Stability analysis for stochastic BAM nonlinear neural network with delays
NASA Astrophysics Data System (ADS)
Lv, Z. W.; Shu, H. S.; Wei, G. L.
2008-02-01
In this paper, stochastic bidirectional associative memory neural networks with constant or time-varying delays is considered. Based on a Lyapunov-Krasovskii functional and the stochastic stability analysis theory, we derive several sufficient conditions in order to guarantee the global asymptotically stable in the mean square. Our investigation shows that the stochastic bidirectional associative memory neural networks are globally asymptotically stable in the mean square if there are solutions to some linear matrix inequalities(LMIs). Hence, the global asymptotic stability of the stochastic bidirectional associative memory neural networks can be easily checked by the Matlab LMI toolbox. A numerical example is given to demonstrate the usefulness of the proposed global asymptotic stability criteria.
Superspace and global stability in general relativity
NASA Astrophysics Data System (ADS)
Gurzadyan, A. V.; Kocharyan, A. A.
A framework is developed enabling the global analysis of the stability of cosmological models using the local geometric characteristics of the infinite-dimensional superspace, i.e. using the generalized Jacobi equation reformulated for pseudo-Riemannian manifolds. We give a direct formalism for dynamical analysis in the superspace, the requisite equation pertinent for stability analysis of the universe by means of generalized covariant and Fermi derivative is derived. Then, the relevant definitions and formulae are retrieved for cosmological models with a scalar field.
Stability investigations of airfoil flow by global analysis
NASA Technical Reports Server (NTRS)
Morzynski, Marek; Thiele, Frank
1992-01-01
As the result of global, non-parallel flow stability analysis the single value of the disturbance growth-rate and respective frequency is obtained. This complex value characterizes the stability of the whole flow configuration and is not referred to any particular flow pattern. The global analysis assures that all the flow elements (wake, boundary and shear layer) are taken into account. The physical phenomena connected with the wake instability are properly reproduced by the global analysis. This enhances the investigations of instability of any 2-D flows, including ones in which the boundary layer instability effects are known to be of dominating importance. Assuming fully 2-D disturbance form, the global linear stability problem is formulated. The system of partial differential equations is solved for the eigenvalues and eigenvectors. The equations, written in the pure stream function formulation, are discretized via FDM using a curvilinear coordinate system. The complex eigenvalues and corresponding eigenvectors are evaluated by an iterative method. The investigations performed for various Reynolds numbers emphasize that the wake instability develops into the Karman vortex street. This phenomenon is shown to be connected with the first mode obtained from the non-parallel flow stability analysis. The higher modes are reflecting different physical phenomena as for example Tollmien-Schlichting waves, originating in the boundary layer and having the tendency to emerge as instabilities for the growing Reynolds number. The investigations are carried out for a circular cylinder, oblong ellipsis and airfoil. It is shown that the onset of the wake instability, the waves in the boundary layer, the shear layer instability are different solutions of the same eigenvalue problem, formulated using the non-parallel theory. The analysis offers large potential possibilities as the generalization of methods used till now for the stability analysis.
Development of Modal Analysis for the Study of Global Modes in High Speed Boundary Layer Flows
NASA Astrophysics Data System (ADS)
Brock, Joseph Michael
Boundary layer transition for compressible flows remains a challenging and unsolved problem. In the context of high-speed compressible flow, transitional and turbulent boundary-layers produce significantly higher surface heating caused by an increase in skin-friction. The higher heating associated with transitional and turbulent boundary layers drives thermal protection systems (TPS) and mission trajectory bounds. Proper understanding of the mechanisms that drive transition is crucial to the successful design and operation of the next generation spacecraft. Currently, prediction of boundary-layer transition is based on experimental efforts and computational stability analysis. Computational analysis, anchored by experimental correlations, offers an avenue to assess/predict stability at a reduced cost. Classical methods of Linearized Stability Theory (LST) and Parabolized Stability Equations (PSE) have proven to be very useful for simple geometries/base flows. Under certain conditions the assumptions that are inherent to classical methods become invalid and the use of LST/PSE is inaccurate. In these situations, a global approach must be considered. A TriGlobal stability analysis code, Global Mode Analysis in US3D (GMAUS3D), has been developed and implemented into the unstructured solver US3D. A discussion of the methodology and implementation will be presented. Two flow configurations are presented in an effort to validate/verify the approach. First, stability analysis for a subsonic cylinder wake is performed and results compared to literature. Second, a supersonic blunt cone is considered to directly compare LST/PSE analysis and results generated by GMAUS3D.
Spanwise effects on instabilities of compressible flow over a long rectangular cavity
NASA Astrophysics Data System (ADS)
Sun, Y.; Taira, K.; Cattafesta, L. N.; Ukeiley, L. S.
2017-12-01
The stability properties of two-dimensional (2D) and three-dimensional (3D) compressible flows over a rectangular cavity with length-to-depth ratio of L/D=6 are analyzed at a free-stream Mach number of M_∞ =0.6 and depth-based Reynolds number of Re_D=502. In this study, we closely examine the influence of three-dimensionality on the wake mode that has been reported to exhibit high-amplitude fluctuations from the formation and ejection of large-scale spanwise vortices. Direct numerical simulation (DNS) and bi-global stability analysis are utilized to study the stability characteristics of the wake mode. Using the bi-global stability analysis with the time-averaged flow as the base state, we capture the global stability properties of the wake mode at a spanwise wavenumber of β =0. To uncover spanwise effects on the 2D wake mode, 3D DNS are performed with cavity width-to-depth ratio of W/D=1 and 2. We find that the 2D wake mode is not present in the 3D cavity flow with W/D=2, in which spanwise structures are observed near the rear region of the cavity. These 3D instabilities are further investigated via bi-global stability analysis for spanwise wavelengths of λ /D=0.5{-}2.0 to reveal the eigenspectra of the 3D eigenmodes. Based on the findings of 2D and 3D global stability analysis, we conclude that the absence of the wake mode in 3D rectangular cavity flows is due to the release of kinetic energy from the spanwise vortices to the streamwise vortical structures that develops from the spanwise instabilities.
Surrogate models for efficient stability analysis of brake systems
NASA Astrophysics Data System (ADS)
Nechak, Lyes; Gillot, Frédéric; Besset, Sébastien; Sinou, Jean-Jacques
2015-07-01
This study assesses capacities of the global sensitivity analysis combined together with the kriging formalism to be useful in the robust stability analysis of brake systems, which is too costly when performed with the classical complex eigenvalues analysis (CEA) based on finite element models (FEMs). By considering a simplified brake system, the global sensitivity analysis is first shown very helpful for understanding the effects of design parameters on the brake system's stability. This is allowed by the so-called Sobol indices which discriminate design parameters with respect to their influence on the stability. Consequently, only uncertainty of influent parameters is taken into account in the following step, namely, the surrogate modelling based on kriging. The latter is then demonstrated to be an interesting alternative to FEMs since it allowed, with a lower cost, an accurate estimation of the system's proportions of instability corresponding to the influent parameters.
Climate Change, Instability and a Full Spectrum Approach to Conflict Prevention in Africa
2009-10-23
commander to follow. 15. SUBJECT TERMS Climate Change, Global Warming , Security Cooperation, Stability, Instability, Stabilization, Security...note that global warming could also create similar impacts on resources.19 In modern times disputes over natural resources have erupted into conflict...16. Center for Naval Analysis, National Security and the Threat of Climate Change, 18. 17. Michael T. Klare, ― Global Warming Battlefields: How
Nang, Roberto N; Monahan, Felicia; Diehl, Glendon B; French, Daniel
2015-04-01
Many institutions collect reports in databases to make important lessons-learned available to their members. The Uniformed Services University of the Health Sciences collaborated with the Peacekeeping and Stability Operations Institute to conduct a descriptive and qualitative analysis of global health engagements (GHEs) contained in the Stability Operations Lessons Learned and Information Management System (SOLLIMS). This study used a summative qualitative content analysis approach involving six steps: (1) a comprehensive search; (2) two-stage reading and screening process to identify first-hand, health-related records; (3) qualitative and quantitative data analysis using MAXQDA, a software program; (4) a word cloud to illustrate word frequencies and interrelationships; (5) coding of individual themes and validation of the coding scheme; and (6) identification of relationships in the data and overarching lessons-learned. The individual codes with the most number of text segments coded included: planning, personnel, interorganizational coordination, communication/information sharing, and resources/supplies. When compared to the Department of Defense's (DoD's) evolving GHE principles and capabilities, the SOLLIMS coding scheme appeared to align well with the list of GHE capabilities developed by the Department of Defense Global Health Working Group. The results of this study will inform practitioners of global health and encourage additional qualitative analysis of other lessons-learned databases. Reprint & Copyright © 2015 Association of Military Surgeons of the U.S.
A robot control architecture supported on contraction theory
NASA Astrophysics Data System (ADS)
Silva, Jorge; Sequeira, João; Santos, Cristina
2017-01-01
This paper proposes fundamentals for stability and success of a global system composed by a mobile robot, a real environment and a navigation architecture with time constraints. Contraction theory is a typical framework that provides tools and properties to prove the stability and convergence of the global system to a unique fixed point that identifies the mission success. A stability indicator based on the combination contraction property is developed to identify the mission success as a stability measure. The architecture is fully designed through C1 nonlinear dynamical systems and feedthrough maps, which makes it amenable for contraction analysis. Experiments in a realistic and uncontrolled environment are realised to verify if inherent perturbations of the sensory information and of the environment affect the stability and success of the global system.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Escobar, D.; Ahedo, E., E-mail: eduardo.ahedo@uc3m.es
2015-10-15
The linear stability of the Hall thruster discharge is analysed against axial-azimuthal perturbations in the low frequency range using a time-dependent 2D code of the discharge. This azimuthal stability analysis is spatially global, as opposed to the more common local stability analyses, already afforded previously (D. Escobar and E. Ahedo, Phys. Plasmas 21(4), 043505 (2014)). The study covers both axial and axial-azimuthal oscillations, known as breathing mode and spoke, respectively. The influence on the spoke instability of different operation parameters such as discharge voltage, mass flow, and thruster size is assessed by means of different parametric variations and compared againstmore » experimental results. Additionally, simplified models are used to unveil and characterize the mechanisms driving the spoke. The results indicate that the spoke is linked to azimuthal oscillations of the ionization process and to the Bohm condition in the transition to the anode sheath. Finally, results obtained from local and global stability analyses are compared in order to explain the discrepancies between both methods.« less
Zhang, Xinxin; Niu, Peifeng; Ma, Yunpeng; Wei, Yanqiao; Li, Guoqiang
2017-10-01
This paper is concerned with the stability analysis issue of fractional-order impulsive neural networks. Under the one-side Lipschitz condition or the linear growth condition of activation function, the existence of solution is analyzed respectively. In addition, the existence, uniqueness and global Mittag-Leffler stability of equilibrium point of the fractional-order impulsive neural networks with one-side Lipschitz condition are investigated by the means of contraction mapping principle and Lyapunov direct method. Finally, an example with numerical simulation is given to illustrate the validity and feasibility of the proposed results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Dynamic Analysis of the Melanoma Model: From Cancer Persistence to Its Eradication
NASA Astrophysics Data System (ADS)
Starkov, Konstantin E.; Jimenez Beristain, Laura
In this paper, we study the global dynamics of the five-dimensional melanoma model developed by Kronik et al. This model describes interactions of tumor cells with cytotoxic T cells and respective cytokines under cellular immunotherapy. We get the ultimate upper and lower bounds for variables of this model, provide formulas for equilibrium points and present local asymptotic stability/hyperbolic instability conditions. Next, we prove the existence of the attracting set. Based on these results we come to global asymptotic melanoma eradication conditions via global stability analysis. Finally, we provide bounds for a locus of the melanoma persistence equilibrium point, study the case of melanoma persistence and describe conditions under which we observe global attractivity to the unique melanoma persistence equilibrium point.
Beretta, E; Capasso, V; Rinaldi, F
1988-01-01
The paper contains an extension of the general ODE system proposed in previous papers by the same authors, to include distributed time delays in the interaction terms. The new system describes a large class of Lotka-Volterra like population models and epidemic models with continuous time delays. Sufficient conditions for the boundedness of solutions and for the global asymptotic stability of nontrivial equilibrium solutions are given. A detailed analysis of the epidemic system is given with respect to the conditions for global stability. For a relevant subclass of these systems an existence criterion for steady states is also given.
Global exponential stability of BAM neural networks with time-varying delays: The discrete-time case
NASA Astrophysics Data System (ADS)
Raja, R.; Marshal Anthoni, S.
2011-02-01
This paper deals with the problem of stability analysis for a class of discrete-time bidirectional associative memory (BAM) neural networks with time-varying delays. By employing the Lyapunov functional and linear matrix inequality (LMI) approach, a new sufficient conditions is proposed for the global exponential stability of discrete-time BAM neural networks. The proposed LMI based results can be easily checked by LMI control toolbox. Moreover, an example is also provided to demonstrate the effectiveness of the proposed method.
Non Lyapunov stability of a constant spatially developing 2-D gas flow
NASA Astrophysics Data System (ADS)
Balint, Agneta M.; Balint, Stefan; Tanasie, Loredana
2017-01-01
Different types of stabilities (global, local) and instabilities (global absolute, local convective) of the constant spatially developing 2-D gas flow are analyzed in a particular phase space of continuously differentiable functions, endowed with the usual algebraic operations and the topology generated by the uniform convergence on the plane. For this purpose the Euler equations linearized at the constant flow are used. The Lyapunov stability analysis was presented in [1] and this paper is a continuation of [1].
Convective and global stability analysis of a Mach 5.8 boundary layer grazing a compliant surface
NASA Astrophysics Data System (ADS)
Dettenrieder, Fabian; Bodony, Daniel
2016-11-01
Boundary layer transition on high-speed vehicles is expected to be affected by unsteady surface compliance. The stability properties of a Mach 5.8 zero-pressure-gradient laminar boundary layer grazing a nominally-flat thermo-mechanically compliant panel is considered. The linearized compressible Navier-Stokes equations describe small amplitude disturbances in the fluid while the panel deformations are described by the Kirchhoff-Love plate equation and its thermal state by the transient heat equation. Compatibility conditions that couple disturbances in the fluid to those in the solid yield simple algebraic and robin boundary conditions for the velocity and thermal states, respectively. A local convective stability analysis shows that the panel can modify both the first and second Mack modes when, for metallic-like panels, the panel thickness exceeds the lengthscale δ99 Rex- 0 . 5 . A global stability analysis, which permits finite panel lengths with clamped-clamped boundary conditions, shows a rich eigenvalue spectrum with several branches. Unstable modes are found with streamwise-growing panel deformations leading to Mach wave-type radiation. Stable global modes are also found and have distinctly different panel modes but similar radiation patterns. Air Force Office of Scientific Research.
Xiao, Qiang; Zeng, Zhigang
2017-10-01
The existed results of Lagrange stability and finite-time synchronization for memristive recurrent neural networks (MRNNs) are scale-free on time evolvement, and some restrictions appear naturally. In this paper, two novel scale-limited comparison principles are established by means of inequality techniques and induction principle on time scales. Then the results concerning Lagrange stability and global finite-time synchronization of MRNNs on time scales are obtained. Scaled-limited Lagrange stability criteria are derived, in detail, via nonsmooth analysis and theory of time scales. Moreover, novel criteria for achieving the global finite-time synchronization are acquired. In addition, the derived method can also be used to study global finite-time stabilization. The proposed results extend or improve the existed ones in the literatures. Two numerical examples are chosen to show the effectiveness of the obtained results.
MHD stability analysis and global mode identification preparing for high beta operation in KSTAR
NASA Astrophysics Data System (ADS)
Park, Y. S.; Sabbagh, S. A.; Berkery, J. W.; Jiang, Y.; Ahn, J. H.; Han, H. S.; Bak, J. G.; Park, B. H.; Jeon, Y. M.; Kim, J.; Hahn, S. H.; Lee, J. H.; Ko, J. S.; in, Y. K.; Yoon, S. W.; Oh, Y. K.; Wang, Z.; Glasser, A. H.
2017-10-01
H-mode plasma operation in KSTAR has surpassed the computed n = 1 ideal no-wall stability limit in discharges exceeding several seconds in duration. The achieved high normalized beta plasmas are presently limited by resistive tearing instabilities rather than global kink/ballooning or RWMs. The ideal and resistive stability of these plasmas is examined by using different physics models. The observed m/ n = 2/1 tearing stability is computed by using the M3D-C1 code, and by the resistive DCON code. The global MHD stability modified by kinetic effects is examined using the MISK code. Results from the analysis explain the stabilization of the plasma above the ideal MHD no-wall limit. Equilibrium reconstructions used include the measured kinetic profiles and MSE data. In preparation for plasma operation at higher beta utilizing the planned second NBI system, three sets of 3D magnetic field sensors have been installed and will be used for RWM active feedback control. To accurately determine the dominant n-component produced by low frequency unstable RWMs, an algorithm has been developed that includes magnetic sensor compensation of the prompt applied field and the field from the induced current on the passive conductors. Supported by US DOE Contracts DE-FG02-99ER54524 and DE-SC0016614.
A brief review of models of DC-DC power electronic converters for analysis of their stability
NASA Astrophysics Data System (ADS)
Siewniak, Piotr; Grzesik, Bogusław
2014-10-01
A brief review of models of DC-DC power electronic converters (PECs) is presented in this paper. It contains the most popular, continuous-time and discrete-time models used for PEC simulation, design, stability analysis and other applications. Both large-signal and small-signal models are considered. Special attention is paid to models that are used in practice for the analysis of the global and local stability of PECs.
NASA Astrophysics Data System (ADS)
Balint, Stefan; Balint, Agneta M.
2017-01-01
Different types of stabilities (global, local) and instabilities (global absolute, local convective) of the constant spatially developing 1-D gas flow are analyzed in the phase space of continuously differentiable functions, endowed with the usual algebraic operations and the topology generated by the uniform convergence on the real axis. For this purpose the Euler equations linearized at the constant flow are used. The Lyapunov stability analysis was presented in [1] and this paper is a continuation of [1].
Li, Jian-Ping; Liu, Yang; Guo, Jian-Ming; Shang, Er-Xin; Zhu, Zhen-Hua; Zhu, Kevin Y; Tang, Yu-Ping; Zhao, Bu-Chang; Tang, Zhi-Shu; Duan, Jin-Ao
2017-01-01
Stability of traditional Chinese medicine injection (TCMI) is an important issue related with its clinical application. TCMI is composed of multi-components, therefore, when evaluating TCMI stability, several marker compounds cannot represent global components or biological activities of TCMI. Till now, when evaluating TCMI stability, method involving the global components or biological activities has not been reported. In this paper, we established a comprehensive strategy composed of three different methods to evaluate the chemical and biological stability of a typical TCMI, Danhong injection (DHI). UHPLC-TQ/MS was used to analyze the stability of marker compounds (SaA, SaB, RA, DSS, PA, CA, and SG) in DHI, UHPLC-QTOF/MS was used to analyze the stability of global components (MW 80-1000 Da) in DHI, and cell based antioxidant capability assay was used to evaluate the bioactivity of DHI. We applied this strategy to assess the compatible stability of DHI and six infusion solutions (GS, NS, GNS, FI, XI, and DGI), which were commonly used in combination with DHI in clinic. GS was the best infusion solution for DHI, and DGI was the worst one based on marker compounds analysis. Based on global components analysis, XI and DGI were the worst infusion solutions for DHI. And based on bioactivity assay, GS was the best infusion solution for DHI, and XI was the worst one. In conclusion, as evaluated by the established comprehensive strategy, GS was the best infusion solution, however, XI and DGI were the worst infusion solutions for DHI. In the compatibility of DHI and XI or DGI, salvianolic acids in DHI would be degraded, resulting in the reduction of original composition and generation of new components, and leading to the changes of biological activities. This is the essence of instability compatibility of DHI and some infusion solutions. Our study provided references for choosing the reasonable infusion solutions for DHI, which could contribute the improvement of safety and efficacy of DHI. Moreover, the established strategy may be applied for the compatible stability evaluation of other TCMIs.
Instability of a solidifying binary mixture
NASA Technical Reports Server (NTRS)
Antar, B. N.
1982-01-01
An analysis is performed on the stability of a solidifying binary mixture due to surface tension variation of the free liquid surface. The basic state solution is obtained numerically as a nonstationary function of time. Due to the time dependence of the basic state, the stability analysis is of the global type which utilizes a variational technique. Also due to the fact that the basic state is a complex function of both space and time, the stability analysis is performed through numerical means.
Yang, Wengui; Yu, Wenwu; Cao, Jinde; Alsaadi, Fuad E; Hayat, Tasawar
2018-02-01
This paper investigates the stability and lag synchronization for memristor-based fuzzy Cohen-Grossberg bidirectional associative memory (BAM) neural networks with mixed delays (asynchronous time delays and continuously distributed delays) and impulses. By applying the inequality analysis technique, homeomorphism theory and some suitable Lyapunov-Krasovskii functionals, some new sufficient conditions for the uniqueness and global exponential stability of equilibrium point are established. Furthermore, we obtain several sufficient criteria concerning globally exponential lag synchronization for the proposed system based on the framework of Filippov solution, differential inclusion theory and control theory. In addition, some examples with numerical simulations are given to illustrate the feasibility and validity of obtained results. Copyright © 2017 Elsevier Ltd. All rights reserved.
Title: Chimeras in small, globally coupled networks: Experiments and stability analysis
NASA Astrophysics Data System (ADS)
Hart, Joseph D.; Bansal, Kanika; Murphy, Thomas E.; Roy, Rajarshi
Since the initial observation of chimera states, there has been much discussion of the conditions under which these states emerge. The emphasis thus far has mainly been to analyze large networks of coupled oscillators; however, recent studies have begun to focus on the opposite limit: what is the smallest system of coupled oscillators in which chimeras can exist? We experimentally observe chimeras and other partially synchronous patterns in a network of four globally-coupled chaotic opto-electronic oscillators. By examining the equations of motion, we demonstrate that symmetries in the network topology allow a variety of synchronous states to exist, including cluster synchronous states and a chimera state. Using the group theoretical approach recently developed for analyzing cluster synchronization, we show how to derive the variational equations for these synchronous patterns and calculate their linear stability. The stability analysis gives good agreement with our experimental results. Both experiments and simulations suggest that these chimera states often appear in regions of multistability between global, cluster, and desynchronized states.
Song, Qiankun; Yu, Qinqin; Zhao, Zhenjiang; Liu, Yurong; Alsaadi, Fuad E
2018-07-01
In this paper, the boundedness and robust stability for a class of delayed complex-valued neural networks with interval parameter uncertainties are investigated. By using Homomorphic mapping theorem, Lyapunov method and inequality techniques, sufficient condition to guarantee the boundedness of networks and the existence, uniqueness and global robust stability of equilibrium point is derived for the considered uncertain neural networks. The obtained robust stability criterion is expressed in complex-valued LMI, which can be calculated numerically using YALMIP with solver of SDPT3 in MATLAB. An example with simulations is supplied to show the applicability and advantages of the acquired result. Copyright © 2018 Elsevier Ltd. All rights reserved.
Global exponential stability analysis on impulsive BAM neural networks with distributed delays
NASA Astrophysics Data System (ADS)
Li, Yao-Tang; Yang, Chang-Bo
2006-12-01
Using M-matrix and topological degree tool, sufficient conditions are obtained for the existence, uniqueness and global exponential stability of the equilibrium point of bidirectional associative memory (BAM) neural networks with distributed delays and subjected to impulsive state displacements at fixed instants of time by constructing a suitable Lyapunov functional. The results remove the usual assumptions that the boundedness, monotonicity, and differentiability of the activation functions. It is shown that in some cases, the stability criteria can be easily checked. Finally, an illustrative example is given to show the effectiveness of the presented criteria.
Arik, Sabri
2005-05-01
This paper presents a sufficient condition for the existence, uniqueness and global asymptotic stability of the equilibrium point for bidirectional associative memory (BAM) neural networks with distributed time delays. The results impose constraint conditions on the network parameters of neural system independently of the delay parameter, and they are applicable to all continuous nonmonotonic neuron activation functions. It is shown that in some special cases of the results, the stability criteria can be easily checked. Some examples are also given to compare the results with the previous results derived in the literature.
Effect of antibodies on pathogen dynamics with delays and two routes of infection
NASA Astrophysics Data System (ADS)
Elaiw, A. M.; Almatrafi, A. A.; Hobiny, A. D.
2018-06-01
We study the global stability of pathogen dynamics models with saturated pathogen-susceptible and infected-susceptible incidence. The models incorporate antibody immune response and three types of discrete or distributed time delays. We first show that the solutions of the model are nonnegative and ultimately bounded. We determine two threshold parameters, the basic reproduction number and antibody response activation number. We establish the existence and stability of the steady states. We study the global stability analysis of models using Lyapunov method. The numerical simulations have shown that antibodies can reduce the pathogen progression.
An analysis of yield stability in a conservation agriculture system
USDA-ARS?s Scientific Manuscript database
Climate models predict increasing growing-season weather variability, with negative consequences for crop production. Maintaining agricultural productivity despite variability in weather (i.e., crop yield stability) will be critical to meeting growing global demand. Conservation agriculture is an ...
Wang, Leimin; Zeng, Zhigang; Ge, Ming-Feng; Hu, Junhao
2018-05-02
This paper deals with the stabilization problem of memristive recurrent neural networks with inertial items, discrete delays, bounded and unbounded distributed delays. First, for inertial memristive recurrent neural networks (IMRNNs) with second-order derivatives of states, an appropriate variable substitution method is invoked to transfer IMRNNs into a first-order differential form. Then, based on nonsmooth analysis theory, several algebraic criteria are established for the global stabilizability of IMRNNs under proposed feedback control, where the cases with both bounded and unbounded distributed delays are successfully addressed. Finally, the theoretical results are illustrated via the numerical simulations. Copyright © 2018 Elsevier Ltd. All rights reserved.
Finite-difference solution of the compressible stability eigenvalue problem
NASA Technical Reports Server (NTRS)
Malik, M. R.
1982-01-01
A compressible stability analysis computer code is developed. The code uses a matrix finite difference method for local eigenvalue solution when a good guess for the eigenvalue is available and is significantly more computationally efficient than the commonly used initial value approach. The local eigenvalue search procedure also results in eigenfunctions and, at little extra work, group velocities. A globally convergent eigenvalue procedure is also developed which may be used when no guess for the eigenvalue is available. The global problem is formulated in such a way that no unstable spurious modes appear so that the method is suitable for use in a black box stability code. Sample stability calculations are presented for the boundary layer profiles of a Laminar Flow Control (LFC) swept wing.
Schiffer, Johannes; Efimov, Denis; Ortega, Romeo; Barabanov, Nikita
2017-08-13
Conditions for almost global stability of an operating point of a realistic model of a synchronous generator with constant field current connected to an infinite bus are derived. The analysis is conducted by employing the recently proposed concept of input-to-state stability (ISS)-Leonov functions, which is an extension of the powerful cell structure principle developed by Leonov and Noldus to the ISS framework. Compared with the original ideas of Leonov and Noldus, the ISS-Leonov approach has the advantage of providing additional robustness guarantees. The efficiency of the derived sufficient conditions is illustrated via numerical experiments.This article is part of the themed issue 'Energy management: flexibility, risk and optimization'. © 2017 The Author(s).
1991-01-01
Foundation FYDP ......... Five Year Defense Plan FSI ............ Fog Stability Index 17 G G ................ gravity, giga- GISM ......... Gridded ...Global Circulation Model GOES-TAP GOES imagery processing & dissemination system GCS .......... grid course GOFS ........ Global Ocean Flux Study GD...Analysis Support System Complex Systems GRID .......... Global Resource Information Data -Base GEMAG ..... geomagnetic GRIST..... grazing-incidence solar
Local and global Hopf bifurcation analysis in a neutral-type neuron system with two delays
NASA Astrophysics Data System (ADS)
Lv, Qiuyu; Liao, Xiaofeng
2018-03-01
In recent years, neutral-type differential-difference equations have been applied extensively in the field of engineering, and their dynamical behaviors are more complex than that of the delay differential-difference equations. In this paper, the equations used to describe a neutral-type neural network system of differential difference equation with two delays are studied (i.e. neutral-type differential equations). Firstly, by selecting τ1, τ2 respectively as a parameter, we provide an analysis about the local stability of the zero equilibrium point of the equations, and sufficient conditions of asymptotic stability for the system are derived. Secondly, by using the theory of normal form and applying the theorem of center manifold introduced by Hassard et al., the Hopf bifurcation is found and some formulas for deciding the stability of periodic solutions and the direction of Hopf bifurcation are given. Moreover, by applying the theorem of global Hopf bifurcation, the existence of global periodic solution of the system is studied. Finally, an example is given, and some computer numerical simulations are taken to demonstrate and certify the correctness of the presented results.
Yang, Xujun; Li, Chuandong; Song, Qiankun; Chen, Jiyang; Huang, Junjian
2018-05-04
This paper talks about the stability and synchronization problems of fractional-order quaternion-valued neural networks (FQVNNs) with linear threshold neurons. On account of the non-commutativity of quaternion multiplication resulting from Hamilton rules, the FQVNN models are separated into four real-valued neural network (RVNN) models. Consequently, the dynamic analysis of FQVNNs can be realized by investigating the real-valued ones. Based on the method of M-matrix, the existence and uniqueness of the equilibrium point of the FQVNNs are obtained without detailed proof. Afterwards, several sufficient criteria ensuring the global Mittag-Leffler stability for the unique equilibrium point of the FQVNNs are derived by applying the Lyapunov direct method, the theory of fractional differential equation, the theory of matrix eigenvalue, and some inequality techniques. In the meanwhile, global Mittag-Leffler synchronization for the drive-response models of the addressed FQVNNs are investigated explicitly. Finally, simulation examples are designed to verify the feasibility and availability of the theoretical results. Copyright © 2018 Elsevier Ltd. All rights reserved.
Stability and Scalability of the CMS Global Pool: Pushing HTCondor and GlideinWMS to New Limits
DOE Office of Scientific and Technical Information (OSTI.GOV)
Balcas, J.; Bockelman, B.; Hufnagel, D.
The CMS Global Pool, based on HTCondor and glideinWMS, is the main computing resource provisioning system for all CMS workflows, including analysis, Monte Carlo production, and detector data reprocessing activities. The total resources at Tier-1 and Tier-2 grid sites pledged to CMS exceed 100,000 CPU cores, while another 50,000 to 100,000 CPU cores are available opportunistically, pushing the needs of the Global Pool to higher scales each year. These resources are becoming more diverse in their accessibility and configuration over time. Furthermore, the challenge of stably running at higher and higher scales while introducing new modes of operation such asmore » multi-core pilots, as well as the chaotic nature of physics analysis workflows, places huge strains on the submission infrastructure. This paper details some of the most important challenges to scalability and stability that the CMS Global Pool has faced since the beginning of the LHC Run II and how they were overcome.« less
Global alliances effect in coalition forming
NASA Astrophysics Data System (ADS)
Vinogradova, Galina; Galam, Serge
2014-11-01
Coalition forming is investigated among countries, which are coupled with short range interactions, under the influence of externally-set opposing global alliances. The model extends a recent Natural Model of coalition forming inspired from Statistical Physics, where instabilities are a consequence of decentralized maximization of the individual benefits of actors. In contrast to physics where spins can only evaluate the immediate cost/benefit of a flip of orientation, countries have a long horizon of rationality, which associates with the ability to envision a way up to a better configuration even at the cost of passing through intermediate loosing states. The stabilizing effect is produced through polarization by the global alliances of either a particular unique global interest factor or multiple simultaneous ones. This model provides a versatile theoretical tool for the analysis of real cases and design of novel strategies. Such analysis is provided for several real cases including the Eurozone. The results shed a new light on the understanding of the complex phenomena of planned stabilization in the coalition forming.
Stability and scalability of the CMS Global Pool: Pushing HTCondor and glideinWMS to new limits
NASA Astrophysics Data System (ADS)
Balcas, J.; Bockelman, B.; Hufnagel, D.; Hurtado Anampa, K.; Aftab Khan, F.; Larson, K.; Letts, J.; Marra da Silva, J.; Mascheroni, M.; Mason, D.; Perez-Calero Yzquierdo, A.; Tiradani, A.
2017-10-01
The CMS Global Pool, based on HTCondor and glideinWMS, is the main computing resource provisioning system for all CMS workflows, including analysis, Monte Carlo production, and detector data reprocessing activities. The total resources at Tier-1 and Tier-2 grid sites pledged to CMS exceed 100,000 CPU cores, while another 50,000 to 100,000 CPU cores are available opportunistically, pushing the needs of the Global Pool to higher scales each year. These resources are becoming more diverse in their accessibility and configuration over time. Furthermore, the challenge of stably running at higher and higher scales while introducing new modes of operation such as multi-core pilots, as well as the chaotic nature of physics analysis workflows, places huge strains on the submission infrastructure. This paper details some of the most important challenges to scalability and stability that the CMS Global Pool has faced since the beginning of the LHC Run II and how they were overcome.
Tangential acceleration feedback control of friction induced vibration
NASA Astrophysics Data System (ADS)
Nath, Jyayasi; Chatterjee, S.
2016-09-01
Tangential control action is studied on a phenomenological mass-on-belt model exhibiting friction-induced self-excited vibration attributed to the low-velocity drooping characteristics of friction which is also known as Stribeck effect. The friction phenomenon is modelled by the exponential model. Linear stability analysis is carried out near the equilibrium point and local stability boundary is delineated in the plane of control parameters. The system is observed to undergo a Hopf bifurcation as the eigenvalues determined from the linear stability analysis are found to cross the imaginary axis transversally from RHS s-plane to LHS s-plane or vice-versa as one varies the control parameters, namely non-dimensional belt velocity and the control gain. A nonlinear stability analysis by the method of Averaging reveals the subcritical nature of the Hopf bifurcation. Thus, a global stability boundary is constructed so that any choice of control parameters from the globally stable region leads to a stable equilibrium. Numerical simulations in a MATLAB SIMULINK model and bifurcation diagrams obtained in AUTO validate these analytically obtained results. Pole crossover design is implemented to optimize the filter parameters with an independent choice of belt velocity and control gain. The efficacy of this optimization (based on numerical results) in the delicate low velocity region is also enclosed.
Stability and bifurcation analysis on a ratio-dependent predator-prey model with time delay
NASA Astrophysics Data System (ADS)
Xu, Rui; Gan, Qintao; Ma, Zhien
2009-08-01
A ratio-dependent predator-prey model with time delay due to the gestation of the predator is investigated. By analyzing the corresponding characteristic equations, the local stability of a positive equilibrium and a semi-trivial boundary equilibrium is discussed, respectively. Further, it is proved that the system undergoes a Hopf bifurcation at the positive equilibrium. Using the normal form theory and the center manifold reduction, explicit formulae are derived to determine the direction of bifurcations and the stability and other properties of bifurcating periodic solutions. By means of an iteration technique, sufficient conditions are obtained for the global attractiveness of the positive equilibrium. By comparison arguments, the global stability of the semi-trivial equilibrium is also addressed. Numerical simulations are carried out to illustrate the main results.
Velmurugan, G; Rakkiyappan, R; Vembarasan, V; Cao, Jinde; Alsaedi, Ahmed
2017-02-01
As we know, the notion of dissipativity is an important dynamical property of neural networks. Thus, the analysis of dissipativity of neural networks with time delay is becoming more and more important in the research field. In this paper, the authors establish a class of fractional-order complex-valued neural networks (FCVNNs) with time delay, and intensively study the problem of dissipativity, as well as global asymptotic stability of the considered FCVNNs with time delay. Based on the fractional Halanay inequality and suitable Lyapunov functions, some new sufficient conditions are obtained that guarantee the dissipativity of FCVNNs with time delay. Moreover, some sufficient conditions are derived in order to ensure the global asymptotic stability of the addressed FCVNNs with time delay. Finally, two numerical simulations are posed to ensure that the attention of our main results are valuable. Copyright © 2016 Elsevier Ltd. All rights reserved.
Global stability and periodic solution of the viral dynamics
NASA Astrophysics Data System (ADS)
Song, Xinyu; Neumann, Avidan U.
2007-05-01
It is well known that the mathematical models provide very important information for the research of human immunodeficiency virus-type 1 and hepatitis C virus (HCV). However, the infection rate of almost all mathematical models is linear. The linearity shows the simple interaction between the T cells and the viral particles. In this paper, we consider the classical mathematical model with saturation response of the infection rate. By stability analysis we obtain sufficient conditions on the parameters for the global stability of the infected steady state and the infection-free steady state. We also obtain the conditions for the existence of an orbitally asymptotically stable periodic solution. Numerical simulations are presented to illustrate the results.
Inherent robustness of discrete-time adaptive control systems
NASA Technical Reports Server (NTRS)
Ma, C. C. H.
1986-01-01
Global stability robustness with respect to unmodeled dynamics, arbitrary bounded internal noise, as well as external disturbance is shown to exist for a class of discrete-time adaptive control systems when the regressor vectors of these systems are persistently exciting. Although fast adaptation is definitely undesirable, so far as attaining the greatest amount of global stability robustness is concerned, slow adaptation is shown to be not necessarily beneficial. The entire analysis in this paper holds for systems with slowly varying return difference matrices; the plants in these systems need not be slowly varying.
Global stability of a multiple infected compartments model for waterborne diseases
NASA Astrophysics Data System (ADS)
Wang, Yi; Cao, Jinde
2014-10-01
In this paper, mathematical analysis is carried out for a multiple infected compartments model for waterborne diseases, such as cholera, giardia, and rotavirus. The model accounts for both person-to-person and water-to-person transmission routes. Global stability of the equilibria is studied. In terms of the basic reproduction number R0, we prove that, if R0⩽1, then the disease-free equilibrium is globally asymptotically stable and the infection always disappears; whereas if R0>1, there exists a unique endemic equilibrium which is globally asymptotically stable for the corresponding fast-slow system. Numerical simulations verify our theoretical results and present that the decay rate of waterborne pathogens has a significant impact on the epidemic growth rate. Also, we observe numerically that the unique endemic equilibrium is globally asymptotically stable for the whole system. This statement indicates that the present method need to be improved by other techniques.
Chen, Xiaofeng; Song, Qiankun; Li, Zhongshan; Zhao, Zhenjiang; Liu, Yurong
2018-07-01
This paper addresses the problem of stability for continuous-time and discrete-time quaternion-valued neural networks (QVNNs) with linear threshold neurons. Applying the semidiscretization technique to the continuous-time QVNNs, the discrete-time analogs are obtained, which preserve the dynamical characteristics of their continuous-time counterparts. Via the plural decomposition method of quaternion, homeomorphic mapping theorem, as well as Lyapunov theorem, some sufficient conditions on the existence, uniqueness, and global asymptotical stability of the equilibrium point are derived for the continuous-time QVNNs and their discrete-time analogs, respectively. Furthermore, a uniform sufficient condition on the existence, uniqueness, and global asymptotical stability of the equilibrium point is obtained for both continuous-time QVNNs and their discrete-time version. Finally, two numerical examples are provided to substantiate the effectiveness of the proposed results.
Huang, Haiying; Du, Qiaosheng; Kang, Xibing
2013-11-01
In this paper, a class of neutral high-order stochastic Hopfield neural networks with Markovian jump parameters and mixed time delays is investigated. The jumping parameters are modeled as a continuous-time finite-state Markov chain. At first, the existence of equilibrium point for the addressed neural networks is studied. By utilizing the Lyapunov stability theory, stochastic analysis theory and linear matrix inequality (LMI) technique, new delay-dependent stability criteria are presented in terms of linear matrix inequalities to guarantee the neural networks to be globally exponentially stable in the mean square. Numerical simulations are carried out to illustrate the main results. © 2013 ISA. Published by ISA. All rights reserved.
Stability and global Hopf bifurcation in a delayed food web consisting of a prey and two predators
NASA Astrophysics Data System (ADS)
Meng, Xin-You; Huo, Hai-Feng; Zhang, Xiao-Bing
2011-11-01
This paper is concerned with a predator-prey system with Holling II functional response and hunting delay and gestation. By regarding the sum of delays as the bifurcation parameter, the local stability of the positive equilibrium and the existence of Hopf bifurcation are investigated. We obtained explicit formulas to determine the properties of Hopf bifurcation by using the normal form method and center manifold theorem. Special attention is paid to the global continuation of local Hopf bifurcation. Using a global Hopf bifurcation result of Wu [Wu JH. Symmetric functional differential equations and neural networks with memory, Trans Amer Math Soc 1998;350:4799-4838] for functional differential equations, we may show the global existence of the periodic solutions. Finally, several numerical simulations illustrating the theoretical analysis are also given.
NASA Astrophysics Data System (ADS)
Balsara, Dinshaw S.; Käppeli, Roger
2017-05-01
In this paper we focus on the numerical solution of the induction equation using Runge-Kutta Discontinuous Galerkin (RKDG)-like schemes that are globally divergence-free. The induction equation plays a role in numerical MHD and other systems like it. It ensures that the magnetic field evolves in a divergence-free fashion; and that same property is shared by the numerical schemes presented here. The algorithms presented here are based on a novel DG-like method as it applies to the magnetic field components in the faces of a mesh. (I.e., this is not a conventional DG algorithm for conservation laws.) The other two novel building blocks of the method include divergence-free reconstruction of the magnetic field and multidimensional Riemann solvers; both of which have been developed in recent years by the first author. Since the method is linear, a von Neumann stability analysis is carried out in two-dimensions to understand its stability properties. The von Neumann stability analysis that we develop in this paper relies on transcribing from a modal to a nodal DG formulation in order to develop discrete evolutionary equations for the nodal values. These are then coupled to a suitable Runge-Kutta timestepping strategy so that one can analyze the stability of the entire scheme which is suitably high order in space and time. We show that our scheme permits CFL numbers that are comparable to those of traditional RKDG schemes. We also analyze the wave propagation characteristics of the method and show that with increasing order of accuracy the wave propagation becomes more isotropic and free of dissipation for a larger range of long wavelength modes. This makes a strong case for investing in higher order methods. We also use the von Neumann stability analysis to show that the divergence-free reconstruction and multidimensional Riemann solvers are essential algorithmic ingredients of a globally divergence-free RKDG-like scheme. Numerical accuracy analyses of the RKDG-like schemes are presented and compared with the accuracy of PNPM schemes. It is found that PNPM retrieve much of the accuracy of the RKDG-like schemes while permitting a larger CFL number.
The US Military’s Experience in Stability Operations, 1789-2005
2006-01-01
better trained in IO technical procedures than they were in how to produce a persuasive message . In the Dominican Republic in 1965, for example, the ...Yates, provides his thoughts and analysis of the US Army’s participation in stability operations (SO) since 1789. Dr. Yates, a member of the CSI Team...experience in the conduct of stability operations prior to the Global War on Terrorism can be divided chronologically into four periods: the country’s
Discrete time modeling and stability analysis of TCP Vegas
NASA Astrophysics Data System (ADS)
You, Byungyong; Koo, Kyungmo; Lee, Jin S.
2007-12-01
This paper presents an analysis method for TCP Vegas network model with single link and single source. Some papers showed global stability of several network models, but those models are not a dual problem where dynamics both exist in sources and links such as TCP Vegas. Other papers studied TCP Vegas as a dual problem, but it did not fully derive an asymptotic stability region. Therefore we analyze TCP Vegas with Jury's criterion which is necessary and sufficient condition. So we use state space model in discrete time and by using Jury's criterion, we could find an asymptotic stability region of TCP Vegas network model. This result is verified by ns-2 simulation. And by comparing with other results, we could know our method performed well.
NL(q) Theory: A Neural Control Framework with Global Asymptotic Stability Criteria.
Vandewalle, Joos; De Moor, Bart L.R.; Suykens, Johan A.K.
1997-06-01
In this paper a framework for model-based neural control design is presented, consisting of nonlinear state space models and controllers, parametrized by multilayer feedforward neural networks. The models and closed-loop systems are transformed into so-called NL(q) system form. NL(q) systems represent a large class of nonlinear dynamical systems consisting of q layers with alternating linear and static nonlinear operators that satisfy a sector condition. For such NL(q)s sufficient conditions for global asymptotic stability, input/output stability (dissipativity with finite L(2)-gain) and robust stability and performance are presented. The stability criteria are expressed as linear matrix inequalities. In the analysis problem it is shown how stability of a given controller can be checked. In the synthesis problem two methods for neural control design are discussed. In the first method Narendra's dynamic backpropagation for tracking on a set of specific reference inputs is modified with an NL(q) stability constraint in order to ensure, e.g., closed-loop stability. In a second method control design is done without tracking on specific reference inputs, but based on the input/output stability criteria itself, within a standard plant framework as this is done, for example, in H( infinity ) control theory and &mgr; theory. Copyright 1997 Elsevier Science Ltd.
Epidemic spreading and global stability of an SIS model with an infective vector on complex networks
NASA Astrophysics Data System (ADS)
Kang, Huiyan; Fu, Xinchu
2015-10-01
In this paper, we present a new SIS model with delay on scale-free networks. The model is suitable to describe some epidemics which are not only transmitted by a vector but also spread between individuals by direct contacts. In view of the biological relevance and real spreading process, we introduce a delay to denote average incubation period of disease in a vector. By mathematical analysis, we obtain the epidemic threshold and prove the global stability of equilibria. The simulation shows the delay will effect the epidemic spreading. Finally, we investigate and compare two major immunization strategies, uniform immunization and targeted immunization.
Local conformity induced global oscillation
NASA Astrophysics Data System (ADS)
Li, Dong; Li, Wei; Hu, Gang; Zheng, Zhigang
2009-04-01
The game ‘rock-paper-scissors’ model, with the consideration of the effect of the psychology of conformity, is investigated. The interaction between each two agents is global, but the strategy of the conformity is local for individuals. In the statistical opinion, the probability of the appearance of each strategy is uniform. The dynamical analysis of this model indicates that the equilibrium state may lose its stability at a threshold and is replaced by a globally oscillating state. The global oscillation is induced by the local conformity, which is originated from the synchronization of individual strategies.
Hsu, Sze-Bi; Yang, Ya-Tang
2016-04-01
We present the theory of a microfluidic bioreactor with a two-compartment growth chamber and periodic serial dilution. In the model, coexisting planktonic and biofilm populations exchange by adsorption and detachment. The criteria for coexistence and global extinction are determined by stability analysis of the global extinction state. Stability analysis yields the operating diagram in terms of the dilution and removal ratios, constrained by the plumbing action of the bioreactor. The special case of equal uptake function and logistic growth is analytically solved and explicit growth curves are plotted. The presented theory is applicable to generic microfluidic bioreactors with discrete growth chambers and periodic dilution at discrete time points. Therefore, the theory is expected to assist the design of microfluidic devices for investigating microbial competition and microbial biofilm growth under serial dilution conditions.
Lebwohl, Mark; Preston, Norman; Gottschalk, Ronald W
2012-02-01
Calcitriol 3µg/g ointment has been shown to be a safe and effective treatment for adults with mild-to-moderate plaque psoriasis. This analysis evaluated the response to calcitriol 3µg/g ointment relative to baseline disease. Retrospective analysis of data from a 12-month safety and tolerability trial. At baseline, 40.1 percent (130/324) of patients had an affected body surface area of 11 to 20 percent, and 55.2 percent (179/324) had moderate and 25.9 percent (84/324) had severe disease according to global severity score. Patients applied calcitriol 3µg/g ointment twice daily for up to 52 weeks. Change in investigator's global severity scores and involved body surface area at Week 26 (N=249) and Week 52 (N=130) relative to baseline. Compared with baseline, most patients experienced at least a 1-grade improvement in global severity score at Weeks 26 (195/249, 78.3%) and 52 (109/130, 83.8%). Stabilization (i.e., no change in global severity score) was reported in 19.3 percent (48/249) at Week 26 and in 12.3 percent (16/130) at Week 52. Most patients also experienced at least a 1-grade improvement in body surface area involved at Weeks 26 (152/249, 61.0%) and 52 (95/130, 73.1%). Stabilization (no change in affected body surface area) was reported in 32.5 percent (81/249) at Week 26 and 24.6 percent (32/130) at Week 52. The proportion of patients experiencing improvement in global severity score and body surface area was comparable across all categories of severity and disease extent at baseline. This analysis suggests that calcitriol 3µg/g ointment use for 26 weeks (N=249) and 52 weeks (N=130) was associated with disease improvement or stabilization in most patients with plaque psoriasis.
NASA Astrophysics Data System (ADS)
Wang, Bin; Shao, Yanchun; Chen, Tao; Chen, Wanping; Chen, Fusheng
2015-12-01
Acetobacter pasteurianus (Ap) CICC 20001 and CGMCC 1.41 are two acetic acid bacteria strains that, because of their strong abilities to produce and tolerate high concentrations of acetic acid, have been widely used to brew vinegar in China. To globally understand the fermentation characteristics, acid-tolerant mechanisms and genetic stabilities, their genomes were sequenced. Genomic comparisons with 9 other sequenced Ap strains revealed that their chromosomes were evolutionarily conserved, whereas the plasmids were unique compared with other Ap strains. Analysis of the acid-tolerant metabolic pathway at the genomic level indicated that the metabolism of some amino acids and the known mechanisms of acetic acid tolerance, might collaboratively contribute to acetic acid resistance in Ap strains. The balance of instability factors and stability factors in the genomes of Ap CICC 20001 and CGMCC 1.41 strains might be the basis for their genetic stability, consistent with their stable industrial performances. These observations provide important insights into the acid resistance mechanism and the genetic stability of Ap strains and lay a foundation for future genetic manipulation and engineering of these two strains.
Wang, Bin; Shao, Yanchun; Chen, Tao; Chen, Wanping; Chen, Fusheng
2015-12-22
Acetobacter pasteurianus (Ap) CICC 20001 and CGMCC 1.41 are two acetic acid bacteria strains that, because of their strong abilities to produce and tolerate high concentrations of acetic acid, have been widely used to brew vinegar in China. To globally understand the fermentation characteristics, acid-tolerant mechanisms and genetic stabilities, their genomes were sequenced. Genomic comparisons with 9 other sequenced Ap strains revealed that their chromosomes were evolutionarily conserved, whereas the plasmids were unique compared with other Ap strains. Analysis of the acid-tolerant metabolic pathway at the genomic level indicated that the metabolism of some amino acids and the known mechanisms of acetic acid tolerance, might collaboratively contribute to acetic acid resistance in Ap strains. The balance of instability factors and stability factors in the genomes of Ap CICC 20001 and CGMCC 1.41 strains might be the basis for their genetic stability, consistent with their stable industrial performances. These observations provide important insights into the acid resistance mechanism and the genetic stability of Ap strains and lay a foundation for future genetic manipulation and engineering of these two strains.
Stability analysis for non-minimally coupled dark energy models in the Palatini formalism
NASA Astrophysics Data System (ADS)
Wang, Zuobin; Wu, Puxun; Yu, Hongwei
2018-06-01
In this paper, we use the method of global analysis to study the stability of de-Sitter solutions in an universe dominated by a scalar field dark energy, which couples non-minimally with the Ricci scalar defined in the Palatini formalism. Effective potential and phase-space diagrams are introduced to describe qualitatively the de-Sitter solutions and their stabilities. We find that for the simple power-law function V(φ)=V0φn there are no stable de-Sitter solutions. While for some more complicated potentials, i.e. V(φ)=V0φn+Λ and V(φ)=V0 (e ^{-λφ}+e^{λφ)2, stable de-Sitter solutions can exist.
A rumor transmission model with incubation in social networks
NASA Astrophysics Data System (ADS)
Jia, Jianwen; Wu, Wenjiang
2018-02-01
In this paper, we propose a rumor transmission model with incubation period and constant recruitment in social networks. By carrying out an analysis of the model, we study the stability of rumor-free equilibrium and come to the local stable condition of the rumor equilibrium. We use the geometric approach for ordinary differential equations for showing the global stability of the rumor equilibrium. And when ℜ0 = 1, the new model occurs a transcritical bifurcation. Furthermore, numerical simulations are used to support the analysis. At last, some conclusions are presented.
Complete synchronization of the global coupled dynamical network induced by Poisson noises.
Guo, Qing; Wan, Fangyi
2017-01-01
The different Poisson noise-induced complete synchronization of the global coupled dynamical network is investigated. Based on the stability theory of stochastic differential equations driven by Poisson process, we can prove that Poisson noises can induce synchronization and sufficient conditions are established to achieve complete synchronization with probability 1. Furthermore, numerical examples are provided to show the agreement between theoretical and numerical analysis.
Stabilization of exact nonlinear Timoshenko beams in space by boundary feedback
NASA Astrophysics Data System (ADS)
Do, K. D.
2018-05-01
Boundary feedback controllers are designed to stabilize Timoshenko beams with large translational and rotational motions in space under external disturbances. The exact nonlinear partial differential equations governing motion of the beams are derived and used in the control design. The designed controllers guarantee globally practically asymptotically (and locally practically exponentially) stability of the beam motions at the reference state. The control design, well-posedness and stability analysis are based on various relationships between the earth-fixed and body-fixed coordinates, Sobolev embeddings, and a Lyapunov-type theorem developed to study well-posedness and stability for a class of evolution systems in Hilbert space. Simulation results are included to illustrate the effectiveness of the proposed control design.
Analysis and design of gain scheduled control systems. Ph.D. Thesis
NASA Technical Reports Server (NTRS)
Shamma, Jeff S.
1988-01-01
Gain scheduling, as an idea, is to construct a global feedback control system for a time varying and/or nonlinear plant from a collection of local time invariant designs. However in the absence of a sound analysis, these designs come with no guarantees on the robustness, performance, or even nominal stability of the overall gain schedule design. Such an analysis is presented for three types of gain scheduling situations: (1) a linear parameter varying plant scheduling on its exogenous parameters, (2) a nonlinear plant scheduling on a prescribed reference trajectory, and (3) a nonlinear plant scheduling on the current plant output. Conditions are given which guarantee that the stability, robustness, and performance properties of the fixed operating point designs carry over to the global gain scheduled designs, such as the scheduling variable should vary slowly and capture the plants nonlinearities. Finally, an alternate design framework is proposed which removes the slowing varying restriction or gain scheduled systems. This framework addresses some fundamental feedback issues previously ignored in standard gain.
