with a relatively short period of observational record. Remote sensing advancements are of paramount importance given the increasing demand for tools that can provide accurate, timely, and integrated information on drought conditions to facilitate proactive decision making (NIDIS, 2007). Satellite-based approaches are key to addressing significant gaps in the spatial and temporal coverage of current surface station instrument networks providing key moisture observations (e.g., rainfall, snow, soil moisture, ground water, and ET) over the United States and globally (NIDIS, 2007). Improved monitoring capabilities will be particularly important given increases in spatial extent, intensity, and duration of drought events observed in some regions of the world, as reported in the International Panel on Climate Change (IPCC) report (IPCC, 2007). The risk of drought is anticipated to further increase in some regions in response to climatic changes in the hydrologic cycle related to evaporation, precipitation, air temperature, and snow cover (Burke et al., 2006; IPCC, 2007; USGCRP, 2009). Numerous national, regional, and global efforts such as the Famine and Early Warning System (FEWS), National Integrated Drought Information System (NIDIS), and Group on Earth Observations (GEO), as well as the establishment of regional drought centers (e.g., European Drought Observatory) and geospatial visualization and monitoring systems (e.g, NASA SERVIR) have been undertaken to improve drought monitoring and early warning systems throughout the world. The suite of innovative remote sensing tools that have recently emerged will be looked upon to fill important data and knowledge gaps (NIDIS, 2007; NRC, 2007) to address a wide range of drought-related issues including food security, water scarcity, and human health.

  6. Future Opportunities and Challenges in Remote Sensing of Drought

    NASA Technical Reports Server (NTRS)

    Wardlow, Brian D.; Anderson, Martha C.; Sheffield, Justin; Doorn, Brad; Zhan, Xiwu; Rodell, Matt

    2011-01-01

    The value of satellite remote sensing for drought monitoring was first realized more than two decades ago with the application of Normalized Difference Index (NDVI) data from the Advanced Very High Resolution Radiometer (AVHRR) for assessing the effect of drought on vegetation. Other indices such as the Vegetation Health Index (VHI) were also developed during this time period, and applied to AVHRR NDVI and brightness temperature data for routine global monitoring of drought conditions. These early efforts demonstrated the unique perspective that global imagers such as AVHRR could provide for operational drought monitoring through their near-daily, global observations of Earth's land surface. However, the advancement of satellite remote sensing of drought was limited by the relatively few spectral bands of operational global sensors such as AVHRR, along with a relatively short period of observational record. Remote sensing advancements are of paramount importance given the increasing demand for tools that can provide accurate, timely, and integrated information on drought conditions to facilitate proactive decision making (NIDIS, 2007). Satellite-based approaches are key to addressing significant gaps in the spatial and temporal coverage of current surface station instrument networks providing key moisture observations (e.g., rainfall, snow, soil moisture, ground water, and ET) over the United States and globally (NIDIS, 2007). Improved monitoring capabilities will be particularly important given increases in spatial extent, intensity, and duration of drought events observed in some regions of the world, as reported in the International Panel on Climate Change (IPCC) report (IPCC, 2007). The risk of drought is anticipated to further increase in some regions in response to climatic changes in the hydrologic cycle related to evaporation, precipitation, air temperature, and snow cover (Burke et al., 2006; IPCC, 2007; USGCRP, 2009). Numerous national, regional, and global efforts such as the Famine and Early Warning System (FEWS), National Integrated Drought Information System (NIDIS), and Group on Earth Observations (GEO), as well as the establishment of regional drought centers (e.g., European Drought Observatory) and geospatial visualization and monitoring systems (e.g, NASA SERVIR) have been undertaken to improve drought monitoring and early warning systems throughout the world. The suite of innovative remote sensing tools that have recently emerged will be looked upon to fill important data and knowledge gaps (NIDIS, 2007; NRC, 2007) to address a wide range of drought-related issues including food security, water scarcity, and human health.

  7. Assessing efficiency of spatial sampling using combined coverage analysis in geographical and feature spaces

    NASA Astrophysics Data System (ADS)

    Hengl, Tomislav

    2015-04-01

    Efficiency of spatial sampling largely determines success of model building. This is especially important for geostatistical mapping where an initial sampling plan should provide a good representation or coverage of both geographical (defined by the study area mask map) and feature space (defined by the multi-dimensional covariates). Otherwise the model will need to extrapolate and, hence, the overall uncertainty of the predictions will be high. In many cases, geostatisticians use point data sets which are produced using unknown or inconsistent sampling algorithms. Many point data sets in environmental sciences suffer from spatial clustering and systematic omission of feature space. But how to quantify these 'representation' problems and how to incorporate this knowledge into model building? The author has developed a generic function called 'spsample.prob' (Global Soil Information Facilities package for R) and which simultaneously determines (effective) inclusion probabilities as an average between the kernel density estimation (geographical spreading of points; analysed using the spatstat package in R) and MaxEnt analysis (feature space spreading of points; analysed using the MaxEnt software used primarily for species distribution modelling). The output 'iprob' map indicates whether the sampling plan has systematically missed some important locations and/or features, and can also be used as an input for geostatistical modelling e.g. as a weight map for geostatistical model fitting. The spsample.prob function can also be used in combination with the accessibility analysis (cost of field survey are usually function of distance from the road network, slope and land cover) to allow for simultaneous maximization of average inclusion probabilities and minimization of total survey costs. The author postulates that, by estimating effective inclusion probabilities using combined geographical and feature space analysis, and by comparing survey costs to representation efficiency, an optimal initial sampling plan can be produced which satisfies both criteria: (a) good representation (i.e. within a tolerance threshold), and (b) minimized survey costs. This sampling analysis framework could become especially interesting for generating sampling plans in new areas e.g. for which no previous spatial prediction model exists. The presentation includes data processing demos with standard soil sampling data sets Ebergotzen (Germany) and Edgeroi (Australia), also available via the GSIF package.

  8. Developing a regional retrospective ensemble precipitation dataset for watershed hydrology modeling, Idaho, USA

    NASA Astrophysics Data System (ADS)

    Flores, A. N.; Smith, K.; LaPorte, P.

