Glasser, Matthew F; Coalson, Timothy S; Bijsterbosch, Janine D; Harrison, Samuel J; Harms, Michael P; Anticevic, Alan; Van Essen, David C; Smith, Stephen M
2018-06-02
Temporal fluctuations in functional Magnetic Resonance Imaging (fMRI) have been profitably used to study brain activity and connectivity for over two decades. Unfortunately, fMRI data also contain structured temporal "noise" from a variety of sources, including subject motion, subject physiology, and the MRI equipment. Recently, methods have been developed to automatically and selectively remove spatially specific structured noise from fMRI data using spatial Independent Components Analysis (ICA) and machine learning classifiers. Spatial ICA is particularly effective at removing spatially specific structured noise from high temporal and spatial resolution fMRI data of the type acquired by the Human Connectome Project and similar studies. However, spatial ICA is mathematically, by design, unable to separate spatially widespread "global" structured noise from fMRI data (e.g., blood flow modulations from subject respiration). No methods currently exist to selectively and completely remove global structured noise while retaining the global signal from neural activity. This has left the field in a quandary-to do or not to do global signal regression-given that both choices have substantial downsides. Here we show that temporal ICA can selectively segregate and remove global structured noise while retaining global neural signal in both task-based and resting state fMRI data. We compare the results before and after temporal ICA cleanup to those from global signal regression and show that temporal ICA cleanup removes the global positive biases caused by global physiological noise without inducing the network-specific negative biases of global signal regression. We believe that temporal ICA cleanup provides a "best of both worlds" solution to the global signal and global noise dilemma and that temporal ICA itself unlocks interesting neurobiological insights from fMRI data. Copyright © 2018 Elsevier Inc. All rights reserved.
Balcan, Duygu; Gonçalves, Bruno; Hu, Hao; Ramasco, José J.; Colizza, Vittoria
2010-01-01
Here we present the Global Epidemic and Mobility (GLEaM) model that integrates sociodemographic and population mobility data in a spatially structured stochastic disease approach to simulate the spread of epidemics at the worldwide scale. We discuss the flexible structure of the model that is open to the inclusion of different disease structures and local intervention policies. This makes GLEaM suitable for the computational modeling and anticipation of the spatio-temporal patterns of global epidemic spreading, the understanding of historical epidemics, the assessment of the role of human mobility in shaping global epidemics, and the analysis of mitigation and containment scenarios. PMID:21415939
Cosmological backreaction within the Szekeres model and emergence of spatial curvature
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bolejko, Krzysztof, E-mail: krzysztof.bolejko@sydney.edu.au
This paper discusses the phenomenon of backreaction within the Szekeres model. Cosmological backreaction describes how the mean global evolution of the Universe deviates from the Friedmannian evolution. The analysis is based on models of a single cosmological environment and the global ensemble of the Szekeres models (of the Swiss-Cheese-type and Styrofoam-type). The obtained results show that non-linear growth of cosmic structures is associated with the growth of the spatial curvature Ω{sub R} (in the FLRW limit Ω{sub R} → Ω {sub k} ). If averaged over global scales the result depends on the assumed global model of the Universe. Withinmore » the Swiss-Cheese model, which does have a fixed background, the volume average follows the evolution of the background, and the global spatial curvature averages out to zero (the background model is the ΛCDM model, which is spatially flat). In the Styrofoam-type model, which does not have a fixed background, the mean evolution deviates from the spatially flat ΛCDM model, and the mean spatial curvature evolves from Ω{sub R} =0 at the CMB to Ω{sub R} ∼ 0.1 at 0 z =. If the Styrofoam-type model correctly captures evolutionary features of the real Universe then one should expect that in our Universe, the spatial curvature should build up (local growth of cosmic structures) and its mean global average should deviate from zero (backreaction). As a result, this paper predicts that the low-redshift Universe should not be spatially flat (i.e. Ω {sub k} ≠ 0, even if in the early Universe Ω {sub k} = 0) and therefore when analysing low- z cosmological data one should keep Ω {sub k} as a free parameter and independent from the CMB constraints.« less
Cosmological backreaction within the Szekeres model and emergence of spatial curvature
NASA Astrophysics Data System (ADS)
Bolejko, Krzysztof
2017-06-01
This paper discusses the phenomenon of backreaction within the Szekeres model. Cosmological backreaction describes how the mean global evolution of the Universe deviates from the Friedmannian evolution. The analysis is based on models of a single cosmological environment and the global ensemble of the Szekeres models (of the Swiss-Cheese-type and Styrofoam-type). The obtained results show that non-linear growth of cosmic structures is associated with the growth of the spatial curvature ΩScript R (in the FLRW limit ΩScript R → Ωk). If averaged over global scales the result depends on the assumed global model of the Universe. Within the Swiss-Cheese model, which does have a fixed background, the volume average follows the evolution of the background, and the global spatial curvature averages out to zero (the background model is the ΛCDM model, which is spatially flat). In the Styrofoam-type model, which does not have a fixed background, the mean evolution deviates from the spatially flat ΛCDM model, and the mean spatial curvature evolves from ΩScript R =0 at the CMB to ΩScript R ~ 0.1 at 0z =. If the Styrofoam-type model correctly captures evolutionary features of the real Universe then one should expect that in our Universe, the spatial curvature should build up (local growth of cosmic structures) and its mean global average should deviate from zero (backreaction). As a result, this paper predicts that the low-redshift Universe should not be spatially flat (i.e. Ωk ≠ 0, even if in the early Universe Ωk = 0) and therefore when analysing low-z cosmological data one should keep Ωk as a free parameter and independent from the CMB constraints.
Fusion of multichannel local and global structural cues for photo aesthetics evaluation.
Luming Zhang; Yue Gao; Zimmermann, Roger; Qi Tian; Xuelong Li
2014-03-01
Photo aesthetic quality evaluation is a fundamental yet under addressed task in computer vision and image processing fields. Conventional approaches are frustrated by the following two drawbacks. First, both the local and global spatial arrangements of image regions play an important role in photo aesthetics. However, existing rules, e.g., visual balance, heuristically define which spatial distribution among the salient regions of a photo is aesthetically pleasing. Second, it is difficult to adjust visual cues from multiple channels automatically in photo aesthetics assessment. To solve these problems, we propose a new photo aesthetics evaluation framework, focusing on learning the image descriptors that characterize local and global structural aesthetics from multiple visual channels. In particular, to describe the spatial structure of the image local regions, we construct graphlets small-sized connected graphs by connecting spatially adjacent atomic regions. Since spatially adjacent graphlets distribute closely in their feature space, we project them onto a manifold and subsequently propose an embedding algorithm. The embedding algorithm encodes the photo global spatial layout into graphlets. Simultaneously, the importance of graphlets from multiple visual channels are dynamically adjusted. Finally, these post-embedding graphlets are integrated for photo aesthetics evaluation using a probabilistic model. Experimental results show that: 1) the visualized graphlets explicitly capture the aesthetically arranged atomic regions; 2) the proposed approach generalizes and improves four prominent aesthetic rules; and 3) our approach significantly outperforms state-of-the-art algorithms in photo aesthetics prediction.
Modeling Global Spatial-Temporal Evolution of Society: Hyperbolic Growth and Historical Cycles
NASA Astrophysics Data System (ADS)
Kurkina, E. S.
2011-09-01
The global historical processes are under consideration; and laws of global evolution of the world community are studied. The world community is considered as a united complex self-developing and self-organizing system. It supposed that the main driving force of social-economical evolution was the positive feedback between the population size and the level of technological development, which was a cause of growth in blow-up regime both of population and of global economic indexes. The study is supported by the results of mathematical modeling founded on a nonlinear heat equation with a source. Every social-economical epoch characterizes by own specific spatial distributed structures. So the global dynamics of world community during the whole history is investigated throughout the prism of the developing of spatial-temporal structures. The model parameters have been chosen so that 1) total population follows stable hyperbolic growth, consistently with the demographic data; 2) the evolution of the World-System goes through 11 stages corresponding to the main historical epochs.
NASA Astrophysics Data System (ADS)
Wiedermann, Marc; Donges, Jonathan F.; Kurths, Jürgen; Donner, Reik V.
2016-04-01
Networks with nodes embedded in a metric space have gained increasing interest in recent years. The effects of spatial embedding on the networks' structural characteristics, however, are rarely taken into account when studying their macroscopic properties. Here, we propose a hierarchy of null models to generate random surrogates from a given spatially embedded network that can preserve certain global and local statistics associated with the nodes' embedding in a metric space. Comparing the original network's and the resulting surrogates' global characteristics allows one to quantify to what extent these characteristics are already predetermined by the spatial embedding of the nodes and links. We apply our framework to various real-world spatial networks and show that the proposed models capture macroscopic properties of the networks under study much better than standard random network models that do not account for the nodes' spatial embedding. Depending on the actual performance of the proposed null models, the networks are categorized into different classes. Since many real-world complex networks are in fact spatial networks, the proposed approach is relevant for disentangling the underlying complex system structure from spatial embedding of nodes in many fields, ranging from social systems over infrastructure and neurophysiology to climatology.
Martínez, Kenia; Janssen, Joost; Pineda-Pardo, José Ángel; Carmona, Susanna; Román, Francisco Javier; Alemán-Gómez, Yasser; Garcia-Garcia, David; Escorial, Sergio; Quiroga, María Ángeles; Santarnecchi, Emiliano; Navas-Sánchez, Francisco Javier; Desco, Manuel; Arango, Celso; Colom, Roberto
2017-07-15
Global structural brain connectivity has been reported to be sex-dependent with women having increased interhemispheric connectivity (InterHc) and men having greater intrahemispheric connectivity (IntraHc). However, (a) smaller brains show greater InterHc, (b) larger brains show greater IntraHc, and (c) women have, on average, smaller brains than men. Therefore, sex differences in brain size may modulate sex differences in global brain connectivity. At the behavioural level, sex-dependent differences in connectivity are thought to contribute to men-women differences in spatial and verbal abilities. But this has never been tested at the individual level. The current study assessed whether individual differences in global structural connectome measures (InterHc, IntraHc and the ratio of InterHc relative to IntraHc) predict spatial and verbal ability while accounting for the effect of sex and brain size. The sample included forty men and forty women, who did neither differ in age nor in verbal and spatial latent components defined by a broad battery of tests and tasks. High-resolution T 1 -weighted and diffusion-weighted images were obtained for computing brain size and reconstructing the structural connectome. Results showed that men had higher IntraHc than women, while women had an increased ratio InterHc/IntraHc. However, these sex differences were modulated by brain size. Increased InterHc relative to IntraHc predicted higher spatial and verbal ability irrespective of sex and brain size. The positive correlations between the ratio InterHc/IntraHc and the spatial and verbal abilities were confirmed in 1000 random samples generated by bootstrapping. Therefore, sex differences in global structural connectome connectivity were modulated by brain size and did not underlie sex differences in verbal and spatial abilities. Rather, the level of dominance of InterHc over IntraHc may be associated with individual differences in verbal and spatial abilities in both men and women. Copyright © 2017 Elsevier Inc. All rights reserved.
Exploring new topography-based subgrid spatial structures for improving land surface modeling
Tesfa, Teklu K.; Leung, Lai-Yung Ruby
2017-02-22
Topography plays an important role in land surface processes through its influence on atmospheric forcing, soil and vegetation properties, and river network topology and drainage area. Land surface models with a spatial structure that captures spatial heterogeneity, which is directly affected by topography, may improve the representation of land surface processes. Previous studies found that land surface modeling, using subbasins instead of structured grids as computational units, improves the scalability of simulated runoff and streamflow processes. In this study, new land surface spatial structures are explored by further dividing subbasins into subgrid structures based on topographic properties, including surface elevation,more » slope and aspect. Two methods (local and global) of watershed discretization are applied to derive two types of subgrid structures (geo-located and non-geo-located) over the topographically diverse Columbia River basin in the northwestern United States. In the global method, a fixed elevation classification scheme is used to discretize subbasins. The local method utilizes concepts of hypsometric analysis to discretize each subbasin, using different elevation ranges that also naturally account for slope variations. The relative merits of the two methods and subgrid structures are investigated for their ability to capture topographic heterogeneity and the implications of this on representations of atmospheric forcing and land cover spatial patterns. Results showed that the local method reduces the standard deviation (SD) of subgrid surface elevation in the study domain by 17 to 19 % compared to the global method, highlighting the relative advantages of the local method for capturing subgrid topographic variations. The comparison between the two types of subgrid structures showed that the non-geo-located subgrid structures are more consistent across different area threshold values than the geo-located subgrid structures. Altogether the local method and non-geo-located subgrid structures effectively and robustly capture topographic, climatic and vegetation variability, which is important for land surface modeling.« less
Exploring new topography-based subgrid spatial structures for improving land surface modeling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tesfa, Teklu K.; Leung, Lai-Yung Ruby
Topography plays an important role in land surface processes through its influence on atmospheric forcing, soil and vegetation properties, and river network topology and drainage area. Land surface models with a spatial structure that captures spatial heterogeneity, which is directly affected by topography, may improve the representation of land surface processes. Previous studies found that land surface modeling, using subbasins instead of structured grids as computational units, improves the scalability of simulated runoff and streamflow processes. In this study, new land surface spatial structures are explored by further dividing subbasins into subgrid structures based on topographic properties, including surface elevation,more » slope and aspect. Two methods (local and global) of watershed discretization are applied to derive two types of subgrid structures (geo-located and non-geo-located) over the topographically diverse Columbia River basin in the northwestern United States. In the global method, a fixed elevation classification scheme is used to discretize subbasins. The local method utilizes concepts of hypsometric analysis to discretize each subbasin, using different elevation ranges that also naturally account for slope variations. The relative merits of the two methods and subgrid structures are investigated for their ability to capture topographic heterogeneity and the implications of this on representations of atmospheric forcing and land cover spatial patterns. Results showed that the local method reduces the standard deviation (SD) of subgrid surface elevation in the study domain by 17 to 19 % compared to the global method, highlighting the relative advantages of the local method for capturing subgrid topographic variations. The comparison between the two types of subgrid structures showed that the non-geo-located subgrid structures are more consistent across different area threshold values than the geo-located subgrid structures. Altogether the local method and non-geo-located subgrid structures effectively and robustly capture topographic, climatic and vegetation variability, which is important for land surface modeling.« less
NASA Astrophysics Data System (ADS)
Tugores, M. Pilar; Iglesias, Magdalena; Oñate, Dolores; Miquel, Joan
2016-02-01
In the Mediterranean Sea, the European anchovy (Engraulis encrasicolus) displays a key role in ecological and economical terms. Ensuring stock sustainability requires the provision of crucial information, such as species spatial distribution or unbiased abundance and precision estimates, so that management strategies can be defined (e.g. fishing quotas, temporal closure areas or marine protected areas MPA). Furthermore, the estimation of the precision of global abundance at different sampling intensities can be used for survey design optimisation. Geostatistics provide a priori unbiased estimations of the spatial structure, global abundance and precision for autocorrelated data. However, their application to non-Gaussian data introduces difficulties in the analysis in conjunction with low robustness or unbiasedness. The present study applied intrinsic geostatistics in two dimensions in order to (i) analyse the spatial distribution of anchovy in Spanish Western Mediterranean waters during the species' recruitment season, (ii) produce distribution maps, (iii) estimate global abundance and its precision, (iv) analyse the effect of changing the sampling intensity on the precision of global abundance estimates and, (v) evaluate the effects of several methodological options on the robustness of all the analysed parameters. The results suggested that while the spatial structure was usually non-robust to the tested methodological options when working with the original dataset, it became more robust for the transformed datasets (especially for the log-backtransformed dataset). The global abundance was always highly robust and the global precision was highly or moderately robust to most of the methodological options, except for data transformation.
Three dimensional simulation of spatial and temporal variability of stratospheric hydrogen chloride
NASA Technical Reports Server (NTRS)
Kaye, Jack A.; Rood, Richard B.; Jackman, Charles H.; Allen, Dale J.; Larson, Edmund M.
1989-01-01
Spatial and temporal variability of atmospheric HCl columns are calculated for January 1979 using a three-dimensional chemistry-transport model designed to provide the best possible representation of stratospheric transport. Large spatial and temporal variability of the HCl columns is shown to be correlated with lower stratospheric potential vorticity and thus to be of dynamical origin. Systematic longitudinal structure is correlated with planetary wave structure. These results can help place spatially and temporally isolated column and profile measurements in a regional and/or global perspective.
Herdic, Peter C; Houston, Brian H; Marcus, Martin H; Williams, Earl G; Baz, Amr M
2005-06-01
The surface and interior response of a Cessna Citation fuselage section under three different forcing functions (10-1000 Hz) is evaluated through spatially dense scanning measurements. Spatial Fourier analysis reveals that a point force applied to the stiffener grid provides a rich wavenumber response over a broad frequency range. The surface motion data show global structural modes (approximately < 150 Hz), superposition of global and local intrapanel responses (approximately 150-450 Hz), and intrapanel motion alone (approximately > 450 Hz). Some evidence of Bloch wave motion is observed, revealing classical stop/pass bands associated with stiffener periodicity. The interior response (approximately < 150 Hz) is dominated by global structural modes that force the interior cavity. Local intrapanel responses (approximately > 150 Hz) of the fuselage provide a broadband volume velocity source that strongly excites a high density of interior modes. Mode coupling between the structural response and the interior modes appears to be negligible due to a lack of frequency proximity and mismatches in the spatial distribution. A high degree-of-freedom finite element model of the fuselage section was developed as a predictive tool. The calculated response is in good agreement with the experimental result, yielding a general model development methodology for accurate prediction of structures with moderate to high complexity.
NASA Astrophysics Data System (ADS)
Ranaivomiarana, Narindra; Irisarri, François-Xavier; Bettebghor, Dimitri; Desmorat, Boris
2018-04-01
An optimization methodology to find concurrently material spatial distribution and material anisotropy repartition is proposed for orthotropic, linear and elastic two-dimensional membrane structures. The shape of the structure is parameterized by a density variable that determines the presence or absence of material. The polar method is used to parameterize a general orthotropic material by its elasticity tensor invariants by change of frame. A global structural stiffness maximization problem written as a compliance minimization problem is treated, and a volume constraint is applied. The compliance minimization can be put into a double minimization of complementary energy. An extension of the alternate directions algorithm is proposed to solve the double minimization problem. The algorithm iterates between local minimizations in each element of the structure and global minimizations. Thanks to the polar method, the local minimizations are solved explicitly providing analytical solutions. The global minimizations are performed with finite element calculations. The method is shown to be straightforward and efficient. Concurrent optimization of density and anisotropy distribution of a cantilever beam and a bridge are presented.
Species extinction thresholds in the face of spatially correlated periodic disturbance.
Liao, Jinbao; Ying, Zhixia; Hiebeler, David E; Wang, Yeqiao; Takada, Takenori; Nijs, Ivan
2015-10-20
The spatial correlation of disturbance is gaining attention in landscape ecology, but knowledge is still lacking on how species traits determine extinction thresholds under spatially correlated disturbance regimes. Here we develop a pair approximation model to explore species extinction risk in a lattice-structured landscape subject to aggregated periodic disturbance. Increasing disturbance extent and frequency accelerated population extinction irrespective of whether dispersal was local or global. Spatial correlation of disturbance likewise increased species extinction risk, but only for local dispersers. This indicates that models based on randomly simulated disturbances (e.g., mean-field or non-spatial models) may underestimate real extinction rates. Compared to local dispersal, species with global dispersal tolerated more severe disturbance, suggesting that the spatial correlation of disturbance favors long-range dispersal from an evolutionary perspective. Following disturbance, intraspecific competition greatly enhanced the extinction risk of distance-limited dispersers, while it surprisingly did not influence the extinction thresholds of global dispersers, apart from decreasing population density to some degree. As species respond differently to disturbance regimes with different spatiotemporal properties, different regimes may accommodate different species.
Organizational and Spatial Dynamics of Attentional Focusing in Hierarchically Structured Objects
ERIC Educational Resources Information Center
Yeari, Menahem; Goldsmith, Morris
2011-01-01
Is the focusing of visual attention object-based, space-based, both, or neither? Attentional focusing latencies in hierarchically structured compound-letter objects were examined, orthogonally manipulating global size (larger vs. smaller) and organizational complexity (two-level structure vs. three-level structure). In a dynamic focusing task,…
Exploring the Structure of Spatial Representations
Madl, Tamas; Franklin, Stan; Chen, Ke; Trappl, Robert; Montaldi, Daniela
2016-01-01
It has been suggested that the map-like representations that support human spatial memory are fragmented into sub-maps with local reference frames, rather than being unitary and global. However, the principles underlying the structure of these ‘cognitive maps’ are not well understood. We propose that the structure of the representations of navigation space arises from clustering within individual psychological spaces, i.e. from a process that groups together objects that are close in these spaces. Building on the ideas of representational geometry and similarity-based representations in cognitive science, we formulate methods for learning dissimilarity functions (metrics) characterizing participants’ psychological spaces. We show that these learned metrics, together with a probabilistic model of clustering based on the Bayesian cognition paradigm, allow prediction of participants’ cognitive map structures in advance. Apart from insights into spatial representation learning in human cognition, these methods could facilitate novel computational tools capable of using human-like spatial concepts. We also compare several features influencing spatial memory structure, including spatial distance, visual similarity and functional similarity, and report strong correlations between these dimensions and the grouping probability in participants’ spatial representations, providing further support for clustering in spatial memory. PMID:27347681
The spatial structure of transnational human activity.
Deutschmann, Emanuel
2016-09-01
Starting from conflictive predictions of hitherto disconnected debates in the natural and social sciences, this article examines the spatial structure of transnational human activity (THA) worldwide (a) across eight types of mobility and communication and (b) in its development over time. It is shown that the spatial structure of THA is similar to that of animal displacements and local-scale human motion in that it can be approximated by Lévy flights with heavy tails that obey power laws. Scaling exponent and power-law fit differ by type of THA, being highest in refuge-seeking and tourism and lowest in student exchange. Variance in the availability of resources and opportunities for satisfying associated needs appears to explain these differences. Over time (1960-2010), the Lévy-flight pattern remains intact and remarkably stable, contradicting the popular notion that socio-technological trends lead to a "death of distance." Humans have not become more "global" over time, they rather became more mobile in general, i.e. they move and communicate more at all distances. Hence, it would be more adequate to speak of "mobilization" than of "globalization." Longitudinal change occurs only in some types of THA and predominantly at short distances, indicating regional rather than global shifts. Copyright © 2016 Elsevier Inc. All rights reserved.
A protein-dependent side-chain rotamer library.
Bhuyan, Md Shariful Islam; Gao, Xin
2011-12-14
Protein side-chain packing problem has remained one of the key open problems in bioinformatics. The three main components of protein side-chain prediction methods are a rotamer library, an energy function and a search algorithm. Rotamer libraries summarize the existing knowledge of the experimentally determined structures quantitatively. Depending on how much contextual information is encoded, there are backbone-independent rotamer libraries and backbone-dependent rotamer libraries. Backbone-independent libraries only encode sequential information, whereas backbone-dependent libraries encode both sequential and locally structural information. However, side-chain conformations are determined by spatially local information, rather than sequentially local information. Since in the side-chain prediction problem, the backbone structure is given, spatially local information should ideally be encoded into the rotamer libraries. In this paper, we propose a new type of backbone-dependent rotamer library, which encodes structural information of all the spatially neighboring residues. We call it protein-dependent rotamer libraries. Given any rotamer library and a protein backbone structure, we first model the protein structure as a Markov random field. Then the marginal distributions are estimated by the inference algorithms, without doing global optimization or search. The rotamers from the given library are then re-ranked and associated with the updated probabilities. Experimental results demonstrate that the proposed protein-dependent libraries significantly outperform the widely used backbone-dependent libraries in terms of the side-chain prediction accuracy and the rotamer ranking ability. Furthermore, without global optimization/search, the side-chain prediction power of the protein-dependent library is still comparable to the global-search-based side-chain prediction methods.
SEMI-SUPERVISED OBJECT RECOGNITION USING STRUCTURE KERNEL
Wang, Botao; Xiong, Hongkai; Jiang, Xiaoqian; Ling, Fan
2013-01-01
Object recognition is a fundamental problem in computer vision. Part-based models offer a sparse, flexible representation of objects, but suffer from difficulties in training and often use standard kernels. In this paper, we propose a positive definite kernel called “structure kernel”, which measures the similarity of two part-based represented objects. The structure kernel has three terms: 1) the global term that measures the global visual similarity of two objects; 2) the part term that measures the visual similarity of corresponding parts; 3) the spatial term that measures the spatial similarity of geometric configuration of parts. The contribution of this paper is to generalize the discriminant capability of local kernels to complex part-based object models. Experimental results show that the proposed kernel exhibit higher accuracy than state-of-art approaches using standard kernels. PMID:23666108
Anti-correlation and subsector structure in financial systems
NASA Astrophysics Data System (ADS)
Jiang, X. F.; Zheng, B.
2012-02-01
With the random matrix theory, we study the spatial structure of the Chinese stock market, the American stock market and global market indices. After taking into account the signs of the components in the eigenvectors of the cross-correlation matrix, we detect the subsector structure of the financial systems. The positive and negative subsectors are anti-correlated with respect to each other in the corresponding eigenmode. The subsector structure is strong in the Chinese stock market, while somewhat weaker in the American stock market and global market indices. Characteristics of the subsector structures in different markets are revealed.
Characterizing 3D Vegetation Structure from Space: Mission Requirements
NASA Technical Reports Server (NTRS)
Hall, Forrest G.; Bergen, Kathleen; Blair, James B.; Dubayah, Ralph; Houghton, Richard; Hurtt, George; Kellndorfer, Josef; Lefsky, Michael; Ranson, Jon; Saatchi, Sasan;
2012-01-01
Human and natural forces are rapidly modifying the global distribution and structure of terrestrial ecosystems on which all of life depends, altering the global carbon cycle, affecting our climate now and for the foreseeable future, causing steep reductions in species diversity, and endangering Earth s sustainability. To understand changes and trends in terrestrial ecosystems and their functioning as carbon sources and sinks, and to characterize the impact of their changes on climate, habitat and biodiversity, new space assets are urgently needed to produce high spatial resolution global maps of the three-dimensional (3D) structure of vegetation, its biomass above ground, the carbon stored within and the implications for atmospheric green house gas concentrations and climate. These needs were articulated in a 2007 National Research Council (NRC) report (NRC, 2007) recommending a new satellite mission, DESDynI, carrying an L-band Polarized Synthetic Aperture Radar (Pol-SAR) and a multi-beam lidar (Light RAnging And Detection) operating at 1064 nm. The objectives of this paper are to articulate the importance of these new, multi-year, 3D vegetation structure and biomass measurements, to briefly review the feasibility of radar and lidar remote sensing technology to meet these requirements, to define the data products and measurement requirements, and to consider implications of mission durations. The paper addresses these objectives by synthesizing research results and other input from a broad community of terrestrial ecology, carbon cycle, and remote sensing scientists and working groups. We conclude that: (1) current global biomass and 3-D vegetation structure information is unsuitable for both science and management and policy. The only existing global datasets of biomass are approximations based on combining land cover type and representative carbon values, instead of measurements of actual biomass. Current measurement attempts based on radar and multispectral data have low explanatory power outside low biomass areas. There is no current capability for repeatable disturbance and regrowth estimates. (2) The science and policy needs for information on vegetation 3D structure can be successfully addressed by a mission capable of producing (i) a first global inventory of forest biomass with a spatial resolution 1km or finer and unprecedented accuracy (ii) annual global disturbance maps at a spatial resolution of 1 ha with subsequent biomass accumulation rates at resolutions of 1km or finer, and (iii) transects of vertical and horizontal forest structure with 30 m along-transect measurements globally at 25 m spatial resolution, essential for habitat characterization. We also show from the literature that lidar profile samples together with wall-to53 wall L-band quad-pol-SAR imagery and ecosystem dynamics models can work together to satisfy these vegetation 3D structure and biomass measurement requirements. Finally we argue that the technology readiness levels of combined pol-SAR and lidar instruments are adequate for space flight. Remaining to be worked out, are the particulars of a lidar/pol-SAR mission design that is feasible and at a minimum satisfies the information and measurement requirement articulated herein.
Global spectroscopic survey of cloud thermodynamic phase at high spatial resolution, 2005-2015
NASA Astrophysics Data System (ADS)
Thompson, David R.; Kahn, Brian H.; Green, Robert O.; Chien, Steve A.; Middleton, Elizabeth M.; Tran, Daniel Q.
2018-02-01
The distribution of ice, liquid, and mixed phase clouds is important for Earth's planetary radiation budget, impacting cloud optical properties, evolution, and solar reflectivity. Most remote orbital thermodynamic phase measurements observe kilometer scales and are insensitive to mixed phases. This under-constrains important processes with outsize radiative forcing impact, such as spatial partitioning in mixed phase clouds. To date, the fine spatial structure of cloud phase has not been measured at global scales. Imaging spectroscopy of reflected solar energy from 1.4 to 1.8 µm can address this gap: it directly measures ice and water absorption, a robust indicator of cloud top thermodynamic phase, with spatial resolution of tens to hundreds of meters. We report the first such global high spatial resolution survey based on data from 2005 to 2015 acquired by the Hyperion imaging spectrometer onboard NASA's Earth Observer 1 (EO-1) spacecraft. Seasonal and latitudinal distributions corroborate observations by the Atmospheric Infrared Sounder (AIRS). For extratropical cloud systems, just 25 % of variance observed at GCM grid scales of 100 km was related to irreducible measurement error, while 75 % was explained by spatial correlations possible at finer resolutions.
Riboswitches: emerging themes in RNA structure and function.
Montange, Rebecca K; Batey, Robert T
2008-01-01
Riboswitches are RNAs capable of binding cellular metabolites using a diverse array of secondary and tertiary structures to modulate gene expression. The recent determination of the three-dimensional structures of parts of six different riboswitches illuminates common features that allow riboswitches to be grouped into one of two types. Type I riboswitches, as exemplified by the purine riboswitch, are characterized by a single, localized binding pocket supported by a largely pre-established global fold. This arrangement limits ligand-induced conformational changes in the RNA to a small region. In contrast, Type II riboswitches, such as the thiamine pyrophosphate riboswitch, contain binding pockets split into at least two spatially distinct sites. As a result, binding induces both local changes to the binding pocket and global architecture. Similar organizational themes are found in other noncoding RNAs, making it possible to begin to build a hierarchical classification of RNA structure based on the spatial organization of their active sites and associated secondary structural elements.
Spatially-explicit models of global tree density.
Glick, Henry B; Bettigole, Charlie; Maynard, Daniel S; Covey, Kristofer R; Smith, Jeffrey R; Crowther, Thomas W
2016-08-16
Remote sensing and geographic analysis of woody vegetation provide means of evaluating the distribution of natural resources, patterns of biodiversity and ecosystem structure, and socio-economic drivers of resource utilization. While these methods bring geographic datasets with global coverage into our day-to-day analytic spheres, many of the studies that rely on these strategies do not capitalize on the extensive collection of existing field data. We present the methods and maps associated with the first spatially-explicit models of global tree density, which relied on over 420,000 forest inventory field plots from around the world. This research is the result of a collaborative effort engaging over 20 scientists and institutions, and capitalizes on an array of analytical strategies. Our spatial data products offer precise estimates of the number of trees at global and biome scales, but should not be used for local-level estimation. At larger scales, these datasets can contribute valuable insight into resource management, ecological modelling efforts, and the quantification of ecosystem services.
Ip, Ifan Betina; Bridge, Holly; Parker, Andrew J.
2014-01-01
An important advance in the study of visual attention has been the identification of a non-spatial component of attention that enhances the response to similar features or objects across the visual field. Here we test whether this non-spatial component can co-select individual features that are perceptually bound into a coherent object. We combined human psychophysics and functional magnetic resonance imaging (fMRI) to demonstrate the ability to co-select individual features from perceptually coherent objects. Our study used binocular disparity and visual motion to define disparity structure-from-motion (dSFM) stimuli. Although the spatial attention system induced strong modulations of the fMRI response in visual regions, the non-spatial system’s ability to co-select features of the dSFM stimulus was less pronounced and variable across subjects. Our results demonstrate that feature and global feature attention effects are variable across participants, suggesting that the feature attention system may be limited in its ability to automatically select features within the attended object. Careful comparison of the task design suggests that even minor differences in the perceptual task may be critical in revealing the presence of global feature attention. PMID:24936974
Horizontal Temperature Variability in the Stratosphere: Global Variations Inferred from CRISTA Data
NASA Technical Reports Server (NTRS)
Eidmann, G.; Offermann, D.; Jarisch, M.; Preusse, P.; Eckermann, S. D.; Schmidlin, F. J.
2001-01-01
In two separate orbital campaigns (November, 1994 and August, 1997), the Cryogenic Infrared Spectrometers and Telescopes for the Atmosphere (CRISTA) instrument acquired global stratospheric data of high accuracy and high spatial resolution. The standard limb-scanned CRISTA measurements resolved atmospheric spatial structures with vertical dimensions greater than or equal to 1.5 - 2 km and horizontal dimensions is greater than or equal to 100 - 200 km. A fluctuation analysis of horizontal temperature distributions derived from these data is presented. This method is somewhat complementary to conventional power-spectral analysis techniques.
Ajzenberg, Daniel; Collinet, Frédéric; Aubert, Dominique; Villena, Isabelle; Dardé, Marie-Laure; Devillard, Sébastien
2015-12-01
Congenital toxoplasmosis involves Toxoplasma gondii type II strains in 95% of cases in France. We used spatial principal component analysis (sPCA) and 15 microsatellite markers to investigate the spatial genetic structure of type II strains involved in 240 cases of congenital toxoplasmosis in France from 2002 through 2009. Mailing addresses of patients were geo-referenced a posteriori in decimal degrees and categorized into urban or rural areas of residence. No spatial genetic structure was found for type II strains that infected mothers who were living in urban areas, but a global spatial genetic structure was found for those that infected mothers who were living in a rural environment. Our results suggest that sources of infection by T. gondii are different in rural and urban areas in France, and advocate for targeted messages in the prevention of toxoplasmosis according to the type of residence of susceptible people. Copyright © 2015 Elsevier B.V. All rights reserved.
Regions of mid-level human visual cortex sensitive to the global coherence of local image patches.
Mannion, Damien J; Kersten, Daniel J; Olman, Cheryl A
2014-08-01
The global structural arrangement and spatial layout of the visual environment must be derived from the integration of local signals represented in the lower tiers of the visual system. This interaction between the spatially local and global properties of visual stimulation underlies many of our visual capacities, and how this is achieved in the brain is a central question for visual and cognitive neuroscience. Here, we examine the sensitivity of regions of the posterior human brain to the global coordination of spatially displaced naturalistic image patches. We presented observers with image patches in two circular apertures to the left and right of central fixation, with the patches drawn from either the same (coherent condition) or different (noncoherent condition) extended image. Using fMRI at 7T (n = 5), we find that global coherence affected signal amplitude in regions of dorsal mid-level cortex. Furthermore, we find that extensive regions of mid-level visual cortex contained information in their local activity pattern that could discriminate coherent and noncoherent stimuli. These findings indicate that the global coordination of local naturalistic image information has important consequences for the processing in human mid-level visual cortex.
Simulated GOLD Observations of Atmospheric Waves
NASA Astrophysics Data System (ADS)
Correira, J.; Evans, J. S.; Lumpe, J. D.; Rusch, D. W.; Chandran, A.; Eastes, R.; Codrescu, M.
2016-12-01
The Global-scale Observations of the Limb and Disk (GOLD) mission will measure structures in the Earth's airglow layer due to dynamical forcing by vertically and horizontally propagating waves. These measurements focus on global-scale structures, including compositional and temperature responses resulting from dynamical forcing. Daytime observations of far-UV emissions by GOLD will be used to generate two-dimensional maps of the ratio of atomic oxygen and molecular nitrogen column densities (ΣO/N2 ) as well as neutral temperature that provide signatures of large-scale spatial structure. In this presentation, we use simulations to demonstrate GOLD's capability to deduce periodicities and spatial dimensions of large-scale waves from the spatial and temporal evolution observed in composition and temperature maps. Our simulations include sophisticated forward modeling of the upper atmospheric airglow that properly accounts for anisotropy in neutral and ion composition, temperature, and solar illumination. Neutral densities and temperatures used in the simulations are obtained from global circulation and climatology models that have been perturbed by propagating waves with a range of amplitudes, periods, and sources of excitation. Modeling of airglow emission and predictions of ΣO/N2 and neutral temperatures are performed with the Atmospheric Ultraviolet Radiance Integrated Code (AURIC) and associated derived product algorithms. Predicted structure in ΣO/N2 and neutral temperature due to dynamical forcing by propagating waves is compared to existing observations. Realistic GOLD Level 2 data products are generated from simulated airglow emission using algorithm code that will be implemented operationally at the GOLD Science Data Center.
Spatial scaling of bacterial community diversity at shallow hydrothermal vents: a global comparison
NASA Astrophysics Data System (ADS)
Pop Ristova, P.; Hassenrueck, C.; Molari, M.; Fink, A.; Bühring, S. I.
2016-02-01
Marine shallow hydrothermal vents are extreme environments, often characterized by discharge of fluids with e.g. high temperatures, low pH, and laden with elements toxic to higher organisms. They occur at continental margins around the world's oceans, but represent fragmented, isolated habitats of locally small areal coverage. Microorganisms contribute the main biomass at shallow hydrothermal vent ecosystems and build the basis of the food chain by autotrophic fixation of carbon both via chemosynthesis and photosynthesis, occurring simultaneously. Despite their importance and unique capacity to adapt to these extreme environments, little is known about the spatial scales on which the alpha- and beta-diversity of microbial communities vary at shallow vents, and how the geochemical habitat heterogeneity influences shallow vent biodiversity. Here for the first time we investigated the spatial scaling of microbial biodiversity patterns and their interconnectivity at geochemically diverse shallow vents on a global scale. This study presents data on the comparison of bacterial community structures on large (> 1000 km) and small (0.1 - 100 m) spatial scales as derived from ARISA and Illumina sequencing. Despite the fragmented global distribution of shallow hydrothermal vents, similarity of vent bacterial communities decreased with geographic distance, confirming the ubiquity of distance-decay relationship. Moreover, at all investigated vents, pH was the main factor locally structuring these communities, while temperature influenced both the alpha- and beta-diversity.
A global database of ant species abundances
Gibb, Heloise; Dunn, Rob R.; Sanders, Nathan J.; Grossman, Blair F.; Photakis, Manoli; Abril, Silvia; Agosti, Donat; Andersen, Alan N.; Angulo, Elena; Armbrecht, Ingre; Arnan, Xavier; Baccaro, Fabricio B.; Bishop, Tom R.; Boulay, Raphael; Bruhl, Carsten; Castracani, Cristina; Cerda, Xim; Del Toro, Israel; Delsinne, Thibaut; Diaz, Mireia; Donoso, David A.; Ellison, Aaron M.; Enriquez, Martha L.; Fayle, Tom M.; Feener Jr., Donald H.; Fisher, Brian L.; Fisher, Robert N.; Fitpatrick, Matthew C.; Gomez, Cristanto; Gotelli, Nicholas J.; Gove, Aaron; Grasso, Donato A.; Groc, Sarah; Guenard, Benoit; Gunawardene, Nihara; Heterick, Brian; Hoffmann, Benjamin; Janda, Milan; Jenkins, Clinton; Kaspari, Michael; Klimes, Petr; Lach, Lori; Laeger, Thomas; Lattke, John; Leponce, Maurice; Lessard, Jean-Philippe; Longino, John; Lucky, Andrea; Luke, Sarah H.; Majer, Jonathan; McGlynn, Terrence P.; Menke, Sean; Mezger, Dirk; Mori, Alessandra; Moses, Jimmy; Munyai, Thinandavha Caswell; Pacheco, Renata; Paknia, Omid; Pearce-Duvet, Jessica; Pfeiffer, Martin; Philpott, Stacy M.; Resasco, Julian; Retana, Javier; Silva, Rogerio R.; Sorger, Magdalena D.; Souza, Jorge; Suarez, Andrew V.; Tista, Melanie; Vasconcelos, Heraldo L.; Vonshak, Merav; Weiser, Michael D.; Yates, Michelle; Parr, Catherine L.
2017-01-01
What forces structure ecological assemblages? A key limitation to general insights about assemblage structure is the availability of data that are collected at a small spatial grain (local assemblages) and a large spatial extent (global coverage). Here, we present published and unpublished data from 51,388 ant abundance and occurrence records of more than 2693 species and 7953 morphospecies from local assemblages collected at 4212 locations around the world. Ants were selected because they are diverse and abundant globally, comprise a large fraction of animal biomass in most terrestrial communities, and are key contributors to a range of ecosystem functions. Data were collected between 1949 and 2014, and include, for each geo-referenced sampling site, both the identity of the ants collected and details of sampling design, habitat type and degree of disturbance. The aim of compiling this dataset was to provide comprehensive species abundance data in order to test relationships between assemblage structure and environmental and biogeographic factors. Data were collected using a variety of standardised methods, such as pitfall and Winkler traps, and will be valuable for studies investigating large-scale forces structuring local assemblages. Understanding such relationships is particularly critical under current rates of global change. We encourage authors holding additional data on systematically collected ant assemblages, especially those in dry and cold, and remote areas, to contact us and contribute their data to this growing dataset.
NASA Technical Reports Server (NTRS)
Didkovsky, L.; Gurman, J. B.
2013-01-01
Solar activity during 2007 - 2009 was very low, causing anomalously low thermospheric density. A comparison of solar extreme ultraviolet (EUV) irradiance in the He II spectral band (26 to 34 nm) from the Solar Extreme ultraviolet Monitor (SEM), one of instruments on the Charge Element and Isotope Analysis System (CELIAS) on board the Solar and Heliospheric Observatory (SOHO) for the two latest solar minima showed a decrease of the absolute irradiance of about 15 +/- 6 % during the solar minimum between Cycles 23 and 24 compared with the Cycle 22/23 minimum when a yearly running-mean filter was used. We found that some local, shorter-term minima including those with the same absolute EUV flux in the SEM spectral band show a higher concentration of spatial power in the global network structure from the 30.4 nm SOHO/Extreme ultraviolet Imaging Telescope (EIT) images for the local minimum of 1996 compared with the minima of 2008 - 2011.We interpret this higher concentration of spatial power in the transition region's global network structure as a larger number of larger-area features on the solar disk. These changes in the global network structure during solar minima may characterize, in part, the geo-effectiveness of the solar He II EUV irradiance in addition to the estimations based on its absolute levels.
Atlas of the global distribution of atmospheric heating during the global weather experiment
NASA Technical Reports Server (NTRS)
Schaack, Todd K.; Johnson, Donald R.
1991-01-01
Global distributions of atmospheric heating for the annual cycle of the Global Weather Experiment are estimated from the European Centre for Medium-Range Weather Forecasts (ECMWF) Level 3b data set. Distributions of monthly, seasonally, and annually averaged heating are presented for isentropic and isobaric layers within the troposphere and for the troposphere as a whole. The distributions depict a large-scale structure of atmospheric heating that appears spatially and temporally consistent with known features of the global circulation and the seasonal evolution.
Spatiotemporal correlation structure of the Earth's surface temperature
NASA Astrophysics Data System (ADS)
Fredriksen, Hege-Beate; Rypdal, Kristoffer; Rypdal, Martin
2015-04-01
We investigate the spatiotemporal temperature variability for several gridded instrumental and climate model data sets. The temporal variability is analysed by estimating the power spectral density and studying the differences between local and global temperatures, land and sea, and among local temperature records at different locations. The spatiotemporal correlation structure is analysed through cross-spectra that allow us to compute frequency-dependent spatial autocorrelation functions (ACFs). Our results are then compared to theoretical spectra and frequency-dependent spatial ACFs derived from a fractional stochastic-diffusive energy balance model (FEBM). From the FEBM we expect both local and global temperatures to have a long-range persistent temporal behaviour, and the spectral exponent (β) is expected to increase by a factor of two when going from local to global scales. Our comparison of the average local spectrum and the global spectrum shows good agreement with this model, although the FEBM has so far only been studied for a pure land planet and a pure ocean planet, respectively, with no seasonal forcing. Hence it cannot capture the substantial variability among the local spectra, in particular between the spectra for land and sea, and for equatorial and non-equatorial temperatures. Both models and observation data show that land temperatures in general have a low persistence, while sea surface temperatures show a higher, and also more variable degree of persistence. Near the equator the spectra deviate from the power-law shape expected from the FEBM. Instead we observe large variability at time scales of a few years due to ENSO, and a flat spectrum at longer time scales, making the spectrum more reminiscent of that of a red noise process. From the frequency-dependent spatial ACFs we observe that the spatial correlation length increases with increasing time scale, which is also consistent with the FEBM. One consequence of this is that longer-lasting structures must also be wider in space. The spatial correlation length is also observed to be longer for land than for sea. The climate model simulations studied are mainly CMIP5 control runs of length 500-1000 yr. On time scales up to several centuries we do not observe that the difference between the local and global spectral exponents vanish. This also follows from the FEBM and shows that the dynamics is spatiotemporal (not just temporal) even on these time scales.
Fast Magnetotail Reconnection: Challenge to Global MHD Modeling
NASA Astrophysics Data System (ADS)
Kuznetsova, M. M.; Hesse, M.; Rastaetter, L.; Toth, G.; de Zeeuw, D.; Gombosi, T.
2005-05-01
Representation of fast magnetotail reconnection rates during substorm onset is one of the major challenges to global MHD modeling. Our previous comparative study of collisionless magnetic reconnection in GEM Challenge geometry demonstrated that the reconnection rate is controlled by ion nongyrotropic behavior near the reconnection site and that it can be described in terms of nongyrotropic corrections to the magnetic induction equation. To further test the approach we performed MHD simulations with nongyrotropic corrections of forced reconnection for the Newton Challenge setup. As a next step we employ the global MHD code BATSRUS and test different methods to model fast magnetotail reconnection rates by introducing non-ideal corrections to the induction equation in terms of nongyrotropic corrections, spatially localized resistivity, or current dependent resistivity. The BATSRUS adaptive grid structure allows to perform global simulations with spatial resolution near the reconnection site comparable with spatial resolution of local MHD simulations for the Newton Challenge. We select solar wind conditions which drive the accumulation of magnetic field in the tail lobes and subsequent magnetic reconnection and energy release. Testing the ability of global MHD models to describe magnetotail evolution during substroms is one of the elements of science based validation efforts at the Community Coordinated Modeling Center.
Forest product trade impacts of an invasive species: modeling structure and intervention trade-offs
Jeffrey Prestemon; Shushuai Zhu; James A. Turner; Joseph Buongiorno; Ruhong Li
2006-01-01
Asian gypsy and nun moth introductions into the United States, possibly arriving on imported Siberian coniferous logs, threaten domestic forests and product markers and could have global market consequences. We simulate, using the Global Forest Products Model (a spatial equilibrium model of the world forest sector), the consequences under current policies of a...
NASA Technical Reports Server (NTRS)
1984-01-01
Topics discussed at the symposium include hardware, geographic information system (GIS) implementation, processing remotely sensed data, spatial data structures, and NASA programs in remote sensing information systems. Attention is also given GIS applications, advanced techniques, artificial intelligence, graphics, spatial navigation, and classification. Papers are included on the design of computer software for geographic image processing, concepts for a global resource information system, algorithm development for spatial operators, and an application of expert systems technology to remotely sensed image analysis.
Global control of colored moiré pattern in layered optical structures
NASA Astrophysics Data System (ADS)
Li, Kunyang; Zhou, Yangui; Pan, Di; Ma, Xueyan; Ma, Hongqin; Liang, Haowen; Zhou, Jianying
2018-05-01
Accurate description of visual effect of colored moiré pattern caused by layered optical structures consisting of gratings and Fresnel lens is proposed in this work. The colored moiré arising from the periodic and quasi-periodic structures is numerically simulated and experimentally verified. It is found that the visibility of moiré pattern generated by refractive optical elements is related to not only the spatial structures of gratings but also the viewing angles. To effectively control the moiré visibility, two constituting gratings are slightly separated. Such scheme is proved to be effective to globally eliminate moiré pattern for displays containing refractive optical films with quasi-periodic structures.
Guo, Qiang; Xu, Pengpeng; Pei, Xin; Wong, S C; Yao, Danya
2017-02-01
Pedestrian safety is increasingly recognized as a major public health concern. Extensive safety studies have been conducted to examine the influence of multiple variables on the occurrence of pedestrian-vehicle crashes. However, the explicit relationship between pedestrian safety and road network characteristics remains unknown. This study particularly focused on the role of different road network patterns on the occurrence of crashes involving pedestrians. A global integration index via space syntax was introduced to quantify the topological structures of road networks. The Bayesian Poisson-lognormal (PLN) models with conditional autoregressive (CAR) prior were then developed via three different proximity structures: contiguity, geometry-centroid distance, and road network connectivity. The models were also compared with the PLN counterpart without spatial correlation effects. The analysis was based on a comprehensive crash dataset from 131 selected traffic analysis zones in Hong Kong. The results indicated that higher global integration was associated with more pedestrian-vehicle crashes; the irregular pattern network was proved to be safest in terms of pedestrian crash occurrences, whereas the grid pattern was the least safe; the CAR model with a neighborhood structure based on road network connectivity was found to outperform in model goodness-of-fit, implying the importance of accurately accounting for spatial correlation when modeling spatially aggregated crash data. Copyright © 2016 Elsevier Ltd. All rights reserved.
Sun, Jin; Kelbert, Anna; Egbert, G.D.
2015-01-01
Long-period global-scale electromagnetic induction studies of deep Earth conductivity are based almost exclusively on magnetovariational methods and require accurate models of external source spatial structure. We describe approaches to inverting for both the external sources and three-dimensional (3-D) conductivity variations and apply these methods to long-period (T≥1.2 days) geomagnetic observatory data. Our scheme involves three steps: (1) Observatory data from 60 years (only partly overlapping and with many large gaps) are reduced and merged into dominant spatial modes using a scheme based on frequency domain principal components. (2) Resulting modes are inverted for corresponding external source spatial structure, using a simplified conductivity model with radial variations overlain by a two-dimensional thin sheet. The source inversion is regularized using a physically based source covariance, generated through superposition of correlated tilted zonal (quasi-dipole) current loops, representing ionospheric source complexity smoothed by Earth rotation. Free parameters in the source covariance model are tuned by a leave-one-out cross-validation scheme. (3) The estimated data modes are inverted for 3-D Earth conductivity, assuming the source excitation estimated in step 2. Together, these developments constitute key components in a practical scheme for simultaneous inversion of the catalogue of historical and modern observatory data for external source spatial structure and 3-D Earth conductivity.
Geocoronal Imaging from the Deep Space Gateway
NASA Astrophysics Data System (ADS)
Waldrop, L.; Immel, T.; Clarke, J.; Fillingim, M.; Rider, K.; Qin, J.; Bhattacharyya, D.; Doe, R.
2018-02-01
UV imaging of geocoronal emission at high spatial and temporal resolution from deep space would provide crucial new constraints on global exospheric structure and dynamics, significantly advancing models of space weather and atmospheric escape.
A global database of ant species abundances.
Gibb, Heloise; Dunn, Rob R; Sanders, Nathan J; Grossman, Blair F; Photakis, Manoli; Abril, Silvia; Agosti, Donat; Andersen, Alan N; Angulo, Elena; Armbrecht, Inge; Arnan, Xavier; Baccaro, Fabricio B; Bishop, Tom R; Boulay, Raphaël; Brühl, Carsten; Castracani, Cristina; Cerda, Xim; Del Toro, Israel; Delsinne, Thibaut; Diaz, Mireia; Donoso, David A; Ellison, Aaron M; Enriquez, Martha L; Fayle, Tom M; Feener, Donald H; Fisher, Brian L; Fisher, Robert N; Fitzpatrick, Matthew C; Gómez, Crisanto; Gotelli, Nicholas J; Gove, Aaron; Grasso, Donato A; Groc, Sarah; Guenard, Benoit; Gunawardene, Nihara; Heterick, Brian; Hoffmann, Benjamin; Janda, Milan; Jenkins, Clinton; Kaspari, Michael; Klimes, Petr; Lach, Lori; Laeger, Thomas; Lattke, John; Leponce, Maurice; Lessard, Jean-Philippe; Longino, John; Lucky, Andrea; Luke, Sarah H; Majer, Jonathan; McGlynn, Terrence P; Menke, Sean; Mezger, Dirk; Mori, Alessandra; Moses, Jimmy; Munyai, Thinandavha Caswell; Pacheco, Renata; Paknia, Omid; Pearce-Duvet, Jessica; Pfeiffer, Martin; Philpott, Stacy M; Resasco, Julian; Retana, Javier; Silva, Rogerio R; Sorger, Magdalena D; Souza, Jorge; Suarez, Andrew; Tista, Melanie; Vasconcelos, Heraldo L; Vonshak, Merav; Weiser, Michael D; Yates, Michelle; Parr, Catherine L
2017-03-01
What forces structure ecological assemblages? A key limitation to general insights about assemblage structure is the availability of data that are collected at a small spatial grain (local assemblages) and a large spatial extent (global coverage). Here, we present published and unpublished data from 51 ,388 ant abundance and occurrence records of more than 2,693 species and 7,953 morphospecies from local assemblages collected at 4,212 locations around the world. Ants were selected because they are diverse and abundant globally, comprise a large fraction of animal biomass in most terrestrial communities, and are key contributors to a range of ecosystem functions. Data were collected between 1949 and 2014, and include, for each geo-referenced sampling site, both the identity of the ants collected and details of sampling design, habitat type, and degree of disturbance. The aim of compiling this data set was to provide comprehensive species abundance data in order to test relationships between assemblage structure and environmental and biogeographic factors. Data were collected using a variety of standardized methods, such as pitfall and Winkler traps, and will be valuable for studies investigating large-scale forces structuring local assemblages. Understanding such relationships is particularly critical under current rates of global change. We encourage authors holding additional data on systematically collected ant assemblages, especially those in dry and cold, and remote areas, to contact us and contribute their data to this growing data set. © 2016 by the Ecological Society of America.
The Flora Mission for Ecosystem Composition, Disturbance and Productivity
NASA Technical Reports Server (NTRS)
Asner, Gregory P.; Knox, Robert G.; Green, Robert O.; Ungar, Stephen G.
2005-01-01
Global land use and climate variability alter ecosystem conditions - including structure, function, and biological diversity - at a pace that requires unambiguous observations from satellite vantage points. Current global measurements are limited to general land cover, some disturbances, vegetation leaf area index, and canopy energy absorption. Flora is a pathfinding mission that provides new measurements of ecosystem structure, function, and diversity to understand the spatial and temporal dynamics of human and natural disturbances, and the biogeochemical and physiological responses of ecosystems to disturbance. The mission relies upon high-fidelity imaging spectroscopy to deliver full optical spectrum measurements (400-2500 nm) of the global land surface on a monthly time step at 45 meter spatial resolution for three years. The Flora measurement objectives are: (i) fractional cover of biological materials, (ii) canopy water content, (iii) vegetation pigments and light-use efficiency, (iv) plant functional types, (v) fire fuel load and fuel moisture content, and (vi) disturbance occurrence, type and intensity. These measurements are made using a multi-parameter, spectroscopic analysis approach afforded by observation of the full optical spectrum. Combining these measurements, along with additional observations from multispectral sensors, Flora will far advance global studies and models of ecosystem dynamics and change.
Tropical-Forest Structure and Biomass Dynamics from TanDEM-X Radar Interferometry
Robert Treuhaft; Yang Lei; Fabio Gonçalves; Michael Keller; João Santos; Maxim Neumann; André Almeida
2017-01-01
Changes in tropical-forest structure and aboveground biomass (AGB) contribute directly to atmospheric changes in CO2, which, in turn, bear on global climate. This paper demonstrates the capability of radar-interferometric phase-height time series at X-band (wavelength = 3 cm) to monitor changes in vertical structure and AGB, with sub-hectare and monthly spatial and...
Global structure of magnetorotationally turbulent protoplanetary discs
NASA Astrophysics Data System (ADS)
Flaig, M.; Ruoff, Patrick; Kley, W.; Kissmann, R.
2012-03-01
The aim of this paper is to investigate the spatial structure of a protoplanetary disc whose dynamics is governed by magnetorotational turbulence. We perform a series of local three-dimensional chemoradiative magnetohydrodynamic simulations located at different radii of a disc which is twice as massive as the standard minimum mass solar nebula of Hayashi. The ionization state of the disc is calculated by including collisional ionization, stellar X-rays, cosmic rays and the decay of radionuclides as ionization sources, and by solving a simplified chemical network which includes the effect of the absorption of free charges by μm-sized dust grains. In the region where the ionization is too low to ensure good coupling between matter and magnetic fields, a non-turbulent central 'dead zone' forms, which ranges approximately from a distance of 2 to 4 au from the central star. The approach taken in this work allows for the first time to derive the global spatial structure of a protoplanetary disc from a set of physically realistic numerical simulations.
A hierarchical structure for automatic meshing and adaptive FEM analysis
NASA Technical Reports Server (NTRS)
Kela, Ajay; Saxena, Mukul; Perucchio, Renato
1987-01-01
A new algorithm for generating automatically, from solid models of mechanical parts, finite element meshes that are organized as spatially addressable quaternary trees (for 2-D work) or octal trees (for 3-D work) is discussed. Because such meshes are inherently hierarchical as well as spatially addressable, they permit efficient substructuring techniques to be used for both global analysis and incremental remeshing and reanalysis. The global and incremental techniques are summarized and some results from an experimental closed loop 2-D system in which meshing, analysis, error evaluation, and remeshing and reanalysis are done automatically and adaptively are presented. The implementation of 3-D work is briefly discussed.
Forest Attributes from Radar Interferometric Structure and its Fusion with Optical Remote Sensing
NASA Technical Reports Server (NTRS)
Treuhaft, Robert N.; Law, Beverly E.; Asner, Gregory P.
2004-01-01
The possibility of global, three-dimensional remote sensing of forest structure with interferometric synthetic aperture radar (InSAR) bears on important forest ecological processes, particularly the carbon cycle. InSAR supplements two-dimensional remote sensing with information in the vertical dimension. Its strengths in potential for global coverage complement those of lidar (light detecting and ranging), which has the potential for high-accuracy vertical profiles over small areas. InSAR derives its sensitivity to forest vertical structure from the differences in signals received by two, spatially separate radar receivers. Estimation of parameters describing vertical structure requires multiple-polarization, multiple-frequency, or multiple-baseline InSAR. Combining InSAR with complementary remote sensing techniques, such as hyperspectral optical imaging and lidar, can enhance vertical-structure estimates and consequent biophysical quantities of importance to ecologists, such as biomass. Future InSAR experiments will supplement recent airborne and spaceborne demonstrations, and together with inputs from ecologists regarding structure, they will suggest designs for future spaceborne strategies for measuring global vegetation structure.
Reconstruction of biofilm images: combining local and global structural parameters
DOE Office of Scientific and Technical Information (OSTI.GOV)
Resat, Haluk; Renslow, Ryan S.; Beyenal, Haluk
2014-10-20
Digitized images can be used for quantitative comparison of biofilms grown under different conditions. Using biofilm image reconstruction, it was previously found that biofilms with a completely different look can have nearly identical structural parameters and that the most commonly utilized global structural parameters were not sufficient to uniquely define these biofilms. Here, additional local and global parameters are introduced to show that these parameters considerably increase the reliability of the image reconstruction process. Assessment using human evaluators indicated that the correct identification rate of the reconstructed images increased from 50% to 72% with the introduction of the new parametersmore » into the reconstruction procedure. An expanded set of parameters especially improved the identification of biofilm structures with internal orientational features and of structures in which colony sizes and spatial locations varied. Hence, the newly introduced structural parameter sets helped to better classify the biofilms by incorporating finer local structural details into the reconstruction process.« less
NASA Astrophysics Data System (ADS)
Moore, J. K.
2016-02-01
The efficiency of the biological pump is influenced by complex interactions between chemical, biological, and physical processes. The efficiency of export out of surface waters and down through the water column to the deep ocean has been linked to a number of factors including biota community composition, production of mineral ballast components, physical aggregation and disaggregation processes, and ocean oxygen concentrations. I will examine spatial patterns in the export ratio and the efficiency of the biological pump at the global scale using the Community Earth System Model (CESM). There are strong spatial variations in the export efficiency as simulated by the CESM, which are strongly correlated with new nutrient inputs to the euphotic zone and their impacts on phytoplankton community structure. I will compare CESM simulations that include dynamic, variable export ratios driven by the phytoplankton community structure, with simulations that impose a near-constant export ratio to examine the effects of export efficiency on nutrient and surface chlorophyll distributions. The model predicted export ratios will also be compared with recent satellite-based estimates.
Kandala, Sridhar; Nolan, Dan; Laumann, Timothy O.; Power, Jonathan D.; Adeyemo, Babatunde; Harms, Michael P.; Petersen, Steven E.; Barch, Deanna M.
2016-01-01
Abstract Like all resting-state functional connectivity data, the data from the Human Connectome Project (HCP) are adversely affected by structured noise artifacts arising from head motion and physiological processes. Functional connectivity estimates (Pearson's correlation coefficients) were inflated for high-motion time points and for high-motion participants. This inflation occurred across the brain, suggesting the presence of globally distributed artifacts. The degree of inflation was further increased for connections between nearby regions compared with distant regions, suggesting the presence of distance-dependent spatially specific artifacts. We evaluated several denoising methods: censoring high-motion time points, motion regression, the FMRIB independent component analysis-based X-noiseifier (FIX), and mean grayordinate time series regression (MGTR; as a proxy for global signal regression). The results suggest that FIX denoising reduced both types of artifacts, but left substantial global artifacts behind. MGTR significantly reduced global artifacts, but left substantial spatially specific artifacts behind. Censoring high-motion time points resulted in a small reduction of distance-dependent and global artifacts, eliminating neither type. All denoising strategies left differences between high- and low-motion participants, but only MGTR substantially reduced those differences. Ultimately, functional connectivity estimates from HCP data showed spatially specific and globally distributed artifacts, and the most effective approach to address both types of motion-correlated artifacts was a combination of FIX and MGTR. PMID:27571276
Spatial and Temporal Trends of Global Pollination Benefit
Lautenbach, Sven; Seppelt, Ralf; Liebscher, Juliane; Dormann, Carsten F.
2012-01-01
Pollination is a well-studied and at the same time a threatened ecosystem service. A significant part of global crop production depends on or profits from pollination by animals. Using detailed information on global crop yields of 60 pollination dependent or profiting crops, we provide a map of global pollination benefits on a 5′ by 5′ latitude-longitude grid. The current spatial pattern of pollination benefits is only partly correlated with climate variables and the distribution of cropland. The resulting map of pollination benefits identifies hot spots of pollination benefits at sufficient detail to guide political decisions on where to protect pollination services by investing in structural diversity of land use. Additionally, we investigated the vulnerability of the national economies with respect to potential decline of pollination services as the portion of the (agricultural) economy depending on pollination benefits. While the general dependency of the agricultural economy on pollination seems to be stable from 1993 until 2009, we see increases in producer prices for pollination dependent crops, which we interpret as an early warning signal for a conflict between pollination service and other land uses at the global scale. Our spatially explicit analysis of global pollination benefit points to hot spots for the generation of pollination benefits and can serve as a base for further planning of land use, protection sites and agricultural policies for maintaining pollination services. PMID:22563427
NASA Technical Reports Server (NTRS)
Joiner, J.; Gaunter, L.; Lindstrot, R.; Voigt, M.; Vasilkov, A. P.; Middleton, E. M.; Huemmrich, K. F.; Yoshida, Y.; Frankenberg, C.
2013-01-01
Globally mapped terrestrial chlorophyll fluorescence retrievals are of high interest because they can provide information on the functional status of vegetation including light-use efficiency and global primary productivity that can be used for global carbon cycle modeling and agricultural applications. Previous satellite retrievals of fluorescence have relied solely upon the filling-in of solar Fraunhofer lines that are not significantly affected by atmospheric absorption. Although these measurements provide near-global coverage on a monthly basis, they suffer from relatively low precision and sparse spatial sampling. Here, we describe a new methodology to retrieve global far-red fluorescence information; we use hyperspectral data with a simplified radiative transfer model to disentangle the spectral signatures of three basic components: atmospheric absorption, surface reflectance, and fluorescence radiance. An empirically based principal component analysis approach is employed, primarily using cloudy data over ocean, to model and solve for the atmospheric absorption. Through detailed simulations, we demonstrate the feasibility of the approach and show that moderate-spectral-resolution measurements with a relatively high signal-to-noise ratio can be used to retrieve far-red fluorescence information with good precision and accuracy. The method is then applied to data from the Global Ozone Monitoring Instrument 2 (GOME-2). The GOME-2 fluorescence retrievals display similar spatial structure as compared with those from a simpler technique applied to the Greenhouse gases Observing SATellite (GOSAT). GOME-2 enables global mapping of far-red fluorescence with higher precision over smaller spatial and temporal scales than is possible with GOSAT. Near-global coverage is provided within a few days. We are able to show clearly for the first time physically plausible variations in fluorescence over the course of a single month at a spatial resolution of 0.5 deg × 0.5 deg. We also show some significant differences between fluorescence and coincident normalized difference vegetation indices (NDVI) retrievals.
NASA Technical Reports Server (NTRS)
Joiner, J.; Guanter, L.; Lindstrot, R.; Voigt, M.; Vasilkov, A. P.; Middleton, E. M.; Huemmrich, K. F.; Yoshida, Y.; Frankenberg, C.
2013-01-01
Globally mapped terrestrial chlorophyll fluorescence retrievals are of high interest because they can provide information on the functional status of vegetation including light-use efficiency and global primary productivity that can be used for global carbon cycle modeling and agricultural applications. Previous satellite retrievals of fluorescence have relied solely upon the filling-in of solar Fraunhofer lines that are not significantly affected by atmospheric absorption. Although these measurements provide near-global coverage on a monthly basis, they suffer from relatively low precision and sparse spatial sampling. Here, we describe a new methodology to retrieve global far-red fluorescence information; we use hyperspectral data with a simplified radiative transfer model to disentangle the spectral signatures of three basic components: atmospheric absorption, surface reflectance, and fluorescence radiance. An empirically based principal component analysis approach is employed, primarily using cloudy data over ocean, to model and solve for the atmospheric absorption. Through detailed simulations, we demonstrate the feasibility of the approach and show that moderate-spectral-resolution measurements with a relatively high signal-to-noise ratio can be used to retrieve far-red fluorescence information with good precision and accuracy. The method is then applied to data from the Global Ozone Monitoring Instrument 2 (GOME-2). The GOME-2 fluorescence retrievals display similar spatial structure as compared with those from a simpler technique applied to the Greenhouse gases Observing SATellite (GOSAT). GOME-2 enables global mapping of far-red fluorescence with higher precision over smaller spatial and temporal scales than is possible with GOSAT. Near-global coverage is provided within a few days. We are able to show clearly for the first time physically plausible variations in fluorescence over the course of a single month at a spatial resolution of 0.5 0.5. We also show some significant differences between fluorescence and coincident normalized difference vegetation indices (NDVI) retrievals.
Discrete distributed strain sensing of intelligent structures
NASA Technical Reports Server (NTRS)
Anderson, Mark S.; Crawley, Edward F.
1992-01-01
Techniques are developed for the design of discrete highly distributed sensor systems for use in intelligent structures. First the functional requirements for such a system are presented. Discrete spatially averaging strain sensors are then identified as satisfying the functional requirements. A variety of spatial weightings for spatially averaging sensors are examined, and their wave number characteristics are determined. Preferable spatial weightings are identified. Several numerical integration rules used to integrate such sensors in order to determine the global deflection of the structure are discussed. A numerical simulation is conducted using point and rectangular sensors mounted on a cantilevered beam under static loading. Gage factor and sensor position uncertainties are incorporated to assess the absolute error and standard deviation of the error in the estimated tip displacement found by numerically integrating the sensor outputs. An experiment is carried out using a statically loaded cantilevered beam with five point sensors. It is found that in most cases the actual experimental error is within one standard deviation of the absolute error as found in the numerical simulation.
A Tour Through Shape Dynamic Black Holes
NASA Astrophysics Data System (ADS)
Herczeg, Gabriel
Shape dynamics is a classical theory of gravity which agrees with general relativity in many important cases, but possesses different gauge symmetries and constraints. Rather than spacetime diffeomorphism invariance, shape dynamics takes spatial diffeomorphism invariance and spatial Weyl invariance as the fundamental gauge symmetries associated with the gravitational field. Despite these differences, shape dynamics and general relativity generically predict the same dynamics--there exist gauge-fixings of each theory that ensure agreement with the other. However, these gauge-fixing conditions are not necessarily globally well-defined and it is therefore possible to find solutions of the shape dynamics equations of motion that agree with general relativity on some open neighborhoods, but which have different global structures. In particular, the black hole solutions of the two theories disagree globally. Understanding these novel "shape dynamic black holes" is the primary goal of this thesis.
Exploring Maps with Greedy Navigators
NASA Astrophysics Data System (ADS)
Lee, Sang Hoon; Holme, Petter
2012-03-01
During the last decade of network research focusing on structural and dynamical properties of networks, the role of network users has been more or less underestimated from the bird’s-eye view of global perspective. In this era of global positioning system equipped smartphones, however, a user’s ability to access local geometric information and find efficient pathways on networks plays a crucial role, rather than the globally optimal pathways. We present a simple greedy spatial navigation strategy as a probe to explore spatial networks. These greedy navigators use directional information in every move they take, without being trapped in a dead end based on their memory about previous routes. We suggest that the centralities measures have to be modified to incorporate the navigators’ behavior, and present the intriguing effect of navigators’ greediness where removing some edges may actually enhance the routing efficiency, which is reminiscent of Braess’s paradox. In addition, using samples of road structures in large cities around the world, it is shown that the navigability measure we define reflects unique structural properties, which are not easy to predict from other topological characteristics. In this respect, we believe that our routing scheme significantly moves the routing problem on networks one step closer to reality, incorporating the inevitable incompleteness of navigators’ information.
Assortative mating and mutation diffusion in spatial evolutionary systems
NASA Astrophysics Data System (ADS)
Paley, C. J.; Taraskin, S. N.; Elliott, S. R.
2010-04-01
The influence of spatial structure on the equilibrium properties of a sexual population model defined on networks is studied numerically. Using a small-world-like topology of the networks as an investigative tool, the contributions to the fitness of assortative mating and of global mutant spread properties are considered. Simple measures of nearest-neighbor correlations and speed of spread of mutants through the system have been used to confirm that both of these dynamics are important contributory factors to the fitness. It is found that assortative mating increases the fitness of populations. Quick global spread of favorable mutations is shown to be a key factor increasing the equilibrium fitness of populations.
Remote Sensing Information Science Research
NASA Technical Reports Server (NTRS)
Clarke, Keith C.; Scepan, Joseph; Hemphill, Jeffrey; Herold, Martin; Husak, Gregory; Kline, Karen; Knight, Kevin
2002-01-01
This document is the final report summarizing research conducted by the Remote Sensing Research Unit, Department of Geography, University of California, Santa Barbara under National Aeronautics and Space Administration Research Grant NAG5-10457. This document describes work performed during the period of 1 March 2001 thorough 30 September 2002. This report includes a survey of research proposed and performed within RSRU and the UCSB Geography Department during the past 25 years. A broad suite of RSRU research conducted under NAG5-10457 is also described under themes of Applied Research Activities and Information Science Research. This research includes: 1. NASA ESA Research Grant Performance Metrics Reporting. 2. Global Data Set Thematic Accuracy Analysis. 3. ISCGM/Global Map Project Support. 4. Cooperative International Activities. 5. User Model Study of Global Environmental Data Sets. 6. Global Spatial Data Infrastructure. 7. CIESIN Collaboration. 8. On the Value of Coordinating Landsat Operations. 10. The California Marine Protected Areas Database: Compilation and Accuracy Issues. 11. Assessing Landslide Hazard Over a 130-Year Period for La Conchita, California Remote Sensing and Spatial Metrics for Applied Urban Area Analysis, including: (1) IKONOS Data Processing for Urban Analysis. (2) Image Segmentation and Object Oriented Classification. (3) Spectral Properties of Urban Materials. (4) Spatial Scale in Urban Mapping. (5) Variable Scale Spatial and Temporal Urban Growth Signatures. (6) Interpretation and Verification of SLEUTH Modeling Results. (7) Spatial Land Cover Pattern Analysis for Representing Urban Land Use and Socioeconomic Structures. 12. Colorado River Flood Plain Remote Sensing Study Support. 13. African Rainfall Modeling and Assessment. 14. Remote Sensing and GIS Integration.
Spatially structured superinfection and the evolution of disease virulence.
Caraco, Thomas; Glavanakov, Stephan; Li, Shengua; Maniatty, William; Szymanski, Boleslaw K
2006-06-01
When pathogen strains differing in virulence compete for hosts, spatial structuring of disease transmission can govern both evolved levels of virulence and patterns in strain coexistence. We develop a spatially detailed model of superinfection, a form of contest competition between pathogen strains; the probability of superinfection depends explicitly on the difference in levels of virulence. We apply methods of adaptive dynamics to address the interplay of spatial dynamics and evolution. The mean-field approximation predicts evolution to criticality; any small increase in virulence capable of dynamical persistence is favored. Both pair approximation and simulation of the detailed model indicate that spatial structure constrains disease virulence. Increased spatial clustering reduces the maximal virulence capable of single-strain persistence and, more importantly, reduces the convergent-stable virulence level under strain competition. The spatially detailed model predicts that increasing the probability of superinfection, for given difference in virulence, increases the likelihood of between-strain coexistence. When strains differing in virulence can coexist ecologically, our results may suggest policies for managing diseases with localized transmission. Comparing equilibrium densities from the pair approximation, we find that introducing a more virulent strain into a host population infected by a less virulent strain can sometimes reduce total host mortality and increase global host density.
Global Observations of Magnetospheric High-m Poloidal Waves During the 22 June 2015 Magnetic Storm
NASA Technical Reports Server (NTRS)
Le, G.; Chi, P. J.; Strangeway, R. J.; Russell, C. T.; Slavin, J. A.; Takahashi, K.; Singer, H. J.; Anderson, B. J.; Bromund, K.; Fischer, D.;
2017-01-01
We report global observations of high-m poloidal waves during the recovery phase of the 22 June 2015 magnetic storm from a constellation of widely spaced satellites of five missions including Magnetospheric Multiscale (MMS), Van Allen Probes, Time History of Events and Macroscale Interactions during Substorm (THEMIS), Cluster, and Geostationary Operational Environmental Satellites (GOES). The combined observations demonstrate the global spatial extent of storm time poloidal waves. MMS observations confirm high azimuthal wave numbers (m approximately 100). Mode identification indicates the waves are associated with the second harmonic of field line resonances. The wave frequencies exhibit a decreasing trend as L increases, distinguishing them from the single-frequency global poloidal modes normally observed during quiet times. Detailed examination of the instantaneous frequency reveals discrete spatial structures with step-like frequency changes along L. Each discrete L shell has a steady wave frequency and spans about 1 RE, suggesting that there exist a discrete number of drift-bounce resonance regions across L shells during storm times.
Global observations of magnetospheric high-m poloidal waves during the 22 June 2015 magnetic storm.
Le, G; Chi, P J; Strangeway, R J; Russell, C T; Slavin, J A; Takahashi, K; Singer, H J; Anderson, B J; Bromund, K; Fischer, D; Kepko, E L; Magnes, W; Nakamura, R; Plaschke, F; Torbert, R B
2017-04-28
We report global observations of high- m poloidal waves during the recovery phase of the 22 June 2015 magnetic storm from a constellation of widely spaced satellites of five missions including Magnetospheric Multiscale (MMS), Van Allen Probes, Time History of Events and Macroscale Interactions during Substorm (THEMIS), Cluster, and Geostationary Operational Environmental Satellites (GOES). The combined observations demonstrate the global spatial extent of storm time poloidal waves. MMS observations confirm high azimuthal wave numbers ( m ~ 100). Mode identification indicates the waves are associated with the second harmonic of field line resonances. The wave frequencies exhibit a decreasing trend as L increases, distinguishing them from the single-frequency global poloidal modes normally observed during quiet times. Detailed examination of the instantaneous frequency reveals discrete spatial structures with step-like frequency changes along L . Each discrete L shell has a steady wave frequency and spans about 1 R E , suggesting that there exist a discrete number of drift-bounce resonance regions across L shells during storm times.
Universal scaling of the distribution of land in urban areas
NASA Astrophysics Data System (ADS)
Riascos, A. P.
2017-09-01
In this work, we explore the spatial structure of built zones and green areas in diverse western cities by analyzing the probability distribution of areas and a coefficient that characterize their respective shapes. From the analysis of diverse datasets describing land lots in urban areas, we found that the distribution of built-up areas and natural zones in cities obey inverse power laws with a similar scaling for the cities explored. On the other hand, by studying the distribution of shapes of lots in urban regions, we are able to detect global differences in the spatial structure of the distribution of land. Our findings introduce information about spatial patterns that emerge in the structure of urban settlements; this knowledge is useful for the understanding of urban growth, to improve existing models of cities, in the context of sustainability, in studies about human mobility in urban areas, among other applications.
NASA Technical Reports Server (NTRS)
2001-01-01
Magnetospheric Constellation Dynamic Response and Coupling Observatory (DRACO) is the Solar Terrestrial Probe (STP) designed to understand the nonlinear dynamics, responses, and connections within the Earth's structured magnetotail, using a constellation of approximately 50 to 100 distributed vector measurement spacecraft. DRACO will reveal magnetotail processes operating within a domain extending 20 Earth radii (R(sub E)) across the tail and 40 R(sub E)down the tail, on spatial and time scales accessible to global circulation models, i.e., approximately 2 R(sub E) and 10 seconds.
THE SPATIAL STRUCTURE OF MONO-ABUNDANCE SUB-POPULATIONS OF THE MILKY WAY DISK
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bovy, Jo; Rix, Hans-Walter; Liu Chao
2012-07-10
The spatial, kinematic, and elemental-abundance structure of the Milky Way's stellar disk is complex, and has been difficult to dissect with local spectroscopic or global photometric data. Here, we develop and apply a rigorous density modeling approach for Galactic spectroscopic surveys that enables investigation of the global spatial structure of stellar sub-populations in narrow bins of [{alpha}/Fe] and [Fe/H], using 23,767 G-type dwarfs from SDSS/SEGUE, which effectively sample 5 kpc < R{sub GC} < 12 kpc and 0.3 kpc {approx}< |Z| {approx}< 3 kpc. We fit models for the number density of each such ([{alpha}/Fe] and [Fe/H]) mono-abundance component, properlymore » accounting for the complex spectroscopic SEGUE sampling of the underlying stellar population, as well as for the metallicity and color distributions of the samples. We find that each mono-abundance sub-population has a simple spatial structure that can be described by a single exponential in both the vertical and radial directions, with continuously increasing scale heights ( Almost-Equal-To 200 pc to 1 kpc) and decreasing scale lengths (>4.5 kpc to 2 kpc) for increasingly older sub-populations, as indicated by their lower metallicities and [{alpha}/Fe] enhancements. That the abundance-selected sub-components with the largest scale heights have the shortest scale lengths is in sharp contrast with purely geometric 'thick-thin disk' decompositions. To the extent that [{alpha}/Fe] is an adequate proxy for age, our results directly show that older disk sub-populations are more centrally concentrated, which implies inside-out formation of galactic disks. The fact that the largest scale-height sub-components are most centrally concentrated in the Milky Way is an almost inevitable consequence of explaining the vertical structure of the disk through internal evolution. Whether the simple spatial structure of the mono-abundance sub-components and the striking correlations between age, scale length, and scale height can be plausibly explained by satellite accretion or other external heating remains to be seen.« less
Global biogeography of human infectious diseases.
Murray, Kris A; Preston, Nicholas; Allen, Toph; Zambrana-Torrelio, Carlos; Hosseini, Parviez R; Daszak, Peter
2015-10-13
The distributions of most infectious agents causing disease in humans are poorly resolved or unknown. However, poorly known and unknown agents contribute to the global burden of disease and will underlie many future disease risks. Existing patterns of infectious disease co-occurrence could thus play a critical role in resolving or anticipating current and future disease threats. We analyzed the global occurrence patterns of 187 human infectious diseases across 225 countries and seven epidemiological classes (human-specific, zoonotic, vector-borne, non-vector-borne, bacterial, viral, and parasitic) to show that human infectious diseases exhibit distinct spatial grouping patterns at a global scale. We demonstrate, using outbreaks of Ebola virus as a test case, that this spatial structuring provides an untapped source of prior information that could be used to tighten the focus of a range of health-related research and management activities at early stages or in data-poor settings, including disease surveillance, outbreak responses, or optimizing pathogen discovery. In examining the correlates of these spatial patterns, among a range of geographic, epidemiological, environmental, and social factors, mammalian biodiversity was the strongest predictor of infectious disease co-occurrence overall and for six of the seven disease classes examined, giving rise to a striking congruence between global pathogeographic and "Wallacean" zoogeographic patterns. This clear biogeographic signal suggests that infectious disease assemblages remain fundamentally constrained in their distributions by ecological barriers to dispersal or establishment, despite the homogenizing forces of globalization. Pathogeography thus provides an overarching context in which other factors promoting infectious disease emergence and spread are set.