NASA Technical Reports Server (NTRS)
Wen, John T.; Kreutz-Delgado, Kenneth; Bayard, David S.
1992-01-01
A new class of joint level control laws for all-revolute robot arms is introduced. The analysis is similar to a recently proposed energy-like Liapunov function approach, except that the closed-loop potential function is shaped in accordance with the underlying joint space topology. This approach gives way to a much simpler analysis and leads to a new class of control designs which guarantee both global asymptotic stability and local exponential stability. When Coulomb and viscous friction and parameter uncertainty are present as model perturbations, a sliding mode-like modification of the control law results in a robustness-enhancing outer loop. Adaptive control is formulated within the same framework. A linear-in-the-parameters formulation is adopted and globally asymptotically stable adaptive control laws are derived by simply replacing unknown model parameters by their estimates (i.e., certainty equivalence adaptation).
NASA Technical Reports Server (NTRS)
Wen, John T.; Kreutz, Kenneth; Bayard, David S.
1988-01-01
A class of joint-level control laws for all-revolute robot arms is introduced. The analysis is similar to the recently proposed energy Liapunov function approach except that the closed-loop potential function is shaped in accordance with the underlying joint space topology. By using energy Liapunov functions with the modified potential energy, a much simpler analysis can be used to show closed-loop global asymptotic stability and local exponential stability. When Coulomb and viscous friction and model parameter errors are present, a sliding-mode-like modification of the control law is proposed to add a robustness-enhancing outer loop. Adaptive control is also addressed within the same framework. A linear-in-the-parameters formulation is adopted, and globally asymptotically stable adaptive control laws are derived by replacing the model parameters in the nonadaptive control laws by their estimates.
Simulation and stability analysis of oblique shock-wave/boundary-layer interactions at Mach 5.92
NASA Astrophysics Data System (ADS)
Hildebrand, Nathaniel; Dwivedi, Anubhav; Nichols, Joseph W.; Jovanović, Mihailo R.; Candler, Graham V.
2018-01-01
We investigate flow instability created by an oblique shock wave impinging on a Mach 5.92 laminar boundary layer at a transitional Reynolds number. The adverse pressure gradient of the oblique shock causes the boundary layer to separate from the wall, resulting in the formation of a recirculation bubble. For sufficiently large oblique shock angles, the recirculation bubble is unstable to three-dimensional perturbations and the flow bifurcates from its original laminar state. We utilize direct numerical simulation (DNS) and global stability analysis to show that this first occurs at a critical shock angle of θ =12 .9∘ . At bifurcation, the least-stable global mode is nonoscillatory and it takes place at a spanwise wave number β =0.25 , in good agreement with DNS results. Examination of the critical global mode reveals that it originates from an interaction between small spanwise corrugations at the base of the incident shock, streamwise vortices inside the recirculation bubble, and spanwise modulation of the bubble strength. The global mode drives the formation of long streamwise streaks downstream of the bubble. While the streaks may be amplified by either the lift-up effect or by Görtler instability, we show that centrifugal instability plays no role in the upstream self-sustaining mechanism of the global mode. We employ an adjoint solver to corroborate our physical interpretation by showing that the critical global mode is most sensitive to base flow modifications that are entirely contained inside the recirculation bubble.
PID position regulation in one-degree-of-freedom Euler-Lagrange systems actuated by a PMSM
NASA Astrophysics Data System (ADS)
Verastegui-Galván, J.; Hernández-Guzmán, V. M.; Orrante-Sakanassi, J.
2018-02-01
This paper is concerned with position regulation in one-degree-of-freedom Euler-Lagrange Systems. We consider that the mechanical subsystem is actuated by a permanent magnet synchronous motor (PMSM). Our proposal consists of a Proportional-Integral-Derivative (PID) controller for the mechanical subsystem and a slight variation of field oriented control for the PMSM. We take into account the motor electric dynamics during the stability analysis. We present, for the first time, a global asymptotic stability proof for such a control scheme without requiring the mechanical subsystem to naturally possess viscous friction. Finally, as a corollary of our main result we prove global asymptotic stability for output feedback PID regulation of one-degree-of-freedom Euler-Lagrange systems when generated torque is considered as the system input, i.e. when the electric dynamics of PMSM's is not taken into account.
NASA Astrophysics Data System (ADS)
Hong, Guangyi; Luo, Tao; Zhu, Changjiang
2018-07-01
This paper is concerned with spherically symmetric motions of non-isentropic viscous gaseous stars with self-gravitation. When the stationary entropy S ‾ (x) is spherically symmetric and satisfies a suitable smallness condition, the existence and properties of the stationary solutions are obtained for 6/5 < γ < 2 with weaker constraints upon S ‾ (x) compared with the one in [26], where γ is the adiabatic exponent. The global existence of strong solutions capturing the physical vacuum singularity that the sound speed is C 1/2 -Hölder continuous across the vacuum boundary to a simplified system for non-isentropic viscous flow with self-gravitation and the nonlinear asymptotic stability of the stationary solution are proved when 4/3 < γ < 2 with the detailed convergence rates, motivated by the results and analysis of the nonlinear asymptotic stability of Lane-Emden solutions for isentropic flows in [29,30].
Stability and Bifurcation Analysis of a Three-Species Food Chain Model with Fear
NASA Astrophysics Data System (ADS)
Panday, Pijush; Pal, Nikhil; Samanta, Sudip; Chattopadhyay, Joydev
In the present paper, we investigate the impact of fear in a tri-trophic food chain model. We propose a three-species food chain model, where the growth rate of middle predator is reduced due to the cost of fear of top predator, and the growth rate of prey is suppressed due to the cost of fear of middle predator. Mathematical properties such as equilibrium analysis, stability analysis, bifurcation analysis and persistence have been investigated. We also describe the global stability analysis of the equilibrium points. Our numerical simulations reveal that cost of fear in basal prey may exhibit bistability by producing unstable limit cycles, however, fear in middle predator can replace unstable limit cycles by a stable limit cycle or a stable interior equilibrium. We observe that fear can stabilize the system from chaos to stable focus through the period-halving phenomenon. We conclude that chaotic dynamics can be controlled by the fear factors. We apply basic tools of nonlinear dynamics such as Poincaré section and maximum Lyapunov exponent to identify the chaotic behavior of the system.
Enhancing synchronization stability in a multi-area power grid
Wang, Bing; Suzuki, Hideyuki; Aihara, Kazuyuki
2016-01-01
Maintaining a synchronous state of generators is of central importance to the normal operation of power grids, in which many networks are generally interconnected. In order to understand the condition under which the stability can be optimized, it is important to relate network stability with feedback control strategies as well as network structure. Here, we present a stability analysis on a multi-area power grid by relating it with several control strategies and topological design of network structure. We clarify the minimal feedback gain in the self-feedback control, and build the optimal communication network for the local and global control strategies. Finally, we consider relationship between the interconnection pattern and the synchronization stability; by optimizing the network interlinks, the obtained network shows better synchronization stability than the original network does, in particular, at a high power demand. Our analysis shows that interlinks between spatially distant nodes will improve the synchronization stability. The results seem unfeasible to be implemented in real systems but provide a potential guide for the design of stable power systems. PMID:27225708
Power System Transient Stability Improvement by the Interline Power Flow Controller (IPFC)
NASA Astrophysics Data System (ADS)
Zhang, Jun; Yokoyama, Akihiko
This paper presents a study on the power system transient stability improvement by means of interline power flow controller (IPFC). The power injection model of IPFC in transient analysis is proposed and can be easily incorporated into existing power systems. Based on the energy function analysis, the operation of IPFC should guarantee that the time derivative of the global energy of the system is not greater than zero in order to damp the electromechanical oscillations. Accordingly, control laws of IPFC are proposed for its application to the single-machine infinite-bus (SMIB) system and the multimachine systems, respectively. Numerical simulations on the corresponding model power systems are presented to demonstrate their effectiveness in improving power system transient stability.
Assessment of the DORIS network monumentation
NASA Astrophysics Data System (ADS)
Saunier, J.
2016-12-01
Stability of the monumentation is essential for precise positioning applications to minimize velocity uncertainties and noises in the position data. In charge of the DORIS global tracking network deployment since the beginning, IGN, in consultation with CNES, designed three standard monuments compliant with the DORIS system requirements and general geodetic specifications, and suitable for various site configurations: building roofs, concrete pedestals or pillars. This paper describes the monument types in use in the DORIS network according to the current required specifications and provides a comparative assessment of the stability of the monuments over the network based on three methods: a theoretical study of the mechanical behavior of the metallic structures, a misclosure analysis taken during ground surveys and a qualitative approach taking into account different factors. This overview of the network monumentation gives new key numbers following the previous network assessment performed by Fagard (2006). Significant improvements have been made following the continuous efforts to renovate the network monumentation. These results are relevant for the Global Geodetic Observing System (GGOS) goals of measurement stability for the geodetic techniques. Today, two-thirds of the DORIS network monuments are compliant with the standards aiming at stability of 0.1 mm/y. This stability result has been measured for 16 of the 58 stations more than 10 y after its installation while monuments with more than 1 mm antenna tilts are over 10 y old when specifications were less stringent. The grading and scoring grid drawn up for each monument led to the mapping of the stability of the current DORIS network. Finally, we present a number of further actions to monitor the monument stability and provide new elements for the network monumentation assessment, exploring two different approaches: analysis of the time series and direct measurements using devices placed on each monument.
How structurally stable are global socioeconomic systems?
Saavedra, Serguei; Rohr, Rudolf P.; Gilarranz, Luis J.; Bascompte, Jordi
2014-01-01
The stability analysis of socioeconomic systems has been centred on answering whether small perturbations when a system is in a given quantitative state will push the system permanently to a different quantitative state. However, typically the quantitative state of socioeconomic systems is subject to constant change. Therefore, a key stability question that has been under-investigated is how strongly the conditions of a system itself can change before the system moves to a qualitatively different behaviour, i.e. how structurally stable the systems is. Here, we introduce a framework to investigate the structural stability of socioeconomic systems formed by a network of interactions among agents competing for resources. We measure the structural stability of the system as the range of conditions in the distribution and availability of resources compatible with the qualitative behaviour in which all the constituent agents can be self-sustained across time. To illustrate our framework, we study an empirical representation of the global socioeconomic system formed by countries sharing and competing for multinational companies used as proxy for resources. We demonstrate that the structural stability of the system is inversely associated with the level of competition and the level of heterogeneity in the distribution of resources. Importantly, we show that the qualitative behaviour of the observed global socioeconomic system is highly sensitive to changes in the distribution of resources. We believe that this work provides a methodological basis to develop sustainable strategies for socioeconomic systems subject to constantly changing conditions. PMID:25165600
Competitive Exclusion and Coexistence of Pathogens in a Homosexually-Transmitted Disease Model
Chai, Caichun; Jiang, Jifa
2011-01-01
A sexually-transmitted disease model for two strains of pathogen in a one-sex, heterogeneously-mixing population has been studied completely by Jiang and Chai in (J Math Biol 56:373–390, 2008). In this paper, we give a analysis for a SIS STD with two competing strains, where populations are divided into three differential groups based on their susceptibility to two distinct pathogenic strains. We investigate the existence and stability of the boundary equilibria that characterizes competitive exclusion of the two competing strains; we also investigate the existence and stability of the positive coexistence equilibrium, which characterizes the possibility of coexistence of the two strains. We obtain sufficient and necessary conditions for the existence and global stability about these equilibria under some assumptions. We verify that there is a strong connection between the stability of the boundary equilibria and the existence of the coexistence equilibrium, that is, there exists a unique coexistence equilibrium if and only if the boundary equilibria both exist and have the same stability, the coexistence equilibrium is globally stable or unstable if and only if the two boundary equilibria are both unstable or both stable. PMID:21347222
Wang, Bin; Shao, Yanchun; Chen, Tao; Chen, Wanping; Chen, Fusheng
2015-01-01
Acetobacter pasteurianus (Ap) CICC 20001 and CGMCC 1.41 are two acetic acid bacteria strains that, because of their strong abilities to produce and tolerate high concentrations of acetic acid, have been widely used to brew vinegar in China. To globally understand the fermentation characteristics, acid-tolerant mechanisms and genetic stabilities, their genomes were sequenced. Genomic comparisons with 9 other sequenced Ap strains revealed that their chromosomes were evolutionarily conserved, whereas the plasmids were unique compared with other Ap strains. Analysis of the acid-tolerant metabolic pathway at the genomic level indicated that the metabolism of some amino acids and the known mechanisms of acetic acid tolerance, might collaboratively contribute to acetic acid resistance in Ap strains. The balance of instability factors and stability factors in the genomes of Ap CICC 20001 and CGMCC 1.41 strains might be the basis for their genetic stability, consistent with their stable industrial performances. These observations provide important insights into the acid resistance mechanism and the genetic stability of Ap strains and lay a foundation for future genetic manipulation and engineering of these two strains. PMID:26691589
Li, Meng; Li, Zheng; Li, Xin; Xin, Jianzeng; Wang, Ying; Li, Guixia; Wu, Liguo; Shen, Qingwu W; Zhang, Dequan
2018-02-01
The phosphorylation of sarcoplasmic proteins in postmortem muscles was investigated in relationship to color stability in the present study. Although no difference was observed in the global phosphorylation level of sarcoplasmic proteins, difference was determined in the phosphorylation levels of individual protein bands from muscles with different color stability. Correlation analysis and liquid chromatography - tandem mass spectrometry (LC-MS/MS) identification of phosphoproteins showed that most of the color stability-related proteins were glycolytic enzymes. Interestingly, the phosphorylation level of myoglobin was inversely related to meat color stability. As the phosphorylation of myoglobin increased, color stability based on a ∗ value decreased and metMb content increased. In summary, the study revealed that protein phosphorylation might play a role in the regulation of meat color stability probably by regulating glycolysis and the redox stability of myoglobin, which might be affected by the phosphorylation of myoglobin. Copyright © 2017 Elsevier Ltd. All rights reserved.
Finite-time output feedback stabilization of high-order uncertain nonlinear systems
NASA Astrophysics Data System (ADS)
Jiang, Meng-Meng; Xie, Xue-Jun; Zhang, Kemei
2018-06-01
This paper studies the problem of finite-time output feedback stabilization for a class of high-order nonlinear systems with the unknown output function and control coefficients. Under the weaker assumption that output function is only continuous, by using homogeneous domination method together with adding a power integrator method, introducing a new analysis method, the maximal open sector Ω of output function is given. As long as output function belongs to any closed sector included in Ω, an output feedback controller can be developed to guarantee global finite-time stability of the closed-loop system.
Transient-Free Operations With Physics-Based Real-time Analysis and Control
NASA Astrophysics Data System (ADS)
Kolemen, Egemen; Burrell, Keith; Eggert, William; Eldon, David; Ferron, John; Glasser, Alex; Humphreys, David
2016-10-01
In order to understand and predict disruptions, the two most common methods currently employed in tokamak analysis are the time-consuming ``kinetic EFITs,'' which are done offline with significant human involvement, and the search for correlations with global precursors using various parameterization techniques. We are developing automated ``kinetic EFITs'' at DIII-D to enable calculation of the stability as the plasma evolves close to the disruption. This allows us to quantify the probabilistic nature of the stability calculations and provides a stability metric for all possible linear perturbations to the plasma. This study also provides insight into how the control system can avoid the unstable operating space, which is critical for high-performance operations close to stability thresholds at ITER. A novel, efficient ideal stability calculation method and new real-time CER acquisition system are being developed, and a new 77-core server has been installed on the DIII-D PCS to enable experimental use. Sponsored by US DOE under DE-SC0015878 and DE-FC02-04ER54698.
Analysis of the trade-off between high crop yield and low yield instability at the global scale
NASA Astrophysics Data System (ADS)
Ben-Ari, Tamara; Makowski, David
2016-10-01
Yield dynamics of major crops species vary remarkably among continents. Worldwide distribution of cropland influences both the expected levels and the interannual variability of global yields. An expansion of cultivated land in the most productive areas could theoretically increase global production, but also increase global yield instability if the most productive regions are characterized by high interannual yield variability. In this letter, we use portfolio analysis to quantify the tradeoff between the expected values and the interannual variance of global yield. We compute optimal frontiers for four crop species i.e., maize, rice, soybean and wheat and show how the distribution of cropland among large world regions can be optimized to either increase expected global crop production or decrease its interannual variability. We also show that a preferential allocation of cropland in the most productive regions can increase global expected yield at the expense of yield stability. Theoretically, optimizing the distribution of a small fraction of total cultivated areas can help find a good compromise between low instability and high crop yields at the global scale.
Aslan, Mikail; Davis, Jack B A; Johnston, Roy L
2016-03-07
The global optimisation of small bimetallic PdCo binary nanoalloys are systematically investigated using the Birmingham Cluster Genetic Algorithm (BCGA). The effect of size and composition on the structures, stability, magnetic and electronic properties including the binding energies, second finite difference energies and mixing energies of Pd-Co binary nanoalloys are discussed. A detailed analysis of Pd-Co structural motifs and segregation effects is also presented. The maximal mixing energy corresponds to Pd atom compositions for which the number of mixed Pd-Co bonds is maximised. Global minimum clusters are distinguished from transition states by vibrational frequency analysis. HOMO-LUMO gap, electric dipole moment and vibrational frequency analyses are made to enable correlation with future experiments.
Sensitivity analysis for the control of supersonic impinging jet noise
NASA Astrophysics Data System (ADS)
Nichols, Joseph W.; Hildebrand, Nathaniel
2016-11-01
The dynamics of a supersonic jet that impinges perpendicularly on a flat plate depend on complex interactions between fluid turbulence, shock waves, and acoustics. Strongly organized oscillations emerge, however, and they induce loud, often damaging, tones. We investigate this phenomenon using unstructured, high-fidelity Large Eddy Simulation (LES) and global stability analysis. Our flow configurations precisely match laboratory experiments with nozzle-to-wall distances of 4 and 4.5 jet diameters. We use multi-block shift-and-invert Arnoldi iteration to extract both direct and adjoint global modes that extend upstream into the nozzle. The frequency of the most unstable global mode agrees well with that of the emergent oscillations in the LES. We compute the "wavemaker" associated with this mode by multiplying it by its corresponding adjoint mode. The wavemaker shows that this instability is most sensitive to changes in the base flow slightly downstream of the nozzle exit. By modifying the base flow in this region, we then demonstrate that the flow can indeed be stabilized. This explains the success of microjets as an effective noise control measure when they are positioned around the nozzle lip. Computational resources were provided by the Argonne Leadership Computing Facility.
NASA Astrophysics Data System (ADS)
Ikeda, Fujio; Toyama, Shigehiro; Ishiduki, Souta; Seta, Hiroaki
2016-09-01
Maritime accidents of small ships continue to increase in number. One of the major factors is poor manoeuvrability of the Manual Hydraulic Steering Mechanism (MHSM) in common use. The manoeuvrability can be improved by using the Electronic Control Steering Mechanism (ECSM). This paper conducts stability analyses of a pleasure boat controlled by human models in view of path following on a target course, in order to establish design guidelines for the ECSM. First, to analyse the stability region, the research derives the linear approximated model in a planar global coordinate system. Then, several human models are assumed to develop closed-loop human-machine controlled systems. These human models include basic proportional, derivative, integral and time-delay actions. The stability analysis simulations for those human-machine systems are carried out. The results show that the stability region tends to spread as a ship's velocity increases in the case of the basic proportional human model. The derivative action and time-delay action of human models are effective in spreading the stability region in their respective ranges of frontal gazing points.
NASA Astrophysics Data System (ADS)
Faria, Teresa; Oliveira, José J.
This paper addresses the local and global stability of n-dimensional Lotka-Volterra systems with distributed delays and instantaneous negative feedbacks. Necessary and sufficient conditions for local stability independent of the choice of the delay functions are given, by imposing a weak nondelayed diagonal dominance which cancels the delayed competition effect. The global asymptotic stability of positive equilibria is established under conditions slightly stronger than the ones required for the linear stability. For the case of monotone interactions, however, sharper conditions are presented. This paper generalizes known results for discrete delays to systems with distributed delays. Several applications illustrate the results.
Symmetry analysis for hyperbolic equilibria using a TB/dengue fever model
NASA Astrophysics Data System (ADS)
Massoukou, R. Y. M.'Pika; Govinder, K. S.
2016-08-01
We investigate the interplay between Lie symmetry analysis and dynamical systems analysis. As an example, we take a toy model describing the spread of TB and dengue fever. We first undertake a comprehensive dynamical systems analysis including a discussion about local stability. For those regions in which such analyzes cannot be translated to global behavior, we undertake a Lie symmetry analysis. It is shown that the Lie analysis can be useful in providing information for systems where the (local) dynamical systems analysis breaks down.
Ideal MHD stability of double transport barrier plasmas in DIII-D
NASA Astrophysics Data System (ADS)
Li, G. Q.; Wang, S. J.; Lao, L. L.; Turnbull, A. D.; Chu, M. S.; Brennan, D. P.; Groebner, R. J.; Zhao, L.
2008-01-01
The ideal MHD stability for double transport barrier (DTB or DB) plasmas with varying edge and internal barrier width and height was investigated, using the ideal MHD stability code GATO. A moderate ratio of edge transport barriers (ETB) height to internal transport barriers (ITBs) height is found to be beneficial to MHD stability and the βN is limited by global low n instabilities. For moderate ITB width DB plasmas, if the ETB is weak, the stability is limited by n = 1 (n is the toroidal mode number) global mode; whereas if the ETB is strong it is limited by intermediate-n edge peeling-ballooning modes. Broadening the ITB can improve stability if the ITB half width wi lsim 0.3. For very broad ITB width plasmas the stability is limited by stability to a low n (n > 1) global mode.
Tutty, O.
2015-01-01
With the goal of providing the first example of application of a recently proposed method, thus demonstrating its ability to give results in principle, global stability of a version of the rotating Couette flow is examined. The flow depends on the Reynolds number and a parameter characterizing the magnitude of the Coriolis force. By converting the original Navier–Stokes equations to a finite-dimensional uncertain dynamical system using a partial Galerkin expansion, high-degree polynomial Lyapunov functionals were found by sum-of-squares of polynomials optimization. It is demonstrated that the proposed method allows obtaining the exact global stability limit for this flow in a range of values of the parameter characterizing the Coriolis force. Outside this range a lower bound for the global stability limit was obtained, which is still better than the energy stability limit. In the course of the study, several results meaningful in the context of the method used were also obtained. Overall, the results obtained demonstrate the applicability of the recently proposed approach to global stability of the fluid flows. To the best of our knowledge, it is the first case in which global stability of a fluid flow has been proved by a generic method for the value of a Reynolds number greater than that which could be achieved with the energy stability approach. PMID:26730219
Liu, Hongjian; Wang, Zidong; Shen, Bo; Huang, Tingwen; Alsaadi, Fuad E
2018-06-01
This paper is concerned with the globally exponential stability problem for a class of discrete-time stochastic memristive neural networks (DSMNNs) with both leakage delays as well as probabilistic time-varying delays. For the probabilistic delays, a sequence of Bernoulli distributed random variables is utilized to determine within which intervals the time-varying delays fall at certain time instant. The sector-bounded activation function is considered in the addressed DSMNN. By taking into account the state-dependent characteristics of the network parameters and choosing an appropriate Lyapunov-Krasovskii functional, some sufficient conditions are established under which the underlying DSMNN is globally exponentially stable in the mean square. The derived conditions are made dependent on both the leakage and the probabilistic delays, and are therefore less conservative than the traditional delay-independent criteria. A simulation example is given to show the effectiveness of the proposed stability criterion. Copyright © 2018 Elsevier Ltd. All rights reserved.
Robustness analysis of uncertain dynamical neural networks with multiple time delays.
Senan, Sibel
2015-10-01
This paper studies the problem of global robust asymptotic stability of the equilibrium point for the class of dynamical neural networks with multiple time delays with respect to the class of slope-bounded activation functions and in the presence of the uncertainties of system parameters of the considered neural network model. By using an appropriate Lyapunov functional and exploiting the properties of the homeomorphism mapping theorem, we derive a new sufficient condition for the existence, uniqueness and global robust asymptotic stability of the equilibrium point for the class of neural networks with multiple time delays. The obtained stability condition basically relies on testing some relationships imposed on the interconnection matrices of the neural system, which can be easily verified by using some certain properties of matrices. An instructive numerical example is also given to illustrate the applicability of our result and show the advantages of this new condition over the previously reported corresponding results. Copyright © 2015 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Taniguchi, Haruhito
Electric power generation that relies on various sources as the primary sources of energy is expected to bring down CO2 emissions levels to support the overall strategy to curb global warming. Accordingly, utilities are moving towards integrating more renewable sources for generation, mostly dispersed, and adopting Smart Grid Technologies for system control. In order to construct, operate, and maintain power systems stably and economically in such background, thorough understanding about the characteristics of power systems and their components is essential. This paper presents modeling and simulation techniques available for the analysis of critical aspects such as thermal capacity, stability, voltage stability, and frequency dynamics, vital for the stable operation of power systems.
Stabilization of flow past a rounded cylinder
NASA Astrophysics Data System (ADS)
Samtaney, Ravi; Zhang, Wei
2016-11-01
We perform global linear stability analysis on low-Re flow past a rounded cylinder. The cylinder corners are rounded with a radius R, normalized as R+ = R / D where D is the cylinder diameter, and its effect on the flow stability characteristics is investigated. We compute the critical Reynolds number (Recr) for the onset of first instability, and quantify the perturbation growth rate for the super-critical flows. It is found that the flow can be stabilized by partially rounding the cylinder. Compared with the square and circular cylinders, the partially rounded cylinder has a higher Recr , attaining a maximum at around R+ = 0 . 30 , and the perturbation growth rate of the super-critical flows is reduced for Re <= 100 . We perform sensitivity analysis to explore the source of the stabilization. The growth rate sensitivity to base flow modification has two different spatial structures: the growth rate is sensitive to the wake backflow in a large region for square-like cylinders (R+ -> 0 . 00), while only the near-wake backflow is crucial for circular-like cylinders (R+ -> 0 . 50). The stability analysis results are also verified with those of the direct simulations and very good agreement is achieved. Supported by the KAUST Office of Competitive Research Funds under Award No. URF/1/1394-01. The supercomputer Shaheen at KAUST was utilized for the simulations.
A multilevel control system for the large space telescope. [numerical analysis/optimal control
NASA Technical Reports Server (NTRS)
Siljak, D. D.; Sundareshan, S. K.; Vukcevic, M. B.
1975-01-01
A multilevel scheme was proposed for control of Large Space Telescope (LST) modeled by a three-axis-six-order nonlinear equation. Local controllers were used on the subsystem level to stabilize motions corresponding to the three axes. Global controllers were applied to reduce (and sometimes nullify) the interactions among the subsystems. A multilevel optimization method was developed whereby local quadratic optimizations were performed on the subsystem level, and global control was again used to reduce (nullify) the effect of interactions. The multilevel stabilization and optimization methods are presented as general tools for design and then used in the design of the LST Control System. The methods are entirely computerized, so that they can accommodate higher order LST models with both conceptual and numerical advantages over standard straightforward design techniques.
2011-01-01
Emerging evidence supporting chronic disease fighting properties of rice bran has advanced the development of stabilized rice bran for human use as a functional food and dietary supplement. A global and targeted metabolomic investigation of stabilized rice bran fermented with Saccharomyces boulardii was performed in three rice varieties. Metabolites from S. boulardii-fermented rice bran were detected by gas chromatography−mass spectrometry (GC−MS) and assessed for bioactivity compared to nonfermented rice bran in normal and malignant lymphocytes. Global metabolite profiling revealed significant differences in the metabolome that led to discovery of candidate compounds modulated by S. boulardii fermentation. Fermented rice bran extracts from three rice varieties reduced growth of human B lymphomas compared to each variety’s nonfermented control and revealed that fermentation differentially altered bioactive compounds. These data support that integration of global and targeted metabolite analysis can be utilized for assessing health properties of rice bran phytochemicals that are enhanced by yeast fermentation and that differ across rice varieties. PMID:21306106
Global analysis of an impulsive delayed Lotka-Volterra competition system
NASA Astrophysics Data System (ADS)
Xia, Yonghui
2011-03-01
In this paper, a retarded impulsive n-species Lotka-Volterra competition system with feedback controls is studied. Some sufficient conditions are obtained to guarantee the global exponential stability and global asymptotic stability of a unique equilibrium for such a high-dimensional biological system. The problem considered in this paper is in many aspects more general and incorporates as special cases various problems which have been extensively studied in the literature. Moreover, applying the obtained results to some special cases, I derive some new criteria which generalize and greatly improve some well known results. A method is proposed to investigate biological systems subjected to the effect of both impulses and delays. The method is based on Banach fixed point theory and matrix's spectral theory as well as Lyapunov function. Moreover, some novel analytic techniques are employed to study GAS and GES. It is believed that the method can be extended to other high-dimensional biological systems and complex neural networks. Finally, two examples show the feasibility of the results.
Stability analysis of an HIV/AIDS epidemic model with treatment
NASA Astrophysics Data System (ADS)
Cai, Liming; Li, Xuezhi; Ghosh, Mini; Guo, Baozhu
2009-07-01
An HIV/AIDS epidemic model with treatment is investigated. The model allows for some infected individuals to move from the symptomatic phase to the asymptomatic phase by all sorts of treatment methods. We first establish the ODE treatment model with two infective stages. Mathematical analyses establish that the global dynamics of the spread of the HIV infectious disease are completely determined by the basic reproduction number [real]0. If [real]0<=1, the disease-free equilibrium is globally stable, whereas the unique infected equilibrium is globally asymptotically stable if [real]0>1. Then, we introduce a discrete time delay to the model to describe the time from the start of treatment in the symptomatic stage until treatment effects become visible. The effect of the time delay on the stability of the endemically infected equilibrium is investigated. Moreover, the delay model exhibits Hopf bifurcations by using the delay as a bifurcation parameter. Finally, numerical simulations are presented to illustrate the results.
Effects of protein phosphorylation on color stability of ground meat.
Li, Meng; Li, Xin; Xin, Jianzeng; Li, Zheng; Li, Guixia; Zhang, Yan; Du, Manting; Shen, Qingwu W; Zhang, Dequan
2017-03-15
The influence of protein phosphorylation on meat color stability was investigated in this study. Phosphatase and protein kinase inhibitors were added to minced ovine Longissimus thoracis et lumborum (LTL) muscle to manipulate the global phosphorylation of sarcoplasmic proteins. The data obtained show that the rate and extent of pH decline, along with lactate accumulation in postmortem muscle, were related to protein phosphorylation. Analysis of meat color and the relative content of myoglobin redox forms revealed that meat color stability was inversely related to the phosphorylation of sarcoplasmic proteins. Thus, this study suggests that protein phosphorylation may be involved in meat color development by regulating glycolysis and the redox stability of myoglobin. Copyright © 2016 Elsevier Ltd. All rights reserved.
Setting cumulative emissions targets to reduce the risk of dangerous climate change
Zickfeld, Kirsten; Eby, Michael; Matthews, H. Damon; Weaver, Andrew J.
2009-01-01
Avoiding “dangerous anthropogenic interference with the climate system” requires stabilization of atmospheric greenhouse gas concentrations and substantial reductions in anthropogenic emissions. Here, we present an inverse approach to coupled climate-carbon cycle modeling, which allows us to estimate the probability that any given level of carbon dioxide (CO2) emissions will exceed specified long-term global mean temperature targets for “dangerous anthropogenic interference,” taking into consideration uncertainties in climate sensitivity and the carbon cycle response to climate change. We show that to stabilize global mean temperature increase at 2 °C above preindustrial levels with a probability of at least 0.66, cumulative CO2 emissions from 2000 to 2500 must not exceed a median estimate of 590 petagrams of carbon (PgC) (range, 200 to 950 PgC). If the 2 °C temperature stabilization target is to be met with a probability of at least 0.9, median total allowable CO2 emissions are 170 PgC (range, −220 to 700 PgC). Furthermore, these estimates of cumulative CO2 emissions, compatible with a specified temperature stabilization target, are independent of the path taken to stabilization. Our analysis therefore supports an international policy framework aimed at avoiding dangerous anthropogenic interference formulated on the basis of total allowable greenhouse gas emissions. PMID:19706489
Setting cumulative emissions targets to reduce the risk of dangerous climate change.
Zickfeld, Kirsten; Eby, Michael; Matthews, H Damon; Weaver, Andrew J
2009-09-22
Avoiding "dangerous anthropogenic interference with the climate system" requires stabilization of atmospheric greenhouse gas concentrations and substantial reductions in anthropogenic emissions. Here, we present an inverse approach to coupled climate-carbon cycle modeling, which allows us to estimate the probability that any given level of carbon dioxide (CO2) emissions will exceed specified long-term global mean temperature targets for "dangerous anthropogenic interference," taking into consideration uncertainties in climate sensitivity and the carbon cycle response to climate change. We show that to stabilize global mean temperature increase at 2 degrees C above preindustrial levels with a probability of at least 0.66, cumulative CO2 emissions from 2000 to 2500 must not exceed a median estimate of 590 petagrams of carbon (PgC) (range, 200 to 950 PgC). If the 2 degrees C temperature stabilization target is to be met with a probability of at least 0.9, median total allowable CO2 emissions are 170 PgC (range, -220 to 700 PgC). Furthermore, these estimates of cumulative CO2 emissions, compatible with a specified temperature stabilization target, are independent of the path taken to stabilization. Our analysis therefore supports an international policy framework aimed at avoiding dangerous anthropogenic interference formulated on the basis of total allowable greenhouse gas emissions.
Blacklock, Kristin; Verkhivker, Gennady M.
2014-01-01
A fundamental role of the Hsp90 chaperone in regulating functional activity of diverse protein clients is essential for the integrity of signaling networks. In this work we have combined biophysical simulations of the Hsp90 crystal structures with the protein structure network analysis to characterize the statistical ensemble of allosteric interaction networks and communication pathways in the Hsp90 chaperones. We have found that principal structurally stable communities could be preserved during dynamic changes in the conformational ensemble. The dominant contribution of the inter-domain rigidity to the interaction networks has emerged as a common factor responsible for the thermodynamic stability of the active chaperone form during the ATPase cycle. Structural stability analysis using force constant profiling of the inter-residue fluctuation distances has identified a network of conserved structurally rigid residues that could serve as global mediating sites of allosteric communication. Mapping of the conformational landscape with the network centrality parameters has demonstrated that stable communities and mediating residues may act concertedly with the shifts in the conformational equilibrium and could describe the majority of functionally significant chaperone residues. The network analysis has revealed a relationship between structural stability, global centrality and functional significance of hotspot residues involved in chaperone regulation. We have found that allosteric interactions in the Hsp90 chaperone may be mediated by modules of structurally stable residues that display high betweenness in the global interaction network. The results of this study have suggested that allosteric interactions in the Hsp90 chaperone may operate via a mechanism that combines rapid and efficient communication by a single optimal pathway of structurally rigid residues and more robust signal transmission using an ensemble of suboptimal multiple communication routes. This may be a universal requirement encoded in protein structures to balance the inherent tension between resilience and efficiency of the residue interaction networks. PMID:24922508
Blacklock, Kristin; Verkhivker, Gennady M
2014-06-01
A fundamental role of the Hsp90 chaperone in regulating functional activity of diverse protein clients is essential for the integrity of signaling networks. In this work we have combined biophysical simulations of the Hsp90 crystal structures with the protein structure network analysis to characterize the statistical ensemble of allosteric interaction networks and communication pathways in the Hsp90 chaperones. We have found that principal structurally stable communities could be preserved during dynamic changes in the conformational ensemble. The dominant contribution of the inter-domain rigidity to the interaction networks has emerged as a common factor responsible for the thermodynamic stability of the active chaperone form during the ATPase cycle. Structural stability analysis using force constant profiling of the inter-residue fluctuation distances has identified a network of conserved structurally rigid residues that could serve as global mediating sites of allosteric communication. Mapping of the conformational landscape with the network centrality parameters has demonstrated that stable communities and mediating residues may act concertedly with the shifts in the conformational equilibrium and could describe the majority of functionally significant chaperone residues. The network analysis has revealed a relationship between structural stability, global centrality and functional significance of hotspot residues involved in chaperone regulation. We have found that allosteric interactions in the Hsp90 chaperone may be mediated by modules of structurally stable residues that display high betweenness in the global interaction network. The results of this study have suggested that allosteric interactions in the Hsp90 chaperone may operate via a mechanism that combines rapid and efficient communication by a single optimal pathway of structurally rigid residues and more robust signal transmission using an ensemble of suboptimal multiple communication routes. This may be a universal requirement encoded in protein structures to balance the inherent tension between resilience and efficiency of the residue interaction networks.
Stability Analysis of Receiver ISB for BDS/GPS
NASA Astrophysics Data System (ADS)
Zhang, H.; Hao, J. M.; Tian, Y. G.; Yu, H. L.; Zhou, Y. L.
2017-07-01
Stability analysis of receiver ISB (Inter-System Bias) is essential for understanding the feature of ISB as well as the ISB modeling and prediction. In order to analyze the long-term stability of ISB, the data from MGEX (Multi-GNSS Experiment) covering 3 weeks, which are from 2014, 2015 and 2016 respectively, are processed with the precise satellite clock and orbit products provided by Wuhan University and GeoForschungsZentrum (GFZ). Using the ISB calculated by BDS (BeiDou Navigation Satellite System)/GPS (Global Positioning System) combined PPP (Precise Point Positioning), the daily stability and weekly stability of ISB are investigated. The experimental results show that the diurnal variation of ISB is stable, and the average of daily standard deviation is about 0.5 ns. The weekly averages and standard deviations of ISB vary greatly in different years. The weekly averages of ISB are relevant to receiver types. There is a system bias between ISB calculated from the precise products provided by Wuhan University and GFZ. In addition, the system bias of the weekly average ISB of different stations is consistent with each other.
Stability analysis of the onset of vortex shedding for wakes behind flat plates
NASA Astrophysics Data System (ADS)
Wang, Shuai; Liu, Li; Zhang, Shi-Bo; Wen, Feng-Bo; Zhou, Xun
2018-04-01
Above a critical Reynolds number, wake flows behind flat plates become globally unstable, the leading modal instability in this case is known as Kelvin-Helmholtz mechanism. In this article, both local and BiGlobal linear instability analyses are performed numerically to study the onset of the shedding process. Flat plates with different base shapes are considered to assess geometry effects, and the relation between the critical shedding Reynolds number, Re_cr , and the boundary layer thickness is studied. Three types of base shapes are used: square, triangular and elliptic. It is found that the base shape has a great impact on the growth rate of least stable disturbance mode, thus would influence Re_cr greatly, but it has little effect on the vortex shedding frequency. The shedding frequency is determined mainly by boundary layer thickness and has little dependence on the Reynolds number and base shape. We find that for a fixed Reynolds number, increasing boundary layer thickness acted in two ways to modify the global stability characteristics: It increases the length of the absolute unstable region and it makes the flow less locally absolutely unstable in the near-wake region, and these two effects work against each other to destabilize or stabilize the flow.
Reframing the climate change challenge in light of post-2000 emission trends.
Anderson, Kevin; Bows, Alice
2008-11-13
The 2007 Bali conference heard repeated calls for reductions in global greenhouse gas emissions of 50 per cent by 2050 to avoid exceeding the 2 degrees C threshold. While such endpoint targets dominate the policy agenda, they do not, in isolation, have a scientific basis and are likely to lead to dangerously misguided policies. To be scientifically credible, policy must be informed by an understanding of cumulative emissions and associated emission pathways. This analysis considers the implications of the 2 degrees C threshold and a range of post-peak emission reduction rates for global emission pathways and cumulative emission budgets. The paper examines whether empirical estimates of greenhouse gas emissions between 2000 and 2008, a period typically modelled within scenario studies, combined with short-term extrapolations of current emissions trends, significantly constrains the 2000-2100 emission pathways. The paper concludes that it is increasingly unlikely any global agreement will deliver the radical reversal in emission trends required for stabilization at 450 ppmv carbon dioxide equivalent (CO2e). Similarly, the current framing of climate change cannot be reconciled with the rates of mitigation necessary to stabilize at 550 ppmv CO2e and even an optimistic interpretation suggests stabilization much below 650 ppmv CO2e is improbable.
Global Sentry: NASA/USRA high altitude reconnaissance aircraft design, volume 2
NASA Technical Reports Server (NTRS)
Alexandru, Mona-Lisa; Martinez, Frank; Tsou, Jim; Do, Henry; Peters, Ashish; Chatsworth, Tom; Yu, YE; Dhillon, Jaskiran
1990-01-01
The Global Sentry is a high altitude reconnaissance aircraft design for the NASA/USRA design project. The Global Sentry uses proven technologies, light-weight composites, and meets the R.F.P. requirements. The mission requirements for the Global Sentry are described. The configuration option is discussed and a description of the final design is given. Preliminary sizing analyses and the mass properties of the design are presented. The aerodynamic features of the Global Sentry are described along with the stability and control characteristics designed into the flight control system. The performance characteristics are discussed as is the propulsion installation and system layout. The Global Sentry structural design is examined, including a wing structural analysis. The cockpit, controls and display layouts are covered. Manufacturing is covered and the life cost estimation. Reliability is discussed. Conclusions about the current Global Sentry design are presented, along with suggested areas for future engineering work.
Extremum seeking with bounded update rates
Scheinker, Alexander; Krstić, Miroslav
2013-11-16
In this work, we present a form of extremum seeking (ES) in which the unknown function being minimized enters the system’s dynamics as the argument of a cosine or sine term, thereby guaranteeing known bounds on update rates and control efforts. We present general n-dimensional optimization and stabilization results as well as 2D vehicle control, with bounded velocity and control efforts. For application to autonomous vehicles, tracking a source in a GPS denied environment with unknown orientation, this ES approach allows for smooth heading angle actuation, with constant velocity, and in application to a unicycle-type vehicle results in control abilitymore » as if the vehicle is fully actuated. Our stability analysis is made possible by the classic results of Kurzweil, Jarnik, Sussmann, and Liu, regarding systems with highly oscillatory terms. In our stability analysis, we combine the averaging results with a semi-global practical stability result under small parametric perturbations developed by Moreau and Aeyels.« less
ERIC Educational Resources Information Center
Klein, Jeffrey A.; Wolf, Steven A.
2007-01-01
Globalization and shifting societal relations with nature generate change and conflicting politics in rural areas of industrialized nations. In this context, "multifunctionality" has emerged as an important policy logic to stabilize commodity production while encouraging amenity-based development and the production of ecological…
De Keersmaecker, Wanda; Lhermitte, Stef; Honnay, Olivier; Farifteh, Jamshid; Somers, Ben; Coppin, Pol
2014-07-01
Increasing frequency of extreme climate events is likely to impose increased stress on ecosystems and to jeopardize the services that ecosystems provide. Therefore, it is of major importance to assess the effects of extreme climate events on the temporal stability (i.e., the resistance, the resilience, and the variance) of ecosystem properties. Most time series of ecosystem properties are, however, affected by varying data characteristics, uncertainties, and noise, which complicate the comparison of ecosystem stability metrics (ESMs) between locations. Therefore, there is a strong need for a more comprehensive understanding regarding the reliability of stability metrics and how they can be used to compare ecosystem stability globally. The objective of this study was to evaluate the performance of temporal ESMs based on time series of the Moderate Resolution Imaging Spectroradiometer derived Normalized Difference Vegetation Index of 15 global land-cover types. We provide a framework (i) to assess the reliability of ESMs in function of data characteristics, uncertainties and noise and (ii) to integrate reliability estimates in future global ecosystem stability studies against climate disturbances. The performance of our framework was tested through (i) a global ecosystem comparison and (ii) an comparison of ecosystem stability in response to the 2003 drought. The results show the influence of data quality on the accuracy of ecosystem stability. White noise, biased noise, and trends have a stronger effect on the accuracy of stability metrics than the length of the time series, temporal resolution, or amount of missing values. Moreover, we demonstrate the importance of integrating reliability estimates to interpret stability metrics within confidence limits. Based on these confidence limits, other studies dealing with specific ecosystem types or locations can be put into context, and a more reliable assessment of ecosystem stability against environmental disturbances can be obtained. © 2013 John Wiley & Sons Ltd.
Position space analysis of the AdS (in)stability problem
NASA Astrophysics Data System (ADS)
Dimitrakopoulos, Fotios V.; Freivogel, Ben; Lippert, Matthew; Yang, I.-Sheng
2015-08-01
We investigate whether arbitrarily small perturbations in global AdS space are generically unstable and collapse into black holes on the time scale set by gravitational interactions. We argue that current evidence, combined with our analysis, strongly suggests that a set of nonzero measure in the space of initial conditions does not collapse on this time scale. We perform an analysis in position space to study this puzzle, and our formalism allows us to directly study the vanishing-amplitude limit. We show that gravitational self-interaction leads to tidal deformations which are equally likely to focus or defocus energy, and we sketch the phase diagram accordingly. We also clarify the connection between gravitational evolution in global AdS and holographic thermalization.
NASA Astrophysics Data System (ADS)
Aumann, Hartmut H.; Fishbein, Evan; Gohlke, Jan
2007-09-01
The application of infrared hyper-spectral sounder data to climate research requires the global analysis of multi-decadal time series of various atmosphere, surface or cloud related parameters. The data used in this analysis has to meet stringent global and scene independent absolute accuracy and stability requirements, it also has to be spatially and radiometrically unbiased, manageable in size and self-contained. Self-contained means that the data set contains not only a globally unbiased sample of the state of the Earth Climate system as seen in the infrared, it has to contain enough data to contrast clear with average (cloudy) data and to allow an independent assessment of the radiometric and spectral accuracy and stability of the data. We illustrate this with data from the Atmospheric Infrared Sounder (AIRS) and Infrared Atmospheric Sounder Interferometer (IASI) data. AIRS and IASI were designed with fairly similar functional requirements. AIRS was launched on the EOS Aqua spacecraft in May 2002 into a 705 km polar sun-synchronous orbit with accurately maintained 1:30 PM ascending node. Essentially un-interrupted data are available since September 2002. Since October 2006 IASI is in a 9:30 AM polar orbit at 815 km altitude on the MetOp2 satellite, with data available since May 2007.
Fagerlund, Robert D.; Perederina, Anna; Berezin, Igor; Krasilnikov, Andrey S.
2015-01-01
Ribonuclease (RNase) P and RNase MRP are closely related catalytic ribonucleoproteins involved in the metabolism of a wide range of RNA molecules, including tRNA, rRNA, and some mRNAs. The catalytic RNA component of eukaryotic RNase P retains the core elements of the bacterial RNase P ribozyme; however, the peripheral RNA elements responsible for the stabilization of the global architecture are largely absent in the eukaryotic enzyme. At the same time, the protein makeup of eukaryotic RNase P is considerably more complex than that of the bacterial RNase P. RNase MRP, an essential and ubiquitous eukaryotic enzyme, has a structural organization resembling that of eukaryotic RNase P, and the two enzymes share most of their protein components. Here, we present the results of the analysis of interactions between the largest protein component of yeast RNases P/MRP, Pop1, and the RNA moieties of the enzymes, discuss structural implications of the results, and suggest that Pop1 plays the role of a scaffold for the stabilization of the global architecture of eukaryotic RNase P RNA, substituting for the network of RNA–RNA tertiary interactions that maintain the global RNA structure in bacterial RNase P. PMID:26135751
Synchronization of a Josephson junction array in terms of global variables
NASA Astrophysics Data System (ADS)
Vlasov, Vladimir; Pikovsky, Arkady
2013-08-01
We consider an array of Josephson junctions with a common LCR load. Application of the Watanabe-Strogatz approach [Physica DPDNPDT0167-278910.1016/0167-2789(94)90196-1 74, 197 (1994)] allows us to formulate the dynamics of the array via the global variables only. For identical junctions this is a finite set of equations, analysis of which reveals the regions of bistability of the synchronous and asynchronous states. For disordered arrays with distributed parameters of the junctions, the problem is formulated as an integro-differential equation for the global variables; here stability of the asynchronous states and the properties of the transition synchrony-asynchrony are established numerically.
Environmental stability and the evolution of cooperative breeding in hornbills
Gonzalez, Juan-Carlos T.; Sheldon, Ben C.; Tobias, Joseph A.
2013-01-01
Reproductive cooperation in social animals has been the focus of intensive research, yet the role of environmental factors in promoting such cooperation remains uncertain. A recent global analysis suggested that cooperative breeding in birds is a ‘bet-hedging’ strategy associated with climatic uncertainty, but it is unclear whether this mechanism applies generally or is restricted to the insectivorous passerines that predominate as cooperative breeders at the global scale. Here, we use a phylogenetic framework to assess the effect of climate on the evolution of cooperation in hornbills (Bucerotidae), an avian family characterized by frugivory and carnivory. We show that, in contrast to the global pattern, cooperative reproduction is positively associated with both inter- and intra-annual climatic stability. This reversed relationship implies that hornbills are relatively insensitive to climatic fluctuations, perhaps because of their dietary niche or increased body mass, both of which may remove the need for bet-hedging. We conclude that the relationship between climatic variability and cooperative breeding is inconsistent across taxa, and potentially mediated by life-history variation. These findings help to explain the mixed results of previous studies and highlight the likely shortcomings of global datasets inherently biased towards particular categories. PMID:23926149
Stability Operations: Getting It Right in the Global War on Terrorism
2005-03-18
the United States of America (Washington, D.C.: The White House, September 2002), 1 " John Pike, "Where are the Legions? [ SPQR ] Global Deployments of...for a Postconflict Stability Force. Washington, D.C.: United States Institute of Peace Press, 2004. Pike, John. "Where Are the Legions? [ SPQR ] Global
Probing the determinants of protein stability: comparison of class A beta-lactamases.
Vanhove, M; Houba, S; b1motte-Brasseur, J; Frère, J M
1995-01-01
Five class A beta-lactamases produced by various mesophilic bacterial species have been compared. Although closely related in primary and overall structures, these enzymes exhibit very different stabilities. In order to investigate the factors responsible for these differences, several features deduced from the amino acid composition and three-dimensional structures were studied for the five proteins. This analysis revealed that higher stability appeared to correlate with increased numbers of intramolecular hydrogen bonds and of salt bridges. By contrast, the global hydrophobicity of the protein seemed to play a relatively minor role. A strongly unfavourable balance between charged residues and the presence of a cis-peptide bond preceding a non-proline residue might also contribute to the particularly low stability of two of the enzymes. PMID:8948443
Maximum Lyapunov exponents as predictors of global gait stability: a modelling approach.
Bruijn, Sjoerd M; Bregman, Daan J J; Meijer, Onno G; Beek, Peter J; van Dieën, Jaap H
2012-05-01
To examine the stability of human walking, methods such as local dynamic stability have been adopted from dynamical systems theory. Local dynamic stability is calculated by estimating maximal finite time Lyapunov exponents (λ(S) and λ(L)), which quantify how a system responds continuously to very small (i.e. "local") perturbations. However, it is unknown if, and to what extent, these measures are correlated to global stability, defined operationally as the probability of falling. We studied whether changes in probability of falling of a simple model of human walking (a so-called dynamic walker) could be predicted from maximum finite time Lyapunov exponents. We used an extended version of the simplest walking model with arced feet and a hip spring. This allowed us to change the probability of falling of the model by changing either the foot radius, the slope at which the model walks, the stiffness of the hip spring, or a combination of these factors. Results showed that λ(S) correlated fairly well with global stability, although this relationship was dependent upon differences in the distance between initial nearest neighbours on the divergence curve. A measure independent of such changes (the log(distance between initially nearest neighbours after 50 samples)) correlated better with global stability, and, more importantly, showed a more consistent relationship across conditions. In contrast, λ(L) showed either weak correlations, or correlations opposite to expected, thus casting doubt on the use of this measure as a predictor of global gait stability. Our findings support the use of λ(S), but not of λ(L), as measure of human gait stability. Copyright © 2011 IPEM. Published by Elsevier Ltd. All rights reserved.
Mukhtar, Hussnain; Lin, Yu-Pin; Shipin, Oleg V; Petway, Joy R
2017-07-12
This study presents an approach for obtaining realization sets of parameters for nitrogen removal in a pilot-scale waste stabilization pond (WSP) system. The proposed approach was designed for optimal parameterization, local sensitivity analysis, and global uncertainty analysis of a dynamic simulation model for the WSP by using the R software package Flexible Modeling Environment (R-FME) with the Markov chain Monte Carlo (MCMC) method. Additionally, generalized likelihood uncertainty estimation (GLUE) was integrated into the FME to evaluate the major parameters that affect the simulation outputs in the study WSP. Comprehensive modeling analysis was used to simulate and assess nine parameters and concentrations of ON-N, NH₃-N and NO₃-N. Results indicate that the integrated FME-GLUE-based model, with good Nash-Sutcliffe coefficients (0.53-0.69) and correlation coefficients (0.76-0.83), successfully simulates the concentrations of ON-N, NH₃-N and NO₃-N. Moreover, the Arrhenius constant was the only parameter sensitive to model performances of ON-N and NH₃-N simulations. However, Nitrosomonas growth rate, the denitrification constant, and the maximum growth rate at 20 °C were sensitive to ON-N and NO₃-N simulation, which was measured using global sensitivity.