    2011-12-01

    Applications like flood forecasting, military trafficability assessment, and slope stability analysis necessitate the use of models capable of resolving hydrologic states and fluxes at spatial scales of hillslopes (e.g., 10s to 100s m). These models typically require precipitation forcings at spatial scales of kilometers or better and time intervals of hours. Yet in especially rugged terrain that typifies much of the Western US and throughout much of the developing world, precipitation data at these spatiotemporal resolutions is difficult to come by. Ground-based weather radars have significant problems in high-relief settings and are sparsely located, leaving significant gaps in coverage and high uncertainties. Precipitation gages provide accurate data at points but are very sparsely located and their placement is often not representative, yielding significant coverage gaps in a spatial and physiographic sense. Numerical weather prediction efforts have made precipitation data, including critically important information on precipitation phase, available globally and in near real-time. However, these datasets present watershed modelers with two problems: (1) spatial scales of many of these datasets are tens of kilometers or coarser, (2) numerical weather models used to generate these datasets include a land surface parameterization that in some circumstances can significantly affect precipitation predictions. We report on the development of a regional precipitation dataset for Idaho that leverages: (1) a dataset derived from a numerical weather prediction model, (2) gages within Idaho that report hourly precipitation data, and (3) a long-term precipitation climatology dataset. Hourly precipitation estimates from the Modern Era Retrospective-analysis for Research and Applications (MERRA) are stochastically downscaled using a hybrid orographic and statistical model from their native resolution (1/2 x 2/3 degrees) to a resolution of approximately 1 km. Downscaled precipitation realizations are conditioned on hourly observations from reporting gages and then conditioned again on the Parameter-elevation Regressions on Independent Slopes Model (PRISM) at the monthly timescale to reflect orographic precipitation trends common to watersheds of the Western US. While this methodology potentially introduces cross-pollination of errors due to the re-use of precipitation gage data, it nevertheless achieves an ensemble-based precipitation estimate and appropriate measures of uncertainty at a spatiotemporal resolution appropriate for watershed modeling.

  9. The EarthServer Geology Service: web coverage services for geosciences

    NASA Astrophysics Data System (ADS)

    Laxton, John; Sen, Marcus; Passmore, James

    2014-05-01

    The EarthServer FP7 project is implementing web coverage services using the OGC WCS and WCPS standards for a range of earth science domains: cryospheric; atmospheric; oceanographic; planetary; and geological. BGS is providing the geological service (http://earthserver.bgs.ac.uk/). Geoscience has used remote sensed data from satellites and planes for some considerable time, but other areas of geosciences are less familiar with the use of coverage data. This is rapidly changing with the development of new sensor networks and the move from geological maps to geological spatial models. The BGS geology service is designed initially to address two coverage data use cases and three levels of data access restriction. Databases of remote sensed data are typically very large and commonly held offline, making it time-consuming for users to assess and then download data. The service is designed to allow the spatial selection, editing and display of Landsat and aerial photographic imagery, including band selection and contrast stretching. This enables users to rapidly view data, assess is usefulness for their purposes, and then enhance and download it if it is suitable. At present the service contains six band Landsat 7 (Blue, Green, Red, NIR 1, NIR 2, MIR) and three band false colour aerial photography (NIR, green, blue), totalling around 1Tb. Increasingly 3D spatial models are being produced in place of traditional geological maps. Models make explicit spatial information implicit on maps and thus are seen as a better way of delivering geosciences information to non-geoscientists. However web delivery of models, including the provision of suitable visualisation clients, has proved more challenging than delivering maps. The EarthServer geology service is delivering 35 surfaces as coverages, comprising the modelled superficial deposits of the Glasgow area. These can be viewed using a 3D web client developed in the EarthServer project by Fraunhofer. As well as remote sensed imagery and 3D models, the geology service is also delivering DTM coverages which can be viewed in the 3D client in conjunction with both imagery and models. The service is accessible through a web GUI which allows the imagery to be viewed against a range of background maps and DTMs, and in the 3D client; spatial selection to be carried out graphically; the results of image enhancement to be displayed; and selected data to be downloaded. The GUI also provides access to the Glasgow model in the 3D client, as well as tutorial material. In the final year of the project it is intended to increase the volume of data to 20Tb and enhance the WCPS processing, including depth and thickness querying of 3D models. We have also investigated the use of GeoSciML, developed to describe and interchange the information on geological maps, to describe model surface coverages. EarthServer is developing a combined WCPS and xQuery query language, and we will investigate applying this to the GeoSciML described surfaces to answer questions such as 'find all units with a predominant sand lithology within 25m of the surface'.

  10. Global dynamics of a mathematical model for the possible re-emergence of polio.

    PubMed

    Dénes, Attila; Székely, László

    2017-11-01

    Motivated by studies warning about a possible re-emergence of poliomyelitis in Europe, we analyse a compartmental model for the transmission of polio describing the possible effect of unvaccinated people arriving to a region with low vaccination coverage. We calculate the basic reproduction number, and determine the global dynamics of the system: we show that, depending on the parameters, one of the two equilibria is globally asymptotically stable. The main tools applied are Lyapunov functions and persistence theory. We illustrate the analytic results by numerical examples, which also suggest that in order to avoid the risk of polio re-emergence, vaccinating the immigrant population might result insufficient, and also the vaccination coverage of countries with low rates should be increased. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. An intercomparison of remotely sensed soil moisture products at various spatial scales over the Iberian penisula

    USDA-ARS?s Scientific Manuscript database

    Soil moisture (SM) can be retrieved from active microwave (AM)-, passive microwave (PM)- and thermal infrared (TIR)-observations, each having their unique spatial- and temporal-coverage. A limitation of TIR-based SM retrievals is its dependency on cloud-free conditions, while microwave retrievals ar...

  12. Classification of High Spatial Resolution, Hyperspectral Remote Sensing Imagery of the Little Miami River Watershed in Southwest Ohio, USA (Final)

    EPA Science Inventory

    EPA announced the availability of the final report,. This report and associated land use/land cover (LULC) coverage is the result o...

  13. Spatial Representativeness Error in the Ground-Level Observation Networks for Black Carbon Radiation Absorption

    NASA Astrophysics Data System (ADS)

    Wang, Rong; Andrews, Elisabeth; Balkanski, Yves; Boucher, Olivier; Myhre, Gunnar; Samset, Bjørn Hallvard; Schulz, Michael; Schuster, Gregory L.; Valari, Myrto; Tao, Shu

    2018-02-01

    There is high uncertainty in the direct radiative forcing of black carbon (BC), an aerosol that strongly absorbs solar radiation. The observation-constrained estimate, which is several times larger than the bottom-up estimate, is influenced by the spatial representativeness error due to the mesoscale inhomogeneity of the aerosol fields and the relatively low resolution of global chemistry-transport models. Here we evaluated the spatial representativeness error for two widely used observational networks (AErosol RObotic NETwork and Global Atmosphere Watch) by downscaling the geospatial grid in a global model of BC aerosol absorption optical depth to 0.1° × 0.1°. Comparing the models at a spatial resolution of 2° × 2° with BC aerosol absorption at AErosol RObotic NETwork sites (which are commonly located near emission hot spots) tends to cause a global spatial representativeness error of 30%, as a positive bias for the current top-down estimate of global BC direct radiative forcing. By contrast, the global spatial representativeness error will be 7% for the Global Atmosphere Watch network, because the sites are located in such a way that there are almost an equal number of sites with positive or negative representativeness error.