NASA Astrophysics Data System (ADS)
Guldner, Ian H.; Yang, Lin; Cowdrick, Kyle R.; Wang, Qingfei; Alvarez Barrios, Wendy V.; Zellmer, Victoria R.; Zhang, Yizhe; Host, Misha; Liu, Fang; Chen, Danny Z.; Zhang, Siyuan
2016-04-01
Metastatic microenvironments are spatially and compositionally heterogeneous. This seemingly stochastic heterogeneity provides researchers great challenges in elucidating factors that determine metastatic outgrowth. Herein, we develop and implement an integrative platform that will enable researchers to obtain novel insights from intricate metastatic landscapes. Our two-segment platform begins with whole tissue clearing, staining, and imaging to globally delineate metastatic landscape heterogeneity with spatial and molecular resolution. The second segment of our platform applies our custom-developed SMART 3D (Spatial filtering-based background removal and Multi-chAnnel forest classifiers-based 3D ReconsTruction), a multi-faceted image analysis pipeline, permitting quantitative interrogation of functional implications of heterogeneous metastatic landscape constituents, from subcellular features to multicellular structures, within our large three-dimensional (3D) image datasets. Coupling whole tissue imaging of brain metastasis animal models with SMART 3D, we demonstrate the capability of our integrative pipeline to reveal and quantify volumetric and spatial aspects of brain metastasis landscapes, including diverse tumor morphology, heterogeneous proliferative indices, metastasis-associated astrogliosis, and vasculature spatial distribution. Collectively, our study demonstrates the utility of our novel integrative platform to reveal and quantify the global spatial and volumetric characteristics of the 3D metastatic landscape with unparalleled accuracy, opening new opportunities for unbiased investigation of novel biological phenomena in situ.
Harnessing Big Data to Represent 30-meter Spatial Heterogeneity in Earth System Models
NASA Astrophysics Data System (ADS)
Chaney, N.; Shevliakova, E.; Malyshev, S.; Van Huijgevoort, M.; Milly, C.; Sulman, B. N.
2016-12-01
Terrestrial land surface processes play a critical role in the Earth system; they have a profound impact on the global climate, food and energy production, freshwater resources, and biodiversity. One of the most fascinating yet challenging aspects of characterizing terrestrial ecosystems is their field-scale (˜30 m) spatial heterogeneity. It has been observed repeatedly that the water, energy, and biogeochemical cycles at multiple temporal and spatial scales have deep ties to an ecosystem's spatial structure. Current Earth system models largely disregard this important relationship leading to an inadequate representation of ecosystem dynamics. In this presentation, we will show how existing global environmental datasets can be harnessed to explicitly represent field-scale spatial heterogeneity in Earth system models. For each macroscale grid cell, these environmental data are clustered according to their field-scale soil and topographic attributes to define unique sub-grid tiles. The state-of-the-art Geophysical Fluid Dynamics Laboratory (GFDL) land model is then used to simulate these tiles and their spatial interactions via the exchange of water, energy, and nutrients along explicit topographic gradients. Using historical simulations over the contiguous United States, we will show how a robust representation of field-scale spatial heterogeneity impacts modeled ecosystem dynamics including the water, energy, and biogeochemical cycles as well as vegetation composition and distribution.
Simulation of the spatial frequency-dependent sensitivities of Acoustic Emission sensors
NASA Astrophysics Data System (ADS)
Boulay, N.; Lhémery, A.; Zhang, F.
2018-05-01
Typical configurations of nondestructive testing by Acoustic Emission (NDT/AE) make use of multiple sensors positioned on the tested structure for detecting evolving flaws and possibly locating them by triangulation. Sensors positions must be optimized for ensuring global coverage sensitivity to AE events and minimizing their number. A simulator of NDT/AE is under development to provide help with designing testing configurations and with interpreting measurements. A global model performs sub-models simulating the various phenomena taking place at different spatial and temporal scales (crack growth, AE source and radiation, wave propagation in the structure, reception by sensors). In this context, accurate modelling of sensors behaviour must be developed. These sensors generally consist of a cylindrical piezoelectric element of radius approximately equal to its thickness, without damping and bonded to its case. Sensors themselves are bonded to the structure being tested. Here, a multiphysics finite element simulation tool is used to study the complex behaviour of AE sensor. The simulated behaviour is shown to accurately reproduce the high-amplitude measured contributions used in the AE practice.
Ecotoxicology and spatial modeling in population dynamics: an illustration with brown trout.
Chaumot, Arnaud; Charles, Sandrine; Flammarion, Patrick; Auger, Pierre
2003-05-01
We developed a multiregion matrix population model to explore how the demography of a hypothetical brown trout population living in a river network varies in response to different spatial scenarios of cadmium contamination. Age structure, spatial distribution, and demographic and migration processes are taken into account in the model. Chronic or acute cadmium concentrations affect the demographic parameters at the scale of the river range. The outputs of the model constitute population-level end points (the asymptotic population growth rate, the stable age structure, and the asymptotic spatial distribution) that allow comparing the different spatial scenarios of contamination regarding the demographic response at the scale of the whole river network. An analysis of the sensitivity of these end points to lower order parameters enables us to link the local effects of cadmium to the global demographic behavior of the brown trout population. Such a link is of broad interest in the point of view of ecotoxicological management.
Mesoscopic Effects in an Agent-Based Bargaining Model in Regular Lattices
Poza, David J.; Santos, José I.; Galán, José M.; López-Paredes, Adolfo
2011-01-01
The effect of spatial structure has been proved very relevant in repeated games. In this work we propose an agent based model where a fixed finite population of tagged agents play iteratively the Nash demand game in a regular lattice. The model extends the multiagent bargaining model by Axtell, Epstein and Young [1] modifying the assumption of global interaction. Each agent is endowed with a memory and plays the best reply against the opponent's most frequent demand. We focus our analysis on the transient dynamics of the system, studying by computer simulation the set of states in which the system spends a considerable fraction of the time. The results show that all the possible persistent regimes in the global interaction model can also be observed in this spatial version. We also find that the mesoscopic properties of the interaction networks that the spatial distribution induces in the model have a significant impact on the diffusion of strategies, and can lead to new persistent regimes different from those found in previous research. In particular, community structure in the intratype interaction networks may cause that communities reach different persistent regimes as a consequence of the hindering diffusion effect of fluctuating agents at their borders. PMID:21408019
Mesoscopic effects in an agent-based bargaining model in regular lattices.
Poza, David J; Santos, José I; Galán, José M; López-Paredes, Adolfo
2011-03-09
The effect of spatial structure has been proved very relevant in repeated games. In this work we propose an agent based model where a fixed finite population of tagged agents play iteratively the Nash demand game in a regular lattice. The model extends the multiagent bargaining model by Axtell, Epstein and Young modifying the assumption of global interaction. Each agent is endowed with a memory and plays the best reply against the opponent's most frequent demand. We focus our analysis on the transient dynamics of the system, studying by computer simulation the set of states in which the system spends a considerable fraction of the time. The results show that all the possible persistent regimes in the global interaction model can also be observed in this spatial version. We also find that the mesoscopic properties of the interaction networks that the spatial distribution induces in the model have a significant impact on the diffusion of strategies, and can lead to new persistent regimes different from those found in previous research. In particular, community structure in the intratype interaction networks may cause that communities reach different persistent regimes as a consequence of the hindering diffusion effect of fluctuating agents at their borders.
ERIC Educational Resources Information Center
Kramsch, Claire
2018-01-01
The "trans-" perspectives offered in this special issue are heady stuff. Post-structuralism (philosophy) meets the digital age (electronics), meets globalization (economics), and meets translingual practice (linguistics) to create a perfectly utopian or placeless space for future exploration. I want to first add my voice to the…
NASA Astrophysics Data System (ADS)
Ma, X.; Mahecha, M. D.; Migliavacca, M.; Luo, Y.; Urban, M.; Bohn, F. J.; Huth, A.; Reichstein, M.
2017-12-01
A key challenge for monitoring biodiversity change is the lack of consistent measures of biodiversity across space and time. This challenge may be addressed by exploring the potentials provided by novel remote sensing observations. By continuously observing broad-scale patterns of vegetation and land surface parameters, remote sensing can complement the restricted coverage afforded by field measurements. Here we develop methods to infer spatial patterns of biodiversity at ecosystem level from ESA's next-generation Sentinel sensors (Sentinel-1: C-band radar & Sentinel-2: multispectral). Both satellites offer very high spatial (10 m) and temporal resolutions (5 days) measurements with global coverage. We propose and test several ecosystem biodiversity proxies, including landscape spectral diversity, phenological diversity, and canopy structural diversity. These diversity proxies are highly related to some key aspects of essential biodiversity variables (EBVs) as defined by GEO-BON, such as habitat structure, community composition, ecosystem function and structure. We verify spaceborne retrievals of these biodiversity proxies with in situ measurements from drone (spectral diversity), phenocam (phenological diversity), and airborne LiDAR (canopy structural diversity) over multiple flux tower sites within the Mediterranean region. We further compare our remote sensing retrievals of biodiversity proxies against several biodiversity indices as derived from field measurements (incl. ⍺-/β- diversity and Shannon-index) to explore the limitations and potentials of extending the RS proxies to a greater spatial extent. We expect the new concept as to maximize the potential of remote sensing information might help to monitor key aspects of EBVs on a global scale.
Chen, Shi; Ilany, Amiyaal; White, Brad J; Sanderson, Michael W; Lanzas, Cristina
2015-01-01
Animal social network is the key to understand many ecological and epidemiological processes. We used real-time location system (RTLS) to accurately track cattle position, analyze their proximity networks, and tested the hypothesis of temporal stationarity and spatial homogeneity in these networks during different daily time periods and in different areas of the pen. The network structure was analyzed using global network characteristics (network density), subgroup clustering (modularity), triadic property (transitivity), and dyadic interactions (correlation coefficient from a quadratic assignment procedure) at hourly level. We demonstrated substantial spatial-temporal heterogeneity in these networks and potential link between indirect animal-environment contact and direct animal-animal contact. But such heterogeneity diminished if data were collected at lower spatial (aggregated at entire pen level) or temporal (aggregated at daily level) resolution. The network structure (described by the characteristics such as density, modularity, transitivity, etc.) also changed substantially at different time and locations. There were certain time (feeding) and location (hay) that the proximity network structures were more consistent based on the dyadic interaction analysis. These results reveal new insights for animal network structure and spatial-temporal dynamics, provide more accurate descriptions of animal social networks, and allow more accurate modeling of multiple (both direct and indirect) disease transmission pathways.
Global thermal models of the lithosphere
NASA Astrophysics Data System (ADS)
Cammarano, F.; Guerri, M.
2017-12-01
Unraveling the thermal structure of the outermost shell of our planet is key for understanding its evolution. We obtain temperatures from interpretation of global shear-velocity (VS) models. Long-wavelength thermal structure is well determined by seismic models and only slightly affected by compositional effects and uncertainties in mineral-physics properties. Absolute temperatures and gradients with depth, however, are not well constrained. Adding constraints from petrology, heat-flow observations and thermal evolution of oceanic lithosphere help to better estimate absolute temperatures in the top part of the lithosphere. We produce global thermal models of the lithosphere at different spatial resolution, up to spherical-harmonics degree 24, and provide estimated standard deviations. We provide purely seismic thermal (TS) model and hybrid models where temperatures are corrected with steady-state conductive geotherms on continents and cooling model temperatures on oceanic regions. All relevant physical properties, with the exception of thermal conductivity, are based on a self-consistent thermodynamical modelling approach. Our global thermal models also include density and compressional-wave velocities (VP) as obtained either assuming no lateral variations in composition or a simple reference 3-D compositional structure, which takes into account a chemically depleted continental lithosphere. We found that seismically-derived temperatures in continental lithosphere fit well, overall, with continental geotherms, but a large variation in radiogenic heat is required to reconcile them with heat flow (long wavelength) observations. Oceanic shallow lithosphere below mid-oceanic ridges and young oceans is colder than expected, confirming the possible presence of a dehydration boundary around 80 km depth already suggested in previous studies. The global thermal models should serve as the basis to move at a smaller spatial scale, where additional thermo-chemical variations required by geophysical observations can be included.
NASA Astrophysics Data System (ADS)
Nolan, Brien C.
2017-11-01
McVittie spacetimes embed the vacuum Schwarzschild(-(anti) de Sitter) spacetime in an isotropic, Friedmann-Lemaître-Robertson-Walker (FLRW) background universe. The global structure of such spacetimes is well understood when the FLRW background is spatially flat. In this paper, we study the global structure of McVittie spacetimes with spatially non-flat FLRW backgrounds. We derive some basic results on the metric, curvature and matter content of these spacetimes and provide a representation of the metric that makes the study of their global properties possible. In the closed case, we find that at each instant of time, the spacetime is confined to a region bounded by a (positive) minimum and a maximum area radius, and is bounded either to the future or to the past by a scalar curvature singularity. This allowed region only exists when the background scale factor is above a certain minimum, and so is bounded away from the Big Bang singularity, as in the flat case. In the open case, the situation is different, and we focus mainly on this case. In K<0 McVittie spacetimes, radial null geodesics originate in finite affine time in the past at a boundary formed by the union of the Big Bang singularity of the FLRW background and a hypersurface (of varying causal character) which is non-singular in the sense of scalar curvature. Furthermore, in the case of eternally expanding open universes with Λ≥slant0 , we prove that black holes are ubiquitous: ingoing radial null geodesics extend in finite affine time to a hypersurface that forms the boundary of the region from which photons can escape to future null infinity. We determine the structure of the conformal diagrams that can arise in the open case. Finally, we revisit the black hole interpretation of McVittie spacetimes in the spatially flat case, and show that this interpretation holds also in the case of a vanishing cosmological constant, contrary to a previous claim of ours.
NASA Astrophysics Data System (ADS)
Du, X.; Leinenkugel, P.; Guo, H.; Kuenzer, C.
2017-12-01
During the recent decades, global coasts are undergoing tremendous change due to accelerating socio-economic growth, which has severe effects on the functioning of global coastal systems. In view of this, accurate, timely, and area-wide global information on natural as well as anthropogenic processes in the coastal zone are of paramount importance for sustainable coastal development. A broad range of freely available satellite derived products, and open geo-datasets, as well as statistics with global coverage exist that have not yet been fully exploited to evaluate human development patterns in coastal areas. In this study, we demonstrate the potential of freely and openly available EO and GEO data sets for characterizing and evaluating human development in coastal zones on large scales. Therefore, different geo-spatial dataset such as Global Urban Footprint (GUF), Open Street Map (OSM), time series of Global Human Settlement Layer (GHSL) and Climate Change Initiative (CCI) Land cover were acquired for the entire continental coast of Asia, defined as the terrestrial area 100 km from the coastline. In order to extract indices for the coastline, a reference structure was developed allowing the integration of a 2D spatial pattern of a given parameter to a certain location along the coast line. Based on this reference structure statistics for the coast were calculated every 5 km parallel to the coast line as well as for four different distance intervals from the coast. The results demonstrate the highly unequal distribution of coastal development with respect to urban and agricultural usage in Asia, with large differences between and within different countries. China coasts show the highest overall patterns of urban development, while countries such as Pakistan and Myanmar show comparably low levels with nearly no development evident absence from coastal metropolitan areas. Furthermore, a clear trend of decreasing urban development is evident with increasing distance from the coast. This study highlights the potential of global geo-spatial data products for deriving anthropogenic development indicators that can support the evaluation and monitoring for sustainable development of coastal zones, while also discussing the shortcomings of these datasets for such purposes.
Probing Mantle Heterogeneity Across Spatial Scales
NASA Astrophysics Data System (ADS)
Hariharan, A.; Moulik, P.; Lekic, V.
2017-12-01
Inferences of mantle heterogeneity in terms of temperature, composition, grain size, melt and crystal structure may vary across local, regional and global scales. Probing these scale-dependent effects require quantitative comparisons and reconciliation of tomographic models that vary in their regional scope, parameterization, regularization and observational constraints. While a range of techniques like radial correlation functions and spherical harmonic analyses have revealed global features like the dominance of long-wavelength variations in mantle heterogeneity, they have limited applicability for specific regions of interest like subduction zones and continental cratons. Moreover, issues like discrepant 1-D reference Earth models and related baseline corrections have impeded the reconciliation of heterogeneity between various regional and global models. We implement a new wavelet-based approach that allows for structure to be filtered simultaneously in both the spectral and spatial domain, allowing us to characterize heterogeneity on a range of scales and in different geographical regions. Our algorithm extends a recent method that expanded lateral variations into the wavelet domain constructed on a cubed sphere. The isolation of reference velocities in the wavelet scaling function facilitates comparisons between models constructed with arbitrary 1-D reference Earth models. The wavelet transformation allows us to quantify the scale-dependent consistency between tomographic models in a region of interest and investigate the fits to data afforded by heterogeneity at various dominant wavelengths. We find substantial and spatially varying differences in the spectrum of heterogeneity between two representative global Vp models constructed using different data and methodologies. Applying the orthonormality of the wavelet expansion, we isolate detailed variations in velocity from models and evaluate additional fits to data afforded by adding such complexities to long-wavelength variations. Our method provides a way to probe and evaluate localized features in a multi-scale description of mantle heterogeneity.
A New Global LAI Product and Its Use for Terrestrial Carbon Cycle Estimation
NASA Astrophysics Data System (ADS)
Chen, J. M.; Liu, R.; Ju, W.; Liu, Y.
2014-12-01
For improving the estimation of the spatio-temporal dynamics of the terrestrial carbon cycle, a new time series of the leaf area index (LAI) is generated for the global land surface at 8 km resolution from 1981 to 2012 by combining AVHRR and MODIS satellite data. This product differs from existing LAI products in the following two aspects: (1) the non-random spatial distribution of leaves with the canopy is considered, and (2) the seasonal variation of the vegetation background is included. The non-randomness of the leaf spatial distribution in the canopy is considered using the second vegetation structural parameter named clumping index (CI), which quantifies the deviation of the leaf spatial distribution from the random case. Using the MODIS Bidirectional Reflectance Distribution Function product, a global map of CI is produced at 500 m resolution. In our LAI algorithm, CI is used to convert the effective LAI obtained from mono-angle remote sensing into the true LAI, otherwise LAI would be considerably underestimated. The vegetation background is soil in crop, grass and shrub but includes soil, grass, moss, and litter in forests. Through processing a large volume of MISR data from 2000 to 2010, monthly red and near-infrared reflectances of the vegetation background is mapped globally at 1 km resolution. This new LAI product has been validated extensively using ground-based LAI measurements distributed globally. In carbon cycle modeling, the use of CI in addition to LAI allows for accurate separation of sunlit and shaded leaves as an important step in terrestrial photosynthesis and respiration modeling. Carbon flux measurements over 100 sites over the globe are used to validate an ecosystem model named Boreal Ecosystem Productivity Simulator (BEPS). The validated model is run globally at 8 km resolution for the period from 1981 to 2012 using the LAI product and other spatial datasets. The modeled results suggest that changes in vegetation structure as quantified by LAI do not contribute significantly to the increasing trend in carbon sink over the last 32 years. The increases in atmospheric CO2 concentration and nitrogen deposition are found to be the major causes for the increases in plant productivity and carbon sink over the last 32 years.
Spatial transferring of ecosystem services and property rights allocation of ecological compensation
NASA Astrophysics Data System (ADS)
Wen, Wujun; Xu, Geng; Wang, Xingjie
2011-09-01
Ecological compensation is an important means to maintain the sustainability and stability of ecosystem services. The property rights analysis of ecosystem services is indispensable when we implement ecological compensation. In this paper, ecosystem services are evaluated via spatial transferring and property rights analysis. Take the Millennium Ecosystem Assessment (MA) as an example, we attempt to classify the spatial structure of 31 categories of ecosystem services into four dimensions, i.e., local, regional, national and global ones, and divide the property rights structure into three types, i.e., private property rights, common property rights and state-owned property rights. Through the case study of forestry, farming industry, drainage area, development of mineral resources, nature reserves, functional areas, agricultural land expropriation, and international cooperation on ecological compensation, the feasible ecological compensation mechanism is illustrated under the spatial structure and property rights structure of the concerned ecosystem services. For private property rights, the ecological compensation mode mainly depends on the market mechanism. If the initial common property rights are "hidden," the implementation of ecological compensation mainly relies on the quota market transactions and the state investment under the state-owned property rights, and the fairness of property rights is thereby guaranteed through central administration.
NASA Astrophysics Data System (ADS)
Armston, J.; Marselis, S.; Hancock, S.; Duncanson, L.; Tang, H.; Kellner, J. R.; Calders, K.; Disney, M.; Dubayah, R.
2017-12-01
The NASA Global Ecosystem Dynamics Investigation (GEDI) will place a multi-beam waveform lidar instrument on the International Space Station (ISS) to provide measurements of forest vertical structure globally. These measurements of structure will underpin empirical modelling of above ground biomass density (AGBD) at the scale of individual GEDI lidar footprints (25m diameter). The GEDI pre-launch calibration strategy for footprint level models relies on linking AGBD estimates from ground plots with GEDI lidar waveforms simulated from coincident discrete return airborne laser scanning data. Currently available ground plot data have variable and often large uncertainty at the spatial resolution of GEDI footprints due to poor colocation, allometric model error, sample size and plot edge effects. The relative importance of these sources of uncertainty partly depends on the quality of ground measurements and region. It is usually difficult to know the magnitude of these uncertainties a priori so a common approach to mitigate their influence on model training is to aggregate ground plot and waveform lidar data to a coarser spatial scale (0.25-1ha). Here we examine the impacts of these principal sources of uncertainty using a 3D simulation approach. Sets of realistic tree models generated from terrestrial laser scanning (TLS) data or parametric modelling matched to tree inventory data were assembled from four contrasting forest plots across tropical rainforest, deciduous temperate forest, and sclerophyll eucalypt woodland sites. These tree models were used to simulate geometrically explicit 3D scenes with variable tree density, size class and spatial distribution. GEDI lidar waveforms are simulated over ground plots within these scenes using monte carlo ray tracing, allowing the impact of varying ground plot and waveform colocation error, forest structure and edge effects on the relationship between ground plot AGBD and GEDI lidar waveforms to be directly assessed. We quantify the sensitivity of calibration equations relating GEDI lidar structure measurements and AGBD to these factors at a range of spatial scales (0.0625-1ha) and discuss the implications for the expanding use of existing in situ ground plot data by GEDI.
Werner, Annette
2014-11-01
Illumination in natural scenes changes at multiple temporal and spatial scales: slow changes in global illumination occur in the course of a day, and we encounter fast and localised illumination changes when visually exploring the non-uniform light field of three-dimensional scenes; in addition, very long-term chromatic variations may come from the environment, like for example seasonal changes. In this context, I consider the temporal and spatial properties of chromatic adaptation and discuss their functional significance for colour constancy in three-dimensional scenes. A process of fast spatial tuning in chromatic adaptation is proposed as a possible sensory mechanism for linking colour constancy to the spatial structure of a scene. The observed middlewavelength selectivity of this process is particularly suitable for adaptation to the mean chromaticity and the compensation of interreflections in natural scenes. Two types of sensory colour constancy are distinguished, based on the functional differences of their temporal and spatial scales: a slow type, operating at a global scale for the compensation of the ambient illumination; and a fast colour constancy, which is locally restricted and well suited to compensate region-specific variations in the light field of three dimensional scenes. Copyright © 2014 Elsevier B.V. All rights reserved.
Zhang, Xinlin; Zhao, Yuan
2018-04-01
To investigate the influences of different factors on spatial heterogeneity of regional carbon emissions, we firstly studied the spatial-temporal dynamics of regional energy-related carbon emissions using global Moran's I and Getis-Ord Gi and applied geographical detector model to explain the spatial heterogeneity of regional carbon emissions. Some conclusions were drawn. Regional carbon emissions showed significant global and local spatial autocorrelation. The carbon emissions were greater in eastern and northern regions than in western and southern regions. Fixed assets investment and economic output had been the main contributing factors over the study period, and economic output had been decreasing its influence. Industrial structure's influence showed a decrease trend and became smaller in 2015. The results of the interaction detections in 2015 can be divided into two types: enhance and nonlinear, and enhance and bivariate. The interactive influences between technological level and fixed assets investment, economic output and technological level, population size and technological level, and economic output and economic development were greater than others. Some policy recommendations were proposed.
Inside out: Speed-dependent barriers to reactive mixing
NASA Astrophysics Data System (ADS)
Kelley, Douglas; Nevins, Thomas
2015-11-01
Reactive mixing occurs wherever fluid flow and chemical or biological growth interact over time and space. Those interactions often lead to steep gradients in reactant and product concentration, arranged in complex spatial structures that can cause wide variation in the global reaction rate and concentrations. By simultaneously measuring fluid velocity and reaction front locations in laboratory experiments with the Belousov-Zhabotinsky reaction, we find that the barriers defining those structures vary dramatically with speed. In particular, we find that increasing flow speed causes reacted regions to move from vortex edges to vortex cores, thus turning the barriers ``inside out''. This observation has implications for reactive mixing of phytoplankton in global oceans.
A semiparametric spatio-temporal model for solar irradiance data
Patrick, Joshua D.; Harvill, Jane L.; Hansen, Clifford W.
2016-03-01
Here, we evaluate semiparametric spatio-temporal models for global horizontal irradiance at high spatial and temporal resolution. These models represent the spatial domain as a lattice and are capable of predicting irradiance at lattice points, given data measured at other lattice points. Using data from a 1.2 MW PV plant located in Lanai, Hawaii, we show that a semiparametric model can be more accurate than simple interpolation between sensor locations. We investigate spatio-temporal models with separable and nonseparable covariance structures and find no evidence to support assuming a separable covariance structure. These results indicate a promising approach for modeling irradiance atmore » high spatial resolution consistent with available ground-based measurements. Moreover, this kind of modeling may find application in design, valuation, and operation of fleets of utility-scale photovoltaic power systems.« less
Fast protein tertiary structure retrieval based on global surface shape similarity.
Sael, Lee; Li, Bin; La, David; Fang, Yi; Ramani, Karthik; Rustamov, Raif; Kihara, Daisuke
2008-09-01
Characterization and identification of similar tertiary structure of proteins provides rich information for investigating function and evolution. The importance of structure similarity searches is increasing as structure databases continue to expand, partly due to the structural genomics projects. A crucial drawback of conventional protein structure comparison methods, which compare structures by their main-chain orientation or the spatial arrangement of secondary structure, is that a database search is too slow to be done in real-time. Here we introduce a global surface shape representation by three-dimensional (3D) Zernike descriptors, which represent a protein structure compactly as a series expansion of 3D functions. With this simplified representation, the search speed against a few thousand structures takes less than a minute. To investigate the agreement between surface representation defined by 3D Zernike descriptor and conventional main-chain based representation, a benchmark was performed against a protein classification generated by the combinatorial extension algorithm. Despite the different representation, 3D Zernike descriptor retrieved proteins of the same conformation defined by combinatorial extension in 89.6% of the cases within the top five closest structures. The real-time protein structure search by 3D Zernike descriptor will open up new possibility of large-scale global and local protein surface shape comparison. 2008 Wiley-Liss, Inc.
NASA Astrophysics Data System (ADS)
Xiao, X.; Dong, J.; Zhang, G.; Xin, F.; Li, X.
2017-12-01
Paddy rice croplands account for more than 12% of the global cropland areas, and provide food to feed more than 50% of the world population. Spatial patterns and temporal dynamics of paddy rice croplands have changed remarkably in the past decades, driven by growing human population and their changing diet structure, land use (e.g., urbanization, industrialization), climate, markets, and technologies. In this presentation, we will provide a comprehensive review of our current knowledge on (1) the spatial patterns and temporal dynamics of paddy rice croplands from agricultural statistics data and remote sensing approaches; (2) major driving factors for the observed changes in paddy rice areas, including social, economic, climate, land use, markets, crop breeding technology, and farming technology; and (3) major impacts on atmospheric methane concentration, land surface temperature, water resources and use, and so on. We will highlight the results from a few case studies in China and monsoon Asia. We will also call for a global synthesis analysis of paddy rice agriculture, and invite researchers to join the effort to write and edit a book that provides comprehensive and updated knowledge on paddy rice agriculture.
NASA Astrophysics Data System (ADS)
Asefi-Najafabady, S.; Rayner, P. J.; Gurney, K. R.; McRobert, A.; Song, Y.; Coltin, K.; Huang, J.; Elvidge, C.; Baugh, K.
2014-09-01
High-resolution, global quantification of fossil fuel CO2 emissions is emerging as a critical need in carbon cycle science and climate policy. We build upon a previously developed fossil fuel data assimilation system (FFDAS) for estimating global high-resolution fossil fuel CO2 emissions. We have improved the underlying observationally based data sources, expanded the approach through treatment of separate emitting sectors including a new pointwise database of global power plants, and extended the results to cover a 1997 to 2010 time series at a spatial resolution of 0.1°. Long-term trend analysis of the resulting global emissions shows subnational spatial structure in large active economies such as the United States, China, and India. These three countries, in particular, show different long-term trends and exploration of the trends in nighttime lights, and population reveal a decoupling of population and emissions at the subnational level. Analysis of shorter-term variations reveals the impact of the 2008-2009 global financial crisis with widespread negative emission anomalies across the U.S. and Europe. We have used a center of mass (CM) calculation as a compact metric to express the time evolution of spatial patterns in fossil fuel CO2 emissions. The global emission CM has moved toward the east and somewhat south between 1997 and 2010, driven by the increase in emissions in China and South Asia over this time period. Analysis at the level of individual countries reveals per capita CO2 emission migration in both Russia and India. The per capita emission CM holds potential as a way to succinctly analyze subnational shifts in carbon intensity over time. Uncertainties are generally lower than the previous version of FFDAS due mainly to an improved nightlight data set.
Adaptation to implied tilt: extensive spatial extrapolation of orientation gradients
Roach, Neil W.; Webb, Ben S.
2013-01-01
To extract the global structure of an image, the visual system must integrate local orientation estimates across space. Progress is being made toward understanding this integration process, but very little is known about whether the presence of structure exerts a reciprocal influence on local orientation coding. We have previously shown that adaptation to patterns containing circular or radial structure induces tilt-aftereffects (TAEs), even in locations where the adapting pattern was occluded. These spatially “remote” TAEs have novel tuning properties and behave in a manner consistent with adaptation to the local orientation implied by the circular structure (but not physically present) at a given test location. Here, by manipulating the spatial distribution of local elements in noisy circular textures, we demonstrate that remote TAEs are driven by the extrapolation of orientation structure over remarkably large regions of visual space (more than 20°). We further show that these effects are not specific to adapting stimuli with polar orientation structure, but require a gradient of orientation change across space. Our results suggest that mechanisms of visual adaptation exploit orientation gradients to predict the local pattern content of unfilled regions of space. PMID:23882243
Global multi-layer network of human mobility
Belyi, Alexander; Bojic, Iva; Sobolevsky, Stanislav; Sitko, Izabela; Hawelka, Bartosz; Rudikova, Lada; Kurbatski, Alexander; Ratti, Carlo
2017-01-01
ABSTRACT Recent availability of geo-localized data capturing individual human activity together with the statistical data on international migration opened up unprecedented opportunities for a study on global mobility. In this paper, we consider it from the perspective of a multi-layer complex network, built using a combination of three datasets: Twitter, Flickr and official migration data. Those datasets provide different, but equally important insights on the global mobility – while the first two highlight short-term visits of people from one country to another, the last one – migration – shows the long-term mobility perspective, when people relocate for good. The main purpose of the paper is to emphasize importance of this multi-layer approach capturing both aspects of human mobility at the same time. On the one hand, we show that although the general properties of different layers of the global mobility network are similar, there are important quantitative differences among them. On the other hand, we demonstrate that consideration of mobility from a multi-layer perspective can reveal important global spatial patterns in a way more consistent with those observed in other available relevant sources of international connections, in comparison to the spatial structure inferred from each network layer taken separately. PMID:28553155
Global observations of magnetospheric high‐m poloidal waves during the 22 June 2015 magnetic storm
Chi, P. J.; Strangeway, R. J.; Russell, C. T.; Slavin, J. A.; Takahashi, K.; Singer, H. J.; Anderson, B. J.; Bromund, K.; Fischer, D.; Kepko, E. L.; Magnes, W.; Nakamura, R.; Plaschke, F.; Torbert, R. B.
2017-01-01
Abstract We report global observations of high‐m poloidal waves during the recovery phase of the 22 June 2015 magnetic storm from a constellation of widely spaced satellites of five missions including Magnetospheric Multiscale (MMS), Van Allen Probes, Time History of Events and Macroscale Interactions during Substorm (THEMIS), Cluster, and Geostationary Operational Environmental Satellites (GOES). The combined observations demonstrate the global spatial extent of storm time poloidal waves. MMS observations confirm high azimuthal wave numbers (m ~ 100). Mode identification indicates the waves are associated with the second harmonic of field line resonances. The wave frequencies exhibit a decreasing trend as L increases, distinguishing them from the single‐frequency global poloidal modes normally observed during quiet times. Detailed examination of the instantaneous frequency reveals discrete spatial structures with step‐like frequency changes along L. Each discrete L shell has a steady wave frequency and spans about 1 R E, suggesting that there exist a discrete number of drift‐bounce resonance regions across L shells during storm times. PMID:28713180
Berger, Michael; Farcas, Anca; Geertz, Marcel; Zhelyazkova, Petya; Brix, Klaudia; Travers, Andrew; Muskhelishvili, Georgi
2010-01-01
The histone-like protein HU is a highly abundant DNA architectural protein that is involved in compacting the DNA of the bacterial nucleoid and in regulating the main DNA transactions, including gene transcription. However, the coordination of the genomic structure and function by HU is poorly understood. Here, we address this question by comparing transcript patterns and spatial distributions of RNA polymerase in Escherichia coli wild-type and hupA/B mutant cells. We demonstrate that, in mutant cells, upregulated genes are preferentially clustered in a large chromosomal domain comprising the ribosomal RNA operons organized on both sides of OriC. Furthermore, we show that, in parallel to this transcription asymmetry, mutant cells are also impaired in forming the transcription foci—spatially confined aggregations of RNA polymerase molecules transcribing strong ribosomal RNA operons. Our data thus implicate HU in coordinating the global genomic structure and function by regulating the spatial distribution of RNA polymerase in the nucleoid. PMID:20010798
Gradient-based reliability maps for ACM-based segmentation of hippocampus.
Zarpalas, Dimitrios; Gkontra, Polyxeni; Daras, Petros; Maglaveras, Nicos
2014-04-01
Automatic segmentation of deep brain structures, such as the hippocampus (HC), in MR images has attracted considerable scientific attention due to the widespread use of MRI and to the principal role of some structures in various mental disorders. In this literature, there exists a substantial amount of work relying on deformable models incorporating prior knowledge about structures' anatomy and shape information. However, shape priors capture global shape characteristics and thus fail to model boundaries of varying properties; HC boundaries present rich, poor, and missing gradient regions. On top of that, shape prior knowledge is blended with image information in the evolution process, through global weighting of the two terms, again neglecting the spatially varying boundary properties, causing segmentation faults. An innovative method is hereby presented that aims to achieve highly accurate HC segmentation in MR images, based on the modeling of boundary properties at each anatomical location and the inclusion of appropriate image information for each of those, within an active contour model framework. Hence, blending of image information and prior knowledge is based on a local weighting map, which mixes gradient information, regional and whole brain statistical information with a multi-atlas-based spatial distribution map of the structure's labels. Experimental results on three different datasets demonstrate the efficacy and accuracy of the proposed method.
Spatial structure and distribution of small pelagic fish in the northwestern Mediterranean Sea.
Saraux, Claire; Fromentin, Jean-Marc; Bigot, Jean-Louis; Bourdeix, Jean-Hervé; Morfin, Marie; Roos, David; Van Beveren, Elisabeth; Bez, Nicolas
2014-01-01
Understanding the ecological and anthropogenic drivers of population dynamics requires detailed studies on habitat selection and spatial distribution. Although small pelagic fish aggregate in large shoals and usually exhibit important spatial structure, their dynamics in time and space remain unpredictable and challenging. In the Gulf of Lions (north-western Mediterranean), sardine and anchovy biomasses have declined over the past 5 years causing an important fishery crisis while sprat abundance rose. Applying geostatistical tools on scientific acoustic surveys conducted in the Gulf of Lions, we investigated anchovy, sardine and sprat spatial distributions and structures over 10 years. Our results show that sardines and sprats were more coastal than anchovies. The spatial structure of the three species was fairly stable over time according to variogram outputs, while year-to-year variations in kriged maps highlighted substantial changes in their location. Support for the McCall's basin hypothesis (covariation of both population density and presence area with biomass) was found only in sprats, the most variable of the three species. An innovative method to investigate species collocation at different scales revealed that globally the three species strongly overlap. Although species often co-occurred in terms of presence/absence, their biomass density differed at local scale, suggesting potential interspecific avoidance or different sensitivity to local environmental characteristics. Persistent favourable areas were finally detected, but their environmental characteristics remain to be determined.
A spatial age-structured model for describing sea lamprey (Petromyzon marinus) population dynamics
Robinson, Jason M.; Wilberg, Michael J.; Adams, Jean V.; Jones, Michael L.
2013-01-01
The control of invasive sea lampreys (Petromyzon marinus) presents large scale management challenges in the Laurentian Great Lakes. No modeling approach has been developed that describes spatial dynamics of lamprey populations. We developed and validated a spatial and age-structured model and applied it to a sea lamprey population in a large river in the Great Lakes basin. We considered 75 discrete spatial areas, included a stock-recruitment function, spatial recruitment patterns, natural mortality, chemical treatment mortality, and larval metamorphosis. Recruitment was variable, and an upstream shift in recruitment location was observed over time. From 1993–2011 recruitment, larval abundance, and the abundance of metamorphosing individuals decreased by 80, 84, and 86%, respectively. The model successfully identified areas of high larval abundance and showed that areas of low larval density contribute significantly to the population. Estimated treatment mortality was less than expected but had a large population-level impact. The results and general approach of this work have applications for sea lamprey control throughout the Great Lakes and for the restoration and conservation of native lamprey species globally.
Cortical feedback signals generalise across different spatial frequencies of feedforward inputs.
Revina, Yulia; Petro, Lucy S; Muckli, Lars
2017-09-22
Visual processing in cortex relies on feedback projections contextualising feedforward information flow. Primary visual cortex (V1) has small receptive fields and processes feedforward information at a fine-grained spatial scale, whereas higher visual areas have larger, spatially invariant receptive fields. Therefore, feedback could provide coarse information about the global scene structure or alternatively recover fine-grained structure by targeting small receptive fields in V1. We tested if feedback signals generalise across different spatial frequencies of feedforward inputs, or if they are tuned to the spatial scale of the visual scene. Using a partial occlusion paradigm, functional magnetic resonance imaging (fMRI) and multivoxel pattern analysis (MVPA) we investigated whether feedback to V1 contains coarse or fine-grained information by manipulating the spatial frequency of the scene surround outside an occluded image portion. We show that feedback transmits both coarse and fine-grained information as it carries information about both low (LSF) and high spatial frequencies (HSF). Further, feedback signals containing LSF information are similar to feedback signals containing HSF information, even without a large overlap in spatial frequency bands of the HSF and LSF scenes. Lastly, we found that feedback carries similar information about the spatial frequency band across different scenes. We conclude that cortical feedback signals contain information which generalises across different spatial frequencies of feedforward inputs. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.
Eco-geophysical imaging of watershed-scale soil patterns links with plant community spatial patterns
USDA-ARS?s Scientific Manuscript database
The extent to which soil resource availability, nutrients or 1 moisture, control the structure, function and diversity of plant communities has aroused considerable interest in the past decade, and remains topical in light of global change. Numerous plant communities are controlled either by water o...
Airborne Instrument Simulator for the Lidar Surface Topography (LIST) Mission
NASA Technical Reports Server (NTRS)
Yu, Anthony W.; Krainak, Michael A.; Harding, David J.; Abshire, James B.; Sun, Xiaoli; Cavanaugh, John; Valett, Susan; Ramos-Izquierdo, Luis
2010-01-01
In 2007, the National Research Council (NRC) completed its first decadal survey for Earth science at the request of NASA, NOAA, and USGS. The Lidar Surface Topography (LIST) mission is one of fifteen missions recommended by NRC, whose primary objectives are to map global topography and vegetation structure at 5 m spatial resolution, and to acquire global coverage with a few years. NASA Goddard conducted an initial mission concept study for the LIST mission 2007, and developed the initial measurement requirements for the mission.
Rapid encoding of relationships between spatially remote motion signals.
Maruya, Kazushi; Holcombe, Alex O; Nishida, Shin'ya
2013-02-06
For visual processing, the temporal correlation of remote local motion signals is a strong cue to detect meaningful large-scale structures in the retinal image, because related points are likely to move together regardless of their spatial separation. While the processing of multi-element motion patterns involved in biological motion and optic flow has been studied intensively, the encoding of simpler pairwise relationships between remote motion signals remains poorly understood. We investigated this process by measuring the temporal rate limit for perceiving the relationship of two motion directions presented at the same time at different spatial locations. Compared to luminance or orientation, motion comparison was more rapid. Performance remained very high even when interstimulus separation was increased up to 100°. Motion comparison also remained rapid regardless of whether the two motion directions were similar to or different from each other. The exception was a dramatic slowing when the elements formed an orthogonal "T," in which two motions do not perceptually group together. Motion presented at task-irrelevant positions did not reduce performance, suggesting that the rapid motion comparison could not be ascribed to global optic flow processing. Our findings reveal the existence and unique nature of specialized processing that encodes long-range relationships between motion signals for quick appreciation of global dynamic scene structure.
NASA Astrophysics Data System (ADS)
Mateo, Cherry May R.; Yamazaki, Dai; Kim, Hyungjun; Champathong, Adisorn; Vaze, Jai; Oki, Taikan
2017-10-01
Global-scale river models (GRMs) are core tools for providing consistent estimates of global flood hazard, especially in data-scarce regions. Due to former limitations in computational power and input datasets, most GRMs have been developed to use simplified representations of flow physics and run at coarse spatial resolutions. With increasing computational power and improved datasets, the application of GRMs to finer resolutions is becoming a reality. To support development in this direction, the suitability of GRMs for application to finer resolutions needs to be assessed. This study investigates the impacts of spatial resolution and flow connectivity representation on the predictive capability of a GRM, CaMa-Flood, in simulating the 2011 extreme flood in Thailand. Analyses show that when single downstream connectivity (SDC) is assumed, simulation results deteriorate with finer spatial resolution; Nash-Sutcliffe efficiency coefficients decreased by more than 50 % between simulation results at 10 km resolution and 1 km resolution. When multiple downstream connectivity (MDC) is represented, simulation results slightly improve with finer spatial resolution. The SDC simulations result in excessive backflows on very flat floodplains due to the restrictive flow directions at finer resolutions. MDC channels attenuated these effects by maintaining flow connectivity and flow capacity between floodplains in varying spatial resolutions. While a regional-scale flood was chosen as a test case, these findings should be universal and may have significant impacts on large- to global-scale simulations, especially in regions where mega deltas exist.These results demonstrate that a GRM can be used for higher resolution simulations of large-scale floods, provided that MDC in rivers and floodplains is adequately represented in the model structure.
SPECIAL - The Savanna Patterns of Energy and Carbon Integrated Across the Landscape campaign
NASA Astrophysics Data System (ADS)
Beringer, J.; Hacker, J.; Hutley, L. B.; Leuning, R.; Arndt, S. K.; Amiri, R.; Bannehr, L.; Cernusak, L. A.; Grover, S.; Hensley, C.; Hocking, D. J.; Isaac, P. R.; Jamali, H.; Kanniah, K.; Livesley, S.; Neininger, B.; Paw U, K.; Sea, W. B.; Straten, D.; Tapper, N. J.; Weinmann, R. A.; Wood, S.; Zegelin, S. J.
2010-12-01
We undertook a significant field campaign (SPECIAL) to examine spatial patterns and processes of land surface-atmosphere exchanges (radiation, heat, moisture, CO2 and other trace gasses) across scales from leaf to landscape scales within Australian savannas. Such savanna ecosystems occur in over 20 countries and cover approximately 15% of the world’s land surface. They consist of a mix of trees and grasses that coexist, but are spatially highly varied in their physical structure, species composition and physiological function. This spatial variation is driven by climate factors (rainfall gradients and seasonality) and disturbances (fire, grazing, herbivory, cyclones). Variations in savanna structure, composition and function (i.e. leaf area and function, stem density, albedo, roughness) interact with the overlying atmosphere directly through exchanges of heat and moisture, which alter the overlying boundary layer. Variability in ecosystem types across the landscape can alter regional to global circulation patterns. Equally, savannas are an important part of the global carbon cycle and can influence the climate through net uptake or release of CO2. We utilized a combination of multiscale measurements including fixed flux towers, aircraft-based flux and regional budget measurements, and satellite remotely sensed quantities to quantify the spatial variability utilizing a continental scale rainfall gradient that resulted in a variety of savanna types. The ultimate goal of our research is to be able to produce robust estimates of regional carbon and water cycles to inform land management policy about how they may respond to future environmental changes.
Assessing the drivers shaping global patterns of urban vegetation landscape structure.
Dobbs, C; Nitschke, C; Kendal, D
2017-08-15
Vegetation is one of the main resources involve in ecosystem functioning and providing ecosystem services in urban areas. Little is known on the landscape structure patterns of vegetation existing in urban areas at the global scale and the drivers of these patterns. We studied the landscape structure of one hundred cities around the globe, and their relation to demography (population), socioeconomic factors (GDP, Gini Index), climate factors (temperature and rain) and topographic characteristics (altitude, variation in altitude). The data revealed that the best descriptors of landscape structure were amount, fragmentation and spatial distribution of vegetation. Populated cities tend to have less, more fragmented, less connected vegetation with a centre of the city with low vegetation cover. Results also provided insights on the influence of socioeconomics at a global scale, as landscape structure was more fragmented in areas that are economically unequal and coming from emergent economies. This study shows the effects of the social system and climate on urban landscape patterns that gives useful insights for the distribution in the provision of ecosystem services in urban areas and therefore the maintenance of human well-being. This information can support local and global policy and planning which is committing our cities to provide accessible and inclusive green space for all urban inhabitants. Copyright © 2017 Elsevier B.V. All rights reserved.
Significance tests for functional data with complex dependence structure.
Staicu, Ana-Maria; Lahiri, Soumen N; Carroll, Raymond J
2015-01-01
We propose an L 2 -norm based global testing procedure for the null hypothesis that multiple group mean functions are equal, for functional data with complex dependence structure. Specifically, we consider the setting of functional data with a multilevel structure of the form groups-clusters or subjects-units, where the unit-level profiles are spatially correlated within the cluster, and the cluster-level data are independent. Orthogonal series expansions are used to approximate the group mean functions and the test statistic is estimated using the basis coefficients. The asymptotic null distribution of the test statistic is developed, under mild regularity conditions. To our knowledge this is the first work that studies hypothesis testing, when data have such complex multilevel functional and spatial structure. Two small-sample alternatives, including a novel block bootstrap for functional data, are proposed, and their performance is examined in simulation studies. The paper concludes with an illustration of a motivating experiment.
NASA Astrophysics Data System (ADS)
Pawson, S.; Nielsen, J.; Ott, L. E.; Darmenov, A.; Putman, W.
2015-12-01
Model-data fusion approaches, such as global inverse modeling for surface flux estimation, have traditionally been performed at spatial resolutions of several tens to a few hundreds of kilometers. Use of such coarse scales presents a fundamental limitation in reconciling the modeled field with both the atmospheric observations and the distribution of surface emissions and uptake. Emissions typically occur on small scales, including point sources (e.g. power plants, forest fires) or with inhomegeneous structure. Biological uptake can have spatial variations related to complex, diverse vegetation, etc. Atmospheric observations of CO2 are either surface based, providing information at a single point, or space based with a finite-sized footprint. For instance, GOSAT and OCO-2 have footprint sizes of around 10km and proposed active sensors (such as ASCENDS) will likely have even finer footprints. One important aspect of reconciling models to measurements is the representativeness of the observation for the model field, and this depends on the generally unknown spatio-temporal variations of the CO2 field around the measurement location and time. This work presents an assessment of the global spatio-temporal variations of the CO2 field using the "7km GEOS-5 Nature Run" (7km-G5NR), which includes CO2 emissions and uptake mapped to the finest possible resolution. Results are shown for surface CO2 concentrations, total-column CO2, and separate upper and lower tropospheric columns. Spatial variability is shown to be largest in regions with strong point sources and at night in regions with complex terrain, especially where biological processes dominate the local CO2 fluxes, where the day-night differences are also most marked. The spatio-temporal variations are strongest for surface concentrations and for lower tropospheric CO2. While these results are largely anticipated, these high resolution simulations provide quantitative estimates of the global nature of spatio-temporal CO2 variability. Implications for characterizing representativeness of passive CO2 observations will be discussed. Differences between daytime and nighttime structures will be considered in light of active CO2 sensors. Finally, some possible limitations of the model will be highlighted, using some global 3-km simulations.
Global-local visual biases correspond with visual-spatial orientation.
Basso, Michael R; Lowery, Natasha
2004-02-01
Within the past decade, numerous investigations have demonstrated reliable associations of global-local visual processing biases with right and left hemisphere function, respectively (cf. Van Kleeck, 1989). Yet the relevance of these biases to other cognitive functions is not well understood. Towards this end, the present research examined the relationship between global-local visual biases and perception of visual-spatial orientation. Twenty-six women and 23 men completed a global-local judgment task (Kimchi and Palmer, 1982) and the Judgment of Line Orientation Test (JLO; Benton, Sivan, Hamsher, Varney, and Spreen, 1994), a measure of visual-spatial orientation. As expected, men had better performance on JLO. Extending previous findings, global biases were related to better visual-spatial acuity on JLO. The findings suggest that global-local biases and visual-spatial orientation may share underlying cerebral mechanisms. Implications of these findings for other visually mediated cognitive outcomes are discussed.
Patterns of Canopy and Surface Layer Consumption in a Boreal Forest Fire from Repeat Airborne Lidar
NASA Technical Reports Server (NTRS)
Alonzo, Michael; Morton, Douglas C.; Cook, Bruce D.; Andersen, Hans-Erik; Babcock, Chad; Pattison, Robert
2017-01-01
Fire in the boreal region is the dominant agent of forest disturbance with direct impacts on ecosystem structure, carbon cycling, and global climate. Global and biome-scale impacts are mediated by burn severity, measured as loss of forest canopy and consumption of the soil organic layer. To date, knowledge of the spatial variability in burn severity has been limited by sparse field sampling and moderate resolution satellite data. Here, we used pre- and post-fire airborne lidar data to directly estimate changes in canopy vertical structure and surface elevation for a 2005 boreal forest fire on Alaskas Kenai Peninsula. We found that both canopy and surface losses were strongly linked to pre-fire species composition and exhibited important fine-scale spatial variability at sub-30m resolution. The fractional reduction in canopy volume ranged from 0.61 in lowland black spruce stands to 0.27 in mixed white spruce and broad leaf forest. Residual structure largely reflects standing dead trees, highlighting the influence of pre-fire forest structure on delayed carbon losses from above ground biomass, post-fire albedo, and variability in understory light environments. Median loss of surface elevation was highest in lowland black spruce stands (0.18 m) but much lower in mixed stands (0.02 m), consistent with differences in pre-fire organic layer accumulation. Spatially continuous depth-of-burn estimates from repeat lidar measurements provide novel information to constrain carbon emissions from the surface organic layer and may inform related research on post-fire successional trajectories. Spectral measures of burn severity from Landsat were correlated with canopy (r = 0.76) and surface (r = -0.71) removal in black spruce stands but captured less of the spatial variability in fire effects for mixed stands (canopy r = 0.56, surface r = -0.26), underscoring the difficulty in capturing fire effects in heterogeneous boreal forest landscapes using proxy measures of burn severity from Landsat.
Patterns of canopy and surface layer consumption in a boreal forest fire from repeat airborne lidar
NASA Astrophysics Data System (ADS)
Alonzo, Michael; Morton, Douglas C.; Cook, Bruce D.; Andersen, Hans-Erik; Babcock, Chad; Pattison, Robert
2017-05-01
Fire in the boreal region is the dominant agent of forest disturbance with direct impacts on ecosystem structure, carbon cycling, and global climate. Global and biome-scale impacts are mediated by burn severity, measured as loss of forest canopy and consumption of the soil organic layer. To date, knowledge of the spatial variability in burn severity has been limited by sparse field sampling and moderate resolution satellite data. Here, we used pre- and post-fire airborne lidar data to directly estimate changes in canopy vertical structure and surface elevation for a 2005 boreal forest fire on Alaska’s Kenai Peninsula. We found that both canopy and surface losses were strongly linked to pre-fire species composition and exhibited important fine-scale spatial variability at sub-30 m resolution. The fractional reduction in canopy volume ranged from 0.61 in lowland black spruce stands to 0.27 in mixed white spruce and broadleaf forest. Residual structure largely reflects standing dead trees, highlighting the influence of pre-fire forest structure on delayed carbon losses from aboveground biomass, post-fire albedo, and variability in understory light environments. Median loss of surface elevation was highest in lowland black spruce stands (0.18 m) but much lower in mixed stands (0.02 m), consistent with differences in pre-fire organic layer accumulation. Spatially continuous depth-of-burn estimates from repeat lidar measurements provide novel information to constrain carbon emissions from the surface organic layer and may inform related research on post-fire successional trajectories. Spectral measures of burn severity from Landsat were correlated with canopy (r = 0.76) and surface (r = -0.71) removal in black spruce stands but captured less of the spatial variability in fire effects for mixed stands (canopy r = 0.56, surface r = -0.26), underscoring the difficulty in capturing fire effects in heterogeneous boreal forest landscapes using proxy measures of burn severity from Landsat.
Modular and hierarchical structure of social contact networks
NASA Astrophysics Data System (ADS)
Ge, Yuanzheng; Song, Zhichao; Qiu, Xiaogang; Song, Hongbin; Wang, Yong
2013-10-01
Social contact networks exhibit overlapping qualities of communities, hierarchical structure and spatial-correlated nature. We propose a mixing pattern of modular and growing hierarchical structures to reconstruct social contact networks by using an individual’s geospatial distribution information in the real world. The hierarchical structure of social contact networks is defined based on the spatial distance between individuals, and edges among individuals are added in turn from the modular layer to the highest layer. It is a gradual process to construct the hierarchical structure: from the basic modular model up to the global network. The proposed model not only shows hierarchically increasing degree distribution and large clustering coefficients in communities, but also exhibits spatial clustering features of individual distributions. As an evaluation of the method, we reconstruct a hierarchical contact network based on the investigation data of a university. Transmission experiments of influenza H1N1 are carried out on the generated social contact networks, and results show that the constructed network is efficient to reproduce the dynamic process of an outbreak and evaluate interventions. The reproduced spread process exhibits that the spatial clustering of infection is accordant with the clustering of network topology. Moreover, the effect of individual topological character on the spread of influenza is analyzed, and the experiment results indicate that the spread is limited by individual daily contact patterns and local clustering topology rather than individual degree.
Bloom, A. Anthony; Exbrayat, Jean-François; van der Velde, Ivar R.; Feng, Liang; Williams, Mathew
2016-01-01
The terrestrial carbon cycle is currently the least constrained component of the global carbon budget. Large uncertainties stem from a poor understanding of plant carbon allocation, stocks, residence times, and carbon use efficiency. Imposing observational constraints on the terrestrial carbon cycle and its processes is, therefore, necessary to better understand its current state and predict its future state. We combine a diagnostic ecosystem carbon model with satellite observations of leaf area and biomass (where and when available) and soil carbon data to retrieve the first global estimates, to our knowledge, of carbon cycle state and process variables at a 1° × 1° resolution; retrieved variables are independent from the plant functional type and steady-state paradigms. Our results reveal global emergent relationships in the spatial distribution of key carbon cycle states and processes. Live biomass and dead organic carbon residence times exhibit contrasting spatial features (r = 0.3). Allocation to structural carbon is highest in the wet tropics (85–88%) in contrast to higher latitudes (73–82%), where allocation shifts toward photosynthetic carbon. Carbon use efficiency is lowest (0.42–0.44) in the wet tropics. We find an emergent global correlation between retrievals of leaf mass per leaf area and leaf lifespan (r = 0.64–0.80) that matches independent trait studies. We show that conventional land cover types cannot adequately describe the spatial variability of key carbon states and processes (multiple correlation median = 0.41). This mismatch has strong implications for the prediction of terrestrial carbon dynamics, which are currently based on globally applied parameters linked to land cover or plant functional types. PMID:26787856
NASA Astrophysics Data System (ADS)
Kwon, O.; Kim, W.; Kim, J.
2017-12-01
Recently construction of subsea tunnel has been increased globally. For safe construction of subsea tunnel, identifying the geological structure including fault at design and construction stage is more than important. Then unlike the tunnel in land, it's very difficult to obtain the data on geological structure because of the limit in geological survey. This study is intended to challenge such difficulties in a way of developing the technology to identify the geological structure of seabed automatically by using echo sounding data. When investigation a potential site for a deep subsea tunnel, there is the technical and economical limit with borehole of geophysical investigation. On the contrary, echo sounding data is easily obtainable while information reliability is higher comparing to above approaches. This study is aimed at developing the algorithm that identifies the large scale of geological structure of seabed using geostatic approach. This study is based on theory of structural geology that topographic features indicate geological structure. Basic concept of algorithm is outlined as follows; (1) convert the seabed topography to the grid data using echo sounding data, (2) apply the moving window in optimal size to the grid data, (3) estimate the spatial statistics of the grid data in the window area, (4) set the percentile standard of spatial statistics, (5) display the values satisfying the standard on the map, (6) visualize the geological structure on the map. The important elements in this study include optimal size of moving window, kinds of optimal spatial statistics and determination of optimal percentile standard. To determine such optimal elements, a numerous simulations were implemented. Eventually, user program based on R was developed using optimal analysis algorithm. The user program was designed to identify the variations of various spatial statistics. It leads to easy analysis of geological structure depending on variation of spatial statistics by arranging to easily designate the type of spatial statistics and percentile standard. This research was supported by the Korea Agency for Infrastructure Technology Advancement under the Ministry of Land, Infrastructure and Transport of the Korean government. (Project Number: 13 Construction Research T01)
Effects of Forest Disturbances on Forest Structural Parameters Retrieval from Lidar Waveform Data
NASA Technical Reports Server (NTRS)
Ranson, K, Lon; Sun, G.
2011-01-01
The effect of forest disturbance on the lidar waveform and the forest biomass estimation was demonstrated by model simulation. The results show that the correlation between stand biomass and the lidar waveform indices changes when the stand spatial structure changes due to disturbances rather than the natural succession. This has to be considered in developing algorithms for regional or global mapping of biomass from lidar waveform data.
NASA Astrophysics Data System (ADS)
Allen, G. H.; Pavelsky, T.
2015-12-01
The width of a river reflects complex interactions between river water hydraulics and other physical factors like bank erosional resistance, sediment supply, and human-made structures. A broad range of fluvial process studies use spatially distributed river width data to understand and quantify flood hazards, river water flux, or fluvial greenhouse gas efflux. Ongoing technological advances in remote sensing, computing power, and model sophistication are moving river system science towards global-scale studies that aim to understand the Earth's fluvial system as a whole. As such, a global spatially distributed database of river location and width is necessary to better constrain these studies. Here we present the Global River Width from Landsat (GRWL) Database, the first global-scale database of river planform at mean discharge. With a resolution of 30 m, GRWL consists of 58 million measurements of river centerline location, width, and braiding index. In total, GRWL measures 2.1 million km of rivers wider than 30 m, corresponding to 602 thousand km2 of river water surface area, a metric used to calculate global greenhouse gas emissions from rivers to the atmosphere. Using data from GRWL, we find that ~20% of the world's rivers are located above 60ºN where little high quality information exists about rivers of any kind. Further, we find that ~10% of the world's large rivers are multichannel, which may impact the development of the new generation of regional and global hydrodynamic models. We also investigate the spatial controls of global fluvial geomorphology and river hydrology by comparing climate, topography, geology, and human population density to GRWL measurements. The GRWL Database will be made publically available upon publication to facilitate improved understanding of Earth's fluvial system. Finally, GRWL will be used as an a priori data for the joint NASA/CNES Surface Water and Ocean Topography (SWOT) Satellite Mission, planned for launch in 2020.
NASA Astrophysics Data System (ADS)
Swan, Chantal M.; Vogt, Meike; Gruber, Nicolas; Laufkoetter, Charlotte
2016-03-01
Much advancement has been made in recent years in field data assimilation, remote sensing and ecosystem modeling, yet our global view of phytoplankton biogeography beyond chlorophyll biomass is still a cursory taxonomic picture with vast areas of the open ocean requiring field validations. High performance liquid chromatography (HPLC) pigment data combined with inverse methods offer an advantage over many other phytoplankton quantification measures by way of providing an immediate perspective of the whole phytoplankton community in a sample as a function of chlorophyll biomass. Historically, such chemotaxonomic analysis has been conducted mainly at local spatial and temporal scales in the ocean. Here, we apply a widely tested inverse approach, CHEMTAX, to a global climatology of pigment observations from HPLC. This study marks the first systematic and objective global application of CHEMTAX, yielding a seasonal climatology comprised of ~1500 1°×1° global grid points of the major phytoplankton pigment types in the ocean characterizing cyanobacteria, haptophytes, chlorophytes, cryptophytes, dinoflagellates, and diatoms, with results validated against prior regional studies where possible. Key findings from this new global view of specific phytoplankton abundances from pigments are a) the large global proportion of marine haptophytes (comprising 32±5% of total chlorophyll), whose biogeochemical functional roles are relatively unknown, and b) the contrasting spatial scales of complexity in global community structure that can be explained in part by regional oceanographic conditions. The results are publically accessible via
Growing a Global Perspective: Utilizing Graduate Students as Scientists in the Classroom
NASA Astrophysics Data System (ADS)
Martinez, A.; Prouhet, T.; Kincaid, J.; Williams, N.; Simms, M.; Evans, R.
2006-12-01
Advancing Geospatial Skills in Science and Social Sciences (AGSSS) is a NSF GK12 program designed to produce scientists with an interest in and skills related to education by bringing graduate students (termed Fellows) into science and social science classrooms. The AGSSS program is unique in the GK-12 program because of its emphasis on spatial thinking with and through geospatial technologies. Spatial thinking is defined as the knowledge, skills, and habits of mind to use concepts of space, tools of representation, and processes of reasoning to structure problems, find answers and express solutions to these problems. Working collaboratively, Fellows assist teachers in using technologies (many freely available) such as virtual globes, GIS, GPS, NASA's ISSEarthKAM, and online databases. Fellows also customize existing curricula based on teacher requests to focus on spatial thinking and skill development. Preliminary results of the program reveal that students' use of geospatial technologies in interactive lessons that highlight real world processes and global perspectives encourages the development of higher order thinking skills. Fellows perceive three primary benefits: developing collaboration and communication skills, solidifying their own understandings of spatial thinking and becoming more aware and skilled in working in educational settings.
NASA Astrophysics Data System (ADS)
Wang, Rong; Andrews, Elisabeth; Balkanski, Yves; Boucher, Olivier; Myhre, Gunnar; Samset, Bjørn Hallvard; Schulz, Michael; Schuster, Gregory L.; Valari, Myrto; Tao, Shu
2018-02-01
There is high uncertainty in the direct radiative forcing of black carbon (BC), an aerosol that strongly absorbs solar radiation. The observation-constrained estimate, which is several times larger than the bottom-up estimate, is influenced by the spatial representativeness error due to the mesoscale inhomogeneity of the aerosol fields and the relatively low resolution of global chemistry-transport models. Here we evaluated the spatial representativeness error for two widely used observational networks (AErosol RObotic NETwork and Global Atmosphere Watch) by downscaling the geospatial grid in a global model of BC aerosol absorption optical depth to 0.1° × 0.1°. Comparing the models at a spatial resolution of 2° × 2° with BC aerosol absorption at AErosol RObotic NETwork sites (which are commonly located near emission hot spots) tends to cause a global spatial representativeness error of 30%, as a positive bias for the current top-down estimate of global BC direct radiative forcing. By contrast, the global spatial representativeness error will be 7% for the Global Atmosphere Watch network, because the sites are located in such a way that there are almost an equal number of sites with positive or negative representativeness error.
NASA Technical Reports Server (NTRS)
Kuznetsova, Maria M.; Sibeck, David Gary; Hesse, Michael; Berrios, David; Rastaetter, Lutz; Toth, Gabor; Gombosi, Tamas I.
2011-01-01
Flux transfer events (FTEs) were originally identified by transient bipolar variations of the magnetic field component normal to the nominal magnetopause centered on enhancements in the total magnetic field strength. Recent Cluster and THEMIS multi-point measurements provided a wide range of signatures that are interpreted as evidence for FTE passage (e.g., crater FTE's, traveling magnetic erosion regions). We use the global magnetohydrodynamic (MHD) code BATS-R-US developed at the University of Michigan to model the global three-dimensional structure and temporal evolution of FTEs during multi-spacecraft magnetopause crossing events. Comparison of observed and simulated signatures and sensitivity analysis of the results to the probe location will be presented. We will demonstrate a variety of observable signatures in magnetic field profile that depend on space probe location with respect to the FTE passage. The global structure of FTEs will be illustrated using advanced visualization tools developed at the Community Coordinated Modeling Center
Dale, Gillian; Arnell, Karen M.
2014-01-01
Visual stimuli can be perceived at a broad, “global” level, or at a more focused, “local” level. While research has shown that many individuals demonstrate a preference for global information, there are large individual differences in the degree of global/local bias, such that some individuals show a large global bias, some show a large local bias, and others show no bias. The main purpose of the current study was to examine whether these dispositional differences in global/local bias could be altered through various manipulations of high/low spatial frequency. Through 5 experiments, we examined various measures of dispositional global/local bias and whether performance on these measures could be altered by manipulating previous exposure to high or low spatial frequency information (with high/low spatial frequency faces, gratings, and Navon letters). Ultimately, there was little evidence of change from pre-to-post manipulation on the dispositional measures, and dispositional global/local bias was highly reliable pre- to post-manipulation. The results provide evidence that individual differences in global/local bias or preference are relatively resistant to exposure to spatial frequency information, and suggest that the processing mechanisms underlying high/low spatial frequency use and global/local bias may be more independent than previously thought. PMID:24992321
Spatial patterns of native freshwater mussels in the Upper Mississippi River
Ries, Patricia R.; DeJager, Nathan R.; Zigler, Steven J.; Newton, Teresa
2016-01-01
Multiple physical and biological factors structure freshwater mussel communities in large rivers, and their distributions have been described as clumped or patchy. However, few surveys of mussel populations have been conducted over areas large enough and at resolutions fine enough to quantify spatial patterns in their distribution. We used global and local indicators of spatial autocorrelation (i.e., Moran’s I) to quantify spatial patterns of adult and juvenile (≤5 y of age) freshwater mussels across multiple scales based on survey data from 4 reaches (navigation pools 3, 5, 6, and 18) of the Upper Mississippi River, USA. Native mussel densities were sampled at a resolution of ∼300 m and across distances ranging from 21 to 37 km, making these some of the most spatially extensive surveys conducted in a large river. Patch density and the degree and scale of patchiness varied by river reach, age group, and the scale of analysis. In all 4 pools, some patches of adults overlapped patches of juveniles, suggesting spatial and temporal persistence of adequate habitat. In pools 3 and 5, patches of juveniles were found where there were few adults, suggesting recent emergence of positive structuring mechanisms. Last, in pools 3, 5, and 6, some patches of adults were found where there were few juveniles, suggesting that negative structuring mechanisms may have replaced positive ones, leading to a lack of localized recruitment. Our results suggest that: 1) the detection of patches of freshwater mussels requires a multiscaled approach, 2) insights into the spatial and temporal dynamics of structuring mechanisms can be gained by conducting independent analyses of adults and juveniles, and 3) maps of patch distributions can be used to guide restoration and management actions and identify areas where mussels are most likely to influence ecosystem function.
NASA Astrophysics Data System (ADS)
Haugstad, A.; Battisti, D. S.; Armour, K.
2016-12-01
Earth's climate sensitivity depends critically on the strength of radiative feedbacks linking surface warming to changes in top-of-atmosphere (TOA) radiation. Many studies use a simplistic idea of radiative feedbacks, either by treating them as global mean quantities, or by assuming they can be defined uniquely by geographic location and thus that TOA radiative response depends only on local surface warming. For example, a uniform increase in sea-surface temperature has been widely used as a surrogate for global warming (e.g., Cess et al 1990 and the CMIP 'aqua4k' simulations), with the assumption that this produces the same radiative feedbacks as those arising from a doubling of carbon dioxide - even though the spatial patterns of warming differ. However, evidence suggests that these assumptions are not valid, and local feedbacks may be integrally dependent on the structure of warming or type of climate forcing applied (Rose et al 2014). This study thus investigates the following questions: to what extent do local feedbacks depend on the structure and type of forcing applied? And, to what extent do they depend on the pattern of surface temperature change induced by that forcing? Using an idealized framework of an aquaplanet atmosphere-only model, we show that radiative feedbacks are indeed dependent on the large scale structure of warming and type of forcing applied. For example, the climate responds very differently to two forcings of equal global magnitude but applied in different global regions; the pattern of local feedbacks arising from uniform warming are not the same as that arising from polar amplified warming; and the same local feedbacks can be induced by distinct forcing patterns, provided that they produce the same pattern of surface temperature change. These findings suggest that the so-called `efficacies' of climate forcings can be understood simply in terms of how local feedbacks depend on the temperature patterns they induce.
NASA Astrophysics Data System (ADS)
Ivanov, Martin; Warrach-Sagi, Kirsten; Wulfmeyer, Volker
2018-04-01
A new approach for rigorous spatial analysis of the downscaling performance of regional climate model (RCM) simulations is introduced. It is based on a multiple comparison of the local tests at the grid cells and is also known as `field' or `global' significance. The block length for the local resampling tests is precisely determined to adequately account for the time series structure. New performance measures for estimating the added value of downscaled data relative to the large-scale forcing fields are developed. The methodology is exemplarily applied to a standard EURO-CORDEX hindcast simulation with the Weather Research and Forecasting (WRF) model coupled with the land surface model NOAH at 0.11 ∘ grid resolution. Daily precipitation climatology for the 1990-2009 period is analysed for Germany for winter and summer in comparison with high-resolution gridded observations from the German Weather Service. The field significance test controls the proportion of falsely rejected local tests in a meaningful way and is robust to spatial dependence. Hence, the spatial patterns of the statistically significant local tests are also meaningful. We interpret them from a process-oriented perspective. While the downscaled precipitation distributions are statistically indistinguishable from the observed ones in most regions in summer, the biases of some distribution characteristics are significant over large areas in winter. WRF-NOAH generates appropriate stationary fine-scale climate features in the daily precipitation field over regions of complex topography in both seasons and appropriate transient fine-scale features almost everywhere in summer. As the added value of global climate model (GCM)-driven simulations cannot be smaller than this perfect-boundary estimate, this work demonstrates in a rigorous manner the clear additional value of dynamical downscaling over global climate simulations. The evaluation methodology has a broad spectrum of applicability as it is distribution-free, robust to spatial dependence, and accounts for time series structure.
A nonlocal spatial model for Lyme disease
NASA Astrophysics Data System (ADS)
Yu, Xiao; Zhao, Xiao-Qiang
2016-07-01
This paper is devoted to the study of a nonlocal and time-delayed reaction-diffusion model for Lyme disease with a spatially heterogeneous structure. In the case of a bounded domain, we first prove the existence of the positive steady state and a threshold type result for the disease-free system, and then establish the global dynamics for the model system in terms of the basic reproduction number. In the case of an unbound domain, we obtain the existence of the disease spreading speed and its coincidence with the minimal wave speed. At last, we use numerical simulations to verify our analytic results and investigate the influence of model parameters and spatial heterogeneity on the disease infection risk.
Concentration Measurements in Self-Excited Momentum Dominated Low-Density Gas Jets
NASA Technical Reports Server (NTRS)
Yildirim, B. S.; Pasumarthi, K. S.; Agrawal, A. K.
2004-01-01
Flow structure of self-excited, laminar, axisymmetric, momentum-dominated helium jets discharged vertically into ambient air was investigated using high-speed rainbow schlieren deflectometry technique. Measurements were obtained at temporal resolution of 1 ms and spatial resolution of 0.19 mm for two test cases with Richardson number of 0.034 and 0.018. Power spectra revealed that the oscillation frequency was independent of spatial coordinates, suggesting global oscillations in the flow. Abel inversion algorithm was used to reconstruct the concentration field of helium. Instantaneous concentration contours revealed changes in the flow field and evolution of vortical structures during an oscillation cycle. Temporal evolution plots of helium concentration at different axial locations provided detailed information about the instability in the flow field.
Geometry of ‘standoffs’ in lattice models of the spatial Prisoner’s Dilemma and Snowdrift games
NASA Astrophysics Data System (ADS)
Laird, Robert A.; Goyal, Dipankar; Yazdani, Soroosh
2013-09-01
The Prisoner’s Dilemma and Snowdrift games are the main theoretical constructs used to study the evolutionary dynamics of cooperation. In large, well-mixed populations, mean-field models predict a stable equilibrium abundance of all defectors in the Prisoner’s Dilemma and a stable mixed-equilibrium of cooperators and defectors in the Snowdrift game. In the spatial extensions of these games, which can greatly modify the fates of populations (including allowing cooperators to persist in the Prisoner’s Dilemma, for example), lattice models are typically used to represent space, individuals play only with their nearest neighbours, and strategy replacement is a function of the differences in payoffs between neighbours. Interestingly, certain values of the cost-benefit ratio of cooperation, coupled with particular spatial configurations of cooperators and defectors, can lead to ‘global standoffs’, a situation in which all cooperator-defector neighbours have identical payoffs, leading to the development of static spatial patterns. We start by investigating the conditions that can lead to ‘local standoffs’ (i.e., in which isolated pairs of neighbouring cooperators and defectors cannot overtake one another), and then use exhaustive searches of small square lattices (4×4 and 6×6) of degree k=3,k=4, and k=6, to show that two main types of global standoff patterns-‘periodic’ and ‘aperiodic’-are possible by tiling local standoffs across entire spatially structured populations. Of these two types, we argue that only aperiodic global standoffs are likely to be potentially attracting, i.e., capable of emerging spontaneously from non-standoff conditions. Finally, we use stochastic simulation models with comparatively large lattices (100×100) to show that global standoffs in the Prisoner’s Dilemma and Snowdrift games do indeed only (but not always) emerge under the conditions predicted by the small-lattice analysis.
On the causal structure between CO2 and global temperature
Stips, Adolf; Macias, Diego; Coughlan, Clare; Garcia-Gorriz, Elisa; Liang, X. San
2016-01-01
We use a newly developed technique that is based on the information flow concept to investigate the causal structure between the global radiative forcing and the annual global mean surface temperature anomalies (GMTA) since 1850. Our study unambiguously shows one-way causality between the total Greenhouse Gases and GMTA. Specifically, it is confirmed that the former, especially CO2, are the main causal drivers of the recent warming. A significant but smaller information flow comes from aerosol direct and indirect forcing, and on short time periods, volcanic forcings. In contrast the causality contribution from natural forcings (solar irradiance and volcanic forcing) to the long term trend is not significant. The spatial explicit analysis reveals that the anthropogenic forcing fingerprint is significantly regionally varying in both hemispheres. On paleoclimate time scales, however, the cause-effect direction is reversed: temperature changes cause subsequent CO2/CH4 changes. PMID:26900086
A new map of global ecological land units—An ecophysiographic stratification approach
Sayre, Roger; Dangermond, Jack; Frye, Charlie; Vaughan, Randy; Aniello, Peter; Breyer, Sean P.; Cribbs, Douglas; Hopkins, Dabney; Nauman, Richard; Derrenbacher, William; Wright, Dawn J.; Brown, Clint; Convis, Charles; Smith, Jonathan H.; Benson, Laurence; Van Sistine, Darren; Warner, Harumi; Cress, Jill Janene; Danielson, Jeffrey J.; Hamann, Sharon L.; Cecere, Thomas; Reddy, Ashwan D.; Burton, Devon; Grosse, Andrea; True, Diane; Metzger, Marc; Hartmann, Jens; Moosdorf, Nils; Durr, Hans; Paganini, Marc; Defourny, Pierre; Arino, Olivier; Maynard, Simone; Anderson, Mark; Comer, Patrick
2014-01-01
In response to the need and an intergovernmental commission for a high resolution and data-derived global ecosystem map, land surface elements of global ecological pattern were characterized in an ecophysiographic stratification of the planet. The stratification produced 3,923 terrestrial ecological land units (ELUs) at a base resolution of 250 meters. The ELUs were derived from data on land surface features in a three step approach. The first step involved acquiring or developing four global raster datalayers representing the primary components of ecosystem structure: bioclimate, landform, lithology, and land cover. These datasets generally represent the most accurate, current, globally comprehensive, and finest spatial and thematic resolution data available for each of the four inputs. The second step involved a spatial combination of the four inputs into a single, new integrated raster dataset where every cell represents a combination of values from the bioclimate, landforms, lithology, and land cover datalayers. This foundational global raster datalayer, called ecological facets (EFs), contains 47,650 unique combinations of the four inputs. The third step involved an aggregation of the EFs into the 3,923 ELUs. This subdivision of the Earth’s surface into relatively fine, ecological land areas is designed to be useful for various types of ecosystem research and management applications, including assessments of climate change impacts to ecosystems, economic and non-economic valuation of ecosystem services, and conservation planning.
NASA Astrophysics Data System (ADS)
Watson, James R.; Stock, Charles A.; Sarmiento, Jorge L.
2015-11-01
Modeling the dynamics of marine populations at a global scale - from phytoplankton to fish - is necessary if we are to quantify how climate change and other broad-scale anthropogenic actions affect the supply of marine-based food. Here, we estimate the abundance and distribution of fish biomass using a simple size-based food web model coupled to simulations of global ocean physics and biogeochemistry. We focus on the spatial distribution of biomass, identifying highly productive regions - shelf seas, western boundary currents and major upwelling zones. In the absence of fishing, we estimate the total ocean fish biomass to be ∼ 2.84 ×109 tonnes, similar to previous estimates. However, this value is sensitive to the choice of parameters, and further, allowing fish to move had a profound impact on the spatial distribution of fish biomass and the structure of marine communities. In particular, when movement is implemented the viable range of large predators is greatly increased, and stunted biomass spectra characterizing large ocean regions in simulations without movement, are replaced with expanded spectra that include large predators. These results highlight the importance of considering movement in global-scale ecological models.
Airborne Lidar Simulator for the Lidar Surface Topography (LIST) Mission
NASA Technical Reports Server (NTRS)
Yu, Anthony W.; Krainak, Michael A.; Abshire, James B.; Cavanaugh, John; Valett, Susan; Ramos-Izquierdo, Luis
2010-01-01
In 2007, the National Research Council (NRC) completed its first decadal survey for Earth science at the request of NASA, NOAA, and USGS. The Lidar Surface Topography (LIST) mission is one of fifteen missions recommended by NRC, whose primary objectives are to map global topography and vegetation structure at 5 m spatial resolution, and to acquire global surface height mapping within a few years. NASA Goddard conducted an initial mission concept study for the LIST mission in 2007, and developed the initial measurement requirements for the mission.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graesser, Jordan B; Cheriyadat, Anil M; Vatsavai, Raju
The high rate of global urbanization has resulted in a rapid increase in informal settlements, which can be de ned as unplanned, unauthorized, and/or unstructured housing. Techniques for ef ciently mapping these settlement boundaries can bene t various decision making bodies. From a remote sensing perspective, informal settlements share unique spatial characteristics that distinguish them from other types of structures (e.g., industrial, commercial, and formal residential). These spatial characteristics are often captured in high spatial resolution satellite imagery. We analyzed the role of spatial, structural, and contextual features (e.g., GLCM, Histogram of Oriented Gradients, Line Support Regions, Lacunarity) for urbanmore » neighborhood mapping, and computed several low-level image features at multiple scales to characterize local neighborhoods. The decision parameters to classify formal-, informal-, and non-settlement classes were learned under Decision Trees and a supervised classi cation framework. Experiments were conducted on high-resolution satellite imagery from the CitySphere collection, and four different cities (i.e., Caracas, Kabul, Kandahar, and La Paz) with varying spatial characteristics were represented. Overall accuracy ranged from 85% in La Paz, Bolivia, to 92% in Kandahar, Afghanistan. While the disparities between formal and informal neighborhoods varied greatly, many of the image statistics tested proved robust.« less
Andrews, Elisabeth; Balkanski, Yves; Boucher, Olivier; Myhre, Gunnar; Samset, Bjørn Hallvard; Schulz, Michael; Schuster, Gregory L.; Valari, Myrto; Tao, Shu
2018-01-01
Abstract There is high uncertainty in the direct radiative forcing of black carbon (BC), an aerosol that strongly absorbs solar radiation. The observation‐constrained estimate, which is several times larger than the bottom‐up estimate, is influenced by the spatial representativeness error due to the mesoscale inhomogeneity of the aerosol fields and the relatively low resolution of global chemistry‐transport models. Here we evaluated the spatial representativeness error for two widely used observational networks (AErosol RObotic NETwork and Global Atmosphere Watch) by downscaling the geospatial grid in a global model of BC aerosol absorption optical depth to 0.1° × 0.1°. Comparing the models at a spatial resolution of 2° × 2° with BC aerosol absorption at AErosol RObotic NETwork sites (which are commonly located near emission hot spots) tends to cause a global spatial representativeness error of 30%, as a positive bias for the current top‐down estimate of global BC direct radiative forcing. By contrast, the global spatial representativeness error will be 7% for the Global Atmosphere Watch network, because the sites are located in such a way that there are almost an equal number of sites with positive or negative representativeness error. PMID:29937603
Global patterns and predictors of fish species richness in estuaries.