Global stability analysis of axisymmetric boundary layer over a circular cylinder
NASA Astrophysics Data System (ADS)
Bhoraniya, Ramesh; Vinod, Narayanan
2018-05-01
This paper presents a linear global stability analysis of the incompressible axisymmetric boundary layer on a circular cylinder. The base flow is parallel to the axis of the cylinder at inflow boundary. The pressure gradient is zero in the streamwise direction. The base flow velocity profile is fully non-parallel and non-similar in nature. The boundary layer grows continuously in the spatial directions. Linearized Navier-Stokes (LNS) equations are derived for the disturbance flow quantities in the cylindrical polar coordinates. The LNS equations along with homogeneous boundary conditions forms a generalized eigenvalues problem. Since the base flow is axisymmetric, the disturbances are periodic in azimuthal direction. Chebyshev spectral collocation method and Arnoldi's iterative algorithm is used for the solution of the general eigenvalues problem. The global temporal modes are computed for the range of Reynolds numbers and different azimuthal wave numbers. The largest imaginary part of the computed eigenmodes is negative, and hence, the flow is temporally stable. The spatial structure of the eigenmodes shows that the disturbance amplitudes grow in size and magnitude while they are moving towards downstream. The global modes of axisymmetric boundary layer are more stable than that of 2D flat-plate boundary layer at low Reynolds number. However, at higher Reynolds number they approach 2D flat-plate boundary layer. Thus, the damping effect of transverse curvature is significant at low Reynolds number. The wave-like nature of the disturbance amplitudes is found in the streamwise direction for the least stable eigenmodes.
Global exponential stability of BAM neural networks with time-varying delays and diffusion terms
NASA Astrophysics Data System (ADS)
Wan, Li; Zhou, Qinghua
2007-11-01
The stability property of bidirectional associate memory (BAM) neural networks with time-varying delays and diffusion terms are considered. By using the method of variation parameter and inequality technique, the delay-independent sufficient conditions to guarantee the uniqueness and global exponential stability of the equilibrium solution of such networks are established.
Bifurcation analysis of a discrete SIS model with bilinear incidence depending on new infection.
Cao, Hui; Zhou, Yicang; Ma, Zhien
2013-01-01
A discrete SIS epidemic model with the bilinear incidence depending on the new infection is formulated and studied. The condition for the global stability of the disease free equilibrium is obtained. The existence of the endemic equilibrium and its stability are investigated. More attention is paid to the existence of the saddle-node bifurcation, the flip bifurcation, and the Hopf bifurcation. Sufficient conditions for those bifurcations have been obtained. Numerical simulations are conducted to demonstrate our theoretical results and the complexity of the model.
NASA Astrophysics Data System (ADS)
Cao, Jinde; Song, Qiankun
2006-07-01
In this paper, the exponential stability problem is investigated for a class of Cohen-Grossberg-type bidirectional associative memory neural networks with time-varying delays. By using the analysis method, inequality technique and the properties of an M-matrix, several novel sufficient conditions ensuring the existence, uniqueness and global exponential stability of the equilibrium point are derived. Moreover, the exponential convergence rate is estimated. The obtained results are less restrictive than those given in the earlier literature, and the boundedness and differentiability of the activation functions and differentiability of the time-varying delays are removed. Two examples with their simulations are given to show the effectiveness of the obtained results.
A conformal approach for the analysis of the non-linear stability of radiation cosmologies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Luebbe, Christian, E-mail: c.luebbe@ucl.ac.uk; Department of Mathematics, University of Leicester, University Road, LE1 8RH; Valiente Kroon, Juan Antonio, E-mail: j.a.valiente-kroon@qmul.ac.uk
2013-01-15
The conformal Einstein equations for a trace-free (radiation) perfect fluid are derived in terms of the Levi-Civita connection of a conformally rescaled metric. These equations are used to provide a non-linear stability result for de Sitter-like trace-free (radiation) perfect fluid Friedman-Lemaitre-Robertson-Walker cosmological models. The solutions thus obtained exist globally towards the future and are future geodesically complete. - Highlights: Black-Right-Pointing-Pointer We study the Einstein-Euler system in General Relativity using conformal methods. Black-Right-Pointing-Pointer We analyze the structural properties of the associated evolution equations. Black-Right-Pointing-Pointer We establish the non-linear stability of pure radiation cosmological models.
Nixon, Annabel; Doll, Helen; Kerr, Cicely; Burge, Russel; Naegeli, April N
2016-02-19
Regulatory guidance recommends anchor-based methods for interpretation of treatment effects measured by PRO endpoints. Methodological pros and cons of patient global ratings of change vs. patient global ratings of concept have been discussed but empirical evidence in support of either approach is lacking. This study evaluated the performance of patient global ratings of change and patient global ratings of concept for interpreting patient stability and patient improvement. Patient global ratings of change and patient global ratings of concept were included in a psychometric validation study of an osteoporosis-targeted PRO instrument (the OPAQ-PF) to assess its ability to detect change and to derive responder definitions. 144 female osteoporosis patients with (n = 37) or without (n = 107) a recent (within 6 weeks) fragility fracture completed the OPAQ-PF and global items at baseline, 2 weeks (no recent fracture), and 12 weeks (recent fracture) post-baseline. Results differed between the two methods. Recent fracture patients reported more improvement while patients without recent fracture reported more stability on ratings of change than ratings of concept. However, correlations with OPAQ-PF score change were stronger for ratings of concept than ratings of change (both groups). Effect sizes for OPAQ-PF score change increased consistently with level of change in ratings of concept but inconsistently with ratings of change, with the mean AUC for prediction of a one-point change being 0.72 vs. 0.56. This study provides initial empirical support for methodological and regulatory recommendations to use patient global ratings of concept rather than ratings of change when interpreting change captured by PRO instruments in studies evaluating treatment effects. These findings warrant being confirmed in a purpose-designed larger scale analysis.
Tropical cyclones in a stabilized 1.5 and 2 degree warmer world.
NASA Astrophysics Data System (ADS)
Wehner, M. F.; Stone, D. A.; Loring, B.; Krishnan, H.
2017-12-01
We present an ensemble of very high resolution global climate model simulations of a stabilized 1.5oC and 2oC warmer climate as envisioned by the Paris COP21 agreement. The resolution of this global climate model (25km) permits simulated tropical cyclones up to Category Five on the Saffir-Simpson scale Projected changes in tropical cyclones are significant. Tropical cyclones in the two stabilization scenarios are less frequent but more intense than in simulations of the present. Output data from these simulations is freely available to all interested parties and should prove a useful resource to those interested in studying the impacts of stabilized global warming.
Esquerré, Thomas; Bouvier, Marie; Turlan, Catherine; Carpousis, Agamemnon J; Girbal, Laurence; Cocaign-Bousquet, Muriel
2016-04-26
Bacterial adaptation requires large-scale regulation of gene expression. We have performed a genome-wide analysis of the Csr system, which regulates many important cellular functions. The Csr system is involved in post-transcriptional regulation, but a role in transcriptional regulation has also been suggested. Two proteins, an RNA-binding protein CsrA and an atypical signaling protein CsrD, participate in the Csr system. Genome-wide transcript stabilities and levels were compared in wildtype E. coli (MG1655) and isogenic mutant strains deficient in CsrA or CsrD activity demonstrating for the first time that CsrA and CsrD are global negative and positive regulators of transcription, respectively. The role of CsrA in transcription regulation may be indirect due to the 4.6-fold increase in csrD mRNA concentration in the CsrA deficient strain. Transcriptional action of CsrA and CsrD on a few genes was validated by transcriptional fusions. In addition to an effect on transcription, CsrA stabilizes thousands of mRNAs. This is the first demonstration that CsrA is a global positive regulator of mRNA stability. For one hundred genes, we predict that direct control of mRNA stability by CsrA might contribute to metabolic adaptation by regulating expression of genes involved in carbon metabolism and transport independently of transcriptional regulation.
Large space-based systems for dealing with global environment change
NASA Technical Reports Server (NTRS)
Jenkins, Lyle M.
1992-01-01
Increased concern over the effects of global climate change and depletion of the ozone layer has resulted in support for the Global Change Research Program and the Mission to Planet Earth. Research to understand Earth system processes is critical, but it falls short of providing ways of mitigating the effects of change. Geoengineering options and alternatives to interactively manage change need to be developed. Space-based concepts for dealing with changes to the environment should be considered in addition to Earth-based actions. 'Mission for Planet Earth' describes those space-based geoengineering solutions that may combine with an international global change program to stabilize the Global environment. Large space systems that may be needed for this response challenge guidance and control engineering and technology. Definition, analysis, demonstration, and preparation of geoengineering technology will provide a basis for policy response if global change consequences are severe.
NASA Astrophysics Data System (ADS)
Blume, F.; Herring, T.; Mattioli, G. S.; Feaux, K.; Walls, C. P.; Austin, K. E.; Dittmann, S. T.
2017-12-01
Geodetic-quality permanent GNSS stations have used a number of different monument styles for the purpose of ensuring that the motions of the GNSS antenna reflect those of the Earth's crust while minimizing non-tectonic motions near the surface. Monuments range from simple masts mounted on buildings or drilled into bedrock, costing a few hundred dollars to machine-drilled-braced monuments in soil costing tens of thousands. The stability of an individual monument will depend on its design, the construction techniques used to install it, and the local surface geology where it is installed. Previous studies have separately investigated pairs of identical monuments at a single site, monument type performance using global statistical analysis, and multiple monument styles at a single site, yet the stability of different monument types in similar geologic conditions has not been adequately determined. To better characterize the stability of various monument styles in diverse geologic conditions UNAVCO constructed two additional monuments at five existing PBO stations in 2013. Deep drilled-braced, short drilled-braced, and single mast type monuments were installed at sites with bedrock at the surface; deep drilled-braced, short driven-braced and pillar type monuments were installed at sites with alluvium or soil at the surface. The sites include a variety of geographic, hydrologic, and geologic conditions. Data collected from the PBO Multi-Monument Experiment have been analyzed using a variety of methods. Each site is characterized using quality-control parameters such as multipath, signal-to-noise and previously determined seasonal variations. High-precision processing by PBO Analysis Centers with GAMIT and GIPSY use regional and global schemes and yield time-series with millimeter-level that determine noise content, overall site stability relative to other PBO sites and differential motions between the individual monuments. Sub-millimeter results from single-frequency short-baseline processing efforts show further details of monument performance. Results show that while local site characteristics may dominate time-series stability, braced monuments outperform pillars in sediments, and an inexpensive mast installed in bedrock can be as stable as an expensive drilled-braced monument.
Ng, Jessica M.Y.; Vermeulen, Wim; van der Horst, Gijsbertus T.J.; Bergink, Steven; Sugasawa, Kaoru; Vrieling, Harry; Hoeijmakers, Jan H.J.
2003-01-01
Primary DNA damage sensing in mammalian global genome nucleotide excision repair (GG-NER) is performed by the xeroderma pigmentosum group C (XPC)/HR23B protein complex. HR23B and HR23A are human homologs of the yeast ubiquitin-domain repair factor RAD23, the function of which is unknown. Knockout mice revealed that mHR23A and mHR23B have a fully redundant role in NER, and a partially redundant function in embryonic development. Inactivation of both genes causes embryonic lethality, but appeared still compatible with cellular viability. Analysis of mHR23A/B double-mutant cells showed that HR23 proteins function in NER by governing XPC stability via partial protection against proteasomal degradation. Interestingly, NER-type DNA damage further stabilizes XPC and thereby enhances repair. These findings resolve the primary function of RAD23 in repair and reveal a novel DNA-damage-dependent regulation mechanism of DNA repair in eukaryotes, which may be part of a more global damage-response circuitry. PMID:12815074
NASA Astrophysics Data System (ADS)
Huang, Rui; Jin, Chunhua; Mei, Ming; Yin, Jingxue
2018-01-01
This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction-diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of c≥c^* for the degenerate reaction-diffusion equation without delay, where c^*>0 is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay τ >0 . Furthermore, we prove the global existence and uniqueness of C^{α ,β } -solution to the time-delayed degenerate reaction-diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted L^1 -space. The exponential convergence rate is also derived.
NASA Astrophysics Data System (ADS)
Huang, Rui; Jin, Chunhua; Mei, Ming; Yin, Jingxue
2018-06-01
This paper deals with the existence and stability of traveling wave solutions for a degenerate reaction-diffusion equation with time delay. The degeneracy of spatial diffusion together with the effect of time delay causes us the essential difficulty for the existence of the traveling waves and their stabilities. In order to treat this case, we first show the existence of smooth- and sharp-type traveling wave solutions in the case of c≥c^* for the degenerate reaction-diffusion equation without delay, where c^*>0 is the critical wave speed of smooth traveling waves. Then, as a small perturbation, we obtain the existence of the smooth non-critical traveling waves for the degenerate diffusion equation with small time delay τ >0. Furthermore, we prove the global existence and uniqueness of C^{α ,β }-solution to the time-delayed degenerate reaction-diffusion equation via compactness analysis. Finally, by the weighted energy method, we prove that the smooth non-critical traveling wave is globally stable in the weighted L^1-space. The exponential convergence rate is also derived.
Statistical description of tectonic motions
NASA Technical Reports Server (NTRS)
Agnew, Duncan Carr
1993-01-01
This report summarizes investigations regarding tectonic motions. The topics discussed include statistics of crustal deformation, Earth rotation studies, using multitaper spectrum analysis techniques applied to both space-geodetic data and conventional astrometric estimates of the Earth's polar motion, and the development, design, and installation of high-stability geodetic monuments for use with the global positioning system.
L{sup 2}-stability of the Vlasov-Maxwell-Boltzmann system near global Maxwellians
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ha, Seung-Yeal, E-mail: syha@snu.ac.kr; Xiao, Qinghua, E-mail: pdexqh@hotmail.com; Xiong, Linjie, E-mail: xlj@whu.edu.cn
2013-12-15
We present a L{sup 2}-stability theory of the Vlasov-Maxwell-Boltzmann system for the two-species collisional plasma. We show that in a perturbative regime of a global Maxwellian, the L{sup 2}-distance between two strong solutions can be controlled by that between initial data in a Lipschitz manner. Our stability result extends earlier results [Ha, S.-Y. and Xiao, Q.-H., “A revisiting to the L{sup 2}-stability theory of the Boltzmann equation near global Maxwellians,” (submitted) and Ha, S.-Y., Yang, X.-F., and Yun, S.-B., “L{sup 2} stability theory of the Boltzmann equation near a global Maxwellian,” Arch. Ration. Mech. Anal. 197, 657–688 (2010)] on themore » L{sup 2}-stability of the Boltzmann equation to the Boltzmann equation coupled with self-consistent external forces. As a direct application of our stability result, we show that classical solutions in Duan et al. [“Optimal large-time behavior of the Vlasov-Maxwell-Boltzmann system in the whole space,” Commun. Pure Appl. Math. 24, 1497–1546 (2011)] and Guo [“The Vlasov-Maxwell-Boltzmann system near Maxwellians,” Invent. Math. 153(3), 593–630 (2003)] satisfy a uniform L{sup 2}-stability estimate. This is the first result on the L{sup 2}-stability of the Boltzmann equation coupled with self-consistent field equations in three dimensions.« less
Frequency stability of on-orbit GPS Block-I and Block-II Navstar clocks
NASA Astrophysics Data System (ADS)
McCaskill, Thomas B.; Reid, Wilson G.; Buisson, James A.
On-orbit analysis of the Global Positioning System (GPS) Block-I and Block-II Navstar clocks has been performed by the Naval Research Laboratory using a multi-year database. The Navstar clock phase-offset measurements were computed from pseudorange measurements made by the five GPS monitor sites and from the U.S. Naval Observatory precise-time site using single or dual frequency GPS receivers. Orbital data was obtained from the Navstar broadcast ephemeris and from the best-fit, postprocessed orbital ephemerides supplied by the Naval Surface Weapons Center or by the Defense Mapping Agency. Clock performance in the time domain is characterized using frequency-stability profiles with sample times that vary from 1 to 100 days. Composite plots of Navstar frequency stability and time-prediction uncertainty are included as a summary of clock analysis results. The analysis includes plots of the clock phase offset and frequency offset histories with the eclipse seasons superimposed on selected plots to demonstrate the temperature sensitivity of one of the Block-I Navstar rubidium clocks. The potential impact on navigation and on transferring precise time of the degradation in the long-term frequency stability of the rubidium clocks is discussed.
Fast global orbit feedback system in PLS-II
NASA Astrophysics Data System (ADS)
Lee, J.; Kim, C.; Kim, J. M.; Kim, K. R.; Lee, E. H.; Lee, J. W.; Lee, T. Y.; Park, C. D.; Shin, S.; Yoon, J. C.; Cho, W. S.; Park, G. S.; Kim, S. C.
2016-12-01
The transverse position of the electron beam in the Pohang Light Source-II is stabilized by the global orbit feedback system. A slow orbit feedback system has been operating at 2 Hz, and a fast orbit feedback (FOFB) system at 813 Hz was installed recently. This FOFB system consists of 96 electron-beam-position monitors, 48 horizontal fast correctors, 48 vertical fast correctors and Versa Module Europa bus control system. We present the design and implementation of the FOFB system and its test result. Simulation analysis is presented and future improvements are suggested.
Impact of storage conditions on the urinary metabolomics fingerprint.
Laparre, Jérôme; Kaabia, Zied; Mooney, Mark; Buckley, Tom; Sherry, Mark; Le Bizec, Bruno; Dervilly-Pinel, Gaud
2017-01-25
Urine stability during storage is essential in metabolomics to avoid misleading conclusions or erroneous interpretations. Facing the lack of comprehensive studies on urine metabolome stability, the present work performed a follow-up of potential modifications in urinary chemical profile using LC-HRMS on the basis of two parameters: the storage temperature (+4 °C, -20 °C, -80 °C and freeze-dried stored at -80 °C) and the storage duration (5-144 days). Both HILIC and RP chromatographies have been implemented in order to globally monitor the urinary metabolome. Using an original data processing associated to univariate and multivariate data analysis, our study confirms that chemical profiles of urine samples stored at +4 °C are very rapidly modified, as observed for instance for compounds such as:N-acetyl Glycine, Adenosine, 4-Amino benzoic acid, N-Amino diglycine, creatine, glucuronic acid, 3-hydroxy-benzoic acid, pyridoxal, l-pyroglutamic acid, shikimic acid, succinic acid, thymidine, trigonelline and valeryl-carnitine, while it also demonstrates that urine samples stored at -20 °C exhibit a global stability over a long period with no major modifications compared to -80 °C condition. This study is the first to investigate long term stability of urine samples and report potential modifications in the urinary metabolome, using both targeted approach monitoring individually a large number (n > 200) of urinary metabolites and an untargeted strategy enabling assessing for global impact of storage conditions. Copyright © 2016 Elsevier B.V. All rights reserved.
Numerical simulation of a two-sex human papillomavirus (HPV) vaccination model
NASA Astrophysics Data System (ADS)
Suryani, I.; Adi-Kusumo, F.
2014-02-01
Human Papillomavirus (HPV) is a major cause of cervical cancer, precancerous lesions, cancer and other disease. HPV is the most common sexually transmitted infection. Although HPV virus primarily affects woman but it can also affects man because it cause of cancer of the anus, vulva, vagina, penis and some other cancers. HPV vaccines now used to prevent cervical cancer and genital warts because the vaccine protect against four types of HPV that most commonly cause disease are types 6, 11, 16, and 18. This paper is sequel work of Elbasha (2008). Difference with Elbasha (2008) are give alternative proof global stability, numerical simulation and interpretation. Global stability of the equilibrium on the model of a two-sex HPV vaccination were explored by using Lyapunov. Although we use the same lyapunov function, we use the largest invariant set to proof the global stability. The result show that the global stability of the equilibrium depends on the effective reproduction number (R). If R < 1 then the infection-free equilibrium is asymptotically stable globally. If R > 1 then endemic equilibrium have globally asymptotically stable properties. Then equilibrium proceed with the interpretation of numerical simulation.
The Climate Science Special Report: Perspectives on Climate Change Mitigation
NASA Astrophysics Data System (ADS)
DeAngelo, B. J.
2017-12-01
This chapter of CSSR provides scientific context for key issues regarding the long-term mitigation of climate change. Policy analysis and recommendations are beyond the scope of CSSR. Limiting and stabilizing warming to any level implies that there is an upper limit to the cumulative amount of CO2 that can be added to the atmosphere. Eventually stabilizing the global temperature requires CO2 emissions to approach zero. For a 3.6°F (2°C) or any desired global mean temperature target, an estimated range of allowable cumulative CO2 emissions from the current period onward can be calculated. Accounting for the temperature effects of non-CO2 species, cumulative CO2 emissions are required to stay below about 800 GtC in order to provide a two-thirds likelihood of preventing 3.6°F (2°C) of warming, meaning approximately 230 GtC more could be emitted globally. Assuming global emissions follow the range between the RCP8.5 and RCP4.5 scenarios, emissions could continue for approximately two decades before this cumulative carbon threshold is exceeded. Meeting a 2.7°F (1.5°C) target implies much tighter constraints. Mitigation of non-CO2 species contributes substantially to near-term cooling benefits but cannot be relied upon for ultimate stabilization goals. Successful implementation of the first round of Nationally Determined Contributions associated with the Paris Agreement will provide some likelihood of meeting the long-term temperature goal of limiting global warming to "well below" 3.6°F (2°C) above preindustrial levels; the likelihood depends strongly on the magnitude of global emission reductions after 2030. If interest in geoengineering increases, interest will also increase in assessments of the technical feasibilities, costs, risks, co-benefits, and governance challenges of these additional measures, which are as yet unproven at scale.
NASA Astrophysics Data System (ADS)
Cruz-Roa, Angel; Xu, Jun; Madabhushi, Anant
2015-01-01
Nuclear architecture or the spatial arrangement of individual cancer nuclei on histopathology images has been shown to be associated with different grades and differential risk for a number of solid tumors such as breast, prostate, and oropharyngeal. Graph-based representations of individual nuclei (nuclei representing the graph nodes) allows for mining of quantitative metrics to describe tumor morphology. These graph features can be broadly categorized into global and local depending on the type of graph construction method. While a number of local graph (e.g. Cell Cluster Graphs) and global graph (e.g. Voronoi, Delaunay Triangulation, Minimum Spanning Tree) features have been shown to associated with cancer grade, risk, and outcome for different cancer types, the sensitivity of the preceding segmentation algorithms in identifying individual nuclei can have a significant bearing on the discriminability of the resultant features. This therefore begs the question as to which features while being discriminative of cancer grade and aggressiveness are also the most resilient to the segmentation errors. These properties are particularly desirable in the context of digital pathology images, where the method of slide preparation, staining, and type of nuclear segmentation algorithm employed can all dramatically affect the quality of the nuclear graphs and corresponding features. In this paper we evaluated the trade off between discriminability and stability of both global and local graph-based features in conjunction with a few different segmentation algorithms and in the context of two different histopathology image datasets of breast cancer from whole-slide images (WSI) and tissue microarrays (TMA). Specifically in this paper we investigate a few different performance measures including stability, discriminability and stability vs discriminability trade off, all of which are based on p-values from the Kruskal-Wallis one-way analysis of variance for local and global graph features. Apart from identifying the set of local and global features that satisfied the trade off between stability and discriminability, our most interesting finding was that a simple segmentation method was sufficient to identify the most discriminant features for invasive tumour detection in TMAs, whereas for tumour grading in WSI, the graph based features were more sensitive to the accuracy of the segmentation algorithm employed.
Determination of Global Stability of the Slosh Motion in a Spacecraft via Num Erical Experiment
NASA Astrophysics Data System (ADS)
Kang, Ja-Young
2003-12-01
The global stability of the attitude motion of a spin-stabilized space vehicle is investigated by performing numerical experiment. In the previous study, a stationary solution and a particular resonant condition for a given model were found by using analytical method but failed to represent the system stability over parameter values near and off the stationary points. Accordingly, as an extension of the previous work, this study performs numerical experiment to investigate the stability of the system across the parameter space and determines stable and unstable regions of the design parameters of the system.
Advection modes by optimal mass transfer
NASA Astrophysics Data System (ADS)
Iollo, Angelo; Lombardi, Damiano
2014-02-01
Classical model reduction techniques approximate the solution of a physical model by a limited number of global modes. These modes are usually determined by variants of principal component analysis. Global modes can lead to reduced models that perform well in terms of stability and accuracy. However, when the physics of the model is mainly characterized by advection, the nonlocal representation of the solution by global modes essentially reduces to a Fourier expansion. In this paper we describe a method to determine a low-order representation of advection. This method is based on the solution of Monge-Kantorovich mass transfer problems. Examples of application to point vortex scattering, Korteweg-de Vries equation, and hurricane Dean advection are discussed.
Ground effects on the stability of separated flow around an airfoil at low Reynolds numbers
NASA Astrophysics Data System (ADS)
He, Wei; Yu, Peng; Li, Larry K. B.
2017-11-01
We perform a BiGlobal stability analysis on the separated flow around a NACA 4415 airfoil at low Reynolds numbers (Re = 300 - 1000) and a high angle of attack α =20° with a focus on the effect of the airfoil's proximity to a moving ground. The results show that the most dominant perturbation is the Kelvin-Helmholtz mode and that this traveling mode becomes less unstable as the airfoil approaches the ground, although this stabilizing effect diminishes with increasing Reynolds number. By performing a Floquet analysis, we find that this ground effect can also stabilize secondary instabilities. This numerical-theoretical study shows that the ground can have a significant influence on the stability of separated flow around an airfoil at low Reynolds numbers, which could have implications for the design of micro aerial vehicles and for the understanding of natural flyers such as insects and birds. This work was supported by the Research Grants Council of Hong Kong (Project No. 16235716 and 26202815) and the Special Program for Applied Research on Super Computation of the NSFC-Guangdong Joint Fund (the second phase) under Grant No.U1501501.
The future of the Amazon: new perspectives from climate, ecosystem and social sciences.
Betts, Richard A; Malhi, Yadvinder; Roberts, J Timmons
2008-05-27
The potential loss or large-scale degradation of the tropical rainforests has become one of the iconic images of the impacts of twenty-first century environmental change and may be one of our century's most profound legacies. In the Amazon region, the direct threat of deforestation and degradation is now strongly intertwined with an indirect challenge we are just beginning to understand: the possibility of substantial regional drought driven by global climate change. The Amazon region hosts more than half of the world's remaining tropical forests, and some parts have among the greatest concentrations of biodiversity found anywhere on Earth. Overall, the region is estimated to host about a quarter of all global biodiversity. It acts as one of the major 'flywheels' of global climate, transpiring water and generating clouds, affecting atmospheric circulation across continents and hemispheres, and storing substantial reserves of biomass and soil carbon. Hence, the ongoing degradation of Amazonia is a threat to local climate stability and a contributor to the global atmospheric climate change crisis. Conversely, the stabilization of Amazonian deforestation and degradation would be an opportunity for local adaptation to climate change, as well as a potential global contributor towards mitigation of climate change. However, addressing deforestation in the Amazon raises substantial challenges in policy, governance, sustainability and economic science. This paper introduces a theme issue dedicated to a multidisciplinary analysis of these challenges.
Faydasicok, Ozlem; Arik, Sabri
2013-08-01
The main problem with the analysis of robust stability of neural networks is to find the upper bound norm for the intervalized interconnection matrices of neural networks. In the previous literature, the major three upper bound norms for the intervalized interconnection matrices have been reported and they have been successfully applied to derive new sufficient conditions for robust stability of delayed neural networks. One of the main contributions of this paper will be the derivation of a new upper bound for the norm of the intervalized interconnection matrices of neural networks. Then, by exploiting this new upper bound norm of interval matrices and using stability theory of Lyapunov functionals and the theory of homomorphic mapping, we will obtain new sufficient conditions for the existence, uniqueness and global asymptotic stability of the equilibrium point for the class of neural networks with discrete time delays under parameter uncertainties and with respect to continuous and slope-bounded activation functions. The results obtained in this paper will be shown to be new and they can be considered alternative results to previously published corresponding results. We also give some illustrative and comparative numerical examples to demonstrate the effectiveness and applicability of the proposed robust stability condition. Copyright © 2013 Elsevier Ltd. All rights reserved.
Mathematical analysis of a nutrient-plankton system with delay.
Rehim, Mehbuba; Zhang, Zhenzhen; Muhammadhaji, Ahmadjan
2016-01-01
A mathematical model describing the interaction of nutrient-plankton is investigated in this paper. In order to account for the time needed by the phytoplankton to mature after which they can release toxins, a discrete time delay is incorporated into the system. Moreover, it is also taken into account discrete time delays which indicates the partially recycled nutrient decomposed by bacteria after the death of biomass. In the first part of our analysis the sufficient conditions ensuring local and global asymptotic stability of the model are obtained. Next, the existence of the Hopf bifurcation as time delay crosses a threshold value is established and, meanwhile, the phenomenon of stability switches is found under certain conditions. Numerical simulations are presented to illustrate the analytical results.
Stabilization of global temperature at 1.5°C and 2.0°C: implications for coastal areas
Brown, Sally; Wolff, Claudia; Merkens, Jan-Ludolf
2018-01-01
The effectiveness of stringent climate stabilization scenarios for coastal areas in terms of reduction of impacts/adaptation needs and wider policy implications has received little attention. Here we use the Warming Acidification and Sea Level Projector Earth systems model to calculate large ensembles of global sea-level rise (SLR) and ocean pH projections to 2300 for 1.5°C and 2.0°C stabilization scenarios, and a reference unmitigated RCP8.5 scenario. The potential consequences of these projections are then considered for global coastal flooding, small islands, deltas, coastal cities and coastal ecology. Under both stabilization scenarios, global mean ocean pH (and temperature) stabilize within a century. This implies significant ecosystem impacts are avoided, but detailed quantification is lacking, reflecting scientific uncertainty. By contrast, SLR is only slowed and continues to 2300 (and beyond). Hence, while coastal impacts due to SLR are reduced significantly by climate stabilization, especially after 2100, potential impacts continue to grow for centuries. SLR in 2300 under both stabilization scenarios exceeds unmitigated SLR in 2100. Therefore, adaptation remains essential in densely populated and economically important coastal areas under climate stabilization. Given the multiple adaptation steps that this will require, an adaptation pathways approach has merits for coastal areas. This article is part of the theme issue ‘The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels’. PMID:29610380
Stabilization of global temperature at 1.5°C and 2.0°C: implications for coastal areas.
Nicholls, Robert J; Brown, Sally; Goodwin, Philip; Wahl, Thomas; Lowe, Jason; Solan, Martin; Godbold, Jasmin A; Haigh, Ivan D; Lincke, Daniel; Hinkel, Jochen; Wolff, Claudia; Merkens, Jan-Ludolf
2018-05-13
The effectiveness of stringent climate stabilization scenarios for coastal areas in terms of reduction of impacts/adaptation needs and wider policy implications has received little attention. Here we use the Warming Acidification and Sea Level Projector Earth systems model to calculate large ensembles of global sea-level rise (SLR) and ocean pH projections to 2300 for 1.5°C and 2.0°C stabilization scenarios, and a reference unmitigated RCP8.5 scenario. The potential consequences of these projections are then considered for global coastal flooding, small islands, deltas, coastal cities and coastal ecology. Under both stabilization scenarios, global mean ocean pH (and temperature) stabilize within a century. This implies significant ecosystem impacts are avoided, but detailed quantification is lacking, reflecting scientific uncertainty. By contrast, SLR is only slowed and continues to 2300 (and beyond). Hence, while coastal impacts due to SLR are reduced significantly by climate stabilization, especially after 2100, potential impacts continue to grow for centuries. SLR in 2300 under both stabilization scenarios exceeds unmitigated SLR in 2100. Therefore, adaptation remains essential in densely populated and economically important coastal areas under climate stabilization. Given the multiple adaptation steps that this will require, an adaptation pathways approach has merits for coastal areas.This article is part of the theme issue 'The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'. © 2018 The Authors.
Stabilization of global temperature at 1.5°C and 2.0°C: implications for coastal areas
NASA Astrophysics Data System (ADS)
Nicholls, Robert J.; Brown, Sally; Goodwin, Philip; Wahl, Thomas; Lowe, Jason; Solan, Martin; Godbold, Jasmin A.; Haigh, Ivan D.; Lincke, Daniel; Hinkel, Jochen; Wolff, Claudia; Merkens, Jan-Ludolf
2018-05-01
The effectiveness of stringent climate stabilization scenarios for coastal areas in terms of reduction of impacts/adaptation needs and wider policy implications has received little attention. Here we use the Warming Acidification and Sea Level Projector Earth systems model to calculate large ensembles of global sea-level rise (SLR) and ocean pH projections to 2300 for 1.5°C and 2.0°C stabilization scenarios, and a reference unmitigated RCP8.5 scenario. The potential consequences of these projections are then considered for global coastal flooding, small islands, deltas, coastal cities and coastal ecology. Under both stabilization scenarios, global mean ocean pH (and temperature) stabilize within a century. This implies significant ecosystem impacts are avoided, but detailed quantification is lacking, reflecting scientific uncertainty. By contrast, SLR is only slowed and continues to 2300 (and beyond). Hence, while coastal impacts due to SLR are reduced significantly by climate stabilization, especially after 2100, potential impacts continue to grow for centuries. SLR in 2300 under both stabilization scenarios exceeds unmitigated SLR in 2100. Therefore, adaptation remains essential in densely populated and economically important coastal areas under climate stabilization. Given the multiple adaptation steps that this will require, an adaptation pathways approach has merits for coastal areas. This article is part of the theme issue `The Paris Agreement: understanding the physical and social challenges for a warming world of 1.5°C above pre-industrial levels'.
Aeolus high energy UV Laser wavelength measurement and frequency stability analysis
NASA Astrophysics Data System (ADS)
Mondin, Linda; Bravetti, Paolo
2017-11-01
The Aeolus mission is part of ESA's Earth Explorer program. The goal of the mission is to determine the first global wind data set in near real time to improve numerical weather prediction models. The only instrument on board Aeolus, Aladin, is a backscatter wind LIDAR in the ultraviolet (UV) frequency domain. Aeolus is a frequency limited mission, inasmuch as it relies on the measure of the backscattered signal frequency shift in order to deduce the wind velocity. As such the frequency stability of the LIDAR laser source is a key parameter for this mission. In the following, the characterization of the laser frequency stability, reproducibility and agility in vacuum shall be reported and compared to the mission requirements.
Fagerlund, Robert D; Perederina, Anna; Berezin, Igor; Krasilnikov, Andrey S
2015-09-01
Ribonuclease (RNase) P and RNase MRP are closely related catalytic ribonucleoproteins involved in the metabolism of a wide range of RNA molecules, including tRNA, rRNA, and some mRNAs. The catalytic RNA component of eukaryotic RNase P retains the core elements of the bacterial RNase P ribozyme; however, the peripheral RNA elements responsible for the stabilization of the global architecture are largely absent in the eukaryotic enzyme. At the same time, the protein makeup of eukaryotic RNase P is considerably more complex than that of the bacterial RNase P. RNase MRP, an essential and ubiquitous eukaryotic enzyme, has a structural organization resembling that of eukaryotic RNase P, and the two enzymes share most of their protein components. Here, we present the results of the analysis of interactions between the largest protein component of yeast RNases P/MRP, Pop1, and the RNA moieties of the enzymes, discuss structural implications of the results, and suggest that Pop1 plays the role of a scaffold for the stabilization of the global architecture of eukaryotic RNase P RNA, substituting for the network of RNA-RNA tertiary interactions that maintain the global RNA structure in bacterial RNase P. © 2015 Fagerlund et al.; Published by Cold Spring Harbor Laboratory Press for the RNA Society.
NASA Astrophysics Data System (ADS)
Mueller, Peter; Schile-Beers, Lisa M.; Mozdzer, Thomas J.; Chmura, Gail L.; Dinter, Thomas; Kuzyakov, Yakov; de Groot, Alma V.; Esselink, Peter; Smit, Christian; D'Alpaos, Andrea; Ibáñez, Carles; Lazarus, Magdalena; Neumeier, Urs; Johnson, Beverly J.; Baldwin, Andrew H.; Yarwood, Stephanie A.; Montemayor, Diana I.; Yang, Zaichao; Wu, Jihua; Jensen, Kai; Nolte, Stefanie
2018-05-01
Tidal wetlands, such as tidal marshes and mangroves, are hotspots for carbon sequestration. The preservation of organic matter (OM) is a critical process by which tidal wetlands exert influence over the global carbon cycle and at the same time gain elevation to keep pace with sea-level rise (SLR). The present study assessed the effects of temperature and relative sea level on the decomposition rate and stabilization of OM in tidal wetlands worldwide, utilizing commercially available standardized litter. While effects on decomposition rate per se were minor, we show strong negative effects of temperature and relative sea level on stabilization, as based on the fraction of labile, rapidly hydrolyzable OM that becomes stabilized during deployment. Across study sites, OM stabilization was 29 % lower in low, more frequently flooded vs. high, less frequently flooded zones. Stabilization declined by ˜ 75 % over the studied temperature gradient from 10.9 to 28.5 °C. Additionally, data from the Plum Island long-term ecological research site in Massachusetts, USA, show a pronounced reduction in OM stabilization by > 70 % in response to simulated coastal eutrophication, confirming the potentially high sensitivity of OM stabilization to global change. We therefore provide evidence that rising temperature, accelerated SLR, and coastal eutrophication may decrease the future capacity of tidal wetlands to sequester carbon by affecting the initial transformations of recent OM inputs to soil OM.
Thermodynamics and phase transition of charged AdS black holes with a global monopole
NASA Astrophysics Data System (ADS)
Deng, Gao-Ming; Fan, Jinbo; Li, Xinfei; Huang, Yong-Chang
2018-01-01
Thermodynamical properties of charged AdS black holes with a global monopole still remain obscure. In this paper, we investigate the thermodynamics and phase transition of the black holes in the extended phase space. It is shown that thermodynamical quantities of the black holes exhibit an interesting dependence on the internal global monopole, and they perfectly satisfy both the first law of thermodynamics and Smarr relation. Furthermore, analysis of the local and the global thermodynamical stability manifests that the charged AdS black hole undergoes an elegant phase transition at critical point. Of special interest, critical behaviors of the black holes resemble a Van der Waals liquid-gas system. Our results not only reveal the effect of a global monopole on thermodynamics of AdS black holes, but also further support that Van der Waals-like behavior of the black holes is a universal phenomenon.
Visualizing nD Point Clouds as Topological Landscape Profiles to Guide Local Data Analysis
DOE Office of Scientific and Technical Information (OSTI.GOV)
Oesterling, Patrick; Heine, Christian; Weber, Gunther H.
2012-05-04
Analyzing high-dimensional point clouds is a classical challenge in visual analytics. Traditional techniques, such as projections or axis-based techniques, suffer from projection artifacts, occlusion, and visual complexity.We propose to split data analysis into two parts to address these shortcomings. First, a structural overview phase abstracts data by its density distribution. This phase performs topological analysis to support accurate and non-overlapping presentation of the high-dimensional cluster structure as a topological landscape profile. Utilizing a landscape metaphor, it presents clusters and their nesting as hills whose height, width, and shape reflect cluster coherence, size, and stability, respectively. A second local analysis phasemore » utilizes this global structural knowledge to select individual clusters or point sets for further, localized data analysis. Focusing on structural entities significantly reduces visual clutter in established geometric visualizations and permits a clearer, more thorough data analysis. In conclusion, this analysis complements the global topological perspective and enables the user to study subspaces or geometric properties, such as shape.« less
Mukhtar, Hussnain; Lin, Yu-Pin; Shipin, Oleg V.; Petway, Joy R.
2017-01-01
This study presents an approach for obtaining realization sets of parameters for nitrogen removal in a pilot-scale waste stabilization pond (WSP) system. The proposed approach was designed for optimal parameterization, local sensitivity analysis, and global uncertainty analysis of a dynamic simulation model for the WSP by using the R software package Flexible Modeling Environment (R-FME) with the Markov chain Monte Carlo (MCMC) method. Additionally, generalized likelihood uncertainty estimation (GLUE) was integrated into the FME to evaluate the major parameters that affect the simulation outputs in the study WSP. Comprehensive modeling analysis was used to simulate and assess nine parameters and concentrations of ON-N, NH3-N and NO3-N. Results indicate that the integrated FME-GLUE-based model, with good Nash–Sutcliffe coefficients (0.53–0.69) and correlation coefficients (0.76–0.83), successfully simulates the concentrations of ON-N, NH3-N and NO3-N. Moreover, the Arrhenius constant was the only parameter sensitive to model performances of ON-N and NH3-N simulations. However, Nitrosomonas growth rate, the denitrification constant, and the maximum growth rate at 20 °C were sensitive to ON-N and NO3-N simulation, which was measured using global sensitivity. PMID:28704958
Atkins, Stephen J; Bentley, Ian; Brooks, Darrell; Burrows, Mark P; Hurst, Howard T; Sinclair, Jonathan K
2015-06-01
Core stability training traditionally uses stable-base techniques. Less is known as to the use of unstable-base techniques, such as suspension training, to activate core musculature. This study sought to assess the neuromuscular activation of global core stabilizers when using suspension training techniques, compared with more traditional forms of isometric exercise. Eighteen elite level, male youth swimmers (age, 15.5 ± 2.3 years; stature, 163.3 ± 12.7 cm; body mass, 62.2 ± 11.9 kg) participated in this study. Surface electromyography (sEMG) was used to determine the rate of muscle contraction in postural musculature, associated with core stability and torso bracing (rectus abdominus [RA], external obliques [EO], erector spinae [ES]). A maximal voluntary contraction test was used to determine peak amplitude for all muscles. Static bracing of the core was achieved using a modified "plank" position, with and without a Swiss ball, and held for 30 seconds. A mechanically similar "plank" was then held using suspension straps. Analysis of sEMG revealed that suspension produced higher peak amplitude in the RA than using a prone or Swiss ball "plank" (p = 0.04). This difference was not replicated in either the EO or ES musculature. We conclude that suspension training noticeably improves engagement of anterior core musculature when compared with both lateral and posterior muscles. Further research is required to determine how best to activate both posterior and lateral musculature when using all forms of core stability training.
Simulation and stability analysis of supersonic impinging jet noise with microjet control
NASA Astrophysics Data System (ADS)
Hildebrand, Nathaniel; Nichols, Joseph W.
2014-11-01
A model for an ideally expanded 1.5 Mach turbulent jet impinging on a flat plate using unstructured high-fidelity large eddy simulations (LES) and hydrodynamic stability analysis is presented. Note the LES configuration conforms exactly to experiments performed at the STOVL supersonic jet facility of the Florida Center for Advanced Aero-Propulsion allowing validation against experimental measurements. The LES are repeated for different nozzle-wall separation distances as well as with and without the addition of sixteen microjets positioned uniformly around the nozzle lip. For some nozzle-wall distances, but not all, the microjets result in substantial noise reduction. Observations of substantial noise reduction are associated with a relative absence of large-scale coherent vortices in the jet shear layer. To better understand and predict the effectiveness of microjet noise control, the application of global stability analysis about LES mean fields is used to extract axisymmetric and helical instability modes connected to the complex interplay between the coherent vortices, shocks, and acoustic feedback. We gratefully acknowledge computational resources provided by the Argonne Leadership Computing Facility.
A Lyapunov and Sacker–Sell spectral stability theory for one-step methods
Steyer, Andrew J.; Van Vleck, Erik S.
2018-04-13
Approximation theory for Lyapunov and Sacker–Sell spectra based upon QR techniques is used to analyze the stability of a one-step method solving a time-dependent (nonautonomous) linear ordinary differential equation (ODE) initial value problem in terms of the local error. Integral separation is used to characterize the conditioning of stability spectra calculations. The stability of the numerical solution by a one-step method of a nonautonomous linear ODE using real-valued, scalar, nonautonomous linear test equations is justified. This analysis is used to approximate exponential growth/decay rates on finite and infinite time intervals and establish global error bounds for one-step methods approximating uniformly,more » exponentially stable trajectories of nonautonomous and nonlinear ODEs. A time-dependent stiffness indicator and a one-step method that switches between explicit and implicit Runge–Kutta methods based upon time-dependent stiffness are developed based upon the theoretical results.« less
A Lyapunov and Sacker–Sell spectral stability theory for one-step methods
DOE Office of Scientific and Technical Information (OSTI.GOV)
Steyer, Andrew J.; Van Vleck, Erik S.
Approximation theory for Lyapunov and Sacker–Sell spectra based upon QR techniques is used to analyze the stability of a one-step method solving a time-dependent (nonautonomous) linear ordinary differential equation (ODE) initial value problem in terms of the local error. Integral separation is used to characterize the conditioning of stability spectra calculations. The stability of the numerical solution by a one-step method of a nonautonomous linear ODE using real-valued, scalar, nonautonomous linear test equations is justified. This analysis is used to approximate exponential growth/decay rates on finite and infinite time intervals and establish global error bounds for one-step methods approximating uniformly,more » exponentially stable trajectories of nonautonomous and nonlinear ODEs. A time-dependent stiffness indicator and a one-step method that switches between explicit and implicit Runge–Kutta methods based upon time-dependent stiffness are developed based upon the theoretical results.« less
Bifurcation Analysis and Optimal Harvesting of a Delayed Predator-Prey Model
NASA Astrophysics Data System (ADS)
Tchinda Mouofo, P.; Djidjou Demasse, R.; Tewa, J. J.; Aziz-Alaoui, M. A.
A delay predator-prey model is formulated with continuous threshold prey harvesting and Holling response function of type III. Global qualitative and bifurcation analyses are combined to determine the global dynamics of the model. The positive invariance of the non-negative orthant is proved and the uniform boundedness of the trajectories. Stability of equilibria is investigated and the existence of some local bifurcations is established: saddle-node bifurcation, Hopf bifurcation. We use optimal control theory to provide the correct approach to natural resource management. Results are also obtained for optimal harvesting. Numerical simulations are given to illustrate the results.
Lefauve, Adrien; Saintillan, David
2014-02-01
Strongly confined active liquids are subject to unique hydrodynamic interactions due to momentum screening and lubricated friction by the confining walls. Using numerical simulations, we demonstrate that two-dimensional dilute suspensions of fore-aft asymmetric polar swimmers in a Hele-Shaw geometry can exhibit a rich variety of novel phase behaviors depending on particle shape, including coherent polarized density waves with global alignment, persistent counterrotating vortices, density shocks and rarefaction waves. We also explain these phenomena using a linear stability analysis and a nonlinear traffic flow model, both derived from a mean-field kinetic theory.
Isotope effects in aqueous solvation of simple halides
NASA Astrophysics Data System (ADS)
Videla, Pablo E.; Rossky, Peter J.; Laria, D.
2018-03-01
We present a path-integral-molecular-dynamics study of the thermodynamic stabilities of DOH⋯ X- and HOD⋯ X- (X = F, Cl, Br, I) coordination in aqueous solutions at ambient conditions. In agreement with experimental evidence, our results for the F- case reveal a clear stabilization of the latter motif, whereas, in the rest of the halogen series, the former articulation prevails. The DOH⋯ X- preference becomes more marked the larger the size of the ionic solute. A physical interpretation of these tendencies is provided in terms of an analysis of the global quantum kinetic energies of the light atoms and their geometrical decomposition. The stabilization of the alternative ionic coordination geometries is the result of a delicate balance arising from quantum spatial dispersions along parallel and perpendicular directions with respect to the relevant O-H⋯X- axis, as the strength of the water-halide H-bond varies. This interpretation is corroborated by a complementary analysis performed on the different spectroscopic signals of the corresponding IR spectra.
Molecular mobility in amorphous state: Implications on physical stability
NASA Astrophysics Data System (ADS)
Bhardwaj, Sunny Piyush
Amorphous pharmaceuticals are desirable in drug development due to their advantageous biopharmaceutical properties of higher apparent aqueous solubility and dissolution rate. The main obstacle in their widespread use, however, is their higher physicochemical instability than their crystalline counterparts. The goal of the present research project was to investigate correlations between the molecular mobility and physical stability in model amorphous compounds. The objective was to identify the specific mobility which is responsible for the physical instability in each case. This will potentially enable the development of effective strategies for the stabilization of amorphous pharmaceuticals. Moreover, these correlations can be used to develop predictive models for the stability at the pharmaceutically relevant storage conditions. Subtraction of dc conductivity enabled the comprehensive characterization of molecular mobility in amorphous trehalose. This was followed by investigation of correlation between crystallization behavior and different relaxations. Global mobility was found to be strongly coupled to both crystallization onset time and rate. Different preparation methods imparted different mobility states to amorphous trehalose which was postulated to be the reason for the significant physical stability differences. Predictive models were developed and a good agreement was found between the predicted and the experimental crystallization onset times at temperatures around and below the glass transition temperature (Tg). Effect of annealing was investigated on water sorption, enthalpic recovery and dielectric relaxation times in amorphous trehalose. Global mobility was found to be linearly correlated to the water sorption potential which enabled the development of predictive models. Global mobility was also found to be strongly correlated to physical instability in amorphous itraconazole. Effect of polymer (PVP and HPMCAS) on itraconazole mobility and stability was also evaluated. Global mobility was found to be correlated to stability in both the solid dispersions. HPMCAS was found to be a better stabilizer than PVP due to its pronounced effect on global mobility.
The Global Economy--Policy Issues and Prospects.
ERIC Educational Resources Information Center
Laden, Ben E.
Economic policies of the industrial nations are on a dangerous course, constituting a threat to worldwide growth and to financial and economic stability. The results of inappropriate policies throughout the industrial countries are (1) financial strains which endanger global economic stability, (2) extraordinary imbalances of trade, and (3)…
Bifurcation Analysis of a Predator-Prey System with Ratio-Dependent Functional Response
NASA Astrophysics Data System (ADS)
Jiang, Xin; She, Zhikun; Feng, Zhaosheng; Zheng, Xiuliang
2017-12-01
In this paper, we are concerned with the structural stability of a density dependent predator-prey system with ratio-dependent functional response. Starting with the geometrical analysis of hyperbolic curves, we obtain that the system has one or two positive equilibria under various conditions. Inspired by the S-procedure and semi-definite programming, we use the sum of squares decomposition based method to ensure the global asymptotic stability of the positive equilibrium through the associated polynomial Lyapunov functions. By exploring the monotonic property of the trace of the Jacobian matrix with respect to r under the given different conditions, we analytically verify that there is a corresponding unique r∗ such that the trace is equal to zero and prove the existence of Hopf bifurcation, respectively.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Green, Pamela J.
The long-term goal of this research was to better understand the influence of mRNA stability on gene regulation, particularly in response to hormones and the circadian clock. The primary aim of this project was to examine this using DNA microarrays, small RNA analysis and other approaches. We accomplished these objectives, although we were only able to detect small changes in mRNA stability in response to these stimuli. However, the work also contributed to a major breakthrough allowing the identification of small RNAs on a genomic scale in eukaryotes. Moreover, the project prompted us to develop a new way to analyzemore » mRNA decay genome wide. Thus, the research was hugely successful beyond our objectives.« less
Zhang, Wei; Huang, Tingwen; He, Xing; Li, Chuandong
2017-11-01
In this study, we investigate the global exponential stability of inertial memristor-based neural networks with impulses and time-varying delays. We construct inertial memristor-based neural networks based on the characteristics of the inertial neural networks and memristor. Impulses with and without delays are considered when modeling the inertial neural networks simultaneously, which are of great practical significance in the current study. Some sufficient conditions are derived under the framework of the Lyapunov stability method, as well as an extended Halanay differential inequality and a new delay impulsive differential inequality, which depend on impulses with and without delays, in order to guarantee the global exponential stability of the inertial memristor-based neural networks. Finally, two numerical examples are provided to illustrate the efficiency of the proposed methods. Copyright © 2017 Elsevier Ltd. All rights reserved.
Li, Qing-Lan; Lei, Pin-Ji; Zhao, Quan-Yi; Li, Lianyun; Wei, Gang; Wu, Min
2017-08-01
Epigenetic marks are critical regulators of chromatin and gene activity. Their roles in normal physiology and disease states, including cancer development, still remain elusive. Herein, the epigenomic change of H3K9me3, as well as its potential impacts on gene activity and genome stability, was investigated in an in vitro breast cancer transformation model. The global H3K9me3 level was studied with western blotting. The distribution of H3K9me3 on chromatin and gene expression was studied with ChIP-Seq and RNA-Seq, respectively. The global H3K9me3 level decreases during transformation and its distribution on chromatin is reprogrammed. By combining with TCGA data, we identified 67 candidate oncogenes, among which five genes are totally novel. Our analysis further links H3K9me3 with transposon activity, and suggests H3K9me3 reduction increases the cell's sensitivity to DNA damage reagents. H3K9me3 reduction is possibly related with breast cancer transformation by regulating gene expression and chromatin stability during transformation.
NASA Astrophysics Data System (ADS)
Baba, Isa Abdullahi; Hincal, Evren
2017-05-01
In this article we studied an epidemic model consisting of two strains with different types of incidence rates; bilinear and non-monotone. The model consists of four equilibrium points: disease-free equilibrium, endemic with respect to strain 1, endemic with respect to strain 2, and endemic with respect to both strains. The global stability analysis of the equilibrium points was carried out through the use of Lyapunov functions. Two basic reproduction ratios R 1 0 and R 2 0 are found, and we have shown that if both are less than one, the disease dies out, and if both are greater than one epidemic occurs. Furthermore, epidemics occur with respect to any strain with a basic reproduction ratio greater than one and disease dies out with respect to any strain with a basic reproduction ratio less than one. It was also shown that any strain with highest basic reproduction ratio will automatically outperform the other strain, thereby eliminating it. Numerical simulations were carried out to support the analytic result and to show the effect of the parameter k in the non-monotone incidence rate, which describes the psychological effect of general public towards infection.