  14. Global warming induced hybrid rainy seasons in the Sahel

    NASA Astrophysics Data System (ADS)

    Salack, Seyni; Klein, Cornelia; Giannini, Alessandra; Sarr, Benoit; Worou, Omonlola N.; Belko, Nouhoun; Bliefernicht, Jan; Kunstman, Harald

    2016-10-01

    The small rainfall recovery observed over the Sahel, concomitant with a regional climate warming, conceals some drought features that exacerbate food security. The new rainfall features include false start and early cessation of rainy seasons, increased frequency of intense daily rainfall, increasing number of hot nights and warm days and a decreasing trend in diurnal temperature range. Here, we explain these mixed dry/wet seasonal rainfall features which are called hybrid rainy seasons by delving into observed data consensus on the reduction in rainfall amount, its spatial coverage, timing and erratic distribution of events, and other atmospheric variables crucial in agro-climatic monitoring and seasonal forecasting. Further composite investigations of seasonal droughts, oceans warming and the regional atmospheric circulation nexus reveal that the low-to-mid-level atmospheric winds pattern, often stationary relative to either strong or neutral El-Niño-Southern-Oscillations drought patterns, associates to basin warmings in the North Atlantic and the Mediterranean Sea to trigger hybrid rainy seasons in the Sahel. More challenging to rain-fed farming systems, our results suggest that these new rainfall conditions will most likely be sustained by global warming, reshaping thereby our understanding of food insecurity in this region.

  15. Understanding and Reconciling Differences in Surface and Satellite-Based Lower Troposphere Temperatures

    NASA Astrophysics Data System (ADS)

    Hausfather, Z.; Thorne, P.; Mears, C. A.

    2017-12-01

    One of the main remaining uncertainties in global temperatures over the past few decades is the disagreement between surface and microwave sounding unit (MSU) satellite-based observations of the lower troposphere. Reconciling these will prove an important step in improving our understanding of modern climate change, and help resolve an issue that has been frequently brought to the attention of policymakers and highlighted as a reason to distrust climate observations. To assess differences between surface and satellite records, we examine data from radiosondes, from atmospheric reanalysis, from numerous different satellites, from surface observations over the land and ocean, and from global climate models. Controlling for spatial coverage, we determine where these datasets agree and disagree, isolate the differences, and identify for common factors to explain the divergences. We find large systemic differences between surface and lower troposphere warming in MSU/AMSU records compared to radiosondes, reanalysis products, and climate models that suggest possible residual inhomogeneities in satellite records. We further show that no reasonable subset of surface temperature records exhibits as little warming over the last two decades as satellite observations, suggesting that inhomogeneities in the surface record are very likely not responsible for the divergence.

  16. The Gravity Field, Orientation, and Ephemeris of Mercury from MESSENGER Observations After Three Years in Orbit

    NASA Technical Reports Server (NTRS)

    Mazarico, Erwan M.; Genova, Antonio; Goossens, Sander; Lemoine, Gregory; Neumann, Gregory A.; Zuber, Maria T.; Smith, David E.; Solomon, Sean C.

    2014-01-01

    We have analyzed three years of radio tracking data from the MESSENGER spacecraft in orbit around Mercury and determined the gravity field, planetary orientation, and ephemeris of the innermost planet. With improvements in spatial coverage, force modeling, and data weighting, we refined an earlier global gravity field both in quality and resolution, and we present here a spherical harmonic solution to degree and order 50. In this field, termed HgM005, uncertainties in low-degree coefficients are reduced by an order of magnitude relative to the earlier global field, and we obtained a preliminary value of the tidal Love number k(sub 2) of 0.451+/-0.014. We also estimated Mercury's pole position, and we obtained an obliquity value of 2.06 +/- 0.16 arcmin, in good agreement with analysis of Earth-based radar observations. From our updated rotation period (58.646146 +/- 0.000011 days) and Mercury ephemeris, we verified experimentally the planet's 3: 2 spin-orbit resonance to greater accuracy than previously possible. We present a detailed analysis of the HgM005 covariance matrix, and we describe some near-circular frozen orbits around Mercury that could be advantageous for future exploration.

  17. Magsat to CHAMP: Magnetic Satellite Explorations of Lithospheric Anomalies over Kursk, Bangui and the Antarctic

    NASA Technical Reports Server (NTRS)

    Kim, H.; Taylor, Patrick T.; vonFrese, R. R.; Kim, J. W.

    2004-01-01

    We compare crustal magnetic anomaly maps over the Kursk (Russia) and Bangui (Central African Republic) isolated anomalies and the Antarctic derived from the Magsat, \\Orsted and CHAMP satellite fields. We wish to demonstrate how progress in satellite magnetic missions has improved the recovery of the crustal magnetic field. The 6-month long Magsat mission of 25 years ago generated two major methods of processing satellite magnetic anomaly data for lithospheric studies. The first was a global perspective using spherical harmonics that emphasize the more regional and global lithospheric fields. However, these fields commonly do not resolve local anomaly features in any detail. Therefore a second procedure involved the use of the individual satellite orbit or track data to recover small-scale anomalies on a regional scale. We present results over prominent magnetic anomalies such as Kursk, Bangui and the large Antarctic continent that demonstrate how the various analysis methods affect the recovery of crustal anomalies. The more recent \\Orsted and CHAMP missions are successfully recording data with an improved accuracy and with full spatial and temporal coverage. We show and interpret the total magnetic intensity anomaly maps over these areas from all three satellite magnetometer data sets.

  18. Ice Nucleating Particles around the world - a global review

    NASA Astrophysics Data System (ADS)

    Kanji, Zamin A.; Atkinson, James; Sierau, Berko; Lohmann, Ulrike

    2017-04-01

    In the atmosphere the formation of new ice particles at temperatures above -36 °C is due to a subset of aerosol called Ice Nucleating Particles (INP). However, the spatial and temporal evolution of such particles is poorly understood. Current modelling of INP is attempting to estimate the sources and transport of INP, but is hampered by the availability and convenience of INP observations. As part of the EU FP7 project impact of Biogenic versus Anthropogenic emissions on Clouds and Climate: towards a Holistic UnderStanding (BACCHUS), historical and contemporary observations of INP have been collated into a database (http://www.bacchus-env.eu/in/) and are reviewed here. Outside of Europe and North America the coverage of measurements is sparse, especially for modern day climate - in many areas the only measurements available are from the mid-20th century. As well as an overview of all the data in the database, correlations with several accompanying variables are presented. For example, immersion freezing INP seem to be negatively correlated with altitude, whereas CFDC based condensation freezing INP show no height correlation. An initial global parameterisation of INP concentrations taking into account freezing temperature and relative humidity for use in modelling is provided.