Vasconcelos, Rita P; Henriques, Sofia; França, Susana; Pasquaud, Stéphanie; Cardoso, Inês; Laborde, Marina; Cabral, Henrique N
2015-09-01
1. Knowledge of global patterns of biodiversity and regulating variables is indispensable to develop predictive models. 2. The present study used predictive modelling approaches to investigate hypotheses that explain the variation in fish species richness between estuaries over a worldwide spatial extent. Ultimately, such models will allow assessment of future changes in ecosystem structure and function as a result of environmental changes. 3. A comprehensive worldwide data base was compiled of the fish assemblage composition and environmental characteristics of estuaries. Generalized Linear Models were used to quantify how variation in species richness among estuaries is related to historical events, energy dynamics and ecosystem characteristics, while controlling for sampling effects. 4. At the global extent, species richness differed among marine biogeographic realms and continents and increased with mean sea surface temperature, terrestrial net primary productivity and the stability of connectivity with a marine ecosystem (open vs. temporarily open estuaries). At a smaller extent (within a marine biogeographic realm or continent), other characteristics were also important in predicting variation in species richness, with species richness increasing with estuary area and continental shelf width. 5. The results suggest that species richness in an estuary is defined by predictors that are spatially hierarchical. Over the largest spatial extents, species richness is influenced by the broader distributions and habitat use patterns of marine and freshwater species that can colonize estuaries, which are in turn governed by history contingency, energy dynamics and productivity variables. Species richness is also influenced by more regional and local parameters that can further affect the process of community colonization in an estuary including the connectivity of the estuary with the adjacent marine habitat, and, over smaller spatial extents, the size of these habitats. In summary, patterns of species richness in estuaries across large spatial extents seem to reflect from global to local processes acting on community colonization. The importance of considering spatial extent, sampling effects and of combining history and contemporary environmental characteristics when exploring biodiversity is highlighted. © 2015 The Authors. Journal of Animal Ecology published by John Wiley & Sons on behalf of the British Ecological Society.
Spatial confinement induces hairpins in nicked circular DNA
Japaridze, Aleksandre; Orlandini, Enzo; Smith, Kathleen Beth; Gmür, Lucas; Valle, Francesco; Micheletti, Cristian
2017-01-01
Abstract In living cells, DNA is highly confined in space with the help of condensing agents, DNA binding proteins and high levels of supercoiling. Due to challenges associated with experimentally studying DNA under confinement, little is known about the impact of spatial confinement on the local structure of the DNA. Here, we have used well characterized slits of different sizes to collect high resolution atomic force microscopy images of confined circular DNA with the aim of assessing the impact of the spatial confinement on global and local conformational properties of DNA. Our findings, supported by numerical simulations, indicate that confinement imposes a large mechanical stress on the DNA as evidenced by a pronounced anisotropy and tangent–tangent correlation function with respect to non-constrained DNA. For the strongest confinement we observed nanometer sized hairpins and interwound structures associated with the nicked sites in the DNA sequence. Based on these findings, we propose that spatial DNA confinement in vivo can promote the formation of localized defects at mechanically weak sites that could be co-opted for biological regulatory functions. PMID:28201616
Linking models and data on vegetation structure
NASA Astrophysics Data System (ADS)
Hurtt, G. C.; Fisk, J.; Thomas, R. Q.; Dubayah, R.; Moorcroft, P. R.; Shugart, H. H.
2010-06-01
For more than a century, scientists have recognized the importance of vegetation structure in understanding forest dynamics. Now future satellite missions such as Deformation, Ecosystem Structure, and Dynamics of Ice (DESDynI) hold the potential to provide unprecedented global data on vegetation structure needed to reduce uncertainties in terrestrial carbon dynamics. Here, we briefly review the uses of data on vegetation structure in ecosystem models, develop and analyze theoretical models to quantify model-data requirements, and describe recent progress using a mechanistic modeling approach utilizing a formal scaling method and data on vegetation structure to improve model predictions. Generally, both limited sampling and coarse resolution averaging lead to model initialization error, which in turn is propagated in subsequent model prediction uncertainty and error. In cases with representative sampling, sufficient resolution, and linear dynamics, errors in initialization tend to compensate at larger spatial scales. However, with inadequate sampling, overly coarse resolution data or models, and nonlinear dynamics, errors in initialization lead to prediction error. A robust model-data framework will require both models and data on vegetation structure sufficient to resolve important environmental gradients and tree-level heterogeneity in forest structure globally.
Plants and algae mediate important ecosystem processes in coastal marshes and swamps. These assemblages are structured in part by estuarine environmental gradients such as tidal elevation and salinity. Such gradients are likely to change with sea-level rise (SLR) due to global cl...
Network Ethnography and the "Cyberflâneur": Evolving Policy Sociology in Education
ERIC Educational Resources Information Center
Hogan, Anna
2016-01-01
This paper makes the argument that new global spatialities and new governance structures in education have important implications for how we think about education policy and do education policy analysis. This context necessitates that researchers engage in new methodologies to ensure that there is a suitable link between their research problem and…
Modeling landscape net ecosystem productivity (LandNEP) under alternative management regimes
Eugenie S. Euskirchen; Jiquan Chen; Harbin Li; Eric J. Gustafson; Thomas R. Crow
2002-01-01
Forests have been considered as a major carbon sink within the global carbon budget. However, a fragmented forest landscape varies significantly in its composition and age structure, and the amount of carbon sequestered at this level remains generally unknown to the scientific community. More precisely, the temporal dynamics and spatial distribution of net ecosystem...
Hydrology and landscape structure control subalpine catchment carbon export
Vincent Jerald Pacific
2009-01-01
Carbon export from high elevation ecosystems is a critical component of the global carbon cycle. Ecosystems in northern latitudes have become the focus of much research due to their potential as large sinks of carbon in the atmosphere. However, there exists limited understanding of the controls of carbon export from complex mountain catchments due to strong spatial and...
Invariant Spatial Context Is Learned but Not Retrieved in Gaze-Contingent Tunnel-View Search
ERIC Educational Resources Information Center
Zang, Xuelian; Jia, Lina; Müller, Hermann J.; Shi, Zhuanghua
2015-01-01
Our visual brain is remarkable in extracting invariant properties from the noisy environment, guiding selection of where to look and what to identify. However, how the brain achieves this is still poorly understood. Here we explore interactions of local context and global structure in the long-term learning and retrieval of invariant display…
Daniel J. Isaak; Seth J. Wenger; Michael K. Young
2017-01-01
Temperature profoundly affects ecology, a fact ever more evident as the ability to measure thermal environments increases and global changes alter these environments. The spatial structure of thermalscapes is especially relevant to the distribution and abundance of ectothermic organisms but the ability to describe biothermal relationships at extents and grains relevant...
Chromatin Insulators and Topological Domains: Adding New Dimensions to 3D Genome Architecture
Matharu, Navneet K.; Ahanger, Sajad H.
2015-01-01
The spatial organization of metazoan genomes has a direct influence on fundamental nuclear processes that include transcription, replication, and DNA repair. It is imperative to understand the mechanisms that shape the 3D organization of the eukaryotic genomes. Chromatin insulators have emerged as one of the central components of the genome organization tool-kit across species. Recent advancements in chromatin conformation capture technologies have provided important insights into the architectural role of insulators in genomic structuring. Insulators are involved in 3D genome organization at multiple spatial scales and are important for dynamic reorganization of chromatin structure during reprogramming and differentiation. In this review, we will discuss the classical view and our renewed understanding of insulators as global genome organizers. We will also discuss the plasticity of chromatin structure and its re-organization during pluripotency and differentiation and in situations of cellular stress. PMID:26340639
Global and regional alterations of hippocampal anatomy in long-term meditation practitioners.
Luders, Eileen; Thompson, Paul M; Kurth, Florian; Hong, Jui-Yang; Phillips, Owen R; Wang, Yalin; Gutman, Boris A; Chou, Yi-Yu; Narr, Katherine L; Toga, Arthur W
2013-12-01
Studies linking meditation and brain structure are still relatively sparse, but the hippocampus is consistently implicated as one of the structures altered in meditation practitioners. To explore hippocampal features in the framework of meditation, we analyzed high-resolution structural magnetic resonance imaging data from 30 long-term meditators and 30 controls, closely matched for sex, age, and handedness. Hippocampal formations were manually traced following established protocols. In addition to calculating left and right hippocampal volumes (global measures), regional variations in surface morphology were determined by measuring radial distances from the hippocampal core to spatially matched surface points (local measures). Left and right hippocampal volumes were larger in meditators than in controls, significantly so for the left hippocampus. The presence and direction of this global effect was confirmed locally by mapping the exact spatial locations of the group differences. Altogether, radial distances were larger in meditators compared to controls, with up to 15% difference. These local effects were observed in several hippocampal regions in the left and right hemisphere though achieved significance primarily in the left hippocampal head. Larger hippocampal dimensions in long-term meditators may constitute part of the underlying neurological substrate for cognitive skills, mental capacities, and/or personal traits associated with the practice of meditation. Alternatively, given that meditation positively affects autonomic regulation and immune activity, altered hippocampal dimensions may be one result of meditation-induced stress reduction. However, given the cross-sectional design, the lack of individual stress measures, and the limited resolution of brain data, the exact underlying neuronal mechanisms remain to be established. Copyright © 2012 Wiley Periodicals, Inc.
Global and Regional Alterations of Hippocampal Anatomy in Long-Term Meditation Practitioners
Luders, Eileen; Thompson, Paul M.; Kurth, Florian; Hong, Jui-Yang; Phillips, Owen R.; Wang, Yalin; Gutman, Boris A.; Chou, Yi-Yu; Narr, Katherine L.; Toga, Arthur W.
2014-01-01
Studies linking meditation and brain structure are still relatively sparse, but the hippocampus is consistently implicated as one of the structures altered in meditation practitioners. To explore hippocampal features in the framework of meditation, we analyzed high-resolution structural magnetic resonance imaging data from 30 long-term meditators and 30 controls, closely matched for sex, age, and handedness. Hippocampal formations were manually traced following established protocols. In addition to calculating left and right hippocampal volumes (global measures), regional variations in surface morphology were determined by measuring radial distances from the hippocampal core to spatially matched surface points (local measures). Left and right hippocampal volumes were larger in meditators than in controls, significantly so for the left hippocampus. The presence and direction of this global effect was confirmed locally by mapping the exact spatial locations of the group differences. Altogether, radial distances were larger in meditators compared to controls, with up to 15% difference. These local effects were observed in several hippocampal regions in the left and right hemisphere though achieved significance primarily in the left hippocampal head. Larger hippocampal dimensions in long-term meditators may constitute part of the underlying neurological substrate for cognitive skills, mental capacities, and/or personal traits associated with the practice of meditation. Alternatively, given that meditation positively affects autonomic regulation and immune activity, altered hippocampal dimensions may be one result of meditation-induced stress reduction. However, given the cross-sectional design, the lack of individual stress measures, and the limited resolution of brain data, the exact underlying neuronal mechanisms remain to be established. PMID:22815233
Nonlinear self-sustained structures and fronts in spatially developing wake flows
NASA Astrophysics Data System (ADS)
Pier, Benoît; Huerre, Patrick
2001-05-01
A family of slowly spatially developing wakes with variable pressure gradient is numerically demonstrated to sustain a synchronized finite-amplitude vortex street tuned at a well-defined frequency. This oscillating state is shown to be described by a steep global mode exhibiting a sharp Dee Langer-type front at the streamwise station of marginal absolute instability. The front acts as a wavemaker which sends out nonlinear travelling waves in the downstream direction, the global frequency being imposed by the real absolute frequency prevailing at the front station. The nonlinear travelling waves are determined to be governed by the local nonlinear dispersion relation resulting from a temporal evolution problem on a local wake profile considered as parallel. Although the vortex street is fully nonlinear, its frequency is dictated by a purely linear marginal absolute instability criterion applied to the local linear dispersion relation.
Decadal power in land air temperatures: Is it statistically significant?
NASA Astrophysics Data System (ADS)
Thejll, Peter A.
2001-12-01
The geographical distribution and properties of the well-known 10-11 year signal in terrestrial temperature records is investigated. By analyzing the Global Historical Climate Network data for surface air temperatures we verify that the signal is strongest in North America and is similar in nature to that reported earlier by R. G. Currie. The decadal signal is statistically significant for individual stations, but it is not possible to show that the signal is statistically significant globally, using strict tests. In North America, during the twentieth century, the decadal variability in the solar activity cycle is associated with the decadal part of the North Atlantic Oscillation index series in such a way that both of these signals correspond to the same spatial pattern of cooling and warming. A method for testing statistical results with Monte Carlo trials on data fields with specified temporal structure and specific spatial correlation retained is presented.
Exploratory spatial data analysis of global MODIS active fire data
NASA Astrophysics Data System (ADS)
Oom, D.; Pereira, J. M. C.
2013-04-01
We performed an exploratory spatial data analysis (ESDA) of autocorrelation patterns in the NASA MODIS MCD14ML Collection 5 active fire dataset, for the period 2001-2009, at the global scale. The dataset was screened, resulting in an annual rate of false alarms and non-vegetation fires ranging from a minimum of 3.1% in 2003 to a maximum of 4.4% in 2001. Hot bare soils and gas flares were the major sources of false alarms and non-vegetation fires. The data were aggregated at 0.5° resolution for the global and local spatial autocorrelation Fire counts were found to be positively correlated up to distances of around 200 km, and negatively for larger distances. A value of 0.80 (p = 0.001, α = 0.05) for Moran's I indicates strong spatial autocorrelation between fires at global scale, with 60% of all cells displaying significant positive or negative spatial correlation. Different types of spatial autocorrelation were mapped and regression diagnostics allowed for the identification of spatial outlier cells, with fire counts much higher or lower than expected, considering their spatial context.
Data-Driven Hierarchical Structure Kernel for Multiscale Part-Based Object Recognition
Wang, Botao; Xiong, Hongkai; Jiang, Xiaoqian; Zheng, Yuan F.
2017-01-01
Detecting generic object categories in images and videos are a fundamental issue in computer vision. However, it faces the challenges from inter and intraclass diversity, as well as distortions caused by viewpoints, poses, deformations, and so on. To solve object variations, this paper constructs a structure kernel and proposes a multiscale part-based model incorporating the discriminative power of kernels. The structure kernel would measure the resemblance of part-based objects in three aspects: 1) the global similarity term to measure the resemblance of the global visual appearance of relevant objects; 2) the part similarity term to measure the resemblance of the visual appearance of distinctive parts; and 3) the spatial similarity term to measure the resemblance of the spatial layout of parts. In essence, the deformation of parts in the structure kernel is penalized in a multiscale space with respect to horizontal displacement, vertical displacement, and scale difference. Part similarities are combined with different weights, which are optimized efficiently to maximize the intraclass similarities and minimize the interclass similarities by the normalized stochastic gradient ascent algorithm. In addition, the parameters of the structure kernel are learned during the training process with regard to the distribution of the data in a more discriminative way. With flexible part sizes on scale and displacement, it can be more robust to the intraclass variations, poses, and viewpoints. Theoretical analysis and experimental evaluations demonstrate that the proposed multiscale part-based representation model with structure kernel exhibits accurate and robust performance, and outperforms state-of-the-art object classification approaches. PMID:24808345
New features in Saturn's atmosphere revealed by high-resolution thermal infrared images
NASA Technical Reports Server (NTRS)
Gezari, D. Y.; Mumma, M. J.; Espenak, F.; Deming, D.; Bjoraker, G.; Woods, L.; Folz, W.
1989-01-01
Observations of the stratospheric IR emission structure on Saturn are presented. The high-spatial-resolution global images show a variety of new features, including a narrow equatorial belt of enhanced emission at 7.8 micron, a prominent symmetrical north polar hotspot at all three wavelengths, and a midlatitude structure which is asymmetrically brightened at the east limb. The results confirm the polar brightening and reversal in position predicted by recent models for seasonal thermal variations of Saturn's stratosphere.
IPUMS: Detailed global data on population characteristics
NASA Astrophysics Data System (ADS)
Kugler, T.
2017-12-01
Many new and exciting sources of data on human population distributions based on remote sensing, mobile technology, and other mechanisms are becoming available. These new data sources often provide fine scale spatial and/or temporal resolution. However, they typically focus on the location of population, with little or no information on population characteristics. The large and growing collection of data available through the IPUMS family of products complements datasets that provide spatial and temporal detail but little attribute detail by providing the full depth of characteristics covered by population censuses, including demographic, household structure, economic, employment, education, and housing characteristics. IPUMS International provides census microdata for 85 countries. Microdata provide the responses to every census question for each individual in a sample of households. Microdata identify the sub-national geographic unit in which a household is located, but for confidentiality reasons, identified units must include a minimum population, typically 20,000 people. Small-area aggregate data often describe much smaller geographic units, enabling study of detailed spatial patterns of population characteristics. However the structure of aggregate data tables is highly heterogeneous across countries, census years, and even topics within a given census, making these data difficult to work with in any systematic way. A recently funded project will assemble small-area aggregate population and agricultural census data published by national statistical offices. Through preliminary work collecting and cataloging over 10,000 tables, we have identified a small number of structural families that can be used to organize the many different structures. These structural families will form the basis for software tools to document and standardize the tables for ingest into a common database. Both the microdata and aggregate data are made available through IPUMS Terra, facilitating integration with land use, land cover, climate, and other environmental data. These data can be used to address pressing global challenges, such as food and water security, development and deforestation, and environmentally-influenced migration.
Spatially distributed modal signals of free shallow membrane shell structronic system
NASA Astrophysics Data System (ADS)
Yue, H. H.; Deng, Z. Q.; Tzou, H. S.
2008-11-01
Based on the smart material and structronics technology, distributed sensor and control of shell structures have been rapidly developed for the last 20 years. This emerging technology has been utilized in aerospace, telecommunication, micro-electromechanical systems and other engineering applications. However, distributed monitoring technique and its resulting global spatially distributed sensing signals of shallow paraboloidal membrane shells are not clearly understood. In this paper, modeling of free flexible paraboloidal shell with spatially distributed sensor, micro-sensing signal characteristics, and location of distributed piezoelectric sensor patches are investigated based on a new set of assumed mode shape functions. Parametric analysis indicates that the signal generation depends on modal membrane strains in the meridional and circumferential directions in which the latter is more significant than the former, when all bending strains vanish in membrane shells. This study provides a modeling and analysis technique for distributed sensors laminated on lightweight paraboloidal flexible structures and identifies critical components and regions that generate significant signals.
Spatial Signal Characteristics of Shallow Paraboloidal Shell Structronic Systems
NASA Astrophysics Data System (ADS)
Yue, H. H.; Deng, Z. Q.; Tzou, H. S.
Based on the smart material and structronics technology, distributed sensor and control of shell structures have been rapidly developed for the last twenty years. This emerging technology has been utilized in aerospace, telecommunication, micro-electromechanical systems and other engineering applications. However, distributed monitoring technique and its resulting global spatially distributed sensing signals of thin flexible membrane shells are not clearly understood. In this paper, modeling of free thin paraboloidal shell with spatially distributed sensor, micro-sensing signal characteristics, and location of distributed piezoelectric sensor patches are investigated based on a new set of assumed mode shape functions. Parametric analysis indicates that the signal generation depends on modal membrane strains in the meridional and circumferential directions in which the latter is more significant than the former, when all bending strains vanish in membrane shells. This study provides a modeling and analysis technique for distributed sensors laminated on lightweight paraboloidal flexible structures and identifies critical components and regions that generate significant signals.
The European functional tree of bird life in the face of global change
Thuiller, Wilfried; Pironon, Samuel; Psomas, Achilleas; Barbet-Massin, Morgane; Jiguet, Frédéric; Lavergne, Sébastien; Pearman, Peter B.; Renaud, Julien; Zupan, Laure; Zimmermann, Niklaus E.
2014-01-01
Despite the recognized joint impact of climate and land cover change on facets of biodiversity and their associated functions, risk assessments have primarily evaluated impacts on species ranges and richness. Here we quantify the sensitivity of the functional structure of European avian assemblages to changes in both regional climate and land cover. We combine species range forecasts with functional trait information. We show that species sensitivity to environmental change is randomly distributed across the functional tree of the European avifauna and that functionally unique species are not disproportionately threatened by 2080. However, projected species range changes will modify the mean species richness and functional diversity of bird diets and feeding behaviours. This will unequally affect the spatial structure of functional diversity, leading to homogenization across Europe. Therefore, global changes may alter the functional structure of species assemblages in the future in ways that need to be accounted for in conservation planning. PMID:24452245
Can we infer plant facilitation from remote sensing? A test across global drylands
Xu, Chi; Holmgren, Milena; Van Nes, Egbert H.; Maestre, Fernando T.; Soliveres, Santiago; Berdugo, Miguel; Kéfi, Sonia; Marquet, Pablo A.; Abades, Sebastian; Scheffer, Marten
2016-01-01
Facilitation is a major force shaping the structure and diversity of plant communities in terrestrial ecosystems. Detecting positive plant-plant interactions relies on the combination of field experimentation and the demonstration of spatial association between neighboring plants. This has often restricted the study of facilitation to particular sites, limiting the development of systematic assessments of facilitation over regional and global scales. Here we explore whether the frequency of plant spatial associations detected from high-resolution remotely-sensed images can be used to infer plant facilitation at the community level in drylands around the globe. We correlated the information from remotely-sensed images freely available through Google Earth™ with detailed field assessments, and used a simple individual-based model to generate patch-size distributions using different assumptions about the type and strength of plant-plant interactions. Most of the patterns found from the remotely-sensed images were more right-skewed than the patterns from the null model simulating a random distribution. This suggests that the plants in the studied drylands show stronger spatial clustering than expected by chance. We found that positive plant co-occurrence, as measured in the field, was significantly related to the skewness of vegetation patch-size distribution measured using Google Earth™ images. Our findings suggest that the relative frequency of facilitation may be inferred from spatial pattern signals measured from remotely-sensed images, since facilitation often determines positive co-occurrence among neighboring plants. They pave the road for a systematic global assessment of the role of facilitation in terrestrial ecosystems. PMID:26552256
NASA Astrophysics Data System (ADS)
Salehipour, H.; Stuhne, G.; Peltier, W. R.
2012-12-01
The development of models of the ocean tides with higher resolution near the coastlines and courser mesh offshore, has been required due to the significant impacts of coastline configuration and bathymetry (associated with sea level rise) on the amplitude and phase of tidal constituents, not only under present conditions but also in the deep past [Griffiths and Peltier GRL 2008, Griffiths and Peltier AMS 2009, Hill et al. JGR 2011]. A global tidal model with enhanced resolution at the poles has been developed by Griffiths and Peltier [2008, 2009], which, although capable of highly resolving polar ocean tides , is based upon a standard structured Arakawa C grid and hence is not capable of resolving coastlines locally. Furthermore the use of a nested modelling approach, although it may enable local spatial refinement [Hill et al. 2011], nevertheless suffers from its inherent dependence on the availability of a global tidal model with necessarily low spatial resolution to provide the open boundary conditions required for the local high resolution model. On the other hand, an unstructured triangulation of the global domain provides a standalone framework that may be employed to study highly resolved regions without relying on secondary models. The first step in the development of the structure we are employing was described in Stuhne and Peltier [Ocean Modeling, 2009]. In further extending this modelling structure we are employing a new discontinuous Galerkin (DG) discretization of the governing equations in order to provide very high order of accuracy while also ensuring that momentum transport is locally conserved [Giraldo et al. JCP 2002]. After validating the 2D shallow water model with several test suites appropriate to aquaplanets [Williamson et al. JCP 1992, Galewsky et al. Tellus 2004, Nair and Lauritzen JCP 2010], the governing equations are extended to include the influence of internal tide drag in the deep ocean as well as the drag in shallow marginal seas together with the influence of gravitational self-attraction and loading. In this paper, we will explain the mathematical and numerical framework employed in the development of the DG global tidal model and present the validation results obtained using the present-day satellite altimetry data-constrained TPXO 6.2 global tidal solutions of Egbert et al. [JGR 1994].igure 1. Barotropic Instability Test of Galewsky et al. (Tellus 2004), with 2nd order DG
Circulation controls of the spatial structure of maximum daily precipitation over Poland
NASA Astrophysics Data System (ADS)
Stach, Alfred
2015-04-01
Among forecasts made on the basis of global and regional climatic models is one of a high probability of an increase in the frequency and intensity of extreme precipitation events. Learning the regularities underlying the recurrence and spatial extent of extreme precipitation is obviously of great importance, both economic and social. The main goal of the study was to analyse regularities underlying spatial and temporal variations in monthly Maximum Daily Precipitation Totals (MDPTs) observed in Poland over the years 1956-1980. These data are specific because apart from being spatially discontinuous, which is typical of precipitation, they are also non-synchronic. The main aim of the study was accomplished via several detailed goals: • identification and typology of the spatial structure of monthly MDPTs, • determination of the character and probable origin of events generating MDPTs, and • quantitative assessment of the contribution of the particular events to the overall MDPT figures. The analysis of the spatial structure of MDPTs was based on 300 models of spatial structure, one for each of the analysed sets of monthly MDPTs. The models were built on the basis of empirical anisotropic semivariograms of normalised data. In spite of their spatial discontinuity and asynchronicity, the MDPT data from Poland display marked regularities in their spatial pattern that yield readily to mathematical modelling. The MDPT field in Poland is usually the sum of the outcomes of three types of processes operating at various spatial scales: local (<10-20 km), regional (50-150 km), and supra-regional (>200 km). The spatial scales are probably connected with a convective/ orographic, a frontal and a 'planetary waves' genesis of high precipitation. Their contributions are highly variable. Generally predominant, however, are high daily precipitation totals with a spatial extent of 50 to 150 km connected with mesoscale phenomena and the migration of atmospheric fronts (35-38%). The spatial extent of areas of high local-scale precipitation usually varies at random, especially in the warm season. At supra-local scales, structures of repetitive size predominate. Eight types of anisotropic structures of monthly MDPTs were distinguished. To identify them, an analysis was made of semivariance surface similarities. The types differ not only in the level and direction of anisotropy, but also in the number and type of elementary components, which is evidence of genetic differences in precipitation. Their appearance shows a significant seasonal variability, so the most probable supposition was that temporal variations in the MDPT pattern were connected with circulation conditions: the type and direction of inflow of air masses. This hypothesis was validated by testing differences in the frequency of occurrence of Grosswetterlagen circulation situations in the months belonging to the distinguished types of the spatial MDPT pattern.
aerosol radiative effects and forcing: spatial and temporal distributions
NASA Astrophysics Data System (ADS)
Kinne, Stefan
2014-05-01
A monthly climatology for aerosol optical properties based on a synthesis from global modeling and observational data has been applied to illustrate spatial distributions and global averages of aerosol radiative impacts. With the help of a pre-industrial reference for aerosol optical properties from global modeling, also the aerosol direct forcing (ca -0.35W/m2 globally and annual averaged) and their spatial and seasonal distributions and contributions by individual aerosol components are estimated. Finally, CCN and IN concentrations associated with this climatology are applied to estimate aerosol indirect effects and forcing.
An economic model of international wood supply, forest stock and forest area change
James A. Turner; Joseph Buongiorno; Shushuai Zhu
2006-01-01
Wood supply, the link between roundwood removals and forest resources, is an important component of forest sector models. This paper develops a model of international wood supply within the structure of the spatial equilibrium Global Forest Products Model. The wood supply model determines, for each country, the annual forest harvest, the annual change of forest stock...
Kevin J. Gutzwiller; Samuel K. Riffell; Curtis H. Flather
2015-01-01
Context: Land-use change is a global phenomenon with potential to generate abrupt spatial changes in speciesâ distributions. Objectives: We assessed whether theory about the internal structure of bird speciesâ geographic ranges can be refined to reflect abrupt changes in distribution and abundance associated with human influences on landscapes, and whether the...
Jennifer C. Pierson; Fred W. Allendorf; Pierre Drapeau; Michael K. Schwartz
2013-01-01
An exciting advance in the understanding of metapopulation dynamics has been the investigation of how populations respond to ephemeral patches that go 'extinct' during the lifetime of an individual. Previous research has shown that this scenario leads to genetic homogenization across large spatial scales. However, little is known about fine-scale genetic...
Medium-range Performance of the Global NWP Model
NASA Astrophysics Data System (ADS)
Kim, J.; Jang, T.; Kim, J.; Kim, Y.
2017-12-01
The medium-range performance of the global numerical weather prediction (NWP) model in the Korea Meteorological Administration (KMA) is investigated. The performance is based on the prediction of the extratropical circulation. The mean square error is expressed by sum of spatial variance of discrepancy between forecasts and observations and the square of the mean error (ME). Thus, it is important to investigate the ME effect in order to understand the model performance. The ME is expressed by the subtraction of an anomaly from forecast difference against the real climatology. It is found that the global model suffers from a severe systematic ME in medium-range forecasts. The systematic ME is dominant in the entire troposphere in all months. Such ME can explain at most 25% of root mean square error. We also compare the extratropical ME distribution with that from other NWP centers. NWP models exhibit similar spatial ME structure each other. It is found that the spatial ME pattern is highly correlated to that of an anomaly, implying that the ME varies with seasons. For example, the correlation coefficient between ME and anomaly ranges from -0.51 to -0.85 by months. The pattern of the extratropical circulation also has a high correlation to an anomaly. The global model has trouble in faithfully simulating extratropical cyclones and blockings in the medium-range forecast. In particular, the model has a hard to simulate an anomalous event in medium-range forecasts. If we choose an anomalous period for a test-bed experiment, we will suffer from a large error due to an anomaly.
Jenett, Benjamin; Calisch, Sam; Cellucci, Daniel; Cramer, Nick; Gershenfeld, Neil; Swei, Sean; Cheung, Kenneth C
2017-03-01
We describe an approach for the discrete and reversible assembly of tunable and actively deformable structures using modular building block parts for robotic applications. The primary technical challenge addressed by this work is the use of this method to design and fabricate low density, highly compliant robotic structures with spatially tuned stiffness. This approach offers a number of potential advantages over more conventional methods for constructing compliant robots. The discrete assembly reduces manufacturing complexity, as relatively simple parts can be batch-produced and joined to make complex structures. Global mechanical properties can be tuned based on sub-part ordering and geometry, because local stiffness and density can be independently set to a wide range of values and varied spatially. The structure's intrinsic modularity can significantly simplify analysis and simulation. Simple analytical models for the behavior of each building block type can be calibrated with empirical testing and synthesized into a highly accurate and computationally efficient model of the full compliant system. As a case study, we describe a modular and reversibly assembled wing that performs continuous span-wise twist deformation. It exhibits high performance aerodynamic characteristics, is lightweight and simple to fabricate and repair. The wing is constructed from discrete lattice elements, wherein the geometric and mechanical attributes of the building blocks determine the global mechanical properties of the wing. We describe the mechanical design and structural performance of the digital morphing wing, including their relationship to wind tunnel tests that suggest the ability to increase roll efficiency compared to a conventional rigid aileron system. We focus here on describing the approach to design, modeling, and construction as a generalizable approach for robotics that require very lightweight, tunable, and actively deformable structures.
Digital Morphing Wing: Active Wing Shaping Concept Using Composite Lattice-Based Cellular Structures
Jenett, Benjamin; Calisch, Sam; Cellucci, Daniel; Cramer, Nick; Gershenfeld, Neil; Swei, Sean
2017-01-01
Abstract We describe an approach for the discrete and reversible assembly of tunable and actively deformable structures using modular building block parts for robotic applications. The primary technical challenge addressed by this work is the use of this method to design and fabricate low density, highly compliant robotic structures with spatially tuned stiffness. This approach offers a number of potential advantages over more conventional methods for constructing compliant robots. The discrete assembly reduces manufacturing complexity, as relatively simple parts can be batch-produced and joined to make complex structures. Global mechanical properties can be tuned based on sub-part ordering and geometry, because local stiffness and density can be independently set to a wide range of values and varied spatially. The structure's intrinsic modularity can significantly simplify analysis and simulation. Simple analytical models for the behavior of each building block type can be calibrated with empirical testing and synthesized into a highly accurate and computationally efficient model of the full compliant system. As a case study, we describe a modular and reversibly assembled wing that performs continuous span-wise twist deformation. It exhibits high performance aerodynamic characteristics, is lightweight and simple to fabricate and repair. The wing is constructed from discrete lattice elements, wherein the geometric and mechanical attributes of the building blocks determine the global mechanical properties of the wing. We describe the mechanical design and structural performance of the digital morphing wing, including their relationship to wind tunnel tests that suggest the ability to increase roll efficiency compared to a conventional rigid aileron system. We focus here on describing the approach to design, modeling, and construction as a generalizable approach for robotics that require very lightweight, tunable, and actively deformable structures. PMID:28289574
Superconductivity in BaPtSb with an Ordered Honeycomb Network
NASA Astrophysics Data System (ADS)
Kudo, Kazutaka; Saito, Yuki; Takeuchi, Takaaki; Ayukawa, Shin-ya; Kawamata, Takayuki; Nakamura, Shinichiro; Koike, Yoji; Nohara, Minoru
2018-06-01
Superconductivity in BaPtSb with the SrPtSb-type structure (space group P\\bar{6}m2, D3h1, No. 187) is reported. The structure consists of a PtSb ordered honeycomb network that stacks along the c-axis so that spatial inversion symmetry is broken globally. Electrical resistivity and specific-heat measurements revealed that the compound exhibited superconductivity at 1.64 K. The noncentrosymmetric structure and the strong spin-orbit coupling of Pt and Sb make BaPtSb an attractive compound for studying the exotic superconductivity predicted for a honeycomb network.
NASA Astrophysics Data System (ADS)
Wang, P.; Huang, C.
2017-12-01
The three-dimensional (3D) structure of buildings and infrastructures is fundamental to understanding and modelling of the impacts and challenges of urbanization in terms of energy use, carbon emissions, and earthquake vulnerabilities. However, spatially detailed maps of urban 3D structure have been scarce, particularly in fast-changing developing countries. We present here a novel methodology to map the volume of buildings and infrastructures at 30 meter resolution using a synergy of Landsat imagery and openly available global digital surface models (DSMs), including the Shuttle Radar Topography Mission (SRTM), ASTER Global Digital Elevation Map (GDEM), ALOS World 3D - 30m (AW3D30), and the recently released global DSM from the TanDEM-X mission. Our method builds on the concept of object-based height profile to extract height metrics from the DSMs and use a machine learning algorithm to predict height and volume from the height metrics. We have tested this algorithm in the entire England and assessed our result using Lidar measurements in 25 England cities. Our initial assessments achieved a RMSE of 1.4 m (R2 = 0.72) for building height and a RMSE of 1208.7 m3 (R2 = 0.69) for building volume, demonstrating the potential of large-scale applications and fully automated mapping of urban structure.
Ding, Jiarui; Condon, Anne; Shah, Sohrab P
2018-05-21
Single-cell RNA-sequencing has great potential to discover cell types, identify cell states, trace development lineages, and reconstruct the spatial organization of cells. However, dimension reduction to interpret structure in single-cell sequencing data remains a challenge. Existing algorithms are either not able to uncover the clustering structures in the data or lose global information such as groups of clusters that are close to each other. We present a robust statistical model, scvis, to capture and visualize the low-dimensional structures in single-cell gene expression data. Simulation results demonstrate that low-dimensional representations learned by scvis preserve both the local and global neighbor structures in the data. In addition, scvis is robust to the number of data points and learns a probabilistic parametric mapping function to add new data points to an existing embedding. We then use scvis to analyze four single-cell RNA-sequencing datasets, exemplifying interpretable two-dimensional representations of the high-dimensional single-cell RNA-sequencing data.
RiceAtlas, a spatial database of global rice calendars and production.
Laborte, Alice G; Gutierrez, Mary Anne; Balanza, Jane Girly; Saito, Kazuki; Zwart, Sander J; Boschetti, Mirco; Murty, M V R; Villano, Lorena; Aunario, Jorrel Khalil; Reinke, Russell; Koo, Jawoo; Hijmans, Robert J; Nelson, Andrew
2017-05-30
Knowing where, when, and how much rice is planted and harvested is crucial information for understanding the effects of policy, trade, and global and technological change on food security. We developed RiceAtlas, a spatial database on the seasonal distribution of the world's rice production. It consists of data on rice planting and harvesting dates by growing season and estimates of monthly production for all rice-producing countries. Sources used for planting and harvesting dates include global and regional databases, national publications, online reports, and expert knowledge. Monthly production data were estimated based on annual or seasonal production statistics, and planting and harvesting dates. RiceAtlas has 2,725 spatial units. Compared with available global crop calendars, RiceAtlas is nearly ten times more spatially detailed and has nearly seven times more spatial units, with at least two seasons of calendar data, making RiceAtlas the most comprehensive and detailed spatial database on rice calendar and production.
Spatial structure of soil properties at different scales of Mt. Kilimanjaro, Tanzania
NASA Astrophysics Data System (ADS)
Kühnel, Anna; Huwe, Bernd
2013-04-01
Soils of tropical mountain ecosystems provide important ecosystem services like water and carbon storage, water filtration and erosion control. As these ecosystems are threatened by global warming and the conversion of natural to human-modified landscapes, it is important to understand the implications of these changes. Within the DFG Research Unit "Kilimanjaro ecosystems under global change: Linking biodiversity, biotic interactions and biogeochemical ecosystem processes", we study the spatial heterogeneity of soils and the available water capacity for different land use systems. In the savannah zone of Mt. Kilimanjaro, maize fields are compared to natural savannah ecosystems. In the lower montane forest zone, coffee plantations, traditional home gardens, grasslands and natural forests are studied. We characterize the soils with respect to soil hydrology, emphasizing on the spatial variability of soil texture and bulk density at different scales. Furthermore soil organic carbon and nitrogen, cation exchange capacity and the pH-value are measured. Vis/Nir-Spectroscopy is used to detect small scale physical and chemical heterogeneity within soil profiles, as well as to get information of soil properties on a larger scale. We aim to build a spectral database for these soil properties for the Kilimanjaro region in order to get rapid information for geostatistical analysis. Partial least square regression with leave one out cross validation is used for model calibration. Results for silt and clay content, as well as carbon and nitrogen content are promising, with adjusted R² ranging from 0.70 for silt to 0.86 for nitrogen. Furthermore models for other nutrients, cation exchange capacity and available water capacity will be calibrated. We compare heterogeneity within and across the different ecosystems and state that spatial structure characteristics and complexity patterns in soil parameters can be quantitatively related to biodiversity and functional diversity parameters.
The Role of Global and Local Visual Information during Gaze-Cued Orienting of Attention.
Munsters, Nicolette M; van den Boomen, Carlijn; Hooge, Ignace T C; Kemner, Chantal
2016-01-01
Gaze direction is an important social communication tool. Global and local visual information are known to play specific roles in processing socially relevant information from a face. The current study investigated whether global visual information has a primary role during gaze-cued orienting of attention and, as such, may influence quality of interaction. Adults performed a gaze-cueing task in which a centrally presented face cued (valid or invalid) the location of a peripheral target through a gaze shift. We measured brain activity (electroencephalography) towards the cue and target and behavioral responses (manual and saccadic reaction times) towards the target. The faces contained global (i.e. lower spatial frequencies), local (i.e. higher spatial frequencies), or a selection of both global and local (i.e. mid-band spatial frequencies) visual information. We found a gaze cue-validity effect (i.e. valid versus invalid), but no interaction effects with spatial frequency content. Furthermore, behavioral responses towards the target were in all cue conditions slower when lower spatial frequencies were not present in the gaze cue. These results suggest that whereas gaze-cued orienting of attention can be driven by both global and local visual information, global visual information determines the speed of behavioral responses towards other entities appearing in the surrounding of gaze cue stimuli.
Spatial dynamics of invasion: the geometry of introduced species.
Korniss, Gyorgy; Caraco, Thomas
2005-03-07
Many exotic species combine low probability of establishment at each introduction with rapid population growth once introduction does succeed. To analyse this phenomenon, we note that invaders often cluster spatially when rare, and consequently an introduced exotic's population dynamics should depend on locally structured interactions. Ecological theory for spatially structured invasion relies on deterministic approximations, and determinism does not address the observed uncertainty of the exotic-introduction process. We take a new approach to the population dynamics of invasion and, by extension, to the general question of invasibility in any spatial ecology. We apply the physical theory for nucleation of spatial systems to a lattice-based model of competition between plant species, a resident and an invader, and the analysis reaches conclusions that differ qualitatively from the standard ecological theories. Nucleation theory distinguishes between dynamics of single- and multi-cluster invasion. Low introduction rates and small system size produce single-cluster dynamics, where success or failure of introduction is inherently stochastic. Single-cluster invasion occurs only if the cluster reaches a critical size, typically preceded by a number of failed attempts. For this case, we identify the functional form of the probability distribution of time elapsing until invasion succeeds. Although multi-cluster invasion for sufficiently large systems exhibits spatial averaging and almost-deterministic dynamics of the global densities, an analytical approximation from nucleation theory, known as Avrami's law, describes our simulation results far better than standard ecological approximations.
Stochastic Geometric Models with Non-stationary Spatial Correlations in Lagrangian Fluid Flows
NASA Astrophysics Data System (ADS)
Gay-Balmaz, François; Holm, Darryl D.
2018-01-01
Inspired by spatiotemporal observations from satellites of the trajectories of objects drifting near the surface of the ocean in the National Oceanic and Atmospheric Administration's "Global Drifter Program", this paper develops data-driven stochastic models of geophysical fluid dynamics (GFD) with non-stationary spatial correlations representing the dynamical behaviour of oceanic currents. Three models are considered. Model 1 from Holm (Proc R Soc A 471:20140963, 2015) is reviewed, in which the spatial correlations are time independent. Two new models, called Model 2 and Model 3, introduce two different symmetry breaking mechanisms by which the spatial correlations may be advected by the flow. These models are derived using reduction by symmetry of stochastic variational principles, leading to stochastic Hamiltonian systems, whose momentum maps, conservation laws and Lie-Poisson bracket structures are used in developing the new stochastic Hamiltonian models of GFD.
Stochastic Geometric Models with Non-stationary Spatial Correlations in Lagrangian Fluid Flows
NASA Astrophysics Data System (ADS)
Gay-Balmaz, François; Holm, Darryl D.
2018-06-01
Inspired by spatiotemporal observations from satellites of the trajectories of objects drifting near the surface of the ocean in the National Oceanic and Atmospheric Administration's "Global Drifter Program", this paper develops data-driven stochastic models of geophysical fluid dynamics (GFD) with non-stationary spatial correlations representing the dynamical behaviour of oceanic currents. Three models are considered. Model 1 from Holm (Proc R Soc A 471:20140963, 2015) is reviewed, in which the spatial correlations are time independent. Two new models, called Model 2 and Model 3, introduce two different symmetry breaking mechanisms by which the spatial correlations may be advected by the flow. These models are derived using reduction by symmetry of stochastic variational principles, leading to stochastic Hamiltonian systems, whose momentum maps, conservation laws and Lie-Poisson bracket structures are used in developing the new stochastic Hamiltonian models of GFD.
NASA Astrophysics Data System (ADS)
Montes, C.; Kiang, N. Y.; Yang, W.; Ni-Meister, W.; Schaaf, C.; Aleinov, I. D.; Jonas, J.; Zhao, F. A.; Yao, T.; Wang, Z.; Sun, Q.
2015-12-01
Processes determining biosphere-atmosphere coupling are strongly influenced by vegetation structure. Thus, ecosystem carbon sequestration and evapotranspiration affecting global carbon and water balances will depend upon the spatial extent of vegetation, its vertical structure, and its physiological variability. To represent this globally, Dynamic Global Vegetation Models (DGVMs) coupled to General Circulation Models (GCMs) make use of satellite and/or model-based vegetation classifications often composed by homogeneous communities. This work aims at developing a new Global Vegetation Structure Dataset (GVSD) by incorporating varying vegetation heights for mixed plant communities to be used as input to the Ent Terrestrial Biosphere Model (TBM), the DGVM coupled to the NASA Goddard Institute for Space Studies (GISS) GCM. Information sources include the Moderate Resolution Imaging Spectroradiometer (MODIS) land cover and plant functional types (PFTs) (Friedl et al., 2010), vegetation height from the Geoscience Laser Altimeter System (GLAS) on board ICESat (Ice, Cloud, and land Elevation Satellite) (Simard et al., 2011; Tang et al., 2014) along with the Global Data Sets of Vegetation Leaf Area Index (LAI)3g (Zhu et al. 2013). Further PFT partitioning is performed according to a climate classification utilizing the Climate Research Unit (CRU) and the NOAA Global Precipitation Climatology Centre (GPCC) data. Final products are a GVSD consisting of mixed plant communities (e.g. mixed forests, savannas, mixed PFTs) following the Ecosystem Demography model (Moorcroft et al., 2001) approach represented by multi-cohort community patches at the sub-grid level of the GCM, which are ensembles of identical individuals whose differences are represented by PFTs, canopy height, density and vegetation structure sensitivity to allometric parameters. To assess the sensitivity of the GISS GCM to vegetation structure, we produce a range of estimates of Ent TBM biomass and plant densities by varying allometric specifications. Ultimately, this GVSD will serve as a template for community data sets, and be used as boundary conditions to the Ent TBM for prediction of canopy albedo in the Analytical Clumped Two-Stream canopy radiative transfer scheme, biomass, primary productivity, respiration, and GISS GCM climate.
Brand, John; Johnson, Aaron P
2014-01-01
In four experiments, we investigated how attention to local and global levels of hierarchical Navon figures affected the selection of diagnostic spatial scale information used in scene categorization. We explored this issue by asking observers to classify hybrid images (i.e., images that contain low spatial frequency (LSF) content of one image, and high spatial frequency (HSF) content from a second image) immediately following global and local Navon tasks. Hybrid images can be classified according to either their LSF, or HSF content; thus, making them ideal for investigating diagnostic spatial scale preference. Although observers were sensitive to both spatial scales (Experiment 1), they overwhelmingly preferred to classify hybrids based on LSF content (Experiment 2). In Experiment 3, we demonstrated that LSF based hybrid categorization was faster following global Navon tasks, suggesting that LSF processing associated with global Navon tasks primed the selection of LSFs in hybrid images. In Experiment 4, replicating Experiment 3 but suppressing the LSF information in Navon letters by contrast balancing the stimuli examined this hypothesis. Similar to Experiment 3, observers preferred to classify hybrids based on LSF content; however and in contrast, LSF based hybrid categorization was slower following global than local Navon tasks.
Brand, John; Johnson, Aaron P.
2014-01-01
In four experiments, we investigated how attention to local and global levels of hierarchical Navon figures affected the selection of diagnostic spatial scale information used in scene categorization. We explored this issue by asking observers to classify hybrid images (i.e., images that contain low spatial frequency (LSF) content of one image, and high spatial frequency (HSF) content from a second image) immediately following global and local Navon tasks. Hybrid images can be classified according to either their LSF, or HSF content; thus, making them ideal for investigating diagnostic spatial scale preference. Although observers were sensitive to both spatial scales (Experiment 1), they overwhelmingly preferred to classify hybrids based on LSF content (Experiment 2). In Experiment 3, we demonstrated that LSF based hybrid categorization was faster following global Navon tasks, suggesting that LSF processing associated with global Navon tasks primed the selection of LSFs in hybrid images. In Experiment 4, replicating Experiment 3 but suppressing the LSF information in Navon letters by contrast balancing the stimuli examined this hypothesis. Similar to Experiment 3, observers preferred to classify hybrids based on LSF content; however and in contrast, LSF based hybrid categorization was slower following global than local Navon tasks. PMID:25520675
Rašić, Gordana; Schama, Renata; Powell, Rosanna; Maciel-de Freitas, Rafael; Endersby-Harshman, Nancy M; Filipović, Igor; Sylvestre, Gabriel; Máspero, Renato C; Hoffmann, Ary A
2015-01-01
Dengue is the most prevalent global arboviral disease that affects over 300 million people every year. Brazil has the highest number of dengue cases in the world, with the most severe epidemics in the city of Rio de Janeiro (Rio). The effective control of dengue is critically dependent on the knowledge of population genetic structuring in the primary dengue vector, the mosquito Aedes aegypti. We analyzed mitochondrial and nuclear genomewide single nucleotide polymorphism markers generated via Restriction-site Associated DNA sequencing, as well as traditional microsatellite markers in Ae. aegypti from Rio. We found four divergent mitochondrial lineages and a strong spatial structuring of mitochondrial variation, in contrast to the overall nuclear homogeneity across Rio. Despite a low overall differentiation in the nuclear genome, we detected strong spatial structure for variation in over 20 genes that have a significantly altered expression in response to insecticides, xenobiotics, and pathogens, including the novel biocontrol agent Wolbachia. Our results indicate that high genetic diversity, spatially unconstrained admixing likely mediated by male dispersal, along with locally heterogeneous genetic variation that could affect insecticide resistance and mosquito vectorial capacity, set limits to the effectiveness of measures to control dengue fever in Rio. PMID:26495042
The Zel'dovich approximation: key to understanding cosmic web complexity
NASA Astrophysics Data System (ADS)
Hidding, Johan; Shandarin, Sergei F.; van de Weygaert, Rien
2014-02-01
We describe how the dynamics of cosmic structure formation defines the intricate geometric structure of the spine of the cosmic web. The Zel'dovich approximation is used to model the backbone of the cosmic web in terms of its singularity structure. The description by Arnold et al. in terms of catastrophe theory forms the basis of our analysis. This two-dimensional analysis involves a profound assessment of the Lagrangian and Eulerian projections of the gravitationally evolving four-dimensional phase-space manifold. It involves the identification of the complete family of singularity classes, and the corresponding caustics that we see emerging as structure in Eulerian space evolves. In particular, as it is instrumental in outlining the spatial network of the cosmic web, we investigate the nature of spatial connections between these singularities. The major finding of our study is that all singularities are located on a set of lines in Lagrangian space. All dynamical processes related to the caustics are concentrated near these lines. We demonstrate and discuss extensively how all 2D singularities are to be found on these lines. When mapping this spatial pattern of lines to Eulerian space, we find a growing connectedness between initially disjoint lines, resulting in a percolating network. In other words, the lines form the blueprint for the global geometric evolution of the cosmic web.
García-Fernández, Alfredo; Iriondo, Jose M; Escudero, Adrián; Aguilar, Javier Fuertes; Feliner, Gonzalo Nieto
2013-08-01
Mountain plants are among the species most vulnerable to global warming, because of their isolation, narrow geographic distribution, and limited geographic range shifts. Stochastic and selective processes can act on the genome, modulating genetic structure and diversity. Fragmentation and historical processes also have a great influence on current genetic patterns, but the spatial and temporal contexts of these processes are poorly known. We aimed to evaluate the microevolutionary processes that may have taken place in Mediterranean high-mountain plants in response to changing historical environmental conditions. Genetic structure, diversity, and loci under selection were analyzed using AFLP markers in 17 populations distributed over the whole geographic range of Armeria caespitosa, an endemic plant that inhabits isolated mountains (Sierra de Guadarrama, Spain). Differences in altitude, geographic location, and climate conditions were considered in the analyses, because they may play an important role in selective and stochastic processes. Bayesian clustering approaches identified nine genetic groups, although some discrepancies in assignment were found between alternative analyses. Spatially explicit analyses showed a weak relationship between genetic parameters and spatial or environmental distances. However, a large proportion of outlier loci were detected, and some outliers were related to environmental variables. A. caespitosa populations exhibit spatial patterns of genetic structure that cannot be explained by the isolation-by-distance model. Shifts along the altitude gradient in response to Pleistocene climatic oscillations and environmentally mediated selective forces might explain the resulting structure and genetic diversity values found.
Compactness of viral genomes: effect of disperse and localized random mutations
NASA Astrophysics Data System (ADS)
Lošdorfer Božič, Anže; Micheletti, Cristian; Podgornik, Rudolf; Tubiana, Luca
2018-02-01
Genomes of single-stranded RNA viruses have evolved to optimize several concurrent properties. One of them is the architecture of their genomic folds, which must not only feature precise structural elements at specific positions, but also allow for overall spatial compactness. The latter was shown to be disrupted by random synonymous mutations, a disruption which can consequently negatively affect genome encapsidation. In this study, we use three mutation schemes with different degrees of locality to mutate the genomes of phage MS2 and Brome Mosaic virus in order to understand the observed sensitivity of the global compactness of their folds. We find that mutating local stretches of their genomes’ sequence or structure is less disruptive to their compactness compared to inducing randomly-distributed mutations. Our findings are indicative of a mechanism for the conservation of compactness acting on a global scale of the genomes, and have several implications for understanding the interplay between local and global architecture of viral RNA genomes.
Ion Spectral Structures Observed by the Van Allen Probes and Cluster
NASA Astrophysics Data System (ADS)
Ferradas, C.; Zhang, J.; Luo, H.; Kistler, L. M.; Spence, H. E.; Larsen, B.; Skoug, R. M.; Funsten, H. O.; Reeves, G. D.
2014-12-01
During the last decades several missions have recorded the presence of dynamic spectral features of energetic ions in the inner magnetosphere. Previous studies have revealed single "nose-like" structures occurring alone and simultaneous nose-like structures (up to three). In this study we also include signatures of new types of ion structure, namely "trunk-like" and "tusk-like" structures. All the ion structures are named after the characteristic shapes of energy bands or gaps in the energy-time spectrograms of in situ measured ion fluxes. They constitute the observational signatures of ion acceleration, transport, and loss in the global magnetosphere. Multi-spacecraft analysis of these structures is important to understand their spatial distribution and temporal evolution. Mass spectrometers onboard Cluster (in a polar orbit) and the Van Allen Probes (in an equatorial orbit) measure energetic hydrogen, helium, and oxygen ions near the inner edge of the plasma sheet, where these ion structures are observed. We present a statistical study of the ion structures, using >1-year measurements from the two missions during the Van Allen Probes era. The results provide important details about the spatial distribution (dependence on geocentric distance and magnetic local time), spectral features of the structures (e.g., characteristic energy and differences among species), and geomagnetic and solar wind conditions under which these structures occur.
A COMPARISON OF INTERCELL METRICS ON DISCRETE GLOBAL GRID SYSTEMS
A discrete global grid system (DGGS) is a spatial data model that aids in global research by serving as a framework for environmental modeling, monitoring and sampling across the earth at multiple spatial scales. Topological and geometric criteria have been proposed to evaluate a...
Kahilainen, Aapo; van Nouhuys, Saskya; Schulz, Torsti; Saastamoinen, Marjo
2018-04-23
Habitat fragmentation and climate change are both prominent manifestations of global change, but there is little knowledge on the specific mechanisms of how climate change may modify the effects of habitat fragmentation, for example, by altering dynamics of spatially structured populations. The long-term viability of metapopulations is dependent on independent dynamics of local populations, because it mitigates fluctuations in the size of the metapopulation as a whole. Metapopulation viability will be compromised if climate change increases spatial synchrony in weather conditions associated with population growth rates. We studied a recently reported increase in metapopulation synchrony of the Glanville fritillary butterfly (Melitaea cinxia) in the Finnish archipelago, to see if it could be explained by an increase in synchrony of weather conditions. For this, we used 23 years of butterfly survey data together with monthly weather records for the same period. We first examined the associations between population growth rates within different regions of the metapopulation and weather conditions during different life-history stages of the butterfly. We then examined the association between the trends in the synchrony of the weather conditions and the synchrony of the butterfly metapopulation dynamics. We found that precipitation from spring to late summer are associated with the M. cinxia per capita growth rate, with early summer conditions being most important. We further found that the increase in metapopulation synchrony is paralleled by an increase in the synchrony of weather conditions. Alternative explanations for spatial synchrony, such as increased dispersal or trophic interactions with a specialist parasitoid, did not show paralleled trends and are not supported. The climate driven increase in M. cinxia metapopulation synchrony suggests that climate change can increase extinction risk of spatially structured populations living in fragmented landscapes by altering their dynamics. © 2018 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
The epidemic spreading model and the direction of information flow in brain networks.
Meier, J; Zhou, X; Hillebrand, A; Tewarie, P; Stam, C J; Van Mieghem, P
2017-05-15
The interplay between structural connections and emerging information flow in the human brain remains an open research problem. A recent study observed global patterns of directional information flow in empirical data using the measure of transfer entropy. For higher frequency bands, the overall direction of information flow was from posterior to anterior regions whereas an anterior-to-posterior pattern was observed in lower frequency bands. In this study, we applied a simple Susceptible-Infected-Susceptible (SIS) epidemic spreading model on the human connectome with the aim to reveal the topological properties of the structural network that give rise to these global patterns. We found that direct structural connections induced higher transfer entropy between two brain regions and that transfer entropy decreased with increasing distance between nodes (in terms of hops in the structural network). Applying the SIS model, we were able to confirm the empirically observed opposite information flow patterns and posterior hubs in the structural network seem to play a dominant role in the network dynamics. For small time scales, when these hubs acted as strong receivers of information, the global pattern of information flow was in the posterior-to-anterior direction and in the opposite direction when they were strong senders. Our analysis suggests that these global patterns of directional information flow are the result of an unequal spatial distribution of the structural degree between posterior and anterior regions and their directions seem to be linked to different time scales of the spreading process. Copyright © 2017 Elsevier Inc. All rights reserved.
Lateral Entorhinal Cortex Lesions Impair Local Spatial Frameworks
Kuruvilla, Maneesh V.; Ainge, James A.
2017-01-01
A prominent theory in the neurobiology of memory processing is that episodic memory is supported by contextually gated spatial representations in the hippocampus formed by combining spatial information from medial entorhinal cortex (MEC) with non-spatial information from lateral entorhinal cortex (LEC). However, there is a growing body of evidence from lesion and single-unit recording studies in rodents suggesting that LEC might have a role in encoding space, particularly the current and previous locations of objects within the local environment. Landmarks, both local and global, have been shown to control the spatial representations hypothesized to underlie cognitive maps. Consequently, it has recently been suggested that information processing within this network might be organized with reference to spatial scale with LEC and MEC providing information about local and global spatial frameworks respectively. In the present study, we trained animals to search for food using either a local or global spatial framework. Animals were re-tested on both tasks after receiving excitotoxic lesions of either the MEC or LEC. LEC lesioned animals were impaired in their ability to learn a local spatial framework task. LEC lesioned animals were also impaired on an object recognition (OR) task involving multiple local features but unimpaired at recognizing a single familiar object. Together, this suggests that LEC is involved in associating features of the local environment. However, neither LEC nor MEC lesions impaired performance on the global spatial framework task. PMID:28567006
2012-09-01
Robust global image registration based on a hybrid algorithm combining Fourier and spatial domain techniques Peter N. Crabtree, Collin Seanor...00-00-2012 to 00-00-2012 4. TITLE AND SUBTITLE Robust global image registration based on a hybrid algorithm combining Fourier and spatial domain...demonstrate performance of a hybrid algorithm . These results are from analysis of a set of images of an ISO 12233 [12] resolution chart captured in the
Spatial-pattern-induced evolution of a self-replicating loop network.
Suzuki, Keisuke; Ikegami, Takashi
2006-01-01
We study a system of self-replicating loops in which interaction rules between individuals allow competition that leads to the formation of a hypercycle-like network. The main feature of the model is the multiple layers of interaction between loops, which lead to both global spatial patterns and local replication. The network of loops manifests itself as a spiral structure from which new kinds of self-replicating loops emerge at the boundaries between different species. In these regions, larger and more complex self-replicating loops live for longer periods of time, managing to self-replicate in spite of their slower replication. Of particular interest is how micro-scale interactions between replicators lead to macro-scale spatial pattern formation, and how these macro-scale patterns in turn perturb the micro-scale replication dynamics.
Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways
Jones, B.; O’Neill, B. C.
2016-07-29
Here we report that the projected size and spatial distribution of the future population are important drivers of global change and key determinants of exposure and vulnerability to hazards. Spatial demographic projections are widely used as inputs to spatial projections of land use, energy use, and emissions, as well as to assessments of the impacts of extreme events, sea level rise, and other climate-related outcomes. To date, however, there are very few global-scale, spatially explicit population projections, and those that do exist are often based on simple scaling or trend extrapolation. Here we present a new set of global, spatiallymore » explicit population scenarios that are consistent with the new Shared Socioeconomic Pathways (SSPs) developed to facilitate global change research. We use a parameterized gravity-based downscaling model to produce projections of spatial population change that are quantitatively consistent with national population and urbanization projections for the SSPs and qualitatively consistent with assumptions in the SSP narratives regarding spatial development patterns. We show that the five SSPs lead to substantially different spatial population outcomes at the continental, national, and sub-national scale. In general, grid cell-level outcomes are most influenced by national-level population change, second by urbanization rate, and third by assumptions about the spatial style of development. However, the relative importance of these factors is a function of the magnitude of the projected change in total population and urbanization for each country and across SSPs. We also demonstrate variation in outcomes considering the example of population existing in a low-elevation coastal zone under alternative scenarios.« less
Spatially explicit global population scenarios consistent with the Shared Socioeconomic Pathways
DOE Office of Scientific and Technical Information (OSTI.GOV)
Jones, B.; O’Neill, B. C.
Here we report that the projected size and spatial distribution of the future population are important drivers of global change and key determinants of exposure and vulnerability to hazards. Spatial demographic projections are widely used as inputs to spatial projections of land use, energy use, and emissions, as well as to assessments of the impacts of extreme events, sea level rise, and other climate-related outcomes. To date, however, there are very few global-scale, spatially explicit population projections, and those that do exist are often based on simple scaling or trend extrapolation. Here we present a new set of global, spatiallymore » explicit population scenarios that are consistent with the new Shared Socioeconomic Pathways (SSPs) developed to facilitate global change research. We use a parameterized gravity-based downscaling model to produce projections of spatial population change that are quantitatively consistent with national population and urbanization projections for the SSPs and qualitatively consistent with assumptions in the SSP narratives regarding spatial development patterns. We show that the five SSPs lead to substantially different spatial population outcomes at the continental, national, and sub-national scale. In general, grid cell-level outcomes are most influenced by national-level population change, second by urbanization rate, and third by assumptions about the spatial style of development. However, the relative importance of these factors is a function of the magnitude of the projected change in total population and urbanization for each country and across SSPs. We also demonstrate variation in outcomes considering the example of population existing in a low-elevation coastal zone under alternative scenarios.« less
NASA Astrophysics Data System (ADS)
Hughes, Chris W.; Williams, Simon D. P.
2010-10-01
We investigate spatial variations in the shape of the spectrum of sea level variability based on a homogeneously sampled 12 year gridded altimeter data set. We present a method of plotting spectral information as color, focusing on periods between 2 and 24 weeks, which shows that significant spatial variations in the spectral shape exist and contain useful dynamical information. Using the Bayesian Information Criterion, we determine that, typically, a fifth-order autoregressive model is needed to capture the structure in the spectrum. Using this model, we show that statistical errors in fitted local trends range between less than 1 and more than 5 times of what would be calculated assuming "white" noise and that the time needed to detect a 1 mm/yr trend ranges between about 5 years and many decades. For global mean sea level, the statistical error reduces to 0.1 mm/yr over 12 years, with only 2 years needed to detect a 1 mm/yr trend. We find significant regional differences in trend from the global mean. The patterns of these regional differences are indicative of a sea level trend dominated by dynamical ocean processes over this period.
Static Einstein-Maxwell Black Holes with No Spatial Isometries in AdS Space.
Herdeiro, Carlos A R; Radu, Eugen
2016-11-25
We explicitly construct static black hole solutions to the fully nonlinear, D=4, Einstein-Maxwell-anti-de Sitter (AdS) equations that have no continuous spatial symmetries. These black holes have a smooth, topologically spherical horizon (section), but without isometries, and approach, asymptotically, global AdS spacetime. They are interpreted as bound states of a horizon with the Einstein-Maxwell-AdS solitons recently discovered, for appropriate boundary data. In sharp contrast to the uniqueness results for a Minkowski electrovacuum, the existence of these black holes shows that single, equilibrium, black hole solutions in an AdS electrovacuum admit an arbitrary multipole structure.
Emotional state and local versus global spatial memory.
Brunyé, Tad T; Mahoney, Caroline R; Augustyn, Jason S; Taylor, Holly A
2009-02-01
The present work investigated the effects of participant emotional state on global versus local memory for map-based information. Participants were placed into one of four emotion induction groups, crossing high and low arousal with positive and negative valence, or a control group. They then studied a university campus map and completed two memory tests, free recall and spatial statement verification. Converging evidence from these two tasks demonstrated that arousal amplifies symbolic distance effects and leads to a globally-focused spatial mental representation, partially at the expense of local knowledge. These results were found for both positively- and negatively-valenced affective states. The present study is the first investigation of emotional effects on spatial memory, and has implications for theories of emotion and spatial cognition.
Caffeine Promotes Global Spatial Processing in Habitual and Non-Habitual Caffeine Consumers
Giles, Grace E.; Mahoney, Caroline R.; Brunyé, Tad T.; Taylor, Holly A.; Kanarek, Robin B.
2013-01-01
Information processing is generally biased toward global cues, often at the expense of local information. Equivocal extant data suggests that arousal states may accentuate either a local or global processing bias, at least partially dependent on the nature of the manipulation, task, and stimuli. To further differentiate the conditions responsible for such equivocal results we varied caffeine doses to alter physiological arousal states and measured their effect on tasks requiring the retrieval of local versus global spatial knowledge. In a double-blind, repeated-measures design, non-habitual (Experiment 1; N = 36, M = 42.5 ± 28.7 mg/day caffeine) and habitual (Experiment 2; N = 34, M = 579.5 ± 311.5 mg/day caffeine) caffeine consumers completed four test sessions corresponding to each of four caffeine doses (0, 100, 200, 400 mg). During each test session, participants consumed a capsule containing one of the three doses of caffeine or placebo, waited 60 min, and then completed two spatial tasks, one involving memorizing maps and one spatial descriptions. A spatial statement verification task tested local versus global spatial knowledge by differentially probing memory for proximal versus distal landmark relationships. On the map learning task, results indicated that caffeine enhanced memory for distal (i.e., global) compared to proximal (i.e., local) comparisons at 100 (marginal), 200, and 400 mg caffeine in non-habitual consumers, and marginally beginning at 200 mg caffeine in habitual consumers. On the spatial descriptions task, caffeine enhanced memory for distal compared to proximal comparisons beginning at 100 mg in non-habitual but not habitual consumers. We thus provide evidence that caffeine-induced physiological arousal amplifies global spatial processing biases, and these effects are at least partially driven by habitual caffeine consumption. PMID:24146646
González-Martínez, Santiago C.; Navascués, Miguel; Burgarella, Concetta; Mosca, Elena; Lorenzo, Zaida; Zabal-Aguirre, Mario; Vendramin, Giovanni G.; Verdú, Miguel; Pausas, Juli G.
2017-01-01
Background and Aims The recurrence of wildfires is predicted to increase due to global climate change, resulting in severe impacts on biodiversity and ecosystem functioning. Recurrent fires can drive plant adaptation and reduce genetic diversity; however, the underlying population genetic processes have not been studied in detail. In this study, the neutral and adaptive evolutionary effects of contrasting fire regimes were examined in the keystone tree species Pinus halepensis Mill. (Aleppo pine), a fire-adapted conifer. The genetic diversity, demographic history and spatial genetic structure were assessed at local (within-population) and regional scales for populations exposed to different crown fire frequencies. Methods Eight natural P. halepensis stands were sampled in the east of the Iberian Peninsula, five of them in a region exposed to frequent crown fires (HiFi) and three of them in an adjacent region with a low frequency of crown fires (LoFi). Samples were genotyped at nine neutral simple sequence repeats (SSRs) and at 251 single nucleotide polymorphisms (SNPs) from coding regions, some of them potentially important for fire adaptation. Key Results Fire regime had no effects on genetic diversity or demographic history. Three high-differentiation outlier SNPs were identified between HiFi and LoFi stands, suggesting fire-related selection at the regional scale. At the local scale, fine-scale spatial genetic structure (SGS) was overall weak as expected for a wind-pollinated and wind-dispersed tree species. HiFi stands displayed a stronger SGS than LoFi stands at SNPs, which probably reflected the simultaneous post-fire recruitment of co-dispersed related seeds. SNPs with exceptionally strong SGS, a proxy for microenvironmental selection, were only reliably identified under the HiFi regime. Conclusions An increasing fire frequency as predicted due to global change can promote increased SGS with stronger family structures and alter natural selection in P. halepensis and in plants with similar life history traits. PMID:28159988
2017-01-01
The role of stereo disparity in the recognition of 3-dimensional (3D) object shape remains an unresolved issue for theoretical models of the human visual system. We examined this issue using high-density (128 channel) recordings of event-related potentials (ERPs). A recognition memory task was used in which observers were trained to recognize a subset of complex, multipart, 3D novel objects under conditions of either (bi-) monocular or stereo viewing. In a subsequent test phase they discriminated previously trained targets from untrained distractor objects that shared either local parts, 3D spatial configuration, or neither dimension, across both previously seen and novel viewpoints. The behavioral data showed a stereo advantage for target recognition at untrained viewpoints. ERPs showed early differential amplitude modulations to shape similarity defined by local part structure and global 3D spatial configuration. This occurred initially during an N1 component around 145–190 ms poststimulus onset, and then subsequently during an N2/P3 component around 260–385 ms poststimulus onset. For mono viewing, amplitude modulation during the N1 was greatest between targets and distracters with different local parts for trained views only. For stereo viewing, amplitude modulation during the N2/P3 was greatest between targets and distracters with different global 3D spatial configurations and generalized across trained and untrained views. The results show that image classification is modulated by stereo information about the local part, and global 3D spatial configuration of object shape. The findings challenge current theoretical models that do not attribute functional significance to stereo input during the computation of 3D object shape. PMID:29022728
A Land System representation for global assessments and land-use modeling.
van Asselen, Sanneke; Verburg, Peter H
2012-10-01
Current global scale land-change models used for integrated assessments and climate modeling are based on classifications of land cover. However, land-use management intensity and livestock keeping are also important aspects of land use, and are an integrated part of land systems. This article aims to classify, map, and to characterize Land Systems (LS) at a global scale and analyze the spatial determinants of these systems. Besides proposing such a classification, the article tests if global assessments can be based on globally uniform allocation rules. Land cover, livestock, and agricultural intensity data are used to map LS using a hierarchical classification method. Logistic regressions are used to analyze variation in spatial determinants of LS. The analysis of the spatial determinants of LS indicates strong associations between LS and a range of socioeconomic and biophysical indicators of human-environment interactions. The set of identified spatial determinants of a LS differs among regions and scales, especially for (mosaic) cropland systems, grassland systems with livestock, and settlements. (Semi-)Natural LS have more similar spatial determinants across regions and scales. Using LS in global models is expected to result in a more accurate representation of land use capturing important aspects of land systems and land architecture: the variation in land cover and the link between land-use intensity and landscape composition. Because the set of most important spatial determinants of LS varies among regions and scales, land-change models that include the human drivers of land change are best parameterized at sub-global level, where similar biophysical, socioeconomic and cultural conditions prevail in the specific regions. © 2012 Blackwell Publishing Ltd.
NASA Astrophysics Data System (ADS)
Bolejko, Krzysztof
2018-01-01
During my talk I will present results suggesting that the phenomenon of emerging spatial curvature could resolve the conflict between Planck's (high-redshift) and Riess et al. (low-redshift) measurements of the Hubble constant. The phenomenon of emerging spatial curvature is absent in the Standard Cosmological Model, which has a flat and fixed spatial curvature (small perturbations are considered in the Standard Cosmological Model but their global average vanishes, leading to spatial flatness at all times).In my talk I will show that with the nonlinear growth of cosmic structures the global average deviates from zero. As a result, the spatial curvature evolves from spatial flatness of the early universe to a negatively curved universe at the present day, with Omega_K ~ 0.1. Consequently, the present day expansion rate, as measured by the Hubble constant, is a few percent higher compared to the high-redshift constraints. This provides an explanation why there is a tension between high-redshift (Planck) and low-redshift (Riess et al.) measurements of the Hubble constant. In the presence of emerging spatial curvature these two measurements should in fact be different: high redshift measurements should be slightly lower than the Hubble constant inferred from the low-redshift data.The presentation will be based on the results described in arXiv:1707.01800 and arXiv:1708.09143 (which discuss the phenomenon of emerging spatial curvature) and on a paper that is still work in progress but is expected to be posted on arxiv by the AAS meeting (this paper uses mock low-redshift data to show that starting from the Planck's cosmological models (in the early universe) but with the emerging spatial curvature taken into account, the low-redshift Hubble constant should be 72.4 km/s/Mpc.
52 Million Points and Counting: A New Stratification Approach for Mapping Global Marine Ecosystems
NASA Astrophysics Data System (ADS)
Wright, D. J.; Sayre, R.; Breyer, S.; Butler, K. A.; VanGraafeiland, K.; Goodin, K.; Kavanaugh, M.; Costello, M. J.; Cressie, N.; Basher, Z.; Harris, P. T.; Guinotte, J. M.
2016-12-01
We report progress on the Ecological Marine Units (EMU) project, a new undertaking commissioned by the Group on Earth Observations (GEO) as a means of developing a standardized and practical global ecosystems classification and map for the oceans, and thus a key outcome of the GEO Biodiversity Observation Network (GEO BON). The project is one of four components of the new GI-14 GEO Ecosystems Initiative within the GEO 2016 Transitional Work plan, and for eventual use by the Global Earth Observation System of Systems (GEOSS). The project is also the follow-on to a comprehensive Ecological Land Units project (ELU), also commissioned by GEO. The EMU is comprised of a global point mesh framework, created from 52,487,233 points from the NOAA World Ocean Atlas; spatial resolution is ¼° by ¼° by varying depth; temporal resolution is currently decadal; each point has x, y, z, as well as six attributes of chemical and physical oceanographic structure (temperature, salinity, dissolved oxygen, nitrate, silicate, phosphate) that are likely drivers of many ecosystem responses. We implemented a k-means statistical clustering of the point mesh (using the pseudo-F statistic to help determine the numbers of clusters), allowing us to identify and map 37 environmentally distinct 3D regions (candidate `ecosystems') within the water column. These units can be attributed according to their productivity, direction and velocity of currents, species abundance, global seafloor geomorphology (from Harris et al.), and much more. A series of data products for open access will share the 3D point mesh and EMU clusters at the surface, bottom, and within the water column, as well as 2D and 3D web apps for exploration of the EMUs and the original World Ocean Atlas data. Future plans include a global delineation of Ecological Coastal Units (ECU) at a much finer spatial resolution (not yet commenced), as well as global ecological freshwater ecosystems (EFUs; in earliest planning stages). We will also be exploring how to conceptually and spatially connect EMUs, ELUs, and EFUs at the ECU interface.
Evaluation of 14 global GIA forward models using a novel GPS dataset and GRACE
NASA Astrophysics Data System (ADS)
Bamber, J. L.; Schumacher, M.; Sha, Z.; Rougier, J.; King, M. A.; Khan, S. A.; Shum, C. K.; Luthcke, S. B.
2017-12-01
Observed mass movement from GRACE and vertical land motion from a global network of permanent GPS stations are used in a data driven approach to estimate GIA signals without introducing any assumptions about Earth structure nor ice loading history. Satellite data and in-situ observations are combined using a multivariate spatiotemporal model within a Bayesian Hierarchical Modelling (BHM) framework. In this study, the GPS data set of the Nevada Geodetic Laboratory (NGL) is used as the starting point for providing an observational estimate of global GIA uplift rates. A novel fully automatic post-processing strategy is developed to correct for non-GIA artifacts, including: (i) outlier detection (e.g. due to icing of Choke Ring Antennas or the antenna being buried in snow); (ii) automatic removal of reported and unreported jumps due to geophysical and hardware issues (a refinement of the jump database provided by NGL); and (iii) filtering for GPS stations that observe primarily the GIA signal rather than unwanted local effects (e.g., unmodelled loading effects from land hydrology, atmosphere, or tides). In order to accurately account for the elastic response of the Earth's crust over Antarctica and Greenland, uplift rates in these regions were corrected for the contemporary ice mass loading impact on elastic deformation using high-resolution ice mass balance time series. The novel global GPS data set shows a clean GIA signal at all post-processed stations and is therefore suitable to investigate the behavior of global GIA forward models. In addition, NASA's GSFC GRACE global mascon solutions are employed. The equal area 1x1 degree gridded mascons are spatially aggregated for larger regions to account for their spatial error correlations. Both the GPS and GRACE datasets are combined with prior information about spatial wavelengths of GIA signals obtained from the ICE-6G model within the BHM framework to solve for GIA. The results are compared with 14 global GIA forward model solutions to identify statistically significant deviations between the forward and inverse solutions, which may be due to either uncertain mantle rheology and/or ice loading history/magnitude.
Dicken, Connie L.; Dunlap, Pamela; Parks, Heather L.; Hammarstrom, Jane M.; Zientek, Michael L.; Zientek, Michael L.; Hammarstrom, Jane M.; Johnson, Kathleen M.
2016-07-13
As part of the first-ever U.S. Geological Survey global assessment of undiscovered copper resources, data common to several regional spatial databases published by the U.S. Geological Survey, including one report from Finland and one from Greenland, were standardized, updated, and compiled into a global copper resource database. This integrated collection of spatial databases provides location, geologic and mineral resource data, and source references for deposits, significant prospects, and areas permissive for undiscovered deposits of both porphyry copper and sediment-hosted copper. The copper resource database allows for efficient modeling on a global scale in a geographic information system (GIS) and is provided in an Esri ArcGIS file geodatabase format.
Eulerian frequency analysis of structural vibrations from high-speed video
DOE Office of Scientific and Technical Information (OSTI.GOV)
Venanzoni, Andrea; Siemens Industry Software NV, Interleuvenlaan 68, B-3001 Leuven; De Ryck, Laurent
An approach for the analysis of the frequency content of structural vibrations from high-speed video recordings is proposed. The techniques and tools proposed rely on an Eulerian approach, that is, using the time history of pixels independently to analyse structural motion, as opposed to Lagrangian approaches, where the motion of the structure is tracked in time. The starting point is an existing Eulerian motion magnification method, which consists in decomposing the video frames into a set of spatial scales through a so-called Laplacian pyramid [1]. Each scale — or level — can be amplified independently to reconstruct a magnified motionmore » of the observed structure. The approach proposed here provides two analysis tools or pre-amplification steps. The first tool provides a representation of the global frequency content of a video per pyramid level. This may be further enhanced by applying an angular filter in the spatial frequency domain to each frame of the video before the Laplacian pyramid decomposition, which allows for the identification of the frequency content of the structural vibrations in a particular direction of space. This proposed tool complements the existing Eulerian magnification method by amplifying selectively the levels containing relevant motion information with respect to their frequency content. This magnifies the displacement while limiting the noise contribution. The second tool is a holographic representation of the frequency content of a vibrating structure, yielding a map of the predominant frequency components across the structure. In contrast to the global frequency content representation of the video, this tool provides a local analysis of the periodic gray scale intensity changes of the frame in order to identify the vibrating parts of the structure and their main frequencies. Validation cases are provided and the advantages and limits of the approaches are discussed. The first validation case consists of the frequency content retrieval of the tip of a shaker, excited at selected fixed frequencies. The goal of this setup is to retrieve the frequencies at which the tip is excited. The second validation case consists of two thin metal beams connected to a randomly excited bar. It is shown that the holographic representation visually highlights the predominant frequency content of each pixel and locates the global frequencies of the motion, thus retrieving the natural frequencies for each beam.« less
All-atom ensemble modeling to analyze small angle X-ray scattering of glycosylated proteins
Guttman, Miklos; Weinkam, Patrick; Sali, Andrej; Lee, Kelly K.