Climate change impacts on US agriculture and forestry: benefits of global climate stabilization
NASA Astrophysics Data System (ADS)
Beach, Robert H.; Cai, Yongxia; Thomson, Allison; Zhang, Xuesong; Jones, Russell; McCarl, Bruce A.; Crimmins, Allison; Martinich, Jeremy; Cole, Jefferson; Ohrel, Sara; DeAngelo, Benjamin; McFarland, James; Strzepek, Kenneth; Boehlert, Brent
2015-09-01
Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. There have been numerous studies of climate change impacts on agriculture or forestry, but relatively little research examining the long-term net impacts of a stabilization scenario relative to a case with unabated climate change. We provide an analysis of the potential benefits of global climate change mitigation for US agriculture and forestry through 2100, accounting for landowner decisions regarding land use, crop mix, and management practices. The analytic approach involves a combination of climate models, a crop process model (EPIC), a dynamic vegetation model used for forests (MC1), and an economic model of the US forestry and agricultural sector (FASOM-GHG). We find substantial impacts on productivity, commodity markets, and consumer and producer welfare for the stabilization scenario relative to unabated climate change, though the magnitude and direction of impacts vary across regions and commodities. Although there is variability in welfare impacts across climate simulations, we find positive net benefits from stabilization in all cases, with cumulative impacts ranging from 32.7 billion to 54.5 billion over the period 2015-2100. Our estimates contribute to the literature on potential benefits of GHG mitigation and can help inform policy decisions weighing alternative mitigation and adaptation actions.
The Three-Dimensional (3D) Numerical Stability Analysis of Hyttemalmen Open-Pit
NASA Astrophysics Data System (ADS)
Cała, Marek; Kowalski, Michał; Stopkowicz, Agnieszka
2014-10-01
The purpose of this paper was to perform the 3D numerical calculations allowing slope stability analysis of Hyttemalmen open pit (location Kirkenes, Finnmark Province, Norway). After a ramp rock slide, which took place in December 2010, as well as some other small-scale rock slope stability problems, it proved necessary to perform a serious stability analyses. The Hyttemalmen open pit was designed with a depth up to 100 m, a bench height of 24 m and a ramp width of 10 m. The rock formation in the iron mining district of Kirkenes is called the Bjornevaten Group. This is the most structurally complicated area connected with tectonic process such as folding, faults and metamorphosis. The Bjornevaten Group is a volcano-sedimentary sequence. Rock slope stability depends on the mechanical properties of the rock, hydro-geological conditions, slope topography, joint set systems and seismic activity. However, rock slope stability is mainly connected with joint sets. Joints, or general discontinuities, are regarded as weak planes within rock which have strength reducing consequences with regard to rock strength. Discontinuities within the rock mass lead to very low tensile strength. Several simulations were performed utilising the RocLab (2007) software to estimate the gneiss cohesion for slopes of different height. The RocLab code is dedicated to estimate rock mass strength using the Hoek-Brown failure criterion. Utilising both the GSI index and the Hoek-Brown strength criterion the equivalent Mohr-Coulomb parameters (cohesion and angle of internal friction) can be calculated. The results of 3D numerical calculations (with FLA3D code) show that it is necessary to redesign the slope-bench system in the Hyttemalmen open pit. Changing slope inclination for lower stages is recommended. The minimum factor of safety should be equal 1.3. At the final planned stage of excavation, the factor of safety drops to 1.06 with failure surface ranging through all of the slopes. In the case of a slope angle 70° for lower stages, FS = 1.26, which is not enough to provide slope stability. Another series of calculations were therefore performed taking water table lowering into consideration, which increases the global safety factor. It was finally evaluated, that for a water table level of 72 m the factor of safety equals 1.3, which is enough to assure global open-pit stability.
Transport and stability analyses supporting disruption prediction in high beta KSTAR plasmas
NASA Astrophysics Data System (ADS)
Ahn, J.-H.; Sabbagh, S. A.; Park, Y. S.; Berkery, J. W.; Jiang, Y.; Riquezes, J.; Lee, H. H.; Terzolo, L.; Scott, S. D.; Wang, Z.; Glasser, A. H.
2017-10-01
KSTAR plasmas have reached high stability parameters in dedicated experiments, with normalized beta βN exceeding 4.3 at relatively low plasma internal inductance li (βN/li>6). Transport and stability analyses have begun on these plasmas to best understand a disruption-free path toward the design target of βN = 5 while aiming to maximize the non-inductive fraction of these plasmas. Initial analysis using the TRANSP code indicates that the non-inductive current fraction in these plasmas has exceeded 50 percent. The advent of KSTAR kinetic equilibrium reconstructions now allows more accurate computation of the MHD stability of these plasmas. Attention is placed on code validation of mode stability using the PEST-3 and resistive DCON codes. Initial evaluation of these analyses for disruption prediction is made using the disruption event characterization and forecasting (DECAF) code. The present global mode kinetic stability model in DECAF developed for low aspect ratio plasmas is evaluated to determine modifications required for successful disruption prediction of KSTAR plasmas. Work supported by U.S. DoE under contract DE-SC0016614.
Van Steen, Kristel; Curran, Desmond; Kramer, Jocelyn; Molenberghs, Geert; Van Vreckem, Ann; Bottomley, Andrew; Sylvester, Richard
2002-12-30
Clinical and quality of life (QL) variables from an EORTC clinical trial of first line chemotherapy in advanced breast cancer were used in a prognostic factor analysis of survival and response to chemotherapy. For response, different final multivariate models were obtained from forward and backward selection methods, suggesting a disconcerting instability. Quality of life was measured using the EORTC QLQ-C30 questionnaire completed by patients. Subscales on the questionnaire are known to be highly correlated, and therefore it was hypothesized that multicollinearity contributed to model instability. A correlation matrix indicated that global QL was highly correlated with 7 out of 11 variables. In a first attempt to explore multicollinearity, we used global QL as dependent variable in a regression model with other QL subscales as predictors. Afterwards, standard diagnostic tests for multicollinearity were performed. An exploratory principal components analysis and factor analysis of the QL subscales identified at most three important components and indicated that inclusion of global QL made minimal difference to the loadings on each component, suggesting that it is redundant in the model. In a second approach, we advocate a bootstrap technique to assess the stability of the models. Based on these analyses and since global QL exacerbates problems of multicollinearity, we therefore recommend that global QL be excluded from prognostic factor analyses using the QLQ-C30. The prognostic factor analysis was rerun without global QL in the model, and selected the same significant prognostic factors as before. Copyright 2002 John Wiley & Sons, Ltd.
Ji, Yu
2015-06-01
In this paper, the dynamical behavior of a viral infection model with general incidence rate and two time delays is studied. By using the Lyapunov functional and LaSalle invariance principle, the global stabilities of the infection-free equilibrium and the endemic equilibrium are obtained. We obtain a threshold of the global stability for the uninfected equilibrium, which means the disease will be under control eventually. These results can be applied to a variety of viral infections of disease that would make it possible to devise optimal treatment strategies. Numerical simulations with application to HIV infection are given to verify the analytical results.
NASA Technical Reports Server (NTRS)
Giles, M. B.; Thompkins, W. T., Jr.
1985-01-01
The propagation and dissipation of wavelike solutions to finite difference equations is analyzed on the basis of an asymptotic approach in which a wave solution is expressed as a product of a complex amplitude and an oscillatory phase function whose frequency and wavenumber may also be complex. An asymptotic expansion leads to a local dispersion relation for wavenumber and frequency; the first-order terms produce an equation for the amplitude in which the local group velocity appears as the convection velocity of the amplitude. Equations for the motion of wavepackets and their interaction at boundaries are derived, and a global stability analysis is carried out.
NASA Technical Reports Server (NTRS)
North, G. R.; Cahalan, R. F.; Coakley, J. A., Jr.
1980-01-01
An introductory survey of the global energy balance climate models is presented with an emphasis on analytical results. A sequence of increasingly complicated models involving ice cap and radiative feedback processes are solved and the solutions and parameter sensitivities are studied. The model parameterizations are examined critically in light of many current uncertainties. A simple seasonal model is used to study the effects of changes in orbital elements on the temperature field. A linear stability theorem and a complete nonlinear stability analysis for the models are developed. Analytical solutions are also obtained for the linearized models driven by stochastic forcing elements. In this context the relation between natural fluctuation statistics and climate sensitivity is stressed.
NASA Technical Reports Server (NTRS)
North, G. R.; Cahalan, R. F.; Coakley, J. A., Jr.
1981-01-01
An introductory survey of the global energy balance climate models is presented with an emphasis on analytical results. A sequence of increasingly complicated models involving ice cap and radiative feedback processes are solved, and the solutions and parameter sensitivities are studied. The model parameterizations are examined critically in light of many current uncertainties. A simple seasonal model is used to study the effects of changes in orbital elements on the temperature field. A linear stability theorem and a complete nonlinear stability analysis for the models are developed. Analytical solutions are also obtained for the linearized models driven by stochastic forcing elements. In this context the relation between natural fluctuation statistics and climate sensitivity is stressed.
Global Output-Feedback Control for Simultaneous Tracking and Stabilization of Wheeled Mobile Robots
NASA Astrophysics Data System (ADS)
Chang, J.; Zhang, L. J.; Xue, D.
A time-varying global output-feedback controller is presented that solves both tracking and stabilization for wheeled mobile robots simultaneously at the torque level. The controller synthesis is based on a coordinate transformation, Lyapunov direct method and backstepping technique. The performance of the proposed controller is demonstrated by simulation.
NASA Astrophysics Data System (ADS)
Grise, K. M.; Thompson, D. W.; Birner, T.
2009-12-01
Static stability is a fundamental dynamical quantity that measures the vertical temperature stratification of the atmosphere. The long-term mean static stability field is characterized by the well-known transition from low values in the troposphere to high values in the stratosphere. However, the magnitude and structure of fine-scale static stability features near the tropopause are difficult to discern in temperature data with low vertical resolution. In this study, the authors apply over six years of high vertical resolution Global Positioning System radio occultation temperature profiles to document the long-term mean structure and variability of static stability in the global upper troposphere and lower stratosphere (UTLS). The results of this study demonstrate that a shallow but pronounced maximum in static stability exists just above the tropopause at all latitudes (i.e., the “tropopause inversion layer,” or TIL). This study also uncovers two novel aspects of static stability in the global UTLS. In the tropical lower stratosphere, the results reveal a unique vertically and horizontally varying static stability structure, with maxima located at ~17 km and ~19 km. The upper feature peaks during the NH cold season and has its largest magnitude between 10 and 15 degrees latitude in both hemispheres; the lower feature exhibits a weaker seasonal cycle and is centered at the Equator. The results also demonstrate that the strength of the TIL is closely tied to stratospheric dynamic variability. The magnitude of the TIL is enhanced following sudden stratospheric warmings in the polar regions and the easterly phase of the quasi-biennial oscillation in the tropics.
NASA Astrophysics Data System (ADS)
Grise, Kevin M.; Thompson, David W. J.; Birner, Thomas
2010-05-01
Static stability is a fundamental dynamical quantity that measures the vertical temperature stratification of the atmosphere. The long-term mean static stability field is characterized by the well-known transition from low values in the troposphere to high values in the stratosphere. However, the magnitude and structure of fine-scale static stability features near the tropopause are difficult to discern in temperature data with low vertical resolution. In this study, the authors apply over six years of high vertical resolution Global Positioning System radio occultation temperature profiles to document the long-term mean structure and variability of static stability in the global upper troposphere and lower stratosphere (UTLS). The results of this study demonstrate that a shallow but pronounced maximum in static stability exists just above the tropopause at all latitudes (i.e., the "tropopause inversion layer," or TIL). This study also uncovers two novel aspects of static stability in the global UTLS. In the tropical lower stratosphere, the results reveal a unique vertically and horizontally varying static stability structure, with maxima located at ~17 km and ~19 km. The upper feature peaks during the NH cold season and has its largest magnitude between 10 and 15 degrees latitude in both hemispheres; the lower feature exhibits a weaker seasonal cycle and is centered at the Equator. The results also demonstrate that the strength of the TIL is closely tied to stratospheric dynamic variability. The magnitude of the TIL is enhanced following sudden stratospheric warmings in the polar regions and the easterly phase of the quasi-biennial oscillation in the tropics.
Destabilizing Effects of Impulse in Delayed Bam Neural Networks
NASA Astrophysics Data System (ADS)
Li, Chuandong; Li, Chaojie; Liu, Chao
This paper further studies the global exponential stability of the equilibrium point of the delayed bidirectional associative memory (DBAM) neural networks with impulse effects. Several results characterizing the aggregated effects of impulse and dynamical property of the impulse-free DBAM on the exponential stability of the considered DBAM have been established. It is shown that the impulsive DBAM will preserve the global exponential stability of the impulse-free DBAM even if the impulses have enlarging effects on the states of neurons.
Senan, Sibel; Arik, Sabri
2007-10-01
This correspondence presents a sufficient condition for the existence, uniqueness, and global robust asymptotic stability of the equilibrium point for bidirectional associative memory neural networks with discrete time delays. The results impose constraint conditions on the network parameters of the neural system independently of the delay parameter, and they are applicable to all bounded continuous nonmonotonic neuron activation functions. Some numerical examples are given to compare our results with the previous robust stability results derived in the literature.
Stability and change in political conservatism following the global financial crisis.
Milojev, Petar; Greaves, Lara; Osborne, Danny; Sibley, Chris G
2015-01-01
The current study analyzes data from a national probability panel sample of New Zealanders (N = 5,091) to examine stability and change in political orientation over four consecutive yearly assessments (2009-2012) following the 2007/2008 global financial crisis. Bayesian Latent Growth Modeling identified systematic variation in the growth trajectory of conservatism that was predicted by age and socio-economic status. Younger people (ages 25-45) did not change in their political orientation. Older people, however, became more conservative over time. Likewise, people with lower socio-economic status showed a marked increase in political conservatism. In addition, tests of rank-order stability showed that age had a cubic relationship with the stability of political orientation over our four annual assessments. Our findings provide strong support for System Justification Theory by showing that increases in conservatism in the wake of the recent global financial crisis occurred primarily among the poorest and most disadvantaged.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wehner, Michael F.; Reed, Kevin A.; Loring, Burlen
The United Nations Framework Convention on Climate Change (UNFCCC) invited the scientific community to explore the impacts of a world in which anthropogenic global warming is stabilized at only 1.5°C above preindustrial average temperatures. In this paper, we present a projection of future tropical cyclone statistics for both 1.5 and 2.0°C stabilized warming scenarios with direct numerical simulation using a high-resolution global climate model. As in similar projections at higher warming levels, we find that even at these low warming levels the most intense tropical cyclones become more frequent and more intense, while simultaneously the frequency of weaker tropical stormsmore » is decreased. We also conclude that in the 1.5°C stabilization, the effect of aerosol forcing changes complicates the interpretation of greenhouse gas forcing changes.« less
NASA Astrophysics Data System (ADS)
Wehner, Michael F.; Reed, Kevin A.; Loring, Burlen; Stone, Dáithí; Krishnan, Harinarayan
2018-02-01
The United Nations Framework Convention on Climate Change (UNFCCC) invited the scientific community to explore the impacts of a world in which anthropogenic global warming is stabilized at only 1.5 °C above preindustrial average temperatures. We present a projection of future tropical cyclone statistics for both 1.5 and 2.0 °C stabilized warming scenarios with direct numerical simulation using a high-resolution global climate model. As in similar projections at higher warming levels, we find that even at these low warming levels the most intense tropical cyclones become more frequent and more intense, while simultaneously the frequency of weaker tropical storms is decreased. We also conclude that in the 1.5 °C stabilization, the effect of aerosol forcing changes complicates the interpretation of greenhouse gas forcing changes.
Wehner, Michael F.; Reed, Kevin A.; Loring, Burlen; ...
2018-02-28
The United Nations Framework Convention on Climate Change (UNFCCC) invited the scientific community to explore the impacts of a world in which anthropogenic global warming is stabilized at only 1.5°C above preindustrial average temperatures. In this paper, we present a projection of future tropical cyclone statistics for both 1.5 and 2.0°C stabilized warming scenarios with direct numerical simulation using a high-resolution global climate model. As in similar projections at higher warming levels, we find that even at these low warming levels the most intense tropical cyclones become more frequent and more intense, while simultaneously the frequency of weaker tropical stormsmore » is decreased. We also conclude that in the 1.5°C stabilization, the effect of aerosol forcing changes complicates the interpretation of greenhouse gas forcing changes.« less
Boundary layers and global stability of laboratory quasi-Keplerian flow
NASA Astrophysics Data System (ADS)
Edlund, E. M.; Ji, H.
2013-11-01
Studies in the HTX device at PPPL, a modified Taylor-Couette experiment, have demonstrated a robust stability of astrophysically relevant, quasi-Keplerian flows. Independent rings on the axial boundary can be used to fine tune the rotation profile, allowing ideal Couette rotation to be achieved over nearly the entire radial gap. Fluctuation levels in these flows are observed to be at nearly the noise floor of the laser Doppler velocimetry (LDV) diagnostic, in agreement with prior studies under similar conditions. Deviations from optimal operating parameters illustrate the importance of centrifugally unstable boundary layers in Taylor-Couette devices of the classical configuration where the axial boundaries rotate with the outer cylinder. The global stability of nearly ideal-Couette flows, with implications for astrophysical systems, will be discussed in light of the global stability of these flows with respect to externally applied perturbations of large magnitude.
Global point signature for shape analysis of carpal bones
NASA Astrophysics Data System (ADS)
Chaudhari, Abhijit J.; Leahy, Richard M.; Wise, Barton L.; Lane, Nancy E.; Badawi, Ramsey D.; Joshi, Anand A.
2014-02-01
We present a method based on spectral theory for the shape analysis of carpal bones of the human wrist. We represent the cortical surface of the carpal bone in a coordinate system based on the eigensystem of the two-dimensional Helmholtz equation. We employ a metric—global point signature (GPS)—that exploits the scale and isometric invariance of eigenfunctions to quantify overall bone shape. We use a fast finite-element-method to compute the GPS metric. We capitalize upon the properties of GPS representation—such as stability, a standard Euclidean (ℓ2) metric definition, and invariance to scaling, translation and rotation—to perform shape analysis of the carpal bones of ten women and ten men from a publicly-available database. We demonstrate the utility of the proposed GPS representation to provide a means for comparing shapes of the carpal bones across populations.
Wang, Dongshu; Huang, Lihong
2014-03-01
In this paper, we investigate the periodic dynamical behaviors for a class of general Cohen-Grossberg neural networks with discontinuous right-hand sides, time-varying and distributed delays. By means of retarded differential inclusions theory and the fixed point theorem of multi-valued maps, the existence of periodic solutions for the neural networks is obtained. After that, we derive some sufficient conditions for the global exponential stability and convergence of the neural networks, in terms of nonsmooth analysis theory with generalized Lyapunov approach. Without assuming the boundedness (or the growth condition) and monotonicity of the discontinuous neuron activation functions, our results will also be valid. Moreover, our results extend previous works not only on discrete time-varying and distributed delayed neural networks with continuous or even Lipschitz continuous activations, but also on discrete time-varying and distributed delayed neural networks with discontinuous activations. We give some numerical examples to show the applicability and effectiveness of our main results. Copyright © 2013 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Davies, Christopher; Thomas, Christian
2006-11-01
Following on from the earlier discovery by Lingwood (1995) that the rotating-disk boundary-layer is absolutely unstable, Jasmine & Gajjar (2005) have shown that the application of a uniform axial magnetic field can raise the critical Reynolds number for the onset of absolute instability. As with Lingwood's analysis, a parallel-flow' type of approximation is needed in order to derive this locally-based stability result. The approximation amounts to a freezing out' of the underlying radial variation of the mean flow. Numerical simulations have been conducted to investigate the behaviour of linearized disturbances in the genuine rotating disk boundary layer, where the radial dependence of the mean flow is fully accounted for. This extends the work of Davies & Carpenter (2003), who studied the more usual rotating-disk problem, in the absence of any magnetic field. The simulation results suggest that globally unstable behaviour can be promoted when a uniform axial magnetic field is applied. Impulsively excited disturbances were found to display an increasingly rapid growth at the radial position of the impulse, albeit without any selection of a dominant frequency, as would be more usual for an unstable global mode. This is very similar to the behaviour to that was observed in a recent investigation by Davies & Thomas (2005) of the effects of mass transfer, where suction was also found to promote global instability.
NASA Astrophysics Data System (ADS)
Chue, Ching-Hwei
A method was developed for predicting the behavior of mechanical joints in launch vehicles with particular emphasis placed on how the combined effects of loading, geometry, and materials could be optimized in terms of structure instability and/or integrity. What was considered to be essential is the fluctuation of the volume energy density with time in the structure. The peaks and valleys of the volume energy density function will be associated with failure by fracture and/or yielding while the distance between their local and global stationary values govern the structure instability. The Solid Rocket Booster (SRB) of the space shuttle was analyzed under axisymmetric and non-axisymmetric loadings. A semi-analytical finite element program was developed for solving the case of non-axisymmetric loading. Following a dynamic stress analysis, contours of the volume energy density in the structure were obtained as a function of time. The magnitudes and locations of these stationary values were then calculated locally and globally and related to possible failure by fracture. In the case of axisymmetric flight, the local and global instability behavior do not change appreciably. Fluctuations in the energy density and the dynamic stability length parameter become appreciable when the non-axisymmetric loads are considered. The magnitude of the energy in the shell structure is sensitive to alterations in the gas pressure induced by the solid propellant.
Stability characteristics of compressible boundary layers over thermo-mechanically compliant walls
NASA Astrophysics Data System (ADS)
Dettenrieder, Fabian; Bodony, Daniel
2017-11-01
Transition prediction at hypersonic flight conditions continues to be a challenge and results in conservative safety factors that increase vehicle weight. The weight and thus cost reduction of the outer skin panels promises significant impact; however, fluid-structure interaction due to unsteady perturbations in the laminar boundary layer regime has not been systematically studied at conditions relevant for reusable, hypersonic flight. In this talk, we develop and apply convective and global stability analyses for compressible boundary layers over thermo-mechanically compliant panels. This compliance is shown to change the convective stability of the boundary layer modes, with both stabilization and destabilization observed. Finite panel lengths are shown to affect the global stability properties of the boundary layer.
Global asymptotic stability of density dependent integral population projection models.
Rebarber, Richard; Tenhumberg, Brigitte; Townley, Stuart
2012-02-01
Many stage-structured density dependent populations with a continuum of stages can be naturally modeled using nonlinear integral projection models. In this paper, we study a trichotomy of global stability result for a class of density dependent systems which include a Platte thistle model. Specifically, we identify those systems parameters for which zero is globally asymptotically stable, parameters for which there is a positive asymptotically stable equilibrium, and parameters for which there is no asymptotically stable equilibrium. Copyright © 2011 Elsevier Inc. All rights reserved.
Boundedness and global stability of the two-predator and one-prey models with nonlinear prey-taxis
NASA Astrophysics Data System (ADS)
Wang, Jianping; Wang, Mingxin
2018-06-01
This paper concerns the reaction-diffusion systems modeling the population dynamics of two predators and one prey with nonlinear prey-taxis. We first investigate the global existence and boundedness of the unique classical solution for the general model. Then, we study the global stabilities of nonnegative spatially homogeneous equilibria for an explicit system with type I functional responses and density-dependent death rates for the predators and logistic growth for the prey. Moreover, the convergence rates are also established.
Analysis and Experimentation of Control Strategies for Underactuated Spacecraft
2009-09-01
control techniques that provide time -invariant global asymptotic stability of the fully actuated spacecraft system of equations. Although these control ...momentum wheel actuators in finite time under the restriction that the total angular momentum vector of the system is zero. This control methodology...can be stabilizable to an arbitrarily small region about the equilibrium of the system via time -invariant smooth state feedback control
Study of a tri-trophic prey-dependent food chain model of interacting populations.
Haque, Mainul; Ali, Nijamuddin; Chakravarty, Santabrata
2013-11-01
The current paper accounts for the influence of intra-specific competition among predators in a prey dependent tri-trophic food chain model of interacting populations. We offer a detailed mathematical analysis of the proposed food chain model to illustrate some of the significant results that has arisen from the interplay of deterministic ecological phenomena and processes. Biologically feasible equilibria of the system are observed and the behaviours of the system around each of them are described. In particular, persistence, stability (local and global) and bifurcation (saddle-node, transcritical, Hopf-Andronov) analysis of this model are obtained. Relevant results from previous well known food chain models are compared with the current findings. Global stability analysis is also carried out by constructing appropriate Lyapunov functions. Numerical simulations show that the present system is capable enough to produce chaotic dynamics when the rate of self-interaction is very low. On the other hand such chaotic behaviour disappears for a certain value of the rate of self interaction. In addition, numerical simulations with experimented parameters values confirm the analytical results and shows that intra-specific competitions bears a potential role in controlling the chaotic dynamics of the system; and thus the role of self interactions in food chain model is illustrated first time. Finally, a discussion of the ecological applications of the analytical and numerical findings concludes the paper. Copyright © 2013 Elsevier Inc. All rights reserved.
Unsteady characteristics of low-Re flow past two tandem cylinders
NASA Astrophysics Data System (ADS)
Zhang, Wei; Dou, Hua-Shu; Zhu, Zuchao; Li, Yi
2018-06-01
This study investigated the two-dimensional flow past two tandem circular or square cylinders at Re = 100 and D / d = 4-10, where D is the center-to-center distance and d is the cylinder diameter. Numerical simulation was performed to comparably study the effect of cylinder geometry and spacing on the aerodynamic characteristics, unsteady flow patterns, time-averaged flow characteristics and flow unsteadiness. We also provided the first global linear stability analysis and sensitivity analysis on the physical problem for the potential application of flow control. The objective of this work is to quantitatively identify the effect of the cylinder geometry and spacing on the characteristic quantities. Numerical results reveal that there is wake flow transition for both geometries depending on the spacing. The characteristic quantities, including the time-averaged and fluctuating streamwise velocity and pressure coefficient, are quite similar to that of the single cylinder case for the upstream cylinder, while an entirely different variation pattern is observed for the downstream cylinder. The global linear stability analysis shows that the spatial structure of perturbation is mainly observed in the wake of the downstream cylinder for small spacing, while moves upstream with reduced size and is also observed after the upstream cylinder for large spacing. The sensitivity analysis reflects that the temporal growth rate of perturbation is the most sensitive to the near-wake flow of downstream cylinder for small spacing and upstream cylinder for large spacing.
Severino, Marco; Rastelli, Claudio; Bernardi, Sara; Caruso, Silvia; Galli, Massimo; Lamazza, Luca; Di Paolo, Carlo
2017-01-01
Background The attainment of a good primary stability is a necessary condition to ensure the success of osseointegration in implantology. In type IV cancellous bone, however, it is possible that a reduced primary stability can lead to an increased rate of failure. The aim of this study was therefore to determine, with the help of the resonance frequency (Osstell mentor), which technique of implant site preparation (piezo surgery, conventional, under-preparation, bone compaction, osteodistraction) and macro-geometry is able to improve implant stability in type IV cancellous bone. Material and Methods 10 pig ribs were prepared with a surgical pre-drilled guide, calibrated for a correct implant positioning. On each rib, 5 implant sites (one for each technique) were prepared. Successively, 50 conical implants (Tekka Global D) were inserted and measured with the resonance frequency to evaluate the primary stability. Data collected were analyzed by analysis of variance (ANOVA) to test whether the Implant Stability Quotient (ISQ) values of the five techniques were significantly different. Results The results showed that no significant differences among the ISQ values of the five techniques used were found. Also, no significant differences in the macro-geometry of the two types of compared implants were observed. However, the macro-geometry of Tekka implants, characterized by a double condensing thread, seems to provide greater ISQ values than those of single thread implants when using the same technique. Conclusions In light of these preliminary data, it is conceivable that in cases of reduced stability, such as those occurring with a type IV bone, all means ameliorating the primary stability and accelerating the osseointegration can be utilized. Key words:Implant primary stability, resonance frequency analysis, implant site preparation. PMID:28160577
The Existence and Stability Analysis of the Equilibria in Dengue Disease Infection Model
NASA Astrophysics Data System (ADS)
Anggriani, N.; Supriatna, A. K.; Soewono, E.
2015-06-01
In this paper we formulate an SIR (Susceptible - Infective - Recovered) model of Dengue fever transmission with constant recruitment. We found a threshold parameter K0, known as the Basic Reproduction Number (BRN). This model has two equilibria, disease-free equilibrium and endemic equilibrium. By constructing suitable Lyapunov function, we show that the disease- free equilibrium is globally asymptotic stable whenever BRN is less than one and when it is greater than one, the endemic equilibrium is globally asymptotic stable. Numerical result shows the dynamic of each compartment together with effect of multiple bio-agent intervention as a control to the dengue transmission.
A Study of Impact Point Detecting Method Based on Seismic Signal
NASA Astrophysics Data System (ADS)
Huo, Pengju; Zhang, Yu; Xu, Lina; Huang, Yong
The projectile landing position has to be determined for its recovery and range in the targeting test. In this paper, a global search method based on the velocity variance is proposed. In order to verify the applicability of this method, simulation analysis within the scope of four million square meters has been conducted in the same array structure of the commonly used linear positioning method, and MATLAB was used to compare and analyze the two methods. The compared simulation results show that the global search method based on the speed of variance has high positioning accuracy and stability, which can meet the needs of impact point location.
NASA Technical Reports Server (NTRS)
Neveu, M. C.; Stocker, D. P.
1985-01-01
High pressure differential scanning calorimetry (DSC) was studied as an alternate method for performing high temperature fuel thermal stability research. The DSC was used to measure the heat of reaction versus temperature of a fuel sample heated at a programmed rate in an oxygen pressurized cell. Pure hydrocarbons and model fuels were studied using typical DSC operating conditions of 600 psig of oxygen and a temperature range from ambient to 500 C. The DSC oxidation onset temperature was determined and was used to rate the fuels on thermal stability. Kinetic rate constants were determined for the global initial oxidation reaction. Fuel deposit formation is measured, and the high temperature volatility of some tetralin deposits is studied by thermogravimetric analysis. Gas chromatography and mass spectrometry are used to study the chemical composition of some DSC stressed fuels.
NASA Astrophysics Data System (ADS)
Mettot, Clément; Sipp, Denis; Bézard, Hervé
2014-04-01
This article presents a quasi-laminar stability approach to identify in high-Reynolds number flows the dominant low-frequencies and to design passive control means to shift these frequencies. The approach is based on a global linear stability analysis of mean-flows, which correspond to the time-average of the unsteady flows. Contrary to the previous work by Meliga et al. ["Sensitivity of 2-D turbulent flow past a D-shaped cylinder using global stability," Phys. Fluids 24, 061701 (2012)], we use the linearized Navier-Stokes equations based solely on the molecular viscosity (leaving aside any turbulence model and any eddy viscosity) to extract the least stable direct and adjoint global modes of the flow. Then, we compute the frequency sensitivity maps of these modes, so as to predict before hand where a small control cylinder optimally shifts the frequency of the flow. In the case of the D-shaped cylinder studied by Parezanović and Cadot [J. Fluid Mech. 693, 115 (2012)], we show that the present approach well captures the frequency of the flow and recovers accurately the frequency control maps obtained experimentally. The results are close to those already obtained by Meliga et al., who used a more complex approach in which turbulence models played a central role. The present approach is simpler and may be applied to a broader range of flows since it is tractable as soon as mean-flows — which can be obtained either numerically from simulations (Direct Numerical Simulation (DNS), Large Eddy Simulation (LES), unsteady Reynolds-Averaged-Navier-Stokes (RANS), steady RANS) or from experimental measurements (Particle Image Velocimetry - PIV) — are available. We also discuss how the influence of the control cylinder on the mean-flow may be more accurately predicted by determining an eddy-viscosity from numerical simulations or experimental measurements. From a technical point of view, we finally show how an existing compressible numerical simulation code may be used in a black-box manner to extract the global modes and sensitivity maps.
Stability and modal analysis of shock/boundary layer interactions
NASA Astrophysics Data System (ADS)
Nichols, Joseph W.; Larsson, Johan; Bernardini, Matteo; Pirozzoli, Sergio
2017-02-01
The dynamics of oblique shock wave/turbulent boundary layer interactions is analyzed by mining a large-eddy simulation (LES) database for various strengths of the incoming shock. The flow dynamics is first analyzed by means of dynamic mode decomposition (DMD), which highlights the simultaneous occurrence of two types of flow modes, namely a low-frequency type associated with breathing motion of the separation bubble, accompanied by flapping motion of the reflected shock, and a high-frequency type associated with the propagation of instability waves past the interaction zone. Global linear stability analysis performed on the mean LES flow fields yields a single unstable zero-frequency mode, plus a variety of marginally stable low-frequency modes whose stability margin decreases with the strength of the interaction. The least stable linear modes are grouped into two classes, one of which bears striking resemblance to the breathing mode recovered from DMD and another class associated with revolving motion within the separation bubble. The results of the modal and linear stability analysis support the notion that low-frequency dynamics is intrinsic to the interaction zone, but some continuous forcing from the upstream boundary layer may be required to keep the system near a limit cycle. This can be modeled as a weakly damped oscillator with forcing, as in the early empirical model by Plotkin (AIAA J 13:1036-1040, 1975).
Role of delay and screening in controlling AIDS
NASA Astrophysics Data System (ADS)
Chauhan, Sudipa; Bhatia, Sumit Kaur; Gupta, Surbhi
2016-06-01
We propose a non-linear HIV/ AIDS model to analyse the spread and control of HIV/AIDS. The population is divided into three classes, susceptible, infective and AIDS patients. The model is developed under the assumptions of vertical transmission and time delay in infective class. Time delay is also included to show sexual maturity period of infected newborns. We study dynamics of the model and obtain the reproduction number. Now to control the epidemic, we study the model where aware infective class is also added, i.e., people are made aware of their medical status by way of screening. To make the model more realistic, we consider the situation where aware infective class also interacts with other people. The model is analysed qualitatively by stability theory of ODE. Stability analysis of both disease-free and endemic equilibrium is studied based on reproduction number. Also, it is proved that if (R0)1, R1 ≤ 1 then, disease free equilibrium point is locally asymptotically stable and if (R0)1, R1 > 1 then, disease free equilibrium is unstable. Also, the stability analysis of endemic equilibrium point has been done and it is shown that for (R0)1 > 1 endemic equilibrium point is stable. Global stability analysis of endemic equilibrium point has also been done. At last, it is shown numerically that the delay in sexual maturity of infected individuals result in less number of AIDS patients.
A Climatic Stability Approach to Prioritizing Global Conservation Investments
Iwamura, Takuya; Wilson, Kerrie A.; Venter, Oscar; Possingham, Hugh P.
2010-01-01
Climate change is impacting species and ecosystems globally. Many existing templates to identify the most important areas to conserve terrestrial biodiversity at the global scale neglect the future impacts of climate change. Unstable climatic conditions are predicted to undermine conservation investments in the future. This paper presents an approach to developing a resource allocation algorithm for conservation investment that incorporates the ecological stability of ecoregions under climate change. We discover that allocating funds in this way changes the optimal schedule of global investments both spatially and temporally. This allocation reduces the biodiversity loss of terrestrial endemic species from protected areas due to climate change by 22% for the period of 2002–2052, when compared to allocations that do not consider climate change. To maximize the resilience of global biodiversity to climate change we recommend that funding be increased in ecoregions located in the tropics and/or mid-elevation habitats, where climatic conditions are predicted to remain relatively stable. Accounting for the ecological stability of ecoregions provides a realistic approach to incorporating climate change into global conservation planning, with potential to save more species from extinction in the long term. PMID:21152095
ERIC Educational Resources Information Center
Cottey, Alan
2012-01-01
The author reflects briefly on what limited degree of global ecological stability and human cultural stability may be achieved, provided that humanity retains hope and does not give way to despair or hide in denial. These thoughts were triggered by a recent conference on International Stability and Systems Engineering. (Contains 5 notes.)
Pfleger, Christopher; Rathi, Prakash Chandra; Klein, Doris L; Radestock, Sebastian; Gohlke, Holger
2013-04-22
For deriving maximal advantage from information on biomacromolecular flexibility and rigidity, results from rigidity analyses must be linked to biologically relevant characteristics of a structure. Here, we describe the Python-based software package Constraint Network Analysis (CNA) developed for this task. CNA functions as a front- and backend to the graph-based rigidity analysis software FIRST. CNA goes beyond the mere identification of flexible and rigid regions in a biomacromolecule in that it (I) provides a refined modeling of thermal unfolding simulations that also considers the temperature-dependence of hydrophobic tethers, (II) allows performing rigidity analyses on ensembles of network topologies, either generated from structural ensembles or by using the concept of fuzzy noncovalent constraints, and (III) computes a set of global and local indices for quantifying biomacromolecular stability. This leads to more robust results from rigidity analyses and extends the application domain of rigidity analyses in that phase transition points ("melting points") and unfolding nuclei ("structural weak spots") are determined automatically. Furthermore, CNA robustly handles small-molecule ligands in general. Such advancements are important for applying rigidity analysis to data-driven protein engineering and for estimating the influence of ligand molecules on biomacromolecular stability. CNA maintains the efficiency of FIRST such that the analysis of a single protein structure takes a few seconds for systems of several hundred residues on a single core. These features make CNA an interesting tool for linking biomacromolecular structure, flexibility, (thermo-)stability, and function. CNA is available from http://cpclab.uni-duesseldorf.de/software for nonprofit organizations.
Scalable analysis of nonlinear systems using convex optimization
NASA Astrophysics Data System (ADS)
Papachristodoulou, Antonis
In this thesis, we investigate how convex optimization can be used to analyze different classes of nonlinear systems at various scales algorithmically. The methodology is based on the construction of appropriate Lyapunov-type certificates using sum of squares techniques. After a brief introduction on the mathematical tools that we will be using, we turn our attention to robust stability and performance analysis of systems described by Ordinary Differential Equations. A general framework for constrained systems analysis is developed, under which stability of systems with polynomial, non-polynomial vector fields and switching systems, as well estimating the region of attraction and the L2 gain can be treated in a unified manner. We apply our results to examples from biology and aerospace. We then consider systems described by Functional Differential Equations (FDEs), i.e., time-delay systems. Their main characteristic is that they are infinite dimensional, which complicates their analysis. We first show how the complete Lyapunov-Krasovskii functional can be constructed algorithmically for linear time-delay systems. Then, we concentrate on delay-independent and delay-dependent stability analysis of nonlinear FDEs using sum of squares techniques. An example from ecology is given. The scalable stability analysis of congestion control algorithms for the Internet is investigated next. The models we use result in an arbitrary interconnection of FDE subsystems, for which we require that stability holds for arbitrary delays, network topologies and link capacities. Through a constructive proof, we develop a Lyapunov functional for FAST---a recently developed network congestion control scheme---so that the Lyapunov stability properties scale with the system size. We also show how other network congestion control schemes can be analyzed in the same way. Finally, we concentrate on systems described by Partial Differential Equations. We show that axially constant perturbations of the Navier-Stokes equations for Hagen-Poiseuille flow are globally stable, even though the background noise is amplified as R3 where R is the Reynolds number, giving a 'robust yet fragile' interpretation. We also propose a sum of squares methodology for the analysis of systems described by parabolic PDEs. We conclude this work with an account for future research.
Regional Climate Impacts of Stabilizing Global Warming at 1.5 K Using Solar Geoengineering
NASA Astrophysics Data System (ADS)
Jones, Anthony C.; Hawcroft, Matthew K.; Haywood, James M.; Jones, Andy; Guo, Xiaoran; Moore, John C.
2018-02-01
The 2015 Paris Agreement aims to limit global warming to well below 2 K above preindustrial levels, and to pursue efforts to limit global warming to 1.5 K, in order to avert dangerous climate change. However, current greenhouse gas emissions targets are more compatible with scenarios exhibiting end-of-century global warming of 2.6-3.1 K, in clear contradiction to the 1.5 K target. In this study, we use a global climate model to investigate the climatic impacts of using solar geoengineering by stratospheric aerosol injection to stabilize global-mean temperature at 1.5 K for the duration of the 21st century against three scenarios spanning the range of plausible greenhouse gas mitigation pathways (RCP2.6, RCP4.5, and RCP8.5). In addition to stabilizing global mean temperature and offsetting both Arctic sea-ice loss and thermosteric sea-level rise, we find that solar geoengineering could effectively counteract enhancements to the frequency of extreme storms in the North Atlantic and heatwaves in Europe, but would be less effective at counteracting hydrological changes in the Amazon basin and North Atlantic storm track displacement. In summary, solar geoengineering may reduce global mean impacts but is an imperfect solution at the regional level, where the effects of climate change are experienced. Our results should galvanize research into the regionality of climate responses to solar geoengineering.
Makarieva, Anastassia M; Gorshkov, Victor G; Li, Bai-Lian
2010-05-01
The global environmental imperative demands urgent actions on ecological stabilization, yet the global scale of such actions is persistently insufficient. This calls for investigating why the world economy appears to be so fearful of any potential environmental expenditure. Using the formalism of Lyapunov potential function it is shown that the stability principles for biomass in the ecosystem and for employment in economics are mathematically similar. The ecosystem has a stable and unstable stationary state with high (forest) and low (grasslands) biomass, respectively. In economics, there is a stable stationary state with high employment in mass production of conventional goods sold at low cost price, and an unstable stationary state with lower employment in production of novel products of technological progress sold at higher prices. An additional stable state is described for economics with very low employment in production of life essentials, such as energy and raw materials that are sold at greatly inflated prices. In this state the civilization pays 10% of global GDP for energy produced by a negligible minority of the working population (currently approximately 0.2%) and sold at prices exceeding the cost price by 40 times, a state when any extra expenditures of whatever nature appear intolerable. The reason lies in the fundamental shortcoming of economic theory, which allows for economic ownership over energy sources. This is shown to be equivalent to equating measurable variables of different dimensions (stores and fluxes), which leads to effective violation of the laws of energy and matter conservation in modern economics.
Stability of streamwise vortices
NASA Technical Reports Server (NTRS)
Khorrami, M. K.; Grosch, C. E.; Ash, R. L.
1987-01-01
A brief overview of some theoretical and computational studies of the stability of streamwise vortices is given. The local induction model and classical hydrodynamic vortex stability theories are discussed in some detail. The importance of the three-dimensionality of the mean velocity profile to the results of stability calculations is discussed briefly. The mean velocity profile is provided by employing the similarity solution of Donaldson and Sullivan. The global method of Bridges and Morris was chosen for the spatial stability calculations for the nonlinear eigenvalue problem. In order to test the numerical method, a second order accurate central difference scheme was used to obtain the coefficient matrices. It was shown that a second order finite difference method lacks the required accuracy for global eigenvalue calculations. Finally the problem was formulated using spectral methods and a truncated Chebyshev series.
Adaptive correlation filter-based video stabilization without accumulative global motion estimation
NASA Astrophysics Data System (ADS)
Koh, Eunjin; Lee, Chanyong; Jeong, Dong Gil
2014-12-01
We present a digital video stabilization approach that provides both robustness and efficiency for practical applications. In this approach, we adopt a stabilization model that maintains spatio-temporal information of past input frames efficiently and can track original stabilization position. Because of the stabilization model, the proposed method does not need accumulative global motion estimation and can recover the original position even if there is a failure in interframe motion estimation. It can also intelligently overcome the situation of damaged or interrupted video sequences. Moreover, because it is simple and suitable to parallel scheme, we implement it on a commercial field programmable gate array and a graphics processing unit board with compute unified device architecture in a breeze. Experimental results show that the proposed approach is both fast and robust.
Climate change impacts on US agriculture and forestry: benefits of global climate stabilization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Beach, Robert H.; Cai, Yongxia; Thomson, Allison
Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. There have been numerous studies of climate change impacts on agriculture or forestry, but relatively little research examining the long-term net impacts of a stabilization scenario relative to a case with unabated climate change. We provide an analysis of the potential benefits of global climate change mitigation for US agriculture and forestry through 2100, accounting for landowner decisions regarding land use, crop mix, and management practices.more » The analytic approach involves a combination of climate models, a crop process model (EPIC), a dynamic vegetation model used for forests (MC1), and an economic model of the US forestry and agricultural sector (FASOM-GHG). We find substantial impacts on productivity, commodity markets, and consumer and producer welfare for the stabilization scenario relative to unabated climate change, though the magnitude and direction of impacts vary across regions and commodities. Although there is variability in welfare impacts across climate simulations, we find positive net benefits from stabilization in all cases, with cumulative impacts ranging from $32.7 billion to $54.5 billion over the period 2015-2100. Our estimates contribute to the literature on potential benefits of GHG mitigation and can help inform policy decisions weighing alternative mitigation and adaptation actions.« less
Short-Range-Order Mineral Physical Protection On Black Carbon Stabilization
NASA Astrophysics Data System (ADS)
Liang, B.; Weng, Y. T.; Wang, C. C.; Song, Y. F.; Lehmann, J.; Wang, C. H.
2015-12-01
Soil organic matter is one of the largest reservoirs in global carbon cycle, and black carbon (BC) represents a chemical resistant component. Black C plays an important role in global climate change. Generally considered recalcitrant due to high aromaticity, the reactive surface and functional groups of BC are crucial for carbon sequestration in soils. Mineral sorption and physical protection is an important mechanism for BC long term stabilization and sequestration in environments. Previous studies on mineral protection of BC were limited to analysis techniques in two-dimensions, for example, by SEM, TEM, and NanoSIMS. Little is known about the scope of organo-mineral association, the in-situ distribution and forms of minerals, and the ultimate interplay of BC and minerals. The aim of this study is to investigate the three-dimensional interaction of organic C and minerals in submicron scale using synchrotron-based Transmission X-ray Microcopy (TXM) and Fourier-Transform Infrared Spectroscopy (FTIR). Abundant poorly-crystallined nano-minerals particles were observed. These short-range-order (SRO) minerals also aggregate into clusters and sheets, and form envelops-like structures on the surface of BC. On top of large surface contact area, the intimate interplay between BC and minerals reinforces the stability of both organic C and minerals, resulting from chemical bonding through cation bridging and ligand exchange. The mineral protection enhances BC stabilization and sequestration and lowers its bioavailability in environment. The results suggest that mineral physical protection for BC sequestration may be more important than previous understanding.
Irving, James A.; Haq, Imran; Dickens, Jennifer A.; Faull, Sarah V.; Lomas, David A.
2014-01-01
Serpins are protease inhibitors whose most stable state is achieved upon transition of a central 5-stranded β-sheet to a 6-stranded form. Mutations, low pH, denaturants and elevated temperatures promote this transition, which can result in a growing polymer chain of inactive molecules. Different types of polymer are possible, but, experimentally only heat has been shown to generate polymers in vitro consistent with ex vivo pathological specimens. Many mutations that alter the rate of heat-induced polymerization have been described, but interpretation is problematic because discrimination is lacking between the effect of global changes in native stability and specific effects on structural mechanism. We show that the temperature midpoint (Tm) of thermal denaturation reflects the transition of α1-antitrypsin to the polymerization intermediate, and determine the relationship with fixed-temperature polymerization half-times (t0.5) in the presence of stabilizing additives [TMAO (trimethylamine N-oxide), sucrose and sodium sulfate], point mutations and disulfide bonds. Combined with a retrospective analysis of 31 mutants characterized in the literature, the results of the present study show that global changes to native state stability are the predominant basis for the effects of mutations and osmolytes on heat-induced polymerization, summarized by the equation: ln(t0.5,mutant/t0.5,wild-type)=0.34×ΔTm. It is deviations from this relationship that hold key information about the polymerization process. PMID:24552432
Yu, Wookyung; Baxa, Michael C.; Gagnon, Isabelle; Freed, Karl F.; Sosnick, Tobin R.
2016-01-01
The relationship between folding cooperativity and downhill, or barrier-free, folding of proteins under highly stabilizing conditions remains an unresolved topic, especially for proteins such as λ-repressor that fold on the microsecond timescale. Under aqueous conditions where downhill folding is most likely to occur, we measure the stability of multiple H bonds, using hydrogen exchange (HX) in a λYA variant that is suggested to be an incipient downhill folder having an extrapolated folding rate constant of 2 × 105 s−1 and a stability of 7.4 kcal·mol−1 at 298 K. At least one H bond on each of the three largest helices (α1, α3, and α4) breaks during a common unfolding event that reflects global denaturation. The use of HX enables us to both examine folding under highly stabilizing, native-like conditions and probe the pretransition state region for stable species without the need to initiate the folding reaction. The equivalence of the stability determined at zero and high denaturant indicates that any residual denatured state structure minimally affects the stability even under native conditions. Using our ψ analysis method along with mutational ϕ analysis, we find that the three aforementioned helices are all present in the folding transition state. Hence, the free energy surface has a sufficiently high barrier separating the denatured and native states that folding appears cooperative even under extremely stable and fast folding conditions. PMID:27078098
Khan, Sara; Farooq, Umar; Kurnikova, Maria
2017-08-22
In this study, we explore the structural and dynamic adaptations of the Tryptophan synthase α-subunit in a ligand bound state in psychrophilic, mesophilic and hyperthermophilic organisms at different temperatures by MD simulations. We quantify the global and local fluctuations in the 40 ns time scale by analyzing the root mean square deviation/fluctuations. The distinct behavior of the active site and loop 6 is observed with the elevation of temperature. Protein stability relies more on electrostatic interactions, and these interactions might be responsible for the stability of varying temperature evolved proteins. The paper also focuses on the effect of temperature on protein dynamics and stability governed by the distinct behavior of the ligand associated with its retention, binding and dissociation over the course of time. The integration of principle component analysis and a free energy landscape was useful in identifying the conformational space accessible to ligand bound homologues and how the presence of the ligand alters the conformational and dynamic properties of the protein.
Global stability of plane Couette flow beyond the energy stability limit
NASA Astrophysics Data System (ADS)
Fuentes, Federico; Goluskin, David
2017-11-01
This talk will present computations verifying that the laminar state of plane Couette flow is nonlinearly stable to all perturbations. The Reynolds numbers up to which this globally stability is verified are larger than those at which stability can be proven by the energy method, which is the typical method for demonstrating nonlinear stability of a fluid flow. This improvement is achieved by constructing Lyapunov functions that are more general than the energy. These functions are not restricted to being quadratic, and they are allowed to depend explicitly on the spectrum of the velocity field in the eigenbasis of the energy stability operator. The optimal choice of such a Lyapunov function is a convex optimization problem, and it can be constructed with computer assistance by solving a semidefinite program. This general method will be described in a companion talk by David Goluskin; the present talk focuses on its application to plane Couette flow.
Rotating hairy black holes in arbitrary dimensions
NASA Astrophysics Data System (ADS)
Erices, Cristián; Martínez, Cristián
2018-01-01
A class of exact rotating black hole solutions of gravity nonminimally coupled to a self-interacting scalar field in arbitrary dimensions is presented. These spacetimes are asymptotically locally anti-de Sitter manifolds and have a Ricci-flat event horizon hiding a curvature singularity at the origin. The scalar field is real and regular everywhere, and its effective mass, coming from the nonminimal coupling with the scalar curvature, saturates the Breitenlohner-Freedman bound for the corresponding spacetime dimension. The rotating black hole is obtained by applying an improper coordinate transformation to the static one. Although both spacetimes are locally equivalent, they are globally different, as it is confirmed by the nonvanishing angular momentum of the rotating black hole. It is found that the mass is bounded from below by the angular momentum, in agreement with the existence of an event horizon. The thermodynamical analysis is carried out in the grand canonical ensemble. The first law is satisfied, and a Smarr formula is exhibited. The thermodynamical local stability of the rotating hairy black holes is established from their Gibbs free energy. However, the global stability analysis establishes that the vacuum spacetime is always preferred over the hairy black hole. Thus, the hairy black hole is likely to decay into the vacuum one for any temperature.
Zhang, Zhengqiu; Liu, Wenbin; Zhou, Dongming
2012-01-01
In this paper, we first discuss the existence of a unique equilibrium point of a generalized Cohen-Grossberg BAM neural networks of neutral type delays by means of the Homeomorphism theory and inequality technique. Then, by applying the existence result of an equilibrium point and constructing a Lyapunov functional, we study the global asymptotic stability of the equilibrium solution to the above Cohen-Grossberg BAM neural networks of neutral type. In our results, the hypothesis for boundedness in the existing paper, which discussed Cohen-Grossberg neural networks of neutral type on the activation functions, are removed. Finally, we give an example to demonstrate the validity of our global asymptotic stability result for the above neural networks. Copyright © 2011 Elsevier Ltd. All rights reserved.
Dual mechanisms regulate ecosystem stability under decade-long warming and hay harvest
Shi, Zheng; Xu, Xia; Souza, Lara; Wilcox, Kevin; Jiang, Lifen; Liang, Junyi; Xia, Jianyang; García-Palacios, Pablo; Luo, Yiqi
2016-01-01
Past global change studies have identified changes in species diversity as a major mechanism regulating temporal stability of production, measured as the ratio of the mean to the standard deviation of community biomass. However, the dominant plant functional group can also strongly determine the temporal stability. Here, in a grassland ecosystem subject to 15 years of experimental warming and hay harvest, we reveal that warming increases while hay harvest decreases temporal stability. This corresponds with the biomass of the dominant C4 functional group being higher under warming and lower under hay harvest. As a secondary mechanism, biodiversity also explains part of the variation in temporal stability of production. Structural equation modelling further shows that warming and hay harvest regulate temporal stability through influencing both temporal mean and variation of production. Our findings demonstrate the joint roles that dominant plant functional group and biodiversity play in regulating the temporal stability of an ecosystem under global change. PMID:27302085
Yu, Dongyuan; Xu, Xu; Zhou, Jing; Li, Eric
2017-05-01
This study considers a delayed neural network with excitatory and inhibitory shortcuts. The global stability of the trivial equilibrium is investigated based on Lyapunov's direct method and the delay-dependent criteria are obtained. It is shown that both the excitatory and inhibitory shortcuts decrease the stability interval, but a time delay can be employed as a global stabilizer. In addition, we analyze the bounds of the eigenvalues of the adjacent matrix using matrix perturbation theory and then obtain the generalized sufficient conditions for local stability. The possibility of small inhibitory shortcuts is helpful for maintaining stability. The mechanisms of instability, bifurcation modes, and chaos are also investigated. Compared with methods based on mean-field theory, the proposed method can guarantee the stability of the system in most cases with random events. The proposed method is effective for cases where excitatory and inhibitory shortcuts exist simultaneously in the network. Copyright © 2017 Elsevier Ltd. All rights reserved.