  19. Leveraging paraprofessionals and family strengths to improve coverage and penetration of nutrition and early child development services.

    PubMed

    Tomlinson, Mark; Rahman, Atif; Sanders, David; Maselko, Joanna; Rotheram-Borus, Mary Jane

    2014-01-01

    Children need to be protected in intergenerational networks, with parents who have positive mood, resources to feed their children, and skills to promote early childhood development (ECD). Globally, more than 200 million children are raised annually without these resources. This article reviews the potential contributions of increasing coverage and penetration of services for these children, challenges to achieving penetration of services in high-risk families, opportunities created by bundling multiple services within one provider, potential leveraging of paraprofessionals to deliver care, and mobilizing communities to support children in households at high risk for negative outcomes. We end with a number of suggestions for how to ensure the equitable scale-up of integrated ECD and nutrition services that take into account current global priorities, as well as coverage and penetration of services. © 2013 New York Academy of Sciences.

  20. Lost in the Forest, Stuck in the Trees: Dispositional Global/Local Bias Is Resistant to Exposure to High and Low Spatial Frequencies

    PubMed Central

    Dale, Gillian; Arnell, Karen M.

    2014-01-01

    Visual stimuli can be perceived at a broad, “global” level, or at a more focused, “local” level. While research has shown that many individuals demonstrate a preference for global information, there are large individual differences in the degree of global/local bias, such that some individuals show a large global bias, some show a large local bias, and others show no bias. The main purpose of the current study was to examine whether these dispositional differences in global/local bias could be altered through various manipulations of high/low spatial frequency. Through 5 experiments, we examined various measures of dispositional global/local bias and whether performance on these measures could be altered by manipulating previous exposure to high or low spatial frequency information (with high/low spatial frequency faces, gratings, and Navon letters). Ultimately, there was little evidence of change from pre-to-post manipulation on the dispositional measures, and dispositional global/local bias was highly reliable pre- to post-manipulation. The results provide evidence that individual differences in global/local bias or preference are relatively resistant to exposure to spatial frequency information, and suggest that the processing mechanisms underlying high/low spatial frequency use and global/local bias may be more independent than previously thought. PMID:24992321

  1. Impacts of field of view configuration of Cross-track Infrared Sounder on clear-sky observations.

    PubMed

    Wang, Likun; Chen, Yong; Han, Yong

    2016-09-01

    Hyperspectral infrared radiance measurements from satellite sensors contain valuable information on atmospheric temperature and humidity profiles and greenhouse gases, and therefore are directly assimilated into numerical weather prediction (NWP) models as inputs for weather forecasting. However, data assimilations in current operational NWP models still mainly rely on cloud-free observations due to the challenge of simulating cloud-contaminated radiances when using hyperspectral radiances. The limited spatial coverage of the 3×3 field of views (FOVs) in one field of regard (FOR) (i.e., spatial gap among FOVs) as well as relatively large footprint size (14 km) in current Cross-track Infrared Sounder (CrIS) instruments limits the amount of clear-sky observations. This study explores the potential impacts of future CrIS FOV configuration (including FOV size and spatial coverage) on the amount of clear-sky observations by simulation experiments. The radiance measurements and cloud mask products (VCM) from the Visible Infrared Imager Radiometer Suite (VIIRS) are used to simulate CrIS clear-sky observation under different FOV configurations. The results indicate that, given the same FOV coverage (e.g., 3×3), the percentage of clear-sky FOVs and the percentage of clear-sky FORs (that contain at least one clear-sky FOV) both increase as the FOV size decreases. In particular, if the CrIS FOV size were reduced from 14 km to 7 km, the percentage of clear-sky FOVs increases from 9.02% to 13.51% and the percentage of clear-sky FORs increases from 18.24% to 27.51%. Given the same FOV size but with increasing FOV coverage in each FOR, the clear-sky FOV observations increases proportionally with the increasing sampling FOVs. Both reducing FOV size and increasing FOV coverage can result in more clear-sky FORs, which benefit data utilization of NWP data assimilation.

  2. Local Adaptive Calibration of the GLASS Surface Incident Shortwave Radiation Product Using Smoothing Spline

    NASA Astrophysics Data System (ADS)

    Zhang, X.; Liang, S.; Wang, G.

    2015-12-01

    Incident solar radiation (ISR) over the Earth's surface plays an important role in determining the Earth's climate and environment. Generally, can be obtained from direct measurements, remotely sensed data, or reanalysis and general circulation models (GCMs) data. Each type of product has advantages and limitations: the surface direct measurements provide accurate but sparse spatial coverage, whereas other global products may have large uncertainties. Ground measurements have been normally used for validation and occasionally calibration, but transforming their "true values" spatially to improve the satellite products is still a new and challenging topic. In this study, an improved thin-plate smoothing spline approach is presented to locally "calibrate" the Global LAnd Surface Satellite (GLASS) ISR product using the reconstructed ISR data from surface meteorological measurements. The influences of surface elevation on ISR estimation was also considered in the proposed method. The point-based surface reconstructed ISR was used as the response variable, and the GLASS ISR product and the surface elevation data at the corresponding locations as explanatory variables to train the thin plate spline model. We evaluated the performance of the approach using the cross-validation method at both daily and monthly time scales over China. We also evaluated estimated ISR based on the thin-plate spline method using independent ground measurements at 10 sites from the Coordinated Enhanced Observation Network (CEON). These validation results indicated that the thin plate smoothing spline method can be effectively used for calibrating satellite derived ISR products using ground measurements to achieve better accuracy.

  3. Progress in global measles control, 2000-2010.

    PubMed

    2012-02-03

    In 1980, before widespread global use of measles vaccine, an estimated 2.6 million measles deaths occurred worldwide. In 2001, to accelerate the reduction in measles cases achieved by vaccination, the World Health Organization (WHO) and the United Nations Children's Fund (UNICEF) developed a strategy to deliver 2 doses of measles-containing vaccine (MCV) to all children through routine services and supplementary immunization activities (SIAs) and improved disease surveillance. After implementation of this strategy, the estimated number of annual measles deaths worldwide decreased from 733,000 in 2000 to 164,000 in 2008. In 2010, the World Health Assembly endorsed the following measles objectives for 2015: 1) raise routine coverage with the first dose of MCV (MCV1) for children aged 1 year to ≥90% nationally and ≥80% in every district or equivalent administrative unit, 2) reduce and maintain annual measles incidence at <5 cases per million, and 3) reduce measles mortality by ≥95% from the 2000 estimate. During 2000-2010, global MCV1 coverage increased from 72% to 85% with approximately 1 billion children vaccinated during measles SIAs. Reported measles cases decreased from 2000 to 2008, remained stable in 2009, and increased in 2010. By the end of 2010, 40% of countries still had not met the incidence target of <5 cases per million. Key challenges must be overcome to meet the 2015 objectives, including 1) declining political and financial commitments to measles control, 2) failure to reach uniform high coverage with 2 doses of MCV through routine services or SIAs, and 3) inadequate monitoring subnationally of coverage with the first and second dose of MCV to guide interventions to increase coverage.