2013-01-01
Summary The flexible and heterogeneous nature of carbohydrate chains often renders glycoproteins refractory to traditional structure determination methods. Small Angle X-ray scattering (SAXS) can be a useful tool for obtaining structural information of these systems. All-atom modeling of glycoproteins with flexible glycan chains was applied to interpret the solution SAXS data for a set of glycoproteins. For simpler systems (single glycan, with a well defined protein structure), all-atom modeling generates models in excellent agreement with the scattering pattern, and reveals the approximate spatial occupancy of the glycan chain in solution. For more complex systems (several glycan chains, or unknown protein substructure), the approach can still provide insightful models, though the orientations of glycans become poorly determined. Ab initio shape reconstructions appear to capture the global morphology of glycoproteins, but in most cases offer little information about glycan spatial occupancy. The all-atom modeling methodology is available as a webserver at http://modbase.compbio.ucsf.edu/allosmod-foxs. PMID:23473666
DYNAMICS OF HIGH ENERGY IONS AT A STRUCTURED COLLISIONLESS SHOCK FRONT
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gedalin, M.; Dröge, W.; Kartavykh, Y. Y., E-mail: gedalin@bgu.ac.il
2016-07-10
Ions undergoing first-order Fermi acceleration at a shock are scattered in the upstream and downstream regions by magnetic inhomogeneities. For high energy ions this scattering is efficient at spatial scales substantially larger than the gyroradius of the ions. The transition from one diffusive region to the other occurs via crossing the shock, and the ion dynamics during this crossing is mainly affected by the global magnetic field change between the upstream and downstream region. We study the effects of the fine structure of the shock front, such as the foot-ramp-overshoot profile and the phase-standing upstream and downstream magnetic oscillations. Wemore » also consider time dependent features, including reformation and large amplitude coherent waves. We show that the influence of the spatial and temporal structure of the shock front on the dependence of the transition and reflection on the pitch angle of the ions is already weak at ion speeds five times the speed of the upstream flow.« less
The mosaic structure of plasma bulk flows in the Earth's magnetotail
NASA Technical Reports Server (NTRS)
Ashour-Abdalla, M.; Richard, R. L.; Zelenyi, L. M.; Peroomian, V.; Bosqued, J. M.
1995-01-01
Moments of plasma distributions observed in the magnetotail vary with different time scales. In this paper we attempt to explain the observed variability on intermediate timescales of approximately 10-20 min that result from the simultaneous energization and spatial structuring of solar wind plasma in the distant magnetotail. These processes stimulate the formation of a system of spatially disjointed. highly accelerated filaments (beamlets) in the tail. We use the results from large-scale kinetic modeling of magnetotail formation from a plasma mantle source to calculate moments of ion distribution functions throughout the tail. Statistical restrictions related to the limited number of particles in our system naturally reduce the spatial resolution of our results, but we show that our model is valid on intermediate spatial scales Delta(x) x Delta(z) equal to approximately 1 R(sub E) x 1000 km. For these spatial scales the resulting pattern, which resembles a mosaic, appears to be quite variable. The complexity of the pattern is related to the spatial interference between beamlets accelerated at various locations within the distant tail which mirror in the strong near-Earth magnetic field. Global motion of the magnetotail results in the displacement of spacecraft with respect to this mosaic pattern and can produce variations in all of the moments (especially the x-component of the bulk velocity) on intermediate timescales. The results obtained enable us to view the magnetotail plasma as consisting of two different populations: a tailward-Earthward system of highly accelerated beamlets interfering with each other, and an energized quasithermal population which gradually builds as the Earth is approached. In the near-Earth tail, these populations merge into a hot quasi-isotropic ion population typical of the near-Earth plasma sheet. The transformation of plasma sheet boundary layer (PSBL) beam energy into central plasma sheet (CPS) quasi-thermal energy occurs in the absence of collisions or noise. This paper also clarifies the relationship between the global scale where an MHD description might be appropriate and the lower intermediate scales where MHD fails and large-scale kinetic theory should be used.
NASA Astrophysics Data System (ADS)
Tang, G.; Bartlein, P. J.
2012-01-01
Water balance models of simple structure are easier to grasp and more clearly connect cause and effect than models of complex structure. Such models are essential for studying large spatial scale land surface water balance in the context of climate and land cover change, both natural and anthropogenic. This study aims to (i) develop a large spatial scale water balance model by modifying a dynamic global vegetation model (DGVM), and (ii) test the model's performance in simulating actual evapotranspiration (ET), soil moisture and surface runoff for the coterminous United States (US). Toward these ends, we first introduced development of the "LPJ-Hydrology" (LH) model by incorporating satellite-based land covers into the Lund-Potsdam-Jena (LPJ) DGVM instead of dynamically simulating them. We then ran LH using historical (1982-2006) climate data and satellite-based land covers at 2.5 arc-min grid cells. The simulated ET, soil moisture and surface runoff were compared to existing sets of observed or simulated data for the US. The results indicated that LH captures well the variation of monthly actual ET (R2 = 0.61, p < 0.01) in the Everglades of Florida over the years 1996-2001. The modeled monthly soil moisture for Illinois of the US agrees well (R2 = 0.79, p < 0.01) with the observed over the years 1984-2001. The modeled monthly stream flow for most 12 major rivers in the US is consistent R2 > 0.46, p < 0.01; Nash-Sutcliffe Coefficients >0.52) with observed values over the years 1982-2006, respectively. The modeled spatial patterns of annual ET and surface runoff are in accordance with previously published data. Compared to its predecessor, LH simulates better monthly stream flow in winter and early spring by incorporating effects of solar radiation on snowmelt. Overall, this study proves the feasibility of incorporating satellite-based land-covers into a DGVM for simulating large spatial scale land surface water balance. LH developed in this study should be a useful tool for studying effects of climate and land cover change on land surface hydrology at large spatial scales.
NASA Technical Reports Server (NTRS)
Girotto, Manuela; Reichle, Rolf H.; De Lannoy, Gabrielle J. M.; Rodell, Matthew
2017-01-01
Observations from recent soil moisture missions (e.g. SMOS) have been used in innovative data assimilation studies to provide global high spatial (i.e. 40 km) and temporal resolution (i.e. 3-days) soil moisture profile estimates from microwave brightness temperature observations. In contrast with microwave-based satellite missions that are only sensitive to near-surface soil moisture (0 - 5 cm), the Gravity Recovery and Climate Experiment (GRACE) mission provides accurate measurements of the entire vertically integrated terrestrial water storage column but, it is characterized by low spatial (i.e. 150,000 km2) and temporal (i.e. monthly) resolutions. Data assimilation studies have shown that GRACE-TWS primarily affects (in absolute terms) deeper moisture storages (i.e., groundwater). This work hypothesizes that unprecedented soil water profile accuracy can be obtained through the joint assimilation of GRACE terrestrial water storage and SMOS brightness temperature observations. A particular challenge of the joint assimilation is the use of the two different types of measurements that are relevant for hydrologic processes representing different temporal and spatial scales. The performance of the joint assimilation strongly depends on the chosen assimilation methods, measurement and model error spatial structures. The optimization of the assimilation technique constitutes a fundamental step toward a multi-variate multi-resolution integrative assimilation system aiming to improve our understanding of the global terrestrial water cycle.
NASA Astrophysics Data System (ADS)
Girotto, M.; Reichle, R. H.; De Lannoy, G.; Rodell, M.
2017-12-01
Observations from recent soil moisture missions (e.g. SMOS) have been used in innovative data assimilation studies to provide global high spatial (i.e. 40 km) and temporal resolution (i.e. 3-days) soil moisture profile estimates from microwave brightness temperature observations. In contrast with microwave-based satellite missions that are only sensitive to near-surface soil moisture (0-5 cm), the Gravity Recovery and Climate Experiment (GRACE) mission provides accurate measurements of the entire vertically integrated terrestrial water storage column but, it is characterized by low spatial (i.e. 150,000 km2) and temporal (i.e. monthly) resolutions. Data assimilation studies have shown that GRACE-TWS primarily affects (in absolute terms) deeper moisture storages (i.e., groundwater). This work hypothesizes that unprecedented soil water profile accuracy can be obtained through the joint assimilation of GRACE terrestrial water storage and SMOS brightness temperature observations. A particular challenge of the joint assimilation is the use of the two different types of measurements that are relevant for hydrologic processes representing different temporal and spatial scales. The performance of the joint assimilation strongly depends on the chosen assimilation methods, measurement and model error spatial structures. The optimization of the assimilation technique constitutes a fundamental step toward a multi-variate multi-resolution integrative assimilation system aiming to improve our understanding of the global terrestrial water cycle.
NASA Astrophysics Data System (ADS)
Shope, J. B.; Storlazzi, C. D.; Erikson, L. H.; Hegermiller, C.
2013-12-01
Changes in future wave climates in the tropical Pacific Ocean from global climate change are not well understood. Waves are the dominant spatially- and temporally-varying processes that influence the coastal morphology and ecosystem structure of the islands throughout the tropical Pacific. Waves also impact the coastal infrastructure, natural and cultural resources, and coastal-related economic activities of these islands. Wave heights, periods, and directions were forecast through 2100 using wind parameter outputs from four coupled atmosphere-ocean global climate models from the Coupled Model Inter-Comparison Project, Phase 5., for Representative Concentration Pathways scenarios 4.5 and 8.5 that correspond to moderately mitigated and unmitigated greenhouse gas emissions, respectively. Wind fields from the global climate models were used to drive the global WAVEWATCH III wave model and generate hourly time-series of bulk wave parameters for 25 islands in the mid to western tropical Pacific. Although the results show some spatial heterogeneity, overall, the December-February extreme significant wave heights increase from present to mid century and then decrease toward the end of the century; June-August extreme wave heights decrease throughout the century. Peak wave periods decrease west of the International Date Line through all seasons, whereas peak periods increase in the eastern half of the study area; these trends are smaller during December-February and greatest during June-August. Extreme wave directions in equatorial Micronesia during June-August undergo an approximate 30 degree counter-clockwise rotation from primarily northwest to west. The spatial patterns and trends are similar between the two different greenhouse gas emission scenarios, with the magnitude of the trends greater for the higher scenario.
Efficient Reformulation of the Thermoelastic Higher-order Theory for Fgms
NASA Technical Reports Server (NTRS)
Bansal, Yogesh; Pindera, Marek-Jerzy; Arnold, Steven M. (Technical Monitor)
2002-01-01
Functionally graded materials (FGMs) are characterized by spatially variable microstructures which are introduced to satisfy given performance requirements. The microstructural gradation gives rise to continuously or discretely changing material properties which complicate FGM analysis. Various techniques have been developed during the past several decades for analyzing traditional composites and many of these have been adapted for the analysis of FGMs. Most of the available techniques use the so-called uncoupled approach in order to analyze graded structures. These techniques ignore the effect of microstructural gradation by employing specific spatial material property variations that are either assumed or obtained by local homogenization. The higher-order theory for functionally graded materials (HOTFGM) is a coupled approach developed by Aboudi et al. (1999) which takes the effect of microstructural gradation into consideration and does not ignore the local-global interaction of the spatially variable inclusion phase(s). Despite its demonstrated utility, however, the original formulation of the higher-order theory is computationally intensive. Herein, an efficient reformulation of the original higher-order theory for two-dimensional elastic problems is developed and validated. The use of the local-global conductivity and local-global stiffness matrix approach is made in order to reduce the number of equations involved. In this approach, surface-averaged quantities are the primary variables which replace volume-averaged quantities employed in the original formulation. The reformulation decreases the size of the global conductivity and stiffness matrices by approximately sixty percent. Various thermal, mechanical, and combined thermomechanical problems are analyzed in order to validate the accuracy of the reformulated theory through comparison with analytical and finite-element solutions. The presented results illustrate the efficiency of the reformulation and its advantages in analyzing functionally graded materials.
NASA Astrophysics Data System (ADS)
Shevyrnogov, Anatoly; Larko, Aleksandr
The most important task for humankind is to study and understand global processes on Earth. Large factual material on the dynamics of the optical spectral characteristics of the land surface has been accumulated in recent decades. This has been only made possible due to the use of satellite information. The development of satellite measurement technologies and new methods for pre-processing and interpretation of satellite data allowed the research adequate to the scale of the Earth. This adequacy includes the compliance of scale terrestrial objects to the scale of satellite measurements. Research is not limited by any latitude or longitude of the objects studied. The second most important quality is the adequacy of the technologies used to velocities of processes on Earth. This is enabled by long-term continuous satellite measurements at almost all latitudes. Effectiveness of this approach to the study of natural systems has been shown by the authors in ASR publications (AP Shevyrnogov, GS Vysotskaya, JI Gitelson, Quasistationary areas of chlorophyll concentration in the world ocean as observed satellite data Advances in Space Research, Volume 18, Issue 7, Pages 129-132, 1996), which reported a method for determining the ocean surface quasistationary zones. This approach allowed us to identify different types of phytopigment dynamics and the hydrological structure of the ocean. We proposed a similar approach for the study of land vegetation. In some aspects, it is similar to the previously published approach, despite the different nature of terrestrial and aquatic ecosystems. The results are based on the processing of satellite data from 1981 to 2006. Dynamics is the most interesting and important parameter of ecosystems, especially their trends. Therefore, it has been chosen for the analysis of spatial patterns of plant biota. The first results showed great heterogeneity of variances in nonlinear trends of the study areas of the Earth's surface. They corresponded to different natural systems. Various scales of temporal and spatial windows highlight different features of land vegetation. Methods for normalization of the initial information are also effective for highlighting the features of the spatial structure of vegetation. Thus, we have a powerful tool to analyze the spatial distribution and dynamics of terrestrial vegetation based on satellite data. This approach provides a great opportunity to get fundamental knowledge on the functioning of the biosphere. This is global warming, shifts in permafrost boundaries, global gas exchange, etc. It can be used for practical applications in various fields of human activity: forestry, environmental protection, agriculture, etc. We show the illustration of this method: the global maps of land surface dynamics of trends with different parameters of data processing.
Orogenic gold and geologic time: A global synthesis
Goldfarb, R.J.; Groves, D.I.; Gardoll, S.
2001-01-01
Orogenic gold deposits have formed over more than 3 billion years of Earth's history, episodically during the Middle Archean to younger Precambrian, and continuously throughout the Phanerozoic. This class of gold deposit is characteristically associated with deformed and metamorphosed mid-crustal blocks, particularly in spatial association with major crustal structures. A consistent spatial and temporal association with granitoids of a variety of compositions indicates that melts and fluids were both inherent products of thermal events during orogenesis. Including placer accumulations, which are commonly intimately associated with this mineral deposit type, recognized production and resources from economic Phanerozoic orogenic-gold deposits are estimated at just over one billion ounces gold. Exclusive of the still-controversial Witwatersrand ores, known Precambrian gold concentrations are about half this amount. The recent increased applicability of global paleo-reconstructions, coupled with improved geochronology from most of the world's major gold camps, allows for an improved understanding of the distribution pattern of orogenic gold in space and time.
NASA Astrophysics Data System (ADS)
Alken, P.; Olsen, N.; Finlay, C. C.; Chulliat, A.
2017-12-01
In order to investigate the spatial structure and development of rapid (sub-decadal) changes in the geomagnetic core field, including its secular variation and acceleration, global magnetic measurements from space play a crucial role. With the end of the CHAMP mission in September 2010, there has been a gap in high-quality satellite magnetic field measurements until the Swarm mission was launched in November 2013. Geomagnetic main field models during this period have relied on the global ground observatory network which, due to its sparse spatial configuration, has difficulty in resolving secular variation and acceleration at higher spherical harmonic degrees. In this presentation we will show new results in building main field models during this "gap period", based on vector magnetic measurements from four Defense Meteorological Satellite Program (DMSP) satellites. While the fluxgate instruments onboard DMSP were not designed for high-quality core field modeling, we find that the DMSP dataset can provide valuable information on secular variation and acceleration during the gap period.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O'Brien, Sarah L.; Gibbons, Sean M.; Owens, Sarah M.
Soil microbial communities are essential for ecosystem function, but linking community composition to biogeochemical processes is challenging because of high microbial diversity and large spatial variability of most soil characteristics. We investigated soil bacterial community structure in a switchgrass stand planted on soil with a history of grassland vegetation at high spatial resolution to determine whether biogeographic trends occurred at the centimeter scale. Moreover, we tested whether such heterogeneity, if present, influenced community structure within or among ecosystems. Pronounced heterogeneity was observed at centimeter scales, with abrupt changes in relative abundance of phyla from sample to sample. At the ecosystemmore » scale (> 10 m), however, bacterial community composition and structure were subtly, but significantly, altered by fertilization, with higher alpha diversity in fertilized plots. Moreover, by comparing these data with data from 1772 soils from the Earth Microbiome Project, it was found that 20% diverse globally sourced soil samples, while grassland soils shared approximately 40% of their operational taxonomic units with the current study. By spanning several orders of magnitude, the analysis suggested that extreme patchiness characterized community structure at smaller scales but that coherent patterns emerged at larger length scales.« less
Wu, Wei; Wang, Jin
2013-09-28
We established a potential and flux field landscape theory to quantify the global stability and dynamics of general spatially dependent non-equilibrium deterministic and stochastic systems. We extended our potential and flux landscape theory for spatially independent non-equilibrium stochastic systems described by Fokker-Planck equations to spatially dependent stochastic systems governed by general functional Fokker-Planck equations as well as functional Kramers-Moyal equations derived from master equations. Our general theory is applied to reaction-diffusion systems. For equilibrium spatially dependent systems with detailed balance, the potential field landscape alone, defined in terms of the steady state probability distribution functional, determines the global stability and dynamics of the system. The global stability of the system is closely related to the topography of the potential field landscape in terms of the basins of attraction and barrier heights in the field configuration state space. The effective driving force of the system is generated by the functional gradient of the potential field alone. For non-equilibrium spatially dependent systems, the curl probability flux field is indispensable in breaking detailed balance and creating non-equilibrium condition for the system. A complete characterization of the non-equilibrium dynamics of the spatially dependent system requires both the potential field and the curl probability flux field. While the non-equilibrium potential field landscape attracts the system down along the functional gradient similar to an electron moving in an electric field, the non-equilibrium flux field drives the system in a curly way similar to an electron moving in a magnetic field. In the small fluctuation limit, the intrinsic potential field as the small fluctuation limit of the potential field for spatially dependent non-equilibrium systems, which is closely related to the steady state probability distribution functional, is found to be a Lyapunov functional of the deterministic spatially dependent system. Therefore, the intrinsic potential landscape can characterize the global stability of the deterministic system. The relative entropy functional of the stochastic spatially dependent non-equilibrium system is found to be the Lyapunov functional of the stochastic dynamics of the system. Therefore, the relative entropy functional quantifies the global stability of the stochastic system with finite fluctuations. Our theory offers an alternative general approach to other field-theoretic techniques, to study the global stability and dynamics of spatially dependent non-equilibrium field systems. It can be applied to many physical, chemical, and biological spatially dependent non-equilibrium systems.
Integrating biodiversity distribution knowledge: toward a global map of life.
Jetz, Walter; McPherson, Jana M; Guralnick, Robert P
2012-03-01
Global knowledge about the spatial distribution of species is orders of magnitude coarser in resolution than other geographically-structured environmental datasets such as topography or land cover. Yet such knowledge is crucial in deciphering ecological and evolutionary processes and in managing global change. In this review, we propose a conceptual and cyber-infrastructure framework for refining species distributional knowledge that is novel in its ability to mobilize and integrate diverse types of data such that their collective strengths overcome individual weaknesses. The ultimate aim is a public, online, quality-vetted 'Map of Life' that for every species integrates and visualizes available distributional knowledge, while also facilitating user feedback and dynamic biodiversity analyses. First milestones toward such an infrastructure have now been implemented. Copyright © 2011 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Hara, T.; Seki, K.; Hasegawa, H.; Brain, D. A.; Matsunaga, K.; Saito, M. H.
2013-12-01
Mars is a unique planet because it locally possesses strong crustal magnetic fields mainly located in the southern hemisphere [e.g., Acuna et al., 1999]. The Martian electromagnetic environment can thus become highly complicated and variable, since the interplanetary magnetic field embedded in the solar wind interacts with the Martian crustal magnetic fields. Whereas it is known that the Martian upper atmosphere is escaping to interplanetary space due to the interaction with the solar wind [e.g., Lundin et al., 1989; Barabash et al., 2007], the contribution of crustal magnetic fields to atmospheric escape from Mars has not yet been well understood. Flux ropes are characteristic magnetic field structures seen throughout the solar system, e.g., at the Sun, in the interplanetary space, and at the terrestrial magnetosphere. Flux ropes are also observed at planets such as at Venus and Mars [e.g., Russell and Elphic, 1979; Vignes et al., 2004], which do not possess a global intrinsic magnetic field. Brain et al. [2010] found a large-scale isolated magnetic flux rope filled with Martian atmospheric plasma located downstream from the crustal magnetic fields with respect to the solar wind flow based on the Mars Global Surveyor (MGS) measurements. They suggested that the magnetic flux rope could be intermittently detached from Mars, and remove significant amounts of atmosphere away from Mars. They proposed that this process might occur frequently and account for as much as 10% of the total present-day ion escape from Mars. However, this estimation of the ion escape rate is somewhat ambiguous, because it is difficult to infer the spatial structure of them from the single spacecraft data. We here investigated characteristics of the Martian magnetic flux ropes based on the Grad-Shafranov (GS) reconstruction technique using the MGS magnetic field data. This technique is capable of recovering the two-dimensional spatial structure of the magnetic flux ropes from single spacecraft data [e.g., Hu and Sunnerup, 2002]. The resultant structure allows us to provide a reliable observational restriction on the spatial scales of magnetic flux ropes. We applied the GS reconstruction technique to 135 obvious magnetic flux rope events observed by MGS. As a result, their spatial structures were successfully recovered for 70 events. The reconstruction results indicated that magnetic flux rope axes are mostly oriented horizontally with respect to the Martian surface. We demonstrated that the events, which have solar zenith angle larger than 75 deg and duration longer than 240 sec, are mostly in the region where the upstream crustal magnetic field strength is larger than the other events. Using the shape and size of the flux ropes obtained from the GS reconstruction technique, we are able to calculate lower limits on their volume and the potential ion escape rates. The volumes can vary by factors of 2--3 orders of magnitude. Ion escape rates via the flux ropes based on the GS reconstruction technique turn out to attain to the order of 10^22 -- 10^23 ion/sec. This result could be comparable to the global ion escape rate obtained from the ion mass analyzer onboard the Mars Express orbiter at solar minimum [e.g., Barabash et al., 2007].
ERIC Educational Resources Information Center
Matthews, Allison Jane; Martin, Frances Heritage
2009-01-01
Previous research suggests a relationship between spatial attention and phonological decoding in developmental dyslexia. The aim of this study was to examine differences between good and poor phonological decoders in the allocation of spatial attention to global and local levels of hierarchical stimuli. A further aim was to investigate the…
Dell’Acqua, F.; Gamba, P.; Jaiswal, K.
2012-01-01
This paper discusses spatial aspects of the global exposure dataset and mapping needs for earthquake risk assessment. We discuss this in the context of development of a Global Exposure Database for the Global Earthquake Model (GED4GEM), which requires compilation of a multi-scale inventory of assets at risk, for example, buildings, populations, and economic exposure. After defining the relevant spatial and geographic scales of interest, different procedures are proposed to disaggregate coarse-resolution data, to map them, and if necessary to infer missing data by using proxies. We discuss the advantages and limitations of these methodologies and detail the potentials of utilizing remote-sensing data. The latter is used especially to homogenize an existing coarser dataset and, where possible, replace it with detailed information extracted from remote sensing using the built-up indicators for different environments. Present research shows that the spatial aspects of earthquake risk computation are tightly connected with the availability of datasets of the resolution necessary for producing sufficiently detailed exposure. The global exposure database designed by the GED4GEM project is able to manage datasets and queries of multiple spatial scales.
Dhingra, Madhur S; Artois, Jean; Robinson, Timothy P; Linard, Catherine; Chaiban, Celia; Xenarios, Ioannis; Engler, Robin; Liechti, Robin; Kuznetsov, Dmitri; Xiao, Xiangming; Dobschuetz, Sophie Von; Claes, Filip; Newman, Scott H; Dauphin, Gwenaëlle; Gilbert, Marius
2016-01-01
Global disease suitability models are essential tools to inform surveillance systems and enable early detection. We present the first global suitability model of highly pathogenic avian influenza (HPAI) H5N1 and demonstrate that reliable predictions can be obtained at global scale. Best predictions are obtained using spatial predictor variables describing host distributions, rather than land use or eco-climatic spatial predictor variables, with a strong association with domestic duck and extensively raised chicken densities. Our results also support a more systematic use of spatial cross-validation in large-scale disease suitability modelling compared to standard random cross-validation that can lead to unreliable measure of extrapolation accuracy. A global suitability model of the H5 clade 2.3.4.4 viruses, a group of viruses that recently spread extensively in Asia and the US, shows in comparison a lower spatial extrapolation capacity than the HPAI H5N1 models, with a stronger association with intensively raised chicken densities and anthropogenic factors. DOI: http://dx.doi.org/10.7554/eLife.19571.001 PMID:27885988
Mapping Impervious Surfaces Globally at 30m Resolution Using Global Land Survey Data
NASA Technical Reports Server (NTRS)
DeColstoun, Eric Brown; Huang, Chengquan; Tan, Bin; Smith, Sarah Elizabeth; Phillips, Jacqueline; Wang, Panshi; Ling, Pui-Yu; Zhan, James; Li, Sike; Taylor, Michael P.;
2013-01-01
Impervious surfaces, mainly artificial structures and roads, cover less than 1% of the world's land surface (1.3% over USA). Regardless of the relatively small coverage, impervious surfaces have a significant impact on the environment. They are the main source of the urban heat island effect, and affect not only the energy balance, but also hydrology and carbon cycling, and both land and aquatic ecosystem services. In the last several decades, the pace of converting natural land surface to impervious surfaces has increased. Quantitatively monitoring the growth of impervious surface expansion and associated urbanization has become a priority topic across both the physical and social sciences. The recent availability of consistent, global scale data sets at 30m resolution such as the Global Land Survey from the Landsat satellites provides an unprecedented opportunity to map global impervious cover and urbanization at this resolution for the first time, with unprecedented detail and accuracy. Moreover, the spatial resolution of Landsat is absolutely essential to accurately resolve urban targets such a buildings, roads and parking lots. With long term GLS data now available for the 1975, 1990, 2000, 2005 and 2010 time periods, the land cover/use changes due to urbanization can now be quantified at this spatial scale as well. In the Global Land Survey - Imperviousness Mapping Project (GLS-IMP), we are producing the first global 30 m spatial resolution impervious cover data set. We have processed the GLS 2010 data set to surface reflectance (8500+ TM and ETM+ scenes) and are using a supervised classification method using a regression tree to produce continental scale impervious cover data sets. A very large set of accurate training samples is the key to the supervised classifications and is being derived through the interpretation of high spatial resolution (approx. 2 m or less) commercial satellite data (Quickbird and Worldview2) available to us through the unclassified archive of the National Geospatial Intelligence Agency (NGA). For each continental area several million training pixels are derived by analysts using image segmentation algorithms and tools and then aggregated to the 30m resolution of Landsat. Here we will discuss the production/testing of this massive data set for Europe, North and South America and Africa, including assessments of the 2010 surface reflectance data. This type of analysis is only possible because of the availability of long term 30m data sets from GLS and shows much promise for integration of Landsat 8 data in the future.
Mapping Impervious Surfaces Globally at 30m Resolution Using Landsat Global Land Survey Data
NASA Astrophysics Data System (ADS)
Brown de Colstoun, E.; Huang, C.; Wolfe, R. E.; Tan, B.; Tilton, J.; Smith, S.; Phillips, J.; Wang, P.; Ling, P.; Zhan, J.; Xu, X.; Taylor, M. P.
2013-12-01
Impervious surfaces, mainly artificial structures and roads, cover less than 1% of the world's land surface (1.3% over USA). Regardless of the relatively small coverage, impervious surfaces have a significant impact on the environment. They are the main source of the urban heat island effect, and affect not only the energy balance, but also hydrology and carbon cycling, and both land and aquatic ecosystem services. In the last several decades, the pace of converting natural land surface to impervious surfaces has increased. Quantitatively monitoring the growth of impervious surface expansion and associated urbanization has become a priority topic across both the physical and social sciences. The recent availability of consistent, global scale data sets at 30m resolution such as the Global Land Survey from the Landsat satellites provides an unprecedented opportunity to map global impervious cover and urbanization at this resolution for the first time, with unprecedented detail and accuracy. Moreover, the spatial resolution of Landsat is absolutely essential to accurately resolve urban targets such a buildings, roads and parking lots. With long term GLS data now available for the 1975, 1990, 2000, 2005 and 2010 time periods, the land cover/use changes due to urbanization can now be quantified at this spatial scale as well. In the Global Land Survey - Imperviousness Mapping Project (GLS-IMP), we are producing the first global 30 m spatial resolution impervious cover data set. We have processed the GLS 2010 data set to surface reflectance (8500+ TM and ETM+ scenes) and are using a supervised classification method using a regression tree to produce continental scale impervious cover data sets. A very large set of accurate training samples is the key to the supervised classifications and is being derived through the interpretation of high spatial resolution (~2 m or less) commercial satellite data (Quickbird and Worldview2) available to us through the unclassified archive of the National Geospatial Intelligence Agency (NGA). For each continental area several million training pixels are derived by analysts using image segmentation algorithms and tools and then aggregated to the 30m resolution of Landsat. Here we will discuss the production/testing of this massive data set for Europe, North and South America and Africa, including assessments of the 2010 surface reflectance data. This type of analysis is only possible because of the availability of long term 30m data sets from GLS and shows much promise for integration of Landsat 8 data in the future.
Robertson, Oliver J.; McAlpine, Clive; House, Alan; Maron, Martine
2013-01-01
Human-induced biotic homogenization resulting from landscape change and increased competition from widespread generalists or ‘winners’, is widely recognized as a global threat to biodiversity. However, it remains unclear what aspects of landscape structure influence homogenization. This paper tests the importance of interspecific competition and landscape structure, for the spatial homogeneity of avian assemblages within a fragmented agricultural landscape of eastern Australia. We used field observations of the density of 128 diurnal bird species to calculate taxonomic and functional similarity among assemblages. We then examined whether taxonomic and functional similarity varied with patch type, the extent of woodland habitat, land-use intensity, habitat subdivision, and the presence of Manorina colonies (a competitive genus of honeyeaters). We found the presence of a Manorina colony was the most significant factor positively influencing both taxonomic and functional similarity of bird assemblages. Competition from members of this widespread genus of native honeyeater, rather than landscape structure, was the main cause of both taxonomic and functional homogenization. These species have not recently expanded their range, but rather have increased in density in response to agricultural landscape change. The negative impacts of Manorina honeyeaters on assemblage similarity were most pronounced in landscapes of moderate land-use intensity. We conclude that in these human-modified landscapes, increased competition from dominant native species, or ‘winners’, can result in homogeneous avian assemblages and the loss of specialist species. These interacting processes make biotic homogenization resulting from land-use change a global threat to biodiversity in modified agro-ecosystems. PMID:23724136
Role of ocean isopycnal mixing in setting the uptake of anthropogenic carbon
NASA Astrophysics Data System (ADS)
Gnanadesikan, A.; Pradal, M. A. S.; Abernathey, R. P.
2014-12-01
The magnitude of the isopycnal stirring coefficient ARedi is poorly constrained from data and varies greatly across Earth System Models. This paper documents the impact of such uncertainty on the oceanic carbon cycle. We compare six spatial representations of ARedi. Four constant values (400, 800, 1200 and 2400 m2/s) are used to explore the difference between using the low values found in many models and the higher values seen in observational estimates. Models are also run with two spatially dependent values of ARedi based on altimetry, one which captures the fully two-dimensional structure of the mixing coefficient, the other of which looks at the zonally averaged structure alone. Under global warming significant changes are seen in the biological pump in convective regions, but these changes are largely locally compensated by changes in preformed DIC. Instead, differences in anthropogenic uptake of carbon are largely centered in the tropics, and can be well described in terms of a relatively simple diffusive approximation. Using ideal age as a tracer can give insight into the expected behavior of the models. The rate of oceanic mixing represents a quantitatively significant uncertainty in future projections of the global carbon cycle, amounting to about 20% of the oceanic uptake.
Sharma, Sapna; Gray, Derek K; Read, Jordan S; O’Reilly, Catherine M; Schneider, Philipp; Qudrat, Anam; Gries, Corinna; Stefanoff, Samantha; Hampton, Stephanie E; Hook, Simon; Lenters, John D; Livingstone, David M; McIntyre, Peter B; Adrian, Rita; Allan, Mathew G; Anneville, Orlane; Arvola, Lauri; Austin, Jay; Bailey, John; Baron, Jill S; Brookes, Justin; Chen, Yuwei; Daly, Robert; Dokulil, Martin; Dong, Bo; Ewing, Kye; de Eyto, Elvira; Hamilton, David; Havens, Karl; Haydon, Shane; Hetzenauer, Harald; Heneberry, Jocelyne; Hetherington, Amy L; Higgins, Scott N; Hixson, Eric; Izmest’eva, Lyubov R; Jones, Benjamin M; Kangur, Külli; Kasprzak, Peter; Köster, Olivier; Kraemer, Benjamin M; Kumagai, Michio; Kuusisto, Esko; Leshkevich, George; May, Linda; MacIntyre, Sally; Müller-Navarra, Dörthe; Naumenko, Mikhail; Noges, Peeter; Noges, Tiina; Niederhauser, Pius; North, Ryan P; Paterson, Andrew M; Plisnier, Pierre-Denis; Rigosi, Anna; Rimmer, Alon; Rogora, Michela; Rudstam, Lars; Rusak, James A; Salmaso, Nico; Samal, Nihar R; Schindler, Daniel E; Schladow, Geoffrey; Schmidt, Silke R; Schultz, Tracey; Silow, Eugene A; Straile, Dietmar; Teubner, Katrin; Verburg, Piet; Voutilainen, Ari; Watkinson, Andrew; Weyhenmeyer, Gesa A; Williamson, Craig E; Woo, Kara H
2015-01-01
Global environmental change has influenced lake surface temperatures, a key driver of ecosystem structure and function. Recent studies have suggested significant warming of water temperatures in individual lakes across many different regions around the world. However, the spatial and temporal coherence associated with the magnitude of these trends remains unclear. Thus, a global data set of water temperature is required to understand and synthesize global, long-term trends in surface water temperatures of inland bodies of water. We assembled a database of summer lake surface temperatures for 291 lakes collected in situ and/or by satellites for the period 1985–2009. In addition, corresponding climatic drivers (air temperatures, solar radiation, and cloud cover) and geomorphometric characteristics (latitude, longitude, elevation, lake surface area, maximum depth, mean depth, and volume) that influence lake surface temperatures were compiled for each lake. This unique dataset offers an invaluable baseline perspective on global-scale lake thermal conditions as environmental change continues. PMID:25977814
Sharma, Sapna; Gray, Derek K; Read, Jordan S; O'Reilly, Catherine M; Schneider, Philipp; Qudrat, Anam; Gries, Corinna; Stefanoff, Samantha; Hampton, Stephanie E; Hook, Simon; Lenters, John D; Livingstone, David M; McIntyre, Peter B; Adrian, Rita; Allan, Mathew G; Anneville, Orlane; Arvola, Lauri; Austin, Jay; Bailey, John; Baron, Jill S; Brookes, Justin; Chen, Yuwei; Daly, Robert; Dokulil, Martin; Dong, Bo; Ewing, Kye; de Eyto, Elvira; Hamilton, David; Havens, Karl; Haydon, Shane; Hetzenauer, Harald; Heneberry, Jocelyne; Hetherington, Amy L; Higgins, Scott N; Hixson, Eric; Izmest'eva, Lyubov R; Jones, Benjamin M; Kangur, Külli; Kasprzak, Peter; Köster, Olivier; Kraemer, Benjamin M; Kumagai, Michio; Kuusisto, Esko; Leshkevich, George; May, Linda; MacIntyre, Sally; Müller-Navarra, Dörthe; Naumenko, Mikhail; Noges, Peeter; Noges, Tiina; Niederhauser, Pius; North, Ryan P; Paterson, Andrew M; Plisnier, Pierre-Denis; Rigosi, Anna; Rimmer, Alon; Rogora, Michela; Rudstam, Lars; Rusak, James A; Salmaso, Nico; Samal, Nihar R; Schindler, Daniel E; Schladow, Geoffrey; Schmidt, Silke R; Schultz, Tracey; Silow, Eugene A; Straile, Dietmar; Teubner, Katrin; Verburg, Piet; Voutilainen, Ari; Watkinson, Andrew; Weyhenmeyer, Gesa A; Williamson, Craig E; Woo, Kara H
2015-01-01
Global environmental change has influenced lake surface temperatures, a key driver of ecosystem structure and function. Recent studies have suggested significant warming of water temperatures in individual lakes across many different regions around the world. However, the spatial and temporal coherence associated with the magnitude of these trends remains unclear. Thus, a global data set of water temperature is required to understand and synthesize global, long-term trends in surface water temperatures of inland bodies of water. We assembled a database of summer lake surface temperatures for 291 lakes collected in situ and/or by satellites for the period 1985-2009. In addition, corresponding climatic drivers (air temperatures, solar radiation, and cloud cover) and geomorphometric characteristics (latitude, longitude, elevation, lake surface area, maximum depth, mean depth, and volume) that influence lake surface temperatures were compiled for each lake. This unique dataset offers an invaluable baseline perspective on global-scale lake thermal conditions as environmental change continues.
Sharma, Sapna; Gray, Derek; Read, Jordan S.; O'Reilly, Catherine; Schneider, Philipp; Qudrat, Anam; Gries, Corinna; Stefanoff, Samantha; Hampton, Stephanie; Hook, Simon; Lenters, John; Livingstone, David M.; McIntyre, Peter B.; Adrian, Rita; Allan, Mathew; Anneville, Orlane; Arvola, Lauri; Austin, Jay; Bailey, John E.; Baron, Jill S.; Brookes, Justin D; Chen, Yuwei; Daly, Robert; Ewing, Kye; de Eyto, Elvira; Dokulil, Martin; Hamilton, David B.; Havens, Karl; Haydon, Shane; Hetzenaeur, Harald; Heneberry, Jocelyn; Hetherington, Amy; Higgins, Scott; Hixson, Eric; Izmest'eva, Lyubov; Jones, Benjamin M.; Kangur, Kulli; Kasprzak, Peter; Kraemer, Benjamin; Kumagai, Michio; Kuusisto, Esko; Leshkevich, George; May, Linda; MacIntyre, Sally; Dörthe Müller-Navarra,; Naumenko, Mikhail; Noges, Peeter; Noges, Tiina; Pius Niederhauser,; North, Ryan P.; Andrew Paterson,; Plisnier, Pierre-Denis; Rigosi, Anna; Rimmer, Alon; Rogora, Michela; Rudstam, Lars G.; Rusak, James A.; Salmaso, Nico; Samal, Nihar R.; Daniel E. Schindler,; Geoffrey Schladow,; Schmidt, Silke R.; Tracey Schultz,; Silow, Eugene A.; Straile, Dietmar; Teubner, Katrin; Verburg, Piet; Voutilainen, Ari; Watkinson, Andrew; Weyhenmeyer, Gesa A.; Craig E. Williamson,; Kara H. Woo,
2015-01-01
Global environmental change has influenced lake surface temperatures, a key driver of ecosystem structure and function. Recent studies have suggested significant warming of water temperatures in individual lakes across many different regions around the world. However, the spatial and temporal coherence associated with the magnitude of these trends remains unclear. Thus, a global data set of water temperature is required to understand and synthesize global, long-term trends in surface water temperatures of inland bodies of water. We assembled a database of summer lake surface temperatures for 291 lakes collected in situ and/or by satellites for the period 1985–2009. In addition, corresponding climatic drivers (air temperatures, solar radiation, and cloud cover) and geomorphometric characteristics (latitude, longitude, elevation, lake surface area, maximum depth, mean depth, and volume) that influence lake surface temperatures were compiled for each lake. This unique dataset offers an invaluable baseline perspective on global-scale lake thermal conditions as environmental change continues.
Effects of Telecoupling on Global Vegetation Dynamics
NASA Astrophysics Data System (ADS)
Viña, A.; Liu, J.
2016-12-01
With the ever increasing trend in telecoupling processes, such as international trade, all countries around the world are becoming more interdependent. However, the effects of this growing interdependence on vegetation (e.g., shifts in the geographic extent and distribution) remain unknown even though vegetation dynamics are crucially important for food production, carbon sequestration, provision of other ecosystem services, and biodiversity conservation. In this study we evaluate the effects of international trade on the spatio-temporal trajectories of vegetation at national and global scales, using vegetation index imagery collected over more than three decades by the Advanced Very High Resolution Radiometer (AVHRR) satellite sensor series together with concurrent national and international data on international trade (and its associated movement of people, goods, services and information). The spatio-temporal trajectories of vegetation are obtained using the scale of fluctuation technique, which is based on the decomposition of the AVHRR image time series to obtain information on its spatial dependence structure over time. Similar to the correlation length, the scale of fluctuation corresponds to the range over which fluctuations in the vegetation index are spatially correlated. Results indicate that global vegetation has changed drastically over the last three decades. These changes are not uniform across space, with hotspots in active trading countries. This study not only has direct implications for understanding global vegetation dynamics, but also sheds important insights on the complexity of human-nature interactions across telecoupled systems.
NASA Technical Reports Server (NTRS)
Hill, Michael J.; Roman, Miguel O.; Schaaf, Crytal B.
2011-01-01
In this study, we explored the capacity of vegetation indices derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) reflectance products to characterize global savannas in Australia, Africa and South America. The savannas were spatially defined and subdivided using the World Wildlife Fund (WWF) global ecoregions and MODIS land cover classes. Average annual profiles of Normalized Difference Vegetation Index, shortwave infrared ratio (SWIR32), White Sky Albedo (WSA) and the Structural Scattering Index (SSI) were created. Metrics derived from average annual profiles of vegetation indices were used to classify savanna ecoregions. The response spaces between vegetation indices were used to examine the potential to derive structural and fractional cover measures. The ecoregions showed distinct temporal profiles and formed groups with similar structural properties, including higher levels of woody vegetation, similar forest savanna mixtures and similar grassland predominance. The potential benefits from the use of combinations of indices to characterize savannas are discussed.
A global view of F-region electron density and temperature at solar maximum
NASA Technical Reports Server (NTRS)
Brace, L. H.; Theis, R. F.; Hoegy, W. R.
1982-01-01
It is pointed out that the thermal structure of the ionosphere represents a quasi-static balance between a variety of heat sources and sinks which vary spatially and temporally on a wide range of time scales. The present investigation has the objective to present selected early results from the Dynamics Explorer-2 (DE-2) Langmuir probe instrument and to make an initial evaluation of how the thermal structure of the ionosphere at solar maximum differs from that observed at solar minimum. Bowen et al. (1964) and Brace and Reddy (1965) devised early empirical models of the F region electron temperature (Te), based on satellite Langmuir probe measurements at low levels of solar activity. The global structure of Te and the electron density (Ne) obtained in the current investigation is not very different from that reported by Brace and Reddy. The primary difference at solar maximum is that Ne is everywhere much higher, but Te differs only in detail.
NASA Astrophysics Data System (ADS)
Gu, Huaying; Liu, Zhixue; Weng, Yingliang
2017-04-01
The present study applies the multivariate generalized autoregressive conditional heteroscedasticity (MGARCH) with spatial effects approach for the analysis of the time-varying conditional correlations and contagion effects among global real estate markets. A distinguishing feature of the proposed model is that it can simultaneously capture the spatial interactions and the dynamic conditional correlations compared with the traditional MGARCH models. Results reveal that the estimated dynamic conditional correlations have exhibited significant increases during the global financial crisis from 2007 to 2009, thereby suggesting contagion effects among global real estate markets. The analysis further indicates that the returns of the regional real estate markets that are in close geographic and economic proximities exhibit strong co-movement. In addition, evidence of significantly positive leverage effects in global real estate markets is also determined. The findings have significant implications on global portfolio diversification opportunities and risk management practices.
Global isolation by distance despite strong regional phylogeography in a small metazoan
Mills, Scott; Lunt, David H; Gómez, Africa
2007-01-01
Background Small vagile eukaryotic organisms, which comprise a large proportion of the Earth's biodiversity, have traditionally been thought to lack the extent of population structuring and geographic speciation observed in larger taxa. Here we investigate the patterns of genetic diversity, amongst populations of the salt lake microscopic metazoan Brachionus plicatilis s. s. (sensu stricto) (Rotifera: Monogononta) on a global scale. We examine the phylogenetic relationships of geographic isolates from four continents using a 603 bp fragment of the mitochondrial COI gene to investigate patterns of phylogeographic subdivision in this species. In addition we investigate the relationship between genetic and geographic distances on a global scale to try and reconcile the paradox between the high vagility of this species and the previously reported patterns of restricted gene flow, even over local spatial scales. Results Analysis of global sequence diversity of B. plicatilis s. s. reveals the presence of four allopatric genetic lineages: North American-Far East Asian, Western Mediterranean, Australian, and an Eastern Mediterranean lineage represented by a single isolate. Geographically orientated substructure is also apparent within the three best sampled lineages. Surprisingly, given this strong phylogeographic structure, B. plicatilis s. s. shows a significant correlation between geographic and genetic distance on a global scale ('isolation by distance' – IBD). Conclusion Despite its cosmopolitan distribution and potential for high gene flow, B. plicatilis s. s. is strongly structured at a global scale. IBD patterns have traditionally been interpreted to indicate migration-drift equilibrium, although in this system equilibrium conditions are incompatible with the observed genetic structure. Instead, we suggest the pattern may have arisen through persistent founder effects, acting in a similar fashion to geographic barriers for larger organisms. Our data indicates that geographic speciation, contrary to historical views, is likely to be very important in microorganisms. By presenting compelling evidence for geographic speciation in a small eukaryote we add to the growing body of evidence that is forcing us to rethink our views of global biodiversity. PMID:17999774
Karimzadeh, R; Hejazi, M J; Helali, H; Iranipour, S; Mohammadi, S A
2011-10-01
Eurygaster integriceps Puton (Hemiptera: Scutelleridae) is the most serious insect pest of wheat (Triticum aestivum L.) and barley (Hordeum vulgare L.) in Iran. In this study, spatio-temporal distribution of this pest was determined in wheat by using spatial analysis by distance indices (SADIE) and geostatistics. Global positioning and geographic information systems were used for spatial sampling and mapping the distribution of this insect. The study was conducted for three growing seasons in Gharamalek, an agricultural region to the west of Tabriz, Iran. Weekly sampling began when E. integriceps adults migrated to wheat fields from overwintering sites and ended when the new generation adults appeared at the end of season. The adults were sampled using 1- by 1-m quadrat and distance-walk methods. A sweep net was used for sampling the nymphs, and five 180° sweeps were considered as the sampling unit. The results of spatial analyses by using geostatistics and SADIE indicated that E. integriceps adults were clumped after migration to fields and had significant spatial dependency. The second- and third-instar nymphs showed aggregated spatial structure in the middle of growing season. At the end of the season, population distribution changed toward random or regular patterns; and fourth and fifth instars had weaker spatial structure compared with younger nymphs. In Iran, management measures for E. integriceps in wheat fields are mainly applied against overwintering adults, as well as second and third instars. Because of the aggregated distribution of these life stages, site-specific spraying of chemicals is feasible in managing E. integriceps.
[Soil and forest structure in the Colombian Amazon].
Calle-Rendón, Bayron R; Moreno, Flavio; Cárdenas López, Dairon
2011-09-01
Forests structural differences could result of environmental variations at different scales. Because soils are an important component of plant's environment, it is possible that edaphic and structural variables are associated and that, in consequence, spatial autocorrelation occurs. This paper aims to answer two questions: (1) are structural and edaphic variables associated at local scale in a terra firme forest of Colombian Amazonia? and (2) are these variables regionalized at the scale of work? To answer these questions we analyzed the data of a 6ha plot established in a terra firme forest of the Amacayacu National Park. Structural variables included basal area and density of large trees (diameter > or = 10cm) (Gdos and Ndos), basal area and density of understory individuals (diameter < 10cm) (Gsot and Nsot) and number of species of large trees (sp). Edaphic variables included were pH, organic matter, P, Mg, Ca, K, Al, sand, silt and clay. Structural and edaphic variables were reduced through a principal component analysis (PCA); then, the association between edaphic and structural components from PCA was evaluated by multiple regressions. The existence of regionalization of these variables was studied through isotropic variograms, and autocorrelated variables were spatially mapped. PCA found two significant components for structure, corresponding to the structure of large trees (G, Gdos, Ndos and sp) and of small trees (N, Nsot and Gsot), which explained 43.9% and 36.2% of total variance, respectively. Four components were identified for edaphic variables, which globally explained 81.9% of total variance and basically represent drainage and soil fertility. Regression analyses were significant (p < 0.05) and showed that the structure of both large and small trees is associated with greater sand contents and low soil fertility, though they explained a low proportion of total variability (R2 was 4.9% and 16.5% for the structure of large trees and small tress, respectively). Variables with spatial autocorrelation were the structure of small trees, Al, silt, and sand. Among them, Nsot and sand content showed similar patterns of spatial distribution inside the plot.
A Discrete Global Grid System Programming Language Using MapReduce
NASA Astrophysics Data System (ADS)
Peterson, P.; Shatz, I.
2016-12-01
A discrete global grid system (DGGS) is a powerful mechanism for storing and integrating geospatial information. As a "pixelization" of the Earth, many image processing techniques lend themselves to the transformation of data values referenced to the DGGS cells. It has been shown that image algebra, as an example, and advanced algebra, like Fast Fourier Transformation, can be used on the DGGS tiling structure for geoprocessing and spatial analysis. MapReduce has been shown to provide advantages for processing and generating large data sets within distributed and parallel computing. The DGGS structure is ideally suited for big distributed Earth data. We proposed that basic expressions could be created to form the atoms of a generalized DGGS language using the MapReduce programming model. We created three very efficient expressions: Selectors (aka filter) - A selection function that generate a set of cells, cell collections, or geometries; Calculators (aka map) - A computational function (including quantization of raw measurements and data sources) that generate values in a DGGS cell; and Aggregators (aka reduce) - A function that generate spatial statistics from cell values within a cell. We found that these three basic MapReduce operations along with a forth function, the Iterator, for horizontal and vertical traversing of any DGGS structure, provided simple building block resulting in very efficient operations and processes that could be used with any DGGS. We provide examples and a demonstration of their effectiveness using the ISEA3H DGGS on the PYXIS Studio.
Temporal and spatial variation in the fouling of silicone coatings in Pearl Harbor, Hawaii.
Holm, E R; Nedved, B T; Phillips, N; Deangelis, K L; Hadfield, M G; Smith, C M
2000-01-01
An antifouling or foul-release coating cannot be globally effective if it does not perform well in a range of environmental conditions, against a diversity of fouling organisms. From 1996 to 1998, the field test sites participating in the United States Navy's Office of Naval Research 6.2 Biofouling program examined global variation in the performance of 3 silicone foul-release coatings, viz. GE RTV11, Dow Corning RTV 3140, and Intersleek (International Coatings Ltd), together with a control anticorrosive coating (Ameron Protective Coatings F-150 series). At the University of Hawaii's test site in Pearl Harbor, significant differences were observed among the coatings in the rate of accumulation of fouling. The control coating failed rapidly; after 180-220 d immersion a community dominated by molluscs and sponges developed that persisted for the remainder of the experiment. Fouling of the GE and Dow Corning silicone coatings was slower, but eventually reached a similar community structure and coverage as the control coatings. The Intersleek coating remained lightly fouled throughout the experiment. Spatial variation in the structure of the community fouling the coatings was observed, but not in the extent of fouling. The rate of accumulation of fouling reflected differences among the coatings in adhesion of the tubeworm Hydroides elegans. The surface properties of these coatings may have affected the rate of fouling and the structure of the fouling community through their influence on larval settlement and subsequent interactions with other residents, predators, and the physical environment.
Spatially resolved measurements of two-dimensional turbulent structures in DIII-D plasmas
Zemedkun, Samuel E.; Che, S.; Chen, Y.; ...
2015-12-21
Here, two-dimensional observations of spatially-coherent electron temperature fluctuations at drift wave scales (k ~1 cm -1) have been made using the electron cyclotron emission imaging (ECEI) diagnostic on the DIII-D tokamak. These measurements enable the extraction of spectral properties, including poloidal dispersion relations. Temperature fluctuation levels are found to be ˜ T e/< T e > = 1.2%, and the phase velocity of the fluctuations is found to be constant across frequencies, consistent with modes having real frequencies low compared to the rotation-induced Doppler shifts. Comparisons with radially global linear gyrokinetic simulations suggest that the observed modes may be trappedmore » electron modes (TEM).« less
A planktonic diatom displays genetic structure over small spatial scales.
Sefbom, Josefin; Kremp, Anke; Rengefors, Karin; Jonsson, Per R; Sjöqvist, Conny; Godhe, Anna
2018-04-03
Marine planktonic microalgae have potentially global dispersal, yet reduced gene flow has been confirmed repeatedly for several species. Over larger distances (>200 km) geographic isolation and restricted oceanographic connectivity have been recognized as instrumental in driving population divergence. Here we investigated whether similar patterns, that is, structured populations governed by geographic isolation and/or oceanographic connectivity, can be observed at smaller (6-152 km) geographic scales. To test this we established 425 clonal cultures of the planktonic diatom Skeletonema marinoi collected from 11 locations in the Archipelago Sea (northern Baltic Sea). The region is characterized by a complex topography, entailing several mixing regions of which four were included in the sampling area. Using eight microsatellite markers and conventional F-statistics, significant genetic differentiation was observed between several sites. Moreover, Bayesian cluster analysis revealed the co-occurrence of two genetic groups spread throughout the area. However, geographic isolation and oceanographic connectivity could not explain the genetic patterns observed. Our data reveal hierarchical genetic structuring whereby despite high dispersal potential, significantly diverged populations have developed over small spatial scales. Our results suggest that biological characteristics and historical events may be more important in generating barriers to gene flow than physical barriers at small spatial scales. © 2018 Society for Applied Microbiology and John Wiley & Sons Ltd.
Spatial models reveal the microclimatic buffering capacity of old-growth forests
Frey, Sarah J. K.; Hadley, Adam S.; Johnson, Sherri L.; Schulze, Mark; Jones, Julia A.; Betts, Matthew G.
2016-01-01
Climate change is predicted to cause widespread declines in biodiversity, but these predictions are derived from coarse-resolution climate models applied at global scales. Such models lack the capacity to incorporate microclimate variability, which is critical to biodiversity microrefugia. In forested montane regions, microclimate is thought to be influenced by combined effects of elevation, microtopography, and vegetation, but their relative effects at fine spatial scales are poorly known. We used boosted regression trees to model the spatial distribution of fine-scale, under-canopy air temperatures in mountainous terrain. Spatial models predicted observed independent test data well (r = 0.87). As expected, elevation strongly predicted temperatures, but vegetation and microtopography also exerted critical effects. Old-growth vegetation characteristics, measured using LiDAR (light detection and ranging), appeared to have an insulating effect; maximum spring monthly temperatures decreased by 2.5°C across the observed gradient in old-growth structure. These cooling effects across a gradient in forest structure are of similar magnitude to 50-year forecasts of the Intergovernmental Panel on Climate Change and therefore have the potential to mitigate climate warming at local scales. Management strategies to conserve old-growth characteristics and to curb current rates of primary forest loss could maintain microrefugia, enhancing biodiversity persistence in mountainous systems under climate warming. PMID:27152339
Spatial models reveal the microclimatic buffering capacity of old-growth forests.
Frey, Sarah J K; Hadley, Adam S; Johnson, Sherri L; Schulze, Mark; Jones, Julia A; Betts, Matthew G
2016-04-01
Climate change is predicted to cause widespread declines in biodiversity, but these predictions are derived from coarse-resolution climate models applied at global scales. Such models lack the capacity to incorporate microclimate variability, which is critical to biodiversity microrefugia. In forested montane regions, microclimate is thought to be influenced by combined effects of elevation, microtopography, and vegetation, but their relative effects at fine spatial scales are poorly known. We used boosted regression trees to model the spatial distribution of fine-scale, under-canopy air temperatures in mountainous terrain. Spatial models predicted observed independent test data well (r = 0.87). As expected, elevation strongly predicted temperatures, but vegetation and microtopography also exerted critical effects. Old-growth vegetation characteristics, measured using LiDAR (light detection and ranging), appeared to have an insulating effect; maximum spring monthly temperatures decreased by 2.5°C across the observed gradient in old-growth structure. These cooling effects across a gradient in forest structure are of similar magnitude to 50-year forecasts of the Intergovernmental Panel on Climate Change and therefore have the potential to mitigate climate warming at local scales. Management strategies to conserve old-growth characteristics and to curb current rates of primary forest loss could maintain microrefugia, enhancing biodiversity persistence in mountainous systems under climate warming.
Global-Scale Structure of the Eelgrass Microbiome.
Fahimipour, Ashkaan K; Kardish, Melissa R; Lang, Jenna M; Green, Jessica L; Eisen, Jonathan A; Stachowicz, John J
2017-06-15
Plant-associated microorganisms are essential for their hosts' survival and performance. Yet, most plant microbiome studies to date have focused on terrestrial species sampled across relatively small spatial scales. Here, we report the results of a global-scale analysis of microbial communities associated with leaf and root surfaces of the marine eelgrass Zostera marina throughout its range in the Northern Hemisphere. By contrasting host microbiomes with those of surrounding seawater and sediment, we uncovered the structure, composition, and variability of microbial communities associated with eelgrass. We also investigated hypotheses about the assembly of the eelgrass microbiome using a metabolic modeling approach. Our results reveal leaf communities displaying high variability and spatial turnover that mirror their adjacent coastal seawater microbiomes. By contrast, roots showed relatively low compositional turnover and were distinct from surrounding sediment communities, a result driven by the enrichment of predicted sulfur-oxidizing bacterial taxa on root surfaces. Predictions from metabolic modeling of enriched taxa were consistent with a habitat-filtering community assembly mechanism whereby similarity in resource use drives taxonomic cooccurrence patterns on belowground, but not aboveground, host tissues. Our work provides evidence for a core eelgrass root microbiome with putative functional roles and highlights potentially disparate processes influencing microbial community assembly on different plant compartments. IMPORTANCE Plants depend critically on their associated microbiome, yet the structure of microbial communities found on marine plants remains poorly understood in comparison to that for terrestrial species. Seagrasses are the only flowering plants that live entirely in marine environments. The return of terrestrial seagrass ancestors to oceans is among the most extreme habitat shifts documented in plants, making them an ideal testbed for the study of microbial symbioses with plants that experience relatively harsh abiotic conditions. In this study, we report the results of a global sampling effort to extensively characterize the structure of microbial communities associated with the widespread seagrass species Zostera marina , or eelgrass, across its geographic range. Our results reveal major differences in the structure and composition of above- versus belowground microbial communities on eelgrass surfaces, as well as their relationships with the environment and host. Copyright © 2017 Fahimipour et al.
NASA Astrophysics Data System (ADS)
Mauzerall, D. L.; Naik, V.; Horowitz, L. W.; Schwarzkopf, D.; Ramaswamy, V.; Oppenheimer, M.
2005-05-01
Carbon dioxide emissions from fossil-fuel consumption are presented for the five Asian countries that are among the global leaders in anthropogenic carbon emissions: China (13% of global total), Japan (5% of global total), India (5% of global total), South Korea (2% of global total), and Indonesia (1% of global total). Together, these five countries represent over a quarter of the world's fossil-fuel based carbon emissions. Moreover, these countries are rapidly developing and energy demand has grown dramatically in the last two decades. A method is developed to estimate the spatial and seasonal flux of fossil-fuel consumption, thereby greatly improving the temporal and spatial resolution of anthropogenic carbon dioxide emissions. Currently, only national annual data for anthropogenic carbon emissions are available, and as such, no understanding of seasonal or sub-national patterns of emissions are possible. This methodology employs fuel distribution data from representative sectors of the fossil-fuel market to determine the temporal and spatial patterns of fuel consumption. These patterns of fuel consumption are then converted to patterns of carbon emissions. The annual total emissions estimates produced by this method are consistent to those maintained by the United Nations. Improved estimates of temporal and spatial resolution of the human based carbon emissions allows for better projections about future energy demands, carbon emissions, and ultimately the global carbon cycle.
Alexander, Peter; Rabin, Sam; Anthoni, Peter; Henry, Roslyn; Pugh, Thomas A M; Rounsevell, Mark D A; Arneth, Almut
2018-02-27
Land use contributes to environmental change, but is also influenced by such changes. Climate and atmospheric carbon dioxide (CO 2 ) levels' changes alter agricultural crop productivity, plant water requirements and irrigation water availability. The global food system needs to respond and adapt to these changes, for example, by altering agricultural practices, including the crop types or intensity of management, or shifting cultivated areas within and between countries. As impacts and associated adaptation responses are spatially specific, understanding the land use adaptation to environmental changes requires crop productivity representations that capture spatial variations. The impact of variation in management practices, including fertiliser and irrigation rates, also needs to be considered. To date, models of global land use have selected agricultural expansion or intensification levels using relatively aggregate spatial representations, typically at a regional level, that are not able to characterise the details of these spatially differentiated responses. Here, we show results from a novel global modelling approach using more detailed biophysically derived yield responses to inputs with greater spatial specificity than previously possible. The approach couples a dynamic global vegetative model (LPJ-GUESS) with a new land use and food system model (PLUMv2), with results benchmarked against historical land use change from 1970. Land use outcomes to 2100 were explored, suggesting that increased intensity of climate forcing reduces the inputs required for food production, due to the fertilisation and enhanced water use efficiency effects of elevated atmospheric CO 2 concentrations, but requiring substantial shifts in the global and local patterns of production. The results suggest that adaptation in the global agriculture and food system has substantial capacity to diminish the negative impacts and gain greater benefits from positive outcomes of climate change. Consequently, agricultural expansion and intensification may be lower than found in previous studies where spatial details and processes consideration were more constrained. © 2018 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Yao, Wei; van Aardt, Jan; Messinger, David
2017-05-01
The Hyperspectral Infrared Imager (HyspIRI) mission aims to provide global imaging spectroscopy data to the benefit of especially ecosystem studies. The onboard spectrometer will collect radiance spectra from the visible to short wave infrared (VSWIR) regions (400-2500 nm). The mission calls for fine spectral resolution (10 nm band width) and as such will enable scientists to perform material characterization, species classification, and even sub-pixel mapping. However, the global coverage requirement results in a relatively low spatial resolution (GSD 30m), which restricts applications to objects of similar scales. We therefore have focused on the assessment of sub-pixel vegetation structure from spectroscopy data in past studies. In this study, we investigate the development or reconstruction of higher spatial resolution imaging spectroscopy data via fusion of multi-temporal data sets to address the drawbacks implicit in low spatial resolution imagery. The projected temporal resolution of the HyspIRI VSWIR instrument is 15 days, which implies that we have access to as many as six data sets for an area over the course of a growth season. Previous studies have shown that select vegetation structural parameters, e.g., leaf area index (LAI) and gross ecosystem production (GEP), are relatively constant in summer and winter for temperate forests; we therefore consider the data sets collected in summer to be from a similar, stable forest structure. The first step, prior to fusion, involves registration of the multi-temporal data. A data fusion algorithm then can be applied to the pre-processed data sets. The approach hinges on an algorithm that has been widely applied to fuse RGB images. Ideally, if we have four images of a scene which all meet the following requirements - i) they are captured with the same camera configurations; ii) the pixel size of each image is x; and iii) at least r2 images are aligned on a grid of x/r - then a high-resolution image, with a pixel size of x/r, can be reconstructed from the multi-temporal set. The algorithm was applied to data from NASA's classic Airborne Visible and Infrared Imaging Spectrometer (AVIRIS-C; GSD 18m), collected between 2013-2015 (summer and fall) over our study area (NEON's Southwest Pacific Domain; Fresno, CA) to generate higher spatial resolution imagery (GSD 9m). The reconstructed data set was validated via comparison to NEON's imaging spectrometer (NIS) data (GSD 1m). The results showed that algorithm worked well with the AVIRIS-C data and could be applied to the HyspIRI data.
Lessons for the Global Spatial Data Infrastructure : international case study analysis
DOT National Transportation Integrated Search
2002-01-01
This report presents a RAND analysis of international collaboration for the Global Spatial Data Infrastructure (GSDI). Ten in-depth international and regional collaboration case studies were conducted to assess lessons learned for GSDI development an...
Darling, John A; Folino-Rorem, Nadine C
2009-12-01
Discerning patterns of post-establishment spread by invasive species is critically important for the design of effective management strategies and the development of appropriate theoretical models predicting spatial expansion of introduced populations. The globally invasive colonial hydrozoan Cordylophora produces propagules both sexually and vegetatively and is associated with multiple potential dispersal mechanisms, making it a promising system to investigate complex patterns of population structure generated throughout the course of rapid range expansion. Here, we explore genetic patterns associated with the spread of this taxon within the North American Great Lakes basin. We collected intensively from eight harbours in the Chicago area in order to conduct detailed investigation of local population expansion. In addition, we collected from Lakes Michigan, Erie, and Ontario, as well as Lake Cayuga in the Finger Lakes of upstate New York in order to assess genetic structure on a regional scale. Based on data from eight highly polymorphic microsatellite loci we examined the spatial extent of clonal genotypes, assessed levels of neutral genetic diversity, and explored patterns of migration and dispersal at multiple spatial scales through assessment of population level genetic differentiation (pairwise F(ST) and factorial correspondence analysis), Bayesian inference of population structure, and assignment tests on individual genotypes. Results of these analyses indicate that Cordylophora populations in this region spread predominantly through sexually produced propagules, and that while limited natural larval dispersal can drive expansion locally, regional expansion likely relies on anthropogenic dispersal vectors.
NASA Technical Reports Server (NTRS)
Roth, Don J.; Deguire, Mark R.; Dolhert, Leonard E.
1991-01-01
Ultrasonic velocity measurement techniques were used to evaluate the effects of oxidation and reduction on the elastic properties, global microstructure and oxygen content of the YBa2Cu3O(7-x) ceramic superconductor for samples ranging from 70 to 90 pct. of theoretical density. Bulk density, velocity, and elastic modulus generally increased with increasing oxygen content upon oxidation, and this behavior was reversible. Velocity image patterns were similar after oxidation and reduction treatments for a 90 pct. dense sample, although the velocity value at any given point on the sample was changed following the treatments. The unchanging pattern correlated with destructive measurements showing that the spatial pore distribution (fraction and size) was not measurably altered after the treatments. Changes in superconducting behavior, crystal structure, and grain structure were observed consistent with changes in oxygen content.
Spatially explicit modeling of particulate nutrient flux in Large global rivers
NASA Astrophysics Data System (ADS)
Cohen, S.; Kettner, A.; Mayorga, E.; Harrison, J. A.
2017-12-01
Water, sediment, nutrient and carbon fluxes along river networks have undergone considerable alterations in response to anthropogenic and climatic changes, with significant consequences to infrastructure, agriculture, water security, ecology and geomorphology worldwide. However, in a global setting, these changes in fluvial fluxes and their spatial and temporal characteristics are poorly constrained, due to the limited availability of continuous and long-term observations. We present results from a new global-scale particulate modeling framework (WBMsedNEWS) that combines the Global NEWS watershed nutrient export model with the spatially distributed WBMsed water and sediment model. We compare the model predictions against multiple observational datasets. The results indicate that the model is able to accurately predict particulate nutrient (Nitrogen, Phosphorus and Organic Carbon) fluxes on an annual time scale. Analysis of intra-basin nutrient dynamics and fluxes to global oceans is presented.
Electronic structure of polycrystalline CVD-graphene revealed by Nano-ARPES
NASA Astrophysics Data System (ADS)
Chen, Chaoyu; Avila, José; Asensio, Maria C.
2017-06-01
The ability to explore electronic structure and their role in determining material’s macroscopic behaviour is essential to explain and engineer functions of material and device. Since its debut in 2004, graphene has attracted global research interest due to its unique properties. Chemical vapor deposition (CVD) has emerged as an important method for the massive preparation and production of graphene for various applications. Here by employing angle-resolved photoemission spectroscopy with nanoscale spatial resolution ˜ 100 nm (Nano-ARPES), we describe the approach to measure the electronic structure of polycrystalline graphene on copper foils, demonstrating the power of Nano-ARPES to detect the electronic structure of microscopic single crystalline domains, being fully compatible with conventional ARPES. Similar analysis could be employed to other microscopic materials
Spatial Pattern of Standing Timber Value across the Brazilian Amazon
Ahmed, Sadia E.; Ewers, Robert M.
2012-01-01
The Amazon is a globally important system, providing a host of ecosystem services from climate regulation to food sources. It is also home to a quarter of all global diversity. Large swathes of forest are removed each year, and many models have attempted to predict the spatial patterns of this forest loss. The spatial patterns of deforestation are determined largely by the patterns of roads that open access to frontier areas and expansion of the road network in the Amazon is largely determined by profit seeking logging activities. Here we present predictions for the spatial distribution of standing value of timber across the Amazon. We show that the patterns of timber value reflect large-scale ecological gradients, determining the spatial distribution of functional traits of trees which are, in turn, correlated with timber values. We expect that understanding the spatial patterns of timber value across the Amazon will aid predictions of logging movements and thus predictions of potential future road developments. These predictions in turn will be of great use in estimating the spatial patterns of deforestation in this globally important biome. PMID:22590520
Lineations and structural mapping of Io's paterae and mountains: Implications for internal stresses
NASA Astrophysics Data System (ADS)
Ahern, Alexandra A.; Radebaugh, Jani; Christiansen, Eric H.; Harris, Ronald A.; Tass, E. Shannon
2017-11-01
The mountains of Jupiter's volcanic moon Io are tall, steep, and tectonic in origin, yet their precise modes of formation and their associations with volcanic paterae are not fully understood. Global spatial statistics of paterae and mountains and their associated lineations reveal that both types of features are more common at low latitudes and tectonic lineations have preferred orientations, whereas straight patera margins are randomly oriented. Additionally, structurally controlled lineations tend to cluster with each other, and in areas of high concentrations these tectonic lineations are shorter in length than their global average. These results indicate that global-scale (rather than local or regional) processes are involved in forming Io's tectonic structures, but that the diversity of mountain characteristics and the collapse of paterae adjacent to mountain complexes are more locally controlled. Regional structural mapping of the Hi'iaka, Shamshu, Tohil, and Zal regions reveals Io's mountains reside in large, fault-bounded crustal blocks that have undergone modification through local responses of subsurface structures to variable stresses. Strike-slip motion along reactivated faults led to the formation of transpressional and transtensional features, creating tall peaks and low basins, some of which are now occupied by paterae. We propose Io's mountains result from a combination of crustal stresses involving global and local-scale processes, dominantly volcanic loading and tidal flexing. These stresses sometimes are oriented at oblique angles to pre-existing faults, reactivating them as reverse, normal, or strike-slip faults, modifying the large, cohesive crustal blocks that many of Io's mountains reside in. Further degradation of mountains and burial of faults has occurred from extensive volcanism, mass wasting, gravitational collapse, and erosion by sublimation and sapping of sulfur-rich layers. This model of fault-bounded blocks being modified by global stresses and local structural response accounts for the variation and patterns of mountain sizes, shapes, and orientations, along with their isolation and interactions with other features. It also provides a context for the operation and extent of global and regional stresses in shaping Io's surface.
Zhang, Ling Yu; Liu, Zhao Gang
2017-12-01
Based on the data collected from 108 permanent plots of the forest resources survey in Maoershan Experimental Forest Farm during 2004-2016, this study investigated the spatial distribution of recruitment trees in natural secondary forest by global Poisson regression and geographically weighted Poisson regression (GWPR) with four bandwidths of 2.5, 5, 10 and 15 km. The simulation effects of the 5 regressions and the factors influencing the recruitment trees in stands were analyzed, a description was given to the spatial autocorrelation of the regression residuals on global and local levels using Moran's I. The results showed that the spatial distribution of the number of natural secondary forest recruitment was significantly influenced by stands and topographic factors, especially average DBH. The GWPR model with small scale (2.5 km) had high accuracy of model fitting, a large range of model parameter estimates was generated, and the localized spatial distribution effect of the model parameters was obtained. The GWPR model at small scale (2.5 and 5 km) had produced a small range of model residuals, and the stability of the model was improved. The global spatial auto-correlation of the GWPR model residual at the small scale (2.5 km) was the lowe-st, and the local spatial auto-correlation was significantly reduced, in which an ideal spatial distribution pattern of small clusters with different observations was formed. The local model at small scale (2.5 km) was much better than the global model in the simulation effect on the spatial distribution of recruitment tree number.
Within-Host Evolution of Human Influenza Virus.
Xue, Katherine S; Moncla, Louise H; Bedford, Trevor; Bloom, Jesse D
2018-03-10
The rapid global evolution of influenza virus begins with mutations that arise de novo in individual infections, but little is known about how evolution occurs within hosts. We review recent progress in understanding how and why influenza viruses evolve within human hosts. Advances in deep sequencing make it possible to measure within-host genetic diversity in both acute and chronic influenza infections. Factors like antigenic selection, antiviral treatment, tissue specificity, spatial structure, and multiplicity of infection may affect how influenza viruses evolve within human hosts. Studies of within-host evolution can contribute to our understanding of the evolutionary and epidemiological factors that shape influenza virus's global evolution. Copyright © 2018 Elsevier Ltd. All rights reserved.
Mapping Foliar Traits Across Biomes Using Imaging Spectroscopy: A Synthesis
NASA Astrophysics Data System (ADS)
Townsend, P. A.; Singh, A.; Wang, Z.
2016-12-01
One of the great promises of imaging spectroscopy - also known as hyperspectral remote sensing - is the ability to map the spatial variation in foliar functional traits, such as nitrogen concentration, pigments, leaf structure, photosynthetic capacity and secondary biochemistry, that drive terrestrial ecosystem processes. A remote-sensing approach enables characterization of within- and between-biome variations that may be crucial to understanding ecosystem responses to pests, pathogens and environmental change. We provide a synthesis of the foliar traits that can be mapped from imaging spectroscopy, as well as an overview of both the major applications of trait maps derived from hyperspectral imagery and current gaps in our knowledge and capacity. Specifically, we make the case that a global imaging spectroscopy mission will provide unique and urgent measurements necessary to understand the response of agricultural and natural systems to rapid global changes. Finally, we present a quantitative framework to utilize imaging spectroscopy to characterize spatial and temporal variation in foliar traits within and between biomes. From this we can infer the dynamics of vegetation function across ecosystems, especially in transition zones and environmentally sensitive systems. Eventual launch of a global imaging spectroscopy mission will enable collection of narrowband VSWIR measurements that will help close major gaps in our understanding of biogeochemical cycles and improve representation of vegetated biomes in Earth system process models.
NASA Astrophysics Data System (ADS)
Maksov, Artem; Ziatdinov, Maxim; Li, Li; Sefat, Athena; Maksymovych, Petro; Kalinin, Sergei
Crystalline matter on the nanoscale level often exhibits strongly inhomogeneous structural and electronic orders, which have a profound effect on macroscopic properties. This may be caused by subtle interplay between chemical disorder, strain, magnetic, and structural order parameters. We present a novel approach based on combination of high resolution scanning tunneling microscopy/spectroscopy (STM/S) and deep data style analysis for automatic separation, extraction, and correlation of structural and electronic behavior which might lead us to uncovering the underlying sources of inhomogeneity in in iron-based family of superconductors (FeSe, BaFe2As2) . We identify STS spectral features using physically robust Bayesian linear unmixing, and show their direct relevance to the fundamental physical properties of the system, including electronic states associated with individual defects and impurities. We collect structural data from individual unit cells on the crystalline lattice, and calculate both global and local indicators of spatial correlation with electronic features, demonstrating, for the first time, a direct quantifiable connection between observed structural order parameters extracted from the STM data and electronic order parameters identified within the STS data. This research was sponsored by the Division of Materials Sciences and Engineering, Office of Science, Basic Energy Sciences, US DOE.
The BMS4 algebra at spatial infinity
NASA Astrophysics Data System (ADS)
Troessaert, Cédric
2018-04-01
We show how a global BMS4 algebra appears as part of the asymptotic symmetry algebra at spatial infinity. Using linearised theory, we then show that this global BMS4 algebra is the one introduced by Strominger as a symmetry of the S-matrix.
The devil is in the detail: brain dynamics in preparation for a global-local task.
Leaver, Echo E; Low, Kathy A; DiVacri, Assunta; Merla, Arcangelo; Fabiani, Monica; Gratton, Gabriele
2015-08-01
When analyzing visual scenes, it is sometimes important to determine the relevant "grain" size. Attention control mechanisms may help direct our processing to the intended grain size. Here we used the event-related optical signal, a method possessing high temporal and spatial resolution, to examine the involvement of brain structures within the dorsal attention network (DAN) and the visual processing network (VPN) in preparation for the appropriate level of analysis. Behavioral data indicate that the small features of a hierarchical stimulus (local condition) are more difficult to process than the large features (global condition). Consistent with this finding, cues predicting a local trial were associated with greater DAN activation. This activity was bilateral but more pronounced in the left hemisphere, where it showed a frontal-to-parietal progression over time. Furthermore, the amount of DAN activation, especially in the left hemisphere and in parietal regions, was predictive of subsequent performance. Although local cues elicited left-lateralized DAN activity, no preponderantly right activity was observed for global cues; however, the data indicated an interaction between level of analysis (local vs. global) and hemisphere in VPN. They further showed that local processing involves structures in the ventral VPN, whereas global processing involves structures in the dorsal VPN. These results indicate that in our study preparation for analyzing different size features is an asymmetric process, in which greater preparation is required to focus on small rather than large features, perhaps because of their lesser salience. This preparation involves the same DAN used for other attention control operations.
Functional Nonlinear Mixed Effects Models For Longitudinal Image Data
Luo, Xinchao; Zhu, Lixing; Kong, Linglong; Zhu, Hongtu
2015-01-01
Motivated by studying large-scale longitudinal image data, we propose a novel functional nonlinear mixed effects modeling (FN-MEM) framework to model the nonlinear spatial-temporal growth patterns of brain structure and function and their association with covariates of interest (e.g., time or diagnostic status). Our FNMEM explicitly quantifies a random nonlinear association map of individual trajectories. We develop an efficient estimation method to estimate the nonlinear growth function and the covariance operator of the spatial-temporal process. We propose a global test and a simultaneous confidence band for some specific growth patterns. We conduct Monte Carlo simulation to examine the finite-sample performance of the proposed procedures. We apply FNMEM to investigate the spatial-temporal dynamics of white-matter fiber skeletons in a national database for autism research. Our FNMEM may provide a valuable tool for charting the developmental trajectories of various neuropsychiatric and neurodegenerative disorders. PMID:26213453
Castillo, Edward; Castillo, Richard; Fuentes, David; Guerrero, Thomas
2014-01-01
Purpose: Block matching is a well-known strategy for estimating corresponding voxel locations between a pair of images according to an image similarity metric. Though robust to issues such as image noise and large magnitude voxel displacements, the estimated point matches are not guaranteed to be spatially accurate. However, the underlying optimization problem solved by the block matching procedure is similar in structure to the class of optimization problem associated with B-spline based registration methods. By exploiting this relationship, the authors derive a numerical method for computing a global minimizer to a constrained B-spline registration problem that incorporates the robustness of block matching with the global smoothness properties inherent to B-spline parameterization. Methods: The method reformulates the traditional B-spline registration problem as a basis pursuit problem describing the minimal l1-perturbation to block match pairs required to produce a B-spline fitting error within a given tolerance. The sparsity pattern of the optimal perturbation then defines a voxel point cloud subset on which the B-spline fit is a global minimizer to a constrained variant of the B-spline registration problem. As opposed to traditional B-spline algorithms, the optimization step involving the actual image data is addressed by block matching. Results: The performance of the method is measured in terms of spatial accuracy using ten inhale/exhale thoracic CT image pairs (available for download at www.dir-lab.com) obtained from the COPDgene dataset and corresponding sets of expert-determined landmark point pairs. The results of the validation procedure demonstrate that the method can achieve a high spatial accuracy on a significantly complex image set. Conclusions: The proposed methodology is demonstrated to achieve a high spatial accuracy and is generalizable in that in can employ any displacement field parameterization described as a least squares fit to block match generated estimates. Thus, the framework allows for a wide range of image similarity block match metric and physical modeling combinations. PMID:24694135
Spatial Correlation Bias in Thermochronologically Derived Late Cenozoic Erosion Histories
NASA Astrophysics Data System (ADS)
Schildgen, T. F.; van Der Beek, P.; Sinclair, H. D.; Thiede, R. C.