Colado, Juan C; Pablos, Carlos; Chulvi-Medrano, Ivan; Garcia-Masso, Xavier; Flandez, Jorgez; Behm, David G
2011-11-01
To evaluate electromyographic activity of several paraspinal muscles during localized stabilizing exercises and multijoint or global stabilizing exercises. Cross-sectional counterbalanced repeated measures. Research laboratory. Volunteers (N=25) without low-back pain. Subjects performed (1) localized stabilizing exercises (callisthenic exercises with only body weight as resistance): static lumbar extension, stable (on floor) and unstable static unipedal forward flexion, stable dynamic unipedal forward flexion, and unstable supine bridge; and (2) global stabilizing exercises (70% of maximum voluntary isometric contraction [MVIC]): dead lift and lunge. Mean and maximum amplitude of the electromyographic RMS of the lumbar and thoracic multifidus spinae and erector spinae. Electromyographic signals were normalized to the MVIC achieved during a back-extension exercise. Normalizing to the MVIC, paraspinal muscles were significantly (P<.05) most active, with mean and peak amplitudes of 88.1% and 113.4% during the dynamic stable dead lift at 70% of MVIC, respectively. The supine bridge on the unstable surface obtained the significantly lowest values of 29.03% and 30.3%, respectively. The other exercises showed intermediate values that ranged from 35.4% to 61.6%. Findings from this study may be helpful to strength trainers and physical therapists in their choice of exercises for strengthening paraspinal muscles. Our results suggest that in asymptomatic young experienced subjects, the dead lift at 70% of MVIC provides higher levels of mean and peak electromyographic signals than localized stabilizing exercises and other types of global stabilizing exercises. Copyright © 2011 American Congress of Rehabilitation Medicine. Published by Elsevier Inc. All rights reserved.
Instability in strongly magnetized accretion discs: a global perspective
NASA Astrophysics Data System (ADS)
Das, Upasana; Begelman, Mitchell C.; Lesur, Geoffroy
2018-01-01
We examine the properties of strongly magnetized accretion discs in a global framework, with particular focus on the evolution of magnetohydrodynamic instabilities such as the magnetorotational instability (MRI). Work by Pessah & Psaltis showed that MRI is stabilized beyond a critical toroidal field in compressible, differentially rotating flows and, also, reported the appearance of two new instabilities beyond this field. Their results stemmed from considering geometric curvature effects due to the suprathermal background toroidal field, which had been previously ignored in weak-field studies. However, their calculations were performed under the local approximation, which poses the danger of introducing spurious behaviour due to the introduction of global geometric terms in an otherwise local framework. In order to avoid this, we perform a global eigenvalue analysis of the linearized MHD equations in cylindrical geometry. We confirm that MRI indeed tends to be highly suppressed when the background toroidal field attains the Pessah-Psaltis limit. We also observe the appearance of two new instabilities that emerge in the presence of highly suprathermal toroidal fields. These results were additionally verified using numerical simulations in PLUTO. There are, however, certain differences between the the local and global results, especially in the vertical wavenumber occupancies of the various instabilities, which we discuss in detail. We also study the global eigenfunctions of the most unstable modes in the suprathermal regime, which are inaccessible in the local analysis. Overall, our findings emphasize the necessity of a global treatment for accurately modelling strongly magnetized accretion discs.
Wu, Wei; Wang, Jin
2013-09-28
We established a potential and flux field landscape theory to quantify the global stability and dynamics of general spatially dependent non-equilibrium deterministic and stochastic systems. We extended our potential and flux landscape theory for spatially independent non-equilibrium stochastic systems described by Fokker-Planck equations to spatially dependent stochastic systems governed by general functional Fokker-Planck equations as well as functional Kramers-Moyal equations derived from master equations. Our general theory is applied to reaction-diffusion systems. For equilibrium spatially dependent systems with detailed balance, the potential field landscape alone, defined in terms of the steady state probability distribution functional, determines the global stability and dynamics of the system. The global stability of the system is closely related to the topography of the potential field landscape in terms of the basins of attraction and barrier heights in the field configuration state space. The effective driving force of the system is generated by the functional gradient of the potential field alone. For non-equilibrium spatially dependent systems, the curl probability flux field is indispensable in breaking detailed balance and creating non-equilibrium condition for the system. A complete characterization of the non-equilibrium dynamics of the spatially dependent system requires both the potential field and the curl probability flux field. While the non-equilibrium potential field landscape attracts the system down along the functional gradient similar to an electron moving in an electric field, the non-equilibrium flux field drives the system in a curly way similar to an electron moving in a magnetic field. In the small fluctuation limit, the intrinsic potential field as the small fluctuation limit of the potential field for spatially dependent non-equilibrium systems, which is closely related to the steady state probability distribution functional, is found to be a Lyapunov functional of the deterministic spatially dependent system. Therefore, the intrinsic potential landscape can characterize the global stability of the deterministic system. The relative entropy functional of the stochastic spatially dependent non-equilibrium system is found to be the Lyapunov functional of the stochastic dynamics of the system. Therefore, the relative entropy functional quantifies the global stability of the stochastic system with finite fluctuations. Our theory offers an alternative general approach to other field-theoretic techniques, to study the global stability and dynamics of spatially dependent non-equilibrium field systems. It can be applied to many physical, chemical, and biological spatially dependent non-equilibrium systems.
Assessing the Benefits of Global Climate Stabilization Within an Integrated Modeling Framework
NASA Astrophysics Data System (ADS)
Beach, R. H.
2015-12-01
Increasing atmospheric carbon dioxide levels, higher temperatures, altered precipitation patterns, and other climate change impacts have already begun to affect US agriculture and forestry, with impacts expected to become more substantial in the future. There have been a number of studies of climate change impacts on agriculture or forestry. However, relatively few studies explore climate change impacts on both agriculture and forests simultaneously, including the interactions between alternative land uses and implications for market outcomes. Additionally, there is a lack of detailed analyses of the effects of stabilization scenarios relative to unabated emissions scenarios. Such analyses are important for developing estimates of the benefits of those stabilization scenarios, which can play a vital role in assessing tradeoffs associated with allocating resources across alternative mitigation and adaptation activities. We provide an analysis of the potential benefits of global climate change mitigation for US agriculture and forestry through 2100, accounting for landowner decisions regarding land use, crop mix, and management practices. The analytic approach involves a combination of climate models, a crop process model (EPIC), a dynamic vegetation model used for forests (MC1), and an economic model of the US forestry and agricultural sector (FASOM-GHG). We find substantial impacts on productivity, commodity markets, and consumer and producer welfare for the stabilization scenario relative to unabated climate change, though the magnitude and direction of impacts vary across regions and commodities. Although there is variability in welfare impacts across climate simulations, we find positive net benefits from stabilization in all cases, with cumulative impacts ranging from 32.7 billion to 54.5 billion over the period 2015-2100. Our estimates contribute to the literature on potential benefits of GHG mitigation and can help inform policy decisions weighing alternative mitigation and adaptation actions.
Sharp conditions for global stability of Lotka-Volterra systems with distributed delays
NASA Astrophysics Data System (ADS)
Faria, Teresa
We give a criterion for the global attractivity of a positive equilibrium of n-dimensional non-autonomous Lotka-Volterra systems with distributed delays. For a class of autonomous Lotka-Volterra systems, we show that such a criterion is sharp, in the sense that it provides necessary and sufficient conditions for the global asymptotic stability independently of the choice of the delay functions. The global attractivity of positive equilibria is established by imposing a diagonal dominance of the instantaneous negative feedback terms, and relies on auxiliary results showing the boundedness of all positive solutions. The paper improves and generalizes known results in the literature, namely by considering systems with distributed delays rather than discrete delays.
Global Stability and Dynamics of Strongly Nonlinear Systems Using Koopman Operator Theory
2017-03-01
calculus, applied mathematics, Director’s Research Initiative 16. SECURITY CLASSIFICATION OF: 17. LIMITATION OF ABSTRACT UU 18... research of Svenkeson et al.4 Section 2 is Accomplishments and Section 3 is the Conclusion. 2. Accomplishments 2.1 Prescribed External Forcing To study ...ARL-TR-7959 MAR 2017 US Army Research Laboratory Global Stability and Dynamics of Strongly Nonlinear Systems Using Koopman
NASA Technical Reports Server (NTRS)
Hidalgo, Homero, Jr.
2000-01-01
An innovative methodology for determining structural target mode selection and mode selection based on a specific criterion is presented. An effective approach to single out modes which interact with specific locations on a structure has been developed for the X-33 Launch Vehicle Finite Element Model (FEM). We presented Root-Sum-Square (RSS) displacement method computes resultant modal displacement for each mode at selected degrees of freedom (DOF) and sorts to locate modes with highest values. This method was used to determine modes, which most influenced specific locations/points on the X-33 flight vehicle such as avionics control components, aero-surface control actuators, propellant valve and engine points for use in flight control stability analysis and for flight POGO stability analysis. Additionally, the modal RSS method allows for primary or global target vehicle modes to also be identified in an accurate and efficient manner.
Safna Hussan, K P; Thayyil, M Shahin; Rajan, Vijisha K; Muraleedharan, K
2018-02-01
Molecular aspects of a double active pharmaceutical ingredient in ionic liquid form, benzalkonium ibuprofenate (BaIb), were studied using density functional theory (DFT/B3LYP/6-31+G (d, p)). A detailed discussion on optimized geometry, energy, heat and the enthalpy of BaIb was carried out. The computed vibrational results agree well with the experimental results. The stability and biological activity were compared to the parent drugs on the basis of global descriptive parameters. The electrophilic and nucleophilic sites were pointed out in the MESP structures well evidently. NBO analysis was also done to predict the relative aromaticity, delocalization effects and the contribution towards stabilization energy of the title compound. The information about non-covalent, non-ionic weak interaction between the cation and anion was obtained from the list of Mulliken charges and NBO analysis. Copyright © 2017 Elsevier Ltd. All rights reserved.
Optimal Variable-Structure Control Tracking of Spacecraft Maneuvers
NASA Technical Reports Server (NTRS)
Crassidis, John L.; Vadali, Srinivas R.; Markley, F. Landis
1999-01-01
An optimal control approach using variable-structure (sliding-mode) tracking for large angle spacecraft maneuvers is presented. The approach expands upon a previously derived regulation result using a quaternion parameterization for the kinematic equations of motion. This parameterization is used since it is free of singularities. The main contribution of this paper is the utilization of a simple term in the control law that produces a maneuver to the reference attitude trajectory in the shortest distance. Also, a multiplicative error quaternion between the desired and actual attitude is used to derive the control law. Sliding-mode switching surfaces are derived using an optimal-control analysis. Control laws are given using either external torque commands or reaction wheel commands. Global asymptotic stability is shown for both cases using a Lyapunov analysis. Simulation results are shown which use the new control strategy to stabilize the motion of the Microwave Anisotropy Probe spacecraft.
Spatial and temporal stability of temperature in the first-level basins of China during 1951-2013
NASA Astrophysics Data System (ADS)
Cheng, Yuting; Li, Peng; Xu, Guoce; Li, Zhanbin; Cheng, Shengdong; Wang, Bin; Zhao, Binhua
2018-05-01
In recent years, global warming has attracted great attention around the world. Temperature change is not only involved in global climate change but also closely linked to economic development, the ecological environment, and agricultural production. In this study, based on temperature data recorded by 756 meteorological stations in China during 1951-2013, the spatial and temporal stability characteristics of annual temperature in China and its first-level basins were investigated using the rank correlation coefficient method, the relative difference method, rescaled range (R/S) analysis, and wavelet transforms. The results showed that during 1951-2013, the spatial variation of annual temperature belonged to moderate variability in the national level. Among the first-level basins, the largest variation coefficient was 114% in the Songhuajiang basin and the smallest variation coefficient was 10% in the Huaihe basin. During 1951-2013, the spatial distribution pattern of annual temperature presented extremely strong spatial and temporal stability characteristics in the national level. The variation range of Spearman's rank correlation coefficient was 0.97-0.99, and the spatial distribution pattern of annual temperature showed an increasing trend. In the national level, the Liaohe basin, the rivers in the southwestern region, the Haihe basin, the Yellow River basin, the Yangtze River basin, the Huaihe basin, the rivers in the southeastern region, and the Pearl River basin all had representative meteorological stations for annual temperature. In the Songhuajiang basin and the rivers in the northwestern region, there was no representative meteorological station. R/S analysis, the Mann-Kendall test, and the Morlet wavelet analysis of annual temperature showed that the best representative meteorological station could reflect the variation trend and the main periodic changes of annual temperature in the region. Therefore, strong temporal stability characteristics exist for annual temperature in China and its first-level basins. It was therefore feasible to estimate the annual average temperature by the annual temperature recorded by the representative meteorological station in the region. Moreover, it was of great significance to assess average temperature changes quickly and forecast future change tendencies in the region.
Eutrophication weakens stabilizing effects of diversity in natural grasslands.
Hautier, Yann; Seabloom, Eric W; Borer, Elizabeth T; Adler, Peter B; Harpole, W Stanley; Hillebrand, Helmut; Lind, Eric M; MacDougall, Andrew S; Stevens, Carly J; Bakker, Jonathan D; Buckley, Yvonne M; Chu, Chengjin; Collins, Scott L; Daleo, Pedro; Damschen, Ellen I; Davies, Kendi F; Fay, Philip A; Firn, Jennifer; Gruner, Daniel S; Jin, Virginia L; Klein, Julia A; Knops, Johannes M H; La Pierre, Kimberly J; Li, Wei; McCulley, Rebecca L; Melbourne, Brett A; Moore, Joslin L; O'Halloran, Lydia R; Prober, Suzanne M; Risch, Anita C; Sankaran, Mahesh; Schuetz, Martin; Hector, Andy
2014-04-24
Studies of experimental grassland communities have demonstrated that plant diversity can stabilize productivity through species asynchrony, in which decreases in the biomass of some species are compensated for by increases in others. However, it remains unknown whether these findings are relevant to natural ecosystems, especially those for which species diversity is threatened by anthropogenic global change. Here we analyse diversity-stability relationships from 41 grasslands on five continents and examine how these relationships are affected by chronic fertilization, one of the strongest drivers of species loss globally. Unmanipulated communities with more species had greater species asynchrony, resulting in more stable biomass production, generalizing a result from biodiversity experiments to real-world grasslands. However, fertilization weakened the positive effect of diversity on stability. Contrary to expectations, this was not due to species loss after eutrophication but rather to an increase in the temporal variation of productivity in combination with a decrease in species asynchrony in diverse communities. Our results demonstrate separate and synergistic effects of diversity and eutrophication on stability, emphasizing the need to understand how drivers of global change interactively affect the reliable provisioning of ecosystem services in real-world systems.
Zhao, Shouwei
2011-06-01
A Lie algebraic condition for global exponential stability of linear discrete switched impulsive systems is presented in this paper. By considering a Lie algebra generated by all subsystem matrices and impulsive matrices, when not all of these matrices are Schur stable, we derive new criteria for global exponential stability of linear discrete switched impulsive systems. Moreover, simple sufficient conditions in terms of Lie algebra are established for the synchronization of nonlinear discrete systems using a hybrid switching and impulsive control. As an application, discrete chaotic system's synchronization is investigated by the proposed method.
A new delay-independent condition for global robust stability of neural networks with time delays.
Samli, Ruya
2015-06-01
This paper studies the problem of robust stability of dynamical neural networks with discrete time delays under the assumptions that the network parameters of the neural system are uncertain and norm-bounded, and the activation functions are slope-bounded. By employing the results of Lyapunov stability theory and matrix theory, new sufficient conditions for the existence, uniqueness and global asymptotic stability of the equilibrium point for delayed neural networks are presented. The results reported in this paper can be easily tested by checking some special properties of symmetric matrices associated with the parameter uncertainties of neural networks. We also present a numerical example to show the effectiveness of the proposed theoretical results. Copyright © 2015 Elsevier Ltd. All rights reserved.
Aquarius Instrument Science Calibration During the Risk Reduction Phase
NASA Technical Reports Server (NTRS)
Ruf, Christopher S.
2004-01-01
This final report presents the results of work performed under NASA Grant NAG512726 during the period 15 January 2003 through 30 June 2004. An analysis was performed of a possible vicarious calibration method for use by Aquarius to monitor and stabilize the absolute and relative calibration of its microwave radiometer. Stationary statistical properties of the brightness temperature (T(sub B)) measured by a low Earth orbiting radiometer operating at 1.4135 GHz are considered as a means of validating its absolute calibration. The global minimum, maximum, and average T(sub B) are considered, together with a vicarious cold reference method that detects the presence of a sharp lower bound on naturally occurring values for T(sub B). Of particular interest is the reliability with which these statistics can be extracted from a realistic distribution of T(sub B) measurements that would be observed by a typical sensor. Simulations of measurements are performed that include the effects of instrument noise and variable environmental factors such as the global water vapor and ocean surface temperature, salinity and wind distributions. Global minima can vary widely due to instrument noise and are not a reliable calibration reference. Global maxima are strongly influenced by several environmental factors as well as instrument noise and are even less stationary. Global averages are largely insensitive to instrument noise and, in most cases, to environmental conditions as well. The global average T(sub B) varies at only the 0.1 K RMS level except in cases of anomalously high winds, when it can increase considerably more. The vicarious cold reference is similarly insensitive to instrument effects and most environmental factors. It is not significantly affected by high wind conditions. The stability of the vicarious reference is, however, found to be somewhat sensitive (at the several tenths of Kelvins level) to variations in the background cold space brightness, T(sub c). The global average is much less sensitive to this parameter and so using two approaches together can be mutually beneficial.
Assistant Secretary of Defense for Homeland Defense and Global Security
Defense for Policy ASD for Asian and Pacific Security Affairs ASD for Homeland Defense Global Security Special Operations/Low-Intensity Conflict Counternarcotics and Global Threats Stability and Humanitarian HomeOUSDP OfficesASD for Homeland Defense Global Security Assistant Secretary of Defense for Homeland
Global Linear Stability Analysis of the Spoke Oscillation in Hall Effect Thrusters
2014-07-15
Princeton with modern thrusters, confirm the existence of a low-frequency azimuthal oscillation, called rotating spoke, of similar nature as those...RESPONSIBLE PERSON Kevin P. Bollino a. REPORT UNCLAS b . ABSTRACT UNCLAS c. THIS PAGE UNCLAS 19b. TELEPHONE NUMBER (Include area code) 011-44...rotating spoke, of similar nature as those originally detected in the 1960’s by Janes and Lowder. This project aims at studying theoretically these
Further results on global state feedback stabilization of nonlinear high-order feedforward systems.
Xie, Xue-Jun; Zhang, Xing-Hui
2014-03-01
In this paper, by introducing a combined method of sign function, homogeneous domination and adding a power integrator, and overcoming several troublesome obstacles in the design and analysis, the problem of state feedback control for a class of nonlinear high-order feedforward systems with the nonlinearity's order being relaxed to an interval rather than a fixed point is solved. Copyright © 2013 ISA. Published by Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Roy, Sankar Kumar; Roy, Banani
In this article, a prey-predator system with Holling type II functional response for the predator population including prey refuge region has been analyzed. Also a harvesting effort has been considered for the predator population. The density-dependent mortality rate for the prey, predator and super predator has been considered. The equilibria of the proposed system have been determined. Local and global stabilities for the system have been discussed. We have used the analytic approach to derive the global asymptotic stabilities of the system. The maximal predator per capita consumption rate has been considered as a bifurcation parameter to evaluate Hopf bifurcation in the neighborhood of interior equilibrium point. Also, we have used fishing effort to harvest predator population of the system as a control to develop a dynamic framework to investigate the optimal utilization of the resource, sustainability properties of the stock and the resource rent is earned from the resource. Finally, we have presented some numerical simulations to verify the analytic results and the system has been analyzed through graphical illustrations.
Crocker, Peter R E; Brune, Sara M; Kowalski, Kent C; Mack, Diane E; Wilson, Philip M; Sabiston, Catherine M
2014-01-01
Guided by the process model of self-conscious emotions, this study examined whether physical self-concept (PSC) and shame and guilt proneness were associated with body-related self-conscious emotions of state shame and guilt and if these relationships were mediated by attributions of stability, globality, and controllability. Female participants (N=284; Mean age=20.6±1.9 years) completed measures of PSC and shame and guilt proneness before reading a hypothetical scenario. Participants completed measures of attributions and state shame and guilt in response to the scenario. Significant relationships were noted between state shame and attributions of globality and controllability, and shame proneness, guilt proneness, and PSC. Similar relationships, with the additional predictor of stability, were found for state guilt. Mediation analysis partially supported the process model hypotheses for shame. Results indicate PSC and shame proneness are important in predicting body-related emotions, but the role of specific attributions are still unclear. Copyright © 2013 Elsevier Ltd. All rights reserved.
Adaptive tracking control for a class of stochastic switched systems
NASA Astrophysics Data System (ADS)
Zhang, Hui; Xia, Yuanqing
2018-02-01
The problem of adaptive tracking is considered for a class of stochastic switched systems, in this paper. As preliminaries, the criterion of global asymptotical practical stability in probability is first presented by the aid of common Lyapunov function method. Based on the Lyapunov stability criterion, adaptive backstepping controllers are designed to guarantee that the closed-loop system has a unique global solution, which is globally asymptotically practically stable in probability, and the tracking error in the fourth moment converges to an arbitrarily small neighbourhood of zero. Simulation examples are given to demonstrate the efficiency of the proposed schemes.
Global growth and stability of agricultural yield decrease with pollinator dependence
Garibaldi, Lucas A.; Aizen, Marcelo A.; Klein, Alexandra M.; Cunningham, Saul A.; Harder, Lawrence D.
2011-01-01
Human welfare depends on the amount and stability of agricultural production, as determined by crop yield and cultivated area. Yield increases asymptotically with the resources provided by farmers’ inputs and environmentally sensitive ecosystem services. Declining yield growth with increased inputs prompts conversion of more land to cultivation, but at the risk of eroding ecosystem services. To explore the interdependence of agricultural production and its stability on ecosystem services, we present and test a general graphical model, based on Jensen's inequality, of yield–resource relations and consider implications for land conversion. For the case of animal pollination as a resource influencing crop yield, this model predicts that incomplete and variable pollen delivery reduces yield mean and stability (inverse of variability) more for crops with greater dependence on pollinators. Data collected by the Food and Agriculture Organization of the United Nations during 1961–2008 support these predictions. Specifically, crops with greater pollinator dependence had lower mean and stability in relative yield and yield growth, despite global yield increases for most crops. Lower yield growth was compensated by increased land cultivation to enhance production of pollinator-dependent crops. Area stability also decreased with pollinator dependence, as it correlated positively with yield stability among crops. These results reveal that pollen limitation hinders yield growth of pollinator-dependent crops, decreasing temporal stability of global agricultural production, while promoting compensatory land conversion to agriculture. Although we examined crop pollination, our model applies to other ecosystem services for which the benefits to human welfare decelerate as the maximum is approached. PMID:21422295
Continental drift and climate change drive instability in insect assemblages
NASA Astrophysics Data System (ADS)
Li, Fengqing; Tierno de Figueroa, José Manuel; Lek, Sovan; Park, Young-Seuk
2015-06-01
Global change has already had observable effects on ecosystems worldwide, and the accelerated rate of global change is predicted in the future. However, the impacts of global change on the stability of biodiversity have not been systematically studied in terms of both large spatial (continental drift) and temporal (from the last inter-glacial period to the next century) scales. Therefore, we analyzed the current geographical distribution pattern of Plecoptera, a thermally sensitive insect group, and evaluated its stability when coping with global change across both space and time throughout the Mediterranean region—one of the first 25 global biodiversity hotspots. Regional biodiversity of Plecoptera reflected the geography in both the historical movements of continents and the current environmental conditions in the western Mediterranean region. The similarity of Plecoptera assemblages between areas in this region indicated that the uplift of new land and continental drift were the primary determinants of the stability of regional biodiversity. Our results revealed that climate change caused the biodiversity of Plecoptera to slowly diminish in the past and will cause remarkably accelerated biodiversity loss in the future. These findings support the theory that climate change has had its greatest impact on biodiversity over a long temporal scale.
Continental drift and climate change drive instability in insect assemblages
Li, Fengqing; Tierno de Figueroa, José Manuel; Lek, Sovan; Park, Young-Seuk
2015-01-01
Global change has already had observable effects on ecosystems worldwide, and the accelerated rate of global change is predicted in the future. However, the impacts of global change on the stability of biodiversity have not been systematically studied in terms of both large spatial (continental drift) and temporal (from the last inter-glacial period to the next century) scales. Therefore, we analyzed the current geographical distribution pattern of Plecoptera, a thermally sensitive insect group, and evaluated its stability when coping with global change across both space and time throughout the Mediterranean region—one of the first 25 global biodiversity hotspots. Regional biodiversity of Plecoptera reflected the geography in both the historical movements of continents and the current environmental conditions in the western Mediterranean region. The similarity of Plecoptera assemblages between areas in this region indicated that the uplift of new land and continental drift were the primary determinants of the stability of regional biodiversity. Our results revealed that climate change caused the biodiversity of Plecoptera to slowly diminish in the past and will cause remarkably accelerated biodiversity loss in the future. These findings support the theory that climate change has had its greatest impact on biodiversity over a long temporal scale. PMID:26081036
Continental drift and climate change drive instability in insect assemblages.
Li, Fengqing; Tierno de Figueroa, José Manuel; Lek, Sovan; Park, Young-Seuk
2015-06-17
Global change has already had observable effects on ecosystems worldwide, and the accelerated rate of global change is predicted in the future. However, the impacts of global change on the stability of biodiversity have not been systematically studied in terms of both large spatial (continental drift) and temporal (from the last inter-glacial period to the next century) scales. Therefore, we analyzed the current geographical distribution pattern of Plecoptera, a thermally sensitive insect group, and evaluated its stability when coping with global change across both space and time throughout the Mediterranean region--one of the first 25 global biodiversity hotspots. Regional biodiversity of Plecoptera reflected the geography in both the historical movements of continents and the current environmental conditions in the western Mediterranean region. The similarity of Plecoptera assemblages between areas in this region indicated that the uplift of new land and continental drift were the primary determinants of the stability of regional biodiversity. Our results revealed that climate change caused the biodiversity of Plecoptera to slowly diminish in the past and will cause remarkably accelerated biodiversity loss in the future. These findings support the theory that climate change has had its greatest impact on biodiversity over a long temporal scale.
Huang, Si-Da; Shang, Cheng; Zhang, Xiao-Jie; Liu, Zhi-Pan
2017-09-01
While the underlying potential energy surface (PES) determines the structure and other properties of a material, it has been frustrating to predict new materials from theory even with the advent of supercomputing facilities. The accuracy of the PES and the efficiency of PES sampling are two major bottlenecks, not least because of the great complexity of the material PES. This work introduces a "Global-to-Global" approach for material discovery by combining for the first time a global optimization method with neural network (NN) techniques. The novel global optimization method, named the stochastic surface walking (SSW) method, is carried out massively in parallel for generating a global training data set, the fitting of which by the atom-centered NN produces a multi-dimensional global PES; the subsequent SSW exploration of large systems with the analytical NN PES can provide key information on the thermodynamics and kinetics stability of unknown phases identified from global PESs. We describe in detail the current implementation of the SSW-NN method with particular focuses on the size of the global data set and the simultaneous energy/force/stress NN training procedure. An important functional material, TiO 2 , is utilized as an example to demonstrate the automated global data set generation, the improved NN training procedure and the application in material discovery. Two new TiO 2 porous crystal structures are identified, which have similar thermodynamics stability to the common TiO 2 rutile phase and the kinetics stability for one of them is further proved from SSW pathway sampling. As a general tool for material simulation, the SSW-NN method provides an efficient and predictive platform for large-scale computational material screening.
Analysis of a Precambrian Resonance-Stabilized Day Length
NASA Astrophysics Data System (ADS)
Bartlett, B. C.; Stevenson, D. J.
2014-12-01
Calculations indicate the average rate of decrease of Earth's angular momentum must have been less than its present value in the past; otherwise, the Earth should have a longer day length. Existing stromatolite data suggests the Earth's rotational frequency would have been near that of the atmospheric resonance frequency toward the end of the Precambrian era, approximately 600Ma. The semidiurnal atmospheric tidal torque would have reached a maximum near this day length of 21hr. At this point, the atmospheric torque would have been comparable in magnitude but opposite in direction to the lunar torque, creating a stabilizing effect which could preserve a constant day length while trapped in this resonant state, as suggested by Zahnle and Walker (1987). We examine the hypothesis that this resonant stability was encountered and sustained for a large amount of time during the Precambrian era and was broken by a large and relatively fast increase in global temperature, possibly in the deglaciation period following a snowball event. Computational simulations of this problem were performed, indicating that a persistent increase in temperature larger than around 10K over a period of time less than 107 years will break resonance (though these values vary with Q), but that the resonant stability is not easily broken by random high-amplitude high-frequency atmospheric temperature fluctuation or other forms of thermal noise. Further work also indicates it is possible to escape resonance simply by increasing the lunar tidal torque on the much longer timescale of plate tectonics, particularly for low atmospheric Q-factors, or that resonance could have never formed in the first place, had the lunar torque been very high or Q been very low when the Earth's rotational frequency was near the atmospheric resonance frequency. However, the need to explain the present day length given the current lunar torque favors the interpretation we offer, in which Earth's length of day was stabilized for hundreds of millions of years, escaping this stability in the aftermath of a sudden global temperature change.
NASA Technical Reports Server (NTRS)
Gierasch, P.; Kahn, R. A.
1985-01-01
The first systematic account of the climate of Mars, based upon observations was produced. Cloud data were used to determine spatially and temporally varying near-surface wind direction, relative wind speed, static stability, and humidity conditions on a global scale. Existing models of meteorological processes were critically reexamined in light of the data, and more stringent constraints were set on global processes. Several discoveries were made, including the large extent and seasonal variability of the Mars equatorial Hadley cell, the failure of high latitude winds to reverse direction in early northern spring, the change in meridional wind component in southern midautum, and the almost constant cloud cover in the northern hemisphere, during spring and summer primarily by condensate clouds and in fall and winter by condensates and dust. The implications of these observations are discussed.
Multi-water-bag models of ion temperature gradient instability in cylindrical geometry
DOE Office of Scientific and Technical Information (OSTI.GOV)
Coulette, David; Besse, Nicolas
2013-05-15
Ion temperature gradient instabilities play a major role in the understanding of anomalous transport in core fusion plasmas. In the considered cylindrical geometry, ion dynamics is described using a drift-kinetic multi-water-bag model for the parallel velocity dependency of the ion distribution function. In a first stage, global linear stability analysis is performed. From the obtained normal modes, parametric dependencies of the main spectral characteristics of the instability are then examined. Comparison of the multi-water-bag results with a reference continuous Maxwellian case allows us to evaluate the effects of discrete parallel velocity sampling induced by the Multi-Water-Bag model. Differences between themore » global model and local models considered in previous works are discussed. Using results from linear, quasilinear, and nonlinear numerical simulations, an analysis of the first stage saturation dynamics of the instability is proposed, where the divergence between the three models is examined.« less
Proteomic analysis of the bacterial cell cycle
Grünenfelder, Björn; Rummel, Gabriele; Vohradsky, Jiri; Röder, Daniel; Langen, Hanno; Jenal, Urs
2001-01-01
A global approach was used to analyze protein synthesis and stability during the cell cycle of the bacterium Caulobacter crescentus. Approximately one-fourth (979) of the estimated C. crescentus gene products were detected by two-dimensional gel electrophoresis, 144 of which showed differential cell cycle expression patterns. Eighty-one of these proteins were identified by mass spectrometry and were assigned to a wide variety of functional groups. Pattern analysis revealed that coexpression groups were functionally clustered. A total of 48 proteins were rapidly degraded in the course of one cell cycle. More than half of these unstable proteins were also found to be synthesized in a cell cycle-dependent manner, establishing a strong correlation between rapid protein turnover and the periodicity of the bacterial cell cycle. This is, to our knowledge, the first evidence for a global role of proteolysis in bacterial cell cycle control. PMID:11287652
Liu, Chongxin; Liu, Hang
2017-01-01
This paper presents a continuous composite control scheme to achieve fixed-time stabilization for nonlinear systems with mismatched disturbances. The composite controller is constructed in two steps: First, uniformly finite time exact disturbance observers are proposed to estimate and compensate the disturbances. Then, based on adding a power integrator technique and fixed-time stability theory, continuous fixed-time stable state feedback controller and Lyapunov functions are constructed to achieve global fixed-time system stabilization. The proposed control method extends the existing fixed-time stable control results to high order nonlinear systems with mismatched disturbances and achieves global fixed-time system stabilization. Besides, the proposed control scheme improves the disturbance rejection performance and achieves performance recovery of nominal system. Simulation results are provided to show the effectiveness, the superiority and the applicability of the proposed control scheme. PMID:28406966
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fu, G.Y.; Cooper, W.A.; Gruber, R.
1992-06-01
The TERPSICHORE three-dimensional linear ideal magnetohydrodynamic (MHD) stability code ({ital Theory} {ital of} {ital Fusion} {ital Plasmas}, Proceedings of the Joint Varenna--Lausanne International Workshop, Chexbres, Switzerland, 1988 (Editrice Compositori, Bologna, Italy, 1989), p. 93; {ital Controlled} {ital Fusion} {ital and} {ital Plasma} {ital Heating}, Proceedings of the 17th European Conference, Amsterdam, The Netherlands (European Physical Society, Petit-Lancy, Switzerland, 1990), Vol. 14B, Part II, p. 931; {ital Theory} {ital of} {ital Fusion} {ital Plasmas}, Proceedings of the Joint Varenna--Lausanne International Workshop, Valla Monastero, Varenna, Italy, 1990 (Editrice Compositori, Bologna, Italy, 1990), p. 655) has been extended to the full MHD equations.more » The new code is used to calculate the physical growth rates of nonlocal low-{ital n} modes for {ital l}=2 torsatron configurations. A comprehensive investigation of the relation between the Mercier modes and the low-{ital n} modes has been performed. The unstable localized low-{ital n} modes are found to be correlated with the Mercier criterion. Finite growth rates of the low-{ital n} modes correspond to finite values of the Mercier criterion parameter. Near the Mercier marginal stability boundary, the low-{ital n} modes tend to be weakly unstable with very small growth rates. However, the stability of global-type low-{ital n} modes is found to be decorrelated from that of Mercier modes. The low-{ital n} modes with global radial structures can be more stable or more unstable than Mercier modes.« less
Sáez, Carlos; Robles, Montserrat; García-Gómez, Juan M
2017-02-01
Biomedical data may be composed of individuals generated from distinct, meaningful sources. Due to possible contextual biases in the processes that generate data, there may exist an undesirable and unexpected variability among the probability distribution functions (PDFs) of the source subsamples, which, when uncontrolled, may lead to inaccurate or unreproducible research results. Classical statistical methods may have difficulties to undercover such variabilities when dealing with multi-modal, multi-type, multi-variate data. This work proposes two metrics for the analysis of stability among multiple data sources, robust to the aforementioned conditions, and defined in the context of data quality assessment. Specifically, a global probabilistic deviation and a source probabilistic outlyingness metrics are proposed. The first provides a bounded degree of the global multi-source variability, designed as an estimator equivalent to the notion of normalized standard deviation of PDFs. The second provides a bounded degree of the dissimilarity of each source to a latent central distribution. The metrics are based on the projection of a simplex geometrical structure constructed from the Jensen-Shannon distances among the sources PDFs. The metrics have been evaluated and demonstrated their correct behaviour on a simulated benchmark and with real multi-source biomedical data using the UCI Heart Disease data set. The biomedical data quality assessment based on the proposed stability metrics may improve the efficiency and effectiveness of biomedical data exploitation and research.
Krüger, Dennis M; Rathi, Prakash Chandra; Pfleger, Christopher; Gohlke, Holger
2013-07-01
The Constraint Network Analysis (CNA) web server provides a user-friendly interface to the CNA approach developed in our laboratory for linking results from rigidity analyses to biologically relevant characteristics of a biomolecular structure. The CNA web server provides a refined modeling of thermal unfolding simulations that considers the temperature dependence of hydrophobic tethers and computes a set of global and local indices for quantifying biomacromolecular stability. From the global indices, phase transition points are identified where the structure switches from a rigid to a floppy state; these phase transition points can be related to a protein's (thermo-)stability. Structural weak spots (unfolding nuclei) are automatically identified, too; this knowledge can be exploited in data-driven protein engineering. The local indices are useful in linking flexibility and function and to understand the impact of ligand binding on protein flexibility. The CNA web server robustly handles small-molecule ligands in general. To overcome issues of sensitivity with respect to the input structure, the CNA web server allows performing two ensemble-based variants of thermal unfolding simulations. The web server output is provided as raw data, plots and/or Jmol representations. The CNA web server, accessible at http://cpclab.uni-duesseldorf.de/cna or http://www.cnanalysis.de, is free and open to all users with no login requirement.
Krüger, Dennis M.; Rathi, Prakash Chandra; Pfleger, Christopher; Gohlke, Holger
2013-01-01
The Constraint Network Analysis (CNA) web server provides a user-friendly interface to the CNA approach developed in our laboratory for linking results from rigidity analyses to biologically relevant characteristics of a biomolecular structure. The CNA web server provides a refined modeling of thermal unfolding simulations that considers the temperature dependence of hydrophobic tethers and computes a set of global and local indices for quantifying biomacromolecular stability. From the global indices, phase transition points are identified where the structure switches from a rigid to a floppy state; these phase transition points can be related to a protein’s (thermo-)stability. Structural weak spots (unfolding nuclei) are automatically identified, too; this knowledge can be exploited in data-driven protein engineering. The local indices are useful in linking flexibility and function and to understand the impact of ligand binding on protein flexibility. The CNA web server robustly handles small-molecule ligands in general. To overcome issues of sensitivity with respect to the input structure, the CNA web server allows performing two ensemble-based variants of thermal unfolding simulations. The web server output is provided as raw data, plots and/or Jmol representations. The CNA web server, accessible at http://cpclab.uni-duesseldorf.de/cna or http://www.cnanalysis.de, is free and open to all users with no login requirement. PMID:23609541
Ice-free Arctic projections under the Paris Agreement
NASA Astrophysics Data System (ADS)
Sigmond, Michael; Fyfe, John C.; Swart, Neil C.
2018-05-01
Under the Paris Agreement, emissions scenarios are pursued that would stabilize the global mean temperature at 1.5-2.0 °C above pre-industrial levels, but current emission reduction policies are expected to limit warming by 2100 to approximately 3.0 °C. Whether such emissions scenarios would prevent a summer sea-ice-free Arctic is unknown. Here we employ stabilized warming simulations with an Earth System Model to obtain sea-ice projections under stabilized global warming, and correct biases in mean sea-ice coverage by constraining with observations. Although there is some sensitivity to details in the constraining method, the observationally constrained projections suggest that the benefits of going from 2.0 °C to 1.5 °C stabilized warming are substantial; an eightfold decrease in the frequency of ice-free conditions is expected, from once in every five to once in every forty years. Under 3.0 °C global mean warming, however, permanent summer ice-free conditions are likely, which emphasizes the need for nations to increase their commitments to the Paris Agreement.
NASA Astrophysics Data System (ADS)
Roopnarine, P. D.; Weik, A.; Dineen, A.; Angielczyk, K.
2016-12-01
The Permian-Triassic mass extinction (PTME) is the most severe mass extinction recorded in Earth's history. Effects on the biosphere were complicated and often contradictory, e.g. selective species extinctions and exceptional species survival; prolonged miniaturization of some Early Triassic clades but rapid increases of size in others; and both simplified and complex trophic structures in various E. Triassic ecosystems. Here we present the results of a new generalized model of paleocommunity global stability (number of species capable of persistent coexistence in the absence of external perturbation), suggesting that community dynamics in response to species extinction, and the addition of new species in the aftermath of the PTME, is best understood as a complex outcome of predictable community dynamics and contingent, unpredictable evolutionary pathways. We applied the model to the best known PTME transitional terrestrial ecosystem, the Karoo Basin of South Africa. The model verifies previous claims that global stability scales negatively with increasing species richness and the strength of interspecific interactions. We also show that global stability scales negatively with intrinsic population growth rates. Taxon-rich Permian communities could therefore have persisted only under a restricted range of those parameters. Communities during three phases of the PTME, however, exhibited greater global stability than would be predicted from the pre-PTME communities. Those communities could therefore have maintained relative stabilities under a broader range of parameters, implying that species could have adapted by modifying life history and ecological traits with lesser negative consequences to community stability. The earliest post-PTME community with increased species richness, however, was less stable than would be predicted from pre-PTME communities. In both the extinction and aftermath communities, nonlinear deviations from the general scaling of stability result from structural features unique to those communities, perhaps limiting our ability to forecast biospheric responses to extreme perturbations.
Stability of Prednisone in Oral Mix Suspending Vehicle.
Friciu, Mihaela; Plourde, Kevin; Leclair, Grégoire; Danopoulos, Panagiota; Savji, Taslim
2015-01-01
The stability of prednisone (5 mg/mL) formulated as a suspension in Oral Mix vehicle was evaluated. Oral Mix is a novel oral, dye-free suspending vehicle developed by Medisca Pharmaceutique Inc. for preparation of extemporaneous dosage forms. This drug was chosen based on its high frequency of prescription among the pediatric population. Suspensions were prepared from both pure active and commercial tablets utilizing two different container closures: amber glass bottles and polypropylene syringes (PreciseDose Dispenser Medisca Pharmaceutique Inc.). Formulations were stored at 5°C or 25°C and organoleptic properties, pH, and concentration were evaluated at predetermined time points up to 90 days. Validated stability-indicating high-performance liquid chromatography methods were developed. Beyond-use date was evaluated by statistical analysis of the overall degradation trend. Prednisone was stable for at least 90 days at 25°C. No changes in organoleptic properties or pH were observed for either of the formulations, and the global stability was roughly equivalent and sometimes superior to the stability of the same drugs in other previously used vehicles. Thus, Oral Mix was found to be a suitable dye-free vehicle for extemporaneous formulations.
A City and National Metric measuring Isolation from the Global Market for Food Security Assessment
NASA Technical Reports Server (NTRS)
Brown, Molly E.; Silver, Kirk Coleman; Rajagopalan, Krishnan
2013-01-01
The World Bank has invested in infrastructure in developing countries for decades. This investment aims to reduce the isolation of markets, reducing both seasonality and variability in food availability and food prices. Here we combine city market price data, global distance to port, and country infrastructure data to create a new Isolation Index for countries and cities around the world. Our index quantifies the isolation of a city from the global market. We demonstrate that an index built at the country level can be applied at a sub-national level to quantify city isolation. In doing so, we offer policy makers with an alternative metric to assess food insecurity. We compare our isolation index with other indices and economic data found in the literature.We show that our Index measures economic isolation regardless of economic stability using correlation and analysis
Model reference tracking control of an aircraft: a robust adaptive approach
NASA Astrophysics Data System (ADS)
Tanyer, Ilker; Tatlicioglu, Enver; Zergeroglu, Erkan
2017-05-01
This work presents the design and the corresponding analysis of a nonlinear robust adaptive controller for model reference tracking of an aircraft that has parametric uncertainties in its system matrices and additive state- and/or time-dependent nonlinear disturbance-like terms in its dynamics. Specifically, robust integral of the sign of the error feedback term and an adaptive term is fused with a proportional integral controller. Lyapunov-based stability analysis techniques are utilised to prove global asymptotic convergence of the output tracking error. Extensive numerical simulations are presented to illustrate the performance of the proposed robust adaptive controller.
NASA Astrophysics Data System (ADS)
Besse, Nicolas; Coulette, David
2016-08-01
Achieving plasmas with good stability and confinement properties is a key research goal for magnetic fusion devices. The underlying equations are the Vlasov-Poisson and Vlasov-Maxwell (VPM) equations in three space variables, three velocity variables, and one time variable. Even in those somewhat academic cases where global equilibrium solutions are known, studying their stability requires the analysis of the spectral properties of the linearized operator, a daunting task. We have identified a model, for which not only equilibrium solutions can be constructed, but many of their stability properties are amenable to rigorous analysis. It uses a class of solution to the VPM equations (or to their gyrokinetic approximations) known as waterbag solutions which, in particular, are piecewise constant in phase-space. It also uses, not only the gyrokinetic approximation of fast cyclotronic motion around magnetic field lines, but also an asymptotic approximation regarding the magnetic-field-induced anisotropy: the spatial variation along the field lines is taken much slower than across them. Together, these assumptions result in a drastic reduction in the dimensionality of the linearized problem, which becomes a set of two nested one-dimensional problems: an integral equation in the poloidal variable, followed by a one-dimensional complex Schrödinger equation in the radial variable. We show here that the operator associated to the poloidal variable is meromorphic in the eigenparameter, the pulsation frequency. We also prove that, for all but a countable set of real pulsation frequencies, the operator is compact and thus behaves mostly as a finite-dimensional one. The numerical algorithms based on such ideas have been implemented in a companion paper [D. Coulette and N. Besse, "Numerical resolution of the global eigenvalue problem for gyrokinetic-waterbag model in toroidal geometry" (submitted)] and were found to be surprisingly close to those for the original gyrokinetic-Vlasov equations. The purpose of the present paper is to make these new ideas accessible to two readerships: applied mathematicians and plasma physicists.
Global stability and quadratic Hamiltonian structure in Lotka-Volterra and quasi-polynomial systems
NASA Astrophysics Data System (ADS)
Szederkényi, Gábor; Hangos, Katalin M.
2004-04-01
We show that the global stability of quasi-polynomial (QP) and Lotka-Volterra (LV) systems with the well-known logarithmic Lyapunov function is equivalent to the existence of a local generalized dissipative Hamiltonian description of the LV system with a diagonal quadratic form as a Hamiltonian function. The Hamiltonian function can be calculated and the quadratic dissipativity neighborhood of the origin can be estimated by solving linear matrix inequalities.
NASA Astrophysics Data System (ADS)
Plietzsch, A.; Schultz, P.; Heitzig, J.; Kurths, J.
2016-05-01
When designing or extending electricity grids, both frequency stability and resilience against cascading failures have to be considered amongst other aspects of energy security and economics such as construction costs due to total line length. Here, we compare an improved simulation model for cascading failures with state-of-the-art simulation models for short-term grid dynamics. Random ensembles of realistic power grid topologies are generated using a recent model that allows for a tuning of global vs local redundancy. The former can be measured by the algebraic connectivity of the network, whereas the latter can be measured by the networks transitivity. We show that, while frequency stability of an electricity grid benefits from a global form of redundancy, resilience against cascading failures rather requires a more local form of redundancy and further analyse the corresponding trade-off.
Stability of differential susceptibility and infectivity epidemic models
Bonzi, B.; Fall, A. A.; Iggidr, Abderrahman; Sallet, Gauthier
2011-01-01
We introduce classes of differential susceptibility and infectivity epidemic models. These models address the problem of flows between the different susceptible, infectious and infected compartments and differential death rates as well. We prove the global stability of the disease free equilibrium when the basic reproduction ratio ≤ 1 and the existence and uniqueness of an endemic equilibrium when > 1. We also prove the global asymptotic stability of the endemic equilibrium for a differential susceptibility and staged progression infectivity model, when > 1. Our results encompass and generalize those of [18, 22]. AMS Subject Classification : 34A34,34D23,34D40,92D30 PMID:20148330
Williams, Alwyn; Hunter, Mitchell C.; Kammerer, Melanie; Kane, Daniel A.; Jordan, Nicholas R.; Mortensen, David A.; Smith, Richard G.; Snapp, Sieglinde
2016-01-01
Yield stability is fundamental to global food security in the face of climate change, and better strategies are needed for buffering crop yields against increased weather variability. Regional- scale analyses of yield stability can support robust inferences about buffering strategies for widely-grown staple crops, but have not been accomplished. We present a novel analytical approach, synthesizing 2000–2014 data on weather and soil factors to quantify their impact on county-level maize yield stability in four US states that vary widely in these factors (Illinois, Michigan, Minnesota and Pennsylvania). Yield stability is quantified as both ‘downside risk’ (minimum yield potential, MYP) and ‘volatility’ (temporal yield variability). We show that excessive heat and drought decreased mean yields and yield stability, while higher precipitation increased stability. Soil water holding capacity strongly affected yield volatility in all four states, either directly (Minnesota and Pennsylvania) or indirectly, via its effects on MYP (Illinois and Michigan). We infer that factors contributing to soil water holding capacity can help buffer maize yields against variable weather. Given that soil water holding capacity responds (within limits) to agronomic management, our analysis highlights broadly relevant management strategies for buffering crop yields against climate variability, and informs region-specific strategies. PMID:27560666
Anderson, Ericka L.; Li, Weizhong; Klitgord, Niels; Highlander, Sarah K.; Dayrit, Mark; Seguritan, Victor; Yooseph, Shibu; Biggs, William; Venter, J. Craig; Nelson, Karen E.; Jones, Marcus B.
2016-01-01
As reports on possible associations between microbes and the host increase in number, more meaningful interpretations of this information require an ability to compare data sets across studies. This is dependent upon standardization of workflows to ensure comparability both within and between studies. Here we propose the standard use of an alternate collection and stabilization method that would facilitate such comparisons. The DNA Genotek OMNIgene∙Gut Stool Microbiome Kit was compared to the currently accepted community standard of freezing to store human stool samples prior to whole genome sequencing (WGS) for microbiome studies. This stabilization and collection device allows for ambient temperature storage, automation, and ease of shipping/transfer of samples. The device permitted the same data reproducibility as with frozen samples, and yielded higher recovery of nucleic acids. Collection and stabilization of stool microbiome samples with the DNA Genotek collection device, combined with our extraction and WGS, provides a robust, reproducible workflow that enables standardized global collection, storage, and analysis of stool for microbiome studies. PMID:27558918
NASA Astrophysics Data System (ADS)
Wehner, Michael; Stone, Dáithí; Mitchell, Dann; Shiogama, Hideo; Fischer, Erich; Graff, Lise S.; Kharin, Viatcheslav V.; Lierhammer, Ludwig; Sanderson, Benjamin; Krishnan, Harinarayan
2018-03-01
The half a degree additional warming, prognosis and projected impacts (HAPPI) experimental protocol provides a multi-model database to compare the effects of stabilizing anthropogenic global warming of 1.5 °C over preindustrial levels to 2.0 °C over these levels. The HAPPI experiment is based upon large ensembles of global atmospheric models forced by sea surface temperature and sea ice concentrations plausible for these stabilization levels. This paper examines changes in extremes of high temperatures averaged over three consecutive days. Changes in this measure of extreme temperature are also compared to changes in hot season temperatures. We find that over land this measure of extreme high temperature increases from about 0.5 to 1.5 °C over present-day values in the 1.5 °C stabilization scenario, depending on location and model. We further find an additional 0.25 to 1.0 °C increase in extreme high temperatures over land in the 2.0 °C stabilization scenario. Results from the HAPPI models are consistent with similar results from the one available fully coupled climate model. However, a complicating factor in interpreting extreme temperature changes across the HAPPI models is their diversity of aerosol forcing changes.
NASA Astrophysics Data System (ADS)
Rasmussen, D.; Buchanan, M. K.; Kopp, R. E.; Oppenheimer, M.
2017-12-01
Sea-level rise (SLR) is magnifying the frequency and severity of flooding in coastal regions. The rate and amount of global-mean SLR is a function of the trajectory of the global mean surface temperature (GMST). Therefore, temperature stabilization targets (e.g., 1.5°C or 2°C, as from the Paris Agreement) have important implications for regulating coastal flood risk. Quantifying the differences in the impact from SLR between these and other GMST stabilization targets is necessary for assessing the benefits and harms of mitigation goals. Low-lying small island nations are particularly vulnerable to inundation and coastal flooding from SLR because building protective and resilient infrastructure may not be physically or economically feasible. For small island nations, keeping GMST below a specified threshold may be the only option for maintaining habitability. Here, we assess differences in the return levels of coastal floods for small island nations between 1.5°C, 2.0°C, and 2.5°C GMST stabilization. We employ probabilistic, localized SLR projections and long-term hourly tide gauge records to construct estimates of local flood risk. We then estimate the number of small island nations' inhabitants at risk for permanent inundation under different GMST stabilization targets.
Di Maria, Francesco; Sordi, Alessio; Micale, Caterina
2013-11-01
The global gaseous emissions produced by landfilling the Mechanically Sorted Organic Fraction (MSOF) with different weeks of Mechanical Biological Treatment (MBT) was evaluated for an existing waste management system. One MBT facility and a landfill with internal combustion engines fuelled by the landfill gas for electrical energy production operate in the waste management system considered. An experimental apparatus was used to simulate 0, 4, 8 and 16weeks of aerobic stabilization and the consequent biogas potential (Nl/kg) of a large sample of MSOF withdrawn from the full-scale MBT. Stabilization achieved by the waste was evaluated by dynamic oxygen uptake and fermentation tests. Good correlation coefficients (R(2)), ranging from 0.7668 to 0.9772, were found between oxygen uptake, fermentation and anaerobic test values. On the basis of the results of several anaerobic tests, the methane production rate k (year(-1)) was evaluated. k ranged from 0.436 to 0.308year(-1) and the bio-methane potential from 37 to 12Nm(3)/tonne, respectively, for the MSOF with 0 and 16weeks of treatment. Energy recovery from landfill gas ranged from about 11 to 90kWh per tonne of disposed MSOF depending on the different scenario investigated. Life cycle analysis showed that the scenario with 0weeks of pre-treatment has the highest weighted global impact even if opposite results were obtained with respect to the single impact criteria. MSOF pre-treatment periods longer than 4weeks showed rather negligible variation in the global impact of system emissions. Copyright © 2013 Elsevier Ltd. All rights reserved.
Simakov, Nikolay; Leonard, David A.; Smith, Jeremy C.; ...