  4. FIRE_AX_SOF_SUR_MET

    Atmospheric Science Data Center

    2015-11-25

    ... Buoy Instrument:  Barometer Sonic Anemometer Thermistor Spatial Coverage:  (34.60, ... Earthdata Search Parameters:  Dry Bulb Temperature Pressure Sea Surface Temperature Wet Bulb Temperature ...

  5. Grid-based mapping: A method for rapidly determining the spatial distributions of small features over very large areas

    NASA Astrophysics Data System (ADS)

    Ramsdale, Jason D.; Balme, Matthew R.; Conway, Susan J.; Gallagher, Colman; van Gasselt, Stephan A.; Hauber, Ernst; Orgel, Csilla; Séjourné, Antoine; Skinner, James A.; Costard, Francois; Johnsson, Andreas; Losiak, Anna; Reiss, Dennis; Swirad, Zuzanna M.; Kereszturi, Akos; Smith, Isaac B.; Platz, Thomas

    2017-06-01

    The increased volume, spatial resolution, and areal coverage of high-resolution images of Mars over the past 15 years have led to an increased quantity and variety of small-scale landform identifications. Though many such landforms are too small to represent individually on regional-scale maps, determining their presence or absence across large areas helps form the observational basis for developing hypotheses on the geological nature and environmental history of a study area. The combination of improved spatial resolution and near-continuous coverage significantly increases the time required to analyse the data. This becomes problematic when attempting regional or global-scale studies of metre and decametre-scale landforms. Here, we describe an approach for mapping small features (from decimetre to kilometre scale) across large areas, formulated for a project to study the northern plains of Mars, and provide context on how this method was developed and how it can be implemented. Rather than ;mapping; with points and polygons, grid-based mapping uses a ;tick box; approach to efficiently record the locations of specific landforms (we use an example suite of glacial landforms; including viscous flow features, the latitude dependant mantle and polygonised ground). A grid of squares (e.g. 20 km by 20 km) is created over the mapping area. Then the basemap data are systematically examined, grid-square by grid-square at full resolution, in order to identify the landforms while recording the presence or absence of selected landforms in each grid-square to determine spatial distributions. The result is a series of grids recording the distribution of all the mapped landforms across the study area. In some ways, these are equivalent to raster images, as they show a continuous distribution-field of the various landforms across a defined (rectangular, in most cases) area. When overlain on context maps, these form a coarse, digital landform map. We find that grid-based mapping provides an efficient solution to the problems of mapping small landforms over large areas, by providing a consistent and standardised approach to spatial data collection. The simplicity of the grid-based mapping approach makes it extremely scalable and workable for group efforts, requiring minimal user experience and producing consistent and repeatable results. The discrete nature of the datasets, simplicity of approach, and divisibility of tasks, open up the possibility for citizen science in which crowdsourcing large grid-based mapping areas could be applied.

  6. Estimation of Sea Ice Thickness Distributions through the Combination of Snow Depth and Satellite Laser Altimetry Data

    NASA Technical Reports Server (NTRS)

    Kurtz, Nathan T.; Markus, Thorsten; Cavalieri, Donald J.; Sparling, Lynn C.; Krabill, William B.; Gasiewski, Albin J.; Sonntag, John G.

    2009-01-01

    Combinations of sea ice freeboard and snow depth measurements from satellite data have the potential to provide a means to derive global sea ice thickness values. However, large differences in spatial coverage and resolution between the measurements lead to uncertainties when combining the data. High resolution airborne laser altimeter retrievals of snow-ice freeboard and passive microwave retrievals of snow depth taken in March 2006 provide insight into the spatial variability of these quantities as well as optimal methods for combining high resolution satellite altimeter measurements with low resolution snow depth data. The aircraft measurements show a relationship between freeboard and snow depth for thin ice allowing the development of a method for estimating sea ice thickness from satellite laser altimetry data at their full spatial resolution. This method is used to estimate snow and ice thicknesses for the Arctic basin through the combination of freeboard data from ICESat, snow depth data over first-year ice from AMSR-E, and snow depth over multiyear ice from climatological data. Due to the non-linear dependence of heat flux on ice thickness, the impact on heat flux calculations when maintaining the full resolution of the ICESat data for ice thickness estimates is explored for typical winter conditions. Calculations of the basin-wide mean heat flux and ice growth rate using snow and ice thickness values at the 70 m spatial resolution of ICESat are found to be approximately one-third higher than those calculated from 25 km mean ice thickness values.

  7. Advancing the capabilities of reservoir remote sensing by leveraging multi-source satellite data

    NASA Astrophysics Data System (ADS)

    Gao, H.; Zhang, S.; Zhao, G.; Li, Y.

    2017-12-01

    With a total global capacity of more than 6000 km3, reservoirs play a key role in the hydrological cycle and in water resources management. However, essential reservoir data (e.g., elevation, storage, and evaporation loss) are usually not shared at a large scale. While satellite remote sensing offers a unique opportunity for monitoring large reservoirs from space, the commonly used radar altimeters can only detect storage variations of about 15% of global lakes at a repeat period of 10 days or longer. To advance the capabilities of reservoir sensing, we developed a series of algorithms geared towards generating long term reservoir records at improved spatial coverage, and at improved temporal resolution. To this goal, observations are leveraged from multiple satellite sensors, which include radar/laser altimeters, imagers, and passive microwave radiometers. In South Asia, we demonstrate that reservoir storage can be estimated under all-weather conditions at a 4 day time step, with the total capacity of monitored reservoirs increased to 45%. Within the Continuous United States, a first Landsat based evaporation loss dataset was developed (containing 204 reservoirs) from 1984 to 2011. The evaporation trends of these reservoirs are identified and the causes are analyzed. All of these algorithms and products were validated with gauge observations. Future satellite missions, which will make significant contributions to monitoring global reservoirs, are also discussed.

  8. A decade of global volcanic SO2 emissions measured from space

    NASA Astrophysics Data System (ADS)

    Carn, S. A.; Fioletov, V. E.; McLinden, C. A.; Li, C.; Krotkov, N. A.