2017-12-01
The potential link between erosion rates at the Earth's surface and changes in global climate has intrigued geoscientists for decades, as such a coupling has implications for the influence of silicate weathering and organic-carbon burial on climate, as well as the role of Quaternary glaciations on landscape evolution. A global increase in late-Cenozoic erosion rates in response to a cooling, more variable climate has been proposed based on a compilation of deposition rates in sedimentary basins worldwide. However, it has been argued that the stratigraphic record could show an apparent increase in rates toward the present due to a preservation bias linked to stochastic erosional events, depositional hiatuses, and varying measurement intervals. More recently, a global compilation of thermochronology data has been used to infer a nearly two-fold increase in erosion rates from mountainous landscapes over the late Cenozoic. It is contended that this result is free of the biases that affect sedimentary records. Here, we test this assumption and demonstrate that in addition to the bias resulting from the relative timescales over which thermochronological data are averaged, there is a bias associated with spatial variations in exhumation rates among points that are combined to derive exhumation histories. Whether one or multiple thermochronological systems are used to reconstruct an erosion history, there is always an apparent increase in rates toward the present when combining data that have not shared a common exhumation history (e.g., samples collected from different sides of an active tectonic boundary). Such unwarranted combinations commonly arise when inversions of thermochronological data are performed using an a priori scheme that combines data points according to an assumed spatial correlation structure. We find that in nearly all cases where such inversions have been performed, spatial gradients in erosion rates are converted into apparent temporal increases. On a global scale, currently available thermochronology data provide limited resolution concerning the impact of late Cenozoic climate change on erosion rates. These results, combined with previous analyses of bias in the sedimentary record, call into question the evidence presented to date for a worldwide increase in late Cenozoic erosion rates.
Whittaker, Kerry A; Rynearson, Tatiana A
2017-03-07
The ability for organisms to disperse throughout their environment is thought to strongly influence population structure and thus evolution of diversity within species. A decades-long debate surrounds processes that generate and support high microbial diversity, particularly in the ocean. The debate concerns whether diversification occurs primarily through geographic partitioning (where distance limits gene flow) or through environmental selection, and remains unresolved due to lack of empirical data. Here we show that gene flow in a diatom, an ecologically important eukaryotic microbe, is not limited by global-scale geographic distance. Instead, environmental and ecological selection likely play a more significant role than dispersal in generating and maintaining diversity. We detected significantly diverged populations ( F ST > 0.130) and discovered temporal genetic variability at a single site that was on par with spatial genetic variability observed over distances of 15,000 km. Relatedness among populations was decoupled from geographic distance across the global ocean and instead, correlated significantly with water temperature and whole-community chlorophyll a Correlations with temperature point to the importance of environmental selection in structuring populations. Correlations with whole-community chlorophyll a , a proxy for autotrophic biomass, suggest that ecological selection via interactions with other plankton may generate and maintain population genetic structure in marine microbes despite global-scale dispersal. Here, we provide empirical evidence for global gene flow in a marine eukaryotic microbe, suggesting that everything holds the potential to be everywhere, with environmental and ecological selection rather than geography or dispersal dictating the structure and evolution of diversity over space and time.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Shaoqing; Zhuang, Qianlai; Chen, Min
Current terrestrial ecosystem models are usually driven with global average annual atmospheric carbon dioxide (CO 2) concentration data at the global scale. However, high-precision CO 2 measurement from eddy flux towers showed that seasonal, spatial surface atmospheric CO 2 concentration differences were as large as 35 ppmv and the site-level tests indicated that the CO 2 variation exhibited different effects on plant photosynthesis. Here we used a process-based ecosystem model driven with two spatially and temporally explicit CO 2 data sets to analyze the atmospheric CO 2 fertilization effects on the global carbon dynamics of terrestrial ecosystems from 2003 tomore » 2010. Our results demonstrated that CO 2 seasonal variation had a negative effect on plant carbon assimilation, while CO2 spatial variation exhibited a positive impact. When both CO 2 seasonal and spatial effects were considered, global gross primary production and net ecosystem production were 1.7 Pg C•yr –1 and 0.08 Pg C•yr –1 higher than the simulation using uniformly distributed CO 2 data set and the difference was significant in tropical and temperate evergreen broadleaf forest regions. Moreover, this study suggests that the CO 2 observation network should be expanded so that the realistic CO 2 variation can be incorporated into the land surface models to adequately account for CO 2 fertilization effects on global terrestrial ecosystem carbon dynamics.« less
Estimation of Fractional Plant Lifeform Cover Using Landsat and Airborne LiDAR/hyperspectral Data
NASA Astrophysics Data System (ADS)
Parra, A. S.; Xu, Q.; Dilts, T.; Weisberg, P.; Greenberg, J. A.
2017-12-01
Land-cover change has generally been understood as the result of local, landscape or regional-scale processes with most studies focusing on case-study landscapes or smaller regions. However, as we observe similar types of land-cover change occurring across different biomes worldwide, it becomes clear that global-scale processes such as climate change and CO2 fertilization, in interaction with local influences, are underlying drivers in land-cover change patterns. Prior studies on global land-cover change may not have had a suitable spatial, temporal and thematic resolution for allowing the identification of such patterns. Furthermore, the lack of globally consistent spatial data products also constitutes a limiting factor in evaluating both proximate and ultimate causes of land-cover change. In this study, we derived a global model for broadleaf tree, needleleaf tree, shrub, herbaceous, and "other" fractional cover using Landsat imagery. Combined LiDAR/hyperspectral data sets were used for calibration and validation of the Landsat-derived products. Spatially explicit uncertainties were also created as part of the data products. Our results highlight the potential for large-scale studies that model local and global influences on land-cover transition types and rates at fine thematic, spatial, and temporal resolutions. These spatial data products are relevant for identifying patterns in land-cover change due to underlying global-scale processes and can provide valuable insights into climatic and land-use factors determining vegetation distributions.
Liu, Shaoqing; Zhuang, Qianlai; Chen, Min; ...
2016-07-25
Current terrestrial ecosystem models are usually driven with global average annual atmospheric carbon dioxide (CO 2) concentration data at the global scale. However, high-precision CO 2 measurement from eddy flux towers showed that seasonal, spatial surface atmospheric CO 2 concentration differences were as large as 35 ppmv and the site-level tests indicated that the CO 2 variation exhibited different effects on plant photosynthesis. Here we used a process-based ecosystem model driven with two spatially and temporally explicit CO 2 data sets to analyze the atmospheric CO 2 fertilization effects on the global carbon dynamics of terrestrial ecosystems from 2003 tomore » 2010. Our results demonstrated that CO 2 seasonal variation had a negative effect on plant carbon assimilation, while CO2 spatial variation exhibited a positive impact. When both CO 2 seasonal and spatial effects were considered, global gross primary production and net ecosystem production were 1.7 Pg C•yr –1 and 0.08 Pg C•yr –1 higher than the simulation using uniformly distributed CO 2 data set and the difference was significant in tropical and temperate evergreen broadleaf forest regions. Moreover, this study suggests that the CO 2 observation network should be expanded so that the realistic CO 2 variation can be incorporated into the land surface models to adequately account for CO 2 fertilization effects on global terrestrial ecosystem carbon dynamics.« less
The impact of half-a-degree Celsius upon the spatial pattern of future sea-level change.
NASA Astrophysics Data System (ADS)
Jackson, Luke
2017-04-01
It has been shown that the global thermal expansion of sea level and ocean dynamics are linearly related to global temperature change. On this basis one can estimate the difference in local sea-level change between a 1.5°C and 2.0°C world. The mitigation scenario RCP 2.6 shows an end-of-century global temperature range of 0.9 to 2.3°C (median 1.6°C). Additional sea-level components, such as mass changes in ice sheets, glaciers and land-water storage have unique spatial patterns that contribute to sea-level change and will be indirectly affected by global temperature change. We project local sea-level change for RCP 2.6 using sub-sets of models in the CMIP5 archive that follow different global temperature pathways. The method used to calculate local sea-level change is probabilistic and combines the normalised spatial patterns of sea-level components with global average projections of individual sea-level components.
Mapping wood density globally using remote sensing and climatological data
NASA Astrophysics Data System (ADS)
Moreno, A.; Camps-Valls, G.; Carvalhais, N.; Kattge, J.; Robinson, N.; Reichstein, M.; Allred, B. W.; Running, S. W.
2017-12-01
Wood density (WD) is defined as the oven-dry mass divided by fresh volume, varies between individuals, and describes the carbon investment per unit volume of stem. WD has been proven to be a key functional trait in carbon cycle research and correlates with numerous morphological, mechanical, physiological, and ecological properties. In spite of the utility and importance of this trait, there is a lack of an operational framework to spatialize plant WD measurements at a global scale. In this work, we present a consistent modular processing chain to derive global maps (500 m) of WD using modern machine learning techniques along with optical remote sensing data (MODIS/Landsat) and climate data using the Google Earth Engine platform. The developed approach uses a hierarchical Bayesian approach to fill in gaps in the plant measured WD data set to maximize its global representativeness. WD plant species are then aggregated to Plant Functional Types (PFT). The spatial abundance of PFT at 500 m spatial resolution (MODIS) is calculated using a high resolution (30 m) PFT map developed using Landsat data. Based on these PFT abundances, representative WD values are estimated for each MODIS pixel with nearby measured data. Finally, random forests are used to globally estimate WD from these MODIS pixels using remote sensing and climate. The validation and assessment of the applied methods indicate that the model explains more than 72% of the spatial variance of the calculated community aggregated WD estimates with virtually unbiased estimates and low RMSE (<15%). The maps thus offer new opportunities to study and analyze the global patterns of variation of WD at an unprecedented spatial coverage and spatial resolution.
Global inhibition and stimulus competition in the owl optic tectum
Mysore, Shreesh P.; Asadollahi, Ali; Knudsen, Eric I.
2010-01-01
Stimulus selection for gaze and spatial attention involves competition among stimuli across sensory modalities and across all of space. We demonstrate that such cross-modal, global competition takes place in the intermediate and deep layers of the optic tectum, a structure known to be involved in gaze control and attention. A variety of either visual or auditory stimuli located anywhere outside of a neuron's receptive field (RF) were shown to suppress or completely eliminate responses to a visual stimulus located inside the RF in nitrous oxide sedated owls. The essential mechanism underlying this stimulus competition is global, divisive inhibition. Unlike the effect of the classical inhibitory surround, which decreases with distance from the RF center and shapes neuronal responses to individual stimuli, global inhibition acts across the entirety of space and modulates responses primarily in the context of multiple stimuli. Whereas the source of this global inhibition is as yet unknown, our data indicate that different networks mediate the classical surround and global inhibition. We hypothesize that this global, cross-modal inhibition, which acts automatically in a bottom-up fashion even in sedated animals, is critical to the creation of a map of stimulus salience in the optic tectum. PMID:20130182
Ion spectral structures observed by the Van Allen Probes
NASA Astrophysics Data System (ADS)
Ferradas, C.; Zhang, J.; Spence, H. E.; Kistler, L. M.; Larsen, B.; Reeves, G. D.; Skoug, R. M.; Funsten, H. O.
2015-12-01
During the last decades several missions have recorded the presence of dynamic spectral features of energetic ions in the inner magnetosphere. Previous studies have reported single "nose-like" structures occurring alone and simultaneous nose-like structures (up to three). These ion structures are named after the characteristic shapes of energy bands or gaps in the energy-time spectrograms of in situ measured ion fluxes. They constitute the observational signatures of ion acceleration, transport, and loss in the global magnetosphere. The HOPE mass spectrometer onboard the Van Allen Probes measures energetic hydrogen, helium, and oxygen ions near the inner edge of the plasma sheet, where these ion structures are observed. We present a statistical study of nose-like structures, using 2-years measurements from the HOPE instrument. The results provide important details about the spatial distribution (dependence on geocentric distance), spectral features of the structures (differences among species), and geomagnetic conditions under which these structures occur.
Alexandrou, Anna Maria; Saarinen, Timo; Kujala, Jan; Salmelin, Riitta
2018-06-19
During natural speech perception, listeners must track the global speaking rate, that is, the overall rate of incoming linguistic information, as well as transient, local speaking rate variations occurring within the global speaking rate. Here, we address the hypothesis that this tracking mechanism is achieved through coupling of cortical signals to the amplitude envelope of the perceived acoustic speech signals. Cortical signals were recorded with magnetoencephalography (MEG) while participants perceived spontaneously produced speech stimuli at three global speaking rates (slow, normal/habitual, and fast). Inherently to spontaneously produced speech, these stimuli also featured local variations in speaking rate. The coupling between cortical and acoustic speech signals was evaluated using audio-MEG coherence. Modulations in audio-MEG coherence spatially differentiated between tracking of global speaking rate, highlighting the temporal cortex bilaterally and the right parietal cortex, and sensitivity to local speaking rate variations, emphasizing the left parietal cortex. Cortical tuning to the temporal structure of natural connected speech thus seems to require the joint contribution of both auditory and parietal regions. These findings suggest that cortical tuning to speech rhythm operates on two functionally distinct levels: one encoding the global rhythmic structure of speech and the other associated with online, rapidly evolving temporal predictions. Thus, it may be proposed that speech perception is shaped by evolutionary tuning, a preference for certain speaking rates, and predictive tuning, associated with cortical tracking of the constantly changing rate of linguistic information in a speech stream.
García-Baquero, Gonzalo; Caño, Lidia; Biurrun, Idoia; García-Mijangos, Itziar; Loidi, Javier; Herrera, Mercedes
2016-01-01
Alien species invasion represents a global threat to biodiversity and ecosystems. Explaining invasion patterns in terms of environmental constraints will help us to assess invasion risks and plan control strategies. We aim to identify plant invasion patterns in the Basque Country (Spain), and to determine the effects of climate and human pressure on that pattern. We modeled the regional distribution of 89 invasive plant species using two approaches. First, distance-based Moran’s eigenvector maps were used to partition variation in the invasive species richness, S, into spatial components at broad and fine scales; redundancy analysis was then used to explain those components on the basis of climate and human pressure descriptors. Second, we used generalized additive mixed modeling to fit species-specific responses to the same descriptors. Climate and human pressure descriptors have different effects on S at different spatial scales. Broad-scale spatially structured temperature and precipitation, and fine-scale spatially structured human population density and percentage of natural and semi-natural areas, explained altogether 38.7% of the total variance. The distribution of 84% of the individually tested species was related to either temperature, precipitation or both, and 68% was related to either population density or natural and semi-natural areas, displaying similar responses. The spatial pattern of the invasive species richness is strongly environmentally forced, mainly by climate factors. Since individual species responses were proved to be both similarly constrained in shape and explained variance by the same environmental factors, we conclude that the pattern of invasive species richness results from individual species’ environmental preferences. PMID:27741276
Veach, Victoria; Moilanen, Atte; Di Minin, Enrico
2017-01-01
Including threats in spatial conservation prioritization helps identify areas for conservation actions where biodiversity is at imminent risk of extinction. At the global level, an important limitation when identifying spatial priorities for conservation actions is the lack of information on the spatial distribution of threats. Here, we identify spatial conservation priorities under three prominent threats to biodiversity (residential and commercial development, agricultural expansion, and forest loss), which are primary drivers of habitat loss and threaten the persistence of the highest number of species in the International Union for the Conservation of Nature (IUCN) Red List, and for which spatial data is available. We first explore how global priority areas for the conservation of vertebrate (mammals, birds, and amphibians) species coded in the Red List as vulnerable to each threat differ spatially. We then identify spatial conservation priorities for all species vulnerable to all threats. Finally, we identify the potentially most threatened areas by overlapping the identified priority areas for conservation with maps for each threat. We repeat the same with four other well-known global conservation priority area schemes, namely Key Biodiversity Areas, Biodiversity Hotspots, the global Protected Area Network, and Wilderness Areas. We find that residential and commercial development directly threatens only about 4% of the global top 17% priority areas for species vulnerable under this threat. However, 50% of the high priority areas for species vulnerable to forest loss overlap with areas that have already experienced some forest loss. Agricultural expansion overlapped with ~20% of high priority areas. Biodiversity Hotspots had the greatest proportion of their total area under direct threat from all threats, while expansion of low intensity agriculture was found to pose an imminent threat to Wilderness Areas under future agricultural expansion. Our results identify areas where limited resources should be allocated to mitigate risks to vertebrate species from habitat loss.
Moilanen, Atte; Di Minin, Enrico
2017-01-01
Including threats in spatial conservation prioritization helps identify areas for conservation actions where biodiversity is at imminent risk of extinction. At the global level, an important limitation when identifying spatial priorities for conservation actions is the lack of information on the spatial distribution of threats. Here, we identify spatial conservation priorities under three prominent threats to biodiversity (residential and commercial development, agricultural expansion, and forest loss), which are primary drivers of habitat loss and threaten the persistence of the highest number of species in the International Union for the Conservation of Nature (IUCN) Red List, and for which spatial data is available. We first explore how global priority areas for the conservation of vertebrate (mammals, birds, and amphibians) species coded in the Red List as vulnerable to each threat differ spatially. We then identify spatial conservation priorities for all species vulnerable to all threats. Finally, we identify the potentially most threatened areas by overlapping the identified priority areas for conservation with maps for each threat. We repeat the same with four other well-known global conservation priority area schemes, namely Key Biodiversity Areas, Biodiversity Hotspots, the global Protected Area Network, and Wilderness Areas. We find that residential and commercial development directly threatens only about 4% of the global top 17% priority areas for species vulnerable under this threat. However, 50% of the high priority areas for species vulnerable to forest loss overlap with areas that have already experienced some forest loss. Agricultural expansion overlapped with ~20% of high priority areas. Biodiversity Hotspots had the greatest proportion of their total area under direct threat from all threats, while expansion of low intensity agriculture was found to pose an imminent threat to Wilderness Areas under future agricultural expansion. Our results identify areas where limited resources should be allocated to mitigate risks to vertebrate species from habitat loss. PMID:29182662
Wilson, Adam M; Jetz, Walter
2016-03-01
Cloud cover can influence numerous important ecological processes, including reproduction, growth, survival, and behavior, yet our assessment of its importance at the appropriate spatial scales has remained remarkably limited. If captured over a large extent yet at sufficiently fine spatial grain, cloud cover dynamics may provide key information for delineating a variety of habitat types and predicting species distributions. Here, we develop new near-global, fine-grain (≈1 km) monthly cloud frequencies from 15 y of twice-daily Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images that expose spatiotemporal cloud cover dynamics of previously undocumented global complexity. We demonstrate that cloud cover varies strongly in its geographic heterogeneity and that the direct, observation-based nature of cloud-derived metrics can improve predictions of habitats, ecosystem, and species distributions with reduced spatial autocorrelation compared to commonly used interpolated climate data. These findings support the fundamental role of remote sensing as an effective lens through which to understand and globally monitor the fine-grain spatial variability of key biodiversity and ecosystem properties.
Local to Global Scale Time Series Analysis of US Dryland Degradation Using Landsat, AVHRR, and MODIS
NASA Astrophysics Data System (ADS)
Washington-Allen, R. A.; Ramsey, R. D.; West, N. E.; Kulawardhana, W.; Reeves, M. C.; Mitchell, J. E.; Van Niel, T. G.
2011-12-01
Drylands cover 41% of the terrestrial land surface and annually generate $1 trillion in ecosystem goods and services for 38% of the global population, yet estimates of the global extent of Dryland degradation is uncertain with a range of 10 - 80%. It is currently understood that Drylands exhibit topological complexity including self-organization of parameters of different levels-of-organization, e.g., ecosystem and landscape parameters such as soil and vegetation pattern and structure, that gradually or discontinuously shift to multiple basins of attraction in response to herbivory, fire, and climatic drivers at multiple spatial and temporal scales. Our research has shown that at large geographic scales, contemporaneous time series of 10 to 20 years for response and driving variables across two or more spatial scales is required to replicate and differentiate between the impact of climate and land use activities such as commercial grazing. For example, the Pacific Decadal Oscillation (PDO) is a major driver of Dryland net primary productivity (NPP), biodiversity, and ecological resilience with a 10-year return interval, thus 20 years of data are required to replicate its impact. Degradation is defined here as a change in physiognomic composition contrary to management goals, a persistent reduction in vegetation response, e.g., NPP, accelerated soil erosion, a decline in soil quality, and changes in landscape configuration and structure that lead to a loss of ecosystem function. Freely available Landsat, Advanced Very High Resolution Radiometer (AVHRR) and Moderate Resolution Imaging Spectroradimeter (MODIS) archives of satellite imagery exist that provide local to global spatial coverage and time series between 1972 to the present from which proxies of land degradation can be derived. This paper presents time series assessments between 1972 and 2011 of US Dryland degradation including early detection of dynamic regime shifts in the Mojave and landscape pattern and erosion state changes in the Intermountain region in response to the "Great North American Drought" in 1988, PDO and El Niño Southern Oscillation (ENSO) and commercial grazing. Additionally, we will show the discoveries in the last 10-years that US Drylands are "greening" despite the severe Southwestern drought and that commercial livestock are a driver of this response with an annual appropriation of some 58% of NPP.
Duncan, Dustin T; Kawachi, Ichiro; Kum, Susan; Aldstadt, Jared; Piras, Gianfranco; Matthews, Stephen A; Arbia, Giuseppe; Castro, Marcia C; White, Kellee; Williams, David R
2014-04-01
The racial/ethnic and income composition of neighborhoods often influences local amenities, including the potential spatial distribution of trees, which are important for population health and community wellbeing, particularly in urban areas. This ecological study used spatial analytical methods to assess the relationship between neighborhood socio-demographic characteristics (i.e. minority racial/ethnic composition and poverty) and tree density at the census tact level in Boston, Massachusetts (US). We examined spatial autocorrelation with the Global Moran's I for all study variables and in the ordinary least squares (OLS) regression residuals as well as computed Spearman correlations non-adjusted and adjusted for spatial autocorrelation between socio-demographic characteristics and tree density. Next, we fit traditional regressions (i.e. OLS regression models) and spatial regressions (i.e. spatial simultaneous autoregressive models), as appropriate. We found significant positive spatial autocorrelation for all neighborhood socio-demographic characteristics (Global Moran's I range from 0.24 to 0.86, all P =0.001), for tree density (Global Moran's I =0.452, P =0.001), and in the OLS regression residuals (Global Moran's I range from 0.32 to 0.38, all P <0.001). Therefore, we fit the spatial simultaneous autoregressive models. There was a negative correlation between neighborhood percent non-Hispanic Black and tree density (r S =-0.19; conventional P -value=0.016; spatially adjusted P -value=0.299) as well as a negative correlation between predominantly non-Hispanic Black (over 60% Black) neighborhoods and tree density (r S =-0.18; conventional P -value=0.019; spatially adjusted P -value=0.180). While the conventional OLS regression model found a marginally significant inverse relationship between Black neighborhoods and tree density, we found no statistically significant relationship between neighborhood socio-demographic composition and tree density in the spatial regression models. Methodologically, our study suggests the need to take into account spatial autocorrelation as findings/conclusions can change when the spatial autocorrelation is ignored. Substantively, our findings suggest no need for policy intervention vis-à-vis trees in Boston, though we hasten to add that replication studies, and more nuanced data on tree quality, age and diversity are needed.
Zhang, Xian; Noah, Jack Adam; Hirsch, Joy
2016-01-01
Abstract. Global systemic effects not specific to a task can be prominent in functional near-infrared spectroscopy (fNIRS) signals and the separation of task-specific fNIRS signals and global nonspecific effects is challenging due to waveform correlations. We describe a principal component spatial filter algorithm for separation of the global and local effects. The effectiveness of the approach is demonstrated using fNIRS signals acquired during a right finger-thumb tapping task where the response patterns are well established. Both the temporal waveforms and the spatial pattern consistencies between oxyhemoglobin and deoxyhemoglobin signals are significantly improved, consistent with the basic physiological basis of fNIRS signals and the expected pattern of activity associated with the task. PMID:26866047
Recent Trends in Local-Scale Marine Biodiversity Reflect Community Structure and Human Impacts.
Elahi, Robin; O'Connor, Mary I; Byrnes, Jarrett E K; Dunic, Jillian; Eriksson, Britas Klemens; Hensel, Marc J S; Kearns, Patrick J
2015-07-20
The modern biodiversity crisis reflects global extinctions and local introductions. Human activities have dramatically altered rates and scales of processes that regulate biodiversity at local scales. Reconciling the threat of global biodiversity loss with recent evidence of stability at fine spatial scales is a major challenge and requires a nuanced approach to biodiversity change that integrates ecological understanding. With a new dataset of 471 diversity time series spanning from 1962 to 2015 from marine coastal ecosystems, we tested (1) whether biodiversity changed at local scales in recent decades, and (2) whether we can ignore ecological context (e.g., proximate human impacts, trophic level, spatial scale) and still make informative inferences regarding local change. We detected a predominant signal of increasing species richness in coastal systems since 1962 in our dataset, though net species loss was associated with localized effects of anthropogenic impacts. Our geographically extensive dataset is unlikely to be a random sample of marine coastal habitats; impacted sites (3% of our time series) were underrepresented relative to their global presence. These local-scale patterns do not contradict the prospect of accelerating global extinctions but are consistent with local species loss in areas with direct human impacts and increases in diversity due to invasions and range expansions in lower impact areas. Attempts to detect and understand local biodiversity trends are incomplete without information on local human activities and ecological context. Copyright © 2015 Elsevier Ltd. All rights reserved.
Global stability analysis of axisymmetric boundary layer over a circular cylinder
NASA Astrophysics Data System (ADS)
Bhoraniya, Ramesh; Vinod, Narayanan
2018-05-01
This paper presents a linear global stability analysis of the incompressible axisymmetric boundary layer on a circular cylinder. The base flow is parallel to the axis of the cylinder at inflow boundary. The pressure gradient is zero in the streamwise direction. The base flow velocity profile is fully non-parallel and non-similar in nature. The boundary layer grows continuously in the spatial directions. Linearized Navier-Stokes (LNS) equations are derived for the disturbance flow quantities in the cylindrical polar coordinates. The LNS equations along with homogeneous boundary conditions forms a generalized eigenvalues problem. Since the base flow is axisymmetric, the disturbances are periodic in azimuthal direction. Chebyshev spectral collocation method and Arnoldi's iterative algorithm is used for the solution of the general eigenvalues problem. The global temporal modes are computed for the range of Reynolds numbers and different azimuthal wave numbers. The largest imaginary part of the computed eigenmodes is negative, and hence, the flow is temporally stable. The spatial structure of the eigenmodes shows that the disturbance amplitudes grow in size and magnitude while they are moving towards downstream. The global modes of axisymmetric boundary layer are more stable than that of 2D flat-plate boundary layer at low Reynolds number. However, at higher Reynolds number they approach 2D flat-plate boundary layer. Thus, the damping effect of transverse curvature is significant at low Reynolds number. The wave-like nature of the disturbance amplitudes is found in the streamwise direction for the least stable eigenmodes.
2013-01-01
Background In stark contrast to the wealth of detail about C. elegans developmental biology and molecular genetics, biologists lack basic data for understanding the abundance and distribution of Caenorhabditis species in natural areas that are unperturbed by human influence. Methods Here we report the analysis of dense sampling from a small, remote site in the Amazonian rain forest of the Nouragues Natural Reserve in French Guiana. Results Sampling of rotting fruits and flowers revealed proliferating populations of Caenorhabditis, with up to three different species co-occurring within a single substrate sample, indicating remarkable overlap of local microhabitats. We isolated six species, representing the highest local species richness for Caenorhabditis encountered to date, including both tropically cosmopolitan and geographically restricted species not previously isolated elsewhere. We also documented the structure of within-species molecular diversity at multiple spatial scales, focusing on 57 C. briggsae isolates from French Guiana. Two distinct genetic subgroups co-occur even within a single fruit. However, the structure of C. briggsae population genetic diversity in French Guiana does not result from strong local patterning but instead presents a microcosm of global patterns of differentiation. We further integrate our observations with new data from nearly 50 additional recently collected C. briggsae isolates from both tropical and temperate regions of the world to re-evaluate local and global patterns of intraspecific diversity, providing the most comprehensive analysis to date for C. briggsae population structure across multiple spatial scales. Conclusions The abundance and species richness of Caenorhabditis nematodes is high in a Neotropical rainforest habitat that is subject to minimal human interference. Microhabitat preferences overlap for different local species, although global distributions include both cosmopolitan and geographically restricted groups. Local samples for the cosmopolitan C. briggsae mirror its pan-tropical patterns of intraspecific polymorphism. It remains an important challenge to decipher what drives Caenorhabditis distributions and diversity within and between species. PMID:23311925
Development Considerations for the ICESat-2 ATL18 Terrain and Canopy Global Gridded Product
NASA Astrophysics Data System (ADS)
Pitts, K. L.; Neuenschwander, A. L.
2016-12-01
The ICESat-2 mission, expected to launch in late 2017 or early 2018, will provide estimates of terrain and canopy heights along the satellite ground track which will provide a significant benefit to society through a variety of applications ranging from improved global digital terrain models to mapping the distribution of above ground vegetation structure. Shortly after launch of ICESat-2, the Global Ecosystem Dynamics Investigation (GEDI) mission will be placed on the International Space Station (ISS) and will also derive terrain and canopy heights using laser altimetry for latitudes covered by the ISS. NASA's GEDI mission is designed to capture forest structure in densely covered regions over a period of 12-18 months. This study will present the factors required to produce a global gridded product that fuses information from both ICESat-2 and GEDI. The gridded values from ICESat-2 will be calculated from the along-track geodetic measurements of the terrain and relative canopy heights (ATL08), but considerations must be made on how best to combine ICESat-2 terrain and canopy height estimates with GEDI terrain and canopy height estimates. In particular, factors such as phenology, spatial and temporal resolution, surface interpolation methods, and error propagation are presented.
Thompson, E.M.; Wald, D.J.
2012-01-01
Despite obvious limitations as a proxy for site amplification, the use of time-averaged shear-wave velocity over the top 30 m (VS30) remains widely practiced, most notably through its use as an explanatory variable in ground motion prediction equations (and thus hazard maps and ShakeMaps, among other applications). As such, we are developing an improved strategy for producing VS30 maps given the common observational constraints. Using the abundant VS30 measurements in Taiwan, we compare alternative mapping methods that combine topographic slope, surface geology, and spatial correlation structure. The different VS30 mapping algorithms are distinguished by the way that slope and geology are combined to define a spatial model of VS30. We consider the globally applicable slope-only model as a baseline to which we compare two methods of combining both slope and geology. For both hybrid approaches, we model spatial correlation structure of the residuals using the kriging-with-a-trend technique, which brings the map into closer agreement with the observations. Cross validation indicates that we can reduce the uncertainty of the VS30 map by up to 16% relative to the slope-only approach.
Ephemerality of discrete methane vents in lake sediments
Scandella, Benjamin P.; Pillsbury, Liam; Weber, Thomas; Ruppel, Carolyn D.; Hemond, Harold F.; Juanes, Ruben
2016-01-01
Methane is a potent greenhouse gas whose emission from sediments in inland waters and shallow oceans may both contribute to global warming and be exacerbated by it. The fraction of methane emitted by sediments that bypasses dissolution in the water column and reaches the atmosphere as bubbles depends on the mode and spatiotemporal characteristics of venting from the sediments. Earlier studies have concluded that hot spots—persistent, high-flux vents—dominate the regional ebullitive flux from submerged sediments. Here the spatial structure, persistence, and variability in the intensity of methane venting are analyzed using a high-resolution multibeam sonar record acquired at the bottom of a lake during multiple deployments over a 9 month period. We confirm that ebullition is strongly episodic, with distinct regimes of high flux and low flux largely controlled by changes in hydrostatic pressure. Our analysis shows that the spatial pattern of ebullition becomes homogeneous at the sonar's resolution over time scales of hours (for high-flux periods) or days (for low-flux periods), demonstrating that vents are ephemeral rather than persistent, and suggesting that long-term, lake-wide ebullition dynamics may be modeled without resolving the fine-scale spatial structure of venting.
Geo-located Twitter as proxy for global mobility patterns.
Hawelka, Bartosz; Sitko, Izabela; Beinat, Euro; Sobolevsky, Stanislav; Kazakopoulos, Pavlos; Ratti, Carlo
2014-05-27
Pervasive presence of location-sharing services made it possible for researchers to gain an unprecedented access to the direct records of human activity in space and time. This article analyses geo-located Twitter messages in order to uncover global patterns of human mobility. Based on a dataset of almost a billion tweets recorded in 2012, we estimate the volume of international travelers by country of residence. Mobility profiles of different nations were examined based on such characteristics as mobility rate, radius of gyration, diversity of destinations, and inflow-outflow balance. Temporal patterns disclose the universally valid seasons of increased international mobility and the particular character of international travels of different nations. Our analysis of the community structure of the Twitter mobility network reveals spatially cohesive regions that follow the regional division of the world. We validate our result using global tourism statistics and mobility models provided by other authors and argue that Twitter is exceptionally useful for understanding and quantifying global mobility patterns.
Global characteristics of zonal flows due to the effect of finite bandwidth in drift wave turbulence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Uzawa, K.; Li Jiquan; Kishimoto, Y.
2009-04-15
The spectral effect of the zonal flow (ZF) on its generation is investigated based on the Charney-Hasegawa-Mima turbulence model. It is found that the effect of finite ZF bandwidth qualitatively changes the characteristics of ZF instability. A spatially localized (namely, global) nonlinear ZF state with an enhanced, unique growth rate for all spectral components is created under a given turbulent fluctuation. It is identified that such state originates from the successive cross couplings among Fourier components of the ZF and turbulence spectra through the sideband modulation. Furthermore, it is observed that the growth rate of the global ZF is determinedmore » not only by the spectral distribution and amplitudes of turbulent pumps as usual, but also statistically by the turbulence structure, namely, their probabilistic initial phase factors. A ten-wave coupling model of the ZF modulation instability involving the essential effect of the ZF spectrum is developed to clarify the basic features of the global nonlinear ZF state.« less
Budde, Katharina B; González-Martínez, Santiago C; Navascués, Miguel; Burgarella, Concetta; Mosca, Elena; Lorenzo, Zaida; Zabal-Aguirre, Mario; Vendramin, Giovanni G; Verdú, Miguel; Pausas, Juli G; Heuertz, Myriam
2017-04-01
The recurrence of wildfires is predicted to increase due to global climate change, resulting in severe impacts on biodiversity and ecosystem functioning. Recurrent fires can drive plant adaptation and reduce genetic diversity; however, the underlying population genetic processes have not been studied in detail. In this study, the neutral and adaptive evolutionary effects of contrasting fire regimes were examined in the keystone tree species Pinus halepensis Mill. (Aleppo pine), a fire-adapted conifer. The genetic diversity, demographic history and spatial genetic structure were assessed at local (within-population) and regional scales for populations exposed to different crown fire frequencies. Eight natural P. halepensis stands were sampled in the east of the Iberian Peninsula, five of them in a region exposed to frequent crown fires (HiFi) and three of them in an adjacent region with a low frequency of crown fires (LoFi). Samples were genotyped at nine neutral simple sequence repeats (SSRs) and at 251 single nucleotide polymorphisms (SNPs) from coding regions, some of them potentially important for fire adaptation. Fire regime had no effects on genetic diversity or demographic history. Three high-differentiation outlier SNPs were identified between HiFi and LoFi stands, suggesting fire-related selection at the regional scale. At the local scale, fine-scale spatial genetic structure (SGS) was overall weak as expected for a wind-pollinated and wind-dispersed tree species. HiFi stands displayed a stronger SGS than LoFi stands at SNPs, which probably reflected the simultaneous post-fire recruitment of co-dispersed related seeds. SNPs with exceptionally strong SGS, a proxy for microenvironmental selection, were only reliably identified under the HiFi regime. An increasing fire frequency as predicted due to global change can promote increased SGS with stronger family structures and alter natural selection in P. halepensis and in plants with similar life history traits. © The Author 2017. Published by Oxford University Press on behalf of the Annals of Botany Company. All rights reserved. For Permissions, please email: journals.permissions@oup.com
Jaiswal, Astha; Godinez, William J; Eils, Roland; Lehmann, Maik Jorg; Rohr, Karl
2015-11-01
Automatic fluorescent particle tracking is an essential task to study the dynamics of a large number of biological structures at a sub-cellular level. We have developed a probabilistic particle tracking approach based on multi-scale detection and two-step multi-frame association. The multi-scale detection scheme allows coping with particles in close proximity. For finding associations, we have developed a two-step multi-frame algorithm, which is based on a temporally semiglobal formulation as well as spatially local and global optimization. In the first step, reliable associations are determined for each particle individually in local neighborhoods. In the second step, the global spatial information over multiple frames is exploited jointly to determine optimal associations. The multi-scale detection scheme and the multi-frame association finding algorithm have been combined with a probabilistic tracking approach based on the Kalman filter. We have successfully applied our probabilistic tracking approach to synthetic as well as real microscopy image sequences of virus particles and quantified the performance. We found that the proposed approach outperforms previous approaches.
Resonant electrodynamic heating of stellar coronal loops: An LRC circuit analogue
NASA Technical Reports Server (NTRS)
Ionson, J. A.
1980-01-01
The electrodynamic coupling of stellar coronal loops to underlying beta velocity fields. A rigorous analysis revealed that the physics can be represented by a simple yet equivalent LRC circuit analogue. This analogue points to the existence of global structure oscillations which resonantly excite internal field line oscillations at a spatial resonance within the coronal loop. Although the width of this spatial resonance, as well as the induced currents and coronal velocity field, explicitly depend upon viscosity and resistivity, the resonant form of the generalized electrodynamic heating function is virtually independent of irreversibilities. This is a classic feature of high quality resonators that are externally driven by a broad band source of spectral power. Applications to solar coronal loops result in remarkable agreement with observations.
Spatial cognition in autism spectrum disorders: superior, impaired, or just intact?
Edgin, Jamie O; Pennington, Bruce F
2005-12-01
The profile of spatial ability is of interest across autism spectrum disorders (ASD) because of reported spatial strengths in ASD and due to the recent association of Asperger's syndrome with Nonverbal Learning Disability. Spatial functions were examined in relation to two cognitive theories in autism: the central coherence and executive function (EF) theories. Performance on spatial tasks, EFs, and global/local processing was compared in children with ASD and controls. While the ASD group had faster reaction times on the Embedded Figures task, spatial performance was intact, but not superior, on other tasks. There was no evidence for impairments in EF or in processing global/local information, therefore contradicting these two theories. The implications of these results for these two theories are discussed.
Huberle, Elisabeth; Karnath, Hans-Otto
2006-01-01
Simultanagnosia is a rare deficit that impairs individuals in perceiving several objects at the same time. It is usually observed following bilateral parieto-occipital brain damage. Despite the restrictions in perceiving the global aspect of a scene, processing of individual objects remains unaffected. The mechanisms underlying simultanagnosia are not well understood. Previous findings indicated that the integration of multiple objects into a holistic representation of the environment is not impossible per se, but might depend on the spatial relationship between individual objects. The present study examined the influence of inter-element distances between individual objects on the recognition of global shapes in two patients with simultanagnosia. We presented Navon hierarchical letter stimuli with different inter-element distances between letters at the Local Scale. Improved recognition at the Global Scale was observed in both patients by reducing the inter-element distance. Global shape recognition in simultanagnosia thus seems to be modulated by the spatial distance of local elements and does not appear to be an all-or-nothing phenomenon depending on spatial continuity. The findings seem to argue against a deficit in visual working memory capacity as the primary deficit in simultanagnosia. However, further research is necessary to investigate alternative interpretations.
A new, accurate, global hydrography data for remote sensing and modelling of river hydrodynamics
NASA Astrophysics Data System (ADS)
Yamazaki, D.
2017-12-01
A high-resolution hydrography data is an important baseline data for remote sensing and modelling of river hydrodynamics, given the spatial scale of river network is much smaller than that of land hydrology or atmosphere/ocean circulations. For about 10 years, HydroSHEDS, developed based on the SRTM3 DEM, has been the only available global-scale hydrography data. However, the data availability at the time of HydroSHEDS development limited the quality of the represented river networks. Here, we developed a new global hydrography data using latest geodata such as the multi-error-removed elevation data (MERIT DEM), Landsat-based global water body data (GSWO & G3WBM), cloud-sourced open geography database (OpenStreetMap). The new hydrography data covers the entire globe (including boreal regions above 60N), and it represents more detailed structure of the world river network and contains consistent supplementary data layers such as hydrologically adjusted elevations and river channel width. In the AGU meeting, the developing methodology, assessed quality, and potential applications of the new global hydrography data will be introduced.
Geological entropy and solute transport in heterogeneous porous media
NASA Astrophysics Data System (ADS)
Bianchi, Marco; Pedretti, Daniele
2017-06-01
We propose a novel approach to link solute transport behavior to the physical heterogeneity of the aquifer, which we fully characterize with two measurable parameters: the variance of the log K values (σY2), and a new indicator (HR) that integrates multiple properties of the K field into a global measure of spatial disorder or geological entropy. From the results of a detailed numerical experiment considering solute transport in K fields representing realistic distributions of hydrofacies in alluvial aquifers, we identify empirical relationship between the two parameters and the first three central moments of the distributions of arrival times of solute particles at a selected control plane. The analysis of experimental data indicates that the mean and the variance of the solutes arrival times tend to increase with spatial disorder (i.e., HR increasing), while highly skewed distributions are observed in more orderly structures (i.e., HR decreasing) or at higher σY2. We found that simple closed-form empirical expressions of the bivariate dependency of skewness on HR and σY2 can be used to predict the emergence of non-Fickian transport in K fields considering a range of structures and heterogeneity levels, some of which based on documented real aquifers. The accuracy of these predictions and in general the results from this study indicate that a description of the global variability and structure of the K field in terms of variance and geological entropy offers a valid and broadly applicable approach for the interpretation and prediction of transport in heterogeneous porous media.
NASA Astrophysics Data System (ADS)
Crocker, N. A.; Kubota, S.; Peebles, W. A.; Rhodes, T. L.; Fredrickson, E. D.; Belova, E.; Diallo, A.; LeBlanc, B. P.; Sabbagh, S. A.
2018-01-01
Reflectometry measurements of compressional (CAE) and global (GAE) Alfvén eigenmodes are analyzed to obtain the amplitude and spatial structure of the density perturbations associated with the modes. A novel analysis technique developed for this purpose is presented. The analysis also naturally yields the amplitude and spatial structure of the density contour radial displacement, which is found to be 2-4 times larger than the value estimated directly from the reflectometer measurements using the much simpler ‘mirror approximation’. The modes were driven by beam ions in a high power (6 MW) neutral beam heated H-mode discharge (#141398) in the National Spherical Torus Experiment. The results of the analysis are used to assess the contribution of the modes to core energy transport and ion heating. The total displacement amplitude of the modes, which is shown to be larger than previously estimated (Crocker et al 2013 Nucl. Fusion 53 43017), is compared to the predicted threshold (Gorelenkov et al 2010 Nucl. Fusion 50 84012) for the anomalously high heat diffusion inferred from transport modeling in similar NSTX discharges. The results of the analysis also have strong implications for the energy transport via coupling of CAEs to kinetic Alfvén waves seen in simulations with the Hybrid MHD code (Belova et al 2015 Phys. Rev. Lett. 115 15001). Finally, the amplitudes of the observed CAEs fall well below the threshold for causing significant ion heating by stochastic velocity space diffusion (Gates et al 2001 Phys. Rev. Lett. 87 205003).
NASA Astrophysics Data System (ADS)
Demetriou, Demetris; Campagna, Michele; Racetin, Ivana; Konecny, Milan
2017-09-01
INSPIRE is the EU's authoritative Spatial Data Infrastructure (SDI) in which each Member State provides access to their spatial data across a wide spectrum of data themes to support policy making. In contrast, Volunteered Geographic Information (VGI) is one type of user-generated geographic information where volunteers use the web and mobile devices to create, assemble and disseminate spatial information. There are similarities and differences between SDIs and VGI initiatives, as well as advantages and disadvantages. Thus, the integration of these two data sources will enhance what is offered to end users to facilitate decision makers and the wider community regarding solving complex spatial problems, managing emergency situations and getting useful information for peoples' daily activities. Although some efforts towards this direction have been arisen, several key issues need to be considered and resolved. Further to this integration, the vision is the development of a global integrated GIS platform, which extends the capabilities of a typical data-hub by embedding on-line spatial and non-spatial applications, to deliver both static and dynamic outputs to support planning and decision making. In this context, this paper discusses the challenges of integrating INSPIRE with VGI and outlines a generic framework towards creating a global integrated web-based GIS platform. The tremendous high speed evolution of the Web and Geospatial technologies suggest that this "super" global Geo-system is not far away.
Global Autocorrelation Scales of the Partial Pressure of Oceanic CO2
NASA Technical Reports Server (NTRS)
Li, Zhen; Adamec, David; Takahashi, Taro; Sutherland, Stewart C.
2004-01-01
A global database of approximately 1.7 million observations of the partial pressure of carbon dioxide in surface ocean waters (pCO2) collected between 1970 and 2003 is used to estimate its spatial autocorrelation structure. The patterns of the lag distance where the autocorrelation exceeds 0.8 is similar to patterns in the spatial distribution of the first baroclinic Rossby radius of deformation indicating that ocean circulation processes play a significant role in determining the spatial variability of pCO2. For example, the global maximum of the distance at which autocorrelations exceed 0.8 averages about 140 km in the equatorial Pacific. Also, the lag distance at which the autocorrelation exceed 0.8 is greater in the vicinity of the Gulf Stream than it is near the Kuroshio, approximately 50 km near the Gulf Stream as opposed to 20 km near the Kuroshio. Separate calculations for times when the sun is north and south of the equator revealed no obvious seasonal dependence of the spatial autocorrelation scales. The pCO2 measurements at Ocean Weather Station (OWS) 'P', in the eastern subarctic Pacific (50 N, 145 W) is the only fixed location where an uninterrupted time series of sufficient length exists to calculate a meaningful temporal autocorrelation function for lags greater than a few days. The estimated temporal autocorrelation function at OWS 'P', is highly variable. A spectral analysis of the longest four pCO2 time series indicates a high level of variability occurring over periods from the atmospheric synoptic to the maximum length of the time series, in this case 42 days. It is likely that a relative peak in variability with a period of 3-6 days is related to atmospheric synoptic period variability and ocean mixing events due to wind stirring. However, the short length of available time series makes identifying temporal relationships between pCO2 and atmospheric or ocean processes problematic.
NASA Astrophysics Data System (ADS)
Glover, David M.; Doney, Scott C.; Oestreich, William K.; Tullo, Alisdair W.
2018-01-01
Mesoscale (10-300 km, weeks to months) physical variability strongly modulates the structure and dynamics of planktonic marine ecosystems via both turbulent advection and environmental impacts upon biological rates. Using structure function analysis (geostatistics), we quantify the mesoscale biological signals within global 13 year SeaWiFS (1998-2010) and 8 year MODIS/Aqua (2003-2010) chlorophyll a ocean color data (Level-3, 9 km resolution). We present geographical distributions, seasonality, and interannual variability of key geostatistical parameters: unresolved variability or noise, resolved variability, and spatial range. Resolved variability is nearly identical for both instruments, indicating that geostatistical techniques isolate a robust measure of biophysical mesoscale variability largely independent of measurement platform. In contrast, unresolved variability in MODIS/Aqua is substantially lower than in SeaWiFS, especially in oligotrophic waters where previous analysis identified a problem for the SeaWiFS instrument likely due to sensor noise characteristics. Both records exhibit a statistically significant relationship between resolved mesoscale variability and the low-pass filtered chlorophyll field horizontal gradient magnitude, consistent with physical stirring acting on large-scale gradient as an important factor supporting observed mesoscale variability. Comparable horizontal length scales for variability are found from tracer-based scaling arguments and geostatistical decorrelation. Regional variations between these length scales may reflect scale dependence of biological mechanisms that also create variability directly at the mesoscale, for example, enhanced net phytoplankton growth in coastal and frontal upwelling and convective mixing regions. Global estimates of mesoscale biophysical variability provide an improved basis for evaluating higher resolution, coupled ecosystem-ocean general circulation models, and data assimilation.
Spatial analysis of soil organic carbon in Zhifanggou catchment of the Loess Plateau.
Li, Mingming; Zhang, Xingchang; Zhen, Qing; Han, Fengpeng
2013-01-01
Soil organic carbon (SOC) reflects soil quality and plays a critical role in soil protection, food safety, and global climate changes. This study involved grid sampling at different depths (6 layers) between 0 and 100 cm in a catchment. A total of 1282 soil samples were collected from 215 plots over 8.27 km(2). A combination of conventional analytical methods and geostatistical methods were used to analyze the data for spatial variability and soil carbon content patterns. The mean SOC content in the 1282 samples from the study field was 3.08 g · kg(-1). The SOC content of each layer decreased with increasing soil depth by a power function relationship. The SOC content of each layer was moderately variable and followed a lognormal distribution. The semi-variograms of the SOC contents of the six different layers were fit with the following models: exponential, spherical, exponential, Gaussian, exponential, and exponential, respectively. A moderate spatial dependence was observed in the 0-10 and 10-20 cm layers, which resulted from stochastic and structural factors. The spatial distribution of SOC content in the four layers between 20 and 100 cm exhibit were mainly restricted by structural factors. Correlations within each layer were observed between 234 and 562 m. A classical Kriging interpolation was used to directly visualize the spatial distribution of SOC in the catchment. The variability in spatial distribution was related to topography, land use type, and human activity. Finally, the vertical distribution of SOC decreased. Our results suggest that the ordinary Kriging interpolation can directly reveal the spatial distribution of SOC and the sample distance about this study is sufficient for interpolation or plotting. More research is needed, however, to clarify the spatial variability on the bigger scale and better understand the factors controlling spatial variability of soil carbon in the Loess Plateau region.
NASA Astrophysics Data System (ADS)
Ivanov, Martin; Warrach-Sagi, Kirsten; Wulfmeyer, Volker
2018-04-01
A new approach for rigorous spatial analysis of the downscaling performance of regional climate model (RCM) simulations is introduced. It is based on a multiple comparison of the local tests at the grid cells and is also known as "field" or "global" significance. New performance measures for estimating the added value of downscaled data relative to the large-scale forcing fields are developed. The methodology is exemplarily applied to a standard EURO-CORDEX hindcast simulation with the Weather Research and Forecasting (WRF) model coupled with the land surface model NOAH at 0.11 ∘ grid resolution. Monthly temperature climatology for the 1990-2009 period is analysed for Germany for winter and summer in comparison with high-resolution gridded observations from the German Weather Service. The field significance test controls the proportion of falsely rejected local tests in a meaningful way and is robust to spatial dependence. Hence, the spatial patterns of the statistically significant local tests are also meaningful. We interpret them from a process-oriented perspective. In winter and in most regions in summer, the downscaled distributions are statistically indistinguishable from the observed ones. A systematic cold summer bias occurs in deep river valleys due to overestimated elevations, in coastal areas due probably to enhanced sea breeze circulation, and over large lakes due to the interpolation of water temperatures. Urban areas in concave topography forms have a warm summer bias due to the strong heat islands, not reflected in the observations. WRF-NOAH generates appropriate fine-scale features in the monthly temperature field over regions of complex topography, but over spatially homogeneous areas even small biases can lead to significant deteriorations relative to the driving reanalysis. As the added value of global climate model (GCM)-driven simulations cannot be smaller than this perfect-boundary estimate, this work demonstrates in a rigorous manner the clear additional value of dynamical downscaling over global climate simulations. The evaluation methodology has a broad spectrum of applicability as it is distribution-free, robust to spatial dependence, and accounts for time series structure.
Mitchard, Edward Ta; Saatchi, Sassan S; Baccini, Alessandro; Asner, Gregory P; Goetz, Scott J; Harris, Nancy L; Brown, Sandra
2013-10-26
Mapping the aboveground biomass of tropical forests is essential both for implementing conservation policy and reducing uncertainties in the global carbon cycle. Two medium resolution (500 m - 1000 m) pantropical maps of vegetation biomass have been recently published, and have been widely used by sub-national and national-level activities in relation to Reducing Emissions from Deforestation and forest Degradation (REDD+). Both maps use similar input data layers, and are driven by the same spaceborne LiDAR dataset providing systematic forest height and canopy structure estimates, but use different ground datasets for calibration and different spatial modelling methodologies. Here, we compare these two maps to each other, to the FAO's Forest Resource Assessment (FRA) 2010 country-level data, and to a high resolution (100 m) biomass map generated for a portion of the Colombian Amazon. We find substantial differences between the two maps, in particular in central Amazonia, the Congo basin, the south of Papua New Guinea, the Miombo woodlands of Africa, and the dry forests and savannas of South America. There is little consistency in the direction of the difference. However, when the maps are aggregated to the country or biome scale there is greater agreement, with differences cancelling out to a certain extent. When comparing country level biomass stocks, the two maps agree with each other to a much greater extent than to the FRA 2010 estimates. In the Colombian Amazon, both pantropical maps estimate higher biomass than the independent high resolution map, but show a similar spatial distribution of this biomass. Biomass mapping has progressed enormously over the past decade, to the stage where we can produce globally consistent maps of aboveground biomass. We show that there are still large uncertainties in these maps, in particular in areas with little field data. However, when used at a regional scale, different maps appear to converge, suggesting we can provide reasonable stock estimates when aggregated over large regions. Therefore we believe the largest uncertainties for REDD+ activities relate to the spatial distribution of biomass and to the spatial pattern of forest cover change, rather than to total globally or nationally summed carbon density.
A New Methodology of Spatial Cross-Correlation Analysis
Chen, Yanguang
2015-01-01
Spatial correlation modeling comprises both spatial autocorrelation and spatial cross-correlation processes. The spatial autocorrelation theory has been well-developed. It is necessary to advance the method of spatial cross-correlation analysis to supplement the autocorrelation analysis. This paper presents a set of models and analytical procedures for spatial cross-correlation analysis. By analogy with Moran’s index newly expressed in a spatial quadratic form, a theoretical framework is derived for geographical cross-correlation modeling. First, two sets of spatial cross-correlation coefficients are defined, including a global spatial cross-correlation coefficient and local spatial cross-correlation coefficients. Second, a pair of scatterplots of spatial cross-correlation is proposed, and the plots can be used to visually reveal the causality behind spatial systems. Based on the global cross-correlation coefficient, Pearson’s correlation coefficient can be decomposed into two parts: direct correlation (partial correlation) and indirect correlation (spatial cross-correlation). As an example, the methodology is applied to the relationships between China’s urbanization and economic development to illustrate how to model spatial cross-correlation phenomena. This study is an introduction to developing the theory of spatial cross-correlation, and future geographical spatial analysis might benefit from these models and indexes. PMID:25993120
A new methodology of spatial cross-correlation analysis.
Chen, Yanguang
2015-01-01
Spatial correlation modeling comprises both spatial autocorrelation and spatial cross-correlation processes. The spatial autocorrelation theory has been well-developed. It is necessary to advance the method of spatial cross-correlation analysis to supplement the autocorrelation analysis. This paper presents a set of models and analytical procedures for spatial cross-correlation analysis. By analogy with Moran's index newly expressed in a spatial quadratic form, a theoretical framework is derived for geographical cross-correlation modeling. First, two sets of spatial cross-correlation coefficients are defined, including a global spatial cross-correlation coefficient and local spatial cross-correlation coefficients. Second, a pair of scatterplots of spatial cross-correlation is proposed, and the plots can be used to visually reveal the causality behind spatial systems. Based on the global cross-correlation coefficient, Pearson's correlation coefficient can be decomposed into two parts: direct correlation (partial correlation) and indirect correlation (spatial cross-correlation). As an example, the methodology is applied to the relationships between China's urbanization and economic development to illustrate how to model spatial cross-correlation phenomena. This study is an introduction to developing the theory of spatial cross-correlation, and future geographical spatial analysis might benefit from these models and indexes.
Takemoto, Kazuhiro; Kajihara, Kosuke
2016-01-01
Theoretical studies have indicated that nestedness and modularity-non-random structural patterns of ecological networks-influence the stability of ecosystems against perturbations; as such, climate change and human activity, as well as other sources of environmental perturbations, affect the nestedness and modularity of ecological networks. However, the effects of climate change and human activities on ecological networks are poorly understood. Here, we used a spatial analysis approach to examine the effects of climate change and human activities on the structural patterns of food webs and mutualistic networks, and found that ecological network structure is globally affected by climate change and human impacts, in addition to current climate. In pollination networks, for instance, nestedness increased and modularity decreased in response to increased human impacts. Modularity in seed-dispersal networks decreased with temperature change (i.e., warming), whereas food web nestedness increased and modularity declined in response to global warming. Although our findings are preliminary owing to data-analysis limitations, they enhance our understanding of the effects of environmental change on ecological communities.
EVOLUTION OF NEAR-SURFACE FLOWS INFERRED FROM HIGH-RESOLUTION RING-DIAGRAM ANALYSIS
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bogart, Richard S.; Baldner, Charles S.; Basu, Sarbani
2015-07-10
Ring-diagram analysis of acoustic waves observed at the photosphere can provide a relatively robust determination of the sub-surface flows at a particular time under a particular region. The depth of penetration of the waves is related to the size of the region, hence the depth extent of the measured flows is inversely proportional to the spatial resolution. Most ring-diagram analysis has focused on regions of extent ∼15° (180 Mm) or more in order to provide reasonable mode sets for inversions. Helioseismic and Magnetic Imager (HMI) data analysis also provides a set of ring fit parameters on a scale three timesmore » smaller. These provide flow estimates for the outer 1% (7 Mm) of the Sun only, with very limited depth resolution, but with spatial resolution adequate to map structures potentially associated with the belts and regions of magnetic activity. There are a number of systematic effects affecting the determination of flows from a local helioseismic analysis of regions over different parts of the observable disk, and not all of them are well understood. In this study we characterize those systematic effects with higher spatial resolution so that they may be accounted for more effectively in mapping the temporal and spatial evolution of the flows. Leaving open the question of the mean structure of the global meridional circulation and the differential rotation, we describe the near-surface flow anomalies in time and latitude corresponding to the torsional oscillation pattern in differential rotation and analogous patterns in the meridional cell structure as observed by the Solar Dynamics Observatory/HMI.« less
Tracking historical increases in nitrogen-driven crop production possibilities
NASA Astrophysics Data System (ADS)
Mueller, N. D.; Lassaletta, L.; Billen, G.; Garnier, J.; Gerber, J. S.
2015-12-01
The environmental costs of nitrogen use have prompted a focus on improving the efficiency of nitrogen use in the global food system, the primary source of nitrogen pollution. Typical approaches to improving agricultural nitrogen use efficiency include more targeted field-level use (timing, placement, and rate) and modification of the crop mix. However, global efficiency gains can also be achieved by improving the spatial allocation of nitrogen between regions or countries, due to consistent diminishing returns at high nitrogen use. This concept is examined by constructing a tradeoff frontier (or production possibilities frontier) describing global crop protein yield as a function of applied nitrogen from all sources, given optimal spatial allocation. Yearly variation in country-level input-output nitrogen budgets are utilized to parameterize country-specific hyperbolic yield-response models. Response functions are further characterized for three ~15-year eras beginning in 1961, and series of calculations uses these curves to simulate optimal spatial allocation in each era and determine the frontier. The analyses reveal that excess nitrogen (in recent years) could be reduced by ~40% given optimal spatial allocation. Over time, we find that gains in yield potential and in-country nitrogen use efficiency have led to increases in the global nitrogen production possibilities frontier. However, this promising shift has been accompanied by an actual spatial distribution of nitrogen use that has become less optimal, in an absolute sense, relative to the frontier. We conclude that examination of global production possibilities is a promising approach to understanding production constraints and efficiency opportunities in the global food system.
Global Ultraviolet Imager (GUVI) investigation
NASA Technical Reports Server (NTRS)
Christensen, Andrew B.
1995-01-01
This report covers the activities performed under NAS5-32572. The results of those activities are included in this Final Report. TIMED Science Objectives: (1) To determine the temperature, density, and wind structure of the MLTI (mixed layer thermal inertia), including the seasonal and latitudinal variations; and (2) To determine the relative importance of the various radiative, chemical, electrodynamical, and dynamical sources and sinks of energy for the thermal structure of the MLTI. GUVI Science Goals: (1) Determine the spatial and temporal variations of temperature and constituent densities in the lower thermosphere; and (2) Determine the importance of auroral energy sources and solar EUV (extreme ultraviolet) to the energy balance of the region.
NASA Technical Reports Server (NTRS)
Hammerling, Dorit M.; Michalak, Anna M.; Kawa, S. Randolph
2012-01-01
Satellite observations of CO2 offer new opportunities to improve our understanding of the global carbon cycle. Using such observations to infer global maps of atmospheric CO2 and their associated uncertainties can provide key information about the distribution and dynamic behavior of CO2, through comparison to atmospheric CO2 distributions predicted from biospheric, oceanic, or fossil fuel flux emissions estimates coupled with atmospheric transport models. Ideally, these maps should be at temporal resolutions that are short enough to represent and capture the synoptic dynamics of atmospheric CO2. This study presents a geostatistical method that accomplishes this goal. The method can extract information about the spatial covariance structure of the CO2 field from the available CO2 retrievals, yields full coverage (Level 3) maps at high spatial resolutions, and provides estimates of the uncertainties associated with these maps. The method does not require information about CO2 fluxes or atmospheric transport, such that the Level 3 maps are informed entirely by available retrievals. The approach is assessed by investigating its performance using synthetic OCO-2 data generated from the PCTM/ GEOS-4/CASA-GFED model, for time periods ranging from 1 to 16 days and a target spatial resolution of 1deg latitude x 1.25deg longitude. Results show that global CO2 fields from OCO-2 observations can be predicted well at surprisingly high temporal resolutions. Even one-day Level 3 maps reproduce the large-scale features of the atmospheric CO2 distribution, and yield realistic uncertainty bounds. Temporal resolutions of two to four days result in the best performance for a wide range of investigated scenarios, providing maps at an order of magnitude higher temporal resolution relative to the monthly or seasonal Level 3 maps typically reported in the literature.
Decoding the spatial signatures of multi-scale climate variability - a climate network perspective
NASA Astrophysics Data System (ADS)
Donner, R. V.; Jajcay, N.; Wiedermann, M.; Ekhtiari, N.; Palus, M.
2017-12-01
During the last years, the application of complex networks as a versatile tool for analyzing complex spatio-temporal data has gained increasing interest. Establishing this approach as a new paradigm in climatology has already provided valuable insights into key spatio-temporal climate variability patterns across scales, including novel perspectives on the dynamics of the El Nino Southern Oscillation or the emergence of extreme precipitation patterns in monsoonal regions. In this work, we report first attempts to employ network analysis for disentangling multi-scale climate variability. Specifically, we introduce the concept of scale-specific climate networks, which comprises a sequence of networks representing the statistical association structure between variations at distinct time scales. For this purpose, we consider global surface air temperature reanalysis data and subject the corresponding time series at each grid point to a complex-valued continuous wavelet transform. From this time-scale decomposition, we obtain three types of signals per grid point and scale - amplitude, phase and reconstructed signal, the statistical similarity of which is then represented by three complex networks associated with each scale. We provide a detailed analysis of the resulting connectivity patterns reflecting the spatial organization of climate variability at each chosen time-scale. Global network characteristics like transitivity or network entropy are shown to provide a new view on the (global average) relevance of different time scales in climate dynamics. Beyond expected trends originating from the increasing smoothness of fluctuations at longer scales, network-based statistics reveal different degrees of fragmentation of spatial co-variability patterns at different scales and zonal shifts among the key players of climate variability from tropically to extra-tropically dominated patterns when moving from inter-annual to decadal scales and beyond. The obtained results demonstrate the potential usefulness of systematically exploiting scale-specific climate networks, whose general patterns are in line with existing climatological knowledge, but provide vast opportunities for further quantifications at local, regional and global scales that are yet to be explored.
NASA Astrophysics Data System (ADS)
Eisner, Stephanie; Huang, Shaochun; Majasalmi, Titta; Bright, Ryan; Astrup, Rasmus; Beldring, Stein
2017-04-01
Forests are recognized for their decisive effect on landscape water balance with structural forest characteristics as stand density or species composition determining energy partitioning and dominant flow paths. However, spatial and temporal variability in forest structure is often poorly represented in hydrological modeling frameworks, in particular in regional to large scale hydrological modeling and impact analysis. As a common practice, prescribed land cover classes (including different generic forest types) are linked to parameter values derived from literature, or parameters are determined by calibration. While national forest inventory (NFI) data provide comprehensive, detailed information on hydrologically relevant forest characteristics, their potential to inform hydrological simulation over larger spatial domains is rarely exploited. In this study we present a modeling framework that couples the distributed hydrological model HBV with forest structural information derived from the Norwegian NFI and multi-source remote sensing data. The modeling framework, set up for the entire of continental Norway at 1 km spatial resolution, is explicitly designed to study the combined and isolated impacts of climate change, forest management and land use change on hydrological fluxes. We use a forest classification system based on forest structure rather than biomes which allows to implicitly account for impacts of forest management on forest structural attributes. In the hydrological model, different forest classes are represented by three parameters: leaf area index (LAI), mean tree height and surface albedo. Seasonal cycles of LAI and surface albedo are dynamically simulated to make the framework applicable under climate change conditions. Based on a hindcast for the pilot regions Nord-Trøndelag and Sør-Trøndelag, we show how forest management has affected regional hydrological fluxes during the second half of the 20th century as contrasted to climate variability.
Dispersal, mating events and fine-scale genetic structure in the lesser flat-headed bats.
Hua, Panyu; Zhang, Libiao; Guo, Tingting; Flanders, Jon; Zhang, Shuyi
2013-01-01
Population genetic structure has important consequences in evolutionary processes and conservation genetics in animals. Fine-scale population genetic structure depends on the pattern of landscape, the permanent movement of individuals, and the dispersal of their genes during temporary mating events. The lesser flat-headed bat (Tylonycteris pachypus) is a nonmigratory Asian bat species that roosts in small groups within the internodes of bamboo stems and the habitats are fragmented. Our previous parentage analyses revealed considerable extra-group mating in this species. To assess the spatial limits and sex-biased nature of gene flow in the same population, we used 20 microsatellite loci and mtDNA sequencing of the ND2 gene to quantify genetic structure among 54 groups of adult flat-headed bats, at nine localities in South China. AMOVA and F(ST) estimates revealed significant genetic differentiation among localities. Alternatively, the pairwise F(ST) values among roosting groups appeared to be related to the incidence of associated extra-group breeding, suggesting the impact of mating events on fine-scale genetic structure. Global spatial autocorrelation analyses showed positive genetic correlation for up to 3 km, indicating the role of fragmented habitat and the specialized social organization as a barrier in the movement of individuals among bamboo forests. The male-biased dispersal pattern resulted in weaker spatial genetic structure between localities among males than among females, and fine-scale analyses supported that relatedness levels within internodes were higher among females than among males. Finally, only females were more related to their same sex roost mates than to individuals from neighbouring roosts, suggestive of natal philopatry in females.
NASA Astrophysics Data System (ADS)
Moura, Y. M.; Hilker, T.; Galvão, L. S.; Santos, J. R.; Lyapustin, A.; Sousa, C. H. R. D.; McAdam, E.
2014-12-01
The sensitivity of the Amazon rainforests to climate change has received great attention by the scientific community due to the important role that this vegetation plays in the global carbon, water and energy cycle. The spatial and temporal variability of tropical forests across Amazonia, and their phenological, ecological and edaphic cycles are still poorly understood. The objective of this work was to infer seasonal and spatial variability of forest structure in the Brazilian Amazon based on anisotropy of multi-angle satellite observations. We used observations from the Moderate Resolution Imaging Spectroradiometer (MODIS/Terra and Aqua) processed by a new Multi-Angle Implementation Atmospheric Correction Algorithm (MAIAC) to investigate how multi-angular spectral response from satellite imagery can be used to analyze structural variability of Amazon rainforests. We calculated differences acquired from forward and backscatter reflectance by modeling the bi-directional reflectance distribution function to infer seasonal and spatial changes in vegetation structure. Changes in anisotropy were larger during the dry season than during the wet season, suggesting intra-annual changes in vegetation structure and density. However, there were marked differences in timing and amplitude depending on forest type. For instance differences between reflectance hotspot and darkspot showed more anisotropy in the open Ombrophilous forest than in the dense Ombrophilous forest. Our results show that multi-angle data can be useful for analyzing structural differences in various forest types and for discriminating different seasonal effects within the Amazon basin. Also, multi-angle data could help solve uncertainties about sensitivity of different tropical forest types to light versus rainfall. In conclusion, multi-angular information, as expressed by the anisotropy of spectral reflectance, may complement conventional studies and provide significant improvements over approaches that are based on vegetation indices alone.
Case study of visualizing global user download patterns using Google Earth and NASA World Wind
NASA Astrophysics Data System (ADS)
Zong, Ziliang; Job, Joshua; Zhang, Xuesong; Nijim, Mais; Qin, Xiao
2012-01-01
Geo-visualization is significantly changing the way we view spatial data and discover information. On the one hand, a large number of spatial data are generated every day. On the other hand, these data are not well utilized due to the lack of free and easily used data-visualization tools. This becomes even worse when most of the spatial data remains in the form of plain text such as log files. This paper describes a way of visualizing massive plain-text spatial data at no cost by utilizing Google Earth and NASA World Wind. We illustrate our methods by visualizing over 170,000 global download requests for satellite images maintained by the Earth Resources Observation and Science (EROS) Center of U.S. Geological Survey (USGS). Our visualization results identify the most popular satellite images around the world and discover the global user download patterns. The benefits of this research are: 1. assisting in improving the satellite image downloading services provided by USGS, and 2. providing a proxy for analyzing the "hot spot" areas of research. Most importantly, our methods demonstrate an easy way to geo-visualize massive textual spatial data, which is highly applicable to mining spatially referenced data and information on a wide variety of research domains (e.g., hydrology, agriculture, atmospheric science, natural hazard, and global climate change).
Large-scale cortical correlation structure of spontaneous oscillatory activity
Hipp, Joerg F.; Hawellek, David J.; Corbetta, Maurizio; Siegel, Markus; Engel, Andreas K.
2013-01-01
Little is known about the brain-wide correlation of electrophysiological signals. Here we show that spontaneous oscillatory neuronal activity exhibits frequency-specific spatial correlation structure in the human brain. We developed an analysis approach that discounts spurious correlation of signal power caused by the limited spatial resolution of electrophysiological measures. We applied this approach to source estimates of spontaneous neuronal activity reconstructed from magnetoencephalography (MEG). Overall, correlation of power across cortical regions was strongest in the alpha to beta frequency range (8–32 Hz) and correlation patterns depended on the underlying oscillation frequency. Global hubs resided in the medial temporal lobe in the theta frequency range (4–6 Hz), in lateral parietal areas in the alpha to beta frequency range (8–23 Hz), and in sensorimotor areas for higher frequencies (32–45 Hz). Our data suggest that interactions in various large-scale cortical networks may be reflected in frequency specific power-envelope correlations. PMID:22561454
The role of satellite remote sensing in structured ecosystem risk assessments.
Murray, Nicholas J; Keith, David A; Bland, Lucie M; Ferrari, Renata; Lyons, Mitchell B; Lucas, Richard; Pettorelli, Nathalie; Nicholson, Emily
2018-04-01
The current set of global conservation targets requires methods for monitoring the changing status of ecosystems. Protocols for ecosystem risk assessment are uniquely suited to this task, providing objective syntheses of a wide range of data to estimate the likelihood of ecosystem collapse. Satellite remote sensing can deliver ecologically relevant, long-term datasets suitable for analysing changes in ecosystem area, structure and function at temporal and spatial scales relevant to risk assessment protocols. However, there is considerable uncertainty about how to select and effectively utilise remotely sensed variables for risk assessment. Here, we review the use of satellite remote sensing for assessing spatial and functional changes of ecosystems, with the aim of providing guidance on the use of these data in ecosystem risk assessment. We suggest that decisions on the use of satellite remote sensing should be made a priori and deductively with the assistance of conceptual ecosystem models that identify the primary indicators representing the dynamics of a focal ecosystem. Copyright © 2017 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Weerasinghe, Harshi; Schneider, Uwe A.
2010-05-01
Assessment of economically optimal water management and geospatial potential for large-scale water storage Weerasinghe, Harshi; Schneider, Uwe A Water is an essential but limited and vulnerable resource for all socio-economic development and for maintaining healthy ecosystems. Water scarcity accelerated due to population expansion, improved living standards, and rapid growth in economic activities, has profound environmental and social implications. These include severe environmental degradation, declining groundwater levels, and increasing problems of water conflicts. Water scarcity is predicted to be one of the key factors limiting development in the 21st century. Climate scientists have projected spatial and temporal changes in precipitation and changes in the probability of intense floods and droughts in the future. As scarcity of accessible and usable water increases, demand for efficient water management and adaptation strategies increases as well. Addressing water scarcity requires an intersectoral and multidisciplinary approach in managing water resources. This would in return safeguard the social welfare and the economical benefit to be at their optimal balance without compromising the sustainability of ecosystems. This paper presents a geographically explicit method to assess the potential for water storage with reservoirs and a dynamic model that identifies the dimensions and material requirements under an economically optimal water management plan. The methodology is applied to the Elbe and Nile river basins. Input data for geospatial analysis at watershed level are taken from global data repositories and include data on elevation, rainfall, soil texture, soil depth, drainage, land use and land cover; which are then downscaled to 1km spatial resolution. Runoff potential for different combinations of land use and hydraulic soil groups and for mean annual precipitation levels are derived by the SCS-CN method. Using the overlay and decision tree algorithms in GIS, potential water storage sites are identified for constructing regional reservoirs. Subsequently, sites are prioritized based on runoff generation potential (m3 per unit area), and geographical suitability for constructing storage structures. The results from the spatial analysis are used as input for the optimization model. Allocation of resources and appropriate dimension for dams and associated structures are identified using the optimization model. The model evaluates the capability of alternative reservoirs for cost-efficient water management. The Geographic Information System is used to store, analyze, and integrate spatially explicit and non-spatial attribute information whereas the algebraic modeling platform is used to develop the dynamic optimization model. The results of this methodology are validated over space against satellite remote sensing data and existing data on reservoir capacities and runoff. The method is suitable for application of on-farm water storage structures, water distribution networks, and moisture conservation structures in a global context.
Knotting fingerprints resolve knot complexity and knotting pathways in ideal knots.
Hyde, David A B; Henrich, Joshua; Rawdon, Eric J; Millett, Kenneth C
2015-09-09
We use disk matrices to define knotting fingerprints that provide fine-grained insights into the local knotting structure of ideal knots. These knots have been found to have spatial properties that highly correlate with those of interesting macromolecules. From this fine structure and an analysis of the associated planar graph, one can define a measure of knot complexity using the number of independent unknotting pathways from the global knot type as the knot is trimmed progressively to a short arc unknot. A specialization of the Cheeger constant provides a measure of constraint on these independent unknotting pathways. Furthermore, the structure of the knotting fingerprint supports a comparison of the tight knot pathways to the unconstrained unknotting pathways of comparable length.
Modeling spatial effects of PM{sub 2.5} on term low birth weight in Los Angeles County
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coker, Eric, E-mail: cokerer@onid.orst.edu; Ghosh, Jokay; Jerrett, Michael
Air pollution epidemiological studies suggest that elevated exposure to fine particulate matter (PM{sub 2.5}) is associated with higher prevalence of term low birth weight (TLBW). Previous studies have generally assumed the exposure–response of PM{sub 2.5} on TLBW to be the same throughout a large geographical area. Health effects related to PM{sub 2.5} exposures, however, may not be uniformly distributed spatially, creating a need for studies that explicitly investigate the spatial distribution of the exposure–response relationship between individual-level exposure to PM{sub 2.5} and TLBW. Here, we examine the overall and spatially varying exposure–response relationship between PM{sub 2.5} and TLBW throughout urbanmore » Los Angeles (LA) County, California. We estimated PM{sub 2.5} from a combination of land use regression (LUR), aerosol optical depth from remote sensing, and atmospheric modeling techniques. Exposures were assigned to LA County individual pregnancies identified from electronic birth certificates between the years 1995-2006 (N=1,359,284) provided by the California Department of Public Health. We used a single pollutant multivariate logistic regression model, with multilevel spatially structured and unstructured random effects set in a Bayesian framework to estimate global and spatially varying pollutant effects on TLBW at the census tract level. Overall, increased PM{sub 2.5} level was associated with higher prevalence of TLBW county-wide. The spatial random effects model, however, demonstrated that the exposure–response for PM{sub 2.5} and TLBW was not uniform across urban LA County. Rather, the magnitude and certainty of the exposure–response estimates for PM{sub 2.5} on log odds of TLBW were greatest in the urban core of Central and Southern LA County census tracts. These results suggest that the effects may be spatially patterned, and that simply estimating global pollutant effects obscures disparities suggested by spatial patterns of effects. Studies that incorporate spatial multilevel modeling with random coefficients allow us to identify areas where air pollutant effects on adverse birth outcomes may be most severe and policies to further reduce air pollution might be most effective. - Highlights: • We model the spatial dependency of PM{sub 2.5} effects on term low birth weight (TLBW). • PM{sub 2.5} effects on TLBW are shown to vary spatially across urban LA County. • Modeling spatial dependency of PM{sub 2.5} health effects may identify effect 'hotspots'. • Birth outcomes studies should consider the spatial dependency of PM{sub 2.5} effects.« less
NASA Astrophysics Data System (ADS)
Verburg, Peter H.; Ellis, Erle C.; Letourneau, Aurelien
2011-07-01
Markets influence the global patterns of urbanization, deforestation, agriculture and other land use systems. Yet market influence is rarely incorporated into spatially explicit global studies of environmental change, largely because consistent global data are lacking below the national level. Here we present the first high spatial resolution gridded data depicting market influence globally. The data jointly represent variations in both market strength and accessibility based on three market influence indices derived from an index of accessibility to market locations and national level gross domestic product (purchasing power parity). These indices show strong correspondence with human population density while also revealing several distinct and useful relationships with other global environmental patterns. As market influence grows, the need for high resolution global data on market influence and its dynamics will become increasingly important to understanding and forecasting global environmental change.
NASA Technical Reports Server (NTRS)
Yoder, James A.; Hoge, Frank E.
1991-01-01
Mesoscale phytoplankton chlorophyll variability near the Joint Global Ocean Flux study sites along the 20 W meridian at 34 N, 47 N, and 59 N is discussed. The NASA P-3 aircraft and the Airborne Oceanographic Lidar (AOL) system provides remote sensing support for the North Atlantic Bloom Experiment. The principal instrument of the AOL system is the blue-green laser that stimulates fluorescence from photoplankton chlorophyll, the principal photosynthetic pigment. Other instruments on the NASA P-3 aircraft include up- and down-looking spectrometers, PRT-5 for infrared measurements to determine sea surface temperature, and a system to deploy and record AXBTs to measure subsurface temperature structure.
Dwarfs and Giants in the local flows of galaxies.
NASA Astrophysics Data System (ADS)
Chernin, A. D.; Emelyanov, N. V.; Karachentsev, I. D.
We use recent Hubble Space Telescope data on nearby dwarf and giant galaxies to study the dynamical structure and evolutionary trends of the local expansion flows of galaxies. It is found that antigravity of dark energy dominates the force field of the flows and makes them expand with acceleration. It also cools the flows and introduces to them the nearly linear velocity-distance relation with the time-rate close to the global Hubble's factor. There are grounds to expect that this is the universal physical regularity that is common not only for the nearby flows we studied here, but also for all the expansion flows of various spatial scales from the 1 Mpc scale and up to the scale of the global cosmological expansion.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schad, A.; Roth, M.; Timmer, J., E-mail: ariane.schad@kis.uni-freiburg.de
2013-12-01
We use a novel global helioseismic analysis method to infer the meridional flow in the deep Solar interior. The method is based on the perturbation of eigenfunctions of Solar p modes due to meridional flow. We apply this method to time series obtained from Dopplergrams measured by the Michelson Doppler Imager aboard the Solar and Heliospheric Observatory covering the observation period 2004-2010. Our results show evidence that the meridional flow reaches down to the base of the convection zone. The flow profile has a complex spatial structure consisting of multiple flow cells distributed in depth and latitude. Toward the Solarmore » surface, our results are in good agreement with flow measurements from local helioseismology.« less
Visual and Experiential Learning Opportunities through Geospatial Data
NASA Astrophysics Data System (ADS)
Gardiner, N.; Bulletins, S.