2016-09-26
Widespread antibiotic resistance, particularly when mediated by broad-spectrum β-lactamases, has major implications for public health. Substitutions in the active site often allow broad-spectrum enzymes to accommodate diverse types of β-lactams. Substitutions observed outside the active site are thought to compensate for the loss of thermal stability. The OXA-1 clade of class D β-lactamases contains a pair of conserved cysteines located outside the active site that forms a disulfide bond in the periplasm. In this paper, the effect of the distal disulfide bond on the structure and dynamics of OXA-1 was investigated via 4 μs molecular dynamics simulations. The results revealmore » that the disulfide promotes the preorganized orientation of the catalytic residues and affects the conformation of the functionally important Ω loop. Furthermore, principal component analysis reveals differences in the global dynamics between the oxidized and reduced forms, especially in the motions involving the Ω loop. A dynamical network analysis indicates that, in the oxidized form, in addition to its role in ligand binding, the KTG family motif is a central hub of the global dynamics. Finally, as activity of OXA-1 has been measured only in the reduced form, we suggest that accurate assessment of its functional profile would require oxidative conditions mimicking periplasm.« less
Polymorphism in the two-locus Levene model with nonepistatic directional selection.
Bürger, Reinhard
2009-11-01
For the Levene model with soft selection in two demes, the maintenance of polymorphism at two diallelic loci is studied. Selection is nonepistatic and dominance is intermediate. Thus, there is directional selection in every deme and at every locus. We assume that selection is in opposite directions in the two demes because otherwise no polymorphism is possible. If at one locus there is no dominance, then a complete analysis of the dynamical and equilibrium properties is performed. In particular, a simple necessary and sufficient condition for the existence of an internal equilibrium and sufficient conditions for global asymptotic stability are obtained. These results are extended to deme-independent degree of dominance at one locus. A perturbation analysis establishes structural stability within the full parameter space. In the absence of genotype-environment interaction, which requires deme-independent dominance at both loci, nongeneric equilibrium behavior occurs, and the introduction of arbitrarily small genotype-environment interaction changes the equilibrium structure and may destroy stable polymorphism. The volume of the parameter space for which a (stable) two-locus polymorphism is maintained is computed numerically. It is investigated how this volume depends on the strength of selection and on the dominance relations. If the favorable allele is (partially) dominant in its deme, more than 20% of all parameter combinations lead to a globally asymptotically stable, fully polymorphic equilibrium.
New explicit global asymptotic stability criteria for higher order difference equations
NASA Astrophysics Data System (ADS)
El-Morshedy, Hassan A.
2007-12-01
New explicit sufficient conditions for the asymptotic stability of the zero solution of higher order difference equations are obtained. These criteria can be applied to autonomous and nonautonomous equations. The celebrated Clark asymptotic stability criterion is improved. Also, applications to models from mathematical biology and macroeconomics are given.
Doyle, Colleen M; Rumfeldt, Jessica A; Broom, Helen R; Sekhar, Ashok; Kay, Lewis E; Meiering, Elizabeth M
2016-03-08
The chemical shifts of backbone amide protons in proteins are sensitive reporters of local structural stability and conformational heterogeneity, which can be determined from their readily measured linear and nonlinear temperature-dependences, respectively. Here we report analyses of amide proton temperature-dependences for native dimeric Cu, Zn superoxide dismutase (holo pWT SOD1) and structurally diverse mutant SOD1s associated with amyotrophic lateral sclerosis (ALS). Holo pWT SOD1 loses structure with temperature first at its periphery and, while having extremely high global stability, nevertheless exhibits extensive conformational heterogeneity, with ∼1 in 5 residues showing evidence for population of low energy alternative states. The holo G93A and E100G ALS mutants have moderately decreased global stability, whereas V148I is slightly stabilized. Comparison of the holo mutants as well as the marginally stable immature monomeric unmetalated and disulfide-reduced (apo(2SH)) pWT with holo pWT shows that changes in the local structural stability of individual amides vary greatly, with average changes corresponding to differences in global protein stability measured by differential scanning calorimetry. Mutants also exhibit altered conformational heterogeneity compared to pWT. Strikingly, substantial increases as well as decreases in local stability and conformational heterogeneity occur, in particular upon maturation and for G93A. Thus, the temperature-dependence of amide shifts for SOD1 variants is a rich source of information on the location and extent of perturbation of structure upon covalent changes and ligand binding. The implications for potential mechanisms of toxic misfolding of SOD1 in disease and for general aspects of protein energetics, including entropy-enthalpy compensation, are discussed.
NASA Astrophysics Data System (ADS)
Kim, Min Chan
2014-11-01
To simulate a CO2 sequestration process, some researchers employed a water/propylene glycol (PPG) system which shows a non-monotonic density profile. Motivated by this fact, the stability of the diffusion layer of two miscible fluids saturated in a porous medium is analyzed. For a non-monotonic density profile system, linear stability equations are derived in a global domain, and then transformed into a system of ordinary differential equations in an infinite domain. Initial growth rate analysis is conducted without the quasi-steady state approximation (QSSA) and shows that initially the system is unconditionally stable for the least stable disturbance. For the time evolving case, the ordinary differential equations are solved applying the eigen-analysis and numerical shooting scheme with and without the QSSA. To support these theoretical results, direct numerical simulations are conducted using the Fourier spectral method. The results of theoretical linear stability analyses and numerical simulations validate one another. The present linear and nonlinear analyses show that the water/PPG system is more unstable than the CO2/brine one, and the flow characteristics of these two systems are quite different from each other.
Light-duty vehicle CO2 targets consistent with 450 ppm CO2 stabilization.
Winkler, Sandra L; Wallington, Timothy J; Maas, Heiko; Hass, Heinz
2014-06-03
We present a global analysis of CO2 emission reductions from the light-duty vehicle (LDV) fleet consistent with stabilization of atmospheric CO2 concentration at 450 ppm. The CO2 emission reductions are described by g CO2/km emission targets for average new light-duty vehicles on a tank-to-wheel basis between 2010 and 2050 that we call CO2 glide paths. The analysis accounts for growth of the vehicle fleet, changing patterns in driving distance, regional availability of biofuels, and the changing composition of fossil fuels. New light-duty vehicle fuel economy and CO2 regulations in the U.S. through 2025 and in the EU through 2020 are broadly consistent with the CO2 glide paths. The glide path is at the upper end of the discussed 2025 EU range of 68-78 g CO2/km. The proposed China regulation for 2020 is more stringent than the glide path, while the 2017 Brazil regulation is less stringent. Existing regulations through 2025 are broadly consistent with the light-duty vehicle sector contributing to stabilizing CO2 at approximately 450 ppm. The glide paths provide long-term guidance for LDV powertrain/fuel development.
Robustness of hydrological indicators for transient and stabilized climate states
NASA Astrophysics Data System (ADS)
Boulange, J. E.; Hanasaki, N.
2017-12-01
By signing the Paris agreement, countries have committed to pursue efforts to limit global warming to +1.5 °C relative to pre-industrial levels. Consequently, there is a growing interest in better understanding the impacts of a +1.5°C world. Previous analyses were conducted by considering a time slice period, centered on the year when the global mean temperature (GMT) crosses the +1.5°C threshold (Fig. 1). This time slice period is characterized by a transient state which may influence the reported results (transient climate state). Ideally, analyses should be carried under the condition the GMT is stabilized at +1.5°C (stabilized climate state) but, such targeted simulations do not exist for most GCMs.1A global hydrological model, the H08 model,2 and hydrological indicators (HI) obtained for the transient and stabilized states, are used to answer the following questions: (1) are there quantifiable differences between the HI computed for the transient and stabilized states? (2) can relations be derived between the HI computed for the transient and stabilized states? (3) what are the potential impacts induced by the differences in HI computed for the transient and stabilized states? Signal to noise ratios (S/N) obtained for the transient and stabilized states, in an identical warmer world (+1.7°C), are compared (Fig. 2). The S/N ratio computed for the stabilized state were significantly lower than those of the transient state for most regions and HI. However, at higher latitude, the S/N ratios computed for the two states were similar whereas for medium and low latitudes, the differences were more pronounced. For most regions and HI (except for surface temperature), the S/N ratios of the stabilized state were 10 to 20% weaker than those of the transient state. References:1 Knutti, R., Rogelj, J., Sedlacek, J. & Fischer, E. M. Nature Geosci (2016). 2 Hanasaki, N. et al. Hydrol. Earth Syst. Sci. (2008).
Spreading dynamics of an e-commerce preferential information model on scale-free networks
NASA Astrophysics Data System (ADS)
Wan, Chen; Li, Tao; Guan, Zhi-Hong; Wang, Yuanmei; Liu, Xiongding
2017-02-01
In order to study the influence of the preferential degree and the heterogeneity of underlying networks on the spread of preferential e-commerce information, we propose a novel susceptible-infected-beneficial model based on scale-free networks. The spreading dynamics of the preferential information are analyzed in detail using the mean-field theory. We determine the basic reproductive number and equilibria. The theoretical analysis indicates that the basic reproductive number depends mainly on the preferential degree and the topology of the underlying networks. We prove the global stability of the information-elimination equilibrium. The permanence of preferential information and the global attractivity of the information-prevailing equilibrium are also studied in detail. Some numerical simulations are presented to verify the theoretical results.
NASA Astrophysics Data System (ADS)
Arik, Sabri
2006-02-01
This Letter presents a sufficient condition for the existence, uniqueness and global asymptotic stability of the equilibrium point for bidirectional associative memory (BAM) neural networks with distributed time delays. The results impose constraint conditions on the network parameters of neural system independently of the delay parameter, and they are applicable to all bounded continuous non-monotonic neuron activation functions. The results are also compared with the previous results derived in the literature.
NASA Astrophysics Data System (ADS)
Mittal, Sanjay; Kumar, Bhaskar
2003-02-01
Flow past a spinning circular cylinder placed in a uniform stream is investigated via two-dimensional computations. A stabilized finite element method is utilized to solve the incompressible Navier Stokes equations in the primitive variables formulation. The Reynolds number based on the cylinder diameter and free-stream speed of the flow is 200. The non-dimensional rotation rate, [alpha] (ratio of the surface speed and freestream speed), is varied between 0 and 5. The time integration of the flow equations is carried out for very large dimensionless time. Vortex shedding is observed for [alpha] < 1.91. For higher rotation rates the flow achieves a steady state except for 4.34 < [alpha] < 4:70 where the flow is unstable again. In the second region of instability, only one-sided vortex shedding takes place. To ascertain the instability of flow as a function of [alpha] a stabilized finite element formulation is proposed to carry out a global, non-parallel stability analysis of the two-dimensional steady-state flow for small disturbances. The formulation and its implementation are validated by predicting the Hopf bifurcation for flow past a non-rotating cylinder. The results from the stability analysis for the rotating cylinder are in very good agreement with those from direct numerical simulations. For large rotation rates, very large lift coefficients can be obtained via the Magnus effect. However, the power requirement for rotating the cylinder increases rapidly with rotation rate.
Potts, Anastasia H; Leng, Yuanyuan; Babitzke, Paul; Romeo, Tony
2018-03-29
The Csr global regulatory system coordinates gene expression in response to metabolic status. This system utilizes the RNA binding protein CsrA to regulate gene expression by binding to transcripts of structural and regulatory genes, thus affecting their structure, stability, translation, and/or transcription elongation. CsrA activity is controlled by sRNAs, CsrB and CsrC, which sequester CsrA away from other transcripts. CsrB/C levels are partly determined by their rates of turnover, which requires CsrD to render them susceptible to RNase E cleavage. Previous epistasis analysis suggested that CsrD affects gene expression through the other Csr components, CsrB/C and CsrA. However, those conclusions were based on a limited analysis of reporters. Here, we reassessed the global behavior of the Csr circuitry using epistasis analysis with RNA seq (Epi-seq). Because CsrD effects on mRNA levels were entirely lost in the csrA mutant and largely eliminated in a csrB/C mutant under our experimental conditions, while the majority of CsrA effects persisted in the absence of csrD, the original model accounts for the global behavior of the Csr system. Our present results also reflect a more nuanced role of CsrA as terminal regulator of the Csr system than has been recognized.
Design of Rock Slope Reinforcement: An Himalayan Case Study
NASA Astrophysics Data System (ADS)
Tiwari, Gaurav; Latha, Gali Madhavi
2016-06-01
The stability analysis of the two abutment slopes of a railway bridge proposed at about 359 m above the ground level, crossing a river and connecting two hill faces in the Himalayas, India, is presented. The bridge is located in a zone of high seismic activity. The rock slopes are composed of a heavily jointed rock mass and the spacing, dip and dip direction of joint sets are varying at different locations. Geological mapping was carried out to characterize all discontinuities present along the slopes. Laboratory and field investigations were conducted to assess the geotechnical properties of the intact rock, rock mass and joint infill. Stability analyses of these rock slopes were carried out using numerical programmes. Loads from the foundations resting on the slopes and seismic accelerations estimated from site-specific ground response analysis were considered. The proposed slope profile with several berms between successive foundations was simulated in the numerical model. An equivalent continuum approach with Hoek and Brown failure criterion was initially used in a finite element model to assess the global stability of the slope abutments. In the second stage, finite element analysis of rock slopes with all joint sets with their orientations, spacing and properties explicitly incorporated into the numerical model was taken up using continuum with joints approach. It was observed that the continuum with joints approach was able to capture the local failures in some of the slope sections, which were verified using wedge failure analysis and stereographic projections. Based on the slope deformations and failure patterns observed from the numerical analyses, rock anchors were designed to achieve the target factors of safety against failure while keeping the deformations within the permissible limits. Detailed design of rock anchors and comparison of the stability of slopes with and without reinforcement are presented.
Influence of stem design on the primary stability of megaprostheses of the proximal femur.
Kinkel, Stefan; Graage, Jan Dennis; Kretzer, Jan Philippe; Jakubowitz, Eike; Nadorf, Jan
2013-10-01
Extended bone defects of the proximal femur can be reconstructed by megaprostheses for which aseptic loosening constitutes one of the major failure modes. The basic requirement for long-term success of endoprostheses is primary stability. We therefore assessed whether sufficient primary stability can be achieved by four different megaprostheses in a standardised bone defect of the proximal femur and whether their different design leads to different fixation patterns. Four different designs of proximal femoral replacements were implanted into 16 Sawbones® after preparing segmental bone defects (AAOS type II). Primary rotational stability was analysed by application of a cyclic torque of ±7 Nm and measuring the relative micromotions between bone and implant at different levels. The main fixation zones and differences of fixation patterns of the stem designs were determined by an analysis of variance. All four implants exhibited micromotions below 150 μm, indicating adequate primary stability. Lowest micromotions for all designs were located near the femoral isthmus. The extent of primary stability and the global implant fixation pattern differed considerably and could be related to the different design concepts. All megaprostheses studied provided sufficient primary stability if the fixation conditions of the femoral isthmus were intact. The design characteristics of the different stems largely determined the extent of primary stability and fixation pattern. Understanding these different fixation types could help the surgeon to choose the most suitable implant if the fixation conditions in the isthmus are compromised.
Under Secretary of Defense for Policy > OUSDP Offices > ASD for Homeland
Defense Global Security > Defense Critical Infrastructure Program > Roles Skip to main for Asian and Pacific Security Affairs ASD for Homeland Defense Global Security DASD Defense -Intensity Conflict Counternarcotics and Global Threats Stability and Humanitarian Affairs Special Operations
Toroidal Geometry Stabilizing a Latitudinal Ring of Point Vortices on a Torus
NASA Astrophysics Data System (ADS)
Sakajo, Takashi; Shimizu, Yuuki
2018-06-01
We carry out the linear stability analysis of a polygonal ring configuration of N point vortices, called an N-ring, along the line of latitude θ _0 on a torus with the aspect ratio α . Deriving a criterion for the stability depending on the parameters N, θ _0 and α , we reveal how the aspect ratio α contributes to the stability of the N-ring. While the N-ring necessarily becomes unstable when N is sufficiently large for fixed α , the stability is closely associated with the geometric property of the torus for variable α ; for low aspect ratio α ˜ 1, N=7 is a critical number determining the stability of the N-ring when it is located along a certain range of latitudes, which is an analogous result to those in a plane and on a sphere. On the other hand, the stability is determined by the sign of curvature for high aspect ratio α ≫ 1. That is to say, the N-ring is neutrally stable if it is located on the inner side of the toroidal surface with a negative curvature, while the N-ring on its outer side with a positive curvature is unstable. Furthermore, based on the linear stability analysis, we describe nonlinear evolution of the N-ring when it becomes unstable. It is difficult to deal with this problem, since the evolution equation of the N point vortices is formulated as a Hamiltonian system with N degrees of freedom, which is in general non-integrable. Thus, we reduce the Hamiltonian system to a simple integrable system by introducing a cyclic symmetry. Owing to this reduction, we successfully find some periodic orbits in the reduced system, whose local bifurcations and global transitions for variable α are characterized in terms of the fundamental group of the torus.
Zhang, Xian-Ming; Han, Qing-Long; Zeng, Zhigang
2018-05-01
This paper is concerned with global asymptotic stability of delayed neural networks. Notice that a Bessel-Legendre inequality plays a key role in deriving less conservative stability criteria for delayed neural networks. However, this inequality is in the form of Legendre polynomials and the integral interval is fixed on . As a result, the application scope of the Bessel-Legendre inequality is limited. This paper aims to develop the Bessel-Legendre inequality method so that less conservative stability criteria are expected. First, by introducing a canonical orthogonal polynomial sequel, a canonical Bessel-Legendre inequality and its affine version are established, which are not explicitly in the form of Legendre polynomials. Moreover, the integral interval is shifted to a general one . Second, by introducing a proper augmented Lyapunov-Krasovskii functional, which is tailored for the canonical Bessel-Legendre inequality, some sufficient conditions on global asymptotic stability are formulated for neural networks with constant delays and neural networks with time-varying delays, respectively. These conditions are proven to have a hierarchical feature: the higher level of hierarchy, the less conservatism of the stability criterion. Finally, three numerical examples are given to illustrate the efficiency of the proposed stability criteria.
Improvement of Global and Regional Mean Sea Level Trends Derived from all Altimetry Missions.
NASA Astrophysics Data System (ADS)
Ablain, Michael; Benveniste, Jérôme; Faugere, Yannice; Larnicol, Gilles; Cazenave, Anny; Johannessen, Johnny A.; Stammer, Detlef; Timms, Gary
2012-07-01
The global mean sea level (GMSL) has been calculated on a continual basis since January 1993 using data from satellite altimetry missions. The global mean sea level (MSL) deduced from TOPEX/Poseidon, Jason-1 and Jason-2 is increasing with a global trend of 3.2 mm from 1993 to 2010 applying the post glacial rebound (MSL Aviso website http://www.jason.oceanobs.com/msl). Besides, the regional sea level trends bring out an inhomogeneous repartition of the ocean elevation with local MSL slopes ranging from +/- 8 mm/year. A study published in 2009 [Ablain et al., 2009] has shown that the global MSL trend uncertainty was estimated at +/-0.6 mm/year with a confidence interval of 90%. The main sources of errors at global and regional scales are due to the orbit calculation and the wet troposphere correction. But others sea-level components have also a significant impact on the long-term stability of MSL as for instance the stability of instrumental parameters and the atmospheric corrections. Thanks to recent studies performed in Sea Level Essential Climate Variable Project in the frame of the Climate Change Initiative, an ESA Programme, in addition to activities performed within the SALP/CNES, strong improvements have been provided for the estimation of the global and regional MSL trends. In this paper, we propose to describe them; they concern the orbit calculation thanks to new gravity fields, the atmospheric corrections thanks to ERA-interim reanalyses, the wet troposphere corrections thanks to the stability improvement, and also empirical corrections allowing us to link regional time series together better. These improvements are described at global and regional scale for all the altimetry missions.
Modeling, Analysis, and Control of Swarming Agents in a Probabilistic Framework
2012-11-01
configurations, which can ultimately lead the swarm towards configurations close to the global minimum of the total potential of interactions. The drawback ...165–171, 1992. [6] H. Ye, H. Wang, and H. Wang, “Stabilization of a PVTOL aircraft and an inertia wheel pendulum using saturation technique,” IEEE...estimate its parameters. The drawback of this approach is that the assumed form of the field can be unrealistic. In the approach that we are presenting here
Global Stability and Control Analysis of Aircraft at High Angles-of-Attack.
1977-06-30
500 deg/sec to 500 deg/sec and com - puting the eigenvalues of the linearized system around different equilibrium points for 6e = 2°. It is noticed...SYSTEMS, INC. 0" -114- 2 Ä»" • + + + + + _+ + + + + + + + + M I o o o a i i 8 8 in 8 8 XNXX * x x» x x x< x...history com - parisons show significant improvement in dynamic response and performance using the BACTM ARI gain, as opposed to nulling the rudder
Blunting the Talons. The Impact of Peace Operations Deployments on USAF Fighter Crew Combat Skills
1999-01-01
Bomb Accuracy 74 Figure 5.16 - Typical Medium Altitude LGB Delivery 75 Figure 6.1 - Graph of Air-to-air Missile Shot Groups Showing Number of Shots...Between F-16C LGB and LALD/HD Practice Deliveries October 1997 Through February 1998 77 XI SUMMARY This document presents an analysis of the impact...intensive training promoted acted as a deterrent that reduced the chances war would occur - enhancing global stability. Thus, for the first 40
Estimates of tropical analysis differences in daily values produced by two operational centers
NASA Technical Reports Server (NTRS)
Kasahara, Akira; Mizzi, Arthur P.
1992-01-01
To assess the uncertainty of daily synoptic analyses for the atmospheric state, the intercomparison of three First GARP Global Experiment level IIIb datasets is performed. Daily values of divergence, vorticity, temperature, static stability, vertical motion, mixing ratio, and diagnosed diabatic heating rate are compared for the period of 26 January-11 February 1979. The spatial variance and mean, temporal mean and variance, 2D wavenumber power spectrum, anomaly correlation, and normalized square difference are employed for comparison.
Control and synchronisation of a novel seven-dimensional hyperchaotic system with active control
NASA Astrophysics Data System (ADS)
Varan, Metin; Akgul, Akif
2018-04-01
In this work, active control method is proposed for controlling and synchronising seven-dimensional (7D) hyperchaotic systems. The seven-dimensional hyperchaotic system is considered for the implementation. Seven-dimensional hyperchaotic system is also investigated via time series, phase portraits and bifurcation diagrams. For understanding the impact of active controllers on global asymptotic stability of synchronisation and control errors, the Lyapunov function is used. Numerical analysis is done to reveal the effectiveness of applied active control method and the results are discussed.
NASA Astrophysics Data System (ADS)
Gan, Chenquan; Yang, Xiaofan
2015-05-01
In this paper, a new computer virus propagation model, which incorporates the effects of removable storage media and antivirus software, is proposed and analyzed. The global stability of the unique equilibrium of the model is independent of system parameters. Numerical simulations not only verify this result, but also illustrate the influences of removable storage media and antivirus software on viral spread. On this basis, some applicable measures for suppressing virus prevalence are suggested.
Zhao, Kaihong
2018-12-01
In this paper, we study the n-species impulsive Gilpin-Ayala competition model with discrete and distributed time delays. The existence of positive periodic solution is proved by employing the fixed point theorem on cones. By constructing appropriate Lyapunov functional, we also obtain the global exponential stability of the positive periodic solution of this system. As an application, an interesting example is provided to illustrate the validity of our main results.
International Agreements and Cooperation in Environmental Conservation and Resource Management.
ERIC Educational Resources Information Center
Thacher, Peter S.
1991-01-01
Considerations regarding stabilizing the greenhouse effect (global warming) emphasize the difficulties in launching a comprehensive plan to deal with aspects of global change. Experience gained in dealing with atmospheric issues will help in developing a process that links management and research in solving global problems. (SLD)
The paper discusses the Environmental Protection Agency's (EPA) Air and Energy Engineering Research Laboratory (AEERL) research plan for work in the global climate area. The plan, written for discussion with senior scientists and program managers at EPA's Global Climate Change Re...
2009-05-06
GWP relative to CO2 • GWP is determined by stability of the chemical in the atmosphere and its capacity to influence global warming Global Warming Potential...GWP) Mr. Larry Webber/(410)436-1231/ Lawrence.webber.us.army.mil 06MAY2009 The Army’s Carbon Bootprint Greenhouse Gas (GHG) Global Warming Potential
July: "Soils are living: Overview of soil biodiversity, global issues, and new resources"
USDA-ARS?s Scientific Manuscript database
The July poster will provide an overview of soil biology and the many ecosystem functions that soil organisms drive including their impact on global biodiversity, climate regulation, soil health/stability, and plant growth. Five main global issues related to soil biodiversity will be presented such ...
Gaia: focus, straylight and basic angle
NASA Astrophysics Data System (ADS)
Mora, A.; Biermann, M.; Bombrun, A.; Boyadjian, J.; Chassat, F.; Corberand, P.; Davidson, M.; Doyle, D.; Escolar, D.; Gielesen, W. L. M.; Guilpain, T.; Hernandez, J.; Kirschner, V.; Klioner, S. A.; Koeck, C.; Laine, B.; Lindegren, L.; Serpell, E.; Tatry, P.; Thoral, P.
2016-07-01
The Gaia all-sky astrometric survey is challenged by several issues affecting the spacecraft stability. Amongst them, we find the focus evolution, straylight and basic angle variations Contrary to pre-launch expectations, the image quality is continuously evolving, during commissioning and the nominal mission. Payload decontaminations and wavefront sensor assisted refocuses have been carried out to recover optimum performance. An ESA-Airbus DS working group analysed the straylight and basic angle issues and worked on a detailed root cause analysis. In parallel, the Gaia scientists have also analysed the data, most notably comparing the BAM signal to global astrometric solutions, with remarkable agreement. In this contribution, a status review of these issues will be provided, with emphasis on the mitigation schemes and the lessons learned for future space missions where extreme stability is a key requirement.
Bifurcations in a discrete time model composed of Beverton-Holt function and Ricker function.
Shang, Jin; Li, Bingtuan; Barnard, Michael R
2015-05-01
We provide rigorous analysis for a discrete-time model composed of the Ricker function and Beverton-Holt function. This model was proposed by Lewis and Li [Bull. Math. Biol. 74 (2012) 2383-2402] in the study of a population in which reproduction occurs at a discrete instant of time whereas death and competition take place continuously during the season. We show analytically that there exists a period-doubling bifurcation curve in the model. The bifurcation curve divides the parameter space into the region of stability and the region of instability. We demonstrate through numerical bifurcation diagrams that the regions of periodic cycles are intermixed with the regions of chaos. We also study the global stability of the model. Copyright © 2015 Elsevier Inc. All rights reserved.
Design of the RWM Feedback Control System for NSTX
NASA Astrophysics Data System (ADS)
Bialek, James; Sabbagh, Steven; Paoletti, Franco
2002-11-01
The National Spherical Torus Experiment ( NSTX ) has been designed to investigate the physics of global mode stabilization at low aspect ratio. Present experiments are now probing performance limits determined by machine configuration and passive stabilization. For example, the ideal no-wall normalized beta limit has already been exceeded by greater than 20stabilized by a nearby perfectly conducting wall are observed to grow at a rate determined by nearby resistive structure. Sustained performance improvements may be obtained by using active feedback to suppress such long wavelength pressure driven instabilities, known as resistive wall modes (RWM). We report on the performance of several design options for an NSTX - RWM feedback control system. The VALEN feedback analysis code has been used to evaluate the performance of these configurations. We explicitly model the vacuum vessel, center stack casing, the 48 copper passive plates, their mounts, active feedback coils and sensor arrays. The highest performance system has both control coils and sensors inside the vacuum vessel. In this case it is possible to reach 94beta limit.
Direct numerical simulation of axisymmetric laminar low-density jets
NASA Astrophysics Data System (ADS)
Gomez Lendinez, Daniel; Coenen, Wilfried; Sevilla, Alejandro
2017-11-01
The stability of submerged laminar axisymmetric low-density jets has been investigated experimentally (Kyle & Sreenivasan 1993, Hallberg & Strykowski 2006) and with linear analysis (Jendoubi & Strykowski 1994, Coenen & Sevilla 2012, Coenen et al. 2017). These jets become globally unstable when the Reynolds number is larger than a certain critical value which depends on the density ratio and on the velocity profile at the injector outlet. In this work, Direct Numerical Simulations using FreeFEM + + (Hecht 2012) with P1 elements for pressure and P2 for velocity and density are performed to complement the above mentioned studies. Density and velocity fields are analyzed at long time showing the unforced space-time evolution of nonlinear disturbances propagating along the jet. Using the Stuart-Landau model to fit the numerical results for the self-excited oscillations we have computed a neutral stability curve that shows good agreement with experiments and stability theory. Thanks to Spanish MINECO under projects DPI2014-59292-C3-1-P and DPI2015-71901-REDT for financial support.
Instabilities and Turbulence Generation by Pick-Up Ion Distributions in the Outer Heliosheath
NASA Astrophysics Data System (ADS)
Weichman, K.; Roytershteyn, V.; Delzanno, G. L.; Pogorelov, N.
2017-12-01
Pick-up ions (PUIs) play a significant role in the dynamics of the heliosphere. One problem that has attracted significant attention is the stability of ring-like distributions of PUIs and the electromagnetic fluctuations that could be generated by PUI distributions. For example, PUI stability is relevant to theories attempting to identify the origins of the IBEX ribbon. PUIs have previously been investigated by linear stability analysis of model (e.g. Gaussian) rings and corresponding computer simulations. The majority of these simulations utilized particle-in-cell methods which suffer from accuracy limitations imposed by the statistical noise associated with representing the plasma by a relatively small number of computational particles. In this work, we utilize highly accurate spectral Vlasov simulations conducted using the fully kinetic implicit code SPS (Spectral Plasma Solver) to investigate the PUI distributions inferred from a global heliospheric model (Heerikhuisen et al., 2016). Results are compared with those obtained by hybrid and fully kinetic particle-in-cell methods.
Human Neuronal Calcium Sensor-1 Protein Avoids Histidine Residues To Decrease pH Sensitivity.
Gong, Yehong; Zhu, Yuzhen; Zou, Yu; Ma, Buyong; Nussinov, Ruth; Zhang, Qingwen
2017-01-26
pH is highly regulated in mammalian central nervous systems. Neuronal calcium sensor-1 (NCS-1) can interact with numerous target proteins. Compared to that in the NCS-1 protein of Caenorhabditis elegans, evolution has avoided the placement of histidine residues at positions 102 and 83 in the NCS-1 protein of humans and Xenopus laevis, possibly to decrease the conformational sensitivity to pH gradients in synaptic processes. We used all-atom molecular dynamics simulations to investigate the effects of amino acid substitutions between species on human NCS-1 by substituting Arg102 and Ser83 for histidine at neutral (R102H and S83H) and acidic pHs (R102H p and S83H p ). Our cumulative 5 μs simulations revealed that the R102H mutation slightly increases the structural flexibility of loop L2 and the R102H p mutation decreases protein stability. Community network analysis illustrates that the R102H and S83H mutations weaken the interdomain and strengthen the intradomain communications. Secondary structure contents in the S83H and S83H p mutants are similar to those in the wild type, whereas the global structural stabilities and salt-bridge probabilities decrease. This study highlights the conformational dynamics effects of the R102H and S83H mutations on the local structural flexibility and global stability of NCS-1, whereas protonated histidine decreases the stability of NCS-1. Thus, histidines at positions 102 and 83 may not be compatible with the function of NCS-1 whether in the neutral or protonated state.
Separated flows near the nose of a body of revolution
NASA Technical Reports Server (NTRS)
Lin, S. P.
1986-01-01
The solution of the Navier-Stokes equations for the problem of cross-flow separataion about a deforming cylinder was achieved by iteration. It was shown that the separation starts at the rear stagnation point and the point of primary separation moves upstram along the cylinder surface. A general method of linear stability analysis for nonparallel external flows was constructed, which consists of representing the eigenfunctions with complete orthogonal sets and forms characteristic equations with the Galerkin method. The method was applied to the Kovasznay flow which is an exact solution of the Navier-Stokes equation. The results show that when the critical parameter is exceeded, there are only a few isolated unstable eigen-frequencies. Another exact solution is shown to be absolutely and monotonically stable with respect to infinitesimal disturbances of all frequencies. The flow is also globally, asymptotically, and monotonically stable in the mean with respect o three-dimensional disturbances. This result forms the sound foundation of rigorous stability analysis for nonparallel flows, and provides an invaluable test ground for future studies of nonparallel flows in which the basic states do not posses exact solutions. The application of this method to the study of the formation of spiral vorticies near the nose of a rotating body of revolution is underway. The same method will be applied to the stability analysis of reversed flow over a plate with suction.
A Navier-Stokes-Based Approach for Mean Flow Perturbation Analysis
NASA Astrophysics Data System (ADS)
Bhaumik, Swagata; Gaitonde, Datta; Waindim, Mbu; The Ohio State University Team
2014-11-01
The manner in which a basic state, obtained from a time-averaged unsteady flowfield, processes perturbations can provide significant insight into the cause and evolution of instabilities. A widely used approach is based on Parabolized Stability Equations (PSE), which limits streamwise mean flow variation and is often applied to 2-D base flows. To avoid some of these issues, we advance a Navier-Stokes-based method, which can address non-trivial three-dimensional fields. The method stems from that employed by Touber and Sandham (Theor. Comput. Fluid. Dyn., 23, 79, 2009) to analyze global modes in nominally 2-D shock-wave turbulent-boundary layer interactions (STBLI). We first develop its theoretical underpinnings by examining conditions under which it degenerates to traditional methods. We then illustrate the application by considering perturbations to an entropy layer at Mach 6, a turbulent supersonic jet at Mach 1.3 and STBLI at Mach 2.3. For the entropy layer and jet cases, known linear stability and PSE results are successfully reproduced, while global modes are obtained for STBLI. The results not only validate the proposed technique, but also demonstrate its suitability in analyzing instabilities for any general 3D basic state, including impulse response. Sponsored by AFOSR.
Qualitative analysis of Cohen-Grossberg neural networks with multiple delays
NASA Astrophysics Data System (ADS)
Ye, Hui; Michel, Anthony N.; Wang, Kaining
1995-03-01
It is well known that a class of artificial neural networks with symmetric interconnections and without transmission delays, known as Cohen-Grossberg neural networks, possesses global stability (i.e., all trajectories tend to some equilibrium). We demonstrate in the present paper that many of the qualitative properties of Cohen-Grossberg networks will not be affected by the introduction of sufficiently small delays. Specifically, we establish some bound conditions for the time delays under which a given Cohen-Grossberg network with multiple delays is globally stable and possesses the same asymptotically stable equilibria as the corresponding network without delays. An effective method of determining the asymptotic stability of an equilibrium of a Cohen-Grossberg network with multiple delays is also presented. The present results are motivated by some of the authors earlier work [Phys. Rev. E 50, 4206 (1994)] and by some of the work of Marcus and Westervelt [Phys. Rev. A 39, 347 (1989)]. These works address qualitative analyses of Hopfield neural networks with one time delay. The present work generalizes these results to Cohen-Grossberg neural networks with multiple time delays. Hopfield neural networks constitute special cases of Cohen-Grossberg neural networks.
Lukowicz, Malgorzata; Zalewski, Pawel; Bulatowicz, Irena; Buszko, Katarzyna; Klawe, Jacek J.
2011-01-01
Summary Background The purpose of our experiment was to determine whether laser stimulation can improve microcirculation in the posterior regions of the brain in patients with vertebrobasilar insufficiency (VBI). Material/Methods We studied 25 patients (20 female, 5 male, mean age 64) diagnosed with chronic VBI. All were evaluated using the De Klyn test, followed by qualitative assessment of stability using a Berg Balance Scale and evaluation of global stability using an electronic balance platform. A CTL-1100 low power laser was used with standard parameters. We established a protocol for laser irradiation at 5 points along the vertebral artery in the cervical region bilaterally. Irradiation was performed 10 times over two weeks. Results Significant improvement occurred after therapy in headache (p=0.0005), vertigo (p<0.0000), and tinnitus (p=0.0387). No significant differences were observed in nausea or nystagmus caused by head rotation. The Berg Balance Scale results showed significant differences in almost all features. There was a tendency towards improved stability in all parameters, and statistically significant differences in the total surface of support and the spread surface of support for the left foot. Conclusions Laser stimulation as applied in this study can be useful in the treatment of patients with VBI. The main reason for improvement in global stability, balance, and other VBI symptoms is better blood perfusion. PMID:21873949
Large time-step stability of explicit one-dimensional advection schemes
NASA Technical Reports Server (NTRS)
Leonard, B. P.
1993-01-01
There is a wide-spread belief that most explicit one-dimensional advection schemes need to satisfy the so-called 'CFL condition' - that the Courant number, c = udelta(t)/delta(x), must be less than or equal to one, for stability in the von Neumann sense. This puts severe limitations on the time-step in high-speed, fine-grid calculations and is an impetus for the development of implicit schemes, which often require less restrictive time-step conditions for stability, but are more expensive per time-step. However, it turns out that, at least in one dimension, if explicit schemes are formulated in a consistent flux-based conservative finite-volume form, von Neumann stability analysis does not place any restriction on the allowable Courant number. Any explicit scheme that is stable for c is less than 1, with a complex amplitude ratio, G(c), can be easily extended to arbitrarily large c. The complex amplitude ratio is then given by exp(- (Iota)(Nu)(Theta)) G(delta(c)), where N is the integer part of c, and delta(c) = c - N (less than 1); this is clearly stable. The CFL condition is, in fact, not a stability condition at all, but, rather, a 'range restriction' on the 'pieces' in a piece-wise polynomial interpolation. When a global view is taken of the interpolation, the need for a CFL condition evaporates. A number of well-known explicit advection schemes are considered and thus extended to large delta(t). The analysis also includes a simple interpretation of (large delta(t)) total-variation-diminishing (TVD) constraints.
Ghosh, Sayan; Das, Swagatam; Vasilakos, Athanasios V; Suresh, Kaushik
2012-02-01
Differential evolution (DE) is arguably one of the most powerful stochastic real-parameter optimization algorithms of current interest. Since its inception in the mid 1990s, DE has been finding many successful applications in real-world optimization problems from diverse domains of science and engineering. This paper takes a first significant step toward the convergence analysis of a canonical DE (DE/rand/1/bin) algorithm. It first deduces a time-recursive relationship for the probability density function (PDF) of the trial solutions, taking into consideration the DE-type mutation, crossover, and selection mechanisms. Then, by applying the concepts of Lyapunov stability theorems, it shows that as time approaches infinity, the PDF of the trial solutions concentrates narrowly around the global optimum of the objective function, assuming the shape of a Dirac delta distribution. Asymptotic convergence behavior of the population PDF is established by constructing a Lyapunov functional based on the PDF and showing that it monotonically decreases with time. The analysis is applicable to a class of continuous and real-valued objective functions that possesses a unique global optimum (but may have multiple local optima). Theoretical results have been substantiated with relevant computer simulations.
NASA Technical Reports Server (NTRS)
Ohring, G.; Wielicki, B.; Spencer, R.; Emery, B.; Datla, R.
2004-01-01
Measuring the small changes associated with long-term global climate change from space is a daunting task. To address these problems and recommend directions for improvements in satellite instrument calibration some 75 scientists, including researchers who develop and analyze long-term data sets from satellites, experts in the field of satellite instrument calibration, and physicists working on state of the art calibration sources and standards met November 12 - 14, 2002 and discussed the issues. The workshop defined the absolute accuracies and long-term stabilities of global climate data sets that are needed to detect expected trends, translated these data set accuracies and stabilities to required satellite instrument accuracies and stabilities, and evaluated the ability of current observing systems to meet these requirements. The workshop's recommendations include a set of basic axioms or overarching principles that must guide high quality climate observations in general, and a roadmap for improving satellite instrument characterization, calibration, inter-calibration, and associated activities to meet the challenge of measuring global climate change. It is also recommended that a follow-up workshop be conducted to discuss implementation of the roadmap developed at this workshop.
Analysis of stock prices of mining business
NASA Astrophysics Data System (ADS)
Ahn, Sanghyun; Lim, G. C.; Kim, S. H.; Kim, Soo Yong; Yoon, Kwon Youb; Stanfield, Joseph Lee; Kim, Kyungsik
2011-06-01
Stock exchanges have a diversity of so-called business groups and much evidence has been presented by covariance matrix analysis (Laloux et al. (1999) [6], Plerou et al. (2002) [7], Plerou et al. (1999) [8], Mantegna (1999) [9], Utsugi et al. (2004) [21] and Lim et al. (2009) [26]). A market-wide effect plays a crucial role in shifting the correlation structure from random to non-random. In this work, we study the structural properties of stocks related to the mining industry, especially rare earth minerals, listed on two exchanges, namely the TSX (Toronto stock exchange) and the TSX-V (Toronto stock exchange-ventures). In general, raw-material businesses are sensitively affected by the global economy while each firm has its own cycle. We prove that the global crisis during 2006-2009 affected the mineral market considerably. These two aspects compete to control price fluctuations. We show that the internal cycle overwhelms the global economic environment in terms of random matrix theory and overlapping matrices. However, during the period of 2006-2009, the effect of the global economic environment emerges. This result is well explained by the recent global financial/economic crisis. For comparison, we analyze the time stability of business clusters of the KOSPI, that is, the electric/electronic business, using an overlapping matrix. A clear difference in behavior is confirmed. Consequently, rare earth minerals in the raw-material business should be classified not by standard business classifications but by the internal cycle of business.
Achilonu, Ikechukwu; Fanucchi, Sylvia; Cross, Megan; Fernandes, Manuel; Dirr, Heini W
2012-02-07
Chloride intracellular channel proteins exist in both a soluble cytosolic form and a membrane-bound form. The mechanism of conversion between the two forms is not properly understood, although one of the contributing factors is believed to be the variation in pH between the cytosol (~7.4) and the membrane (~5.5). We systematically mutated each of the three histidine residues in CLIC1 to an alanine at position 74 and a phenylalanine at positions 185 and 207. We examined the effect of the histidine-mediated pH dependence on the structure and global stability of CLIC1. None of the mutations were found to alter the global structure of the protein. However, the stability of H74A-CLIC1 and H185F-CLIC1, as calculated from the equilibrium unfolding data, is no longer dependent on pH because similar trends are observed at pH 7.0 and 5.5. The crystal structures show that the mutations result in changes in the local hydrogen bond coordination. Because the mutant total free energy change upon unfolding is not different from that of the wild type at pH 7.0, despite the presence of intermediates that are not seen in the wild type, we propose that it may be the stability of the intermediate state rather than the native state that is dependent on pH. On the basis of the lower stability of the intermediate in the H74A and H185F mutants compared to that of the wild type, we conclude that both His74 and His185 are involved in triggering the pH changes to the conformational stability of wild-type CLIC1 via their protonation, which stabilizes the intermediate state.
Conformational analysis and circular dichroism of bilirubin, the yellow pigment of jaundice
NASA Astrophysics Data System (ADS)
Lightner, David A.; Person, Richard; Peterson, Blake; Puzicha, Gisbert; Pu, Yu-Ming; Bojadziev, Stefan
1991-06-01
Conformational analysis of (4Z, 15Z)-bilirubin-IX(alpha) by molecular mechanics computations reveals a global energy minimum folded conformation. Powerful added stabilization is achieved through intramolecular hydrogen bonding. Theoretical treatment of bilirubin as a molecular exciton predicts an intense bisignate circular dichroism spectrum for the folded conformation: (Delta) (epsilon) is congruent to 270 L (DOT) mole-1 (DOT) cm-1 for the $OM450 nm electronic transition(s). Synthesis of bilirubin analogs with propionic acid groups methylated at the (alpha) or (beta) position introduces an allosteric effect that allows for an optical resolution of the pigments, with enantiomers exhibiting the theoretically predicted circular dichroism.
NASA Astrophysics Data System (ADS)
Wada, Yuji; Yuge, Kohei; Tanaka, Hiroki; Nakamura, Kentaro
2017-07-01
Numerical analysis on the rotation of an ultrasonically levitated droplet in centrifugal coordinate is discussed. A droplet levitated in an acoustic chamber is simulated using the distributed point source method and the moving particle semi-implicit method. Centrifugal coordinate is adopted to avoid the Laplacian differential error, which causes numerical divergence or inaccuracy in the global coordinate calculation. Consequently, the duration of calculation stability has increased 30 times longer than that in a the previous paper. Moreover, the droplet radius versus rotational acceleration characteristics show a similar trend to the theoretical and experimental values in the literature.
NASA Astrophysics Data System (ADS)
Gupta, Ujval; Kumar, Vinay; Singh, Vivek K.; Kant, Rajni; Khajuria, Yugal
2015-04-01
The Fourier Transform Infrared (FTIR), Ultra-Violet Visible (UV-Vis) spectroscopy and Thermogravimetric (TG) analysis of (3,4-dimethoxybenzylidene) propanedinitrile have been carried out and investigated using quantum chemical calculations. The molecular geometry, harmonic vibrational frequencies, Mulliken charges, natural atomic charges and thermodynamic properties in the ground state have been investigated by using Hartree Fock Theory (HF) and Density Functional Theory (DFT) using B3LYP functional with 6-311G(d,p) basis set. Both HF and DFT methods yield good agreement with the experimental data. Vibrational modes are assigned with the help of Vibrational Energy Distribution Analysis (VEDA) program. UV-Visible spectrum was recorded in the spectral range of 190-800 nm and the results are compared with the calculated values using TD-DFT approach. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. The results obtained from the studies of Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) are used to calculate molecular parameters like ionization potential, electron affinity, global hardness, electron chemical potential and global electrophilicity.
Global metabolic profiling procedures for urine using UPLC-MS.
Want, Elizabeth J; Wilson, Ian D; Gika, Helen; Theodoridis, Georgios; Plumb, Robert S; Shockcor, John; Holmes, Elaine; Nicholson, Jeremy K
2010-06-01
The production of 'global' metabolite profiles involves measuring low molecular-weight metabolites (<1 kDa) in complex biofluids/tissues to study perturbations in response to physiological challenges, toxic insults or disease processes. Information-rich analytical platforms, such as mass spectrometry (MS), are needed. Here we describe the application of ultra-performance liquid chromatography-MS (UPLC-MS) to urinary metabolite profiling, including sample preparation, stability/storage and the selection of chromatographic conditions that balance metabolome coverage, chromatographic resolution and throughput. We discuss quality control and metabolite identification, as well as provide details of multivariate data analysis approaches for analyzing such MS data. Using this protocol, the analysis of a sample set in 96-well plate format, would take ca. 30 h, including 1 h for system setup, 1-2 h for sample preparation, 24 h for UPLC-MS analysis and 1-2 h for initial data processing. The use of UPLC-MS for metabolic profiling in this way is not faster than the conventional HPLC-based methods but, because of improved chromatographic performance, provides superior metabolome coverage.
Biodiversity and ecosystem stability across scales in metacommunities
Wang, Shaopeng; Loreau, Michel
2016-01-01
Although diversity-stability relationships have been extensively studied in local ecosystems, the global biodiversity crisis calls for an improved understanding of these relationships in a spatial context. Here we use a dynamical model of competitive metacommunities to study the relationships between species diversity and ecosystem variability across scales. We derive analytic relationships under a limiting case; these results are extended to more general cases with numerical simulations. Our model shows that, while alpha diversity decreases local ecosystem variability, beta diversity generally contributes to increasing spatial asynchrony among local ecosystems. Consequently, both alpha and beta diversity provide stabilizing effects for regional ecosystems, through local and spatial insurance effects, respectively. We further show that at the regional scale, the stabilizing effect of biodiversity increases as spatial environmental correlation increases. Our findings have important implications for understanding the interactive effects of global environmental changes (e.g. environmental homogenization) and biodiversity loss on ecosystem sustainability at large scales. PMID:26918536
Lin, Chia-Ying; Hsiao, Chun-Ching; Chen, Po-Quan; Hollister, Scott J
2004-08-15
An approach combining global layout and local microstructure topology optimization was used to create a new interbody fusion cage design that concurrently enhanced stability, biofactor delivery, and mechanical tissue stimulation for improved arthrodesis. To develop a new interbody fusion cage design by topology optimization with porous internal architecture. To compare the performance of this new design to conventional threaded cage designs regarding early stability and long-term stress shielding effects on ingrown bone. Conventional interbody cage designs mainly fall into categories of cylindrical or rectangular shell shapes. The designs contribute to rigid stability and maintain disc height for successful arthrodesis but may also suffer mechanically mediated failures of dislocation or subsidence, as well as the possibility of bone resorption. The new optimization approach created a cage having designed microstructure that achieved desired mechanical performance while providing interconnected channels for biofactor delivery. The topology optimization algorithm determines the material layout under desirable volume fraction (50%) and displacement constraints favorable to bone formation. A local microstructural topology optimization method was used to generate periodic microstructures for porous isotropic materials. Final topology was generated by the integration of the two-scaled structures according to segmented regions and the corresponding material density. Image-base finite element analysis was used to compare the mechanical performance of the topology-optimized cage and conventional threaded cage. The final design can be fabricated by a variety of Solid Free-Form systems directly from the image output. The new design exhibited a narrower, more uniform displacement range than the threaded cage design and lower stress at the cage-vertebra interface, suggesting a reduced risk of subsidence. Strain energy density analysis also indicated that a higher portion of total strain energy density was transferred into the new bone region inside the new designed cage, indicating a reduced risk of stress shielding. The new design approach using integrated topology optimization demonstrated comparable or better stability by limited displacement and reduced localized deformation related to the risk of subsidence. Less shielding of newly formed bone was predicted inside the new designed cage. Using the present approach, it is also possible to tailor cage design for specific materials, either titanium or polymer, that can attain the desired balance between stability, reduced stress shielding, and porosity for biofactor delivery.
NASA Astrophysics Data System (ADS)
Suresha, Suhas; Sujith, R. I.; Emerson, Benjamin; Lieuwen, Tim
2016-10-01
The flame or flow behavior of a turbulent reacting wake is known to be fundamentally different at high and low values of flame density ratio (ρu/ρb ), as the flow transitions from globally stable to unstable. This paper analyzes the nonlinear dynamics present in a bluff-body stabilized flame, and identifies the transition characteristics in the wake as ρu/ρb is varied over a Reynolds number (based on the bluff-body lip velocity) range of 1000-3300. Recurrence quantification analysis (RQA) of the experimentally obtained time series of the flame edge fluctuations reveals that the time series is highly aperiodic at high values of ρu/ρb and transitions to increasingly correlated or nearly periodic behavior at low values. From the RQA of the transverse velocity time series, we observe that periodicity in the flame oscillations are related to periodicity in the flow. Therefore, we hypothesize that this transition from aperiodic to nearly periodic behavior in the flame edge time series is a manifestation of the transition in the flow from globally stable, convective instability to global instability as ρu/ρb decreases. The recurrence analysis further reveals that the transition in periodicity is not a sudden shift; rather it occurs through an intermittent regime present at low and intermediate ρu/ρb . During intermittency, the flow behavior switches between aperiodic oscillations, reminiscent of a globally stable, convective instability, and periodic oscillations, reminiscent of a global instability. Analysis of the distribution of the lengths of the periodic regions in the intermittent time series and the first return map indicate the presence of type-II intermittency.
Analysis of Global Ultrasonic Sensor Data from a Full Scale Wing Panel Test
NASA Astrophysics Data System (ADS)
Michaels, Jennifer E.; Michaels, Thomas E.; Martin, Ramaldo S.
2009-03-01
A full scale wing panel fatigue test was undertaken in 2007 as a part of the DARPA Structural Integrity Prognosis System (SIPS) program. Both local and global ultrasonic sensors were installed on the wing panel and data were recorded periodically over a period of about seven weeks. The local ultrasonic sensors interrogated a small number of selected fastener holes, and the global ultrasonic sensors were arranged in a spatially distributed array surrounding an area encompassing multiple fastener holes of interest. The global ultrasonic sensor data is the focus of the work reported here. Waveforms were recorded from all pitch-catch sensor pairs as a function of static load while fatiguing was paused. The time windows over which the waveforms were recorded were long enough to include most of the reverberating energy. Partway through the test simulated defects were temporarily introduced by gluing masses onto the surface of the wing panel, and waveforms were recorded immediately before their attachment and after their removal. The overall fatigue test was terminated while cracks originating from the fastener holes were still relatively small and before they reached the surface of the wing panel. Both detection and localization results are shown for the artificial damage, and the overall repeatability and stability of the signals are analyzed. Also shown is an analysis of how the reverberating signals change as a function of applied load. The fastener hole fatigue cracks were not detected by the global transducer array, which is not surprising given the final sizes of the cracks as determined by later destructive analysis. However, signals were stable throughout the entire fatigue test, and effects of load on the received signals were significant, both in the short-time and long-time signal regimes.
NASA Astrophysics Data System (ADS)
Thomson, A. M.; Izaurralde, R. C.; Clarke, L. E.
2006-12-01
Assessing the contribution of terrestrial carbon sequestration to national and international climate change mitigation requires integration across scientific and disciplinary boundaries. In a study for the US Climate Change Technology Program, site based measurements and geographic data were used to develop a three- pool, first-order kinetic model of global agricultural soil carbon (C) stock changes over 14 continental scale regions. This model was then used together with land use scenarios from the MiniCAM integrated assessment model in a global analysis of climate change mitigation options. MiniCAM evaluated mitigation strategies within a set of policy environments aimed at achieving atmospheric CO2 stabilization by 2100 under a suite of technology and development scenarios. Adoption of terrestrial sequestration practices is based on competition for land and economic markets for carbon. In the reference case with no climate policy, conversion of agricultural land from conventional cultivation to no tillage over the next century in the United States results in C sequestration of 7.6 to 59.8 Tg C yr-1, which doubles to 19.0 to 143.4 Tg C yr-1 under the most aggressive climate policy. Globally, with no carbon policy, agricultural C sequestration rates range from 75.2 to 18.2 Tg C yr-1 over the century, with the highest rates occurring in the first fifty years. Under the most aggressive global climate change policy, sequestration in agricultural soils reaches up to 190 Tg C yr-1 in the first 15 years. The contribution of agricultural soil C sequestration is a small fraction of the total global carbon offsets necessary to reach the stabilization targets (9 to 20 Gt C yr-1) by the end of the century. This integrated assessment provides decision makers with science-based estimates of the potential magnitude of terrestrial C sequestration relative to other greenhouse gas mitigation strategies in all sectors of the global economy. It also provides insight into the behavior of terrestrial C mitigation options in the presence and absence of climate change mitigation policies.