    2017-03-01

    The global flux of sulfur dioxide (SO2) emitted by passive volcanic degassing is a key parameter that constrains the fluxes of other volcanic gases (including carbon dioxide, CO2) and toxic trace metals (e.g., mercury). It is also a required input for atmospheric chemistry and climate models, since it impacts the tropospheric burden of sulfate aerosol, a major climate-forcing species. Despite its significance, an inventory of passive volcanic degassing is very difficult to produce, due largely to the patchy spatial and temporal coverage of ground-based SO2 measurements. We report here the first volcanic SO2 emissions inventory derived from global, coincident satellite measurements, made by the Ozone Monitoring Instrument (OMI) on NASA’s Aura satellite in 2005-2015. The OMI measurements permit estimation of SO2 emissions from over 90 volcanoes, including new constraints on fluxes from Indonesia, Papua New Guinea, the Aleutian Islands, the Kuril Islands and Kamchatka. On average over the past decade, the volcanic SO2 sources consistently detected from space have discharged a total of ~63 kt/day SO2 during passive degassing, or ~23 ± 2 Tg/yr. We find that ~30% of the sources show significant decadal trends in SO2 emissions, with positive trends observed at multiple volcanoes in some regions including Vanuatu, southern Japan, Peru and Chile.

  9. A decade of global volcanic SO2 emissions measured from space

    PubMed Central

    Carn, S. A.; Fioletov, V. E.; McLinden, C. A.; Li, C.; Krotkov, N. A.

    2017-01-01

    The global flux of sulfur dioxide (SO2) emitted by passive volcanic degassing is a key parameter that constrains the fluxes of other volcanic gases (including carbon dioxide, CO2) and toxic trace metals (e.g., mercury). It is also a required input for atmospheric chemistry and climate models, since it impacts the tropospheric burden of sulfate aerosol, a major climate-forcing species. Despite its significance, an inventory of passive volcanic degassing is very difficult to produce, due largely to the patchy spatial and temporal coverage of ground-based SO2 measurements. We report here the first volcanic SO2 emissions inventory derived from global, coincident satellite measurements, made by the Ozone Monitoring Instrument (OMI) on NASA’s Aura satellite in 2005–2015. The OMI measurements permit estimation of SO2 emissions from over 90 volcanoes, including new constraints on fluxes from Indonesia, Papua New Guinea, the Aleutian Islands, the Kuril Islands and Kamchatka. On average over the past decade, the volcanic SO2 sources consistently detected from space have discharged a total of ~63 kt/day SO2 during passive degassing, or ~23 ± 2 Tg/yr. We find that ~30% of the sources show significant decadal trends in SO2 emissions, with positive trends observed at multiple volcanoes in some regions including Vanuatu, southern Japan, Peru and Chile. PMID:28275238

  10. A Decade of Global Volcanic SO2 Emissions Measured from Space

    NASA Technical Reports Server (NTRS)

    Carn, S. A.; Fioletov, V. E.; McLinden, C. A.; Li, C.; Krotkov, N. A.

    2017-01-01

    The global flux of sulfur dioxide (SO2) emitted by passive volcanic degassing is a key parameter that constrains the fluxes of other volcanic gases (including carbon dioxide, CO2) and toxic trace metals (e.g., mercury). It is also a required input for atmospheric chemistry and climate models, since it impacts the tropospheric burden of sulfate aerosol, a major climate-forcing species. Despite its significance, an inventory of passive volcanic degassing is very difficult to produce, due largely to the patchy spatial and temporal coverage of ground-based SO2 measurements. We report here the first volcanic SO2 emissions inventory derived from global, coincident satellite measurements, made by the Ozone Monitoring Instrument (OMI) on NASA's Aura satellite in 2005-2015. The OMI measurements permit estimation of SO2 emissions from over 90 volcanoes, including new constraints on fluxes from Indonesia, Papua New Guinea, the Aleutian Islands, the Kuril Islands and Kamchatka. On average over the past decade, the volcanic SO2 sources consistently detected from space have discharged a total of approximately 63 kt/day SO2 during passive degassing, or approximately 23 +/- 2 Tg/yr. We find that approximately 30% of the sources show significant decadal trends in SO2 emissions, with positive trends observed at multiple volcanoes in some regions including Vanuatu, southern Japan, Peru and Chile.

  11. A decade of global volcanic SO2 emissions measured from space.

    PubMed

    Carn, S A; Fioletov, V E; McLinden, C A; Li, C; Krotkov, N A

    2017-03-09

    The global flux of sulfur dioxide (SO 2 ) emitted by passive volcanic degassing is a key parameter that constrains the fluxes of other volcanic gases (including carbon dioxide, CO 2 ) and toxic trace metals (e.g., mercury). It is also a required input for atmospheric chemistry and climate models, since it impacts the tropospheric burden of sulfate aerosol, a major climate-forcing species. Despite its significance, an inventory of passive volcanic degassing is very difficult to produce, due largely to the patchy spatial and temporal coverage of ground-based SO 2 measurements. We report here the first volcanic SO 2 emissions inventory derived from global, coincident satellite measurements, made by the Ozone Monitoring Instrument (OMI) on NASA's Aura satellite in 2005-2015. The OMI measurements permit estimation of SO 2 emissions from over 90 volcanoes, including new constraints on fluxes from Indonesia, Papua New Guinea, the Aleutian Islands, the Kuril Islands and Kamchatka. On average over the past decade, the volcanic SO 2 sources consistently detected from space have discharged a total of ~63 kt/day SO 2 during passive degassing, or ~23 ± 2 Tg/yr. We find that ~30% of the sources show significant decadal trends in SO 2 emissions, with positive trends observed at multiple volcanoes in some regions including Vanuatu, southern Japan, Peru and Chile.

  12. Validation of the Version 1 NOAA/NASA Pathfinder Sea Surface Temperature Data Set

    NASA Technical Reports Server (NTRS)

    Smith, Elizabeth A.

    1998-01-01

    A high-resolution, global satellite-derived sea surface temperature (SST) data set called Pathfinder, from the Advanced Very High Resolution Radiometer (AVHRR) aboard the NOAA Polar Orbiters, is available from the Jet Propulsion Laboratory Physical Oceanography Distributed Active Archive Center (JPL PO.DAAC). Suitable for research as well as education, the Pathfinder SST data set is a result of a collaboration between the National Oceanographic and Atmospheric Administration (NOAA), the National Aeronautics and Space Administration (NASA) and investigators at several universities. NOAA and NASA are the sponsors of the Pathfinder Program, which takes advantage of currently archived Earth science data from satellites. Where necessary, satellite sensors have been intercalibrated, algorithms improved and processing procedures revised, in order to produce long time-series, global measurements of ocean, land and atmospheric properties necessary for climate research. Many Pathfinder data sets are available to researchers now, nearly a decade before the first launch of NASA's Earth Observing System (EOS). The lessons learned from the Pathfinder programs will facilitate the processing and management of terabytes of data from EOS. The Oceans component of Pathfinder has undertaken to reprocess all Global Area Coverage (GAC) data acquired by the 5-channel AVHRRs since 1981. The resultant data products are consistent and stably calibrated [Rao, 1993a, Rao, 1993b, Brown et al., 1993], Earth-gridded SST fields at a variety of spatial and temporal resolutions.