2007-12-01
Global observation data from satellites are essential for both research and education about Earth's climate because they help convey the temporal and spatial scales inherent to the subject, which are beyond most people's experience. Experts in the development of visualizations using spatial data distinguish the process of learning through data exploration from the process of learning by absorbing a story told from beginning to end. The former requires the viewer to absorb complex spatial and temporal dynamics inherent to visualized data and therefore is a process best undertaken by those familiar with the data and processes represented. The latter requires that the viewer understand the intended presentation of concepts, so story telling can be employed to educate viewers with varying backgrounds and familiarity with a given subject. Three examples of climate science education, drawn from the current science program Science Bulletins (American Museum of Natural History, New York, USA), demonstrate the power of visualized global earth observations for climate science education. The first example seeks to explain the potential for sea level rise on a global basis. A short feature film includes the visualized, projected effects of sea level rise at local to global scales; this visualization complements laboratory and field observations of glacier retreat and paleoclimatic reconstructions based on fossilized coral reef analysis, each of which is also depicted in the film. The narrative structure keeps learners focused on discrete scientific concepts. The second example utilizes half-hourly cloud observations to demonstrate weather and climate patterns to audiences on a global basis. Here, the scientific messages are qualitatively simpler, but the viewer must deduce his own complex visual understanding of the visualized data. Finally, we present plans for distributing climate science education products via mediated public events whereby participants learn from climate and geovisualization experts working collaboratively. This last example provides an opportunity for deep exploration of patterns and processes in a live setting and makes full use of complementary talents, including computer science, internet-enabled data sharing, remote sensing image processing, and meteorology. These innovative examples from informal educators serve as powerful pedagogical models to consider for the classroom of the future.
An enhanced model of land water and energy for global hydrologic and earth-system studies
Milly, Paul C.D.; Malyshev, Sergey L.; Shevliakova, Elena; Dunne, Krista A.; Findell, Kirsten L.; Gleeson, Tom; Liang, Zhi; Phillips, Peter; Stouffer, Ronald J.; Swenson, Sean
2014-01-01
LM3 is a new model of terrestrial water, energy, and carbon, intended for use in global hydrologic analyses and as a component of earth-system and physical-climate models. It is designed to improve upon the performance and to extend the scope of the predecessor Land Dynamics (LaD) and LM3V models by better quantifying the physical controls of climate and biogeochemistry and by relating more directly to components of the global water system that touch human concerns. LM3 includes multilayer representations of temperature, liquid water content, and ice content of both snowpack and macroporous soil–bedrock; topography-based description of saturated area and groundwater discharge; and transport of runoff to the ocean via a global river and lake network. Sensible heat transport by water mass is accounted throughout for a complete energy balance. Carbon and vegetation dynamics and biophysics are represented as in LM3V. In numerical experiments, LM3 avoids some of the limitations of the LaD model and provides qualitatively (though not always quantitatively) reasonable estimates, from a global perspective, of observed spatial and/or temporal variations of vegetation density, albedo, streamflow, water-table depth, permafrost, and lake levels. Amplitude and phase of annual cycle of total water storage are simulated well. Realism of modeled lake levels varies widely. The water table tends to be consistently too shallow in humid regions. Biophysical properties have an artificial stepwise spatial structure, and equilibrium vegetation is sensitive to initial conditions. Explicit resolution of thick (>100 m) unsaturated zones and permafrost is possible, but only at the cost of long (≫300 yr) model spinup times.
Evolution of the stellar mass function in multiple-population globular clusters
NASA Astrophysics Data System (ADS)
Vesperini, Enrico; Hong, Jongsuk; Webb, Jeremy J.; D'Antona, Franca; D'Ercole, Annibale
2018-05-01
We present the results of a survey of N-body simulations aimed at studying the effects of the long-term dynamical evolution on the stellar mass function (MF) of multiple stellar populations in globular clusters. Our simulations show that if first-(1G) and second-generation (2G) stars have the same initial MF (IMF), the global MFs of the two populations are affected similarly by dynamical evolution and no significant differences between the 1G and 2G MFs arise during the cluster's evolution. If the two populations have different IMFs, dynamical effects do not completely erase memory of the initial differences. Should observations find differences between the global 1G and 2G MFs, these would reveal the fingerprints of differences in their IMFs. Irrespective of whether the 1G and 2G populations have the same global IMF or not, dynamical effects can produce differences between the local (measured at various distances from the cluster centre) 1G and 2G MFs; these differences are a manifestation of the process of mass segregation in populations with different initial structural properties. In dynamically old and spatially mixed clusters, however, differences between the local 1G and 2G MFs can reveal differences between the 1G and 2G global MFs. In general, for clusters with any dynamical age, large differences between the local 1G and 2G MFs are more likely to be associated with differences in the global MF. Our study also reveals a dependence of the spatial mixing rate on the stellar mass, another dynamical consequence of the multiscale nature of multiple-population clusters.
Temporal and spatial adaptation of transient responses to local features
O'Carroll, David C.; Barnett, Paul D.; Nordström, Karin
2012-01-01
Interpreting visual motion within the natural environment is a challenging task, particularly considering that natural scenes vary enormously in brightness, contrast and spatial structure. The performance of current models for the detection of self-generated optic flow depends critically on these very parameters, but despite this, animals manage to successfully navigate within a broad range of scenes. Within global scenes local areas with more salient features are common. Recent work has highlighted the influence that local, salient features have on the encoding of optic flow, but it has been difficult to quantify how local transient responses affect responses to subsequent features and thus contribute to the global neural response. To investigate this in more detail we used experimenter-designed stimuli and recorded intracellularly from motion-sensitive neurons. We limited the stimulus to a small vertically elongated strip, to investigate local and global neural responses to pairs of local “doublet” features that were designed to interact with each other in the temporal and spatial domain. We show that the passage of a high-contrast doublet feature produces a complex transient response from local motion detectors consistent with predictions of a simple computational model. In the neuron, the passage of a high-contrast feature induces a local reduction in responses to subsequent low-contrast features. However, this neural contrast gain reduction appears to be recruited only when features stretch vertically (i.e., orthogonal to the direction of motion) across at least several aligned neighboring ommatidia. Horizontal displacement of the components of elongated features abolishes the local adaptation effect. It is thus likely that features in natural scenes with vertically aligned edges, such as tree trunks, recruit the greatest amount of response suppression. This property could emphasize the local responses to such features vs. those in nearby texture within the scene. PMID:23087617
Indicators of biodiversity and ecosystem services: A synthesis across ecosystems and spatial scales
Feld, C.K.; Da Silva, P.M.; Sousa, J.P.; De Bello, F.; Bugter, R.; Grandin, U.; Hering, D.; Lavorel, S.; Mountford, O.; Pardo, I.; Partel, M.; Rombke, J.; Sandin, Leonard; Jones, K. Bruce; Harrison, P.
2009-01-01
According to the Millennium Ecosystem Assessment, common indicators are needed to monitor the loss of biodiversity and the implications for the sustainable provision of ecosystem services. However, a variety of indicators are already being used resulting in many, mostly incompatible, monitoring systems. In order to synthesise the different indicator approaches and to detect gaps in the development of common indicator systems, we examined 531 indicators that have been reported in 617 peer-reviewed journal articles between 1997 and 2007. Special emphasis was placed on comparing indicators of biodiversity and ecosystem services across ecosystems (forests, grass- and shrublands, wetlands, rivers, lakes, soils and agro-ecosystems) and spatial scales (from patch to global scale). The application of biological indicators was found most often focused on regional and finer spatial scales with few indicators applied across ecosystem types. Abiotic indicators, such as physico-chemical parameters and measures of area and fragmentation, are most frequently used at broader (regional to continental) scales. Despite its multiple dimensions, biodiversity is usually equated with species richness only. The functional, structural and genetic components of biodiversity are poorly addressed despite their potential value across habitats and scales. Ecosystem service indicators are mostly used to estimate regulating and supporting services but generally differ between ecosystem types as they reflect ecosystem-specific services. Despite great effort to develop indicator systems over the past decade, there is still a considerable gap in the widespread use of indicators for many of the multiple components of biodiversity and ecosystem services, and a need to develop common monitoring schemes within and across habitats. Filling these gaps is a prerequisite for linking biodiversity dynamics with ecosystem service delivery and to achieving the goals of global and sub-global initiatives to halt the loss of biodiversity. ?? 2009 Oikos.
Durán, Jorge; Delgado-Baquerizo, Manuel; Dougill, Andrew J; Guuroh, Reginald T; Linstädter, Anja; Thomas, Andrew D; Maestre, Fernando T
2018-05-01
The relationship between the spatial variability of soil multifunctionality (i.e., the capacity of soils to conduct multiple functions; SVM) and major climatic drivers, such as temperature and aridity, has never been assessed globally in terrestrial ecosystems. We surveyed 236 dryland ecosystems from six continents to evaluate the relative importance of aridity and mean annual temperature, and of other abiotic (e.g., texture) and biotic (e.g., plant cover) variables as drivers of SVM, calculated as the averaged coefficient of variation for multiple soil variables linked to nutrient stocks and cycling. We found that increases in temperature and aridity were globally correlated to increases in SVM. Some of these climatic effects on SVM were direct, but others were indirectly driven through reductions in the number of vegetation patches and increases in soil sand content. The predictive capacity of our structural equation modelling was clearly higher for the spatial variability of N- than for C- and P-related soil variables. In the case of N cycling, the effects of temperature and aridity were both direct and indirect via changes in soil properties. For C and P, the effect of climate was mainly indirect via changes in plant attributes. These results suggest that future changes in climate may decouple the spatial availability of these elements for plants and microbes in dryland soils. Our findings significantly advance our understanding of the patterns and mechanisms driving SVM in drylands across the globe, which is critical for predicting changes in ecosystem functioning in response to climate change. © 2018 by the Ecological Society of America.
Wilson, Adam M.; Jetz, Walter
2016-01-01
Cloud cover can influence numerous important ecological processes, including reproduction, growth, survival, and behavior, yet our assessment of its importance at the appropriate spatial scales has remained remarkably limited. If captured over a large extent yet at sufficiently fine spatial grain, cloud cover dynamics may provide key information for delineating a variety of habitat types and predicting species distributions. Here, we develop new near-global, fine-grain (≈1 km) monthly cloud frequencies from 15 y of twice-daily Moderate Resolution Imaging Spectroradiometer (MODIS) satellite images that expose spatiotemporal cloud cover dynamics of previously undocumented global complexity. We demonstrate that cloud cover varies strongly in its geographic heterogeneity and that the direct, observation-based nature of cloud-derived metrics can improve predictions of habitats, ecosystem, and species distributions with reduced spatial autocorrelation compared to commonly used interpolated climate data. These findings support the fundamental role of remote sensing as an effective lens through which to understand and globally monitor the fine-grain spatial variability of key biodiversity and ecosystem properties. PMID:27031693
Local and global dynamical effects of dark energy
NASA Astrophysics Data System (ADS)
Chernin, A. D.
Local expansion flows of galaxies were discovered by Lemaitre and Hubble in 1927-29 at distances of less than 25-30 Mpc. The global expansion of the Universe as a whole was predicted theoretically by Friedmann in 1922-24 and discovered in the 1990s in observations at truly cosmological distances of more than 1 000 Mpc. On all these spatial scales, the flows follow a (nearly) linear velocity-distance relation, known now as Hubble's law. This similarity of local and global phenomena is due to the universal dark energy antigravity which dominates the cosmic dynamics on both local and global spatial scales.
Highlighting the Structure-Function Relationship of the Brain with the Ising Model and Graph Theory
Das, T. K.; Abeyasinghe, P. M.; Crone, J. S.; Sosnowski, A.; Laureys, S.; Owen, A. M.; Soddu, A.
2014-01-01
With the advent of neuroimaging techniques, it becomes feasible to explore the structure-function relationships in the brain. When the brain is not involved in any cognitive task or stimulated by any external output, it preserves important activities which follow well-defined spatial distribution patterns. Understanding the self-organization of the brain from its anatomical structure, it has been recently suggested to model the observed functional pattern from the structure of white matter fiber bundles. Different models which study synchronization (e.g., the Kuramoto model) or global dynamics (e.g., the Ising model) have shown success in capturing fundamental properties of the brain. In particular, these models can explain the competition between modularity and specialization and the need for integration in the brain. Graphing the functional and structural brain organization supports the model and can also highlight the strategy used to process and organize large amount of information traveling between the different modules. How the flow of information can be prevented or partially destroyed in pathological states, like in severe brain injured patients with disorders of consciousness or by pharmacological induction like in anaesthesia, will also help us to better understand how global or integrated behavior can emerge from local and modular interactions. PMID:25276772
2017-01-01
When adjusting the contrast setting on a television set, we experience a perceptual change in the global image contrast. But how is that statistic computed? We addressed this using a contrast-matching task for checkerboard configurations of micro-patterns in which the contrasts and spatial spreads of two interdigitated components were controlled independently. When the patterns differed greatly in contrast, the higher contrast determined the perceived global contrast. Crucially, however, low contrast additions of one pattern to intermediate contrasts of the other caused a paradoxical reduction in the perceived global contrast. None of the following metrics/models predicted this: max, linear sum, average, energy, root mean squared (RMS), Legge and Foley. However, a nonlinear gain control model, derived from contrast detection and discrimination experiments, incorporating wide-field summation and suppression, did predict the results with no free parameters, but only when spatial filtering was removed. We conclude that our model describes fundamental processes in human contrast vision (the pattern of results was the same for expert and naive observers), but that above threshold—when contrast pedestals are clearly visible—vision's spatial filtering characteristics become transparent, tending towards those of a delta function prior to spatial summation. The global contrast statistic from our model is as easily derived as the RMS contrast of an image, and since it more closely relates to human perception, we suggest it be used as an image contrast metric in practical applications. PMID:28989735
Duncan, Dustin T.; Kawachi, Ichiro; Kum, Susan; Aldstadt, Jared; Piras, Gianfranco; Matthews, Stephen A.; Arbia, Giuseppe; Castro, Marcia C.; White, Kellee; Williams, David R.
2017-01-01
The racial/ethnic and income composition of neighborhoods often influences local amenities, including the potential spatial distribution of trees, which are important for population health and community wellbeing, particularly in urban areas. This ecological study used spatial analytical methods to assess the relationship between neighborhood socio-demographic characteristics (i.e. minority racial/ethnic composition and poverty) and tree density at the census tact level in Boston, Massachusetts (US). We examined spatial autocorrelation with the Global Moran’s I for all study variables and in the ordinary least squares (OLS) regression residuals as well as computed Spearman correlations non-adjusted and adjusted for spatial autocorrelation between socio-demographic characteristics and tree density. Next, we fit traditional regressions (i.e. OLS regression models) and spatial regressions (i.e. spatial simultaneous autoregressive models), as appropriate. We found significant positive spatial autocorrelation for all neighborhood socio-demographic characteristics (Global Moran’s I range from 0.24 to 0.86, all P=0.001), for tree density (Global Moran’s I=0.452, P=0.001), and in the OLS regression residuals (Global Moran’s I range from 0.32 to 0.38, all P<0.001). Therefore, we fit the spatial simultaneous autoregressive models. There was a negative correlation between neighborhood percent non-Hispanic Black and tree density (rS=−0.19; conventional P-value=0.016; spatially adjusted P-value=0.299) as well as a negative correlation between predominantly non-Hispanic Black (over 60% Black) neighborhoods and tree density (rS=−0.18; conventional P-value=0.019; spatially adjusted P-value=0.180). While the conventional OLS regression model found a marginally significant inverse relationship between Black neighborhoods and tree density, we found no statistically significant relationship between neighborhood socio-demographic composition and tree density in the spatial regression models. Methodologically, our study suggests the need to take into account spatial autocorrelation as findings/conclusions can change when the spatial autocorrelation is ignored. Substantively, our findings suggest no need for policy intervention vis-à-vis trees in Boston, though we hasten to add that replication studies, and more nuanced data on tree quality, age and diversity are needed. PMID:29354668
Mealor, Andy D; Simner, Julia; Rothen, Nicolas; Carmichael, Duncan A; Ward, Jamie
2016-01-01
We developed the Sussex Cognitive Styles Questionnaire (SCSQ) to investigate visual and verbal processing preferences and incorporate global/local processing orientations and systemising into a single, comprehensive measure. In Study 1 (N = 1542), factor analysis revealed six reliable subscales to the final 60 item questionnaire: Imagery Ability (relating to the use of visual mental imagery in everyday life); Technical/Spatial (relating to spatial mental imagery, and numerical and technical cognition); Language & Word Forms; Need for Organisation; Global Bias; and Systemising Tendency. Thus, we replicate previous findings that visual and verbal styles are separable, and that types of imagery can be subdivided. We extend previous research by showing that spatial imagery clusters with other abstract cognitive skills, and demonstrate that global/local bias can be separated from systemising. Study 2 validated the Technical/Spatial and Language & Word Forms factors by showing that they affect performance on memory tasks. In Study 3, we validated Imagery Ability, Technical/Spatial, Language & Word Forms, Global Bias, and Systemising Tendency by issuing the SCSQ to a sample of synaesthetes (N = 121) who report atypical cognitive profiles on these subscales. Thus, the SCSQ consolidates research from traditionally disparate areas of cognitive science into a comprehensive cognitive style measure, which can be used in the general population, and special populations.
Mealor, Andy D.; Simner, Julia; Rothen, Nicolas; Carmichael, Duncan A.; Ward, Jamie
2016-01-01
We developed the Sussex Cognitive Styles Questionnaire (SCSQ) to investigate visual and verbal processing preferences and incorporate global/local processing orientations and systemising into a single, comprehensive measure. In Study 1 (N = 1542), factor analysis revealed six reliable subscales to the final 60 item questionnaire: Imagery Ability (relating to the use of visual mental imagery in everyday life); Technical/Spatial (relating to spatial mental imagery, and numerical and technical cognition); Language & Word Forms; Need for Organisation; Global Bias; and Systemising Tendency. Thus, we replicate previous findings that visual and verbal styles are separable, and that types of imagery can be subdivided. We extend previous research by showing that spatial imagery clusters with other abstract cognitive skills, and demonstrate that global/local bias can be separated from systemising. Study 2 validated the Technical/Spatial and Language & Word Forms factors by showing that they affect performance on memory tasks. In Study 3, we validated Imagery Ability, Technical/Spatial, Language & Word Forms, Global Bias, and Systemising Tendency by issuing the SCSQ to a sample of synaesthetes (N = 121) who report atypical cognitive profiles on these subscales. Thus, the SCSQ consolidates research from traditionally disparate areas of cognitive science into a comprehensive cognitive style measure, which can be used in the general population, and special populations. PMID:27191169
NASA Astrophysics Data System (ADS)
Shishov, V. I.; Chashei, I. V.; Oreshko, V. V.; Logvinenko, S. V.; Tyul'bashev, S. A.; Subaev, I. A.; Svidskii, P. M.; Lapshin, V. B.; Dagkesamanskii, R. D.
2016-12-01
The design properties and technical characteristics of the upgraded Large Phased Array (LPA) are briefly described. The results of an annual cycle of observations of interplanetary scintillations of radio sources on the LPA with the new 96-beam BEAM 3 system are presented. Within a day, about 5000 radio sources displaying second-timescale fluctuations in their flux densities due to interplanetary scintillations were observed. At present, the parameters of many of these radio sources are unknown. Therefore, the number of sources with root-mean-square flux-density fluctuations greater than 0.2 Jy in a 3° × 3° area of sky was used to characterize the scintillation level. The observational data obtained during the period of the maximum of solar cycle 24 can be interpreted using a three-component model for the spatial structure of the solar wind, consisting of a stable global component, propagating disturbances, and corotating structures. The global component corresponds to the spherically symmetric structure of the distribution of the turbulent interplanetary plasma. Disturbances propagating from the Sun are observed against the background of the global structure. Propagating disturbances recorded at heliocentric distances of 0.4-1 AU and at all heliolatitudes reach the Earth's orbit one to two days after the scintillation enhancement. Enhancements of ionospheric scintillations are observed during night-time. Corotating disturbances have a recurrence period of 27 d . Disturbances of the ionosphere are observed as the coronal base of a corotating structure approaches the western edge of the solar limb.
Lemey, Philippe; Rambaut, Andrew; Bedford, Trevor; Faria, Nuno; Bielejec, Filip; Baele, Guy; Russell, Colin A; Smith, Derek J; Pybus, Oliver G; Brockmann, Dirk; Suchard, Marc A
2014-02-01
Information on global human movement patterns is central to spatial epidemiological models used to predict the behavior of influenza and other infectious diseases. Yet it remains difficult to test which modes of dispersal drive pathogen spread at various geographic scales using standard epidemiological data alone. Evolutionary analyses of pathogen genome sequences increasingly provide insights into the spatial dynamics of influenza viruses, but to date they have largely neglected the wealth of information on human mobility, mainly because no statistical framework exists within which viral gene sequences and empirical data on host movement can be combined. Here, we address this problem by applying a phylogeographic approach to elucidate the global spread of human influenza subtype H3N2 and assess its ability to predict the spatial spread of human influenza A viruses worldwide. Using a framework that estimates the migration history of human influenza while simultaneously testing and quantifying a range of potential predictive variables of spatial spread, we show that the global dynamics of influenza H3N2 are driven by air passenger flows, whereas at more local scales spread is also determined by processes that correlate with geographic distance. Our analyses further confirm a central role for mainland China and Southeast Asia in maintaining a source population for global influenza diversity. By comparing model output with the known pandemic expansion of H1N1 during 2009, we demonstrate that predictions of influenza spatial spread are most accurate when data on human mobility and viral evolution are integrated. In conclusion, the global dynamics of influenza viruses are best explained by combining human mobility data with the spatial information inherent in sampled viral genomes. The integrated approach introduced here offers great potential for epidemiological surveillance through phylogeographic reconstructions and for improving predictive models of disease control.
NASA Technical Reports Server (NTRS)
Lauvaux, Thomas; Miles, Natasha L.; Deng, Aijun; Richardson, Scott J.; Cambaliza, Maria O.; Davis, Kenneth J.; Gaudet, Brian; Gurney, Kevin R.; Huang, Jianhua; O'Keefe, Darragh;
2016-01-01
Urban emissions of greenhouse gases (GHG) represent more than 70% of the global fossil fuel GHG emissions. Unless mitigation strategies are successfully implemented, the increase in urban GHG emissions is almost inevitable as large metropolitan areas are projected to grow twice as fast as the world population in the coming 15 years. Monitoring these emissions becomes a critical need as their contribution to the global carbon budget increases rapidly. In this study, we developed the first comprehensive monitoring systems of CO2 emissions at high resolution using a dense network of CO2 atmospheric measurements over the city of Indianapolis. The inversion system was evaluated over a 8-month period and showed an increase compared to the Hestia CO2 emission estimate, a state-of-the-art building-level emission product, with a 20% increase in the total emissions over the area (from 4.5 to 5.7 Metric Megatons of Carbon +/- 0.23 Metric Megatons of Carbon). However, several key parameters of the inverse system need to be addressed to carefully characterize the spatial distribution of the emissions and the aggregated total emissions.We found that spatial structures in prior emission errors, mostly undetermined, affect significantly the spatial pattern in the inverse solution, as well as the carbon budget over the urban area. Several other parameters of the inversion were sufficiently constrained by additional observations such as the characterization of the GHG boundary inflow and the introduction of hourly transport model errors estimated from the meteorological assimilation system. Finally, we estimated the uncertainties associated with remaining systematic errors and undetermined parameters using an ensemble of inversions. The total CO2 emissions for the Indianapolis urban area based on the ensemble mean and quartiles are 5.26 - 5.91 Metric Megatons of Carbon, i.e. a statistically significant difference compared to the prior total emissions of 4.1 to 4.5 Metric Megatons of Carbon. We therefore conclude that atmospheric inversions are potentially able to constrain the carbon budget of the city, assuming sufficient data to measure the inflow of GHG over the city, but additional information on prior emissions and their associated error structures are required if we are to determine the spatial structures of urban emissions at high resolution.
Guitet, Stéphane; Hérault, Bruno; Molto, Quentin; Brunaux, Olivier; Couteron, Pierre
2015-01-01
Precise mapping of above-ground biomass (AGB) is a major challenge for the success of REDD+ processes in tropical rainforest. The usual mapping methods are based on two hypotheses: a large and long-ranged spatial autocorrelation and a strong environment influence at the regional scale. However, there are no studies of the spatial structure of AGB at the landscapes scale to support these assumptions. We studied spatial variation in AGB at various scales using two large forest inventories conducted in French Guiana. The dataset comprised 2507 plots (0.4 to 0.5 ha) of undisturbed rainforest distributed over the whole region. After checking the uncertainties of estimates obtained from these data, we used half of the dataset to develop explicit predictive models including spatial and environmental effects and tested the accuracy of the resulting maps according to their resolution using the rest of the data. Forest inventories provided accurate AGB estimates at the plot scale, for a mean of 325 Mg.ha-1. They revealed high local variability combined with a weak autocorrelation up to distances of no more than10 km. Environmental variables accounted for a minor part of spatial variation. Accuracy of the best model including spatial effects was 90 Mg.ha-1 at plot scale but coarse graining up to 2-km resolution allowed mapping AGB with accuracy lower than 50 Mg.ha-1. Whatever the resolution, no agreement was found with available pan-tropical reference maps at all resolutions. We concluded that the combined weak autocorrelation and weak environmental effect limit AGB maps accuracy in rainforest, and that a trade-off has to be found between spatial resolution and effective accuracy until adequate "wall-to-wall" remote sensing signals provide reliable AGB predictions. Waiting for this, using large forest inventories with low sampling rate (<0.5%) may be an efficient way to increase the global coverage of AGB maps with acceptable accuracy at kilometric resolution.
Phylogeography of Influenza A(H3N2) Virus in Peru, 2010-2012.
Pollett, Simon; Nelson, Martha I; Kasper, Matthew; Tinoco, Yeny; Simons, Mark; Romero, Candice; Silva, Marita; Lin, Xudong; Halpin, Rebecca A; Fedorova, Nadia; Stockwell, Timothy B; Wentworth, David; Holmes, Edward C; Bausch, Daniel G
2015-08-01
It remains unclear whether lineages of influenza A(H3N2) virus can persist in the tropics and seed temperate areas. We used viral gene sequence data sampled from Peru to test this source-sink model for a Latin American country. Viruses were obtained during 2010-2012 from influenza surveillance cohorts in Cusco, Tumbes, Puerto Maldonado, and Lima. Specimens positive for influenza A(H3N2) virus were randomly selected and underwent hemagglutinin sequencing and phylogeographic analyses. Analysis of 389 hemagglutinin sequences from Peru and 2,192 global sequences demonstrated interseasonal extinction of Peruvian lineages. Extensive mixing occurred with global clades, but some spatial structure was observed at all sites; this structure was weakest in Lima and Puerto Maldonado, indicating that these locations may experience greater viral traffic. The broad diversity and co-circulation of many simultaneous lineages of H3N2 virus in Peru suggests that this country should not be overlooked as a potential source for novel pandemic strains.
Phylogeography of Influenza A(H3N2) Virus in Peru, 2010–2012
Nelson, Martha I.; Kasper, Matthew; Tinoco, Yeny; Simons, Mark; Romero, Candice; Silva, Marita; Lin, Xudong; Halpin, Rebecca A.; Fedorova, Nadia; Stockwell, Timothy B.; Wentworth, David; Holmes, Edward C.; Bausch, Daniel G.
2015-01-01
It remains unclear whether lineages of influenza A(H3N2) virus can persist in the tropics and seed temperate areas. We used viral gene sequence data sampled from Peru to test this source–sink model for a Latin American country. Viruses were obtained during 2010–2012 from influenza surveillance cohorts in Cusco, Tumbes, Puerto Maldonado, and Lima. Specimens positive for influenza A(H3N2) virus were randomly selected and underwent hemagglutinin sequencing and phylogeographic analyses. Analysis of 389 hemagglutinin sequences from Peru and 2,192 global sequences demonstrated interseasonal extinction of Peruvian lineages. Extensive mixing occurred with global clades, but some spatial structure was observed at all sites; this structure was weakest in Lima and Puerto Maldonado, indicating that these locations may experience greater viral traffic. The broad diversity and co-circulation of many simultaneous lineages of H3N2 virus in Peru suggests that this country should not be overlooked as a potential source for novel pandemic strains. PMID:26196599
On the Structure of Cortical Microcircuits Inferred from Small Sample Sizes.
Vegué, Marina; Perin, Rodrigo; Roxin, Alex
2017-08-30
The structure in cortical microcircuits deviates from what would be expected in a purely random network, which has been seen as evidence of clustering. To address this issue, we sought to reproduce the nonrandom features of cortical circuits by considering several distinct classes of network topology, including clustered networks, networks with distance-dependent connectivity, and those with broad degree distributions. To our surprise, we found that all of these qualitatively distinct topologies could account equally well for all reported nonrandom features despite being easily distinguishable from one another at the network level. This apparent paradox was a consequence of estimating network properties given only small sample sizes. In other words, networks that differ markedly in their global structure can look quite similar locally. This makes inferring network structure from small sample sizes, a necessity given the technical difficulty inherent in simultaneous intracellular recordings, problematic. We found that a network statistic called the sample degree correlation (SDC) overcomes this difficulty. The SDC depends only on parameters that can be estimated reliably given small sample sizes and is an accurate fingerprint of every topological family. We applied the SDC criterion to data from rat visual and somatosensory cortex and discovered that the connectivity was not consistent with any of these main topological classes. However, we were able to fit the experimental data with a more general network class, of which all previous topologies were special cases. The resulting network topology could be interpreted as a combination of physical spatial dependence and nonspatial, hierarchical clustering. SIGNIFICANCE STATEMENT The connectivity of cortical microcircuits exhibits features that are inconsistent with a simple random network. Here, we show that several classes of network models can account for this nonrandom structure despite qualitative differences in their global properties. This apparent paradox is a consequence of the small numbers of simultaneously recorded neurons in experiment: when inferred via small sample sizes, many networks may be indistinguishable despite being globally distinct. We develop a connectivity measure that successfully classifies networks even when estimated locally with a few neurons at a time. We show that data from rat cortex is consistent with a network in which the likelihood of a connection between neurons depends on spatial distance and on nonspatial, asymmetric clustering. Copyright © 2017 the authors 0270-6474/17/378498-13$15.00/0.
Montoro, Pedro R; Luna, Dolores
2009-10-01
Previous studies on the processing of hierarchical patterns (Luna & Montoro, 2008) have shown that altering the spatial relationships between the local elements affected processing dominance by decreasing global advantage. In the present article, the authors examine whether heterogeneity or a sparse distribution of the local elements was the responsible factor for this effect. In Experiments 1 and 2, the distance between the local elements was increased in a similar way, but between-element distance was homogeneous in Experiment 1 and heterogeneous in Experiment 2. In Experiment 3, local elements' size was varied by presenting global patterns composed of similar large or small local elements and of different large and small sizes. The results of the present research showed that, instead of element sparsity, spatial heterogeneity that could change the appearance of the global form as well as the salience of the local elements was the main determiner of impairing global processing.
A comparative analysis of the Global Land Cover 2000 and MODIS land cover data sets
Giri, C.; Zhu, Z.; Reed, B.
2005-01-01
Accurate and up-to-date global land cover data sets are necessary for various global change research studies including climate change, biodiversity conservation, ecosystem assessment, and environmental modeling. In recent years, substantial advancement has been achieved in generating such data products. Yet, we are far from producing geospatially consistent high-quality data at an operational level. We compared the recently available Global Land Cover 2000 (GLC-2000) and MODerate resolution Imaging Spectrometer (MODIS) global land cover data to evaluate the similarities and differences in methodologies and results, and to identify areas of spatial agreement and disagreement. These two global land cover data sets were prepared using different data sources, classification systems, and methodologies, but using the same spatial resolution (i.e., 1 km) satellite data. Our analysis shows a general agreement at the class aggregate level except for savannas/shrublands, and wetlands. The disagreement, however, increases when comparing detailed land cover classes. Similarly, percent agreement between the two data sets was found to be highly variable among biomes. The identified areas of spatial agreement and disagreement will be useful for both data producers and users. Data producers may use the areas of spatial agreement for training area selection and pay special attention to areas of disagreement for further improvement in future land cover characterization and mapping. Users can conveniently use the findings in the areas of agreement, whereas users might need to verify the informaiton in the areas of disagreement with the help of secondary information. Learning from past experience and building on the existing infrastructure (e.g., regional networks), further research is necessary to (1) reduce ambiguity in land cover definitions, (2) increase availability of improved spatial, spectral, radiometric, and geometric resolution satellite data, and (3) develop advanced classification algorithms.
NASA Astrophysics Data System (ADS)
Zhang, Z.; Zimmermann, N. E.; Poulter, B.
2015-11-01
Simulations of the spatial-temporal dynamics of wetlands are key to understanding the role of wetland biogeochemistry under past and future climate variability. Hydrologic inundation models, such as TOPMODEL, are based on a fundamental parameter known as the compound topographic index (CTI) and provide a computationally cost-efficient approach to simulate wetland dynamics at global scales. However, there remains large discrepancy in the implementations of TOPMODEL in land-surface models (LSMs) and thus their performance against observations. This study describes new improvements to TOPMODEL implementation and estimates of global wetland dynamics using the LPJ-wsl dynamic global vegetation model (DGVM), and quantifies uncertainties by comparing three digital elevation model products (HYDRO1k, GMTED, and HydroSHEDS) at different spatial resolution and accuracy on simulated inundation dynamics. In addition, we found that calibrating TOPMODEL with a benchmark wetland dataset can help to successfully delineate the seasonal and interannual variations of wetlands, as well as improve the spatial distribution of wetlands to be consistent with inventories. The HydroSHEDS DEM, using a river-basin scheme for aggregating the CTI, shows best accuracy for capturing the spatio-temporal dynamics of wetlands among the three DEM products. The estimate of global wetland potential/maximum is ∼ 10.3 Mkm2 (106 km2), with a mean annual maximum of ∼ 5.17 Mkm2 for 1980-2010. This study demonstrates the feasibility to capture spatial heterogeneity of inundation and to estimate seasonal and interannual variations in wetland by coupling a hydrological module in LSMs with appropriate benchmark datasets. It additionally highlights the importance of an adequate investigation of topographic indices for simulating global wetlands and shows the opportunity to converge wetland estimates across LSMs by identifying the uncertainty associated with existing wetland products.
NASA Astrophysics Data System (ADS)
Nakano, Masuo; Wada, Akiyoshi; Sawada, Masahiro; Yoshimura, Hiromasa; Onishi, Ryo; Kawahara, Shintaro; Sasaki, Wataru; Nasuno, Tomoe; Yamaguchi, Munehiko; Iriguchi, Takeshi; Sugi, Masato; Takeuchi, Yoshiaki
2017-03-01
Recent advances in high-performance computers facilitate operational numerical weather prediction by global hydrostatic atmospheric models with horizontal resolutions of ˜ 10 km. Given further advances in such computers and the fact that the hydrostatic balance approximation becomes invalid for spatial scales < 10 km, the development of global nonhydrostatic models with high accuracy is urgently required. The Global 7 km mesh nonhydrostatic Model Intercomparison Project for improving TYphoon forecast (TYMIP-G7) is designed to understand and statistically quantify the advantages of high-resolution nonhydrostatic global atmospheric models to improve tropical cyclone (TC) prediction. A total of 137 sets of 5-day simulations using three next-generation nonhydrostatic global models with horizontal resolutions of 7 km and a conventional hydrostatic global model with a horizontal resolution of 20 km were run on the Earth Simulator. The three 7 km mesh nonhydrostatic models are the nonhydrostatic global spectral atmospheric Double Fourier Series Model (DFSM), the Multi-Scale Simulator for the Geoenvironment (MSSG) and the Nonhydrostatic ICosahedral Atmospheric Model (NICAM). The 20 km mesh hydrostatic model is the operational Global Spectral Model (GSM) of the Japan Meteorological Agency. Compared with the 20 km mesh GSM, the 7 km mesh models reduce systematic errors in the TC track, intensity and wind radii predictions. The benefits of the multi-model ensemble method were confirmed for the 7 km mesh nonhydrostatic global models. While the three 7 km mesh models reproduce the typical axisymmetric mean inner-core structure, including the primary and secondary circulations, the simulated TC structures and their intensities in each case are very different for each model. In addition, the simulated track is not consistently better than that of the 20 km mesh GSM. These results suggest that the development of more sophisticated initialization techniques and model physics is needed to further improve the TC prediction.
What's exposed? Mapping elements at risk from space
NASA Astrophysics Data System (ADS)
Taubenböck, Hannes; Klotz, Martin; Geiß, Christian
2014-05-01
The world has suffered from severe natural disasters over the last decennium. The earthquake in Haiti in 2010 or the typhoon "Haiyan" hitting the Philippines in 2013 are among the most prominent examples in recent years. Especially in developing countries, knowledge on amount, location or type of the exposed elements or people is often not given. (Geo)-data are mostly inaccurate, generalized, not up-to-date or even not available at all. Thus, fast and effective disaster management is often delayed until necessary geo-data allow an assessment of effected people, buildings, infrastructure and their respective locations. In the last decade, Earth observation data and methods have developed a product portfolio from low resolution land cover datasets to high resolution spatially accurate building inventories to classify elements at risk or even assess indirectly population densities. This presentation will give an overview on the current available products and EO-based capabilities from global to local scale. On global to regional scale, remote sensing derived geo-products help to approximate the inventory of elements at risk in their spatial extent and abundance by mapping and modelling approaches of land cover or related spatial attributes such as night-time illumination or fractions of impervious surfaces. The capabilities and limitations for mapping physical exposure will be discussed in detail using the example of DLR's 'Global Urban Footprint' initiative. On local scale, the potential of remote sensing particularly lies in the generation of spatially and thematically accurate building inventories for the detailed analysis of the building stock's physical exposure. Even vulnerability-related indicators can be derived. Indicators such as building footprint, height, shape characteristics, roof materials, location, and construction age and structure type have already been combined with civil engineering approaches to assess building stability for large areas. Especially last generation optical sensors - often in combination with digital surface models - featuring very high geometric resolutions are perceived as advantageous for operational applications, especially for small to medium scale urban areas. With regard to user-oriented product generation in the FP-7project SENSUM, a multi-scale and multi-source reference database has been set up to systematically screen available products - global to local ones - with regard to data availability in data-rich and data-poor countries. Thus, the higher ranking goal in this presentation is to provide a systematic overview on EO-based data sets and their individual capabilities and limitations with respect to spatial, temporal and thematic details to support decision-making in before, during and after natural disasters.
Lin, L; Ding, W X; Brower, D L
2014-11-01
Combined polarimetry-interferometry capability permits simultaneous measurement of line-integrated density and Faraday effect with fast time response (∼1 μs) and high sensitivity. Faraday effect fluctuations with phase shift of order 0.05° associated with global tearing modes are resolved with an uncertainty ∼0.01°. For physics investigations, local density fluctuations are obtained by inverting the line-integrated interferometry data. The local magnetic and current density fluctuations are then reconstructed using a parameterized fit of the polarimetry data. Reconstructed 2D images of density and magnetic field fluctuations in a poloidal cross section exhibit significantly different spatial structure. Combined with their relative phase, the magnetic-fluctuation-induced particle transport flux and its spatial distribution are resolved.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Lin, L., E-mail: lianglin@ucla.edu; Ding, W. X.; Brower, D. L.
2014-11-15
Combined polarimetry-interferometry capability permits simultaneous measurement of line-integrated density and Faraday effect with fast time response (∼1 μs) and high sensitivity. Faraday effect fluctuations with phase shift of order 0.05° associated with global tearing modes are resolved with an uncertainty ∼0.01°. For physics investigations, local density fluctuations are obtained by inverting the line-integrated interferometry data. The local magnetic and current density fluctuations are then reconstructed using a parameterized fit of the polarimetry data. Reconstructed 2D images of density and magnetic field fluctuations in a poloidal cross section exhibit significantly different spatial structure. Combined with their relative phase, the magnetic-fluctuation-induced particlemore » transport flux and its spatial distribution are resolved.« less
NASA Astrophysics Data System (ADS)
Giupponi, Carlo; Mojtahed, Vahid
2017-04-01
Global climate and socio-economic drivers determine the future patterns of the allocation and the trade of resources and commodities in all markets. The agricultural sector is an emblematic case in which natural (e.g. climate), social (e.g. demography) and economic (e.g. the market) drivers of change interact, determining the evolution of social and ecological systems (or simply socio-ecosystems; SES) over time. In order to analyse the dynamics and possible future evolutions of SES, the combination of local complex systems and global drivers and trends require the development of multiscale approaches. At global level, climatic general circulation models (CGM) and computable general equilibrium or partial equilibrium models have been used for many years to explore the effects of global trends and generate future climate and socio-economic scenarios. Al local level, the inherent complexity of SESs and their spatial and temporal variabilities require different modelling approaches of physical/environmental sub-systems (e.g. field scale crop modelling, GIS-based models, etc.) and of human agency decision makers (e.g. agent based models). Global and local models have different assumption, limitations, constrains, etc., but in some cases integration is possible and several attempts are in progress to couple different models within the so-called Integrated Assessment Models. This work explores an innovative proposal to integrate the global and local approaches, where agent-based models (ABM) are used to simulate spatial (i.e. grid-based) and temporal dynamics of land and water resource use spatial and temporal dynamics, under the effect of global drivers. We focus in particular on how global change may affect land-use allocation at the local to regional level, under the influence of limited natural resources, land and water in particular. We specifically explore how constrains and competition for natural resources may induce non-linearities and discontinuities in socio-ecosystems behaviour. Our general ambition is to explore the feasibility of an approach that could be implemented worldwide through the identification of representative cases described by means of spatially explicit integrated simulations in communication with global modelling. Our specific objective is to test how ABMs can support scenario analysis at regional scale, and in particular how this can facilitate understanding of the role of human agency and its behavioural characteristics in local to global dynamics. The SES of interest is the agro-ecosystem with its relationships with other land uses. In order to test the feasibility of application at global level, all the information about land uses, natural resources, local climate, crop potential productions, etc. were derived from freely available spatial data sets covering the whole planet, which provided the ABM model with spatial information as matrices of pixels. Input maps were extracted from the Global Agro-Ecological Zone (GAEZ) web site of the Food and Agriculture Organization of the United Nations and compiled in the local GIS from where they were then converted in a format compatible with Matlab. In this initial application, an ABM prototype was developed in three test areas around the Mediterranean Basin, in agricultural regions of Tunisia, Italy and Spain.
On the Nexus of the Spatial Dynamics of Global Urbanization and the Age of the City
Scheuer, Sebastian; Haase, Dagmar; Volk, Martin
2016-01-01
A number of concepts exist regarding how urbanization can be described as a process. Understanding this process that affects billions of people and its future development in a spatial manner is imperative to address related issues such as human quality of life. In the focus of spatially explicit studies on urbanization is typically a city, a particular urban region, an agglomeration. However, gaps remain in spatially explicit global models. This paper addresses that issue by examining the spatial dynamics of urban areas over time, for a full coverage of the world. The presented model identifies past, present and potential future hotspots of urbanization as a function of an urban area's spatial variation and age, whose relation could be depicted both as a proxy and as a path of urban development. PMID:27490199
On the Nexus of the Spatial Dynamics of Global Urbanization and the Age of the City.
Scheuer, Sebastian; Haase, Dagmar; Volk, Martin
2016-01-01
A number of concepts exist regarding how urbanization can be described as a process. Understanding this process that affects billions of people and its future development in a spatial manner is imperative to address related issues such as human quality of life. In the focus of spatially explicit studies on urbanization is typically a city, a particular urban region, an agglomeration. However, gaps remain in spatially explicit global models. This paper addresses that issue by examining the spatial dynamics of urban areas over time, for a full coverage of the world. The presented model identifies past, present and potential future hotspots of urbanization as a function of an urban area's spatial variation and age, whose relation could be depicted both as a proxy and as a path of urban development.
NASA Astrophysics Data System (ADS)
Li, Pengyao; Xiao, He; Li, Xiang; Hu, Wenhao; Gu, Shoubai; Yu, Zhenrong
2018-01-01
Coping with various ecological risks caused by extreme weather events of global climate change has become an important issue in regional planning, and storm water management for sustainable development. In this paper, taking Shanghai, China as a case study, four potential ecological risks were identified including flood disaster, sea-source disaster, urban heat island effect, and land subsidence. Based on spatial database, the spatial variation of these four ecological risks was evaluated, and the planning area was divided into seven responding regions with different green infrastructure strategy. The methodology developed in this study combining ecological risk evaluation with spatial regionalization planning could contribute to coping with global climate change.
NASA Astrophysics Data System (ADS)
Ribera, M.; Gopal, S.
2014-12-01
Productivity hotspots are traditionally defined as concentrations of relatively high biomass compared to global reference values. These hotspots often signal atypical processes occurring in a location, and identifying them is a great first step at understanding the complexity inherent in the system. However, identifying local hotspots can be difficult when an overarching global pattern (i.e. spatial autocorrelation) already exists. This problem is particularly apparent in marine ecosystems because values of productivity in near-shore areas are consistently higher than those of the open ocean due to oceanographic processes such as upwelling. In such cases, if the global reference layer used to detect hotspots is too wide, hotspots may be only identified near the coast while missing known concentrations of organisms in offshore waters. On the other hand, if the global reference layer is too small, every single location may be considered a hotspot. We applied spatial and traditional statistics to remote sensing data to determine the optimal reference global spatial scale for identifying marine productivity hotspots in the Gulf of Maine. Our iterative process measured Getis and Ord's local G* statistic at different global scales until the variance of each hotspot was maximized. We tested this process with different full resolution MERIS chlorophyll layers (300m spatial resolution) for the whole Gulf of Maine. We concluded that the optimal global scale depends on the time of the year the remote sensing data was collected, particularly when coinciding with known seasonal phytoplankton blooms. The hotspots found through this process were also spatially heterogeneous in size, with bigger hotspots in areas offshore than in locations inshore. These results may be instructive for both managers and fisheries researchers as they adapt their fisheries management policies and methods to an ecosystem based approach (EBM).
Probabilistic Estimates of Global Mean Sea Level and its Underlying Processes
NASA Astrophysics Data System (ADS)
Hay, C.; Morrow, E.; Kopp, R. E.; Mitrovica, J. X.
2015-12-01
Local sea level can vary significantly from the global mean value due to a suite of processes that includes ongoing sea-level changes due to the last ice age, land water storage, ocean circulation changes, and non-uniform sea-level changes that arise when modern-day land ice rapidly melts. Understanding these sources of spatial and temporal variability is critical to estimating past and present sea-level change and projecting future sea-level rise. Using two probabilistic techniques, a multi-model Kalman smoother and Gaussian process regression, we have reanalyzed 20th century tide gauge observations to produce a new estimate of global mean sea level (GMSL). Our methods allow us to extract global information from the sparse tide gauge field by taking advantage of the physics-based and model-derived geometry of the contributing processes. Both methods provide constraints on the sea-level contribution of glacial isostatic adjustment (GIA). The Kalman smoother tests multiple discrete models of glacial isostatic adjustment (GIA), probabilistically computing the most likely GIA model given the observations, while the Gaussian process regression characterizes the prior covariance structure of a suite of GIA models and then uses this structure to estimate the posterior distribution of local rates of GIA-induced sea-level change. We present the two methodologies, the model-derived geometries of the underlying processes, and our new probabilistic estimates of GMSL and GIA.
In Forests Globally, Large Trees Suffer Most during Drought
NASA Astrophysics Data System (ADS)
Bennett, A. C.; McDowell, N. G.; Allen, C. D.; Anderson-Teixeira, K. J.
2014-12-01
Globally, drought events are increasing in both frequency and intensity. Spatial and temporal variation in water availability is expected to alter the ecophysiology and structure of forests, with consequent feedbacks to climate change. Extensive tree mortality induced by heat and aridity has been documented across a range of latitudes, and several global vegetation models have simulated widespread forest die-off in the future. The impact of drought on forest structure and function will depend on the differential responses of trees of different sizes. Understanding the size-dependence of drought-induced mortality is necessary to predict local and global impacts. Here we show that in forests worldwide, drought has a greater impact on the growth and mortality of large trees compared to smaller trees. This trend holds true for forests ranging from semiarid woodlands to tropical rainforests. This finding contrasts with what would be expected if deep root access to water were the primary determinant of tree drought response. Rather, the greater drought response of larger trees could be driven by greater inherent vulnerability of large trees to hydraulic stress or by canopy position becoming more of a liability under drought, as exposed crowns face higher evaporative demand. These findings imply that future droughts will have a disproportionate effect on large trees, resulting in a larger feedback to climate change than would occur if all tree size classes were equally affected by drought.
Enzymology under global change: organic nitrogen turnover in alpine and sub-Arctic soils.
Weedon, James T; Aerts, Rien; Kowalchuk, George A; van Bodegom, Peter M
2011-01-01
Understanding global change impacts on the globally important carbon storage in alpine, Arctic and sub-Arctic soils requires knowledge of the mechanisms underlying the balance between plant primary productivity and decomposition. Given that nitrogen availability limits both processes, understanding the response of the soil nitrogen cycle to shifts in temperature and other global change factors is crucial for predicting the fate of cold biome carbon stores. Measurements of soil enzyme activities at different positions of the nitrogen cycling network are an important tool for this purpose. We review a selection of studies that provide data on potential enzyme activities across natural, seasonal and experimental gradients in cold biomes. Responses of enzyme activities to increased nitrogen availability and temperature are diverse and seasonal dynamics are often larger than differences due to experimental treatments, suggesting that enzyme expression is regulated by a combination of interacting factors reflecting both nutrient supply and demand. The extrapolation from potential enzyme activities to prediction of elemental nitrogen fluxes under field conditions remains challenging. Progress in molecular '-omics' approaches may eventually facilitate deeper understanding of the links between soil microbial community structure and biogeochemical fluxes. In the meantime, accounting for effects of the soil spatial structure and in situ variations in pH and temperature, better mapping of the network of enzymatic processes and the identification of rate-limiting steps under different conditions should advance our ability to predict nitrogen fluxes.
Spatial effects in real networks: Measures, null models, and applications
NASA Astrophysics Data System (ADS)
Ruzzenenti, Franco; Picciolo, Francesco; Basosi, Riccardo; Garlaschelli, Diego
2012-12-01
Spatially embedded networks are shaped by a combination of purely topological (space-independent) and space-dependent formation rules. While it is quite easy to artificially generate networks where the relative importance of these two factors can be varied arbitrarily, it is much more difficult to disentangle these two architectural effects in real networks. Here we propose a solution to this problem, by introducing global and local measures of spatial effects that, through a comparison with adequate null models, effectively filter out the spurious contribution of nonspatial constraints. Our filtering allows us to consistently compare different embedded networks or different historical snapshots of the same network. As a challenging application we analyze the World Trade Web, whose topology is known to depend on geographic distances but is also strongly determined by nonspatial constraints (degree sequence or gross domestic product). Remarkably, we are able to detect weak but significant spatial effects both locally and globally in the network, showing that our method succeeds in retrieving spatial information even when nonspatial factors dominate. We finally relate our results to the economic literature on gravity models and trade globalization.
Measuring Spatial Dependence for Infectious Disease Epidemiology
Grabowski, M. Kate; Cummings, Derek A. T.
2016-01-01
Global spatial clustering is the tendency of points, here cases of infectious disease, to occur closer together than expected by chance. The extent of global clustering can provide a window into the spatial scale of disease transmission, thereby providing insights into the mechanism of spread, and informing optimal surveillance and control. Here the authors present an interpretable measure of spatial clustering, τ, which can be understood as a measure of relative risk. When biological or temporal information can be used to identify sets of potentially linked and likely unlinked cases, this measure can be estimated without knowledge of the underlying population distribution. The greater our ability to distinguish closely related (i.e., separated by few generations of transmission) from more distantly related cases, the more closely τ will track the true scale of transmission. The authors illustrate this approach using examples from the analyses of HIV, dengue and measles, and provide an R package implementing the methods described. The statistic presented, and measures of global clustering in general, can be powerful tools for analysis of spatially resolved data on infectious diseases. PMID:27196422
Network of Spaces and Interaction-Related Behaviors in Adult Intensive Care Units
Rashid, Mahbub; Boyle, Diane K.; Crosser, Michael
2014-01-01
Using three spatial network measures of “space syntax”, this correlational study describes four interaction-related behaviors among three groups of users in relation to visibility and accessibility of spaces in four adult intensive care units (ICUs) of different size, geometry, and specialty. Systematic field observations of interaction-related behaviors show significant differences in spatial distribution of interaction-related behaviors in the ICUs. Despite differences in unit characteristics and interaction-related behaviors, the study finds that when nurses and physicians “interact while sitting” they prefer spaces that help maintain a high level of environmental awareness; that when nurses “walk” and “interact while walking” they avoid spaces with better global access and visibility; and that everyone in ICUs “walk” more in spaces with higher control over neighboring spaces. It is argued that such consistent behavioral patterns occur due to the structural similarities of spatial networks over and above the more general functional similarities of ICUs. PMID:25469838
Hao, Jia-Jie; Lin, De-Chen; Dinh, Huy Q; Mayakonda, Anand; Jiang, Yan-Yi; Chang, Chen; Jiang, Ye; Lu, Chen-Chen; Shi, Zhi-Zhou; Xu, Xin; Zhang, Yu; Cai, Yan; Wang, Jin-Wu; Zhan, Qi-Min; Wei, Wen-Qiang; Berman, Benjamin P; Wang, Ming-Rong; Koeffler, H Phillip
2016-12-01
Esophageal squamous cell carcinoma (ESCC) is among the most common malignancies, but little is known about its spatial intratumoral heterogeneity (ITH) and temporal clonal evolutionary processes. To address this, we performed multiregion whole-exome sequencing on 51 tumor regions from 13 ESCC cases and multiregion global methylation profiling for 3 of these 13 cases. We found an average of 35.8% heterogeneous somatic mutations with strong evidence of ITH. Half of the driver mutations located on the branches of tumor phylogenetic trees targeted oncogenes, including PIK3CA, NFE2L2 and MTOR, among others. By contrast, the majority of truncal and clonal driver mutations occurred in tumor-suppressor genes, including TP53, KMT2D and ZNF750, among others. Interestingly, phyloepigenetic trees robustly recapitulated the topological structures of the phylogenetic trees, indicating a possible relationship between genetic and epigenetic alterations. Our integrated investigations of spatial ITH and clonal evolution provide an important molecular foundation for enhanced understanding of tumorigenesis and progression in ESCC.
LETTER TO THE EDITOR: Evidence for global mixing in real influenza epidemics
NASA Astrophysics Data System (ADS)
Bonabeau, Eric; Toubiana, Laurent; Flahault, Antoine
1998-05-01
The spatiotemporal behaviour of the spread of influenza in France has been studied, and algebraic spatial correlations (with exponent 0305-4470/31/19/001/img5) spanning the whole territory have been found to be present as soon as the number of reported cases begins to increase, about 15 - 25 weeks before the peak of the epidemic. This result is surprising, as one would expect long-range correlations, if any, only in the vicinity of the maximum incidence, whereas our observations suggest that there exists an underlying non-trivial spatial structure at the very beginning of the observed epidemic. The observed long-range correlations are in fact present in the spatial distribution of the population. Correlations in the number of cases normalized by local population density are characterized by 0305-4470/31/19/001/img6. This suggests that the spread of the epidemic is statistically uniform in space over a complex substrate that already contains the observed long-range correlations.
Gradient field of undersea sound speed structure extracted from the GNSS-A oceanography
NASA Astrophysics Data System (ADS)
Yokota, Yusuke; Ishikawa, Tadashi; Watanabe, Shun-ichi
2018-06-01
After the twenty-first century, the Global Navigation Satellite System-Acoustic ranging (GNSS-A) technique detected geodetic events such as co- and postseismic effects following the 2011 Tohoku-oki earthquake and slip-deficit rate distributions along the Nankai Trough subduction zone. Although these are extremely important discoveries in geodesy and seismology, more accurate observation that can capture temporal and spatial changes are required for future earthquake disaster prevention. In order to upgrade the accuracy of the GNSS-A technique, it is necessary to understand disturbances in undersea sound speed structures, which are major error sources. In particular, detailed temporal and spatial variations are difficult to observe accurately, and their effect was not sufficiently extracted in previous studies. In the present paper, we reconstruct an inversion scheme for extracting the effect from GNSS-A data and experimentally apply this scheme to the seafloor sites around the Kuroshio. The extracted gradient effects are believed to represent not only a broad sound speed structure but also a more detailed structure generated in the unsteady disturbance. The accuracy of the seafloor positioning was also improved by this new method. The obtained results demonstrate the feasibility of using the GNSS-A technique to detect a seafloor crustal deformation for oceanography research.
Phosphorus in agricultural soils: drivers of its distribution at the global scale
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ringeval, Bruno; Augusto, Laurent; Monod, Herve
Phosphorus (P) availability in soils limits crop yields in many regions of the world, while excess of soil P triggers aquatic eutrophication in other regions. Numerous processes drive the global spatial distribution of P in agricultural soils, but their relative roles remain unclear. Here, we combined several global datasets describing these drivers with a soil P dynamics model to simulate the distribution of P in agricultural soils and to assess the contributions of the different drivers at the global scale. We analyzed both the labile inorganic P (P ILAB), a proxy of the pool involved in plant nutrition and themore » total soil P (P TOT). We found that the soil biogeochemical background (BIOG) and farming practices (FARM) were the main drivers of the spatial variability in cropland soil P content but that their contribution varied between P TOT vs P ILAB. Indeed, 97% of the P TOT spatial variability could be explained by BIOG, while BIOG and FARM explained 41% and 58% of P ILAB spatial variability, respectively. Other drivers such as climate, soil erosion, atmospheric P deposition and soil buffering capacity made only very small contribution. Lastly, our study is a promising approach to investigate the potential effect of P as a limiting factor for agricultural ecosystems and for global food production. Additionally, we quantified the anthropogenic perturbation of P cycle and demonstrated how the different drivers are combined to explain the global distribution of agricultural soil P.« less
NASA Astrophysics Data System (ADS)
Avitabile, D.; Desroches, M.; Knobloch, E.; Krupa, M.
2017-11-01
A subcritical pattern-forming system with nonlinear advection in a bounded domain is recast as a slow-fast system in space and studied using a combination of geometric singular perturbation theory and numerical continuation. Two types of solutions describing the possible location of stationary fronts are identified, whose origin is traced to the onset of convective and absolute instability when the system is unbounded. The former are present only for non-zero upstream boundary conditions and provide a quantitative understanding of noise-sustained structures in systems of this type. The latter correspond to the onset of a global mode and are present even with zero upstream boundary conditions. The role of canard trajectories in the nonlinear transition between these states is clarified and the stability properties of the resulting spatial structures are determined. Front location in the convective regime is highly sensitive to the upstream boundary condition, and its dependence on this boundary condition is studied using a combination of numerical continuation and Monte Carlo simulations of the partial differential equation. Statistical properties of the system subjected to random or stochastic boundary conditions at the inlet are interpreted using the deterministic slow-fast spatial dynamical system.
Avitabile, D; Desroches, M; Knobloch, E; Krupa, M
2017-11-01
A subcritical pattern-forming system with nonlinear advection in a bounded domain is recast as a slow-fast system in space and studied using a combination of geometric singular perturbation theory and numerical continuation. Two types of solutions describing the possible location of stationary fronts are identified, whose origin is traced to the onset of convective and absolute instability when the system is unbounded. The former are present only for non-zero upstream boundary conditions and provide a quantitative understanding of noise-sustained structures in systems of this type. The latter correspond to the onset of a global mode and are present even with zero upstream boundary conditions. The role of canard trajectories in the nonlinear transition between these states is clarified and the stability properties of the resulting spatial structures are determined. Front location in the convective regime is highly sensitive to the upstream boundary condition, and its dependence on this boundary condition is studied using a combination of numerical continuation and Monte Carlo simulations of the partial differential equation. Statistical properties of the system subjected to random or stochastic boundary conditions at the inlet are interpreted using the deterministic slow-fast spatial dynamical system.
Multimodal dispersal during the range expansion of the tropical house gecko Hemidactylus mabouia
Short, Kristen H; Petren, Kenneth
2011-01-01
Dispersal influences both the ecological and evolutionary dynamics of range expansion. While some studies have demonstrated a role for human-mediated dispersal during invasion, the genetic effects of such dispersal remain to be understood, particularly in terrestrial range expansions. In this study, we investigated multimodal dispersal during the range expansion of the invasive gecko Hemidactylus mabouia in Florida using 12 microsatellite loci. We investigated dispersal patterns at the regional scale (metropolitan areas), statewide scale (state of Florida), and global scale (including samples from the native range). Dispersal was limited at the smallest, regional scale, within metropolitan areas, as reflected by the presence of genetic structure at this scale, which is in agreement with a previous study in this same invasion at even smaller spatial scales. Surprisingly, there was no detectable genetic structure at the intermediate statewide scale, which suggests dispersal is not limited across the state of Florida. There was evidence of genetic differentiation between Florida and other areas where H. mabouia occurs, so we concluded that at the largest scale, dispersal was limited. Humans likely contributed to patterns of dispersal at all three scales but in different ways. Infrequent low-volume dispersal has occurred within regions, frequent high-volume dispersal has occurred across the state, and infrequent long-distance dispersal has occurred among continents at the global scale. This study highlights the importance of considering different modes of dispersal at multiple spatial scales to understand the dynamics of invasion and range expansion. PMID:22393494
Using the CARDAMOM framework to retrieve global terrestrial ecosystem functioning properties
NASA Astrophysics Data System (ADS)
Exbrayat, Jean-François; Bloom, A. Anthony; Smallman, T. Luke; van der Velde, Ivar R.; Feng, Liang; Williams, Mathew
2016-04-01
Terrestrial ecosystems act as a sink for anthropogenic emissions of fossil-fuel and thereby partially offset the ongoing global warming. However, recent model benchmarking and intercomparison studies have highlighted the non-trivial uncertainties that exist in our understanding of key ecosystem properties like plant carbon allocation and residence times. It leads to worrisome differences in terrestrial carbon stocks simulated by Earth system models, and their evolution in a warming future. In this presentation we attempt to provide global insights on these properties by merging an ecosystem model with remotely-sensed global observations of leaf area and biomass through a data-assimilation system: the CARbon Data MOdel fraMework (CARDAMOM). CARDAMOM relies on a Markov Chain Monte Carlo algorithm to retrieve confidence intervals of model parameters that regulate ecosystem properties independently of any prior land-cover information. The MCMC method thereby enables an explicit representation of the uncertainty in land-atmosphere fluxes and the evolution of terrestrial carbon stocks through time. Global experiments are performed for the first decade of the 21st century using a 1°×1° spatial resolution. Relationships emerge globally between key ecosystem properties. For example, our analyses indicate that leaf lifespan and leaf mass per area are highly correlated. Furthermore, there exists a latitudinal gradient in allocation patterns: high latitude ecosystems allocate more carbon to photosynthetic carbon (leaves) while plants invest more carbon in their structural parts (wood and root) in the wet tropics. Overall, the spatial distribution of these ecosystem properties does not correspond to usual land-cover maps and are also partially correlated with disturbance regimes. For example, fire-prone ecosystems present statistically significant higher values of carbon use efficiency than less disturbed ecosystems experiencing similar climatic conditions. These results raise concerns on the suitability of the plant functional type paradigm for terrestrial carbon cycling.
Bray, Signe
2017-05-01
Healthy brain development involves changes in brain structure and function that are believed to support cognitive maturation. However, understanding how structural changes such as grey matter thinning relate to functional changes is challenging. To gain insight into structure-function relationships in development, the present study took a data driven approach to define age-related patterns of variation in gray matter volume (GMV), cerebral blood flow (CBF) and blood-oxygen level dependent (BOLD) signal variation (fractional amplitude of low-frequency fluctuations; fALFF) in 59 healthy children aged 7-18 years, and examined relationships between modalities. Principal components analysis (PCA) was applied to each modality in parallel, and participant scores for the top components were assessed for age associations. We found that decompositions of CBF, GMV and fALFF all included components for which scores were significantly associated with age. The dominant patterns in GMV and CBF showed significant (GMV) or trend level (CBF) associations with age and a strong spatial overlap, driven by increased signal intensity in default mode network (DMN) regions. GMV, CBF and fALFF additionally showed components accounting for 3-5% of variability with significant age associations. However, these patterns were relatively spatially independent, with small-to-moderate overlap between modalities. Independence of age effects was further demonstrated by correlating individual subject maps between modalities: CBF was significantly less correlated with GMV and fALFF in older children relative to younger. These spatially independent effects of age suggest that the parallel decline observed in global GMV and CBF may not reflect spatially synchronized processes. Hum Brain Mapp 38:2398-2407, 2017. © 2017 Wiley Periodicals, Inc. © 2017 Wiley Periodicals, Inc.
Atmospheric Science Data Center
2018-04-12
SSE Global Data Text files of monthly averaged data for the entire ... Version: V6 Location: Global Spatial Coverage: (90N, 90S)(180W,180E) ... File Format: ASCII Order Data: SSE Global Data: Order Data SCAR-B Block: ...
NASA Astrophysics Data System (ADS)
Wasser, L. A.; Chasmer, L. E.
2012-12-01
Forested riparian buffers (FRB) perform numerous critical ecosystem services. However, globally, FRB spatial configuration and structure have been modified by anthropogenic development resulting in widespread ecological degradation as seen in the Gulf of Mexico and the Chesapeake Bay. Riparian corridors within developed areas are particularly vulnerable to disturbance given two edges - the naturally occurring stream edge and the matrix edge. Increased edge length predisposes riparian vegetation to "edge effects", characterized by modified physical and environmental conditions at the interface between the forested buffer and the adjacent landuse, or matrix and forest fragment degradation. The magnitude and distance of edge influence may be further influenced by adjacent landuse type and the width of the buffer corridor at any given location. There is a need to quantify riparian buffer spatial configuration and structure over broad geographic extents and within multiple riparian systems in support of ecologically sound management and landuse decisions. This study thus assesses the influence of varying landuse types (agriculture, suburban development and undeveloped) on forested riparian buffer 3-dimensional structure and spatial configuration using high resolution Light Detection and Ranging (LiDAR) data collected within a headwater watershed. Few studies have assessed riparian buffer structure and width contiguously for an entire watershed, an integral component of watershed planning and restoration efforts such as those conducted throughout the Chesapeake Bay. The objectives of the study are to 1) quantify differences in vegetation structure at the stream and matrix influenced riparian buffer edges, compared to the forested interior and 2) assess continuous patterns of changes in vegetation structure throughout the buffer corridor beginning at the matrix edge and ending at the stream within buffers a) of varying width and b) that are adjacent to varying landuse types. Results suggest that 1) the spatial configuration of riparian forests has a strong influence on forest structure compared to a weaker association with adjacent landuse type 2) developed landuse types are often associated with increased understory vegetation density 3) that riparian vegetation canopy cover is dense regardless of corridor width or adjacent landuse type and 4) the degree to which edge effects propagate into the buffer corridor is most influenced by corridor width. The study further demonstrates the utility of automated algorithms that sample lidar data in watershed-wide ecological analysis. Results suggest that landuse regulations should encourage wider buffers which will in turn support a greater range of ecosystem services including improved wildlife habitat, stream shading and detrital inputs.
Geographic Information Systems and Martian Data: Compatibility and Analysis
NASA Technical Reports Server (NTRS)
Jones, Jennifer L.
2005-01-01
Planning future landed Mars missions depends on accurate, informed data. This research has created and used spatially referenced instrument data from NASA missions such as the Thermal Emission Imaging System (THEMIS) on the Mars Odyssey Orbiter and the Mars Orbital Camera (MOC) on the Mars Global Surveyor (MGS) Orbiter. Creating spatially referenced data enables its use in Geographic Information Systems (GIS) such as ArcGIS. It has then been possible to integrate this spatially referenced data with global base maps and build and populate location based databases that are easy to access.
NASA Astrophysics Data System (ADS)
Aires, Filipe; Miolane, Léo; Prigent, Catherine; Pham Duc, Binh; Papa, Fabrice; Fluet-Chouinard, Etienne; Lehner, Bernhard
2017-04-01
The Global Inundation Extent from Multi-Satellites (GIEMS) provides multi-year monthly variations of the global surface water extent at 25kmx25km resolution. It is derived from multiple satellite observations. Its spatial resolution is usually compatible with climate model outputs and with global land surface model grids but is clearly not adequate for local applications that require the characterization of small individual water bodies. There is today a strong demand for high-resolution inundation extent datasets, for a large variety of applications such as water management, regional hydrological modeling, or for the analysis of mosquitos-related diseases. A new procedure is introduced to downscale the GIEMS low spatial resolution inundations to a 3 arc second (90 m) dataset. The methodology is based on topography and hydrography information from the HydroSHEDS database. A new floodability index is adopted and an innovative smoothing procedure is developed to ensure the smooth transition, in the high-resolution maps, between the low-resolution boxes from GIEMS. Topography information is relevant for natural hydrology environments controlled by elevation, but is more limited in human-modified basins. However, the proposed downscaling approach is compatible with forthcoming fusion with other more pertinent satellite information in these difficult regions. The resulting GIEMS-D3 database is the only high spatial resolution inundation database available globally at the monthly time scale over the 1993-2007 period. GIEMS-D3 is assessed by analyzing its spatial and temporal variability, and evaluated by comparisons to other independent satellite observations from visible (Google Earth and Landsat), infrared (MODIS) and active microwave (SAR).
Challenging the paradigms of deep-sea ecology.
Danovaro, Roberto; Snelgrove, Paul V R; Tyler, Paul
2014-08-01
Deep-sea ecosystems represent Earth's major ecological research frontier. Focusing on seafloor ecosystems, we demonstrate how new technologies underpin discoveries that challenge major ecological hypotheses and paradigms, illuminating new deep-sea geosphere-biosphere interactions. We now recognize greater habitat complexity, new ecological interactions and the importance of 'dark energy', and chemosynthetic production in fuelling biodiversity. We also acknowledge functional hotspots that contradict a food-poor, metabolically inactive, and minor component of global carbon cycles. Symbioses appear widespread, revealing novel adaptations. Populations show complex spatial structure and evolutionary histories. These new findings redefine deep-sea ecology and the role of Earth's largest biome in global biosphere functioning. Indeed, deep-sea exploration can open new perspectives in ecological research to help mitigate exploitation impacts. Copyright © 2014 Elsevier Ltd. All rights reserved.
Depreciation of public goods in spatial public goods games
NASA Astrophysics Data System (ADS)
Shi, Dong-Mei; Zhuang, Yong; Li, Yu-Jian; Wang, Bing-Hong
2011-10-01
In real situations, the value of public goods will be reduced or even lost because of external factors or for intrinsic reasons. In this work, we investigate the evolution of cooperation by considering the effect of depreciation of public goods in spatial public goods games on a square lattice. It is assumed that each individual gains full advantage if the number of the cooperators nc within a group centered on that individual equals or exceeds the critical mass (CM). Otherwise, there is depreciation of the public goods, which is realized by rescaling the multiplication factor r to (nc/CM)r. It is shown that the emergence of cooperation is remarkably promoted for CM > 1 even at small values of r, and a global cooperative level is achieved at an intermediate value of CM = 4 at a small r. We further study the effect of depreciation of public goods on different topologies of a regular lattice, and find that the system always reaches global cooperation at a moderate value of CM = G - 1 regardless of whether or not there exist overlapping triangle structures on the regular lattice, where G is the group size of the associated regular lattice.
Leles, S G; Mitra, A; Flynn, K J; Stoecker, D K; Hansen, P J; Calbet, A; McManus, G B; Sanders, R W; Caron, D A; Not, F; Hallegraeff, G M; Pitta, P; Raven, J A; Johnson, M D; Glibert, P M; Våge, S
2017-08-16
This first comprehensive analysis of the global biogeography of marine protistan plankton with acquired phototrophy shows these mixotrophic organisms to be ubiquitous and abundant; however, their biogeography differs markedly between different functional groups. These mixotrophs, lacking a constitutive capacity for photosynthesis (i.e. non-constitutive mixotrophs, NCMs), acquire their phototrophic potential through either integration of prey-plastids or through endosymbiotic associations with photosynthetic microbes. Analysis of field data reveals that 40-60% of plankton traditionally labelled as (non-phototrophic) microzooplankton are actually NCMs, employing acquired phototrophy in addition to phagotrophy. Specialist NCMs acquire chloroplasts or endosymbionts from specific prey, while generalist NCMs obtain chloroplasts from a variety of prey. These contrasting functional types of NCMs exhibit distinct seasonal and spatial global distribution patterns. Mixotrophs reliant on 'stolen' chloroplasts, controlled by prey diversity and abundance, dominate in high-biomass areas. Mixotrophs harbouring intact symbionts are present in all waters and dominate particularly in oligotrophic open ocean systems. The contrasting temporal and spatial patterns of distribution of different mixotroph functional types across the oceanic provinces, as revealed in this study, challenges traditional interpretations of marine food web structures. Mixotrophs with acquired phototrophy (NCMs) warrant greater recognition in marine research. © 2017 The Author(s).
Karsten, Minette; van Vuuren, Bettine Jansen; Barnaud, Adeline; Terblanche, John S
2013-01-01
The invasive Mediterranean fruit fly (medfly), Ceratitis capitata, is one of the major agricultural and economical pests globally. Understanding invasion risk and mitigation of medfly in agricultural landscapes requires knowledge of its population structure and dispersal patterns. Here, estimates of dispersal ability are provided in medfly from South Africa at three spatial scales using molecular approaches. Individuals were genotyped at 11 polymorphic microsatellite loci and a subset of individuals were also sequenced for the mitochondrial cytochrome oxidase subunit I gene. Our results show that South African medfly populations are generally characterized by high levels of genetic diversity and limited population differentiation at all spatial scales. This suggests high levels of gene flow among sampling locations. However, natural dispersal in C. capitata has been shown to rarely exceed 10 km. Therefore, documented levels of high gene flow in the present study, even between distant populations (>1600 km), are likely the result of human-mediated dispersal or at least some form of long-distance jump dispersal. These findings may have broad applicability to other global fruit production areas and have significant implications for ongoing pest management practices, such as the sterile insect technique.
Recent warming leads to a rapid borealization of fish communities in the Arctic
NASA Astrophysics Data System (ADS)
Fossheim, Maria; Primicerio, Raul; Johannesen, Edda; Ingvaldsen, Randi B.; Aschan, Michaela M.; Dolgov, Andrey V.
2015-07-01
Arctic marine ecosystems are warming twice as fast as the global average. As a consequence of warming, many incoming species experience increasing abundances and expanding distribution ranges in the Arctic. The Arctic is expected to have the largest species turnover with regard to invading and locally extinct species, with a modelled invasion intensity of five times the global average. Studies in this region might therefore give valuable insights into community-wide shifts of species driven by climate warming. We found that the recent warming in the Barents Sea has led to a change in spatial distribution of fish communities, with boreal communities expanding northwards at a pace reflecting the local climate velocities. Increased abundance and distribution areas of large, migratory fish predators explain the observed community-wide distributional shifts. These shifts change the ecological interactions experienced by Arctic fish species. The Arctic shelf fish community retracted northwards to deeper areas bordering the deep polar basin. Depth might limit further retraction of some of the fish species in the Arctic shelf community. We conclude that climate warming is inducing structural change over large spatial scales at high latitudes, leading to a borealization of fish communities in the Arctic.
NASA Astrophysics Data System (ADS)
Sun, Qingsong; Wang, Zhuosen; Li, Zhan; Erb, Angela; Schaaf, Crystal B.
2017-06-01
Land surface albedo is an essential variable for surface energy and climate modeling as it describes the proportion of incident solar radiant flux that is reflected from the Earth's surface. To capture the temporal variability and spatial heterogeneity of the land surface, satellite remote sensing must be used to monitor albedo accurately at a global scale. However, large data gaps caused by cloud or ephemeral snow have slowed the adoption of satellite albedo products by the climate modeling community. To address the needs of this community, we used a number of temporal and spatial gap-filling strategies to improve the spatial and temporal coverage of the global land surface MODIS BRDF, albedo and NBAR products. A rigorous evaluation of the gap-filled values shows good agreement with original high quality data (RMSE = 0.027 for the NIR band albedo, 0.020 for the red band albedo). This global snow-free and cloud-free MODIS BRDF and albedo dataset (established from 2001 to 2015) offers unique opportunities to monitor and assess the impact of the changes on the Earth's land surface.
SoilGrids1km — Global Soil Information Based on Automated Mapping
Hengl, Tomislav; de Jesus, Jorge Mendes; MacMillan, Robert A.; Batjes, Niels H.; Heuvelink, Gerard B. M.; Ribeiro, Eloi; Samuel-Rosa, Alessandro; Kempen, Bas; Leenaars, Johan G. B.; Walsh, Markus G.; Gonzalez, Maria Ruiperez
2014-01-01
Background Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such, there is a growing requirement for global soil information. Although several global soil information systems already exist, these tend to suffer from inconsistencies and limited spatial detail. Methodology/Principal Findings We present SoilGrids1km — a global 3D soil information system at 1 km resolution — containing spatial predictions for a selection of soil properties (at six standard depths): soil organic carbon (g kg−1), soil pH, sand, silt and clay fractions (%), bulk density (kg m−3), cation-exchange capacity (cmol+/kg), coarse fragments (%), soil organic carbon stock (t ha−1), depth to bedrock (cm), World Reference Base soil groups, and USDA Soil Taxonomy suborders. Our predictions are based on global spatial prediction models which we fitted, per soil variable, using a compilation of major international soil profile databases (ca. 110,000 soil profiles), and a selection of ca. 75 global environmental covariates representing soil forming factors. Results of regression modeling indicate that the most useful covariates for modeling soils at the global scale are climatic and biomass indices (based on MODIS images), lithology, and taxonomic mapping units derived from conventional soil survey (Harmonized World Soil Database). Prediction accuracies assessed using 5–fold cross-validation were between 23–51%. Conclusions/Significance SoilGrids1km provide an initial set of examples of soil spatial data for input into global models at a resolution and consistency not previously available. Some of the main limitations of the current version of SoilGrids1km are: (1) weak relationships between soil properties/classes and explanatory variables due to scale mismatches, (2) difficulty to obtain covariates that capture soil forming factors, (3) low sampling density and spatial clustering of soil profile locations. However, as the SoilGrids system is highly automated and flexible, increasingly accurate predictions can be generated as new input data become available. SoilGrids1km are available for download via http://soilgrids.org under a Creative Commons Non Commercial license. PMID:25171179
Biological basis for space-variant sensor design I: parameters of monkey and human spatial vision
NASA Astrophysics Data System (ADS)
Rojer, Alan S.; Schwartz, Eric L.
1991-02-01
Biological sensor design has long provided inspiration for sensor design in machine vision. However relatively little attention has been paid to the actual design parameters provided by biological systems as opposed to the general nature of biological vision architectures. In the present paper we will provide a review of current knowledge of primate spatial vision design parameters and will present recent experimental and modeling work from our lab which demonstrates that a numerical conformal mapping which is a refinement of our previous complex logarithmic model provides the best current summary of this feature of the primate visual system. In this paper we will review recent work from our laboratory which has characterized some of the spatial architectures of the primate visual system. In particular we will review experimental and modeling studies which indicate that: . The global spatial architecture of primate visual cortex is well summarized by a numerical conformal mapping whose simplest analytic approximation is the complex logarithm function . The columnar sub-structure of primate visual cortex can be well summarized by a model based on a band-pass filtered white noise. We will also refer to ongoing work in our lab which demonstrates that: . The joint columnar/map structure of primate visual cortex can be modeled and summarized in terms of a new algorithm the ''''proto-column'''' algorithm. This work provides a reference-point for current engineering approaches to novel architectures for
Pixelated filters for spatial imaging
NASA Astrophysics Data System (ADS)
Mathieu, Karine; Lequime, Michel; Lumeau, Julien; Abel-Tiberini, Laetitia; Savin De Larclause, Isabelle; Berthon, Jacques
2015-10-01
Small satellites are often used by spatial agencies to meet scientific spatial mission requirements. Their payloads are composed of various instruments collecting an increasing amount of data, as well as respecting the growing constraints relative to volume and mass; So small-sized integrated camera have taken a favored place among these instruments. To ensure scene specific color information sensing, pixelated filters seem to be more attractive than filter wheels. The work presented here, in collaboration with Institut Fresnel, deals with the manufacturing of this kind of component, based on thin film technologies and photolithography processes. CCD detectors with a pixel pitch about 30 μm were considered. In the configuration where the matrix filters are positioned the closest to the detector, the matrix filters are composed of 2x2 macro pixels (e.g. 4 filters). These 4 filters have a bandwidth about 40 nm and are respectively centered at 550, 700, 770 and 840 nm with a specific rejection rate defined on the visible spectral range [500 - 900 nm]. After an intense design step, 4 thin-film structures have been elaborated with a maximum thickness of 5 μm. A run of tests has allowed us to choose the optimal micro-structuration parameters. The 100x100 matrix filters prototypes have been successfully manufactured with lift-off and ion assisted deposition processes. High spatial and spectral characterization, with a dedicated metrology bench, showed that initial specifications and simulations were globally met. These excellent performances knock down the technological barriers for high-end integrated specific multi spectral imaging.
Interference competition and invasion: spatial structure, novel weapons and resistance zones.