NASA Astrophysics Data System (ADS)
Grandy, Stuart; Wieder, Will; Kallenbach, Cynthia; Tiemann, Lisa
2014-05-01
If soil organic matter is predominantly microbial biomass, plant inputs that build biomass should also increase SOM. This seems obvious, but the implications fundamentally change how we think about the relationships between plants, microbes and SOM. Plant residues that build microbial biomass are typically characterized by low C/N ratios and high lignin contents. However, plants with high lignin contents and high C/N ratios are believed to increase SOM, an entrenched idea that still strongly motivates agricultural soil management practices. Here we use a combination of meta-analysis with a new microbial-explicit soil biogeochemistry model to explore the relationships between plant litter chemistry, microbial communities, and SOM stabilization in different soil types. We use the MIcrobial-MIneral Carbon Stabilization (MIMICS) model, newly built upon the Community Land Model (CLM) platform, to enhance our understanding of biology in earth system processes. The turnover of litter and SOM in MIMICS are governed by the activity of r- and k-selected microbial groups and temperature sensitive Michaelis-Menten kinetics. Plant and microbial residues are stabilized short-term by chemical recalcitrance or long-term by physical protection. Fast-turnover litter inputs increase SOM by >10% depending on temperature in clay soils, and it's only in sandy soils devoid of physical protection mechanisms that recalcitrant inputs build SOM. These results challenge centuries of lay knowledge as well as conventional ideas of SOM formation, but are they realistic? To test this, we conducted a meta-analysis of the relationships between the chemistry of plant liter inputs and SOM concentrations. We find globally that the highest SOM concentrations are associated with plant inputs containing low C/N ratios. These results are confirmed by individual tracer studies pointing to greater stabilization of low C/N ratio inputs, particularly in clay soils. Our model and meta-analysis results suggest that current ideas about plant-microbe-SOM relationships are unraveling. If so, our reconsideration of the mechanisms stabilizing SOM will also challenge long-held views about how to optimize plant community management to increase SOM.
Predictability of dune activity in real dune fields under unidirectional wind regimes
NASA Astrophysics Data System (ADS)
Barchyn, Thomas E.; Hugenholtz, Chris H.
2015-02-01
We present an analysis of 10 dune fields to test a model-derived hypothesis of dune field activity. The hypothesis suggests that a quantifiable threshold exists for stabilization in unidirectional wind regimes: active dunes have slipface deposition rates that exceed the vegetation deposition tolerance, and stabilizing dunes have the opposite. We quantified aeolian sand flux, slipface geometry, and vegetation deposition tolerance to directly test the hypothesis at four dune fields (Bigstick, White Sands Stable, White Sands Active, and Cape Cod). We indirectly tested the hypothesis at six additional dune fields with limited vegetation data (Hanford, Año Nuevo, Skagen Odde, Salton Sea, Oceano Stable, and Oceano Active, "inverse calculation sites"). We used digital topographic data and estimates of aeolian sand flux to approximate the slipface deposition rates prior to stabilization. Results revealed a distinct, quantifiable, and consistent pattern despite diverse environmental conditions: the modal peak of prestabilization slipface deposition rates was 80% of the vegetation deposition tolerance at stabilized or stabilizing dune fields. Results from inverse calculation sites indicate deposition rates at stabilized sites were near a hypothesized maximum vegetation deposition tolerance (1 m a-1), and active sites had slipface deposition rates much higher. Overall, these results confirm the hypothesis and provide evidence of a globally applicable, simple, and previously unidentified predictor for the dynamics of vegetation cover in dune fields under unidirectional wind regimes.
Clénet, Didier
2018-04-01
Due to their thermosensitivity, most vaccines must be kept refrigerated from production to use. To successfully carry out global immunization programs, ensuring the stability of vaccines is crucial. In this context, two important issues are critical, namely: (i) predicting vaccine stability and (ii) preventing product damage due to excessive temperature excursions outside of the recommended storage conditions (cold chain break). We applied a combination of advanced kinetics and statistical analyses on vaccine forced degradation data to accurately describe the loss of antigenicity for a multivalent freeze-dried inactivated virus vaccine containing three variants. The screening of large amounts of kinetic models combined with a statistical model selection approach resulted in the identification of two-step kinetic models. Predictions based on kinetic analysis and experimental stability data were in agreement, with approximately five percentage points difference from real values for long-term stability storage conditions, after excursions of temperature and during experimental shipments of freeze-dried products. Results showed that modeling a few months of forced degradation can be used to predict various time and temperature profiles endured by vaccines, i.e. long-term stability, short time excursions outside the labeled storage conditions or shipments at ambient temperature, with high accuracy. Pharmaceutical applications of the presented kinetics-based approach are discussed. Copyright © 2018 The Author. Published by Elsevier B.V. All rights reserved.
Global analysis of protein folding using massively parallel design, synthesis and testing
Rocklin, Gabriel J.; Chidyausiku, Tamuka M.; Goreshnik, Inna; Ford, Alex; Houliston, Scott; Lemak, Alexander; Carter, Lauren; Ravichandran, Rashmi; Mulligan, Vikram K.; Chevalier, Aaron; Arrowsmith, Cheryl H.; Baker, David
2017-01-01
Proteins fold into unique native structures stabilized by thousands of weak interactions that collectively overcome the entropic cost of folding. Though these forces are “encoded” in the thousands of known protein structures, “decoding” them is challenging due to the complexity of natural proteins that have evolved for function, not stability. Here we combine computational protein design, next-generation gene synthesis, and a high-throughput protease susceptibility assay to measure folding and stability for over 15,000 de novo designed miniproteins, 1,000 natural proteins, 10,000 point-mutants, and 30,000 negative control sequences, identifying over 2,500 new stable designed proteins in four basic folds. This scale—three orders of magnitude greater than that of previous studies of design or folding—enabled us to systematically examine how sequence determines folding and stability in uncharted protein space. Iteration between design and experiment increased the design success rate from 6% to 47%, produced stable proteins unlike those found in nature for topologies where design was initially unsuccessful, and revealed subtle contributions to stability as designs became increasingly optimized. Our approach achieves the long-standing goal of a tight feedback cycle between computation and experiment, and promises to transform computational protein design into a data-driven science. PMID:28706065
Explosive Remnants of War in Stability Operations
2012-09-01
strategic partner capacity building, global ERW and Counter-IED (C-IED) efforts, while adhering to global Mine /UXO awareness efforts. 15. NUMBER OF...PAGES 139 14. SUBJECT TERMS Explosive Remnants of War—Collection Point (ERW - CP), Landmine, Anti- Personnel Mine , Mine Action, Cluster Munitions...strategic partner capacity building, global ERW and Counter- IED (C-IED) efforts, while adhering to global Mine /UXO awareness efforts. vi THIS PAGE
GPS-Only Terrestrial Reference Frame Based on a Global Reprocessing
NASA Astrophysics Data System (ADS)
Dietrich, R.; Rothacher, M.; Ruelke, A.; Fritsche, M.; Steigenberger, P.
2007-12-01
The realization of the International Terrestrial Reference System (ITRS) with highest accuracy and stability is fundamental and crucial for applications in geodesy, geodynamics, geophysics and global change. In a joint effort TU Dresden and TU Munich/GFZ Potsdam reprocessed a global GPS network of more than 200 stations. As a contribution to an ITRS realization daily normal equations from 1994 to 2005 were rigorously combined in order to determine a global GPS-only reference frame (PDR05/Potsdam-Dresden-Reprocessing Reference Frame). We present a realization of the global terrestrial reference system which follows the center of mass approach in consideration of the load-induced deformation of the Earth's crust due to the redistribution of surface masses. The stability of our reference frame will be evaluated based on the obtained long-term trends of station coordinates, the load-induced deformation estimates and the homogeneous time series of station positions. We will compare our solution with other recent terrestrial reference system realizations and give some conclusions for future realizations of the ITRS.
A Conceptual Framework for Integrated STEM Education
ERIC Educational Resources Information Center
Kelley, Todd R.; Knowles, J. Geoff
2016-01-01
The global urgency to improve STEM education may be driven by environmental and social impacts of the twenty-first century which in turn jeopardizes global security and economic stability. The complexity of these global factors reach beyond just helping students achieve high scores in math and science assessments. Friedman (The world is flat: A…
Analysis of A Virus Dynamics Model
NASA Astrophysics Data System (ADS)
Zhang, Baolin; Li, Jianquan; Li, Jia; Zhao, Xin
2018-03-01
In order to more accurately characterize the virus infection in the host, a virus dynamics model with latency and virulence is established and analyzed in this paper. The positivity and boundedness of the solution are proved. After obtaining the basic reproduction number and the existence of infected equilibrium, the Lyapunov method and the LaSalle invariance principle are used to determine the stability of the uninfected equilibrium and infected equilibrium by constructing appropriate Lyapunov functions. We prove that, when the basic reproduction number does not exceed 1, the uninfected equilibrium is globally stable, the virus can be cleared eventually; when the basic reproduction number is more than 1, the infected equilibrium is globally stable, the virus will persist in the host at a certain level. The effect of virulence and latency on infection is also discussed.
Dynamic analysis of a hepatitis B model with three-age-classes
NASA Astrophysics Data System (ADS)
Zhang, Suxia; Zhou, Yicang
2014-07-01
Based on the fact that the likelihood of becoming chronically infected is dependent on age at primary infection Kane (1995) [2], Edmunds et al. (1993) [3], Medley et al. (2001) [4], and Ganem and Prince (2004) [6], we formulate a hepatitis B transmission model with three age classes. The reproduction number, R0 is defined and the dynamical behavior of the model is analyzed. It is proved that the disease-free equilibrium is globally stable if R0<1, and there exists at least one endemic equilibrium and that the disease is uniformly persistent if R0>1. The unique endemic equilibrium and its global stability is obtained in a special case. Simulations are also conducted to compare the dynamical behavior of the model with and without age classes.
New exponential stability criteria for stochastic BAM neural networks with impulses
NASA Astrophysics Data System (ADS)
Sakthivel, R.; Samidurai, R.; Anthoni, S. M.
2010-10-01
In this paper, we study the global exponential stability of time-delayed stochastic bidirectional associative memory neural networks with impulses and Markovian jumping parameters. A generalized activation function is considered, and traditional assumptions on the boundedness, monotony and differentiability of activation functions are removed. We obtain a new set of sufficient conditions in terms of linear matrix inequalities, which ensures the global exponential stability of the unique equilibrium point for stochastic BAM neural networks with impulses. The Lyapunov function method with the Itô differential rule is employed for achieving the required result. Moreover, a numerical example is provided to show that the proposed result improves the allowable upper bound of delays over some existing results in the literature.
Tropospheric Delay from VLBI and GNSS Measurements
NASA Astrophysics Data System (ADS)
Gubanov, V. S.
2018-02-01
Using an updated version of the QUASAR software package developed at the Institute of Applied Astronomy of the Russian Academy of Sciences, we have processed the VLBI observations within the international CONT14 program (May 6-20, 2014), in which a global network of 17 stations was involved (a total of 250 000 observations). The package update concerned the optimization of data structure and the refinement of stochastic models for the random variations in wet tropospheric delay and atomic clock difference. The main goal of this paper is to compare the VLBI determinations of the tropospheric delay with its independent determinations using global navigation satellite systems (GNSS). We show that both these determinations agree well between themselves only in the case of a global analysis of the VLBI observations, where the VLBI station coordinates are also refined, along with the tropospheric delay and the clock synchronization and Earth orientation parameters. If, alternatively, the station coordinates are insufficiently accurate and are not refined from VLBI observations, then it is appropriate not to determine the tropospheric delay from these observations, but to take it from the publicly accessible independent GNSS data. However, this requires that the VLBI and GNSS techniques operate simultaneously at a common observing site. We have established the shortcomings of the universally accepted method of stabilizing the global solution associated with the absence of a criterion for choosing reference stations and radio sources. Two ways of their elimination are proposed: (i) introducing a coordinated list of weight factors for the errors in the coordinates of such stations and sources into the stabilization algorithm and (ii) adopting a coordinated list of stations and sources the refinement of whose coordinates is not required at all for a certain time.
Diverse Soil Carbon Dynamics Expressed at the Molecular Level
NASA Astrophysics Data System (ADS)
van der Voort, T. S.; Zell, C. I.; Hagedorn, F.; Feng, X.; McIntyre, C. P.; Haghipour, N.; Graf Pannatier, E.; Eglinton, T. I.
2017-12-01
The stability and potential vulnerability of soil organic matter (SOM) to global change remain incompletely understood due to the complex processes involved in its formation and turnover. Here we combine compound-specific radiocarbon analysis with fraction-specific and bulk-level radiocarbon measurements in order to further elucidate controls on SOM dynamics in a temperate and subalpine forested ecosystem. Radiocarbon contents of individual organic compounds isolated from the same soil interval generally exhibit greater variation than those among corresponding operationally defined fractions. Notably, markedly older ages of long-chain plant leaf wax lipids (n-alkanoic acids) imply that they reflect a highly stable carbon pool. Furthermore, marked 14C variations among shorter- and longer-chain n-alkanoic acid homologues suggest that they track different SOM pools. Extremes in SOM dynamics thus manifest themselves within a single compound class. This exploratory study highlights the potential of compound-specific radiocarbon analysis for understanding SOM dynamics in ecosystems potentially vulnerable to global change.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Squire, J.; Bhattacharjee, A.
2014-12-10
We study magnetorotational instability (MRI) using nonmodal stability techniques. Despite the spectral instability of many forms of MRI, this proves to be a natural method of analysis that is well-suited to deal with the non-self-adjoint nature of the linear MRI equations. We find that the fastest growing linear MRI structures on both local and global domains can look very different from the eigenmodes, invariably resembling waves shearing with the background flow (shear waves). In addition, such structures can grow many times faster than the least stable eigenmode over long time periods, and be localized in a completely different region ofmore » space. These ideas lead—for both axisymmetric and non-axisymmetric modes—to a natural connection between the global MRI and the local shearing box approximation. By illustrating that the fastest growing global structure is well described by the ordinary differential equations (ODEs) governing a single shear wave, we find that the shearing box is a very sensible approximation for the linear MRI, contrary to many previous claims. Since the shear wave ODEs are most naturally understood using nonmodal analysis techniques, we conclude by analyzing local MRI growth over finite timescales using these methods. The strong growth over a wide range of wave-numbers suggests that nonmodal linear physics could be of fundamental importance in MRI turbulence.« less
On the potential of Galileo E5 for time transfer.
Martínez-Belda, Mari Carmen; Defraigne, Pascale; Bruyninx, Carine
2013-01-01
The main global navigation satellite systems (GNSS) technique currently used for accurate time and frequency transfer is based on an analysis of the ionosphere-free combinations of dual-frequency code and carrier phase measurements in a precise point positioning (PPP) mode. This technique analyses the observations of one GNSS station using external products for satellite clocks and orbits to determine the position and clock synchronization errors of this station. The frequency stability of this time transfer is limited by the noise and multipath of the Global Positioning System (GPS) and Globalnaya Navigatsionnaya Sputnikovaya Sistema (GLONASS) codes. In the near future, Galileo will offer a broadband signal E5, with low noise in the centimeter range and with the lowest multipath error ever observed. This paper investigates new analysis procedures based on the E5 codeplus- carrier (CPC) combination for time transfer. The CPC combination with E5 provides a noise level 10 times lower than the ionosphere-free combination of Galileo E1 and E5, which is very promising for improving GNSS time transfer performances. From some tests with simulated Galileo data, it is shown here that the use of the CPC combination with E5 does not improve, at present, the medium- and long-term stability of time transfer with respect to the ionosphere-free combination of Galileo E1 and E5 codes, because of the need for a second frequency signal to correct for the ionospheric delays and ambiguities.
Multiscale model within-host and between-host for viral infectious diseases.
Almocera, Alexis Erich S; Nguyen, Van Kinh; Hernandez-Vargas, Esteban A
2018-05-08
Multiscale models possess the potential to uncover new insights into infectious diseases. Here, a rigorous stability analysis of a multiscale model within-host and between-host is presented. The within-host model describes viral replication and the respective immune response while disease transmission is represented by a susceptible-infected model. The bridging of scales from within- to between-host considered transmission as a function of the viral load. Consequently, stability and bifurcation analyses were developed coupling the two basic reproduction numbers [Formula: see text] and [Formula: see text] for the within- and the between-host subsystems, respectively. Local stability results for each subsystem, including a unique stable equilibrium point, recapitulate classical approaches to infection and epidemic control. Using a Lyapunov function, global stability of the between-host system was obtained. Our main result was the derivation of the [Formula: see text] as an increasing function of [Formula: see text]. Numerical analyses reveal that a Michaelis-Menten form based on the virus is more likely to recapitulate the behavior between the scales than a form directly proportional to the virus. Our work contributes basic understandings of the two models and casts light on the potential effects of the coupling function on linking the two scales.
Small-world networks exhibit pronounced intermittent synchronization
NASA Astrophysics Data System (ADS)
Choudhary, Anshul; Mitra, Chiranjit; Kohar, Vivek; Sinha, Sudeshna; Kurths, Jürgen
2017-11-01
We report the phenomenon of temporally intermittently synchronized and desynchronized dynamics in Watts-Strogatz networks of chaotic Rössler oscillators. We consider topologies for which the master stability function (MSF) predicts stable synchronized behaviour, as the rewiring probability (p) is tuned from 0 to 1. MSF essentially utilizes the largest non-zero Lyapunov exponent transversal to the synchronization manifold in making stability considerations, thereby ignoring the other Lyapunov exponents. However, for an N-node networked dynamical system, we observe that the difference in its Lyapunov spectra (corresponding to the N - 1 directions transversal to the synchronization manifold) is crucial and serves as an indicator of the presence of intermittently synchronized behaviour. In addition to the linear stability-based (MSF) analysis, we further provide global stability estimate in terms of the fraction of state-space volume shared by the intermittently synchronized state, as p is varied from 0 to 1. This fraction becomes appreciably large in the small-world regime, which is surprising, since this limit has been otherwise considered optimal for synchronized dynamics. Finally, we characterize the nature of the observed intermittency and its dominance in state-space as network rewiring probability (p) is varied.
Test of the Hill Stability Criterion against Chaos Indicators
NASA Astrophysics Data System (ADS)
Satyal, Suman; Quarles, Billy; Hinse, Tobias
2012-10-01
The efficacy of Hill Stability (HS) criterion is tested against other known chaos indicators such as Maximum Lyapunov Exponents (MLE) and Mean Exponential Growth of Nearby Orbits (MEGNO) maps. First, orbits of four observationally verified binary star systems: γ Cephei, Gliese-86, HD41004, and HD196885 are integrated using standard integration packages (MERCURY, SWIFTER, NBI, C/C++). The HS which measures orbital perturbation of a planet around the primary star due to the secondary star is calculated for each system. The LEs spectra are generated to measure the divergence/convergence rate of stable manifolds and the MEGNO maps are generated by using the variational equations of the system during the integration process. These maps allow to accurately differentiate between stable and unstable dynamical systems. Then the results obtained from the analysis of HS, MLE, and MEGNO maps are checked for their dynamical variations and resemblance. The HS of most of the planets seems to be stable, quasi-periodic for at least ten million years. The MLE and the MEGNO maps also indicate the local quasi-periodicity and global stability in relatively short integration period. The HS criterion is found to be a comparably efficient tool to measure the stability of planetary orbits.
Thermostability of In Vitro Evolved Bacillus subtilis Lipase A: A Network and Dynamics Perspective
Srivastava, Ashutosh; Sinha, Somdatta
2014-01-01
Proteins in thermophilic organisms remain stable and function optimally at high temperatures. Owing to their important applicability in many industrial processes, such thermostable proteins have been studied extensively, and several structural factors attributed to their enhanced stability. How these factors render the emergent property of thermostability to proteins, even in situations where no significant changes occur in their three-dimensional structures in comparison to their mesophilic counter-parts, has remained an intriguing question. In this study we treat Lipase A from Bacillus subtilis and its six thermostable mutants in a unified manner and address the problem with a combined complex network-based analysis and molecular dynamic studies to find commonality in their properties. The Protein Contact Networks (PCN) of the wild-type and six mutant Lipase A structures developed at a mesoscopic scale were analyzed at global network and local node (residue) level using network parameters and community structure analysis. The comparative PCN analysis of all proteins pointed towards important role of specific residues in the enhanced thermostability. Network analysis results were corroborated with finer-scale molecular dynamics simulations at both room and high temperatures. Our results show that this combined approach at two scales can uncover small but important changes in the local conformations that add up to stabilize the protein structure in thermostable mutants, even when overall conformation differences among them are negligible. Our analysis not only supports the experimentally determined stabilizing factors, but also unveils the important role of contacts, distributed throughout the protein, that lead to thermostability. We propose that this combined mesoscopic-network and fine-grained molecular dynamics approach is a convenient and useful scheme not only to study allosteric changes leading to protein stability in the face of negligible over-all conformational changes due to mutations, but also in other molecular networks where change in function does not accompany significant change in the network structure. PMID:25122499
Tran, Duc T; Banerjee, Sambuddha; Alayash, Abdu I; Crumbliss, Alvin L; Fitzgerald, Michael C
2012-02-07
Described here is a mass spectrometry-based protocol to study the thermodynamic stability of proteins and protein-ligand complexes using the chemical denaturant dependence of the slow H/D exchange reaction of the imidazole C(2) proton in histidine side chains. The protocol is developed using several model protein systems including: ribonuclease (Rnase) A, myoglobin, bovine carbonic anhydrase (BCA) II, hemoglobin (Hb), and the hemoglobin-haptoglobin (Hb-Hp) protein complex. Folding free energies consistent with those previously determined by other more conventional techniques were obtained for the two-state folding proteins, Rnase A and myoglobin. The protocol successfully detected a previously observed partially unfolded intermediate stabilized in the BCA II folding/unfolding reaction, and it could be used to generate a K(d) value of 0.24 nM for the Hb-Hp complex. The compatibility of the protocol with conventional mass spectrometry-based proteomic sample preparation and analysis methods was also demonstrated in an experiment in which the protocol was used to detect the binding of zinc to superoxide dismutase in the yeast cell lysate sample. The yeast cell sample analyses also helped define the scope of the technique, which requires the presence of globally protected histidine residues in a protein's three-dimensional structure for successful application. © 2011 American Chemical Society
Zhao, Zeng-hui; Wang, Wei-ming; Gao, Xin; Yan, Ji-xing
2013-01-01
According to the geological characteristics of Xinjiang Ili mine in western area of China, a physical model of interstratified strata composed of soft rock and hard coal seam was established. Selecting the tunnel position, deformation modulus, and strength parameters of each layer as influencing factors, the sensitivity coefficient of roadway deformation to each parameter was firstly analyzed based on a Mohr-Columb strain softening model and nonlinear elastic-plastic finite element analysis. Then the effect laws of influencing factors which showed high sensitivity were further discussed. Finally, a regression model for the relationship between roadway displacements and multifactors was obtained by equivalent linear regression under multiple factors. The results show that the roadway deformation is highly sensitive to the depth of coal seam under the floor which should be considered in the layout of coal roadway; deformation modulus and strength of coal seam and floor have a great influence on the global stability of tunnel; on the contrary, roadway deformation is not sensitive to the mechanical parameters of soft roof; roadway deformation under random combinations of multi-factors can be deduced by the regression model. These conclusions provide theoretical significance to the arrangement and stability maintenance of coal roadway. PMID:24459447
On the global dynamics of a chronic myelogenous leukemia model
NASA Astrophysics Data System (ADS)
Krishchenko, Alexander P.; Starkov, Konstantin E.
2016-04-01
In this paper we analyze some features of global dynamics of a three-dimensional chronic myelogenous leukemia (CML) model with the help of the stability analysis and the localization method of compact invariant sets. The behavior of CML model is defined by concentrations of three cellpopulations circulating in the blood: naive T cells, effector T cells specific to CML and CML cancer cells. We prove that the dynamics of the CML system around the tumor-free equilibrium point is unstable. Further, we compute ultimate upper bounds for all three cell populations and provide the existence conditions of the positively invariant polytope. One ultimate lower bound is obtained as well. Moreover, we describe the iterative localization procedure for refining localization bounds; this procedure is based on cyclic using of localizing functions. Applying this procedure we obtain conditions under which the internal tumor equilibrium point is globally asymptotically stable. Our theoretical analyses are supplied by results of the numerical simulation.
Dynamical analysis of a fractional SIR model with birth and death on heterogeneous complex networks
NASA Astrophysics Data System (ADS)
Huo, Jingjing; Zhao, Hongyong
2016-04-01
In this paper, a fractional SIR model with birth and death rates on heterogeneous complex networks is proposed. Firstly, we obtain a threshold value R0 based on the existence of endemic equilibrium point E∗, which completely determines the dynamics of the model. Secondly, by using Lyapunov function and Kirchhoff's matrix tree theorem, the globally asymptotical stability of the disease-free equilibrium point E0 and the endemic equilibrium point E∗ of the model are investigated. That is, when R0 < 1, the disease-free equilibrium point E0 is globally asymptotically stable and the disease always dies out; when R0 > 1, the disease-free equilibrium point E0 becomes unstable and in the meantime there exists a unique endemic equilibrium point E∗, which is globally asymptotically stable and the disease is uniformly persistent. Finally, the effects of various immunization schemes are studied and compared. Numerical simulations are given to demonstrate the main results.
Temporal Stability of GPS Transmitter Group Delay Variations.
Beer, Susanne; Wanninger, Lambert
2018-05-29
The code observable of global navigation satellite systems (GNSS) is influenced by group delay variations (GDV) of transmitter and receiver antennas. For the Global Positioning System (GPS), the variations can sum up to 1 m in the ionosphere-free linear combination and thus can significantly affect precise code applications. The contribution of the GPS transmitters can amount to 0.8 m peak-to-peak over the entire nadir angle range. To verify the assumption of their time-invariance, we determined daily individual satellite GDV for GPS transmitter antennas over a period of more than two years. Dual-frequency observations of globally distributed reference stations and their multipath combination form the basis for our analysis. The resulting GPS GDV are stable on the level of a few centimeters for C1, P2, and for the ionosphere-free linear combination. Our study reveals that the inconsistencies of the GDV of space vehicle number (SVN) 55 with respect to earlier studies are not caused by temporal instabilities, but are rather related to receiver properties.
NASA Astrophysics Data System (ADS)
Lv, Cuifang; Huang, Lihong; Yuan, Zhaohui
2014-01-01
In this paper, an HIV-1 infection model with Beddington-DeAngelis incidence rate and CTL immune response is investigated. One main feature of this model is that an eclipse stage for the infected cells is included and a portion of these cells is reverted to uninfected cells. We derive the basic reproduction number R1 and the immune response reproduction number R2 for the HIV-1 infection model. By constructing Lyapunov functions, the global stabilities for the equilibria have been analyzed.
Predictive and Neural Predictive Control of Uncertain Systems
NASA Technical Reports Server (NTRS)
Kelkar, Atul G.
2000-01-01
Accomplishments and future work are:(1) Stability analysis: the work completed includes characterization of stability of receding horizon-based MPC in the setting of LQ paradigm. The current work-in-progress includes analyzing local as well as global stability of the closed-loop system under various nonlinearities; for example, actuator nonlinearities; sensor nonlinearities, and other plant nonlinearities. Actuator nonlinearities include three major types of nonlineaxities: saturation, dead-zone, and (0, 00) sector. (2) Robustness analysis: It is shown that receding horizon parameters such as input and output horizon lengths have direct effect on the robustness of the system. (3) Code development: A matlab code has been developed which can simulate various MPC formulations. The current effort is to generalize the code to include ability to handle all plant types and all MPC types. (4) Improved predictor: It is shown that MPC design using better predictors that can minimize prediction errors. It is shown analytically and numerically that Smith predictor can provide closed-loop stability under GPC operation for plants with dead times where standard optimal predictor fails. (5) Neural network predictors: When neural network is used as predictor it can be shown that neural network predicts the plant output within some finite error bound under certain conditions. Our preliminary study shows that with proper choice of update laws and network architectures such bound can be obtained. However, much work needs to be done to obtain a similar result in general case.
NASA Astrophysics Data System (ADS)
Palter, Jaime B.; Frölicher, Thomas L.; Paynter, David; John, Jasmin G.
2018-06-01
The Paris Agreement has initiated a scientific debate on the role that carbon removal - or net negative emissions - might play in achieving less than 1.5 K of global mean surface warming by 2100. Here, we probe the sensitivity of a comprehensive Earth system model (GFDL-ESM2M) to three different atmospheric CO2 concentration pathways, two of which arrive at 1.5 K of warming in 2100 by very different pathways. We run five ensemble members of each of these simulations: (1) a standard Representative Concentration Pathway (RCP4.5) scenario, which produces 2 K of surface warming by 2100 in our model; (2) a stabilization
pathway in which atmospheric CO2 concentration never exceeds 440 ppm and the global mean temperature rise is approximately 1.5 K by 2100; and (3) an overshoot
pathway that passes through 2 K of warming at mid-century, before ramping down atmospheric CO2 concentrations, as if using carbon removal, to end at 1.5 K of warming at 2100. Although the global mean surface temperature change in response to the overshoot pathway is similar to the stabilization pathway in 2100, this similarity belies several important differences in other climate metrics, such as warming over land masses, the strength of the Atlantic Meridional Overturning Circulation (AMOC), ocean acidification, sea ice coverage, and the global mean sea level change and its regional expressions. In 2100, the overshoot ensemble shows a greater global steric sea level rise and weaker AMOC mass transport than in the stabilization scenario, with both of these metrics close to the ensemble mean of RCP4.5. There is strong ocean surface cooling in the North Atlantic Ocean and Southern Ocean in response to overshoot forcing due to perturbations in the ocean circulation. Thus, overshoot forcing in this model reduces the rate of sea ice loss in the Labrador, Nordic, Ross, and Weddell seas relative to the stabilized pathway, suggesting a negative radiative feedback in response to the early rapid warming. Finally, the ocean perturbation in response to warming leads to strong pathway dependence of sea level rise in northern North American cities, with overshoot forcing producing up to 10 cm of additional sea level rise by 2100 relative to stabilization forcing.
DOT National Transportation Integrated Search
2010-06-01
A global chemical stabilization design is recently : adopted by the Ohio Department of Transportation : (ODOT). This produces performance and economic : benefits in providing pavement with a rugged base : supporting. Given the large quantities of lim...
DOT National Transportation Integrated Search
2010-06-01
A global chemical stabilization design is recently : adopted by the Ohio Department of Transportation : (ODOT). This produces performance and economic : benefits in providing pavement with a rugged base : supporting. Given the large quantities of lim...
Passivity-Based Control for Two-Wheeled Robot Stabilization
NASA Astrophysics Data System (ADS)
Uddin, Nur; Aryo Nugroho, Teguh; Agung Pramudito, Wahyu
2018-04-01
A passivity-based control system design for two-wheeled robot (TWR) stabilization is presented. A TWR is a statically-unstable non-linear system. A control system is applied to actively stabilize the TWR. Passivity-based control method is applied to design the control system. The design results in a state feedback control law that makes the TWR closed loop system globally asymptotically stable (GAS). The GAS is proven mathematically. The TWR stabilization is demonstrated through computer simulation. The simulation results show that the designed control system is able to stabilize the TWR.
Optimal consistency in microRNA expression analysis using reference-gene-based normalization.
Wang, Xi; Gardiner, Erin J; Cairns, Murray J
2015-05-01
Normalization of high-throughput molecular expression profiles secures differential expression analysis between samples of different phenotypes or biological conditions, and facilitates comparison between experimental batches. While the same general principles apply to microRNA (miRNA) normalization, there is mounting evidence that global shifts in their expression patterns occur in specific circumstances, which pose a challenge for normalizing miRNA expression data. As an alternative to global normalization, which has the propensity to flatten large trends, normalization against constitutively expressed reference genes presents an advantage through their relative independence. Here we investigated the performance of reference-gene-based (RGB) normalization for differential miRNA expression analysis of microarray expression data, and compared the results with other normalization methods, including: quantile, variance stabilization, robust spline, simple scaling, rank invariant, and Loess regression. The comparative analyses were executed using miRNA expression in tissue samples derived from subjects with schizophrenia and non-psychiatric controls. We proposed a consistency criterion for evaluating methods by examining the overlapping of differentially expressed miRNAs detected using different partitions of the whole data. Based on this criterion, we found that RGB normalization generally outperformed global normalization methods. Thus we recommend the application of RGB normalization for miRNA expression data sets, and believe that this will yield a more consistent and useful readout of differentially expressed miRNAs, particularly in biological conditions characterized by large shifts in miRNA expression.
Identification and robust control of an experimental servo motor.
Adam, E J; Guestrin, E D
2002-04-01
In this work, the design of a robust controller for an experimental laboratory-scale position control system based on a dc motor drive as well as the corresponding identification and robust stability analysis are presented. In order to carry out the robust design procedure, first, a classic closed-loop identification technique is applied and then, the parametrization by internal model control is used. The model uncertainty is evaluated under both parametric and global representation. For the latter case, an interesting discussion about the conservativeness of this description is presented by means of a comparison between the uncertainty disk and the critical perturbation radius approaches. Finally, conclusions about the performance of the experimental system with the robust controller are discussed using comparative graphics of the controlled variable and the Nyquist stability margin as a robustness measurement.
Briffa, Nikolai; Karthickeyan, Raju; Jacob, Joshua; Khaleel, Arshad
2016-11-01
The aim of this study was to compare the biomechanical properties of medial and lateral plating of a medially comminuted supracondylar femoral fracture. A supracondylar femoral fracture model comparing two fixation methods was tested cyclically in axial loading. One-centimetre supracondylar gap osteotomies were created in six synthetic femurs approximately 6 cm proximal to the knee joint. There were two constructs investigated: group 1 and group 2 were stabilized with an 8-hole LC-DCP, medially and laterally, respectively. Both construct groups were axially loaded. Global displacement (total length), wedge displacement, bending moment and strain were measured. Medial plating showed a significantly decreased displacement, bending moment and strain at the fracture site in axial loading. Medial plating of a comminuted supracondylar femur fracture is more stable than lateral plating.
Modeling and Analysis of a Nonlinear Age-Structured Model for Tumor Cell Populations with Quiescence
NASA Astrophysics Data System (ADS)
Liu, Zijian; Chen, Jing; Pang, Jianhua; Bi, Ping; Ruan, Shigui
2018-05-01
We present a nonlinear first-order hyperbolic partial differential equation model to describe age-structured tumor cell populations with proliferating and quiescent phases at the avascular stage in vitro. The division rate of the proliferating cells is assumed to be nonlinear due to the limitation of the nutrient and space. The model includes a proportion of newborn cells that enter directly the quiescent phase with age zero. This proportion can reflect the effect of treatment by drugs such as erlotinib. The existence and uniqueness of solutions are established. The local and global stabilities of the trivial steady state are investigated. The existence and local stability of the positive steady state are also analyzed. Numerical simulations are performed to verify the results and to examine the impacts of parameters on the nonlinear dynamics of the model.
A global assessment of wildfire risks to human and environmental water security
NASA Astrophysics Data System (ADS)
Robinne, François-Nicolas; Parisien, Marc-André; Flannigan, Mike; Miller, Carol; Bladon, Kevin D.
2017-04-01
Extreme wildfire events extensively affect hydrosystem stability and generate an important threat to the reliability of the water supply for human and natural communities. While actively studied at the watershed scale, the development of a global vision of wildfire risk to water security has only been undertaken recently, pointing at potential water security concerns in an era of global changes. In order to address this concern, we propose a global-scale analysis of the wildfire risk to surface water supplies based on the Driving forces-Pressures-States-Impacts-Responses (DPSIR) framework. This framework relies on the cause-and-effect relationships existing between the five categories of the DPSIR chain. Based on the literature, we gathered an extensive set of spatial indicators relevant to fire-induced hydrological hazards and water consumption patterns by human and natural communities. Each indicator was assigned a DPSIR category. Then, we collapsed the information in each category using a principal component analysis in order to extract the most relevant pixel-based information provided by each spatial indicator. Finally, we compiled our five categories using an additive indexation process to produce a spatially-explicit index of the wildfire-water risk (WWR). For comparison purposes, we aggregated index scores by global hydrological regions, or hydrobelts, for analysis. Overall, our results show a distinct pattern of medium-to-high risk levels in areas where sizeable wildfire activity, water resources, and water consumption are concomitant, which mainly encompasses temperate and sub-tropical zones. A closer look at hydrobelts reveals differences in the factors driving the risk, with fire activity being the primary factor of risk in the circumboreal forest, and freshwater resource density being prevalent in tropical areas. We also identified major urban areas across the world whose source waters should be protected from extreme fire events, particularly when they are dependent on mountainous headwaters. This study offers new insights towards a better understanding of global water security issues that can inform and help guide international water governance.
Symmetry, Hopf bifurcation, and the emergence of cluster solutions in time delayed neural networks.
Wang, Zhen; Campbell, Sue Ann
2017-11-01
We consider the networks of N identical oscillators with time delayed, global circulant coupling, modeled by a system of delay differential equations with Z N symmetry. We first study the existence of Hopf bifurcations induced by the coupling time delay and then use symmetric Hopf bifurcation theory to determine how these bifurcations lead to different patterns of symmetric cluster oscillations. We apply our results to a case study: a network of FitzHugh-Nagumo neurons with diffusive coupling. For this model, we derive the asymptotic stability, global asymptotic stability, absolute instability, and stability switches of the equilibrium point in the plane of coupling time delay (τ) and excitability parameter (a). We investigate the patterns of cluster oscillations induced by the time delay and determine the direction and stability of the bifurcating periodic orbits by employing the multiple timescales method and normal form theory. We find that in the region where stability switching occurs, the dynamics of the system can be switched from the equilibrium point to any symmetric cluster oscillation, and back to equilibrium point as the time delay is increased.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Di Maria, Francesco, E-mail: francesco.dimaria@unipg.it; Sordi, Alessio; Micale, Caterina
Highlights: • Bio-methane landfill emissions from different period (0, 4, 8, 16 weeks) MTB waste have been evaluated. • Electrical energy recoverable from landfill gas ranges from 11 to about 90 kW h/tonne. • Correlation between oxygen uptake, energy recovery and anaerobic gas production shows R{sup 2} ranging from 0.78 to 0.98. • LCA demonstrate that global impact related to gaseous emissions achieve minimum for 4 week of MBT. - Abstract: The global gaseous emissions produced by landfilling the Mechanically Sorted Organic Fraction (MSOF) with different weeks of Mechanical Biological Treatment (MBT) was evaluated for an existing waste management system.more » One MBT facility and a landfill with internal combustion engines fuelled by the landfill gas for electrical energy production operate in the waste management system considered. An experimental apparatus was used to simulate 0, 4, 8 and 16 weeks of aerobic stabilization and the consequent biogas potential (Nl/kg) of a large sample of MSOF withdrawn from the full-scale MBT. Stabilization achieved by the waste was evaluated by dynamic oxygen uptake and fermentation tests. Good correlation coefficients (R{sup 2}), ranging from 0.7668 to 0.9772, were found between oxygen uptake, fermentation and anaerobic test values. On the basis of the results of several anaerobic tests, the methane production rate k (year{sup −1}) was evaluated. k ranged from 0.436 to 0.308 year{sup −1} and the bio-methane potential from 37 to 12 N m{sup 3}/tonne, respectively, for the MSOF with 0 and 16 weeks of treatment. Energy recovery from landfill gas ranged from about 11 to 90 kW h per tonne of disposed MSOF depending on the different scenario investigated. Life cycle analysis showed that the scenario with 0 weeks of pre-treatment has the highest weighted global impact even if opposite results were obtained with respect to the single impact criteria. MSOF pre-treatment periods longer than 4 weeks showed rather negligible variation in the global impact of system emissions.« less
NASA Astrophysics Data System (ADS)
Bensouilah, Nadjia; Fisli, Hassina; Bensouilah, Hamza; Zaater, Sihem; Abdaoui, Mohamed; Boutemeur-Kheddis, Baya
2017-10-01
In this work, the inclusion complex of DCY/CENS: N-(2-chloroethyl), N-nitroso, N‧, N‧-dicyclohexylsulfamid and β-cyclodextrin (β-CD) is investigated using the fluorescence spectroscopy, PM3, ONIOM2 and DFT methods. The experimental part reveals that DCY/CENS forms a 1:1 stoichiometric ratio inclusion complex with β-CD. The constant of stability is evaluated using the Benesi-Hildebrand equation. The results of the theoretical optimization showed that the lipophilic fraction of molecule (cyclohexyl group) is inside of β-CD. Accordingly, the Nitroso-Chloroethyl moiety is situated outside the cavity of the macromolecule host. The favorable structure of the optimized complex indicates the existence of weak intermolecular hydrogen bonds and the most important van der Waals (vdW) interactions which are studied on the basis of Natural Bonding Orbital (NBO) analysis. The NBO is employed to compute the electronic donor-acceptor exchanges between drug and β-CD. Furthermore, a detailed topological charge density analysis based on the quantum theory of atoms in molecules (QTAIM), has been accomplished on the most favorable complex using B3LYP/6-31G(d) method. The presence of stabilizing intermolecular hydrogen bonds and van der Waals interactions in the most favorable complex is predicted. Also, the energies of these interactions are estimated with Espinosa's formula. The findings of this investigation reveal that the correlation between the structural parameters and the electronic density is good. Finally, and based on DFT calculations, the reactivity of the interesting molecule in free state was studied and compared with that in the complexed state using chemical potential, global hardness, global softness, electronegativity, electrophilicity and local reactivity descriptors.
Validation results of the IAG Dancer project for distributed GPS analysis
NASA Astrophysics Data System (ADS)
Boomkamp, H.
2012-12-01
The number of permanent GPS stations in the world has grown far too large to allow processing of all this data at analysis centers. The majority of these GPS sites do not even make their observation data available to the analysis centers, for various valid reasons. The current ITRF solution is still based on centralized analysis by the IGS, and subsequent densification of the reference frame via regional network solutions. Minor inconsistencies in analysis methods, software systems and data quality imply that this centralized approach is unlikely to ever reach the ambitious accuracy objectives of GGOS. The dependence on published data also makes it clear that a centralized approach will never provide a true global ITRF solution for all GNSS receivers in the world. If the data does not come to the analysis, the only alternative is to bring the analysis to the data. The IAG Dancer project has implemented a distributed GNSS analysis system on the internet in which each receiver can have its own analysis center in the form of a freely distributed JAVA peer-to-peer application. Global parameters for satellite orbits, clocks and polar motion are solved via a distributed least squares solution among all participating receivers. A Dancer instance can run on any computer that has simultaneous access to the receiver data and to the public internet. In the future, such a process may be embedded in the receiver firmware directly. GPS network operators can join the Dancer ITRF realization without having to publish their observation data or estimation products. GPS users can run a Dancer process without contributing to the global solution, to have direct access to the ITRF in near real-time. The Dancer software has been tested on-line since late 2011. A global network of processes has gradually evolved to allow stabilization and tuning of the software in order to reach a fully operational system. This presentation reports on the current performance of the Dancer system, and demonstrates the obvious benefits of distributed analysis of geodetic data in general. IAG Dancer screenshot
NASA Astrophysics Data System (ADS)
Camera, C.; Apuani, T.; Masetti, M.
2013-02-01
The aim of this work was to understand and reproduce the hydrological dynamics of a slope, which was terraced using dry-stone retaining walls and its response to these processes in terms of stability at the slope scale. The slope studied is located in Valtellina (northern Italy), near the village of Tresenda, and in the last 30 yr has experienced several soil slip/debris flow events. In 1983 alone, such events caused the death of 18 people. Direct observation of the events of 1983 enabled the principal triggering cause of these events to be recognized in the formation of an overpressure at the base of a dry-stone wall, which caused its failure. To perform the analyses it is necessary to include the presence of dry-stone walls, considering the importance they have in influencing hydrological and geotechnical processes at the slope scale. This requires a very high resolution DEM (1 m × 1 m because the walls are from 0.60 m to 1.0 m wide) that has been appositely derived. A hydrogeological raster-based model, which takes into account both the unsaturated and saturated flux components, was applied. This was able to identify preferential infiltration zones and was rather precise in the prediction of maximum groundwater levels, providing valid input for the distributed stability analysis. Results of the hydrogeological model were used for the successive stability analysis. Sections of terrace were identified from the downslope base of a retaining wall to the top of the next downslope retaining wall. Within each section a global method of equilibrium was applied to determine its safety factor. The stability model showed a general tendency to overestimate the amount of unstable areas. An investigation of the causes of this unexpected behavior was, therefore, also performed in order to progressively improve the reliability of the model.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Besse, Nicolas, E-mail: Nicolas.Besse@oca.eu; Institut Jean Lamour, UMR CNRS/UL 7198, Université de Lorraine, BP 70239 54506 Vandoeuvre-lès-Nancy Cedex; Coulette, David, E-mail: David.Coulette@ipcms.unistra.fr
2016-08-15
Achieving plasmas with good stability and confinement properties is a key research goal for magnetic fusion devices. The underlying equations are the Vlasov–Poisson and Vlasov–Maxwell (VPM) equations in three space variables, three velocity variables, and one time variable. Even in those somewhat academic cases where global equilibrium solutions are known, studying their stability requires the analysis of the spectral properties of the linearized operator, a daunting task. We have identified a model, for which not only equilibrium solutions can be constructed, but many of their stability properties are amenable to rigorous analysis. It uses a class of solution to themore » VPM equations (or to their gyrokinetic approximations) known as waterbag solutions which, in particular, are piecewise constant in phase-space. It also uses, not only the gyrokinetic approximation of fast cyclotronic motion around magnetic field lines, but also an asymptotic approximation regarding the magnetic-field-induced anisotropy: the spatial variation along the field lines is taken much slower than across them. Together, these assumptions result in a drastic reduction in the dimensionality of the linearized problem, which becomes a set of two nested one-dimensional problems: an integral equation in the poloidal variable, followed by a one-dimensional complex Schrödinger equation in the radial variable. We show here that the operator associated to the poloidal variable is meromorphic in the eigenparameter, the pulsation frequency. We also prove that, for all but a countable set of real pulsation frequencies, the operator is compact and thus behaves mostly as a finite-dimensional one. The numerical algorithms based on such ideas have been implemented in a companion paper [D. Coulette and N. Besse, “Numerical resolution of the global eigenvalue problem for gyrokinetic-waterbag model in toroidal geometry” (submitted)] and were found to be surprisingly close to those for the original gyrokinetic-Vlasov equations. The purpose of the present paper is to make these new ideas accessible to two readerships: applied mathematicians and plasma physicists.« less
Eutrophication weakens stabilizing effects of diversity in natural grasslands
USDA-ARS?s Scientific Manuscript database
Experimental manipulations have demonstrated that plant diversity can stabilize ecosystem functioning through population asynchrony, with decreases in the functions of some species compensated by increases in others. However, the relevance to natural ecosystems is debated. We use a global study of...
Stabilisation of discrete-time polynomial fuzzy systems via a polynomial lyapunov approach
NASA Astrophysics Data System (ADS)
Nasiri, Alireza; Nguang, Sing Kiong; Swain, Akshya; Almakhles, Dhafer
2018-02-01
This paper deals with the problem of designing a controller for a class of discrete-time nonlinear systems which is represented by discrete-time polynomial fuzzy model. Most of the existing control design methods for discrete-time fuzzy polynomial systems cannot guarantee their Lyapunov function to be a radially unbounded polynomial function, hence the global stability cannot be assured. The proposed control design in this paper guarantees a radially unbounded polynomial Lyapunov functions which ensures global stability. In the proposed design, state feedback structure is considered and non-convexity problem is solved by incorporating an integrator into the controller. Sufficient conditions of stability are derived in terms of polynomial matrix inequalities which are solved via SOSTOOLS in MATLAB. A numerical example is presented to illustrate the effectiveness of the proposed controller.
Stetz, Gabrielle; Verkhivker, Gennady M
2015-01-01
Hsp70 and Hsp110 chaperones play an important role in regulating cellular processes that involve protein folding and stabilization, which are essential for the integrity of signaling networks. Although many aspects of allosteric regulatory mechanisms in Hsp70 and Hsp110 chaperones have been extensively studied and significantly advanced in recent experimental studies, the atomistic picture of signal propagation and energetics of dynamics-based communication still remain unresolved. In this work, we have combined molecular dynamics simulations and protein stability analysis of the chaperone structures with the network modeling of residue interaction networks to characterize molecular determinants of allosteric mechanisms. We have shown that allosteric mechanisms of Hsp70 and Hsp110 chaperones may be primarily determined by nucleotide-induced redistribution of local conformational ensembles in the inter-domain regions and the substrate binding domain. Conformational dynamics and energetics of the peptide substrate binding with the Hsp70 structures has been analyzed using free energy calculations, revealing allosteric hotspots that control negative cooperativity between regulatory sites. The results have indicated that cooperative interactions may promote a population-shift mechanism in Hsp70, in which functional residues are organized in a broad and robust allosteric network that can link the nucleotide-binding site and the substrate-binding regions. A smaller allosteric network in Hsp110 structures may elicit an entropy-driven allostery that occurs in the absence of global structural changes. We have found that global mediating residues with high network centrality may be organized in stable local communities that are indispensable for structural stability and efficient allosteric communications. The network-centric analysis of allosteric interactions has also established that centrality of functional residues could correlate with their sensitivity to mutations across diverse chaperone functions. This study reconciles a wide spectrum of structural and functional experiments by demonstrating how integration of molecular simulations and network-centric modeling may explain thermodynamic and mechanistic aspects of allosteric regulation in chaperones.
Blacklock, Kristin; Verkhivker, Gennady M.
2014-01-01
The fundamental role of the Hsp90 chaperone in supporting functional activity of diverse protein clients is anchored by specific cochaperones. A family of immune sensing client proteins is delivered to the Hsp90 system with the aid of cochaperones Sgt1 and Rar1 that act cooperatively with Hsp90 to form allosterically regulated dynamic complexes. In this work, functional dynamics and protein structure network modeling are combined to dissect molecular mechanisms of Hsp90 regulation by the client recruiter cochaperones. Dynamic signatures of the Hsp90-cochaperone complexes are manifested in differential modulation of the conformational mobility in the Hsp90 lid motif. Consistent with the experiments, we have determined that targeted reorganization of the lid dynamics is a unifying characteristic of the client recruiter cochaperones. Protein network analysis of the essential conformational space of the Hsp90-cochaperone motions has identified structurally stable interaction communities, interfacial hubs and key mediating residues of allosteric communication pathways that act concertedly with the shifts in conformational equilibrium. The results have shown that client recruiter cochaperones can orchestrate global changes in the dynamics and stability of the interaction networks that could enhance the ATPase activity and assist in the client recruitment. The network analysis has recapitulated a broad range of structural and mutagenesis experiments, particularly clarifying the elusive role of Rar1 as a regulator of the Hsp90 interactions and a stability enhancer of the Hsp90-cochaperone complexes. Small-world organization of the interaction networks in the Hsp90 regulatory complexes gives rise to a strong correspondence between highly connected local interfacial hubs, global mediator residues of allosteric interactions and key functional hot spots of the Hsp90 activity. We have found that cochaperone-induced conformational changes in Hsp90 may be determined by specific interaction networks that can inhibit or promote progression of the ATPase cycle and thus control the recruitment of client proteins. PMID:24466147
Stetz, Gabrielle; Verkhivker, Gennady M.
2015-01-01
Hsp70 and Hsp110 chaperones play an important role in regulating cellular processes that involve protein folding and stabilization, which are essential for the integrity of signaling networks. Although many aspects of allosteric regulatory mechanisms in Hsp70 and Hsp110 chaperones have been extensively studied and significantly advanced in recent experimental studies, the atomistic picture of signal propagation and energetics of dynamics-based communication still remain unresolved. In this work, we have combined molecular dynamics simulations and protein stability analysis of the chaperone structures with the network modeling of residue interaction networks to characterize molecular determinants of allosteric mechanisms. We have shown that allosteric mechanisms of Hsp70 and Hsp110 chaperones may be primarily determined by nucleotide-induced redistribution of local conformational ensembles in the inter-domain regions and the substrate binding domain. Conformational dynamics and energetics of the peptide substrate binding with the Hsp70 structures has been analyzed using free energy calculations, revealing allosteric hotspots that control negative cooperativity between regulatory sites. The results have indicated that cooperative interactions may promote a population-shift mechanism in Hsp70, in which functional residues are organized in a broad and robust allosteric network that can link the nucleotide-binding site and the substrate-binding regions. A smaller allosteric network in Hsp110 structures may elicit an entropy-driven allostery that occurs in the absence of global structural changes. We have found that global mediating residues with high network centrality may be organized in stable local communities that are indispensable for structural stability and efficient allosteric communications. The network-centric analysis of allosteric interactions has also established that centrality of functional residues could correlate with their sensitivity to mutations across diverse chaperone functions. This study reconciles a wide spectrum of structural and functional experiments by demonstrating how integration of molecular simulations and network-centric modeling may explain thermodynamic and mechanistic aspects of allosteric regulation in chaperones. PMID:26619280
Blacklock, Kristin; Verkhivker, Gennady M
2014-01-01
The fundamental role of the Hsp90 chaperone in supporting functional activity of diverse protein clients is anchored by specific cochaperones. A family of immune sensing client proteins is delivered to the Hsp90 system with the aid of cochaperones Sgt1 and Rar1 that act cooperatively with Hsp90 to form allosterically regulated dynamic complexes. In this work, functional dynamics and protein structure network modeling are combined to dissect molecular mechanisms of Hsp90 regulation by the client recruiter cochaperones. Dynamic signatures of the Hsp90-cochaperone complexes are manifested in differential modulation of the conformational mobility in the Hsp90 lid motif. Consistent with the experiments, we have determined that targeted reorganization of the lid dynamics is a unifying characteristic of the client recruiter cochaperones. Protein network analysis of the essential conformational space of the Hsp90-cochaperone motions has identified structurally stable interaction communities, interfacial hubs and key mediating residues of allosteric communication pathways that act concertedly with the shifts in conformational equilibrium. The results have shown that client recruiter cochaperones can orchestrate global changes in the dynamics and stability of the interaction networks that could enhance the ATPase activity and assist in the client recruitment. The network analysis has recapitulated a broad range of structural and mutagenesis experiments, particularly clarifying the elusive role of Rar1 as a regulator of the Hsp90 interactions and a stability enhancer of the Hsp90-cochaperone complexes. Small-world organization of the interaction networks in the Hsp90 regulatory complexes gives rise to a strong correspondence between highly connected local interfacial hubs, global mediator residues of allosteric interactions and key functional hot spots of the Hsp90 activity. We have found that cochaperone-induced conformational changes in Hsp90 may be determined by specific interaction networks that can inhibit or promote progression of the ATPase cycle and thus control the recruitment of client proteins.