  13. Technique development of 3D dynamic CS-EPSI for hyperpolarized 13 C pyruvate MR molecular imaging of human prostate cancer.

    PubMed

    Chen, Hsin-Yu; Larson, Peder E Z; Gordon, Jeremy W; Bok, Robert A; Ferrone, Marcus; van Criekinge, Mark; Carvajal, Lucas; Cao, Peng; Pauly, John M; Kerr, Adam B; Park, Ilwoo; Slater, James B; Nelson, Sarah J; Munster, Pamela N; Aggarwal, Rahul; Kurhanewicz, John; Vigneron, Daniel B

    2018-03-25

    The purpose of this study was to develop a new 3D dynamic carbon-13 compressed sensing echoplanar spectroscopic imaging (EPSI) MR sequence and test it in phantoms, animal models, and then in prostate cancer patients to image the metabolic conversion of hyperpolarized [1- 13 C]pyruvate to [1- 13 C]lactate with whole gland coverage at high spatial and temporal resolution. A 3D dynamic compressed sensing (CS)-EPSI sequence with spectral-spatial excitation was designed to meet the required spatial coverage, time and spatial resolution, and RF limitations of the 3T MR scanner for its clinical translation for prostate cancer patient imaging. After phantom testing, animal studies were performed in rats and transgenic mice with prostate cancers. For patient studies, a GE SPINlab polarizer (GE Healthcare, Waukesha, WI) was used to produce hyperpolarized sterile GMP [1- 13 C]pyruvate. 3D dynamic 13 C CS-EPSI data were acquired starting 5 s after injection throughout the gland with a spatial resolution of 0.5 cm 3 , 18 time frames, 2-s temporal resolution, and 36 s total acquisition time. Through preclinical testing, the 3D CS-EPSI sequence developed in this project was shown to provide the desired spectral, temporal, and spatial 5D HP 13 C MR data. In human studies, the 3D dynamic HP CS-EPSI approach provided first-ever simultaneously volumetric and dynamic images of the LDH-catalyzed conversion of [1- 13 C]pyruvate to [1- 13 C]lactate in a biopsy-proven prostate cancer patient with full gland coverage. The results demonstrate the feasibility to characterize prostate cancer metabolism in animals, and now patients using this new 3D dynamic HP MR technique to measure k PL , the kinetic rate constant of [1- 13 C]pyruvate to [1- 13 C]lactate conversion. © 2018 International Society for Magnetic Resonance in Medicine.

  14. FIRE_AX_UW_DSCRT

    Atmospheric Science Data Center

    2015-11-25

    ... Analyzer IR CO2 Analyzer Optical Counter Platinum Resistance Spectrometer Spatial Coverage:  (32.34, ... Diameter Particle Number Concentration Potential Temperature Sulfate Sulfur Dioxide Temperature Order Data:  ...

  15. Vegetation Response to Climate Change in the Southern Part of Qinghai-Tibet Plateau at Basinal Scale

    NASA Astrophysics Data System (ADS)

    Liu, X.; Liu, C.; Kang, Q.; Yin, B.

    2018-04-01

    Global climate change has significantly affected vegetation variation in the third-polar region of the world - the Qinghai-Tibet Plateau. As one of the most important indicators of vegetation variation (growth, coverage and tempo-spatial change), the Normalized Difference Vegetation Index (NDVI) is widely employed to study the response of vegetation to climate change. However, a long-term series analysis cannot be achieved because a single data source is constrained by time sequence. Therefore, a new framework was presented in this paper to extend the product series of monthly NDVI, taking as an example the Yarlung Zangbo River Basin, one of the most important river basins in the Qinghai-Tibet Plateau. NDVI products were acquired from two public sources: Global Inventory Modeling and Mapping Studies (GIMMS) Advanced Very High Resolution Radiometer (AVHRR) and Moderate-Resolution Imaging spectroradiometer (MODIS). After having been extended using the new framework, the new time series of NDVI covers a 384 months period (1982-2013), 84 months longer than previous time series of NDVI product, greatly facilitating NDVI related scientific research. In the new framework, the Gauss Filtering Method was employed to filter out noise in the NDVI product. Next, the standard method was introduced to enhance the comparability of the two data sources, and a pixel-based regression method was used to construct NDVI-extending models with one pixel after another. The extended series of NDVI fit well with original AVHRR-NDVI. With the extended time-series, temporal trends and spatial heterogeneity of NDVI in the study area were studied. Principal influencing factors on NDVI were further determined. The monthly NDVI is highly correlated with air temperature and precipitation in terms of climatic change wherein the spatially averaged NDVI slightly increases in the summer and has increased in temperature and decreased in precipitation in the 32 years period. The spatial heterogeneity of NDVI is in accordance with the seasonal variation of the two climate-change factors. All of these findings can provide valuable scientific support for water-land resources exploration in the third-polar region of the world.

  16. Snow Coverage Analysis Using ASTER over the Sierra Nevada Mountain Range

    NASA Astrophysics Data System (ADS)

    Ross, B.

    2017-12-01

    Snow has strong impacts on human behavior, state and local activities, and the economy. The Sierra Nevada snowpack is California's most important natural reservoir of water. Such snow is melting sooner and faster. A recent California drought study showed that there was a deficit of 1.5 million acre-feet of water in 2014 due to the fast melting rates. Scientists have been using the Moderate Resolution Imaging Spectrometer (MODIS) which is available at the spatial resolution of 500-meter, to analyze the changes in snow coverage. While such analysis provides us with the valuable information, it would be more beneficial to employ the imageries at a higher spatial resolution for snow studies. Advanced Spaceborne Thermal Emission and Reflectance Radiometer (ASTER), which acquires the high-resolution imageries ranging from 15-meter to 90-meter, has recently become freely available to the public. Our study utilized two scenes obtained from ASTER to investigate the changes in snow extent over the Sierra Nevada's mountain area for an 8-year period. These two scenes were collected on April 11, 2007 and April 16, 2015 covering the same geographic region. Normalized Difference Snow Index (NDSI) was adopted to delineate the snow coverage in each scene. Our study shows a substantial decrease of snow coverage in the studied geographic region by pixel count.