Allstadt, Andrew; Caraco, Thomas; Molnár, F; Korniss, G
2012-08-07
Certain invasive plants may rely on interference mechanisms (e.g., allelopathy) to gain competitive superiority over native species. But expending resources on interference presumably exacts a cost in another life-history trait, so that the significance of interference competition for invasion ecology remains uncertain. We model ecological invasion when combined effects of preemptive and interference competition govern interactions at the neighborhood scale. We consider three cases. Under "novel weapons," only the initially rare invader exercises interference. For "resistance zones" only the resident species interferes, and finally we take both species as interference competitors. Interference increases the other species' mortality, opening space for colonization. However, a species exercising greater interference has reduced propagation, which can hinder its colonization of open sites. Interference never enhances a rare invader's growth in the homogeneously mixing approximation to our model. But interference can significantly increase an invader's competitiveness, and its growth when rare, if interactions are structured spatially. That is, interference can increase an invader's success when colonization of open sites depends on local, rather than global, species densities. In contrast, interference enhances the common, resident species' resistance to invasion independently of spatial structure, unless the propagation-cost is too great. The particular combination of propagation and interference producing the strongest biotic resistance in a resident species depends on the shape of the tradeoff between the two traits. Increases in background mortality (i.e., mortality not due to interference) always reduce the effectiveness of interference competition. Copyright © 2012 Elsevier Ltd. All rights reserved.
Liu, Junguo; Folberth, Christian; Yang, Hong; Röckström, Johan; Abbaspour, Karim; Zehnder, Alexander J. B.
2013-01-01
Food security and water scarcity have become two major concerns for future human's sustainable development, particularly in the context of climate change. Here we present a comprehensive assessment of climate change impacts on the production and water use of major cereal crops on a global scale with a spatial resolution of 30 arc-minutes for the 2030s (short term) and the 2090s (long term), respectively. Our findings show that impact uncertainties are higher on larger spatial scales (e.g., global and continental) but lower on smaller spatial scales (e.g., national and grid cell). Such patterns allow decision makers and investors to take adaptive measures without being puzzled by a highly uncertain future at the global level. Short-term gains in crop production from climate change are projected for many regions, particularly in African countries, but the gains will mostly vanish and turn to losses in the long run. Irrigation dependence in crop production is projected to increase in general. However, several water poor regions will rely less heavily on irrigation, conducive to alleviating regional water scarcity. The heterogeneity of spatial patterns and the non-linearity of temporal changes of the impacts call for site-specific adaptive measures with perspectives of reducing short- and long-term risks of future food and water security. PMID:23460901
Mapping the spatial distribution of global anthropogenic mercury atmospheric emission inventories
NASA Astrophysics Data System (ADS)
Wilson, Simon J.; Steenhuisen, Frits; Pacyna, Jozef M.; Pacyna, Elisabeth G.
This paper describes the procedures employed to spatially distribute global inventories of anthropogenic emissions of mercury to the atmosphere, prepared by Pacyna, E.G., Pacyna, J.M., Steenhuisen, F., Wilson, S. [2006. Global anthropogenic mercury emission inventory for 2000. Atmospheric Environment, this issue, doi:10.1016/j.atmosenv.2006.03.041], and briefly discusses the results of this work. A new spatially distributed global emission inventory for the (nominal) year 2000, and a revised version of the 1995 inventory are presented. Emissions estimates for total mercury and major species groups are distributed within latitude/longitude-based grids with a resolution of 1×1 and 0.5×0.5°. A key component in the spatial distribution procedure is the use of population distribution as a surrogate parameter to distribute emissions from sources that cannot be accurately geographically located. In this connection, new gridded population datasets were prepared, based on the CEISIN GPW3 datasets (CIESIN, 2004. Gridded Population of the World (GPW), Version 3. Center for International Earth Science Information Network (CIESIN), Columbia University and Centro Internacional de Agricultura Tropical (CIAT). GPW3 data are available at http://beta.sedac.ciesin.columbia.edu/gpw/index.jsp). The spatially distributed emissions inventories and population datasets prepared in the course of this work are available on the Internet at www.amap.no/Resources/HgEmissions/
Global Data Spatially Interrelate System for Scientific Big Data Spatial-Seamless Sharing
NASA Astrophysics Data System (ADS)
Yu, J.; Wu, L.; Yang, Y.; Lei, X.; He, W.
2014-04-01
A good data sharing system with spatial-seamless services will prevent the scientists from tedious, boring, and time consuming work of spatial transformation, and hence encourage the usage of the scientific data, and increase the scientific innovation. Having been adopted as the framework of Earth datasets by Group on Earth Observation (GEO), Earth System Spatial Grid (ESSG) is potential to be the spatial reference of the Earth datasets. Based on the implementation of ESSG, SDOG-ESSG, a data sharing system named global data spatially interrelate system (GASE) was design to make the data sharing spatial-seamless. The architecture of GASE was introduced. The implementation of the two key components, V-Pools, and interrelating engine, and the prototype is presented. Any dataset is firstly resampled into SDOG-ESSG, and is divided into small blocks, and then are mapped into hierarchical system of the distributed file system in V-Pools, which together makes the data serving at a uniform spatial reference and at a high efficiency. Besides, the datasets from different data centres are interrelated by the interrelating engine at the uniform spatial reference of SDOGESSG, which enables the system to sharing the open datasets in the internet spatial-seamless.
Spatial Heterogeneity in the Effects of Immigration and Diversity on Neighborhood Homicide Rates
Graif, Corina; Sampson, Robert J.
2010-01-01
This paper examines the connection of immigration and diversity to homicide by advancing a recently developed approach to modeling spatial dynamics—geographically weighted regression. In contrast to traditional global averaging, we argue on substantive grounds that neighborhood characteristics vary in their effects across neighborhood space, a process of “spatial heterogeneity.” Much like treatment-effect heterogeneity and distinct from spatial spillover, our analysis finds considerable evidence that neighborhood characteristics in Chicago vary significantly in predicting homicide, in some cases showing countervailing effects depending on spatial location. In general, however, immigrant concentration is either unrelated or inversely related to homicide, whereas language diversity is consistently linked to lower homicide. The results shed new light on the immigration-homicide nexus and suggest the pitfalls of global averaging models that hide the reality of a highly diversified and spatially stratified metropolis. PMID:20671811
Global ensemble texture representations are critical to rapid scene perception.
Brady, Timothy F; Shafer-Skelton, Anna; Alvarez, George A
2017-06-01
Traditionally, recognizing the objects within a scene has been treated as a prerequisite to recognizing the scene itself. However, research now suggests that the ability to rapidly recognize visual scenes could be supported by global properties of the scene itself rather than the objects within the scene. Here, we argue for a particular instantiation of this view: That scenes are recognized by treating them as a global texture and processing the pattern of orientations and spatial frequencies across different areas of the scene without recognizing any objects. To test this model, we asked whether there is a link between how proficient individuals are at rapid scene perception and how proficiently they represent simple spatial patterns of orientation information (global ensemble texture). We find a significant and selective correlation between these tasks, suggesting a link between scene perception and spatial ensemble tasks but not nonspatial summary statistics In a second and third experiment, we additionally show that global ensemble texture information is not only associated with scene recognition, but that preserving only global ensemble texture information from scenes is sufficient to support rapid scene perception; however, preserving the same information is not sufficient for object recognition. Thus, global ensemble texture alone is sufficient to allow activation of scene representations but not object representations. Together, these results provide evidence for a view of scene recognition based on global ensemble texture rather than a view based purely on objects or on nonspatially localized global properties. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
The trade network in the dairy industry and its implication for the spread of contamination.
Pinior, B; Konschake, M; Platz, U; Thiele, H D; Petersen, B; Conraths, F J; Selhorst, T
2012-11-01
In case of an outbreak of a foodborne disease, administrative decisions in the context of crisis management are only efficient if they follow standard practices and are specifically adapted to the outbreak situation in a timely manner. These goals are hard to achieve. The complexity of national and global trade structures obscures a clear view of trade flows and, consequently, it is often impossible to unravel complex trade links quickly. Furthermore, increasing public concerns about possible health hazards caused by global trade put additional pressure on decision makers. The aim of this paper was to unveil the specific trade structures of the German milk supply chain, to highlight how these structures could affect the spatial spread of a hypothetical contaminant, and to quantify the risk of the contaminant reaching the consumer. To achieve this goal, the vertical and horizontal trade links between milk producers, dairies, and consumers were taken into account. The horizontal flow of milk between dairies (inter-dairy trade), which is intended to compensate a temporary over- or undersupply of milk, is of special importance in this respect. We hypothesized that the extent of inter-dairy trade would significantly influence the spatial spread of contaminated milk and the contamination risk. This hypothesis was tested using a computer simulation model that predicts the hypothetical spread of a contaminant via trade of milk. The model parameters were estimated using trade data collected in 2004 and 2010. The results of our study indicate that inter-dairy trade significantly influenced the contamination risk. Compared with a scenario with no inter-dairy trade, the risk that contaminated milk will reach the consumer was up to 4 times higher, even with moderate inter-dairy trade. The contamination risk depended on the extent of inter-dairy trade in a nonlinear way and reached its maximum asymptotically when inter-dairy trade increased. The contamination risk exhibited considerable spatial variation, which could be utilized to implement more accurate food control interventions in times of crisis caused by a foodborne disease. Copyright © 2012 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.
Dynamics and spatial structure of ENSO from re-analyses versus CMIP5 models
NASA Astrophysics Data System (ADS)
Serykh, Ilya; Sonechkin, Dmitry
2016-04-01
Basing on a mathematical idea about the so-called strange nonchaotic attractor (SNA) in the quasi-periodically forced dynamical systems, the currently available re-analyses data are considered. It is found that the El Niño - Southern Oscillation (ENSO) is driven not only by the seasonal heating, but also by three more external periodicities (incommensurate to the annual period) associated with the ~18.6-year lunar-solar nutation of the Earth rotation axis, ~11-year sunspot activity cycle and the ~14-month Chandler wobble in the Earth's pole motion. Because of the incommensurability of their periods all four forces affect the system in inappropriate time moments. As a result, the ENSO time series look to be very complex (strange in mathematical terms) but nonchaotic. The power spectra of ENSO indices reveal numerous peaks located at the periods that are multiples of the above periodicities as well as at their sub- and super-harmonic. In spite of the above ENSO complexity, a mutual order seems to be inherent to the ENSO time series and their spectra. This order reveals itself in the existence of a scaling of the power spectrum peaks and respective rhythms in the ENSO dynamics that look like the power spectrum and dynamics of the SNA. It means there are no limits to forecast ENSO, in principle. In practice, it opens a possibility to forecast ENSO for several years ahead. Global spatial structures of anomalies during El Niño and power spectra of ENSO indices from re-analyses are compared with the respective output quantities in the CMIP5 climate models (the Historical experiment). It is found that the models reproduce global spatial structures of the near surface temperature and sea level pressure anomalies during El Niño very similar to these fields in the re-analyses considered. But the power spectra of the ENSO indices from the CMIP5 models show no peaks at the same periods as the re-analyses power spectra. We suppose that it is possible to improve modeled rhythms if the afore-mentioned external periodicities are taken in an explicit consideration in the models.
Global patterns of evolutionary distinct and globally endangered amphibians and mammals.
Safi, Kamran; Armour-Marshall, Katrina; Baillie, Jonathan E M; Isaac, Nick J B
2013-01-01
Conservation of phylogenetic diversity allows maximising evolutionary information preserved within fauna and flora. The "EDGE of Existence" programme is the first institutional conservation initiative that prioritises species based on phylogenetic information. Species are ranked in two ways: one according to their evolutionary distinctiveness (ED) and second, by including IUCN extinction status, their evolutionary distinctiveness and global endangerment (EDGE). Here, we describe the global patterns in the spatial distribution of priority ED and EDGE species, in order to identify conservation areas for mammalian and amphibian communities. In addition, we investigate whether environmental conditions can predict the observed spatial pattern in ED and EDGE globally. Priority zones with high concentrations of ED and EDGE scores were defined using two different methods. The overlap between mammal and amphibian zones was very small, reflecting the different phylo-biogeographic histories. Mammal ED zones were predominantly found on the African continent and the neotropical forests, whereas in amphibians, ED zones were concentrated in North America. Mammal EDGE zones were mainly in South-East Asia, southern Africa and Madagascar; for amphibians they were in central and south America. The spatial pattern of ED and EDGE was poorly described by a suite of environmental variables. Mapping the spatial distribution of ED and EDGE provides an important step towards identifying priority areas for the conservation of mammalian and amphibian phylogenetic diversity in the EDGE of existence programme.
Global patterns of current and future road infrastructure
NASA Astrophysics Data System (ADS)
Meijer, Johan R.; Huijbregts, Mark A. J.; Schotten, Kees C. G. J.; Schipper, Aafke M.
2018-06-01
Georeferenced information on road infrastructure is essential for spatial planning, socio-economic assessments and environmental impact analyses. Yet current global road maps are typically outdated or characterized by spatial bias in coverage. In the Global Roads Inventory Project we gathered, harmonized and integrated nearly 60 geospatial datasets on road infrastructure into a global roads dataset. The resulting dataset covers 222 countries and includes over 21 million km of roads, which is two to three times the total length in the currently best available country-based global roads datasets. We then related total road length per country to country area, population density, GDP and OECD membership, resulting in a regression model with adjusted R 2 of 0.90, and found that that the highest road densities are associated with densely populated and wealthier countries. Applying our regression model to future population densities and GDP estimates from the Shared Socioeconomic Pathway (SSP) scenarios, we obtained a tentative estimate of 3.0–4.7 million km additional road length for the year 2050. Large increases in road length were projected for developing nations in some of the world’s last remaining wilderness areas, such as the Amazon, the Congo basin and New Guinea. This highlights the need for accurate spatial road datasets to underpin strategic spatial planning in order to reduce the impacts of roads in remaining pristine ecosystems.
Spatial heterogeneity of climate change as an experiential basis for skepticism
Kaufmann, Robert K.; Mann, Michael L.; Gopal, Sucharita; Liederman, Jackie A.; Howe, Peter D.; Pretis, Felix; Gilmore, Michelle
2017-01-01
We postulate that skepticism about climate change is partially caused by the spatial heterogeneity of climate change, which exposes experiential learners to climate heuristics that differ from the global average. This hypothesis is tested by formalizing an index that measures local changes in climate using station data and comparing this index with survey-based model estimates of county-level opinion about whether global warming is happening. Results indicate that more stations exhibit cooling and warming than predicted by random chance and that spatial variations in these changes can account for spatial variations in the percentage of the population that believes that “global warming is happening.” This effect is diminished in areas that have experienced more record low temperatures than record highs since 2005. Together, these results suggest that skepticism about climate change is driven partially by personal experiences; an accurate heuristic for local changes in climate identifies obstacles to communicating ongoing changes in climate to the public and how these communications might be improved. PMID:27994143
Spatial heterogeneity of climate change as an experiential basis for skepticism.
Kaufmann, Robert K; Mann, Michael L; Gopal, Sucharita; Liederman, Jackie A; Howe, Peter D; Pretis, Felix; Tang, Xiaojing; Gilmore, Michelle
2017-01-03
We postulate that skepticism about climate change is partially caused by the spatial heterogeneity of climate change, which exposes experiential learners to climate heuristics that differ from the global average. This hypothesis is tested by formalizing an index that measures local changes in climate using station data and comparing this index with survey-based model estimates of county-level opinion about whether global warming is happening. Results indicate that more stations exhibit cooling and warming than predicted by random chance and that spatial variations in these changes can account for spatial variations in the percentage of the population that believes that "global warming is happening." This effect is diminished in areas that have experienced more record low temperatures than record highs since 2005. Together, these results suggest that skepticism about climate change is driven partially by personal experiences; an accurate heuristic for local changes in climate identifies obstacles to communicating ongoing changes in climate to the public and how these communications might be improved.
Revised spatially distributed global livestock emissions
NASA Astrophysics Data System (ADS)
Asrar, G.; Wolf, J.; West, T. O.
2015-12-01
Livestock play an important role in agricultural carbon cycling through consumption of biomass and emissions of methane. Quantification and spatial distribution of methane and carbon dioxide produced by livestock is needed to develop bottom-up estimates for carbon monitoring. These estimates serve as stand-alone international emissions estimates, as input to global emissions modeling, and as comparisons or constraints to flux estimates from atmospheric inversion models. Recent results for the US suggest that the 2006 IPCC default coefficients may underestimate livestock methane emissions. In this project, revised coefficients were calculated for cattle and swine in all global regions, based on reported changes in body mass, quality and quantity of feed, milk production, and management of living animals and manure for these regions. New estimates of livestock methane and carbon dioxide emissions were calculated using the revised coefficients and global livestock population data. Spatial distribution of population data and associated fluxes was conducted using the MODIS Land Cover Type 5, version 5.1 (i.e. MCD12Q1 data product), and a previously published downscaling algorithm for reconciling inventory and satellite-based land cover data at 0.05 degree resolution. Preliminary results for 2013 indicate greater emissions than those calculated using the IPCC 2006 coefficients. Global total enteric fermentation methane increased by 6%, while manure management methane increased by 38%, with variation among species and regions resulting in improved spatial distributions of livestock emissions. These new estimates of total livestock methane are comparable to other recently reported studies for the entire US and the State of California. These new regional/global estimates will improve the ability to reconcile top-down and bottom-up estimates of methane production as well as provide updated global estimates for use in development and evaluation of Earth system models.
Melmer, Tamara; Amirshahi, Seyed A.; Koch, Michael; Denzler, Joachim; Redies, Christoph
2013-01-01
The spatial characteristics of letters and their influence on readability and letter identification have been intensely studied during the last decades. There have been few studies, however, on statistical image properties that reflect more global aspects of text, for example properties that may relate to its aesthetic appeal. It has been shown that natural scenes and a large variety of visual artworks possess a scale-invariant Fourier power spectrum that falls off linearly with increasing frequency in log-log plots. We asked whether images of text share this property. As expected, the Fourier spectrum of images of regular typed or handwritten text is highly anisotropic, i.e., the spectral image properties in vertical, horizontal, and oblique orientations differ. Moreover, the spatial frequency spectra of text images are not scale-invariant in any direction. The decline is shallower in the low-frequency part of the spectrum for text than for aesthetic artworks, whereas, in the high-frequency part, it is steeper. These results indicate that, in general, images of regular text contain less global structure (low spatial frequencies) relative to fine detail (high spatial frequencies) than images of aesthetics artworks. Moreover, we studied images of text with artistic claim (ornate print and calligraphy) and ornamental art. For some measures, these images assume average values intermediate between regular text and aesthetic artworks. Finally, to answer the question of whether the statistical properties measured by us are universal amongst humans or are subject to intercultural differences, we compared images from three different cultural backgrounds (Western, East Asian, and Arabic). Results for different categories (regular text, aesthetic writing, ornamental art, and fine art) were similar across cultures. PMID:23554592
DOE Office of Scientific and Technical Information (OSTI.GOV)
Zong, Ziliang; Job, Joshua; Zhang, Xuesong
Geo-visualization is significantly changing the way we view spatial data and discover information. On the one hand, a large number of spatial data are generated every day. On the other hand, these data are not well utilized due to the lack of free and easily used data-visualization tools. This becomes even worse when most of the spatial data remains in the form of plain text such as log files. This paper describes a way of visualizing massive plain-text spatial data at no cost by utilizing Google Earth and NASAWorld Wind. We illustrate our methods by visualizing over 170,000 global downloadmore » requests for satellite images maintained by the Earth Resources Observation and Science (EROS) Center of U.S. Geological Survey (USGS). Our visualization results identify the most popular satellite images around the world and discover the global user download patterns. The benefits of this research are: 1. assisting in improving the satellite image downloading services provided by USGS, and 2. providing a proxy for analyzing the hot spot areas of research. Most importantly, our methods demonstrate an easy way to geovisualize massive textual spatial data, which is highly applicable to mining spatially referenced data and information on a wide variety of research domains (e.g., hydrology, agriculture, atmospheric science, natural hazard, and global climate change).« less
Lepère, Cécile; Domaizon, Isabelle; Taïb, Najwa; Mangot, Jean-François; Bronner, Gisèle; Boucher, Delphine; Debroas, Didier
2013-07-01
Understanding the spatial distribution of aquatic microbial diversity and the underlying mechanisms causing differences in community composition is a challenging and central goal for ecologists. Recent insights into protistan diversity and ecology are increasing the debate over their spatial distribution. In this study, we investigate the importance of spatial and environmental factors in shaping the small protists community structure in lakes. We analyzed small protists community composition (beta-diversity) and richness (alpha-diversity) at regional scale by different molecular methods targeting the gene coding for 18S rRNA gene (T-RFLP and 454 pyrosequencing). Our results show a distance-decay pattern for rare and dominant taxa and the spatial distribution of the latter followed the prediction of the island biogeography theory. Furthermore, geographic distances between lakes seem to be the main force shaping the protists community composition in the lakes studied here. Finally, the spatial distribution of protists was discussed at the global scale (11 worldwide distributed lakes) by comparing these results with those present in the public database. UniFrac analysis showed 18S rRNA gene OTUs compositions significantly different among most of lakes, and this difference does not seem to be related to the trophic status. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.
Lemieux, Jacob E; Kyes, Sue A; Otto, Thomas D; Feller, Avi I; Eastman, Richard T; Pinches, Robert A; Berriman, Matthew; Su, Xin-zhuan; Newbold, Chris I
2013-01-01
Spatial relationships within the eukaryotic nucleus are essential for proper nuclear function. In Plasmodium falciparum, the repositioning of chromosomes has been implicated in the regulation of the expression of genes responsible for antigenic variation, and the formation of a single, peri-nuclear nucleolus results in the clustering of rDNA. Nevertheless, the precise spatial relationships between chromosomes remain poorly understood, because, until recently, techniques with sufficient resolution have been lacking. Here we have used chromosome conformation capture and second-generation sequencing to study changes in chromosome folding and spatial positioning that occur during switches in var gene expression. We have generated maps of chromosomal spatial affinities within the P. falciparum nucleus at 25 Kb resolution, revealing a structured nucleolus, an absence of chromosome territories, and confirming previously identified clustering of heterochromatin foci. We show that switches in var gene expression do not appear to involve interaction with a distant enhancer, but do result in local changes at the active locus. These maps reveal the folding properties of malaria chromosomes, validate known physical associations, and characterize the global landscape of spatial interactions. Collectively, our data provide critical information for a better understanding of gene expression regulation and antigenic variation in malaria parasites. PMID:23980881
Development of Spatiotemporal Bias-Correction Techniques for Downscaling GCM Predictions
NASA Astrophysics Data System (ADS)
Hwang, S.; Graham, W. D.; Geurink, J.; Adams, A.; Martinez, C. J.
2010-12-01
Accurately representing the spatial variability of precipitation is an important factor for predicting watershed response to climatic forcing, particularly in small, low-relief watersheds affected by convective storm systems. Although Global Circulation Models (GCMs) generally preserve spatial relationships between large-scale and local-scale mean precipitation trends, most GCM downscaling techniques focus on preserving only observed temporal variability on point by point basis, not spatial patterns of events. Downscaled GCM results (e.g., CMIP3 ensembles) have been widely used to predict hydrologic implications of climate variability and climate change in large snow-dominated river basins in the western United States (Diffenbaugh et al., 2008; Adam et al., 2009). However fewer applications to smaller rain-driven river basins in the southeastern US (where preserving spatial variability of rainfall patterns may be more important) have been reported. In this study a new method was developed to bias-correct GCMs to preserve both the long term temporal mean and variance of the precipitation data, and the spatial structure of daily precipitation fields. Forty-year retrospective simulations (1960-1999) from 16 GCMs were collected (IPCC, 2007; WCRP CMIP3 multi-model database: https://esg.llnl.gov:8443/), and the daily precipitation data at coarse resolution (i.e., 280km) were interpolated to 12km spatial resolution and bias corrected using gridded observations over the state of Florida (Maurer et al., 2002; Wood et al, 2002; Wood et al, 2004). In this method spatial random fields which preserved the observed spatial correlation structure of the historic gridded observations and the spatial mean corresponding to the coarse scale GCM daily rainfall were generated. The spatiotemporal variability of the spatio-temporally bias-corrected GCMs were evaluated against gridded observations, and compared to the original temporally bias-corrected and downscaled CMIP3 data for the central Florida. The hydrologic response of two southwest Florida watersheds to the gridded observation data, the original bias corrected CMIP3 data, and the new spatiotemporally corrected CMIP3 predictions was compared using an integrated surface-subsurface hydrologic model developed by Tampa Bay Water.
Liu, Zhengyan; Mao, Xianqiang; Song, Peng
2017-01-01
Temporal index decomposition analysis and spatial index decomposition analysis were applied to understand the driving forces of the emissions embodied in China's exports and net exports during 2002-2011, respectively. The accumulated emissions embodied in exports accounted for approximately 30% of the total emissions in China; although the contribution of the sectoral total emissions intensity (technique effect) declined, the scale effect was largely responsible for the mounting emissions associated with export, and the composition effect played a largely insignificant role. Calculations of the emissions embodied in net exports suggest that China is generally in an environmentally inferior position compared with its major trade partners. The differences in the economy-wide emission intensities between China and its major trade partners were the biggest contribution to this reality, and the trade balance effect played a less important role. However, a lower degree of specialization in pollution intensive products in exports than in imports helped to reduce slightly the emissions embodied in net exports. The temporal index decomposition analysis results suggest that China should take effective measures to optimize export and supply-side structure and reduce the total emissions intensity. According to spatial index decomposition analysis, it is suggested that a more aggressive import policy was useful for curbing domestic and global emissions, and the transfer of advanced production technologies and emission control technologies from developed to developing countries should be a compulsory global environmental policy option to mitigate the possible leakage of pollution emissions caused by international trade.
Global climate shocks to agriculture from 1950 - 2015
NASA Astrophysics Data System (ADS)
Jackson, N. D.; Konar, M.; Debaere, P.; Sheffield, J.
2016-12-01
Climate shocks represent a major disruption to crop yields and agricultural production, yet a consistent and comprehensive database of agriculturally relevant climate shocks does not exist. To this end, we conduct a spatially and temporally disaggregated analysis of climate shocks to agriculture from 1950-2015 using a new gridded dataset. We quantify the occurrence and magnitude of climate shocks for all global agricultural areas during the growing season using a 0.25-degree spatial grid and daily time scale. We include all major crops and both temperature and precipitation extremes in our analysis. Critically, we evaluate climate shocks to all potential agricultural areas to improve projections within our time series. To do this, we use Global Agro-Ecological Zones maps from the Food and Agricultural Organization, the Princeton Global Meteorological Forcing dataset, and crop calendars from Sacks et al. (2010). We trace the dynamic evolution of climate shocks to agriculture, evaluate the spatial heterogeneity in agriculturally relevant climate shocks, and identify the crops and regions that are most prone to climate shocks.
Dimond, Dennis; Ishaque, Abdullah; Chenji, Sneha; Mah, Dennell; Chen, Zhang; Seres, Peter; Beaulieu, Christian; Kalra, Sanjay
2017-03-01
Research in amyotrophic lateral sclerosis (ALS) suggests that executive dysfunction, a prevalent cognitive feature of the disease, is associated with abnormal structural connectivity and white matter integrity. In this exploratory study, we investigated the white matter constructs of executive dysfunction, and attempted to detect structural abnormalities specific to cognitively impaired ALS patients. Eighteen ALS patients and 22 age and education matched healthy controls underwent magnetic resonance imaging on a 4.7 Tesla scanner and completed neuropsychometric testing. ALS patients were categorized into ALS cognitively impaired (ALSci, n = 9) and ALS cognitively competent (ALScc, n = 5) groups. Tract-based spatial statistics and connectomics were used to compare white matter integrity and structural connectivity of ALSci and ALScc patients. Executive function performance was correlated with white matter FA and network metrics within the ALS group. Executive function performance in the ALS group correlated with global and local network properties, as well as FA, in regions throughout the brain, with a high predilection for the frontal lobe. ALSci patients displayed altered local connectivity and structural integrity in these same frontal regions that correlated with executive dysfunction. Our results suggest that executive dysfunction in ALS is related to frontal network disconnectivity, which potentially mediates domain-specific, or generalized cognitive impairment, depending on the degree of global network disruption. Furthermore, reported co-localization of decreased network connectivity and diminished white matter integrity suggests white matter pathology underlies this topological disruption. We conclude that executive dysfunction in ALSci is associated with frontal and global network disconnectivity, underlined by diminished white matter integrity. Hum Brain Mapp 38:1249-1268, 2017. © 2016 Wiley Periodicals, Inc. © 2016 Wiley Periodicals, Inc.
The problems in quantum foundations in the light of gauge theories
NASA Astrophysics Data System (ADS)
Ne'Eman, Yuval
1986-04-01
We review the issues of nonseparability and seemingly acausal propagation of information in EPR, as displayed by experiments and the failure of Bell's inequalities. We show that global effects are in the very nature of the geometric structure of modern physical theories, occurring even at the classical level. The Aharonov-Bohm effect, magnetic monopoles, instantons, etc. result from the topology and homotopy features of the fiber bundle manifolds of gauge theories. The conservation of probabilities, a supposedly highly quantum effect, is also achieved through global geometry equations. The EPR observables all fit in such geometries, and space-time is a truncated representation and is not the correct arena for their understanding. Relativistic quantum field theory represents the global action of the measurement operators as the zero-momentum (and therefore spatially infinitely spread) limit of their wave functions (form factors). We also analyze the collapse of the state vector as a case of spontaneous symmetry breakdown in the apparatus-observed state interaction.
An Analysis of San Diego's Housing Market Using a Geographically Weighted Regression Approach
NASA Astrophysics Data System (ADS)
Grant, Christina P.
San Diego County real estate transaction data was evaluated with a set of linear models calibrated by ordinary least squares and geographically weighted regression (GWR). The goal of the analysis was to determine whether the spatial effects assumed to be in the data are best studied globally with no spatial terms, globally with a fixed effects submarket variable, or locally with GWR. 18,050 single-family residential sales which closed in the six months between April 2014 and September 2014 were used in the analysis. Diagnostic statistics including AICc, R2, Global Moran's I, and visual inspection of diagnostic plots and maps indicate superior model performance by GWR as compared to both global regressions.
Adaptive elastic segmentation of brain MRI via shape-model-guided evolutionary programming.
Pitiot, Alain; Toga, Arthur W; Thompson, Paul M
2002-08-01
This paper presents a fully automated segmentation method for medical images. The goal is to localize and parameterize a variety of types of structure in these images for subsequent quantitative analysis. We propose a new hybrid strategy that combines a general elastic template matching approach and an evolutionary heuristic. The evolutionary algorithm uses prior statistical information about the shape of the target structure to control the behavior of a number of deformable templates. Each template, modeled in the form of a B-spline, is warped in a potential field which is itself dynamically adapted. Such a hybrid scheme proves to be promising: by maintaining a population of templates, we cover a large domain of the solution space under the global guidance of the evolutionary heuristic, and thoroughly explore interesting areas. We address key issues of automated image segmentation systems. The potential fields are initially designed based on the spatial features of the edges in the input image, and are subjected to spatially adaptive diffusion to guarantee the deformation of the template. This also improves its global consistency and convergence speed. The deformation algorithm can modify the internal structure of the templates to allow a better match. We investigate in detail the preprocessing phase that the images undergo before they can be used more effectively in the iterative elastic matching procedure: a texture classifier, trained via linear discriminant analysis of a learning set, is used to enhance the contrast of the target structure with respect to surrounding tissues. We show how these techniques interact within a statistically driven evolutionary scheme to achieve a better tradeoff between template flexibility and sensitivity to noise and outliers. We focus on understanding the features of template matching that are most beneficial in terms of the achieved match. Examples from simulated and real image data are discussed, with considerations of algorithmic efficiency.
Simple geometric algorithms to aid in clearance management for robotic mechanisms
NASA Technical Reports Server (NTRS)
Copeland, E. L.; Ray, L. D.; Peticolas, J. D.
1981-01-01
Global geometric shapes such as lines, planes, circles, spheres, cylinders, and the associated computational algorithms which provide relatively inexpensive estimates of minimum spatial clearance for safe operations were selected. The Space Shuttle, remote manipulator system, and the Power Extension Package are used as an example. Robotic mechanisms operate in quarters limited by external structures and the problem of clearance is often of considerable interest. Safe clearance management is simple and suited to real time calculation, whereas contact prediction requires more precision, sophistication, and computational overhead.
An introduction to the mechanics of DNA.
Travers, A A; Thompson, J M T
2004-07-15
This article gives an overview of recent research on the mechanical properties and spatial deformations of the DNA molecule. Globally the molecule behaves like a uniform elastic rod, and its twisting and writhing govern its compaction and packaging within a cell. Meanwhile high mechanical stresses can induce structural transitions of DNA giving, for example, a phase diagram in the space of the applied tension and torque. Locally, the mechanical properties vary according to the local sequence organization. These variations play a vital role in the biological functioning of the molecule.
Do MAGSAT anomalies contain a record of past and present-day mantle convection under South America?
NASA Technical Reports Server (NTRS)
Hastings, D. A.
1985-01-01
Global anomaly maps from the National Aeronautics and Space Administration's Magnetic Field Satellite (MAGSAT) have been spatially filtered to reduce the prominence of long-wavelength east-west bands and to improve the discrimination of anomalies within structural provinces. Previous research suggested a correlation between total-field MAGSAT anomaly lows in equatorial regions with crustal bodies of relatively high average magnetic susceptibility (such as Archaean shields), and of anomaly highs with bodies of low susceptibility (such as deep parts of basins). These correlations reverse at higher latitudes.
NASA Astrophysics Data System (ADS)
Montes, Carlo; Kiang, Nancy Y.; Ni-Meister, Wenge; Yang, Wenze; Schaaf, Crystal; Aleinov, Igor; Jonas, Jeffrey A.; Zhao, Feng; Yao, Tian; Wang, Zhuosen; Sun, Qingsong; Carrer, Dominique
2016-04-01
Processes determining biosphere-atmosphere coupling are strongly influenced by vegetation structure. Thus, ecosystem carbon sequestration and evapotranspiration affecting global carbon and water balances will depend upon the spatial extent of vegetation, its vertical structure, and its physiological variability. To represent this globally, Dynamic Global Vegetation Models (DGVMs) coupled to General Circulation Models (GCMs) make use of satellite and/or model-based vegetation classifications often composed by homogeneous communities. This work aims at developing a new Global Vegetation Structure Dataset (GVSD) by incorporating varying vegetation heights for mixed plant communities to be used as boundary conditions to the Analytical Clumped Two-Stream (ACTS) canopy radiative transfer scheme (Ni-Meister et al., 2010) incorporated into the NASA Ent Terrestrial Biosphere Model (TBM), the DGVM coupled to the NASA Goddard Institute for Space Studies (GISS) GCM. Information sources about land surface and vegetation characteristics obtained from a number of earth observation platforms and algorithms include the Moderate Resolution Imaging Spectroradiometer (MODIS) land cover and plant functional types (PFTs) (Friedl et al., 2010), soil albedo derived from MODIS (Carrer et al., 2014), along with vegetation height from the Geoscience Laser Altimeter System (GLAS) on board ICESat (Ice, Cloud, and land Elevation Satellite) (Simard et al., 2011; Tang et al., 2014). Three widely used Leaf Area Index (LAI) products are compared as input to the GVSD and ACTS forcing in terms of vegetation albedo: Global Data Sets of Vegetation (LAI)3g (Zhu et al. 2013), Beijing Normal University LAI (Yuan et al., 2011), and MODIS MOD15A2H product (Yang et al., 2006). Further PFT partitioning is performed according to a climate classification utilizing the Climate Research Unit (CRU; Harris et al., 2013) and the NOAA Global Precipitation Climatology Centre (GPCC; Scheider et al., 2014) data. Final products are a GVSD consisting of mixed plant communities (e.g. mixed forests, savannas, mixed PFTs) following the Ecosystem Demography model (Moorcroft et al., 2001) approach represented by multi-cohort community patches at the sub-grid level of the GCM, which are ensembles of identical individuals whose differences are represented by PFTs, canopy height, density and vegetation structure sensitivity to allometric parameters. The performance of the Ent TBM in estimating VIS-NIR vegetation albedo by the new GVSD and ACTS is assessed first by comparison against the previous GISS GCM vegetation classification and prescribed Lambertian albedoes of Matthews (1984), and secondly, against MODIS global estimations and FLUXNET site-scale observations. Ultimately, this GVSD will serve as a template for community data sets, and be used as boundary conditions to the Ent TBM for prediction of biomass, carbon balances and GISS GCM climate.
Amico, Enrico; Van Mierlo, Pieter; Marinazzo, Daniele; Laureys, Steven
2015-01-01
Transcranial magnetic stimulation (TMS) has been used for more than 20 years to investigate connectivity and plasticity in the human cortex. By combining TMS with high-density electroencephalography (hd-EEG), one can stimulate any cortical area and measure the effects produced by this perturbation in the rest of the cerebral cortex. The purpose of this paper is to investigate changes of information flow in the brain after TMS from a functional and structural perspective, using multimodal modeling of source reconstructed TMS/hd-EEG recordings and DTI tractography. We prove how brain dynamics induced by TMS is constrained and driven by its structure, at different spatial and temporal scales, especially when considering cross-frequency interactions. These results shed light on the function-structure organization of the brain network at the global level, and on the huge variety of information contained in it.
Science highlights from MAVEN/IUVS after two years in Mars Orbit
NASA Astrophysics Data System (ADS)
Schneider, N. M.; Deighan, J.; Stiepen, A.; Jain, S.; Lefèvre, F.; Stevens, M. H.; Gröller, H.; Yelle, R. V.; Lo, D.; Evans, J. S.; Stewart, I. F.; Chaffin, M.; Crismani, M. M. J.; Mayyasi, M.; McClintock, W. E.; Holsclaw, G.; Clarke, J. T.; Montmessin, F.; Jakosky, B. M.
2016-12-01
The broad capabilities of the Imaging UltraViolet Spectrograph on the MAVEN mission are enabling new science ranging from Mars' lower atmosphere up though the escaping corona. After two years in Mars orbit, the instrument has yielded insights on present-day processes at Mars including dayglow, nightglow, aurora, meteor showers, clouds, and solar-planetary interactions. In this presentation we will highlight several new discoveries in the mesosphere and below. First, spatial mapping of nitric oxide nightglow reveals regions of atmospheric downwelling necessitating substantial changes to global atmospheric circulation models. Second, a new high-spatial-resolution UV imaging mode allows detection of clouds from nadir to limb and their local time evolution, as well as unprecedented determinations of Mars' low-altitude ozone. Finally, IUVS has obtained hundreds of stellar occultation profiles probing atmospheric structure, composition, waves and tides.
Human mobility in an emerging epidemic: a key aspect for response planning
NASA Astrophysics Data System (ADS)
Poletto, Chiara; Bajardi, Paolo; Colizza, Vittoria; Ramasco, Jose J.; Tizzoni, Michele; Vespignani, Alessandro
2010-03-01
Human mobility and interactions represent key ingredients in the spreading dynamics of an infectious disease. The flows of traveling people form a network characterized by complex features, such as strong topological and traffic heterogeneities, that unfolds at different temporal and spatial scales, from short ranges to the global scale. Computational models can be developed that integrate detailed network structures based on demographic and mobility data, in order to simulate the spatial evolution of an epidemic. Focusing on the recent A(H1N1) influenza pandemic as a paradigmatic example, these approaches allow the assessment of the interplay between individual mobility and epidemic dynamics, quantifying the effects of travel restrictions in delaying the epidemic spread and the role of mobility as an additional source of information for the understanding of the early outbreak.
Ringler, Max; Mangione, Rosanna; Pašukonis, Andrius; Rainer, Gerhard; Gyimesi, Kristin; Felling, Julia; Kronaus, Hannes; Réjou-Méchain, Maxime; Chave, Jérôme; Reiter, Karl; Ringler, Eva
2015-01-01
For animals with spatially complex behaviours at relatively small scales, the resolution of a global positioning system (GPS) receiver location is often below the resolution needed to correctly map animals’ spatial behaviour. Natural conditions such as canopy cover, canyons or clouds can further degrade GPS receiver reception. Here we present a detailed, high-resolution map of a 4.6 ha Neotropical river island and a 8.3 ha mainland plot with the location of every tree >5 cm DBH and all structures on the forest floor, which are relevant to our study species, the territorial frog Allobates femoralis (Dendrobatidae). The map was derived using distance- and compass-based survey techniques, rooted on dGPS reference points, and incorporates altitudinal information based on a LiDAR survey of the area. PMID:27053943
Hyperspace geography: visualizing fitness landscapes beyond 4D.
Wiles, Janet; Tonkes, Bradley
2006-01-01
Human perception is finely tuned to extract structure about the 4D world of time and space as well as properties such as color and texture. Developing intuitions about spatial structure beyond 4D requires exploiting other perceptual and cognitive abilities. One of the most natural ways to explore complex spaces is for a user to actively navigate through them, using local explorations and global summaries to develop intuitions about structure, and then testing the developing ideas by further exploration. This article provides a brief overview of a technique for visualizing surfaces defined over moderate-dimensional binary spaces, by recursively unfolding them onto a 2D hypergraph. We briefly summarize the uses of a freely available Web-based visualization tool, Hyperspace Graph Paper (HSGP), for exploring fitness landscapes and search algorithms in evolutionary computation. HSGP provides a way for a user to actively explore a landscape, from simple tasks such as mapping the neighborhood structure of different points, to seeing global properties such as the size and distribution of basins of attraction or how different search algorithms interact with landscape structure. It has been most useful for exploring recursive and repetitive landscapes, and its strength is that it allows intuitions to be developed through active navigation by the user, and exploits the visual system's ability to detect pattern and texture. The technique is most effective when applied to continuous functions over Boolean variables using 4 to 16 dimensions.
Contextual cueing: implicit learning and memory of visual context guides spatial attention.
Chun, M M; Jiang, Y
1998-06-01
Global context plays an important, but poorly understood, role in visual tasks. This study demonstrates that a robust memory for visual context exists to guide spatial attention. Global context was operationalized as the spatial layout of objects in visual search displays. Half of the configurations were repeated across blocks throughout the entire session, and targets appeared within consistent locations in these arrays. Targets appearing in learned configurations were detected more quickly. This newly discovered form of search facilitation is termed contextual cueing. Contextual cueing is driven by incidentally learned associations between spatial configurations (context) and target locations. This benefit was obtained despite chance performance for recognizing the configurations, suggesting that the memory for context was implicit. The results show how implicit learning and memory of visual context can guide spatial attention towards task-relevant aspects of a scene.
Using Geo-Spatial Technologies for Field Applications in Higher Geography Education
ERIC Educational Resources Information Center
Karatepe, Akif
2012-01-01
Today's important geo-spatial technologies, GIS (Geographic Information Systems), GPS (Global Positioning Systems) and Google Earth have been widely used in geography education. Transferring spatially oriented data taken by GPS to the GIS and Google Earth has provided great benefits in terms of showing the usage of spatial technologies for field…
Cosmic vacuum and galaxy formation
NASA Astrophysics Data System (ADS)
Chernin, A. D.
2006-04-01
It is demonstrated that the protogalactic perturbations must enter the nonlinear regime before the red shift z≈ 1; otherwise they would be destroyed by the antigravity of the vacuum dark energy at the subsequent epoch of the vacuum domination. At the zrrV={M/[(8π/3)ρV]}1/3, where M is the mass of a given over-density and ρV is the vacuum density. The criterion provides a new relation between the largest mass condensations and their spatial scales. All the real large-scale systems follow this relation definitely. It is also shown that a simple formula is possible for the key quantity in the theory of galaxy formation, namely the initial amplitude of the perturbation of the gravitational potential in the protogalactic structures. The amplitude is time independent and given in terms of the Friedmann integrals, which are genuine physical characteristics of the cosmic energies. The results suggest that there is a strong correspondence between the global design of the Universe as a whole and the cosmic structures of various masses and spatial scales.
Structured plasma sheet thinning observed by Galileo and 1984-129
NASA Technical Reports Server (NTRS)
Reeves, G. D.; Belian, R. D.; Fritz, T. A.; Kivelson, M. G.; Mcentire, R. W.; Roelof, E. C.; Wilken, B.; Williams, D. J.
1993-01-01
On December 8, 1990, the Galileo spacecraft used the Earth for a gravity assist on its way to Jupiter. Its trajectory was such that it crossed geosynchronous orbit at approximately local midnight between 1900 and 2000 UT. At the same time, spacecraft 1984-129 was also located at geosynchronous orbit near local midnight. Several flux dropout events were observed when the two spacecraft were in the near-Earth plasma sheet in the same local time sector. Flux dropout events are associated with plasma sheet thinning in the near-profile of the near-Earth plasma sheet while 1984-129 provided an azimuthal profile. With measurements from these two spacecraft we can distinguish between spatial structures and temporal change. Our observations confirm that the geosynchronous flux dropout events are consistent with plasma sheet thinning which changes the spacecraft's magnetic connection from the trapping region to the more distant plasma sheet. However, for this period, thinning occurred on two spatial and temporal scales. The geosynchronous dropouts were highly localized phenomena of 30 min duration superimposed on a more global reconfiguration of the tail lasting approximately 4 hours.
Resolvent analysis of shear flows using One-Way Navier-Stokes equations
NASA Astrophysics Data System (ADS)
Rigas, Georgios; Schmidt, Oliver; Towne, Aaron; Colonius, Tim
2017-11-01
For three-dimensional flows, questions of stability, receptivity, secondary flows, and coherent structures require the solution of large partial-derivative eigenvalue problems. Reduced-order approximations are thus required for engineering prediction since these problems are often computationally intractable or prohibitively expensive. For spatially slowly evolving flows, such as jets and boundary layers, the One-Way Navier-Stokes (OWNS) equations permit a fast spatial marching procedure that results in a huge reduction in computational cost. Here, an adjoint-based optimization framework is proposed and demonstrated for calculating optimal boundary conditions and optimal volumetric forcing. The corresponding optimal response modes are validated against modes obtained in terms of global resolvent analysis. For laminar base flows, the optimal modes reveal modal and non-modal transition mechanisms. For turbulent base flows, they predict the evolution of coherent structures in a statistical sense. Results from the application of the method to three-dimensional laminar wall-bounded flows and turbulent jets will be presented. This research was supported by the Office of Naval Research (N00014-16-1-2445) and Boeing Company (CT-BA-GTA-1).
Knowing what and where: TMS evidence for the dual neural basis of geographical knowledge.
Hoffman, Paul; Crutch, Sebastian
2016-02-01
All animals acquire knowledge about the topography of their immediate environment through direct exploration. Uniquely, humans also acquire geographical knowledge indirectly through exposure to maps and verbal information, resulting in a rich database of global geographical knowledge. We used transcranial magnetic stimulation to investigate the structure and neural basis of this critical but poorly understood component of semantic knowledge. Participants completed tests of geographical knowledge that probed either information about spatial locations (e.g., France borders Spain) or non-spatial taxonomic information (e.g., France is a country). TMS applied to the anterior temporal lobe, a region that codes conceptual knowledge for words and objects, had a general disruptive effect on the geographical tasks. In contrast, stimulation of the intraparietal sulcus (IPS), a region involved in the coding of spatial and numerical information, had a highly selective effect on spatial geographical decisions but no effect on taxonomic judgements. Our results establish that geographical concepts lie at the intersection of two distinct neural representation systems, and provide insights into how the interaction of these systems shape our understanding of the world. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.
Andruchow, Nadia D; Konishi, Kyoko; Shatenstein, Bryna; Bohbot, Véronique D
2017-10-01
Evidence from several cross-sectional studies indicates that an increase in omega-6 to omega-3 fatty acids (FAs) may negatively affect cognition in old age. The hippocampus is among the first neural structures affected by age and atrophy in this brain region is associated with cognitive decline. Therefore, we hypothesized that a lower omega-6:3 FA ratio would predict better hippocampus-dependent spatial memory, and a higher general cognitive status. Fifty-two healthy older adults completed a Food Frequency Questionnaire, the Montreal Cognitive Assessment test (MoCA; a test of global cognition) and virtual navigation tasks that assess navigational strategies and spatial memory. In this cross-sectional study, a lower ratio of omega-6 to omega-3 FA intake strongly predicted more accurate hippocampus-dependent spatial memory and faster learning on our virtual navigation tasks, as well as higher cognitive status overall. These results may help elucidate why certain dietary patterns with a lower omega-6:3 FA ratio, like the Mediterranean diet, are associated with reduced risk of cognitive decline. (PsycINFO Database Record (c) 2017 APA, all rights reserved).
Preliminary Correlations of Gravity and Topography from Mars Global Surveyor
NASA Technical Reports Server (NTRS)
Zuber, M. T.; Tyler, G. L.; Smith, D. E.; Balmino, G. S.; Johnson, G. L.; Lemoine, F. G.; Neumann, G. A.; Phillips, R. J.; Sjogren, W. L.; Solomon, S. C.
1999-01-01
The Mars Global Surveyor (MGS) spacecraft is currently in a 400-km altitude polar mapping orbit and scheduled to begin global mapping of Mars in March of 1999. Doppler tracking data collected in this Gravity Calibration Orbit prior to the nominal mapping mission combined with observations from the MGS Science Phasing Orbit in Spring - Summer 1999 and the Viking and mariner 9 orbiters has led to preliminary high resolution gravity fields. Spherical harmonic expansions have been performed to degree and order 70 and are characterized by the first high spatial resolution coverage of high latitudes. Topographic mapping by the Mars Orbiter Laser Altimeter on MGS is providing measurements of the height of the martian surface with sub-meter vertical resolution and 5-30 m absolute accuracy. Data obtained during the circular mapping phase are expected to provide the first high resolution measurements of surface heights in the southern hemisphere. The combination of gravity and topography measurements provides information on the structure of the planetary interior, i.e. the rigidity and distribution of internal density. The observations can also be used to address the mechanisms of support of surface topography. Preliminary results of correlations of gravity and topography at long planetary wavelengths will be presented and the implications for internal structure will be addressed.
NASA Astrophysics Data System (ADS)
Dumont, E.; Harrison, J. A.; Kroeze, C.; Bakker, E. J.; Seitzinger, S. P.
2005-12-01
Here we describe, test, and apply a spatially explicit, global model for predicting dissolved inorganic nitrogen (DIN) export by rivers to coastal waters (NEWS-DIN). NEWS-DIN was developed as part of an internally consistent suite of global nutrient export models. Modeled and measured DIN export values agree well (calibration R2 = 0.79), and NEWS-DIN is relatively free of bias. NEWS-DIN predicts: DIN yields ranging from 0.0004 to 5217 kg N km-2 yr-1 with the highest DIN yields occurring in Europe and South East Asia; global DIN export to coastal waters of 25 Tg N yr-1, with 16 Tg N yr-1 from anthropogenic sources; biological N2 fixation is the dominant source of exported DIN; and globally, and on every continent except Africa, N fertilizer is the largest anthropogenic source of DIN export to coastal waters.
A Spatial Method to Calculate Small-Scale Fisheries Extent
NASA Astrophysics Data System (ADS)
Johnson, A. F.; Moreno-Báez, M.; Giron-Nava, A.; Corominas, J.; Erisman, B.; Ezcurra, E.; Aburto-Oropeza, O.
2016-02-01
Despite global catch per unit effort having redoubled since the 1950's, the global fishing fleet is estimated to be twice the size that the oceans can sustainably support. In order to gauge the collateral impacts of fishing intensity, we must be able to estimate the spatial extent and amount of fishing vessels in the oceans. Methods that do currently exist are built around electronic tracking and log book systems and generally focus on industrial fisheries. Spatial extent for small-scale fisheries therefore remains elusive for many small-scale fishing fleets; even though these fisheries land the same biomass for human consumption as industrial fisheries. Current methods are data-intensive and require extensive extrapolation when estimated across large spatial scales. We present an accessible, spatial method of calculating the extent of small-scale fisheries based on two simple measures that are available, or at least easily estimable, in even the most data poor fisheries: the number of boats and the local coastal human population. We demonstrate this method is fishery-type independent and can be used to quantitatively evaluate the efficacy of growth in small-scale fisheries. This method provides an important first step towards estimating the fishing extent of the small-scale fleet, globally.
A Synopsis of Global Mapping of Freshwater Habitats and Biodiversity: Implications for Conservation
DOE Office of Scientific and Technical Information (OSTI.GOV)
McManamay, Ryan A.; Griffiths, Natalie A.; DeRolph, Christopher R.
Accurately mapping freshwater habitats and biodiversity at high-resolutions across the globe is essential for assessing the vulnerability and threats to freshwater organisms and prioritizing conservation efforts. Since the 2000s, extensive efforts have been devoted to mapping global freshwater habitats (rivers, lakes, and wetlands), the spatial representation of which has changed dramatically over time with new geospatial data products and improved remote sensing technologies. Some of these mapping efforts, however, are still coarse representations of actual conditions. Likewise, the resolution and scope of global freshwater biodiversity compilation efforts have also increased, but are yet to mirror the spatial resolution and fidelitymore » of mapped freshwater environments. In our synopsis, we find that efforts to map freshwater habitats have been conducted independently of those for freshwater biodiversity; subsequently, there is little congruence in the spatial representation and resolution of the two efforts. We suggest that global species distribution models are needed to fill this information gap; however, limiting data on habitat characteristics at scales that complement freshwater habitats has prohibited global high-resolution biogeography efforts. Emerging research trends, such as mapping habitat alteration in freshwater ecosystems and trait biogeography, show great promise in mechanistically linking global anthropogenic stressors to freshwater biodiversity decline and extinction risk.« less
Integrating global socio-economic influences into a regional land use change model for China
NASA Astrophysics Data System (ADS)
Xu, Xia; Gao, Qiong; Peng, Changhui; Cui, Xuefeng; Liu, Yinghui; Jiang, Li
2014-03-01
With rapid economic development and urbanization, land use in China has experienced huge changes in recent years; and this will probably continue in the future. Land use problems in China are urgent and need further study. Rapid land-use change and economic development make China an ideal region for integrated land use change studies, particularly the examination of multiple factors and global-regional interactions in the context of global economic integration. This paper presents an integrated modeling approach to examine the impact of global socio-economic processes on land use changes at a regional scale. We develop an integrated model system by coupling a simple global socio-economic model (GLOBFOOD) and regional spatial allocation model (CLUE). The model system is illustrated with an application to land use in China. For a given climate change, population growth, and various socio-economic situations, a global socio-economic model simulates the impact of global market and economy on land use, and quantifies changes of different land use types. The land use spatial distribution model decides the type of land use most appropriate in each spatial grid by employing a weighted suitability index, derived from expert knowledge about the ecosystem state and site conditions. A series of model simulations will be conducted and analyzed to demonstrate the ability of the integrated model to link global socioeconomic factors with regional land use changes in China. The results allow an exploration of the future dynamics of land use and landscapes in China.
SDSS IV MaNGA: Dependence of Global and Spatially Resolved SFR–M ∗ Relations on Galaxy Properties
NASA Astrophysics Data System (ADS)
Pan, Hsi-An; Lin, Lihwai; Hsieh, Bau-Ching; Sánchez, Sebastián F.; Ibarra-Medel, Héctor; Boquien, Médéric; Lacerna, Ivan; Argudo-Fernández, Maria; Bizyaev, Dmitry; Cano-Díaz, Mariana; Drory, Niv; Gao, Yang; Masters, Karen; Pan, Kaike; Tabor, Martha; Tissera, Patricia; Xiao, Ting
2018-02-01
The galaxy integrated Hα star formation rate–stellar mass relation, or SFR(global)–M *(global) relation, is crucial for understanding star formation history and evolution of galaxies. However, many studies have dealt with SFR using unresolved measurements, which makes it difficult to separate out the contamination from other ionizing sources, such as active galactic nuclei and evolved stars. Using the integral field spectroscopic observations from SDSS-IV MaNGA, we spatially disentangle the contribution from different Hα powering sources for ∼1000 galaxies. We find that, when including regions dominated by all ionizing sources in galaxies, the spatially resolved relation between Hα surface density (ΣHα (all)) and stellar mass surface density (Σ*(all)) progressively turns over at the high Σ*(all) end for increasing M *(global) and/or bulge dominance (bulge-to-total light ratio, B/T). This in turn leads to the flattening of the integrated Hα(global)–M *(global) relation in the literature. By contrast, there is no noticeable flattening in both integrated Hα(H II)–M *(H II) and spatially resolved ΣHα (H II)–Σ*(H II) relations when only regions where star formation dominates the ionization are considered. In other words, the flattening can be attributed to the increasing regions powered by non-star-formation sources, which generally have lower ionizing ability than star formation. An analysis of the fractional contribution of non-star-formation sources to total Hα luminosity of a galaxy suggests a decreasing role of star formation as an ionizing source toward high-mass, high-B/T galaxies and bulge regions. This result indicates that the appearance of the galaxy integrated SFR–M * relation critically depends on their global properties (M *(global) and B/T) and relative abundances of various ionizing sources within the galaxies.
NASA Astrophysics Data System (ADS)
Stefanov, W. L.; Stefanov, W. L.; Christensen, P. R.
2001-05-01
Land cover and land use changes associated with urbanization are important drivers of global ecologic and climatic change. Quantification and monitoring of these changes are part of the primary mission of the ASTER instrument, and comprise the fundamental research objective of the Urban Environmental Monitoring (UEM) Program. The UEM program will acquire day/night, visible through thermal infrared ASTER data twice per year for 100 global urban centers over the duration of the mission (6 years). Data are currently available for a number of these urban centers and allow for initial comparison of global city structure using spatial variance texture analysis of the 15 m/pixel visible to near infrared ASTER bands. Variance texture analysis highlights changes in pixel edge density as recorded by sharp transitions from bright to dark pixels. In human-dominated landscapes these brightness variations correlate well with urbanized vs. natural land cover and are useful for characterizing the geographic extent and internal structure of cities. Variance texture analysis was performed on twelve urban centers (Albuquerque, Baghdad, Baltimore, Chongqing, Istanbul, Johannesburg, Lisbon, Madrid, Phoenix, Puebla, Riyadh, Vancouver) for which cloud-free daytime ASTER data are available. Image transects through each urban center produce texture profiles that correspond to urban density. These profiles can be used to classify cities into centralized (ex. Baltimore), decentralized (ex. Phoenix), or intermediate (ex. Madrid) structural types. Image texture is one of the primary data inputs (with vegetation indices and visible to thermal infrared image spectra) to a knowledge-based land cover classifier currently under development for application to ASTER UEM data as it is acquired. Collaboration with local investigators is sought to both verify the accuracy of the knowledge-based system and to develop more sophisticated classification models.
ERIC Educational Resources Information Center
Kuehl, Rebecca A.; Hungerford, Hilary
2017-01-01
Courses: This teaching unit is for intercultural communication but could be used for any course related to globalization, including public speaking, popular culture and communication, or environmental communication. Additionally, the teaching unit is well-suited for other disciplines, including geography, environmental studies, and global studies.…
NASA Astrophysics Data System (ADS)
Ouillon, G.; Ducorbier, C.; Sornette, D.
2008-01-01
We propose a new pattern recognition method that is able to reconstruct the three-dimensional structure of the active part of a fault network using the spatial location of earthquakes. The method is a generalization of the so-called dynamic clustering (or k means) method, that partitions a set of data points into clusters, using a global minimization criterion of the variance of the hypocenters locations about their center of mass. The new method improves on the original k means method by taking into account the full spatial covariance tensor of each cluster in order to partition the data set into fault-like, anisotropic clusters. Given a catalog of seismic events, the output is the optimal set of plane segments that fits the spatial structure of the data. Each plane segment is fully characterized by its location, size, and orientation. The main tunable parameter is the accuracy of the earthquake locations, which fixes the resolution, i.e., the residual variance of the fit. The resolution determines the number of fault segments needed to describe the earthquake catalog: the better the resolution, the finer the structure of the reconstructed fault segments. The algorithm successfully reconstructs the fault segments of synthetic earthquake catalogs. Applied to the real catalog constituted of a subset of the aftershock sequence of the 28 June 1992 Landers earthquake in southern California, the reconstructed plane segments fully agree with faults already known on geological maps or with blind faults that appear quite obvious in longer-term catalogs. Future improvements of the method are discussed, as well as its potential use in the multiscale study of the inner structure of fault zones.
NASA Astrophysics Data System (ADS)
Xu, Peipei; Zhou, Tao; Zhao, Xiang; Luo, Hui; Gao, Shan; Li, Zheng; Cao, Leyao
2018-07-01
Global climate change leads to gradual increases in the frequency, intensity, and duration of extreme drought events. Human activities such as afforestation and deforestation have led to spatial variation in forest structure, causing forests to exhibit an age-spatial structure relationship. Thus, it is of great importance to accurately evaluate the effects of drought stress on forest ecosystems with different forest age structures. Because the spatial heterogeneity varies with drought stress intensity, forest age, there are still a lot of uncertainties in current studies. In this study, based on the field measurement, and the proxy index of stand age (based on forest canopy height from LiDAR and stock volume from inventory) at the regional scale, we analyzed the different drought responses of forest ecosystems with various forest ages across different scales in Yunnan province, southwest China from 2001 to 2014. At the local scale, significant differences in the effects of drought stress were found among forests with various ages, suggesting that older forests suffer more under drought stress than younger forests. At the regional scale, the investigation statistics of forest damage indicated a maximum damage ratio in the forest with tall trees (>32 m), whereas damage was minimal in the forest with short trees (<25 m). The stock volume of the forest exhibited the same pattern, that is, the forest damage ratio increased as the stock volume increased. These data demonstrate that the responses of forest drought could be affected by forest age. Under drought stress, older forests show greater vulnerability and risk of damage, which will require special attention for forest managers, as well as improved risk assessments, in the context of future climate change.
Spatial and temporal remote sensing data fusion for vegetation monitoring
USDA-ARS?s Scientific Manuscript database
The suite of available remote sensing instruments varies widely in terms of sensor characteristics, spatial resolution and acquisition frequency. For example, the Moderate-resolution Imaging Spectroradiometer (MODIS) provides daily global observations at 250m to 1km spatial resolution. While imagery...
NASA Astrophysics Data System (ADS)
Korobova, Elena; Romanov, Sergey
2014-05-01
Contamination of the environment has reached such a scale that ecogeochemical situation in any area can be interpreted now as a result of the combined effect of natural and anthropogenic factors. The areas that appear uncomfortable for a long stay can have natural and anthropogenic genesis, but the spatial structure of such biogeochemical provinces is in any case formed of a combination of natural and technogenic fields of chemical elements. Features of structural organization and the difference in factors and specific time of their formation allow their separation on one hand and help in identification of areas with different ecological risks due to overlay of the two structures on the other. Geochemistry of soil cover reflects the long-term result of the naturally balanced biogeochemical cycles, therefore the soil geochemical maps of the undisturbed areas may serve the basis for evaluation of the natural geochemical background with due regard to the main factors of geochemical differentiation in biosphere. Purposeful and incidental technogenic concentrations and dispersions of chemical elements of specific (mainly mono- or polycentric) structure are also fixed in soils that serve as secondary sources of contamination of the vegetation cover and local food chains. Overlay of the two structures forms specific heterogeneity of modern biogeochemical provinces with different risk for particular groups of people, animals and plants adapted to specific natural geochemical background within particular concentration interval. The developed approach is believed to be helpful for biogeochemical regionalizing of modern biosphere (noosphere) and for spatially adequate ecogeochemical evaluation of the environment and landuse decisions. It allows production of a set of applied geochemical maps such as: 1) health risk due to chemical elements deficiency and technogenic contamination accounting of possible additive effects; 2) adequate soil fertilization and melioration with due regard to secondary redistribution of chemical elements; 3) selection of areas adequate for the short- and long-term ecogeochemical monitoring; 4) selection of areas as global and regional biogeochemical standards. The approach was used to evaluate contribution of stable iodine deficiency and radioactive iodine fallout to distribution of thyroid diseases among population of the Bryansk region [1], to evaluate natural transformation of the initially uniform spatial structure of N, P, K in agricultural fields [2] and radiocesium in forest and flood plain landscapes [3]. The work has been partly supported by the Russian Foundation for Basic Research (grants 07-05-00912; 10-05-01148; 13-05-00823). References Korobova E.M., S.L. Romanov, A.I. Kuvylin, E.I. Chesalova, V.Yu. Beriozkin, I.V. Kurnosova. Modern natural and technogenic iodine biogeochemical provinces: spatial structure and health effects. Goldschmidt 2011, Prague, August 14-19, 2011. Mineralogical Magazine, 75, 3, June 2011, Goldschmidt abstracts 2011, www.minersoc.org, 1224. Romanov S.L. Patterns of the structure of nitrogen, phosphorous and potassium fields in landscape systems of Belorussia. Thesis. Moscow, Moscow State University, 1991, 20 p. Korobova E.M., Romanov S.L., 2009. A Chernobyl 137Cs contamination study as an example for the spatial structure of geochemical fields and modeling of the geochemical field structure. Chemometrics and Intelligent Laboratory Systems 99, 1-8.
Observability of global rivers with future SWOT observations
NASA Astrophysics Data System (ADS)
Fisher, Colby; Pan, Ming; Wood, Eric
2017-04-01
The Surface Water and Ocean Topography (SWOT) mission is designed to provide global observations of water surface elevation and slope from which river discharge can be estimated using a data assimilation system. This mission will provide increased spatial and temporal coverage compared to current altimeters, with an expected accuracy for water level elevations of 10 cm on rivers greater than 100 m wide. Within the 21-day repeat cycle, a river reach will be observed 2-4 times on average. Due to the relationship between the basin orientation and the orbit, these observations are not evenly distributed in time, which will impact the derived discharge values. There is, then, a need for a better understanding of how the mission will observe global river basins. In this study, we investigate how SWOT will observe global river basins and how the temporal and spatial sampling impacts the discharge estimated from assimilation. SWOT observations can be assimilated using the Inverse Streamflow Routing (ISR) model of Pan and Wood [2013] with a fixed interval Kalman smoother. Previous work has shown that the ISR assimilation method can be used to reproduce the spatial and temporal dynamics of discharge within many global basins: however, this performance was strongly impacted by the spatial and temporal availability of discharge observations. In this study, we apply the ISR method to 32 global basins with different geometries and crossing patterns for the future orbit, assimilating theoretical SWOT-retrieved "gauges". Results show that the model performance varies significantly across basins and is driven by the orientation, flow distance, and travel time in each. Based on these properties, we quantify the "observability" of each basin and relate this to the performance of the assimilation. Applying this metric globally to a large variety of basins we can gain a better understanding of the impact that SWOT observations may have across basin scales. By determining the availability of SWOT observations in this manner, hydrologic data assimilation approaches like ISR can be optimized to provide useful discharge estimates in sparsely gauged regions where spatially and temporally consistent discharge records are most valuable. Pan, M; Wood, E F 2013 Inverse streamflow routing, HESS 17(11):4577-4588
Global Well-posedness of the Spatially Homogeneous Kolmogorov-Vicsek Model as a Gradient Flow
NASA Astrophysics Data System (ADS)
Figalli, Alessio; Kang, Moon-Jin; Morales, Javier
2018-03-01
We consider the so-called spatially homogenous Kolmogorov-Vicsek model, a non-linear Fokker-Planck equation of self-driven stochastic particles with orientation interaction under the space-homogeneity. We prove the global existence and uniqueness of weak solutions to the equation. We also show that weak solutions exponentially converge to a steady state, which has the form of the Fisher-von Mises distribution.
John T. Abatzoglou; Solomon Z. Dobrowski; Sean A. Parks; Katherine C. Hegewisch
2018-01-01
We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958â2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from...
Evidence and mapping of extinction debts for global forest-dwelling reptiles, amphibians and mammals
NASA Astrophysics Data System (ADS)
Chen, Youhua; Peng, Shushi
2017-03-01
Evidence of extinction debts for the global distributions of forest-dwelling reptiles, mammals and amphibians was tested and the debt magnitude was estimated and mapped. By using different correlation tests and variable importance analysis, the results showed that spatial richness patterns for the three forest-dwelling terrestrial vertebrate groups had significant and stronger correlations with past forest cover area and other variables in the 1500 s, implying the evidence for extinction debts. Moreover, it was likely that the extinction debts have been partially paid, given that their global richness patterns were also significantly correlated with contemporary forest variables in the 2000 s (but the absolute magnitudes of the correlation coefficients were usually smaller than those calculated for historical forest variables). By utilizing species-area relationships, spatial extinction-debt magnitudes for the three vertebrate groups at the global scale were estimated and the hotspots of extinction debts were identified. These high-debt hotspots were generally situated in areas that did not spatially overlap with hotspots of species richness or high extinction-risk areas based on IUCN threatened status to a large extent. This spatial mismatch pattern suggested that necessary conservation efforts should be directed toward high-debt areas that are still overlooked.
Chen, Youhua; Peng, Shushi
2017-03-16
Evidence of extinction debts for the global distributions of forest-dwelling reptiles, mammals and amphibians was tested and the debt magnitude was estimated and mapped. By using different correlation tests and variable importance analysis, the results showed that spatial richness patterns for the three forest-dwelling terrestrial vertebrate groups had significant and stronger correlations with past forest cover area and other variables in the 1500 s, implying the evidence for extinction debts. Moreover, it was likely that the extinction debts have been partially paid, given that their global richness patterns were also significantly correlated with contemporary forest variables in the 2000 s (but the absolute magnitudes of the correlation coefficients were usually smaller than those calculated for historical forest variables). By utilizing species-area relationships, spatial extinction-debt magnitudes for the three vertebrate groups at the global scale were estimated and the hotspots of extinction debts were identified. These high-debt hotspots were generally situated in areas that did not spatially overlap with hotspots of species richness or high extinction-risk areas based on IUCN threatened status to a large extent. This spatial mismatch pattern suggested that necessary conservation efforts should be directed toward high-debt areas that are still overlooked.
Johnson, Michelle O; Galbraith, David; Gloor, Manuel; De Deurwaerder, Hannes; Guimberteau, Matthieu; Rammig, Anja; Thonicke, Kirsten; Verbeeck, Hans; von Randow, Celso; Monteagudo, Abel; Phillips, Oliver L; Brienen, Roel J W; Feldpausch, Ted R; Lopez Gonzalez, Gabriela; Fauset, Sophie; Quesada, Carlos A; Christoffersen, Bradley; Ciais, Philippe; Sampaio, Gilvan; Kruijt, Bart; Meir, Patrick; Moorcroft, Paul; Zhang, Ke; Alvarez-Davila, Esteban; Alves de Oliveira, Atila; Amaral, Ieda; Andrade, Ana; Aragao, Luiz E O C; Araujo-Murakami, Alejandro; Arets, Eric J M M; Arroyo, Luzmila; Aymard, Gerardo A; Baraloto, Christopher; Barroso, Jocely; Bonal, Damien; Boot, Rene; Camargo, Jose; Chave, Jerome; Cogollo, Alvaro; Cornejo Valverde, Fernando; Lola da Costa, Antonio C; Di Fiore, Anthony; Ferreira, Leandro; Higuchi, Niro; Honorio, Euridice N; Killeen, Tim J; Laurance, Susan G; Laurance, William F; Licona, Juan; Lovejoy, Thomas; Malhi, Yadvinder; Marimon, Bia; Marimon, Ben Hur; Matos, Darley C L; Mendoza, Casimiro; Neill, David A; Pardo, Guido; Peña-Claros, Marielos; Pitman, Nigel C A; Poorter, Lourens; Prieto, Adriana; Ramirez-Angulo, Hirma; Roopsind, Anand; Rudas, Agustin; Salomao, Rafael P; Silveira, Marcos; Stropp, Juliana; Ter Steege, Hans; Terborgh, John; Thomas, Raquel; Toledo, Marisol; Torres-Lezama, Armando; van der Heijden, Geertje M F; Vasquez, Rodolfo; Guimarães Vieira, Ima Cèlia; Vilanova, Emilio; Vos, Vincent A; Baker, Timothy R
2016-12-01
Understanding the processes that determine above-ground biomass (AGB) in Amazonian forests is important for predicting the sensitivity of these ecosystems to environmental change and for designing and evaluating dynamic global vegetation models (DGVMs). AGB is determined by inputs from woody productivity [woody net primary productivity (NPP)] and the rate at which carbon is lost through tree mortality. Here, we test whether two direct metrics of tree mortality (the absolute rate of woody biomass loss and the rate of stem mortality) and/or woody NPP, control variation in AGB among 167 plots in intact forest across Amazonia. We then compare these relationships and the observed variation in AGB and woody NPP with the predictions of four DGVMs. The observations show that stem mortality rates, rather than absolute rates of woody biomass loss, are the most important predictor of AGB, which is consistent with the importance of stand size structure for determining spatial variation in AGB. The relationship between stem mortality rates and AGB varies among different regions of Amazonia, indicating that variation in wood density and height/diameter relationships also influences AGB. In contrast to previous findings, we find that woody NPP is not correlated with stem mortality rates and is weakly positively correlated with AGB. Across the four models, basin-wide average AGB is similar to the mean of the observations. However, the models consistently overestimate woody NPP and poorly represent the spatial patterns of both AGB and woody NPP estimated using plot data. In marked contrast to the observations, DGVMs typically show strong positive relationships between woody NPP and AGB. Resolving these differences will require incorporating forest size structure, mechanistic models of stem mortality and variation in functional composition in DGVMs. © 2016 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.
A Mars Micro-Meteorological Station Mission
NASA Technical Reports Server (NTRS)
Merrihew, Steven C.; Haberle, Robert; Lemke, Lawrence G.
1995-01-01
The Mars Micro-Meteorological Station (Micro-Met) Mission is designed to provide the global surface pressure measurements required to help characterize the martian general circulation and climate system. Measurements of surface pressure distributed both spatially and temporally, coupled with simultaneous measurements from orbit, will enable the determination of the general circulation, structure and driving factors of the martian atmosphere as well as the seasonal CO2 cycle. The influence of these atmospheric factors will in turn provide insight into the overall martian climate system. With the science objective defined as the long term (at least one Mars year) globally distributed measurement of surface atmospheric pressure, a straightforward, near term and low cost network mission has been designed. The Micro-Met mission utilizes a unique silicon micro-machined pressure sensor coupled with a robust and lightweight surface station to deliver to Mars 16 Micro-Met stations via a Med-Lite launch vehicle. The battery powered Micro-Met surface stations are designed to autonomously measure, record and transmit the science data via a UHF relay satellite. Entry, descent and landing is provided by an aeroshell with a new lightweight ceramic thermal protection system, a parachute and an impact absorbing structure. The robust lander is capable of surviving the landing loads imposed by the high altitude landing sites required in a global network. By trading the ability to make many measurements at a single site for the ability to make a single measurement at several sites, the Micro-Met mission design satisfies the requirement for truly global meteorological science.
A global approach to estimate irrigated areas - a comparison between different data and statistics
NASA Astrophysics Data System (ADS)
Meier, Jonas; Zabel, Florian; Mauser, Wolfram
2018-02-01
Agriculture is the largest global consumer of water. Irrigated areas constitute 40 % of the total area used for agricultural production (FAO, 2014a) Information on their spatial distribution is highly relevant for regional water management and food security. Spatial information on irrigation is highly important for policy and decision makers, who are facing the transition towards more efficient sustainable agriculture. However, the mapping of irrigated areas still represents a challenge for land use classifications, and existing global data sets differ strongly in their results. The following study tests an existing irrigation map based on statistics and extends the irrigated area using ancillary data. The approach processes and analyzes multi-temporal normalized difference vegetation index (NDVI) SPOT-VGT data and agricultural suitability data - both at a spatial resolution of 30 arcsec - incrementally in a multiple decision tree. It covers the period from 1999 to 2012. The results globally show a 18 % larger irrigated area than existing approaches based on statistical data. The largest differences compared to the official national statistics are found in Asia and particularly in China and India. The additional areas are mainly identified within already known irrigated regions where irrigation is more dense than previously estimated. The validation with global and regional products shows the large divergence of existing data sets with respect to size and distribution of irrigated areas caused by spatial resolution, the considered time period and the input data and assumption made.
NASA Astrophysics Data System (ADS)
Wen, Yingrong; Schoups, Gerrit; van de Giesen, Nick
2018-01-01
In many regions of the world, intensive livestock farming has become a significant source of organic river pollution. As the international meat trade is growing rapidly, the environmental impacts of meat production within one country can occur either domestically or internationally. The goal of this paper is to quantify the impacts of the international meat trade on global organic river pollution at multiple scales (national, regional and gridded). Using the biological oxygen demand (BOD) as an overall indicator of organic river pollution, we compute the spatially distributed organic pollution in global river networks with and without a meat trade, where the without-trade scenario assumes that meat imports are replaced by local production. Our analysis reveals a reduction in the livestock population and production of organic pollutants at the global scale as a result of the international meat trade. However, the actual environmental impact of trade, as quantified by in-stream BOD concentrations, is negative; i.e. we find a slight increase in polluted river segments. More importantly, our results show large spatial variability in local (grid-scale) impacts that do not correlate with local changes in BOD loading, which illustrates: (1) the significance of accounting for the spatial heterogeneity of hydrological processes along river networks, and (2) the limited value of looking at country-level or global averages when estimating the actual impacts of trade on the environment.
Scale invariance in natural and artificial collective systems: a review
Huepe, Cristián
2017-01-01
Self-organized collective coordinated behaviour is an impressive phenomenon, observed in a variety of natural and artificial systems, in which coherent global structures or dynamics emerge from local interactions between individual parts. If the degree of collective integration of a system does not depend on size, its level of robustness and adaptivity is typically increased and we refer to it as scale-invariant. In this review, we first identify three main types of self-organized scale-invariant systems: scale-invariant spatial structures, scale-invariant topologies and scale-invariant dynamics. We then provide examples of scale invariance from different domains in science, describe their origins and main features and discuss potential challenges and approaches for designing and engineering artificial systems with scale-invariant properties. PMID:29093130
Spatial modeling of agricultural land use change at global scale
NASA Astrophysics Data System (ADS)
Meiyappan, P.; Dalton, M.; O'Neill, B. C.; Jain, A. K.
2014-11-01
Long-term modeling of agricultural land use is central in global scale assessments of climate change, food security, biodiversity, and climate adaptation and mitigation policies. We present a global-scale dynamic land use allocation model and show that it can reproduce the broad spatial features of the past 100 years of evolution of cropland and pastureland patterns. The modeling approach integrates economic theory, observed land use history, and data on both socioeconomic and biophysical determinants of land use change, and estimates relationships using long-term historical data, thereby making it suitable for long-term projections. The underlying economic motivation is maximization of expected profits by hypothesized landowners within each grid cell. The model predicts fractional land use for cropland and pastureland within each grid cell based on socioeconomic and biophysical driving factors that change with time. The model explicitly incorporates the following key features: (1) land use competition, (2) spatial heterogeneity in the nature of driving factors across geographic regions, (3) spatial heterogeneity in the relative importance of driving factors and previous land use patterns in determining land use allocation, and (4) spatial and temporal autocorrelation in land use patterns. We show that land use allocation approaches based solely on previous land use history (but disregarding the impact of driving factors), or those accounting for both land use history and driving factors by mechanistically fitting models for the spatial processes of land use change do not reproduce well long-term historical land use patterns. With an example application to the terrestrial carbon cycle, we show that such inaccuracies in land use allocation can translate into significant implications for global environmental assessments. The modeling approach and its evaluation provide an example that can be useful to the land use, Integrated Assessment, and the Earth system modeling communities.
Integrating spatial and numerical structure in mathematical patterning
NASA Astrophysics Data System (ADS)
Ni’mah, K.; Purwanto; Irawan, E. B.; Hidayanto, E.
2018-03-01
This paper reports a study monitoring the integrating spatial and numerical structure in mathematical patterning skills of 30 students grade 7th of junior high school. The purpose of this research is to clarify the processes by which learners construct new knowledge in mathematical patterning. Findings indicate that: (1) students are unable to organize the structure of spatial and numerical, (2) students were only able to organize the spatial structure, but the numerical structure is still incorrect, (3) students were only able to organize numerical structure, but its spatial structure is still incorrect, (4) students were able to organize both of the spatial and numerical structure.
NASA Astrophysics Data System (ADS)
Meng, R.; Wu, J.; Zhao, F. R.; Cook, B.; Hanavan, R. P.; Serbin, S.
2017-12-01
Fire-induced forest changes has long been a central focus for forest ecology and global carbon cycling studies, and is becoming a pressing issue for global change biologists particularly with the projected increases in the frequency and intensity of fire with a warmer and drier climate. Compared with time-consuming and labor intensive field-based approaches, remote sensing offers a promising way to efficiently assess fire effects and monitor post-fire forest responses across a range of spatial and temporal scales. However, traditional remote sensing studies relying on simple optical spectral indices or coarse resolution imagery still face a number of technical challenges, including confusion or contamination of the signal by understory dynamics and mixed pixels with moderate to coarse resolution data (>= 30 m). As such, traditional remote sensing may not meet the increasing demand for more ecologically-meaningful monitoring and quantitation of fire-induced forest changes. Here we examined the use of novel remote sensing technique (i.e. airborne imaging spectroscopy and LiDAR measurement, very high spatial resolution (VHR) space-borne multi-spectral measurement, and high temporal-spatial resolution UAS-based (Unmanned Aerial System) imagery), in combination with field and phenocam measurements to map forest burn severity across spatial scales, quantify crown-scale post-fire forest recovery rate, and track fire-induced phenology changes in the burned areas. We focused on a mixed pine-oak forest undergoing multiple fire disturbances for the past several years in Long Island, NY as a case study. We demonstrate that (1) forest burn severity mapping from VHR remote sensing measurement can capture crown-scale heterogeneous fire patterns over large-scale; (2) the combination of VHR optical and structural measurements provides an efficient means to remotely sense species-level post-fire forest responses; (3) the UAS-based remote sensing enables monitoring of fire-induced forest phenology changes at unprecedented temporal and spatial resolutions. This work provides the methodological approach monitor fire-induced forest changes in a spatially explicit manner across scales, with important implications for fire-related forest management and for constraining/benchmarking process models.