  17. EEG source localization: Sensor density and head surface coverage.

    PubMed

    Song, Jasmine; Davey, Colin; Poulsen, Catherine; Luu, Phan; Turovets, Sergei; Anderson, Erik; Li, Kai; Tucker, Don

    2015-12-30

    The accuracy of EEG source localization depends on a sufficient sampling of the surface potential field, an accurate conducting volume estimation (head model), and a suitable and well-understood inverse technique. The goal of the present study is to examine the effect of sampling density and coverage on the ability to accurately localize sources, using common linear inverse weight techniques, at different depths. Several inverse methods are examined, using the popular head conductivity. Simulation studies were employed to examine the effect of spatial sampling of the potential field at the head surface, in terms of sensor density and coverage of the inferior and superior head regions. In addition, the effects of sensor density and coverage are investigated in the source localization of epileptiform EEG. Greater sensor density improves source localization accuracy. Moreover, across all sampling density and inverse methods, adding samples on the inferior surface improves the accuracy of source estimates at all depths. More accurate source localization of EEG data can be achieved with high spatial sampling of the head surface electrodes. The most accurate source localization is obtained when the voltage surface is densely sampled over both the superior and inferior surfaces. Copyright © 2015 The Authors. Published by Elsevier B.V. All rights reserved.

  18. Are two systemic fish assemblage sampling programmes on the upper Mississippi River telling us the same thing?

    USGS Publications Warehouse

    Dukerschein, J.T.; Bartels, A.D.; Ickes, B.S.; Pearson, M.S.

    2013-01-01

    We applied an Index of Biotic Integrity (IBI) used on Wisconsin/Minnesota waters of the upper Mississippi River (UMR) to compare data from two systemic sampling programmes. Ability to use data from multiple sampling programmes could extend spatial and temporal coverage of river assessment and monitoring efforts. We normalized for effort and tested fish community data collected by the Environmental Monitoring and Assessment Program-Great Rivers Ecosystems (EMAP-GRE) 2004–2006 and the Long Term Resource Monitoring Program (LTRMP) 1993–2006. Each programme used daytime electrofishing along main channel borders but with some methodological and design differences. EMAP-GRE, designed for baseline and, eventually, compliance monitoring, used a probabilistic, continuous design. LTRMP, designed primarily for baseline and trend monitoring, used a stratified random design in five discrete study reaches. Analysis of similarity indicated no significant difference between EMAP-GRE and LTRMP IBI scores (n=238; Global R= 0.052; significance level=0.972). Both datasets distinguished clear differences only between 'Fair' and 'Poor' condition categories, potentially supporting a 'pass–fail' assessment strategy. Thirteen years of LTRMP data demonstrated stable IBI scores through time in four of five reaches sampled. LTRMP and EMAPGRE IBI scores correlated along the UMR's upstream to downstream gradient (df [3, 25]; F=1.61; p=0.22). A decline in IBI scores from upstream to downstream was consistent with UMR fish community studies and a previous, empirically modelled human disturbance gradient. Comparability between EMAP-GRE (best upstream to downstream coverage) and LTRMP data (best coverage over time and across the floodplain) supports a next step of developing and testing a systemic, multi-metric fish index on the UMR that both approaches could inform.

  19. Online Assessment of Satellite-Derived Global Precipitation Products

    NASA Technical Reports Server (NTRS)

    Liu, Zhong; Ostrenga, D.; Teng, W.; Kempler, S.

    2012-01-01

    Precipitation is difficult to measure and predict. Each year droughts and floods cause severe property damages and human casualties around the world. Accurate measurement and forecast are important for mitigation and preparedness efforts. Significant progress has been made over the past decade in satellite precipitation product development. In particular, products' spatial and temporal resolutions as well as timely availability have been improved by blended techniques. Their resulting products are widely used in various research and applications. However biases and uncertainties are common among precipitation products and an obstacle exists in quickly gaining knowledge of product quality, biases and behavior at a local or regional scale, namely user defined areas or points of interest. Current online inter-comparison and validation services have not addressed this issue adequately. To address this issue, we have developed a prototype to inter-compare satellite derived daily products in the TRMM Online Visualization and Analysis System (TOVAS). Despite its limited functionality and datasets, users can use this tool to generate customized plots within the United States for 2005. In addition, users can download customized data for further analysis, e.g. comparing their gauge data. To meet increasing demands, we plan to increase the temporal coverage and expanded the spatial coverage from the United States to the globe. More products have been added as well. In this poster, we present two new tools: Inter-comparison of 3B42RT and 3B42 Inter-comparison of V6 and V7 TRMM L-3 monthly products The future plans include integrating IPWG (International Precipitation Working Group) Validation Algorithms/statistics, allowing users to generate customized plots and data. In addition, we will expand the current daily products to monthly and their climatology products. Whenever the TRMM science team changes their product version number, users would like to know the differences by inter-comparing both versions of TRMM products in their areas of interest. Making this service available to users will help them to better understand associated changes. We plan to implement this inter-comparison in TRMM standard monthly products with the IPWG algorithms. The plans outlined above will complement and accelerate the existing and ongoing validation activities in the community as well as enhance data services for TRMM and the future Global Precipitation Mission (GPM).

  20. Geographic Information Technologies as an outreach activity in geo-scientific education

    NASA Astrophysics Data System (ADS)

    Maman, Shimrit; Isaacson, Sivan; Blumberg, Dan G.

    2016-04-01

    In recent years, a decline in the rates of examinees in the academic track that were entitled to an enhanced matriculation certificate in scientific-technological education was reported in Israel. To confront this problem the Earth and Planetary Image Facility (EPIF) at Ben-Gurion University of the Negev fosters interdisciplinary exploration through educational programs that make use of the facility and its equipment and enable the empowerment of the community by understanding and appreciating science and technology. This is achieved by using Geographic Information Technologies (GIT) such as remote sensing and Geographical Information Systems (GIS) for geo-physical sciences in activities that combine theoretical background with hands-on activities. Monitoring Earth from space by satellites, digital atlases and virtual-based positioning applications are examples for fusion of spatial information (geographic) and technology that the activity is based on. GIT opens a new chapter and a recent history of Cartography starting from the collection of spatial data to its presentation and analysis. GIS have replaced the use of classical atlas books and offer a variety of Web-based applications that provide maps and display up-to-date imagery. The purpose of this workshop is to expose teachers and students to GITs which are applicable in every classroom. The activity imparts free geographic information systems that exist in cyberspace and accessible to single users as the Israeli national GIS and Google earth, which are based on a spatial data and long term local and global satellite imagery coverage. In this paper, our "Think global-Map Local" activity is presented. The activity uses GIS and change detection technologies as means to encourage students to explore environmental issues both around the globe and close to their surroundings. The students detect changes by comparing multi temporal images of a chosen site and learn how to map the alterations and produce change detection maps with simple and user friendly tools. The activity is offered both for students and supervised projects for teachers and youth.

Top