Dark Energy and Dark Matter Hidden in the Geometry of Space?
NASA Astrophysics Data System (ADS)
Buchert, Thomas
A spatially flat and infinite Universe in the form of a "concordant" standard model of cosmology rules present-day thinking of cosmologists. The price to pay is an unknown physical origin of Dark Energy and Dark Matter that are supposed to exist and even appear to rule the dynamics of our Universe. A growing number of cosmologists question the existence of dark constituents: the standard model of cosmology may be just too simple, since it neglects the influence of structure in the Universe on its global expansion history. The key-issue appears to be the curvature of space: the formation of structure interacts with the geometry of space, changing our global picture of the Universe. This chapter explains the underlying mechanism that works in the right direction to uncover the dark faces of the standard model of cosmology. If successful, this novel approach furnishes a new paradigm of modern cosmology. Hundreds of researchers have recently embarked into studies of this new subject. We understand much at present, but there are many open questions.
Waves in the Martian Atmosphere: Results from MGS Radio Occultations
NASA Technical Reports Server (NTRS)
Flasar, F. M.; Hinson, D. P.; Tyler, G. L.
1999-01-01
Temperatures retrieved from Mars Global Surveyor radio occultations have been searched for evidence of waves. Emphasis has been on the initial series of occultations between 29 deg N and 64 deg S, obtained during the early martian southern summer, L(sub s) = 264 deg - 308 deg. The profiles exhibit an undulatory behavior that is suggestive of vertically propagating waves. wavelengths approximately 10 km are often dominant, but structure on smaller scales is evident. The undulatory structure is most pronounced between latitudes 29 deg N and 10 deg S, usually in regions of "interesting" topography, e.g., in the Tharsis region and near the edge of Syrtis Major. Several temperature profiles, particularly within 30 deg of the equator, exhibit lapse rates that locally become superadiabatic near the 0.4-mbar level or at higher altitudes. This implies that the waves are "breaking" and depositing horizontal momentum into the atmosphere. Such a deposition may play an important role in modulating the atmospheric winds, and characterizing the spatial and temporal distribution of these momentum transfers can provide important clues to understanding how the global circulation is maintained.
MPI parallelization of Vlasov codes for the simulation of nonlinear laser-plasma interactions
NASA Astrophysics Data System (ADS)
Savchenko, V.; Won, K.; Afeyan, B.; Decyk, V.; Albrecht-Marc, M.; Ghizzo, A.; Bertrand, P.
2003-10-01
The simulation of optical mixing driven KEEN waves [1] and electron plasma waves [1] in laser-produced plasmas require nonlinear kinetic models and massive parallelization. We use Massage Passing Interface (MPI) libraries and Appleseed [2] to solve the Vlasov Poisson system of equations on an 8 node dual processor MAC G4 cluster. We use the semi-Lagrangian time splitting method [3]. It requires only row-column exchanges in the global data redistribution, minimizing the total number of communications between processors. Recurrent communication patterns for 2D FFTs involves global transposition. In the Vlasov-Maxwell case, we use splitting into two 1D spatial advections and a 2D momentum advection [4]. Discretized momentum advection equations have a double loop structure with the outer index being assigned to different processors. We adhere to a code structure with separate routines for calculations and data management for parallel computations. [1] B. Afeyan et al., IFSA 2003 Conference Proceedings, Monterey, CA [2] V. K. Decyk, Computers in Physics, 7, 418 (1993) [3] Sonnendrucker et al., JCP 149, 201 (1998) [4] Begue et al., JCP 151, 458 (1999)
Global structure of five-dimensional fuzzballs
NASA Astrophysics Data System (ADS)
Gibbons, G. W.; Warner, N. P.
2014-01-01
We describe and study families of BPS microstate geometries, namely, smooth, horizonless asymptotically flat solutions to supergravity. We examine these solutions from the perspective of earlier attempts to find solitonic solutions in gravity and show how the microstate geometries circumvent the earlier ‘no-go’ theorems. In particular, we re-analyze the Smarr formula and show how it must be modified in the presence of non-trivial second homology. This, combined with the supergravity Chern-Simons terms, allows the existence of rich classes of BPS, globally hyperbolic, asymptotically flat, microstate geometries whose spatial topology is the connected sum of N copies of S2 × S2 with a ‘point at infinity’ removed. These solutions also exhibit ‘evanescent ergo-regions,’ that is, the non-space-like Killing vector guaranteed by supersymmetry is time-like everywhere except on time-like hypersurfaces (ergo-surfaces) where the Killing vector becomes null. As a by-product of our work, we are able to resolve the puzzle of why some regular soliton solutions violate the BPS bound: their spacetimes do not admit a spin structure.
Tracking the global footprint of fisheries
NASA Astrophysics Data System (ADS)
Kroodsma, David A.; Mayorga, Juan; Hochberg, Timothy; Miller, Nathan A.; Boerder, Kristina; Ferretti, Francesco; Wilson, Alex; Bergman, Bjorn; White, Timothy D.; Block, Barbara A.; Woods, Paul; Sullivan, Brian; Costello, Christopher; Worm, Boris
2018-02-01
Although fishing is one of the most widespread activities by which humans harvest natural resources, its global footprint is poorly understood and has never been directly quantified. We processed 22 billion automatic identification system messages and tracked >70,000 industrial fishing vessels from 2012 to 2016, creating a global dynamic footprint of fishing effort with spatial and temporal resolution two to three orders of magnitude higher than for previous data sets. Our data show that industrial fishing occurs in >55% of ocean area and has a spatial extent more than four times that of agriculture. We find that global patterns of fishing have surprisingly low sensitivity to short-term economic and environmental variation and a strong response to cultural and political events such as holidays and closures.
Guitet, Stéphane; Hérault, Bruno; Molto, Quentin; Brunaux, Olivier; Couteron, Pierre
2015-01-01
Precise mapping of above-ground biomass (AGB) is a major challenge for the success of REDD+ processes in tropical rainforest. The usual mapping methods are based on two hypotheses: a large and long-ranged spatial autocorrelation and a strong environment influence at the regional scale. However, there are no studies of the spatial structure of AGB at the landscapes scale to support these assumptions. We studied spatial variation in AGB at various scales using two large forest inventories conducted in French Guiana. The dataset comprised 2507 plots (0.4 to 0.5 ha) of undisturbed rainforest distributed over the whole region. After checking the uncertainties of estimates obtained from these data, we used half of the dataset to develop explicit predictive models including spatial and environmental effects and tested the accuracy of the resulting maps according to their resolution using the rest of the data. Forest inventories provided accurate AGB estimates at the plot scale, for a mean of 325 Mg.ha-1. They revealed high local variability combined with a weak autocorrelation up to distances of no more than10 km. Environmental variables accounted for a minor part of spatial variation. Accuracy of the best model including spatial effects was 90 Mg.ha-1 at plot scale but coarse graining up to 2-km resolution allowed mapping AGB with accuracy lower than 50 Mg.ha-1. Whatever the resolution, no agreement was found with available pan-tropical reference maps at all resolutions. We concluded that the combined weak autocorrelation and weak environmental effect limit AGB maps accuracy in rainforest, and that a trade-off has to be found between spatial resolution and effective accuracy until adequate “wall-to-wall” remote sensing signals provide reliable AGB predictions. Waiting for this, using large forest inventories with low sampling rate (<0.5%) may be an efficient way to increase the global coverage of AGB maps with acceptable accuracy at kilometric resolution. PMID:26402522
Knowledge representation of rock plastic deformation
NASA Astrophysics Data System (ADS)
Davarpanah, Armita; Babaie, Hassan
2017-04-01
The first iteration of the Rock Plastic Deformation (RPD) ontology models the semantics of the dynamic physical and chemical processes and mechanisms that occur during the deformation of the generally inhomogeneous polycrystalline rocks. The ontology represents the knowledge about the production, reconfiguration, displacement, and consumption of the structural components that participate in these processes. It also formalizes the properties that are known by the structural geology and metamorphic petrology communities to hold between the instances of the spatial components and the dynamic processes, the state and system variables, the empirical flow laws that relate the variables, and the laboratory testing conditions and procedures. The modeling of some of the complex physio-chemical, mathematical, and informational concepts and relations of the RPD ontology is based on the class and property structure of some well-established top-level ontologies. The flexible and extensible design of the initial version of the RPD ontology allows it to develop into a model that more fully represents the knowledge of plastic deformation of rocks under different spatial and temporal scales in the laboratory and in solid Earth. The ontology will be used to annotate the datasets related to the microstructures and physical-chemical processes that involve them. This will help the autonomous and globally distributed communities of experimental structural geologists and metamorphic petrologists to coherently and uniformly distribute, discover, access, share, and use their data through automated reasoning and enhanced data integration and software interoperability.
Pérez-Izquierdo, Leticia; Zabal-Aguirre, Mario; Flores-Rentería, Dulce; González-Martínez, Santiago C; Buée, Marc; Rincón, Ana
2017-04-01
Fungi provide relevant ecosystem services contributing to primary productivity and the cycling of nutrients in forests. These fungal inputs can be decisive for the resilience of Mediterranean forests under global change scenarios, making necessary an in-deep knowledge about how fungal communities operate in these ecosystems. By using high-throughput sequencing and enzymatic approaches, we studied the fungal communities associated with three genotypic variants of Pinus pinaster trees, in 45-year-old common garden plantations. We aimed to determine the impact of biotic (i.e., tree genotype) and abiotic (i.e., season, site) factors on the fungal community structure, and to explore whether structural shifts triggered functional responses affecting relevant ecosystem processes. Tree genotype and spatial-temporal factors were pivotal structuring fungal communities, mainly by influencing their assemblage and selecting certain fungi. Diversity variations of total fungal community and of that of specific fungal guilds, together with edaphic properties and tree's productivity, explained relevant ecosystem services such as processes involved in carbon turnover and phosphorous mobilization. A mechanistic model integrating relations of these variables and ecosystem functional outcomes is provided. Our results highlight the importance of structural shifts in fungal communities because they may have functional consequences for key ecosystem processes in Mediterranean forests. © 2017 Society for Applied Microbiology and John Wiley and Sons Ltd.
Freedman, Zachary; Zak, Donald R
2015-09-01
Soil microbial communities are abundant, hyper-diverse and mediate global biogeochemical cycles, but we do not yet understand the processes mediating their assembly. Current hypothetical frameworks suggest temporal (e.g. dispersal limitation) and environmental (e.g. soil pH) filters shape microbial community composition; however, there is limited empirical evidence supporting this framework in the hyper-diverse soil environment, particularly at large spatial (i.e. regional to continental) and temporal (i.e. 100 to 1000 years) scales. Here, we present evidence from a long-term chronosequence (4000 years) that temporal and environmental filters do indeed shape soil bacterial community composition. Furthermore, nearly 20 years of environmental monitoring allowed us to control for potentially confounding environmental variation. Soil bacterial communities were phylogenetically distinct across the chronosequence. We determined that temporal and environmental factors accounted for significant portions of bacterial phylogenetic structure using distance-based linear models. Environmental factors together accounted for the majority of phylogenetic structure, namely, soil temperature (19%), pH (17%) and litter carbon:nitrogen (C:N; 17%). However, of all individual factors, time since deglaciation accounted for the greatest proportion of bacterial phylogenetic structure (20%). Taken together, our results provide empirical evidence that temporal and environmental filters act together to structure soil bacterial communities across large spatial and long-term temporal scales. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.
NASA Astrophysics Data System (ADS)
Guo, Luo; Du, Shihong; Haining, Robert; Zhang, Lianjun
2013-04-01
The existing indicators related to spatial association, especially the K function, can measure only the same dimension of vector data, such as points, lines and polygons, respectively. We develop four new indicators that can analyze and model spatial association for the mixture of different dimensions of vector data, such as lines and points, points and polygons, lines and polygons. The four indicators can measure the spatial association between points and polygons from both global and local perspectives. We also apply the presented methods to investigate the association of temples and villages on land-use change at multiple distance scales in the Guoluo Tibetan Autonomous Prefecture in Qinghai Province, PR China. Global indicators show that temples are positively associated with land-use change at large spatial distances (e.g., >6000 m), while the association between villages and land-use change is insignificant at all distance scales. Thus temples, as religious and cultural centers, have a stronger association with land-use change than the places where people live. However, local indicators show that these associations vary significantly in different sub-areas of the study region. Furthermore, the association of temples with land-use change is also dependent on the specific type of land-use change. The case study demonstrates that the presented indicators are powerful tools for analyzing the spatial association between points and polygons.
Sousa, Daniel; Small, Christopher
2018-02-14
Planned hyperspectral satellite missions and the decreased revisit time of multispectral imaging offer the potential for data fusion to leverage both the spectral resolution of hyperspectral sensors and the temporal resolution of multispectral constellations. Hyperspectral imagery can also be used to better understand fundamental properties of multispectral data. In this analysis, we use five flight lines from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) archive with coincident Landsat 8 acquisitions over a spectrally diverse region of California to address the following questions: (1) How much of the spectral dimensionality of hyperspectral data is captured in multispectral data?; (2) Is the characteristic pyramidal structure of the multispectral feature space also present in the low order dimensions of the hyperspectral feature space at comparable spatial scales?; (3) How much variability in rock and soil substrate endmembers (EMs) present in hyperspectral data is captured by multispectral sensors? We find nearly identical partitions of variance, low-order feature space topologies, and EM spectra for hyperspectral and multispectral image composites. The resulting feature spaces and EMs are also very similar to those from previous global multispectral analyses, implying that the fundamental structure of the global feature space is present in our relatively small spatial subset of California. Finally, we find that the multispectral dataset well represents the substrate EM variability present in the study area - despite its inability to resolve narrow band absorptions. We observe a tentative but consistent physical relationship between the gradation of substrate reflectance in the feature space and the gradation of sand versus clay content in the soil classification system.
Small, Christopher
2018-01-01
Planned hyperspectral satellite missions and the decreased revisit time of multispectral imaging offer the potential for data fusion to leverage both the spectral resolution of hyperspectral sensors and the temporal resolution of multispectral constellations. Hyperspectral imagery can also be used to better understand fundamental properties of multispectral data. In this analysis, we use five flight lines from the Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) archive with coincident Landsat 8 acquisitions over a spectrally diverse region of California to address the following questions: (1) How much of the spectral dimensionality of hyperspectral data is captured in multispectral data?; (2) Is the characteristic pyramidal structure of the multispectral feature space also present in the low order dimensions of the hyperspectral feature space at comparable spatial scales?; (3) How much variability in rock and soil substrate endmembers (EMs) present in hyperspectral data is captured by multispectral sensors? We find nearly identical partitions of variance, low-order feature space topologies, and EM spectra for hyperspectral and multispectral image composites. The resulting feature spaces and EMs are also very similar to those from previous global multispectral analyses, implying that the fundamental structure of the global feature space is present in our relatively small spatial subset of California. Finally, we find that the multispectral dataset well represents the substrate EM variability present in the study area – despite its inability to resolve narrow band absorptions. We observe a tentative but consistent physical relationship between the gradation of substrate reflectance in the feature space and the gradation of sand versus clay content in the soil classification system. PMID:29443900
Challenges in global modeling of wetland extent and wetland methane dynamics
NASA Astrophysics Data System (ADS)
Spahni, R.; Melton, J. R.; Wania, R.; Stocker, B. D.; Zürcher, S.; Joos, F.
2012-12-01
Global wetlands are known to be climate sensitive, and are the largest natural emitters of methane (CH4). Increased wetland CH4 emissions could act as a positive feedback to future warming. Modelling of global wetland extent and wetland CH4 dynamics remains a challenge. Here we present results from the Wetland and Wetland CH4 Inter-comparison of Models Project (WETCHIMP) that investigated our present ability to simulate large scale wetland characteristics (e.g. wetland type, water table, carbon cycling, gas transport, etc.) and corresponding CH4 emissions. Ten models participated, covering the spectrum from simple to relatively complex, including models tailored either for regional or global simulations. The WETCHIMP experiments showed that while models disagree in spatial and temporal patterns of simulated CH4 emissions and wetland areal extent, they all do agree on a strong positive response to increased carbon dioxide concentrations. WETCHIMP made clear that we currently lack observation data sets that are adequate to evaluate model CH4 soil-atmosphere fluxes at a spatial scale comparable to model grid cells. Thus there are substantial parameter and structural uncertainties in large-scale CH4 emission models. As an illustration of the implications of CH4 emissions on climate we show results of the LPX-Bern model, as one of the models participating in WETCHIMP. LPX-Bern is forced with observed 20th century climate and climate output from an ensemble of five comprehensive climate models for a low and a high emission scenario till 2100 AD. In the high emission scenario increased substrate availability for methanogenesis due to a strong stimulation of net primary productivity, and faster soil turnover leads to an amplification of CH4 emissions with the sharpest increase in peatlands (+180% compared to present). Combined with prescribed anthropogenic CH4 emissions, simulated atmospheric CH4 concentration reaches ~4500 ppbv by 2100 AD, about 800 ppbv more than in standard IPCC scenarios. This represents a significant contribution to radiative forcing of global climate.
A Simple Climate Model Program for High School Education
NASA Astrophysics Data System (ADS)
Dommenget, D.
2012-04-01
The future climate change projections of the IPCC AR4 are based on GCM simulations, which give a distinct global warming pattern, with an arctic winter amplification, an equilibrium land sea contrast and an inter-hemispheric warming gradient. While these simulations are the most important tool of the IPCC predictions, the conceptual understanding of these predicted structures of climate change are very difficult to reach if only based on these highly complex GCM simulations and they are not accessible for ordinary people. In this study presented here we will introduce a very simple gridded globally resolved energy balance model based on strongly simplified physical processes, which is capable of simulating the main characteristics of global warming. The model shall give a bridge between the 1-dimensional energy balance models and the fully coupled 4-dimensional complex GCMs. It runs on standard PC computers computing globally resolved climate simulation with 2yrs per second or 100,000yrs per day. The program can compute typical global warming scenarios in a few minutes on a standard PC. The computer code is only 730 line long with very simple formulations that high school students should be able to understand. The simple model's climate sensitivity and the spatial structure of the warming pattern is within the uncertainties of the IPCC AR4 models simulations. It is capable of simulating the arctic winter amplification, the equilibrium land sea contrast and the inter-hemispheric warming gradient with good agreement to the IPCC AR4 models in amplitude and structure. The program can be used to do sensitivity studies in which students can change something (e.g. reduce the solar radiation, take away the clouds or make snow black) and see how it effects the climate or the climate response to changes in greenhouse gases. This program is available for every one and could be the basis for high school education. Partners for a high school project are wanted!
The Lunar Crust: Global Structure and Signature of Major Basins
NASA Technical Reports Server (NTRS)
Neumann, Gregory A.; Zuber, Maria T.; Smith, David E.; Lemoine, Frank G.
1996-01-01
New lunar gravity and topography data from the Clementine Mission provide a global Bouguer anomaly map corrected for the gravitational attraction of mare fill in mascon basins. Most of the gravity signal remaining after corrections for the attraction of topography and mare fill can be attributed to variations in depth to the lunar Moho and therefore crustal thickness. The large range of global crustal thickness (approx. 20-120 km) is indicative of major spatial variations in melting of the lunar exterior and/or significant impact-related redistribution. The 6l-km average crustal thickness, constrained by a depth-to-Moho measured during the Apollo 12 and 14 missions, is preferentially distributed toward the farside, accounting for much of the offset in center-of-figure from the center-of-mass. While the average farside thickness is 12 km greater than the nearside, the distribution is nonuniform, with dramatic thinning beneath the farside, South Pole-Aitken basin. With the global crustal thickness map as a constraint, regional inversions of gravity and topography resolve the crustal structure of major mascon basins to half wavelengths of 150 km. In order to yield crustal thickness maps with the maximum horizontal resolution permitted by the data, the downward continuation of the Bouguer gravity is stabilized by a three- dimensional, minimum-slope and curvature algorithm. Both mare and non-mare basins are characterized by a central upwarped moho that is surrounded by rings of thickened crust lying mainly within the basin rims. The inferred relief at this density interface suggests a deep structural component to the surficial features of multiring lunar impact basins. For large (greater than 300 km diameter) basins, moho relief appears uncorrelated with diameter, but is negatively correlated with basin age. In several cases, it appears that the multiring structures were out of isostatic equilibrium prior to mare emplacement, suggesting that the lithosphere was strong enough to maintain their state of stress to the present.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xiong, Wei; Balkovic, Juraj; van der Velde, M.
Crop models are increasingly used to assess impacts of climate change/variability and management practices on productivity and environmental performance of alternative cropping systems. Calibration is an important procedure to improve reliability of model simulations, especially for large area applications. However, global-scale crop model calibration has rarely been exercised due to limited data availability and expensive computing cost. Here we present a simple approach to calibrate Environmental Policy Integrated Climate (EPIC) model for a global implementation of rice. We identify four parameters (potential heat unit – PHU, planting density – PD, harvest index – HI, and biomass energy ratio – BER)more » and calibrate them regionally to capture the spatial pattern of reported rice yield in 2000. Model performance is assessed by comparing simulated outputs with independent FAO national data. The comparison demonstrates that the global calibration scheme performs satisfactorily in reproducing the spatial pattern of rice yield, particularly in main rice production areas. Spatial agreement increases substantially when more parameters are selected and calibrated, but with varying efficiencies. Among the parameters, PHU and HI exhibit the highest efficiencies in increasing the spatial agreement. Simulations with different calibration strategies generate a pronounced discrepancy of 5–35% in mean yields across latitude bands, and a small to moderate difference in estimated yield variability and yield changing trend for the period of 1981–2000. Present calibration has little effects in improving simulated yield variability and trends at both regional and global levels, suggesting further works are needed to reproduce temporal variability of reported yields. This study highlights the importance of crop models’ calibration, and presents the possibility of a transparent and consistent up scaling approach for global crop simulations given current availability of global databases of weather, soil, crop calendar, fertilizer and irrigation management information, and reported yield.« less
Adachi, Minaco; Ito, Akihiko; Yonemura, Seiichiro; Takeuchi, Wataru
2017-09-15
Soil respiration is one of the largest carbon fluxes from terrestrial ecosystems. Estimating global soil respiration is difficult because of its high spatiotemporal variability and sensitivity to land-use change. Satellite monitoring provides useful data for estimating the global carbon budget, but few studies have estimated global soil respiration using satellite data. We provide preliminary insights into the estimation of global soil respiration in 2001 and 2009 using empirically derived soil temperature equations for 17 ecosystems obtained by field studies, as well as MODIS climate data and land-use maps at a 4-km resolution. The daytime surface temperature from winter to early summer based on the MODIS data tended to be higher than the field-observed soil temperatures in subarctic and temperate ecosystems. The estimated global soil respiration was 94.8 and 93.8 Pg C yr -1 in 2001 and 2009, respectively. However, the MODIS land-use maps had insufficient spatial resolution to evaluate the effect of land-use change on soil respiration. The spatial variation of soil respiration (Q 10 ) values was higher but its spatial variation was lower in high-latitude areas than in other areas. However, Q 10 in tropical areas was more variable and was not accurately estimated (the values were >7.5 or <1.0) because of the low seasonal variation in soil respiration in tropical ecosystems. To solve these problems, it will be necessary to validate our results using a combination of remote sensing data at higher spatial resolution and field observations for many different ecosystems, and it will be necessary to account for the effects of more soil factors in the predictive equations. Copyright © 2017 Elsevier Ltd. All rights reserved.
Global Gradients of Coral Exposure to Environmental Stresses and Implications for Local Management
Maina, Joseph; McClanahan, Tim R.; Venus, Valentijn; Ateweberhan, Mebrahtu; Madin, Joshua
2011-01-01
Background The decline of coral reefs globally underscores the need for a spatial assessment of their exposure to multiple environmental stressors to estimate vulnerability and evaluate potential counter-measures. Methodology/Principal Findings This study combined global spatial gradients of coral exposure to radiation stress factors (temperature, UV light and doldrums), stress-reinforcing factors (sedimentation and eutrophication), and stress-reducing factors (temperature variability and tidal amplitude) to produce a global map of coral exposure and identify areas where exposure depends on factors that can be locally managed. A systems analytical approach was used to define interactions between radiation stress variables, stress reinforcing variables and stress reducing variables. Fuzzy logic and spatial ordinations were employed to quantify coral exposure to these stressors. Globally, corals are exposed to radiation and reinforcing stress, albeit with high spatial variability within regions. Based on ordination of exposure grades, regions group into two clusters. The first cluster was composed of severely exposed regions with high radiation and low reducing stress scores (South East Asia, Micronesia, Eastern Pacific and the central Indian Ocean) or alternatively high reinforcing stress scores (the Middle East and the Western Australia). The second cluster was composed of moderately to highly exposed regions with moderate to high scores in both radiation and reducing factors (Caribbean, Great Barrier Reef (GBR), Central Pacific, Polynesia and the western Indian Ocean) where the GBR was strongly associated with reinforcing stress. Conclusions/Significance Despite radiation stress being the most dominant stressor, the exposure of coral reefs could be reduced by locally managing chronic human impacts that act to reinforce radiation stress. Future research and management efforts should focus on incorporating the factors that mitigate the effect of coral stressors until long-term carbon reductions are achieved through global negotiations. PMID:21860667
Estimation of Global 1km-grid Terrestrial Carbon Exchange Part II: Evaluations and Applications
NASA Astrophysics Data System (ADS)
Murakami, K.; Sasai, T.; Kato, S.; Niwa, Y.; Saito, M.; Takagi, H.; Matsunaga, T.; Hiraki, K.; Maksyutov, S. S.; Yokota, T.
2015-12-01
Global terrestrial carbon cycle largely depends on a spatial pattern in land cover type, which is heterogeneously-distributed over regional and global scales. Many studies have been trying to reveal distribution of carbon exchanges between terrestrial ecosystems and atmosphere for understanding global carbon cycle dynamics by using terrestrial biosphere models, satellite data, inventory data, and so on. However, most studies remained within several tens of kilometers grid spatial resolution, and the results have not been enough to understand the detailed pattern of carbon exchanges based on ecological community and to evaluate the carbon stocks by forest ecosystems in each countries. Improving the sophistication of spatial resolution is obviously necessary to enhance the accuracy of carbon exchanges. Moreover, the improvement may contribute to global warming awareness, policy makers and other social activities. We show global terrestrial carbon exchanges (net ecosystem production, net primary production, and gross primary production) with 1km-grid resolution. The methodology for these estimations are shown in the 2015 AGU FM poster "Estimation of Global 1km-grid Terrestrial Carbon Exchange Part I: Developing Inputs and Modelling". In this study, we evaluated the carbon exchanges in various regions with other approaches. We used the satellite-driven biosphere model (BEAMS) as our estimations, GOSAT L4A CO2 flux data, NEP retrieved by NICAM and CarbonTracer2013 flux data, for period from Jun 2001 to Dec 2012. The temporal patterns for this period were indicated similar trends between BEAMS, GOSAT, NICAM, and CT2013 in many sub-continental regions. Then, we estimated the terrestrial carbon exchanges in each countries, and could indicated the temporal patterns of the exchanges in large carbon stock regions.Global terrestrial carbon cycle largely depends on a spatial pattern of land cover type, which is heterogeneously-distributed over regional and global scales. Many studies have been trying to reveal distribution of carbon exchanges between terrestrial ecosystems and atmosphere for understanding global carbon cycle dynamics by using terrestrial biosphere models, satellite data, inventory data, and so on. However, most studies remained within several tens of kilometers grid spatial resolution, and the results have not been enough to understand the detailed pattern of carbon exchanges based on ecological community and to evaluate the carbon stocks by forest ecosystems in each countries. Improving the sophistication of spatial resolution is obviously necessary to enhance the accuracy of carbon exchanges. Moreover, the improvement may contribute to global warming awareness, policy makers and other social activities. We show global terrestrial carbon exchanges (net ecosystem production, net primary production, and gross primary production) with 1km-grid resolution. The methodology for these estimations are shown in the 2015 AGU FM poster "Estimation of Global 1km-grid Terrestrial Carbon Exchange Part I: Developing Inputs and Modelling". In this study, we evaluated the carbon exchanges in various regions with other approaches. We used the satellite-driven biosphere model (BEAMS) as our estimations, GOSAT L4A CO2 flux data, NEP retrieved by NICAM and CarbonTracer2013 flux data, for period from Jun 2001 to Dec 2012. The temporal patterns for this period were indicated similar trends between BEAMS, GOSAT, NICAM, and CT2013 in many sub-continental regions. Then, we estimated the terrestrial carbon exchanges in each countries, and could indicated the temporal patterns of the exchanges in large carbon stock regions.
Abatzoglou, John T; Dobrowski, Solomon Z; Parks, Sean A; Hegewisch, Katherine C
2018-01-09
We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958-2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from other sources to produce a monthly dataset of precipitation, maximum and minimum temperature, wind speed, vapor pressure, and solar radiation. TerraClimate additionally produces monthly surface water balance datasets using a water balance model that incorporates reference evapotranspiration, precipitation, temperature, and interpolated plant extractable soil water capacity. These data provide important inputs for ecological and hydrological studies at global scales that require high spatial resolution and time varying climate and climatic water balance data. We validated spatiotemporal aspects of TerraClimate using annual temperature, precipitation, and calculated reference evapotranspiration from station data, as well as annual runoff from streamflow gauges. TerraClimate datasets showed noted improvement in overall mean absolute error and increased spatial realism relative to coarser resolution gridded datasets.
NASA Astrophysics Data System (ADS)
Abatzoglou, John T.; Dobrowski, Solomon Z.; Parks, Sean A.; Hegewisch, Katherine C.
2018-01-01
We present TerraClimate, a dataset of high-spatial resolution (1/24°, ~4-km) monthly climate and climatic water balance for global terrestrial surfaces from 1958-2015. TerraClimate uses climatically aided interpolation, combining high-spatial resolution climatological normals from the WorldClim dataset, with coarser resolution time varying (i.e., monthly) data from other sources to produce a monthly dataset of precipitation, maximum and minimum temperature, wind speed, vapor pressure, and solar radiation. TerraClimate additionally produces monthly surface water balance datasets using a water balance model that incorporates reference evapotranspiration, precipitation, temperature, and interpolated plant extractable soil water capacity. These data provide important inputs for ecological and hydrological studies at global scales that require high spatial resolution and time varying climate and climatic water balance data. We validated spatiotemporal aspects of TerraClimate using annual temperature, precipitation, and calculated reference evapotranspiration from station data, as well as annual runoff from streamflow gauges. TerraClimate datasets showed noted improvement in overall mean absolute error and increased spatial realism relative to coarser resolution gridded datasets.
Spatializing 6,000 years of global urbanization from 3700 BC to AD 2000
NASA Astrophysics Data System (ADS)
Reba, Meredith; Reitsma, Femke; Seto, Karen C.
2016-06-01
How were cities distributed globally in the past? How many people lived in these cities? How did cities influence their local and regional environments? In order to understand the current era of urbanization, we must understand long-term historical urbanization trends and patterns. However, to date there is no comprehensive record of spatially explicit, historic, city-level population data at the global scale. Here, we developed the first spatially explicit dataset of urban settlements from 3700 BC to AD 2000, by digitizing, transcribing, and geocoding historical, archaeological, and census-based urban population data previously published in tabular form by Chandler and Modelski. The dataset creation process also required data cleaning and harmonization procedures to make the data internally consistent. Additionally, we created a reliability ranking for each geocoded location to assess the geographic uncertainty of each data point. The dataset provides the first spatially explicit archive of the location and size of urban populations over the last 6,000 years and can contribute to an improved understanding of contemporary and historical urbanization trends.
Spatializing 6,000 years of global urbanization from 3700 BC to AD 2000
Reba, Meredith; Reitsma, Femke; Seto, Karen C.
2016-01-01
How were cities distributed globally in the past? How many people lived in these cities? How did cities influence their local and regional environments? In order to understand the current era of urbanization, we must understand long-term historical urbanization trends and patterns. However, to date there is no comprehensive record of spatially explicit, historic, city-level population data at the global scale. Here, we developed the first spatially explicit dataset of urban settlements from 3700 BC to AD 2000, by digitizing, transcribing, and geocoding historical, archaeological, and census-based urban population data previously published in tabular form by Chandler and Modelski. The dataset creation process also required data cleaning and harmonization procedures to make the data internally consistent. Additionally, we created a reliability ranking for each geocoded location to assess the geographic uncertainty of each data point. The dataset provides the first spatially explicit archive of the location and size of urban populations over the last 6,000 years and can contribute to an improved understanding of contemporary and historical urbanization trends. PMID:27271481
Nunez, Paul L.; Srinivasan, Ramesh
2013-01-01
The brain is treated as a nested hierarchical complex system with substantial interactions across spatial scales. Local networks are pictured as embedded within global fields of synaptic action and action potentials. Global fields may act top-down on multiple networks, acting to bind remote networks. Because of scale-dependent properties, experimental electrophysiology requires both local and global models that match observational scales. Multiple local alpha rhythms are embedded in a global alpha rhythm. Global models are outlined in which cm-scale dynamic behaviors result largely from propagation delays in cortico-cortical axons and cortical background excitation level, controlled by neuromodulators on long time scales. The idealized global models ignore the bottom-up influences of local networks on global fields so as to employ relatively simple mathematics. The resulting models are transparently related to several EEG and steady state visually evoked potentials correlated with cognitive states, including estimates of neocortical coherence structure, traveling waves, and standing waves. The global models suggest that global oscillatory behavior of self-sustained (limit-cycle) modes lower than about 20 Hz may easily occur in neocortical/white matter systems provided: Background cortical excitability is sufficiently high; the strength of long cortico-cortical axon systems is sufficiently high; and the bottom-up influence of local networks on the global dynamic field is sufficiently weak. The global models provide "entry points" to more detailed studies of global top-down influences, including binding of weakly connected networks, modulation of gamma oscillations by theta or alpha rhythms, and the effects of white matter deficits. PMID:24505628
Salje, Henrik; Lessler, Justin; Maljkovic Berry, Irina; Melendrez, Melanie C; Endy, Timothy; Kalayanarooj, Siripen; A-Nuegoonpipat, Atchareeya; Chanama, Sumalee; Sangkijporn, Somchai; Klungthong, Chonticha; Thaisomboonsuk, Butsaya; Nisalak, Ananda; Gibbons, Robert V; Iamsirithaworn, Sopon; Macareo, Louis R; Yoon, In-Kyu; Sangarsang, Areerat; Jarman, Richard G; Cummings, Derek A T
2017-03-24
A fundamental mystery for dengue and other infectious pathogens is how observed patterns of cases relate to actual chains of individual transmission events. These pathways are intimately tied to the mechanisms by which strains interact and compete across spatial scales. Phylogeographic methods have been used to characterize pathogen dispersal at global and regional scales but have yielded few insights into the local spatiotemporal structure of endemic transmission. Using geolocated genotype (800 cases) and serotype (17,291 cases) data, we show that in Bangkok, Thailand, 60% of dengue cases living <200 meters apart come from the same transmission chain, as opposed to 3% of cases separated by 1 to 5 kilometers. At distances <200 meters from a case (encompassing an average of 1300 people in Bangkok), the effective number of chains is 1.7. This number rises by a factor of 7 for each 10-fold increase in the population of the "enclosed" region. This trend is observed regardless of whether population density or area increases, though increases in density over 7000 people per square kilometer do not lead to additional chains. Within Thailand these chains quickly mix, and by the next dengue season viral lineages are no longer highly spatially structured within the country. In contrast, viral flow to neighboring countries is limited. These findings are consistent with local, density-dependent transmission and implicate densely populated communities as key sources of viral diversity, with home location the focal point of transmission. These findings have important implications for targeted vector control and active surveillance. Copyright © 2017, American Association for the Advancement of Science.
Cook, B.D.; Bolstad, P.V.; Naesset, E.; Anderson, R. Scott; Garrigues, S.; Morisette, J.T.; Nickeson, J.; Davis, K.J.
2009-01-01
Spatiotemporal data from satellite remote sensing and surface meteorology networks have made it possible to continuously monitor global plant production, and to identify global trends associated with land cover/use and climate change. Gross primary production (GPP) and net primary production (NPP) are routinely derived from the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard satellites Terra and Aqua, and estimates generally agree with independent measurements at validation sites across the globe. However, the accuracy of GPP and NPP estimates in some regions may be limited by the quality of model input variables and heterogeneity at fine spatial scales. We developed new methods for deriving model inputs (i.e., land cover, leaf area, and photosynthetically active radiation absorbed by plant canopies) from airborne laser altimetry (LiDAR) and Quickbird multispectral data at resolutions ranging from about 30??m to 1??km. In addition, LiDAR-derived biomass was used as a means for computing carbon-use efficiency. Spatial variables were used with temporal data from ground-based monitoring stations to compute a six-year GPP and NPP time series for a 3600??ha study site in the Great Lakes region of North America. Model results compared favorably with independent observations from a 400??m flux tower and a process-based ecosystem model (BIOME-BGC), but only after removing vapor pressure deficit as a constraint on photosynthesis from the MODIS global algorithm. Fine-resolution inputs captured more of the spatial variability, but estimates were similar to coarse-resolution data when integrated across the entire landscape. Failure to account for wetlands had little impact on landscape-scale estimates, because vegetation structure, composition, and conversion efficiencies were similar to upland plant communities. Plant productivity estimates were noticeably improved using LiDAR-derived variables, while uncertainties associated with land cover generalizations and wetlands in this largely forested landscape were considered less important.
Estimating urban vegetation fraction across 25 cities in pan-Pacific using Landsat time series data
NASA Astrophysics Data System (ADS)
Lu, Yuhao; Coops, Nicholas C.; Hermosilla, Txomin
2017-04-01
Urbanization globally is consistently reshaping the natural landscape to accommodate the growing human population. Urban vegetation plays a key role in moderating environmental impacts caused by urbanization and is critically important for local economic, social and cultural development. The differing patterns of human population growth, varying urban structures and development stages, results in highly varied spatial and temporal vegetation patterns particularly in the pan-Pacific region which has some of the fastest urbanization rates globally. Yet spatially-explicit temporal information on the amount and change of urban vegetation is rarely documented particularly in less developed nations. Remote sensing offers an exceptional data source and a unique perspective to map urban vegetation and change due to its consistency and ubiquitous nature. In this research, we assess the vegetation fractions of 25 cities across 12 pan-Pacific countries using annual gap-free Landsat surface reflectance products acquired from 1984 to 2012, using sub-pixel, spectral unmixing approaches. Vegetation change trends were then analyzed using Mann-Kendall statistics and Theil-Sen slope estimators. Unmixing results successfully mapped urban vegetation for pixels located in urban parks, forested mountainous regions, as well as agricultural land (correlation coefficient ranging from 0.66 to 0.77). The greatest vegetation loss from 1984 to 2012 was found in Shanghai, Tianjin, and Dalian in China. In contrast, cities including Vancouver (Canada) and Seattle (USA) showed stable vegetation trends through time. Using temporal trend analysis, our results suggest that it is possible to reduce noise and outliers caused by phenological changes particularly in cropland using dense new Landsat time series approaches. We conclude that simple yet effective approaches of unmixing Landsat time series data for assessing spatial and temporal changes of urban vegetation at regional scales can provide critical information for urban planners and anthropogenic studies globally.
NASA Technical Reports Server (NTRS)
Cook, Bruce D.; Bolstad, Paul V.; Naesset, Erik; Anderson, Ryan S.; Garrigues, Sebastian; Morisette, Jeffrey T.; Nickeson, Jaime; Davis, Kenneth J.
2009-01-01
Spatiotemporal data from satellite remote sensing and surface meteorology networks have made it possible to continuously monitor global plant production, and to identify global trends associated with land cover/use and climate change. Gross primary production (GPP) and net primary production (NPP) are routinely derived from the MOderate Resolution Imaging Spectroradiometer (MODIS) onboard satellites Terra and Aqua, and estimates generally agree with independent measurements at validation sites across the globe. However, the accuracy of GPP and NPP estimates in some regions may be limited by the quality of model input variables and heterogeneity at fine spatial scales. We developed new methods for deriving model inputs (i.e., land cover, leaf area, and photosynthetically active radiation absorbed by plant canopies) from airborne laser altimetry (LiDAR) and Quickbird multispectral data at resolutions ranging from about 30 m to 1 km. In addition, LiDAR-derived biomass was used as a means for computing carbon-use efficiency. Spatial variables were used with temporal data from ground-based monitoring stations to compute a six-year GPP and NPP time series for a 3600 ha study site in the Great Lakes region of North America. Model results compared favorably with independent observations from a 400 m flux tower and a process-based ecosystem model (BIOME-BGC), but only after removing vapor pressure deficit as a constraint on photosynthesis from the MODIS global algorithm. Fine resolution inputs captured more of the spatial variability, but estimates were similar to coarse-resolution data when integrated across the entire vegetation structure, composition, and conversion efficiencies were similar to upland plant communities. Plant productivity estimates were noticeably improved using LiDAR-derived variables, while uncertainties associated with land cover generalizations and wetlands in this largely forested landscape were considered less important.
NASA Astrophysics Data System (ADS)
Yang, X.; Thornton, P. E.; Ricciuto, D. M.; Shi, X.; Xu, M.; Hoffman, F. M.; Norby, R. J.
2017-12-01
Tropical forests play a crucial role in the global carbon cycle, accounting for one third of the global NPP and containing about 25% of global vegetation biomass and soil carbon. This is particularly true for tropical forests in the Amazon region, as it comprises approximately 50% of the world's tropical forests. It is therefore important for us to understand and represent the processes that determine the fluxes and storage of carbon in these forests. In this study, we show that the implementation of phosphorus (P) cycle and P limitation in the ACME Land Model (ALM) improves simulated spatial pattern of NPP. The P-enabled ALM is able to capture the west-to-east gradient of productivity, consistent with field observations. We also show that by improving the representation of mortality processes, ALM is able to reproduce the observed spatial pattern of above ground biomass across the Amazon region.
NASA Astrophysics Data System (ADS)
Moon, Joon-Young; Kim, Junhyeok; Ko, Tae-Wook; Kim, Minkyung; Iturria-Medina, Yasser; Choi, Jee-Hyun; Lee, Joseph; Mashour, George A.; Lee, Uncheol
2017-04-01
Identifying how spatially distributed information becomes integrated in the brain is essential to understanding higher cognitive functions. Previous computational and empirical studies suggest a significant influence of brain network structure on brain network function. However, there have been few analytical approaches to explain the role of network structure in shaping regional activities and directionality patterns. In this study, analytical methods are applied to a coupled oscillator model implemented in inhomogeneous networks. We first derive a mathematical principle that explains the emergence of directionality from the underlying brain network structure. We then apply the analytical methods to the anatomical brain networks of human, macaque, and mouse, successfully predicting simulation and empirical electroencephalographic data. The results demonstrate that the global directionality patterns in resting state brain networks can be predicted solely by their unique network structures. This study forms a foundation for a more comprehensive understanding of how neural information is directed and integrated in complex brain networks.
Dauphin, Yannicke; Ball, Alexander D; Castillo-Michel, Hiram; Chevallard, Corinne; Cuif, Jean-Pierre; Farre, Bastien; Pouvreau, Stéphane; Salomé, Murielle
2013-01-01
Cultivation of commercial oysters is now facing the possible influence of global change in sea water composition, commonly referred to as "ocean acidification". In order to test the potential consequence of the predicted environmental changes, a cultivation experiment was carried out. The left and right valves of the oyster shell Crassostrea gigas differ in their structure; moreover, lenses of non compact layers are irregular. The shell layers of juvenile C. gigas are studied using a variety of highly spatially resolved techniques to establish their composition and structure. Our results confirm the presence of three different calcitic structural types. The role of the lenses of chalky layers is not yet deciplered. Despite a common mineralogy, the elemental composition of the layers differs. The sulphur aminoacids and sulphated polysaccharide contents of the intracrystalline and intercrystalline matrices differ, as well as those of the structural types. The possible different sensitivity of these structures to environmental changes is still unknown. Copyright © 2012 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Webb, D. F.; Möstl, C.; Jackson, B. V.; Bisi, M. M.; Howard, T. A.; Mulligan, T.; Jensen, E. A.; Jian, L. K.; Davies, J. A.; de Koning, C. A.; Liu, Y.; Temmer, M.; Clover, J. M.; Farrugia, C. J.; Harrison, R. A.; Nitta, N.; Odstrcil, D.; Tappin, S. J.; Yu, H.-S.
2013-07-01
It is usually difficult to gain a consistent global understanding of a coronal mass ejection (CME) eruption and its propagation when only near-Sun imagery and the local measurements derived from single-spacecraft observations are available. Three-dimensional (3D) density reconstructions based on heliospheric imaging allow us to "fill in" the temporal and spatial gaps between the near-Sun and in situ data to provide a truly global picture of the propagation and interactions of the CME as it moves through the inner heliosphere. In recent years the heliospheric propagation of dense structures has been observed and measured by the heliospheric imagers of the Solar Mass Ejection Imager (SMEI) and on the twin Solar TErrestrial RElations Observatory (STEREO) spacecraft. We describe the use of several 3D reconstruction techniques based on these heliospheric imaging data sets to distinguish and track the propagation of multiple CMEs in the inner heliosphere during the very active period of solar activity in late July - early August 2010. We employ 3D reconstruction techniques used at the University of California, San Diego (UCSD) based on a kinematic solar wind model, and also the empirical Tappin-Howard model. We compare our results with those from other studies of this active period, in particular the heliospheric simulations made with the ENLIL model by Odstrcil et al. ( J. Geophys. Res., 2013) and the in situ results from multiple spacecraft provided by Möstl et al. ( Astrophys. J. 758, 10 - 28, 2012). We find that the SMEI results in particular provide an overall context for the multiple-density flows associated with these CMEs. For the first time we are able to intercompare the 3D reconstructed densities with the timing and magnitude of in situ density structures at five spacecraft spread over 150° in ecliptic longitude and from 0.4 to 1 AU in radial distance. We also model the magnetic flux-rope structures at three spacecraft using both force-free and non-force-free modelling, and compare their timing and spatial structure with the reconstructed density flows.
DOE Office of Scientific and Technical Information (OSTI.GOV)
West, Tristram O.; Le Page, Yannick LB; Huang, Maoyi
2014-06-05
Projections of land cover change generated from Integrated Assessment Models (IAM) and other economic-based models can be applied for analyses of environmental impacts at subregional and landscape scales. For those IAM and economic models that project land use at the sub-continental or regional scale, these projections must be downscaled and spatially distributed prior to use in climate or ecosystem models. Downscaling efforts to date have been conducted at the national extent with relatively high spatial resolution (30m) and at the global extent with relatively coarse spatial resolution (0.5 degree).
NASA Technical Reports Server (NTRS)
Tolson, R. H.
1981-01-01
A technique is described for providing a means of evaluating the influence of spatial sampling on the determination of global mean total columnar ozone. A finite number of coefficients in the expansion are determined, and the truncated part of the expansion is shown to contribute an error to the estimate, which depends strongly on the spatial sampling and is relatively insensitive to data noise. First and second order statistics are derived for each term in a spherical harmonic expansion which represents the ozone field, and the statistics are used to estimate systematic and random errors in the estimates of total ozone.
Attentional focus affects how events are segmented and updated in narrative reading.
Bailey, Heather R; Kurby, Christopher A; Sargent, Jesse Q; Zacks, Jeffrey M
2017-08-01
Readers generate situation models representing described events, but the nature of these representations may differ depending on the reading goals. We assessed whether instructions to pay attention to different situational dimensions affect how individuals structure their situation models (Exp. 1) and how they update these models when situations change (Exp. 2). In Experiment 1, participants read and segmented narrative texts into events. Some readers were oriented to pay specific attention to characters or space. Sentences containing character or spatial-location changes were perceived as event boundaries-particularly if the reader was oriented to characters or space, respectively. In Experiment 2, participants read narratives and responded to recognition probes throughout the texts. Readers who were oriented to the spatial dimension were more likely to update their situation models at spatial changes; all readers tracked the character dimension. The results from both experiments indicated that attention to individual situational dimensions influences how readers segment and update their situation models. More broadly, the results provide evidence for a global situation model updating mechanism that serves to set up new models at important narrative changes.
Modi, Mehrab N; Dhawale, Ashesh K; Bhalla, Upinder S
2014-01-01
Animals can learn causal relationships between pairs of stimuli separated in time and this ability depends on the hippocampus. Such learning is believed to emerge from alterations in network connectivity, but large-scale connectivity is difficult to measure directly, especially during learning. Here, we show that area CA1 cells converge to time-locked firing sequences that bridge the two stimuli paired during training, and this phenomenon is coupled to a reorganization of network correlations. Using two-photon calcium imaging of mouse hippocampal neurons we find that co-time-tuned neurons exhibit enhanced spontaneous activity correlations that increase just prior to learning. While time-tuned cells are not spatially organized, spontaneously correlated cells do fall into distinct spatial clusters that change as a result of learning. We propose that the spatial re-organization of correlation clusters reflects global network connectivity changes that are responsible for the emergence of the sequentially-timed activity of cell-groups underlying the learned behavior. DOI: http://dx.doi.org/10.7554/eLife.01982.001 PMID:24668171
Estimation of Global 1km-grid Terrestrial Carbon Exchange Part I: Developing Inputs and Modelling
NASA Astrophysics Data System (ADS)
Sasai, T.; Murakami, K.; Kato, S.; Matsunaga, T.; Saigusa, N.; Hiraki, K.
2015-12-01
Global terrestrial carbon cycle largely depends on a spatial pattern in land cover type, which is heterogeneously-distributed over regional and global scales. However, most studies, which aimed at the estimation of carbon exchanges between ecosystem and atmosphere, remained within several tens of kilometers grid spatial resolution, and the results have not been enough to understand the detailed pattern of carbon exchanges based on ecological community. Improving the sophistication of spatial resolution is obviously necessary to enhance the accuracy of carbon exchanges. Moreover, the improvement may contribute to global warming awareness, policy makers and other social activities. In this study, we show global terrestrial carbon exchanges (net ecosystem production, net primary production, and gross primary production) with 1km-grid resolution. As methodology for computing the exchanges, we 1) developed a global 1km-grid climate and satellite dataset based on the approach in Setoyama and Sasai (2013); 2) used the satellite-driven biosphere model (Biosphere model integrating Eco-physiological And Mechanistic approaches using Satellite data: BEAMS) (Sasai et al., 2005, 2007, 2011); 3) simulated the carbon exchanges by using the new dataset and BEAMS by the use of a supercomputer that includes 1280 CPU and 320 GPGPU cores (GOSAT RCF of NIES). As a result, we could develop a global uniform system for realistically estimating terrestrial carbon exchange, and evaluate net ecosystem production in each community level; leading to obtain highly detailed understanding of terrestrial carbon exchanges.
Burns, Lynne E; Frasier, Timothy R; Broders, Hugh G
2014-01-01
Characterizing movement dynamics and spatial aspects of gene flow within a species permits inference on population structuring. As patterns of structuring are products of historical and current demographics and gene flow, assessment of structure through time can yield an understanding of evolutionary dynamics acting on populations that are necessary to inform management. Recent dramatic population declines in hibernating bats in eastern North America from white-nose syndrome have prompted the need for information on movement dynamics for multiple bat species. We characterized population genetic structure of the little brown bat, Myotis lucifugus, at swarming sites in southeastern Canada using 9 nuclear microsatellites and a 292-bp region of the mitochondrial genome. Analyses of FST, ΦST, and Bayesian clustering (STRUCTURE) found weak levels of genetic structure among swarming sites for the nuclear and mitochondrial genome (Global FST = 0.001, P < 0.05, Global ΦST = 0.045, P < 0.01, STRUCTURE K = 1) suggesting high contemporary gene flow. Hierarchical AMOVA also suggests little structuring at a regional (provincial) level. Metrics of nuclear genetic structure were not found to differ between males and females suggesting weak asymmetries in gene flow between the sexes. However, a greater degree of mitochondrial structuring does support male-biased dispersal long term. Demographic analyses were consistent with past population growth and suggest a population expansion occurred from approximately 1250 to 12,500 BP, following Pleistocene deglaciation in the region. Our study suggests high gene flow and thus a high degree of connectivity among bats that visit swarming sites whereby mainland areas of the region may be best considered as one large gene pool for management and conservation. PMID:25505539
Interdisciplinary knowledge exchange across scales in a globally changing marine environment.
McDonald, Karlie S; Hobday, Alistair J; Fulton, Elizabeth A; Thompson, Peter A
2018-07-01
The effects of anthropogenic global environmental change on biotic and abiotic processes have been reported in aquatic systems across the world. Complex synergies between concurrent environmental stressors and the resilience of the system to regime shifts, which vary in space and time, determine the capacity for marine systems to maintain structure and function with global environmental change. Consequently, an interdisciplinary approach that facilitates the development of new methods for the exchange of knowledge between scientists across multiple scales is required to effectively understand, quantify and predict climate impacts on marine ecosystem services. We use a literature review to assess the limitations and assumptions of current pathways to exchange interdisciplinary knowledge and the transferability of research findings across spatial and temporal scales and levels of biological organization to advance scientific understanding of global environmental change in marine systems. We found that species-specific regional scale climate change research is most commonly published, and "supporting" is the ecosystem service most commonly referred to in publications. In addition, our paper outlines a trajectory for the future development of integrated climate change science for sustaining marine ecosystem services such as investment in interdisciplinary education and connectivity between disciplines. © 2018 John Wiley & Sons Ltd.
Local-global classifier fusion for screening chest radiographs
NASA Astrophysics Data System (ADS)
Ding, Meng; Antani, Sameer; Jaeger, Stefan; Xue, Zhiyun; Candemir, Sema; Kohli, Marc; Thoma, George
2017-03-01
Tuberculosis (TB) is a severe comorbidity of HIV and chest x-ray (CXR) analysis is a necessary step in screening for the infective disease. Automatic analysis of digital CXR images for detecting pulmonary abnormalities is critical for population screening, especially in medical resource constrained developing regions. In this article, we describe steps that improve previously reported performance of NLM's CXR screening algorithms and help advance the state of the art in the field. We propose a local-global classifier fusion method where two complementary classification systems are combined. The local classifier focuses on subtle and partial presentation of the disease leveraging information in radiology reports that roughly indicates locations of the abnormalities. In addition, the global classifier models the dominant spatial structure in the gestalt image using GIST descriptor for the semantic differentiation. Finally, the two complementary classifiers are combined using linear fusion, where the weight of each decision is calculated by the confidence probabilities from the two classifiers. We evaluated our method on three datasets in terms of the area under the Receiver Operating Characteristic (ROC) curve, sensitivity, specificity and accuracy. The evaluation demonstrates the superiority of our proposed local-global fusion method over any single classifier.
Monitoring Precipitation from Space: targeting Hydrology Community?
NASA Astrophysics Data System (ADS)
Hong, Y.; Turk, J.
2005-12-01
During the past decades, advances in space, sensor and computer technology have made it possible to estimate precipitation nearly globally from a variety of observations in a relatively direct manner. The success of Tropical Precipitation Measuring Mission (TRMM) has been a significant advance for modern precipitation estimation algorithms to move toward daily quarter degree measurements, while the need for precipitation data at temporal-spatial resolutions compatible with hydrologic modeling has been emphasized by the end user: hydrology community. Can the future deployment of Global Precipitation Measurement constellation of low-altitude orbiting satellites (covering 90% of the global with a sampling interval of less than 3-hours), in conjunction with the existing suite of geostationary satellites, results in significant improvements in scale and accuracy of precipitation estimates suitable for hydrology applications? This presentation will review the current state of satellite-derived precipitation estimation and demonstrate the early results and primary barriers to full global high-resolution precipitation coverage. An attempt to facilitate the communication between data producers and users will be discussed by developing an 'end-to-end' uncertainty propagation analysis framework to quantify both the precipitation estimation error structure and the error influence on hydrological modeling.
NASA Astrophysics Data System (ADS)
Schwietzke, S.; Sherwood, O.; Michel, S. E.; Bruhwiler, L.; Dlugokencky, E. J.; Tans, P. P.
2017-12-01
Methane isotopic data have increasingly been used in recent studies to help constrain global atmospheric methane sources and sinks. The added scientific contributions to this field include (i) careful comparisons and merging of atmospheric isotope measurement datasets to increase spatial coverage, (ii) in-depth analyses of observed isotopic spatial gradients and seasonal patterns, and (iii) improved datasets of isotopic source signatures. Different interpretations have been made regarding the utility of the isotopic data on the diagnosis of methane sources and sinks. Some studies have found isotopic evidence of a largely microbial source causing the renewed growth in global atmospheric methane since 2007, and underestimated global fossil fuel methane emissions compared to most previous studies. However, other studies have challenged these conclusions by pointing out substantial spatial variability in isotopic source signatures as well as open questions in atmospheric sinks and biomass burning trends. This presentation will review and contrast the main arguments and evidence for the different conclusions. The analysis will distinguish among the different research objectives including (i) global methane budget source attribution in steady-state, (ii) source attribution of recent global methane trends, and (iii) identifying specific methane sources in individual plumes during field campaigns. Additional comparisons of model experiments with atmospheric measurements and updates on isotopic source signature data will complement the analysis.
NASA Astrophysics Data System (ADS)
Switzer, A.; Yap, W.; Lauro, F.; Gouramanis, C.; Dominey-Howes, D.; Labbate, M.
2016-12-01
This presentation provides an overview of the PERSIANN precipitation products from the near real time high-resolution (4km, 30 min) PERSIANN-CCS to the most recent 34+-year PERSIANN-CDR (25km, daily). It is widely believed that the hydrologic cycle has been intensifying due to global warming and the frequency and the intensity of hydrologic extremes has also been increasing. Using the long-term historical global high resolution (daily, 0.25 degree) PERSIANN-CDR dataset covering over three decades from 1983 to the present day, we assess changes in global precipitation across different spatial scales. Our results show differences in trends, depending on which spatial scale is used, highlighting the importance of spatial scale in trend analysis. In addition, while there is an easily observable increasing global temperature trend, the global precipitation trend results created by the PERSIANN-CDR dataset used in this study are inconclusive. In addition, we use PERSIANN-CDR to assess the performance of the 32 CMIP5 models in terms of extreme precipitation indices in various continent-climate zones. The assessment can provide a guide for both model developers to target regions and processes that are not yet fully captured in certain climate types, and for climate model output users to be able to select the models and/or the study areas that may best fit their applications of interest.
NASA Astrophysics Data System (ADS)
Sorooshian, S.; Nguyen, P.; Hsu, K. L.
2017-12-01
This presentation provides an overview of the PERSIANN precipitation products from the near real time high-resolution (4km, 30 min) PERSIANN-CCS to the most recent 34+-year PERSIANN-CDR (25km, daily). It is widely believed that the hydrologic cycle has been intensifying due to global warming and the frequency and the intensity of hydrologic extremes has also been increasing. Using the long-term historical global high resolution (daily, 0.25 degree) PERSIANN-CDR dataset covering over three decades from 1983 to the present day, we assess changes in global precipitation across different spatial scales. Our results show differences in trends, depending on which spatial scale is used, highlighting the importance of spatial scale in trend analysis. In addition, while there is an easily observable increasing global temperature trend, the global precipitation trend results created by the PERSIANN-CDR dataset used in this study are inconclusive. In addition, we use PERSIANN-CDR to assess the performance of the 32 CMIP5 models in terms of extreme precipitation indices in various continent-climate zones. The assessment can provide a guide for both model developers to target regions and processes that are not yet fully captured in certain climate types, and for climate model output users to be able to select the models and/or the study areas that may best fit their applications of interest.
CELL5M: A geospatial database of agricultural indicators for Africa South of the Sahara.
Koo, Jawoo; Cox, Cindy M; Bacou, Melanie; Azzarri, Carlo; Guo, Zhe; Wood-Sichra, Ulrike; Gong, Queenie; You, Liangzhi
2016-01-01
Recent progress in large-scale georeferenced data collection is widening opportunities for combining multi-disciplinary datasets from biophysical to socioeconomic domains, advancing our analytical and modeling capacity. Granular spatial datasets provide critical information necessary for decision makers to identify target areas, assess baseline conditions, prioritize investment options, set goals and targets and monitor impacts. However, key challenges in reconciling data across themes, scales and borders restrict our capacity to produce global and regional maps and time series. This paper provides overview, structure and coverage of CELL5M-an open-access database of geospatial indicators at 5 arc-minute grid resolution-and introduces a range of analytical applications and case-uses. CELL5M covers a wide set of agriculture-relevant domains for all countries in Africa South of the Sahara and supports our understanding of multi-dimensional spatial variability inherent in farming landscapes throughout the region.
Spatial correlation analysis of cascading failures: Congestions and Blackouts
Daqing, Li; Yinan, Jiang; Rui, Kang; Havlin, Shlomo
2014-01-01
Cascading failures have become major threats to network robustness due to their potential catastrophic consequences, where local perturbations can induce global propagation of failures. Unlike failures spreading via direct contacts due to structural interdependencies, overload failures usually propagate through collective interactions among system components. Despite the critical need in developing protection or mitigation strategies in networks such as power grids and transportation, the propagation behavior of cascading failures is essentially unknown. Here we find by analyzing our collected data that jams in city traffic and faults in power grid are spatially long-range correlated with correlations decaying slowly with distance. Moreover, we find in the daily traffic, that the correlation length increases dramatically and reaches maximum, when morning or evening rush hour is approaching. Our study can impact all efforts towards improving actively system resilience ranging from evaluation of design schemes, development of protection strategies to implementation of mitigation programs. PMID:24946927
Zimmer, Hubert D; Lehnert, Günther
2006-01-01
If configurations of objects are presented in a S1-S2 matching task for the identity of objects a spatial mismatch effect occurs. Changing the (irrelevant) spatial layout lengthens response times. We investigated what causes this effect. We observed a reliable mismatch effect that was not influenced by a secondary task during maintenance. Neither articulatory suppression (Experiment 1), nor unattended (Experiments 2 and 6) or attended visual material (Experiment 3) reduced the effect, and this was independent of the length of the retention interval (Experiment 6). The effect was also rather independent of the visual appearance of the local elements. It was of similar size with color patches (Experiment 4) and with completely different surface information when testing was cross modal (Experiment 5), and the name-ability of the global configuration was not relevant (Experiments 6 and 7). In contrast, the figurative similarity of the configurations of S1 and S2 systematically influenced the size of the spatial mismatch effect (Experiment 7). We conclude that the spatial mismatch effect is caused by a mismatch of the global shape of the configuration stored together with the objects of S1 and not by a mismatch of templates of perceptual records maintained in a visual cache.
Global Distribution of Polaromonas Phylotypes - Evidence for a Highly Successful Dispersal Capacity
Darcy, John L.; Lynch, Ryan C.; King, Andrew J.; Robeson, Michael S.; Schmidt, Steven K.
2011-01-01
Bacteria from the genus Polaromonas are dominant phylotypes in clone libraries and culture collections from polar and high-elevation environments. Although Polaromonas has been found on six continents, we do not know if the same phylotypes exist in all locations or if they exhibit genetic isolation by distance patterns. To examine their biogeographic distribution, we analyzed all available, long-read 16S rRNA gene sequences of Polaromonas phylotypes from glacial and periglacial environments across the globe. Using genetic isolation by geographic distance analyses, including Mantel tests and Mantel correlograms, we found that Polaromonas phylotypes are globally distributed showing weak isolation by distance patterns at global scales. More focused analyses using discrete, equally sampled distances classes, revealed that only two distance classes (out of 12 total) showed significant spatial structuring. Overall, our analyses show that most Polaromonas phylotypes are truly globally distributed, but that some, as yet unknown, environmental variable may be selecting for unique phylotypes at a minority of our global sites. Analyses of aerobiological and genomic data suggest that Polaromonas phylotypes are globally distributed as dormant cells through high-elevation air currents; Polaromonas phylotypes are common in air and snow samples from high altitudes, and a glacial-ice metagenome and the two sequenced Polaromonas genomes contain the gene hipA, suggesting that Polaromonas can form dormant cells. PMID:21897856
Gaussian theory for spatially distributed self-propelled particles
NASA Astrophysics Data System (ADS)
Seyed-Allaei, Hamid; Schimansky-Geier, Lutz; Ejtehadi, Mohammad Reza
2016-12-01
Obtaining a reduced description with particle and momentum flux densities outgoing from the microscopic equations of motion of the particles requires approximations. The usual method, we refer to as truncation method, is to zero Fourier modes of the orientation distribution starting from a given number. Here we propose another method to derive continuum equations for interacting self-propelled particles. The derivation is based on a Gaussian approximation (GA) of the distribution of the direction of particles. First, by means of simulation of the microscopic model, we justify that the distribution of individual directions fits well to a wrapped Gaussian distribution. Second, we numerically integrate the continuum equations derived in the GA in order to compare with results of simulations. We obtain that the global polarization in the GA exhibits a hysteresis in dependence on the noise intensity. It shows qualitatively the same behavior as we find in particles simulations. Moreover, both global polarizations agree perfectly for low noise intensities. The spatiotemporal structures of the GA are also in agreement with simulations. We conclude that the GA shows qualitative agreement for a wide range of noise intensities. In particular, for low noise intensities the agreement with simulations is better as other approximations, making the GA to an acceptable candidates of describing spatially distributed self-propelled particles.
Observation-Driven Estimation of the Spatial Variability of 20th Century Sea Level Rise
NASA Astrophysics Data System (ADS)
Hamlington, B. D.; Burgos, A.; Thompson, P. R.; Landerer, F. W.; Piecuch, C. G.; Adhikari, S.; Caron, L.; Reager, J. T.; Ivins, E. R.
2018-03-01
Over the past two decades, sea level measurements made by satellites have given clear indications of both global and regional sea level rise. Numerous studies have sought to leverage the modern satellite record and available historic sea level data provided by tide gauges to estimate past sea level rise, leading to several estimates for the 20th century trend in global mean sea level in the range between 1 and 2 mm/yr. On regional scales, few attempts have been made to estimate trends over the same time period. This is due largely to the inhomogeneity and quality of the tide gauge network through the 20th century, which render commonly used reconstruction techniques inadequate. Here, a new approach is adopted, integrating data from a select set of tide gauges with prior estimates of spatial structure based on historical sea level forcing information from the major contributing processes over the past century. The resulting map of 20th century regional sea level rise is optimized to agree with the tide gauge-measured trends, and provides an indication of the likely contributions of different sources to regional patterns. Of equal importance, this study demonstrates the sensitivities of this regional trend map to current knowledge and uncertainty of the contributing processes.
Multiple Scale Analysis of the Dynamic State Index (DSI)
NASA Astrophysics Data System (ADS)
Müller, A.; Névir, P.
2016-12-01
The Dynamic State Index (DSI) is a novel parameter that indicates local deviations of the atmospheric flow field from a stationary, inviscid and adiabatic solution of the primitive equations of fluid mechanics. This is in contrast to classical methods, which often diagnose deviations from temporal or spatial mean states. We show some applications of the DSI to atmospheric flow phenomena on different scales. The DSI is derived from the Energy-Vorticity-Theory (EVT) which is based on two global conserved quantities, the total energy and Ertel's potential enstrophy. Locally, these global quantities lead to the Bernoulli function and the PV building together with the potential temperature the DSI.If the Bernoulli function and the PV are balanced, the DSI vanishes and the basic state is obtained. Deviations from the basic state provide an indication of diabatic and non-stationary weather events. Therefore, the DSI offers a tool to diagnose and even prognose different atmospheric events on different scales.On synoptic scale, the DSI can help to diagnose storms and hurricanes, where also the dipole structure of the DSI plays an important role. In the scope of the collaborative research center "Scaling Cascades in Complex Systems" we show high correlations between the DSI and precipitation on convective scale. Moreover, we compare the results with reduced models and different spatial resolutions.
Global population genetic dynamics of a highly migratory, apex predator shark.
Bernard, Andrea M; Feldheim, Kevin A; Heithaus, Michael R; Wintner, Sabine P; Wetherbee, Bradley M; Shivji, Mahmood S
2016-11-01
Knowledge of genetic connectivity dynamics in the world's large-bodied, highly migratory, apex predator sharks across their global ranges is limited. One such species, the tiger shark (Galeocerdo cuvier), occurs worldwide in warm temperate and tropical waters, uses remarkably diverse habitats (nearshore to pelagic) and possesses a generalist diet that can structure marine ecosystems through top-down processes. We investigated the phylogeography and the global population structure of this exploited, phylogenetically enigmatic shark by using 10 nuclear microsatellites (n = 380) and sequences from the mitochondrial control region (CR, n = 340) and cytochrome oxidase I gene (n = 100). All three marker classes showed the genetic differentiation between tiger sharks from the western Atlantic and Indo-Pacific ocean basins (microsatellite F ST > 0.129; CR Φ ST > 0.497), the presence of North vs. southwestern Atlantic differentiation and the isolation of tiger sharks sampled from Hawaii from other surveyed locations. Furthermore, mitochondrial DNA revealed high levels of intraocean basin matrilineal population structure, suggesting female philopatry and sex-biased gene flow. Coalescent- and genetic distance-based estimates of divergence from CR sequences were largely congruent (d corr = 0.0015-0.0050), indicating a separation of Indo-Pacific and western Atlantic tiger sharks <1 million years ago. Mitochondrial haplotype relationships suggested that the western South Atlantic Ocean was likely a historical connection for interocean basin linkages via the dispersal around South Africa. Together, the results reveal unexpectedly high levels of population structure in a highly migratory, behaviourally generalist, cosmopolitan ocean predator, calling for management and conservation on smaller-than-anticipated spatial scales. © 2016 John Wiley & Sons Ltd.
Ellemberg, D; Lewis, T L; Maurer, D; Lee, B; Ledgeway, T; Guilemot, J P; Lepore, F
2010-01-01
We compared the development of sensitivity to first- versus second-order global motion in 5-year-olds (n=24) and adults (n=24) tested at three displacements (0.1, 0.5 and 1.0 degrees). Sensitivity was measured with Random-Gabor Kinematograms (RGKs) formed with luminance-modulated (first-order) or contrast-modulated (second-order) concentric Gabor patterns. Five-year-olds were less sensitive than adults to the direction of both first- and second-order global motion at every displacement tested. In addition, the immaturity was smallest at the smallest displacement, which required the least spatial integration, and smaller for first-order than for second-order global motion at the middle displacement. The findings suggest that the development of sensitivity to global motion is limited by the development of spatial integration and by different rates of development of sensitivity to first- versus second-order signals.
Attention to Hierarchical Level Influences Attentional Selection of Spatial Scale
ERIC Educational Resources Information Center
Flevaris, Anastasia V.; Bentin, Shlomo; Robertson, Lynn C.
2011-01-01
Ample evidence suggests that global perception may involve low spatial frequency (LSF) processing and that local perception may involve high spatial frequency (HSF) processing (Shulman, Sullivan, Gish, & Sakoda, 1986; Shulman & Wilson, 1987; Robertson, 1996). It is debated whether SF selection is a low-level mechanism associating global…
Higher-Order Theory for Functionally Graded Materials
NASA Technical Reports Server (NTRS)
Aboudi, J.; Pindera, M. J.; Arnold, Steven M.
2001-01-01
Functionally graded materials (FGM's) are a new generation of engineered materials wherein the microstructural details are spatially varied through nonuniform distribution of the reinforcement phase(s). Engineers accomplish this by using reinforcements with different properties, sizes, and shapes, as well as by interchanging the roles of the reinforcement and matrix phases in a continuous manner (ref. 1). The result is a microstructure that produces continuously or discretely changing thermal and mechanical properties at the macroscopic or continuum scale. This new concept of engineering the material's microstructure marks the beginning of a revolution both in the materials science and mechanics of materials areas since it allows one, for the first time, to fully integrate the material and structural considerations into the final design of structural components. Functionally graded materials are ideal candidates for applications involving severe thermal gradients, ranging from thermal structures in advanced aircraft and aerospace engines to computer circuit boards. Owing to the many variables that control the design of functionally graded microstructures, full exploitation of the FGM's potential requires the development of appropriate modeling strategies for their response to combined thermomechanical loads. Previously, most computational strategies for the response of FGM's did not explicitly couple the material's heterogeneous microstructure with the structural global analysis. Rather, local effective or macroscopic properties at a given point within the FGM were first obtained through homogenization based on a chosen micromechanics scheme and then subsequently used in a global thermomechanical analysis.
Global facilitation of attended features is obligatory and restricts divided attention.
Andersen, Søren K; Hillyard, Steven A; Müller, Matthias M
2013-11-13
In many common situations such as driving an automobile it is advantageous to attend concurrently to events at different locations (e.g., the car in front, the pedestrian to the side). While spatial attention can be divided effectively between separate locations, studies investigating attention to nonspatial features have often reported a "global effect", whereby items having the attended feature may be preferentially processed throughout the entire visual field. These findings suggest that spatial and feature-based attention may at times act in direct opposition: spatially divided foci of attention cannot be truly independent if feature attention is spatially global and thereby affects all foci equally. In two experiments, human observers attended concurrently to one of two overlapping fields of dots of different colors presented in both the left and right visual fields. When the same color or two different colors were attended on the two sides, deviant targets were detected accurately, and visual-cortical potentials elicited by attended dots were enhanced. However, when the attended color on one side matched the ignored color on the opposite side, attentional modulation of cortical potentials was abolished. This loss of feature selectivity could be attributed to enhanced processing of unattended items that shared the color of the attended items in the opposite field. Thus, while it is possible to attend to two different colors at the same time, this ability is fundamentally constrained by spatially global feature enhancement in early visual-cortical areas, which is obligatory and persists even when it explicitly conflicts with task demands.
NASA Astrophysics Data System (ADS)
Zhang, Z.; Zimmermann, N. E.; Poulter, B.
2015-12-01
Simulations of the spatial-temporal dynamics of wetlands is key to understanding the role of wetland biogeochemistry under past and future climate variability. Hydrologic inundation models, such as TOPMODEL, are based on a fundamental parameter known as the compound topographic index (CTI) and provide a computationally cost-efficient approach to simulate global wetland dynamics. However, there remains large discrepancy in the implementations of TOPMODEL in land-surface models (LSMs) and thus their performance against observations. This study describes new improvements to TOPMODEL implementation and estimates of global wetland dynamics using the LPJ-wsl DGVM, and quantifies uncertainties by comparing three digital elevation model products (HYDRO1k, GMTED, and HydroSHEDS) at different spatial resolution and accuracy on simulated inundation dynamics. We found that calibrating TOPMODEL with a benchmark dataset can help to successfully predict the seasonal and interannual variations of wetlands, as well as improve the spatial distribution of wetlands to be consistent with inventories. The HydroSHEDS DEM, using a river-basin scheme for aggregating the CTI, shows best accuracy for capturing the spatio-temporal dynamics of wetland among three DEM products. This study demonstrates the feasibility to capture spatial heterogeneity of inundation and to estimate seasonal and interannual variations in wetland by coupling a hydrological module in LSMs with appropriate benchmark datasets. It additionally highlight the importance of an adequate understanding of topographic indices for simulating global wetlands and show the opportunity to converge wetland estimations in LSMs by identifying the uncertainty associated with existing wetland products.
NASA Astrophysics Data System (ADS)
Lakshmi Madhavan, Bomidi; Deneke, Hartwig; Witthuhn, Jonas; Macke, Andreas
2017-03-01
The time series of global radiation observed by a dense network of 99 autonomous pyranometers during the HOPE campaign around Jülich, Germany, are investigated with a multiresolution analysis based on the maximum overlap discrete wavelet transform and the Haar wavelet. For different sky conditions, typical wavelet power spectra are calculated to quantify the timescale dependence of variability in global transmittance. Distinctly higher variability is observed at all frequencies in the power spectra of global transmittance under broken-cloud conditions compared to clear, cirrus, or overcast skies. The spatial autocorrelation function including its frequency dependence is determined to quantify the degree of similarity of two time series measurements as a function of their spatial separation. Distances ranging from 100 m to 10 km are considered, and a rapid decrease of the autocorrelation function is found with increasing frequency and distance. For frequencies above 1/3 min-1 and points separated by more than 1 km, variations in transmittance become completely uncorrelated. A method is introduced to estimate the deviation between a point measurement and a spatially averaged value for a surrounding domain, which takes into account domain size and averaging period, and is used to explore the representativeness of a single pyranometer observation for its surrounding region. Two distinct mechanisms are identified, which limit the representativeness; on the one hand, spatial averaging reduces variability and thus modifies the shape of the power spectrum. On the other hand, the correlation of variations of the spatially averaged field and a point measurement decreases rapidly with increasing temporal frequency. For a grid box of 10 km × 10 km and averaging periods of 1.5-3 h, the deviation of global transmittance between a point measurement and an area-averaged value depends on the prevailing sky conditions: 2.8 (clear), 1.8 (cirrus), 1.5 (overcast), and 4.2 % (broken clouds). The solar global radiation observed at a single station is found to deviate from the spatial average by as much as 14-23 (clear), 8-26 (cirrus), 4-23 (overcast), and 31-79 W m-2 (broken clouds) from domain averages ranging from 1 km × 1 km to 10 km × 10 km in area.
SU-F-I-10: Spatially Local Statistics for Adaptive Image Filtering
DOE Office of Scientific and Technical Information (OSTI.GOV)
Iliopoulos, AS; Sun, X; Floros, D
Purpose: To facilitate adaptive image filtering operations, addressing spatial variations in both noise and signal. Such issues are prevalent in cone-beam projections, where physical effects such as X-ray scattering result in spatially variant noise, violating common assumptions of homogeneous noise and challenging conventional filtering approaches to signal extraction and noise suppression. Methods: We present a computational mechanism for probing into and quantifying the spatial variance of noise throughout an image. The mechanism builds a pyramid of local statistics at multiple spatial scales; local statistical information at each scale includes (weighted) mean, median, standard deviation, median absolute deviation, as well asmore » histogram or dynamic range after local mean/median shifting. Based on inter-scale differences of local statistics, the spatial scope of distinguishable noise variation is detected in a semi- or un-supervised manner. Additionally, we propose and demonstrate the incorporation of such information in globally parametrized (i.e., non-adaptive) filters, effectively transforming the latter into spatially adaptive filters. The multi-scale mechanism is materialized by efficient algorithms and implemented in parallel CPU/GPU architectures. Results: We demonstrate the impact of local statistics for adaptive image processing and analysis using cone-beam projections of a Catphan phantom, fitted within an annulus to increase X-ray scattering. The effective spatial scope of local statistics calculations is shown to vary throughout the image domain, necessitating multi-scale noise and signal structure analysis. Filtering results with and without spatial filter adaptation are compared visually, illustrating improvements in imaging signal extraction and noise suppression, and in preserving information in low-contrast regions. Conclusion: Local image statistics can be incorporated in filtering operations to equip them with spatial adaptivity to spatial signal/noise variations. An efficient multi-scale computational mechanism is developed to curtail processing latency. Spatially adaptive filtering may impact subsequent processing tasks such as reconstruction and numerical gradient computations for deformable registration. NIH Grant No. R01-184173.« less
An Assessment of Direct and Indirect Economic Losses of Climatic Extreme Events
NASA Astrophysics Data System (ADS)
Otto, C.; Willner, S. N.; Wenz, L.; Levermann, A.
2015-12-01
Risk of extreme weather events like storms, heat extremes, and floods has already risen due to anthropogenic climate change and is likely to increase further under future global warming. Additionally, the structure of the global economy has changed importantly in the last decades. In the process of globalization, local economies have become more and more interwoven forming a complex network. Together with a trend towards lean production, this has resulted in a strong dependency of local manufacturers on global supply and value added chains, which may render the economic network more vulnerable to climatic extremes; outages of local manufacturers trigger indirect losses, which spread along supply chains and can even outstrip direct losses. Accordingly, in a comprehensive climate risk assessment these inter-linkages should be considered. Here, we present acclimate, an agent based dynamic damage propagation model. Its agents are production and consumption sites, which are interlinked by economic flows accounting for the complexity as well as the heterogeneity of the global supply network. Assessing the economic response on the timescale of the adverse event, the model permits to study temporal and spatial evolution of indirect production losses during the disaster and in the subsequent recovery phase of the economy. In this study, we focus on the dynamic economic resilience defined here as the ratio of direct to total losses. This implies that the resilience of the system under consideration is low if the high indirect losses are high. We find and assess a nonlinear dependence of the resilience on the disaster size. Further, we analyze the influence of the network structure upon resilience and discuss the potential of warehousing as an adaptation option.