Che Omar, Sarena; Bentley, Michael A; Morieri, Giulia; Preston, Gail M; Gurr, Sarah J
2016-01-01
The rice blast fungus causes significant annual harvest losses. It also serves as a genetically-tractable model to study fungal ingress. Whilst pathogenicity determinants have been unmasked and changes in global gene expression described, we know little about Magnaporthe oryzae cell wall remodelling. Our interests, in wall remodelling genes expressed during infection, vegetative growth and under exogenous wall stress, demand robust choice of reference genes for quantitative Real Time-PCR (qRT-PCR) data normalisation. We describe the expression stability of nine candidate reference genes profiled by qRT-PCR with cDNAs derived during asexual germling development, from sexual stage perithecia and from vegetative mycelium grown under various exogenous stressors. Our Minimum Information for Publication of qRT-PCR Experiments (MIQE) compliant analysis reveals a set of robust reference genes used to track changes in the expression of the cell wall remodelling gene MGG_Crh2 (MGG_00592). We ranked nine candidate reference genes by their expression stability (M) and report the best gene combination needed for reliable gene expression normalisation, when assayed in three tissue groups (Infective, Vegetative, and Global) frequently used in M. oryzae expression studies. We found that MGG_Actin (MGG_03982) and the 40S 27a ribosomal subunit MGG_40s (MGG_02872) proved to be robust reference genes for the Infection group and MGG_40s and MGG_Ef1 (Elongation Factor1-α) for both Vegetative and Global groups. Using the above validated reference genes, M. oryzae MGG_Crh2 expression was found to be significantly (p<0.05) elevated three-fold during vegetative growth as compared with dormant spores and two fold higher under cell wall stress (Congo Red) compared to growth under optimal conditions. We recommend the combinatorial use of two reference genes, belonging to the cytoskeleton and ribosomal synthesis functional groups, MGG_Actin, MGG_40s, MGG_S8 (Ribosomal subunit 40S S8) or MGG_Ef1, which demonstrated low M values across heterogeneous tissues. By contrast, metabolic pathway genes MGG_Fad (FAD binding domain-containing protein) and MGG_Gapdh (Glyceraldehyde-3-phosphate dehydrogenase) performed poorly, due to their lack of expression stability across samples.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bates, T.R. Jr.; Tait, S.; Mumford, G.
The authors discuss how improvements that can increase rig safety can be made in equipment, regulations, and stabilized personnel levels. With regard to equipment, exposure to material handling must be reduced through automation, and well-control technology must be improved by enhanced use of computers and better systems to handle gas. According to this analysis, regulations are needed that are global in scope and have had their costs-to-benefits fully and fairly assessed. Self regulation must be used effectively throughout the industry. Job security and wages should be made adequate to maintain an experienced, motivated, and safe work force.
Influence of heating rate on the condensational instability. [in outer layers of solar atmosphere
NASA Technical Reports Server (NTRS)
Dahlburg, R. B.; Mariska, J. T.
1988-01-01
Analysis and numerical simulation are used to determine the effect that various heating rates have on the linear and nonlinear evolution of a typical plasma within a solar magnetic flux tube subject to the condensational instability. It is found that linear stability depends strongly on the heating rate. The results of numerical simulations of the nonlinear evolution of the condensational instability in a solar magnetic flux tube are presented. Different heating rates lead to quite different nonlinear evolutions, as evidenced by the behavior of the global internal energy.
Global Stability and Control Analysis of Aircraft at High Angles-of-Attack.
1979-08-31
of interest to aerodyiTwimc-i-StT-- aircraft designers , pilots and control system analysts ever since the advent of modern high performance aircraft...6a 14 Cn6 a 15 C 16 CZ r 17 Cn 6r 18 , Cy 18 6r a) These tables are non -zero only for Control Group B; in the other Control groups the effects of these...coefficients are incorporated into the first six .L coefficients. 66 For the non -neutral control groups (A, C, D, E), each group contains six tables
2017-10-03
Physics of Solids, 78 (314-332). 2014. 6. C . X. Zhang, J . Z. Song, Q. D. Yang, “Periodic buckling patterns of graphene/hexagonal boron nitride...Mechanics, 139 (78-97), 2015. 9. Y. C . Gu, J . Jung, Q. D. Yang, and W. Q. Chen, “A New Stabilizing Method for Numerical Analyses with Severe...Local and Global Instability”, ASME Journal of Applied Mechanics, 82 (101010-1, -12), 2015 10. J . Jung, B. C . Do, and Q. D. Yang, “A-FEM for Arbitrary
Breathing multichimera states in nonlocally coupled phase oscillators
NASA Astrophysics Data System (ADS)
Suda, Yusuke; Okuda, Koji
2018-04-01
Chimera states for the one-dimensional array of nonlocally coupled phase oscillators in the continuum limit are assumed to be stationary states in most studies, but a few studies report the existence of breathing chimera states. We focus on multichimera states with two coherent and incoherent regions and numerically demonstrate that breathing multichimera states, whose global order parameter oscillates temporally, can appear. Moreover, we show that the system exhibits a Hopf bifurcation from a stationary multichimera to a breathing one by the linear stability analysis for the stationary multichimera.
NASA Astrophysics Data System (ADS)
Park, Ju H.; Kwon, O. M.
In the letter, the global asymptotic stability of bidirectional associative memory (BAM) neural networks with delays is investigated. The delay is assumed to be time-varying and belongs to a given interval. A novel stability criterion for the stability is presented based on the Lyapunov method. The criterion is represented in terms of linear matrix inequality (LMI), which can be solved easily by various optimization algorithms. Two numerical examples are illustrated to show the effectiveness of our new result.
Regional-Scale Forcing and Feedbacks from Alternative Scenarios of Global-Scale Land Use Change
NASA Astrophysics Data System (ADS)
Jones, A. D.; Chini, L. P.; Collins, W.; Janetos, A. C.; Mao, J.; Shi, X.; Thomson, A. M.; Torn, M. S.
2011-12-01
Future patterns of land use change depend critically on the degree to which terrestrial carbon management strategies, such as biological carbon sequestration and biofuels, are utilized in order to mitigate global climate change. Furthermore, land use change associated with terrestrial carbon management induces biogeophysical changes to surface energy budgets that perturb climate at regional and possibly global scales, activating different feedback processes depending on the nature and location of the land use change. As a first step in a broader effort to create an integrated earth system model, we examine two scenarios of future anthropogenic activity generated by the Global Change Assessment Model (GCAM) within the full-coupled Community Earth System Model (CESM). Each scenario stabilizes radiative forcing from greenhouse gases and aerosols at 4.5 W/m^2. In the first, stabilization is achieved through a universal carbon tax that values terrestrial carbon equally with fossil carbon, leading to modest afforestation globally and low biofuel utilization. In the second scenario, stabilization is achieved with a tax on fossil fuel and industrial carbon alone. In this case, biofuel utilization increases dramatically and crop area expands to claim approximately 50% of forest cover globally. By design, these scenarios exhibit identical climate forcing from atmospheric constituents. Thus, differences among them can be attributed to the biogeophysical effects of land use change. In addition, we utilize offline radiative transfer and offline land model simulations to identify forcing and feedback mechanisms operating in different regions. We find that boreal deforestation has a strong climatic signature due to significant albedo change coupled with a regional-scale water vapor feedback. Tropical deforestation, on the other hand, has more subtle effects on climate. Globally, the two scenarios yield warming trends over the 21st century that differ by 0.5 degrees Celsius. This work demonstrates the importance of land use in shaping future patterns of climate change, both globally and regionally.
Analysis on a diffusive SIS epidemic model with logistic source
NASA Astrophysics Data System (ADS)
Li, Bo; Li, Huicong; Tong, Yachun
2017-08-01
In this paper, we are concerned with an SIS epidemic reaction-diffusion model with logistic source in spatially heterogeneous environment. We first discuss some basic properties of the parabolic system, including the uniform upper bound of solutions and global stability of the endemic equilibrium when spatial environment is homogeneous. Our primary focus is to determine the asymptotic profile of endemic equilibria (when exist) if the diffusion (migration) rate of the susceptible or infected population is small or large. Combined with the results of Li et al. (J Differ Equ 262:885-913, 2017) where the case of linear source is studied, our analysis suggests that varying total population enhances persistence of infectious disease.
Structural stability of DNA origami nanostructures in the presence of chaotropic agents
NASA Astrophysics Data System (ADS)
Ramakrishnan, Saminathan; Krainer, Georg; Grundmeier, Guido; Schlierf, Michael; Keller, Adrian
2016-05-01
DNA origami represent powerful platforms for single-molecule investigations of biomolecular processes. The required structural integrity of the DNA origami may, however, pose significant limitations regarding their applicability, for instance in protein folding studies that require strongly denaturing conditions. Here, we therefore report a detailed study on the stability of 2D DNA origami triangles in the presence of the strong chaotropic denaturing agents urea and guanidinium chloride (GdmCl) and its dependence on concentration and temperature. At room temperature, the DNA origami triangles are stable up to at least 24 h in both denaturants at concentrations as high as 6 M. At elevated temperatures, however, structural stability is governed by variations in the melting temperature of the individual staple strands. Therefore, the global melting temperature of the DNA origami does not represent an accurate measure of their structural stability. Although GdmCl has a stronger effect on the global melting temperature, its attack results in less structural damage than observed for urea under equivalent conditions. This enhanced structural stability most likely originates from the ionic nature of GdmCl. By rational design of the arrangement and lengths of the individual staple strands used for the folding of a particular shape, however, the structural stability of DNA origami may be enhanced even further to meet individual experimental requirements. Overall, their high stability renders DNA origami promising platforms for biomolecular studies in the presence of chaotropic agents, including single-molecule protein folding or structural switching.DNA origami represent powerful platforms for single-molecule investigations of biomolecular processes. The required structural integrity of the DNA origami may, however, pose significant limitations regarding their applicability, for instance in protein folding studies that require strongly denaturing conditions. Here, we therefore report a detailed study on the stability of 2D DNA origami triangles in the presence of the strong chaotropic denaturing agents urea and guanidinium chloride (GdmCl) and its dependence on concentration and temperature. At room temperature, the DNA origami triangles are stable up to at least 24 h in both denaturants at concentrations as high as 6 M. At elevated temperatures, however, structural stability is governed by variations in the melting temperature of the individual staple strands. Therefore, the global melting temperature of the DNA origami does not represent an accurate measure of their structural stability. Although GdmCl has a stronger effect on the global melting temperature, its attack results in less structural damage than observed for urea under equivalent conditions. This enhanced structural stability most likely originates from the ionic nature of GdmCl. By rational design of the arrangement and lengths of the individual staple strands used for the folding of a particular shape, however, the structural stability of DNA origami may be enhanced even further to meet individual experimental requirements. Overall, their high stability renders DNA origami promising platforms for biomolecular studies in the presence of chaotropic agents, including single-molecule protein folding or structural switching. Electronic supplementary information (ESI) available: Melting curves without baseline subtraction, AFM images of DNA origami after 24 h incubation, calculated melting temperatures of all staple strands. See DOI: 10.1039/c6nr00835f
Estimation of the global climate effect of brown carbon
NASA Astrophysics Data System (ADS)
Zhang, A.; Wang, Y.; Zhang, Y.; Weber, R. J.; Song, Y.
2017-12-01
Carbonaceous aerosols significantly affect global radiative forcing and climate through absorption and scattering of sunlight. Black carbon (BC) and brown carbon (BrC) are light-absorbing carbonaceous aerosols. The global distribution and climate effect of BrC is uncertain. A recent study suggests that BrC absorption is comparable to BC in the upper troposphere over biomass burning region and that the resulting heating tends to stabilize the atmosphere. Yet current climate models do not include proper treatments of BrC. In this study, we derived a BrC global biomass burning emission inventory from Global Fire Emissions Database 4 (GFED4) and developed a BrC module in the Community Atmosphere Model version 5 (CAM5) of Community Earth System Model (CESM) model. The model simulations compared well to BrC observations of the Studies of Emissions, Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) and Deep Convective Clouds and Chemistry Project (DC-3) campaigns and includes BrC bleaching. Model results suggested that BrC in the upper troposphere due to convective transport is as important an absorber as BC globally. Upper tropospheric BrC radiative forcing is particularly significant over the tropics, affecting the atmosphere stability and Hadley circulation.
NASA Technical Reports Server (NTRS)
Veverka, J.; Thomas, P.
1984-01-01
Global and regional patterns on Mars were inferred from surface aeolian features, such as wind streaks and dune deposits, which were visible in Viking Orbiter images. Precise measurements of the dimensions of topographic obstacles, i.e., craters, hills, ridges, on Mars as well as their associated wind streaks were used to determine the aerodynamic shape of an obstacle affects near surface airflow. A classification of Martian wind streaks was developed on the basis of albedo contrast and the presence or absence of either topographic obstacles or sediment deposits at the point of origin of the wind streaks. It was concluded that local meteorological conditions, such as the stability of the atmospheric boundary layer, play a major role in determining why some Martian craters produce depositional wind streaks while others produce erosional ones.
Geodetic positioning using a global positioning system of satellites
NASA Technical Reports Server (NTRS)
Fell, P. J.
1980-01-01
Geodetic positioning using range, integrated Doppler, and interferometric observations from a constellation of twenty-four Global Positioning System satellites is analyzed. A summary of the proposals for geodetic positioning and baseline determination is given which includes a description of measurement techniques and comments on rank deficiency and error sources. An analysis of variance comparison of range, Doppler, and interferometric time delay to determine their relative geometric strength for baseline determination is included. An analytic examination to the effect of a priori constraints on positioning using simultaneous observations from two stations is presented. Dynamic point positioning and baseline determination using range and Doppler is examined in detail. Models for the error sources influencing dynamic positioning are developed. Included is a discussion of atomic clock stability, and range and Doppler observation error statistics based on random correlated atomic clock error are derived.
Enhanced enzyme kinetic stability by increasing rigidity within the active site.
Xie, Yuan; An, Jiao; Yang, Guangyu; Wu, Geng; Zhang, Yong; Cui, Li; Feng, Yan
2014-03-14
Enzyme stability is an important issue for protein engineers. Understanding how rigidity in the active site affects protein kinetic stability will provide new insight into enzyme stabilization. In this study, we demonstrated enhanced kinetic stability of Candida antarctica lipase B (CalB) by mutating the structurally flexible residues within the active site. Six residues within 10 Å of the catalytic Ser(105) residue with a high B factor were selected for iterative saturation mutagenesis. After screening 2200 colonies, we obtained the D223G/L278M mutant, which exhibited a 13-fold increase in half-life at 48 °C and a 12 °C higher T50(15), the temperature at which enzyme activity is reduced to 50% after a 15-min heat treatment. Further characterization showed that global unfolding resistance against both thermal and chemical denaturation also improved. Analysis of the crystal structures of wild-type CalB and the D223G/L278M mutant revealed that the latter formed an extra main chain hydrogen bond network with seven structurally coupled residues within the flexible α10 helix that are primarily involved in forming the active site. Further investigation of the relative B factor profile and molecular dynamics simulation confirmed that the enhanced rigidity decreased fluctuation of the active site residues at high temperature. These results indicate that enhancing the rigidity of the flexible segment within the active site may provide an efficient method for improving enzyme kinetic stability.
Global Change and Human Vulnerability to Vector-Borne Diseases
Sutherst, Robert W.
2004-01-01
Global change includes climate change and climate variability, land use, water storage and irrigation, human population growth and urbanization, trade and travel, and chemical pollution. Impacts on vector-borne diseases, including malaria, dengue fever, infections by other arboviruses, schistosomiasis, trypanosomiasis, onchocerciasis, and leishmaniasis are reviewed. While climate change is global in nature and poses unknown future risks to humans and natural ecosystems, other local changes are occurring more rapidly on a global scale and are having significant effects on vector-borne diseases. History is invaluable as a pointer to future risks, but direct extrapolation is no longer possible because the climate is changing. Researchers are therefore embracing computer simulation models and global change scenarios to explore the risks. Credible ranking of the extent to which different vector-borne diseases will be affected awaits a rigorous analysis. Adaptation to the changes is threatened by the ongoing loss of drugs and pesticides due to the selection of resistant strains of pathogens and vectors. The vulnerability of communities to the changes in impacts depends on their adaptive capacity, which requires both appropriate technology and responsive public health systems. The availability of resources in turn depends on social stability, economic wealth, and priority allocation of resources to public health. PMID:14726459
Zhong, Xungao; Zhong, Xunyu; Peng, Xiafu
2013-10-08
In this paper, a global-state-space visual servoing scheme is proposed for uncalibrated model-independent robotic manipulation. The scheme is based on robust Kalman filtering (KF), in conjunction with Elman neural network (ENN) learning techniques. The global map relationship between the vision space and the robotic workspace is learned using an ENN. This learned mapping is shown to be an approximate estimate of the Jacobian in global space. In the testing phase, the desired Jacobian is arrived at using a robust KF to improve the ENN learning result so as to achieve robotic precise convergence of the desired pose. Meanwhile, the ENN weights are updated (re-trained) using a new input-output data pair vector (obtained from the KF cycle) to ensure robot global stability manipulation. Thus, our method, without requiring either camera or model parameters, avoids the corrupted performances caused by camera calibration and modeling errors. To demonstrate the proposed scheme's performance, various simulation and experimental results have been presented using a six-degree-of-freedom robotic manipulator with eye-in-hand configurations.
Similar folds with different stabilization mechanisms: the cases of prion and doppel proteins
Colacino, Stefano; Tiana, Guido; Colombo, Giorgio
2006-01-01
Background Protein misfolding is the main cause of a group of fatal neurodegenerative diseases in humans and animals. In particular, in Prion-related diseases the normal cellular form of the Prion Protein PrP (PrPC) is converted into the infectious PrPSc through a conformational process during which it acquires a high β-sheet content. Doppel is a protein that shares a similar native fold, but lacks the scrapie isoform. Understanding the molecular determinants of these different behaviours is important both for biomedical and biophysical research. Results In this paper, the dynamical and energetic properties of the two proteins in solution is comparatively analyzed by means of long time scale explicit solvent, all-atom molecular dynamics in different temperature conditions. The trajectories are analyzed by means of a recently introduced energy decomposition approach (Tiana et al, Prot. Sci. 2004) aimed at identifying the key residues for the stabilization and folding of the protein. Our analysis shows that Prion and Doppel have two different cores stabilizing the native state and that the relative contribution of the nucleus to the global stability of the protein for Doppel is sensitively higher than for PrP. Moreover, under misfolding conditions the Doppel core is conserved, while the energy stabilization network of PrP is disrupted. Conclusion These observations suggest that different sequences can share similar native topology with different stabilizing interactions and that the sequences of the Prion and Doppel proteins may have diverged under different evolutionary constraints resulting in different folding and stabilization mechanisms. PMID:16857062
Lowes, Steve; Jersey, Jim; Shoup, Ronald; Garofolo, Fabio; Savoie, Natasha; Mortz, Ejvind; Needham, Shane; Caturla, Maria Cruz; Steffen, Ray; Sheldon, Curtis; Hayes, Roger; Samuels, Tim; Di Donato, Lorella; Kamerud, John; Michael, Steve; Lin, Zhongping John; Hillier, Jim; Moussallie, Marc; de Souza Teixeira, Leonardo; Rocci, Mario; Buonarati, Mike; Truog, James; Hussain, Saleh; Lundberg, Richard; Breau, Alan; Zhang, Tianyi; Jonker, Jianine; Berger, Neil; Gagnon-Carignan, Sofi; Nehls, Corey; Nicholson, Robert; Hilhorst, Martijn; Karnik, Shane; de Boer, Theo; Houghton, Richard; Smith, Kirk; Cojocaru, Laura; Allen, Mike; Harter, Tammy; Fatmi, Saadya; Sayyarpour, Farhad; Vija, Jenifer; Malone, Michele; Heller, Dennis
2011-06-01
"The Global CRO Council (GCC) for Bioanalysis was formed in an effort to bring together many CRO leaders to openly discuss bioanalysis and the regulatory challenges unique to the outsourcing industry"
Optimal implicit 2-D finite differences to model wave propagation in poroelastic media
NASA Astrophysics Data System (ADS)
Itzá, Reymundo; Iturrarán-Viveros, Ursula; Parra, Jorge O.
2016-08-01
Numerical modeling of seismic waves in heterogeneous porous reservoir rocks is an important tool for the interpretation of seismic surveys in reservoir engineering. We apply globally optimal implicit staggered-grid finite differences (FD) to model 2-D wave propagation in heterogeneous poroelastic media at a low-frequency range (<10 kHz). We validate the numerical solution by comparing it to an analytical-transient solution obtaining clear seismic wavefields including fast P and slow P and S waves (for a porous media saturated with fluid). The numerical dispersion and stability conditions are derived using von Neumann analysis, showing that over a wide range of porous materials the Courant condition governs the stability and this optimal implicit scheme improves the stability of explicit schemes. High-order explicit FD can be replaced by some lower order optimal implicit FD so computational cost will not be as expensive while maintaining the accuracy. Here, we compute weights for the optimal implicit FD scheme to attain an accuracy of γ = 10-8. The implicit spatial differentiation involves solving tridiagonal linear systems of equations through Thomas' algorithm.
Codimension-Two Bifurcation Analysis in DC Microgrids Under Droop Control
NASA Astrophysics Data System (ADS)
Lenz, Eduardo; Pagano, Daniel J.; Tahim, André P. N.
This paper addresses local and global bifurcations that may appear in electrical power systems, such as DC microgrids, which recently has attracted interest from the electrical engineering society. Most sources in these networks are voltage-type and operate in parallel. In such configuration, the basic technique for stabilizing the bus voltage is the so-called droop control. The main contribution of this work is a codimension-two bifurcation analysis of a small DC microgrid considering the droop control gain and the power processed by the load as bifurcation parameters. The codimension-two bifurcation set leads to practical rules for achieving a robust droop control design. Moreover, the bifurcation analysis also offers a better understanding of the dynamics involved in the problem and how to avoid possible instabilities. Simulation results are presented in order to illustrate the bifurcation analysis.
NASA Technical Reports Server (NTRS)
Adler, Robert F.; Huffman, George J.; Bolvin, David; Nelkin, Eric; Curtis, Scott
1999-01-01
This paper describes recent results of using Tropical Rainfall Measuring Mission (TRMM) information as the key calibration tool in a merged analysis on a 1 deg x 1 deg latitude/longitude monthly scale based on multiple satellite sources and raingauge analysis. The procedure used to produce the GPCP data set is a stepwise approach which first combines the satellite low-orbit microwave and geosynchronous IR observations into a "multi-satellite" product and than merges that result with the raingauge analysis. Preliminary results produced with the still-stabilizing TRMM algorithms indicate that TRMM shows tighter spatial gradients in tropical rain maxima with higher peaks in the center of the maxima. The TRMM analyses will be used to evaluate the evolution of the 1998 ENSO variations, again in comparison with the GPCP analyses.
NASA Astrophysics Data System (ADS)
Zhou, distributed delays [rapid communication] T.; Chen, A.; Zhou, Y.
2005-08-01
By using the continuation theorem of coincidence degree theory and Liapunov function, we obtain some sufficient criteria to ensure the existence and global exponential stability of periodic solution to the bidirectional associative memory (BAM) neural networks with periodic coefficients and continuously distributed delays. These results improve and generalize the works of papers [J. Cao, L. Wang, Phys. Rev. E 61 (2000) 1825] and [Z. Liu, A. Chen, J. Cao, L. Huang, IEEE Trans. Circuits Systems I 50 (2003) 1162]. An example is given to illustrate that the criteria are feasible.
Wu, Ailong; Zeng, Zhigang
2016-02-01
We show that the ω-periodic fractional-order fuzzy neural networks cannot generate non-constant ω-periodic signals. In addition, several sufficient conditions are obtained to ascertain the boundedness and global Mittag-Leffler stability of fractional-order fuzzy neural networks. Furthermore, S-asymptotical ω-periodicity and global asymptotical ω-periodicity of fractional-order fuzzy neural networks is also characterized. The obtained criteria improve and extend the existing related results. To illustrate and compare the theoretical criteria, some numerical examples with simulation results are discussed in detail. Crown Copyright © 2015. Published by Elsevier Ltd. All rights reserved.
Study of the (1 + 1) D Long Wavelength Steady States of the Bénard Problem For Ultrathin Films
NASA Astrophysics Data System (ADS)
Zhou, Chengzhe; Troian, Sandra
We investigate the stationary states of the (1 + 1) D equation ht +
Liu, Mengting; Amey, Rachel C; Forbes, Chad E
2017-12-01
When individuals are placed in stressful situations, they are likely to exhibit deficits in cognitive capacity over and above situational demands. Despite this, individuals may still persevere and ultimately succeed in these situations. Little is known, however, about neural network properties that instantiate success or failure in both neutral and stressful situations, particularly with respect to regions integral for problem-solving processes that are necessary for optimal performance on more complex tasks. In this study, we outline how hidden Markov modeling based on multivoxel pattern analysis can be used to quantify unique brain states underlying complex network interactions that yield either successful or unsuccessful problem solving in more neutral or stressful situations. We provide evidence that brain network stability and states underlying synchronous interactions in regions integral for problem-solving processes are key predictors of whether individuals succeed or fail in stressful situations. Findings also suggested that individuals utilize discriminate neural patterns in successfully solving problems in stressful or neutral situations. Findings overall highlight how hidden Markov modeling can provide myriad possibilities for quantifying and better understanding the role of global network interactions in the problem-solving process and how the said interactions predict success or failure in different contexts.
Dark matter and global symmetries
Mambrini, Yann; Profumo, Stefano; Queiroz, Farinaldo S.
2016-08-03
General considerations in general relativity and quantum mechanics are known to potentially rule out continuous global symmetries in the context of any consistent theory of quantum gravity. Assuming the validity of such considerations, we derive stringent bounds from gamma-ray, X-ray, cosmic-ray, neutrino, and CMB data on models that invoke global symmetries to stabilize the dark matter particle. We compute up-to-date, robust model-independent limits on the dark matter lifetime for a variety of Planck-scale suppressed dimension-five effective operators. We then specialize our analysis and apply our bounds to specific models including the Two-Higgs-Doublet, Left-Right, Singlet Fermionic, Zee-Babu, 3-3-1 and Radiative See-Sawmore » models. Here, assuming that (i) global symmetries are broken at the Planck scale, that (ii) the non-renormalizable operators mediating dark matter decay have O(1) couplings, that (iii) the dark matter is a singlet field, and that (iv) the dark matter density distribution is well described by a NFW profile, we are able to rule out fermionic, vector, and scalar dark matter candidates across a broad mass range (keV-TeV), including the WIMP regime« less
NASA Astrophysics Data System (ADS)
Sureshkumar, B.; Mary, Y. Sheena; Resmi, K. S.; Panicker, C. Yohannan; Armaković, Stevan; Armaković, Sanja J.; Van Alsenoy, C.; Narayana, B.; Suma, S.
2018-03-01
Two 8-hydroxyquinoline derivatives, 5,7-dichloro-8-hydroxyquinoline (57DC8HQ) and 5-chloro-7-iodo-8-hydroxy quinoline (5CL7I8HQ) have been investigated in details by means of spectroscopic characterization and computational molecular modelling techniques. FT-IR and FT-Raman experimental spectroscopic approaches have been utilized in order to obtain detailed spectroscopic signatures of title compounds, while DFT calculations have been used in order to visualize and assign vibrations. The computed values of dipole moment, polarizability and hyperpolarizability indicate that the title molecules exhibit NLO properties. The evaluated HOMO and LUMO energies demonstrate the chemical stability of the molecules. NBO analysis is made to study the stability of the molecules arising from hyperconjugative interactions and charge delocalization. DFT calculations have been also used jointly with MD simulations in order to investigate in details global and local reactivity properties of title compounds. Also, molecular docking has been also used in order to investigate affinity of title compounds against decarboxylase inhibitor and quinoline derivatives can be a lead compounds for developing new antiparkinsonian drug.
An Entropy-Based Approach to Nonlinear Stability
NASA Technical Reports Server (NTRS)
Merriam, Marshal L.
1989-01-01
Many numerical methods used in computational fluid dynamics (CFD) incorporate an artificial dissipation term to suppress spurious oscillations and control nonlinear instabilities. The same effect can be accomplished by using upwind techniques, sometimes augmented with limiters to form Total Variation Diminishing (TVD) schemes. An analysis based on numerical satisfaction of the second law of thermodynamics allows many such methods to be compared and improved upon. A nonlinear stability proof is given for discrete scalar equations arising from a conservation law. Solutions to such equations are bounded in the L sub 2 norm if the second law of thermodynamics is satisfied in a global sense over a periodic domain. It is conjectured that an analogous statement is true for discrete equations arising from systems of conservation laws. Analysis and numerical experiments suggest that a more restrictive condition, a positive entropy production rate in each cell, is sufficient to exclude unphysical phenomena such as oscillations and expansion shocks. Construction of schemes which satisfy this condition is demonstrated for linear and nonlinear wave equations and for the one-dimensional Euler equations.
Soil Carbon Chemistry and Greenhouse Gas Production in Global Peatlands
NASA Astrophysics Data System (ADS)
Normand, A. E.; Turner, B. L.; Lamit, L. J.; Smith, A. N.; Baiser, B.; Clark, M. W.; Hazlett, C.; Lilleskov, E.; Long, J.; Grover, S.; Reddy, K. R.
2017-12-01
Peatlands play a critical role in the global carbon cycle because they contain approximately 30% of the 1500 Pg of carbon stored in soils worldwide. However, the stability of these vast stores of carbon is under threat from climate and land-use change, with important consequences for global climate. Ecosystem models predict the impact of peatland perturbation on carbon fluxes based on total soil carbon pools, but responses could vary markedly depending on the chemical composition of soil organic matter. Here we combine experimental and observational studies to quantify the chemical nature and response to perturbation of soil organic matter in peatlands worldwide. We quantified carbon functional groups in a global sample of 125 freshwater peatlands using solid-state 13C nuclear magnetic resonance (NMR) spectroscopy to determine the drivers of molecular composition of soil organic matter. We then incubated a representative subset of the soils under aerobic and anaerobic conditions to determine how organic matter composition influences carbon dioxide (CO2) and methane (CH4) emissions following drainage or flooding. The functional chemistry of peat varied markedly at large and small spatial scales, due to long-term land use change, mean annual temperature, nutrient status, and vegetation, but not pH. Despite this variation, we found predictable responses of greenhouse gas production following drainage based on soil carbon chemistry, defined by a novel Global Peat Stability Index, with greater CO2 and CH4 fluxes from soils enriched in oxygen-containing organic carbon (O-alkyl C) and depleted in aromatic and hydrophobic compounds. Incorporation of the Global Peat Stability Index of peatland organic matter into earth system models and management strategies, which will improve estimates of GHG fluxes from peatlands and ultimately advance management to reduce carbon loss from these sensitive ecosystems.
Non-normality and classification of amplification mechanisms in stability and resolvent analysis
NASA Astrophysics Data System (ADS)
Symon, Sean; Rosenberg, Kevin; Dawson, Scott T. M.; McKeon, Beverley J.
2018-05-01
Eigenspectra and pseudospectra of the mean-linearized Navier-Stokes operator are used to characterize amplification mechanisms in laminar and turbulent flows in which linear mechanisms are important. Success of mean flow (linear) stability analysis for a particular frequency is shown to depend on whether two scalar measures of non-normality agree: (1) the product between the resolvent norm and the distance from the imaginary axis to the closest eigenvalue and (2) the inverse of the inner product between the most amplified resolvent forcing and response modes. If they agree, the resolvent operator can be rewritten in its dyadic representation to reveal that the adjoint and forward stability modes are proportional to the forcing and response resolvent modes at that frequency. Hence the real parts of the eigenvalues are important since they are responsible for resonant amplification and the resolvent operator is low rank when the eigenvalues are sufficiently separated in the spectrum. If the amplification is pseudoresonant, then resolvent analysis is more suitable to understand the origin of observed flow structures. Two test cases are studied: low Reynolds number cylinder flow and turbulent channel flow. The first deals mainly with resonant mechanisms, hence the success of both classical and mean stability analysis with respect to predicting the critical Reynolds number and global frequency of the saturated flow. Both scalar measures of non-normality agree for the base and mean flows, and the region where the forcing and response modes overlap scales with the length of the recirculation bubble. In the case of turbulent channel flow, structures result from both resonant and pseudoresonant mechanisms, suggesting that both are necessary elements to sustain turbulence. Mean shear is exploited most efficiently by stationary disturbances while bounds on the pseudospectra illustrate how pseudoresonance is responsible for the most amplified disturbances at spatial wavenumbers and temporal frequencies corresponding to well-known turbulent structures. Some implications for flow control are discussed.
Falisi, G; Severino, M; Rastelli, C; Bernardi, S; Caruso, S; Galli, M; Lamazza, L; Di Paolo, C
2017-03-01
The attainment of a good primary stability is a necessary condition to ensure the success of osseointegration in implantology. In type IV cancellous bone, however, it is possible that a reduced primary stability can lead to an increased rate of failure. The aim of this study was therefore to determine, with the help of the resonance frequency (Osstell mentor), which technique of implant site preparation (piezo surgery, conventional, under-preparation, bone compaction, osteodistraction) and macro-geometry is able to improve implant stability in type IV cancellous bone. 10 pig ribs were prepared with a surgical pre-drilled guide, calibrated for a correct implant positioning. On each rib, 5 implant sites (one for each technique) were prepared. Successively, 50 conical implants (Tekka Global D) were inserted and measured with the resonance frequency to evaluate the primary stability. Data collected were analyzed by analysis of variance (ANOVA) to test whether the Implant Stability Quotient (ISQ) values of the five techniques were significantly different. The results showed that no significant differences among the ISQ values of the five techniques used were found. Also, no significant differences in the macro-geometry of the two types of compared implants were observed. However, the macro-geometry of Tekka implants, characterized by a double condensing thread, seems to provide greater ISQ values than those of single thread implants when using the same technique. In light of these preliminary data, it is conceivable that in cases of reduced stability, such as those occurring with a type IV bone, all means ameliorating the primary stability and accelerating the osseointegration can be utilized.
Gupta, Ujval; Kumar, Vinay; Singh, Vivek K; Kant, Rajni; Khajuria, Yugal
2015-04-05
The Fourier Transform Infrared (FTIR), Ultra-Violet Visible (UV-Vis) spectroscopy and Thermogravimetric (TG) analysis of (3,4-dimethoxybenzylidene) propanedinitrile have been carried out and investigated using quantum chemical calculations. The molecular geometry, harmonic vibrational frequencies, Mulliken charges, natural atomic charges and thermodynamic properties in the ground state have been investigated by using Hartree Fock Theory (HF) and Density Functional Theory (DFT) using B3LYP functional with 6-311G(d,p) basis set. Both HF and DFT methods yield good agreement with the experimental data. Vibrational modes are assigned with the help of Vibrational Energy Distribution Analysis (VEDA) program. UV-Visible spectrum was recorded in the spectral range of 190-800nm and the results are compared with the calculated values using TD-DFT approach. Stability of the molecule arising from hyperconjugative interactions, charge delocalization have been analyzed using natural bond orbital (NBO) analysis. The results obtained from the studies of Highest Occupied Molecular Orbital (HOMO) and Lowest Unoccupied Molecular Orbital (LUMO) are used to calculate molecular parameters like ionization potential, electron affinity, global hardness, electron chemical potential and global electrophilicity. Copyright © 2014 Elsevier B.V. All rights reserved.
Global asymptotic stability and hopf bifurcation for a blood cell production model.
Crauste, Fabien
2006-04-01
We analyze the asymptotic stability of a nonlinear system of two differential equations with delay, describing the dynamics of blood cell produc- tion. This process takes place in the bone marrow, where stem cells differen- tiate throughout division in blood cells. Taking into account an explicit role of the total population of hematopoietic stem cells in the introduction of cells in cycle, we are led to study a characteristic equation with delay-dependent coefficients. We determine a necessary and sufficient condition for the global stability of the first steady state of our model, which describes the popula- tion's dying out, and we obtain the existence of a Hopf bifurcation for the only nontrivial positive steady state, leading to the existence of periodic solutions. These latter are related to dynamical diseases affecting blood cells known for their cyclic nature.
DOE Office of Scientific and Technical Information (OSTI.GOV)
J Squire, A Bhattacharjee
We study the magnetorotational instability (MRI) (Balbus & Hawley 1998) using non-modal stability techniques.Despite the spectral instability of many forms of the MRI, this proves to be a natural method of analysis that is well-suited to deal with the non-self-adjoint nature of the linear MRI equations. We find that the fastest growing linear MRI structures on both local and global domains can look very diff erent to the eigenmodes, invariably resembling waves shearing with the background flow (shear waves). In addition, such structures can grow many times faster than the least stable eigenmode over long time periods, and be localizedmore » in a completely di fferent region of space. These ideas lead – for both axisymmetric and non-axisymmetric modes – to a natural connection between the global MRI and the local shearing box approximation. By illustrating that the fastest growing global structure is well described by the ordinary diff erential equations (ODEs) governing a single shear wave, we find that the shearing box is a very sensible approximation for the linear MRI, contrary to many previous claims. Since the shear wave ODEs are most naturally understood using non-modal analysis techniques, we conclude by analyzing local MRI growth over finite time-scales using these methods. The strong growth over a wide range of wave-numbers suggests that non-modal linear physics could be of fundamental importance in MRI turbulence (Squire & Bhattacharjee 2014).« less
Wang, Bingquan; Cicerone, Marcus T; Aso, Yukio; Pikal, Michael J
2010-02-01
The objective of this research was to investigate the impact of thermal treatment on storage stability of an IgG1 fusion protein. IgG1 protein formulations were prepared by freeze-drying the protein with sucrose. Some samples were used as controls, and others were subjected to a further heat treatment (annealing). The protein structure was investigated with Fourier transform infrared spectroscopy (FTIR), and protein aggregation was monitored with size exclusion HPLC. Enthalpy recovery was studied using DSC, and global mobility represented by the structural relaxation time constant (tau(beta)) was characterized by a thermal activity monitor (TAM). The local mobility of the protein system was monitored by both (13)C solid-state NMR and neutron backscattering. Annealing increased the storage stability of the protein, as shown by the smaller aggregation rate and less total aggregation at the end of a storage period. The structural relaxation time constant of an annealed sample was significantly higher than the unannealed control sample, suggesting a decrease in global mobility of the protein system upon annealing. However, annealing does not significantly impact the protein secondary structure or the local mobility. Given the similar protein native structure and specific surface area, the improved stability upon annealing is mainly a result of reduced global molecular mobility. (c) 2009 Wiley-Liss, Inc. and the American Pharmacists Association.
Geng, Shujie; Liu, Xiangyu; Biswal, Bharat B; Niu, Haijing
2017-01-01
As an emerging brain imaging technique, functional near infrared spectroscopy (fNIRS) has attracted widespread attention for advancing resting-state functional connectivity (FC) and graph theoretical analyses of brain networks. However, it remains largely unknown how the duration of the fNIRS signal scanning is related to stable and reproducible functional brain network features. To answer this question, we collected resting-state fNIRS signals (10-min duration, two runs) from 18 participants and then truncated the hemodynamic time series into 30-s time bins that ranged from 1 to 10 min. Measures of nodal efficiency, nodal betweenness, network local efficiency, global efficiency, and clustering coefficient were computed for each subject at each fNIRS signal acquisition duration. Analyses of the stability and between-run reproducibility were performed to identify optimal time length for each measure. We found that the FC, nodal efficiency and nodal betweenness stabilized and were reproducible after 1 min of fNIRS signal acquisition, whereas network clustering coefficient, local and global efficiencies stabilized after 1 min and were reproducible after 5 min of fNIRS signal acquisition for only local and global efficiencies. These quantitative results provide direct evidence regarding the choice of the resting-state fNIRS scanning duration for functional brain connectivity and topological metric stability of brain network connectivity.
Stability diagram for the forced Kuramoto model.
Childs, Lauren M; Strogatz, Steven H
2008-12-01
We analyze the periodically forced Kuramoto model. This system consists of an infinite population of phase oscillators with random intrinsic frequencies, global sinusoidal coupling, and external sinusoidal forcing. It represents an idealization of many phenomena in physics, chemistry, and biology in which mutual synchronization competes with forced synchronization. In other words, the oscillators in the population try to synchronize with one another while also trying to lock onto an external drive. Previous work on the forced Kuramoto model uncovered two main types of attractors, called forced entrainment and mutual entrainment, but the details of the bifurcations between them were unclear. Here we present a complete bifurcation analysis of the model for a special case in which the infinite-dimensional dynamics collapse to a two-dimensional system. Exact results are obtained for the locations of Hopf, saddle-node, and Takens-Bogdanov bifurcations. The resulting stability diagram bears a striking resemblance to that for the weakly nonlinear forced van der Pol oscillator.
A modified Leslie-Gower predator-prey interaction model and parameter identifiability
NASA Astrophysics Data System (ADS)
Tripathi, Jai Prakash; Meghwani, Suraj S.; Thakur, Manoj; Abbas, Syed
2018-01-01
In this work, bifurcation and a systematic approach for estimation of identifiable parameters of a modified Leslie-Gower predator-prey system with Crowley-Martin functional response and prey refuge is discussed. Global asymptotic stability is discussed by applying fluctuation lemma. The system undergoes into Hopf bifurcation with respect to parameters intrinsic growth rate of predators (s) and prey reserve (m). The stability of Hopf bifurcation is also discussed by calculating Lyapunov number. The sensitivity analysis of the considered model system with respect to all variables is performed which also supports our theoretical study. To estimate the unknown parameter from the data, an optimization procedure (pseudo-random search algorithm) is adopted. System responses and phase plots for estimated parameters are also compared with true noise free data. It is found that the system dynamics with true set of parametric values is similar to the estimated parametric values. Numerical simulations are presented to substantiate the analytical findings.
Baryshnikova, Larisa M; Croes, Scott A; von Bartheld, Christopher S
2007-12-01
Precise control of contractile force of extraocular muscles is required for appropriate movements and alignment of the eyes. It is unclear how such precise regulation of contractile force is achieved during development and maturation. By using the posthatch chicken as a model, we describe and quantify critical parameters of the developing superior oblique extraocular muscle from hatching to 16 weeks of age, including contractile force, muscle mass, myofiber diameters, classification of fiber types, and distribution and quantification of mitochondria. Analysis at the light- and electron microscopic levels shows that chicken myofiber types largely correspond to their mammalian counterparts, with four fiber types in the orbital and four types in the global layer. Twitch tension muscle force and muscle mass gradually increase and stabilize at approximately 11 weeks. Tetanic tension continues to increase between 11 and 16 weeks. Myofiber diameters in both the orbital and global layer increase from hatching to six weeks, and then stabilize, whereas the myofiber number is constant after hatching. This finding suggests that muscle mass increases during late maturation due to increasing fiber length rather than fiber diameter. Quantitative ultrastructural analysis reveals continuing changes in the composition of the four muscle fiber types, suggesting ongoing fiber type conversion or differential replacement of myofiber types. Muscle fiber composition continues to change into late juvenile and adult age. Our study provides evidence for gradual, incremental, and continuing changes in avian myofiber composition and function that is similar to postnatal oculomotor maturation in visually oriented mammals such as kitten.
Guyennon, Nicolas; Cerretto, Giancarlo; Tavella, Patrizia; Lahaye, François
2009-08-01
In recent years, many national timing laboratories have installed geodetic Global Positioning System receivers together with their traditional GPS/GLONASS Common View receivers and Two Way Satellite Time and Frequency Transfer equipment. Many of these geodetic receivers operate continuously within the International GNSS Service (IGS), and their data are regularly processed by IGS Analysis Centers. From its global network of over 350 stations and its Analysis Centers, the IGS generates precise combined GPS ephemeredes and station and satellite clock time series referred to the IGS Time Scale. A processing method called Precise Point Positioning (PPP) is in use in the geodetic community allowing precise recovery of GPS antenna position, clock phase, and atmospheric delays by taking advantage of these IGS precise products. Previous assessments, carried out at Istituto Nazionale di Ricerca Metrologica (INRiM; formerly IEN) with a PPP implementation developed at Natural Resources Canada (NRCan), showed PPP clock solutions have better stability over short/medium term than GPS CV and GPS P3 methods and significantly reduce the day-boundary discontinuities when used in multi-day continuous processing, allowing time-limited, campaign-style time-transfer experiments. This paper reports on follow-on work performed at INRiM and NRCan to further characterize and develop the PPP method for time transfer applications, using data from some of the National Metrology Institutes. We develop a processing procedure that takes advantage of the improved stability of the phase-connected multi-day PPP solutions while allowing the generation of continuous clock time series, more applicable to continuous operation/monitoring of timing equipment.
NASA Astrophysics Data System (ADS)
Zhen, Xing-wei; Huang, Yi
2017-10-01
This study focuses on a new technology of Subsurface Tension Leg Platform (STLP), which utilizes the shallowwater rated well completion equipment and technology for the development of large oil and gas fields in ultra-deep water (UDW). Thus, the STLP concept offers attractive advantages over conventional field development concepts. STLP is basically a pre-installed Subsurface Sea-star Platform (SSP), which supports rigid risers and shallow-water rated well completion equipment. The paper details the results of the parametric study on the behavior of STLP at a water depth of 3000 m. At first, a general description of the STLP configuration and working principle is introduced. Then, the numerical models for the global analysis of the STLP in waves and current are presented. After that, extensive parametric studies are carried out with regarding to SSP/tethers system analysis, global dynamic analysis and riser interference analysis. Critical points are addressed on the mooring pattern and riser arrangement under the influence of ocean current, to ensure that the requirements on SSP stability and riser interference are well satisfied. Finally, conclusions and discussions are made. The results indicate that STLP is a competitive well and riser solution in up to 3000 m water depth for offshore petroleum production.
A review of some problems in global-local stress analysis
NASA Technical Reports Server (NTRS)
Nelson, Richard B.
1989-01-01
The various types of local-global finite-element problems point out the need to develop a new generation of software. First, this new software needs to have a complete analysis capability, encompassing linear and nonlinear analysis of 1-, 2-, and 3-dimensional finite-element models, as well as mixed dimensional models. The software must be capable of treating static and dynamic (vibration and transient response) problems, including the stability effects of initial stress, and the software should be able to treat both elastic and elasto-plastic materials. The software should carry a set of optional diagnostics to assist the program user during model generation in order to help avoid obvious structural modeling errors. In addition, the program software should be well documented so the user has a complete technical reference for each type of element contained in the program library, including information on such topics as the type of numerical integration, use of underintegration, and inclusion of incompatible modes, etc. Some packaged information should also be available to assist the user in building mixed-dimensional models. An important advancement in finite-element software should be in the development of program modularity, so that the user can select from a menu various basic operations in matrix structural analysis.
NASA Astrophysics Data System (ADS)
Goodwin, Philip; Brown, Sally; Haigh, Ivan David; Nicholls, Robert James; Matter, Juerg M.
2018-03-01
To avoid the most dangerous consequences of anthropogenic climate change, the Paris Agreement provides a clear and agreed climate mitigation target of stabilizing global surface warming to under 2.0°C above preindustrial, and preferably closer to 1.5°C. However, policy makers do not currently know exactly what carbon emissions pathways to follow to stabilize warming below these agreed targets, because there is large uncertainty in future temperature rise for any given pathway. This large uncertainty makes it difficult for a cautious policy maker to avoid either: (1) allowing warming to exceed the agreed target or (2) cutting global emissions more than is required to satisfy the agreed target, and their associated societal costs. This study presents a novel Adjusting Mitigation Pathway (AMP) approach to restrict future warming to policy-driven targets, in which future emissions reductions are not fully determined now but respond to future surface warming each decade in a self-adjusting manner. A large ensemble of Earth system model simulations, constrained by geological and historical observations of past climate change, demonstrates our self-adjusting mitigation approach for a range of climate stabilization targets ranging from 1.5°C to 4.5°C, and generates AMP scenarios up to year 2300 for surface warming, carbon emissions, atmospheric CO2, global mean sea level, and surface ocean acidification. We find that lower 21st century warming targets will significantly reduce ocean acidification this century, and will avoid up to 4 m of sea-level rise by year 2300 relative to a high-end scenario.
Stabilization Wedges and the Management of Global Carbon for the next 50 years
Socolow, Robert
2018-05-24
More than 40 years after receiving a Ph.D. in physics, I am still working on problems where conservation laws matter. In particular, for the problems I work on now, the conservation of the carbon atom matters. I will tell the saga of an annual flow of 8 billion tons of carbon associated with the global extraction of fossil fuels from underground. Until recently, it was taken for granted that virtually all of this carbon will move within weeks through engines of various kinds and then into the atmosphere. For compelling environmental reasons, I and many others are challenging this complacent view, asking whether the carbon might wisely be directed elsewhere. To frame this and similar discussions, Steve Pacala and I introduced the 'stabilization wedge' in 2004 as a useful unit for discussing climate stabilization. Updating the definition, a wedge is the reduction of CO2 emissions by one billion tons of carbon per year in 2057, achieved by any strategy generated as a result of deliberate attention to global carbon. Each strategy uses already commercialized technology, generally at much larger scale than today. Implementing seven wedges should enable the world to achieve the interim goal of emitting no more CO2 globally in 2057 than today. This would place humanity, approximately, on a path to stabilizing CO2 at less than double the pre-industrial concentration, and it would put those at the helm in the following 50 years in a position to drive CO2 emissions to a net of zero in the following 50 years. Arguably, the tasks of the two half-centuries are comparably difficult.
Stabilization of business cycles of finance agents using nonlinear optimal control
NASA Astrophysics Data System (ADS)
Rigatos, G.; Siano, P.; Ghosh, T.; Sarno, D.
2017-11-01
Stabilization of the business cycles of interconnected finance agents is performed with the use of a new nonlinear optimal control method. First, the dynamics of the interacting finance agents and of the associated business cycles is described by a modeled of coupled nonlinear oscillators. Next, this dynamic model undergoes approximate linearization round a temporary operating point which is defined by the present value of the system's state vector and the last value of the control inputs vector that was exerted on it. The linearization procedure is based on Taylor series expansion of the dynamic model and on the computation of Jacobian matrices. The modelling error, which is due to the truncation of higher-order terms in the Taylor series expansion is considered as a disturbance which is compensated by the robustness of the control loop. Next, for the linearized model of the interacting finance agents, an H-infinity feedback controller is designed. The computation of the feedback control gain requires the solution of an algebraic Riccati equation at each iteration of the control algorithm. Through Lyapunov stability analysis it is proven that the control scheme satisfies an H-infinity tracking performance criterion, which signifies elevated robustness against modelling uncertainty and external perturbations. Moreover, under moderate conditions the global asymptotic stability features of the control loop are proven.
Energy balance and stability. [in stellar coronae
NASA Technical Reports Server (NTRS)
Hammer, R.
1982-01-01
The energy balance of the outer atmospheres of solarlike stars is discussed. The energy balance of open coronal regions is considered, discussing the construction and characteristics of models of such regions in some detail. In particular, the temperature as a function of height is considered, as are the damping length dependence of the global energy balance in the region between the base of the transition region and the critical point, and the effects of changing the amount of coronal heating, the stellar mass, and the stellar radius. Models of coronal loops are more briefly discussed. The chromosphere is then included in the discussion of the energy balance, and the connection between global energy balance and global thermal stability is addressed. The observed positive correlations between the chromospheric and coronal energy losses and the pressure of the transition region is qualitatively explained.
NASA Astrophysics Data System (ADS)
Alessandri, A.; Fogli, P. G.; Vichi, M.; Zeng, N.
2012-11-01
Future climate scenarios experiencing global warming are expected to strengthen the hydrological cycle during the 21st century (21C). We analyze the strengthening of the global-scale increase in precipitation from the perspective of changes in whole atmospheric water and energy balances. By combining energy and water equations for the whole atmosphere, we obtain constraints for the changes in surface fluxes and partitioning at the surface between sensible and latent components. We investigate the differences in the strengthening of the hydrological cycle in two centennial simulations performed with an Earth system model forced with specified atmospheric concentration pathways. Alongside the Special Report on Emissions Scenario (SRES) A1B, which is a medium-high non-mitigation scenario, we consider a new aggressive-mitigation scenario (E1) with reduced fossil fuel use for energy production aimed at stabilizing global warming below 2 K. Our results show that the mitigation scenario effectively constrains the global warming with a stabilization below 2 K with respect to the 1950-2000 historical period. On the other hand, the E1 precipitation does not follow the temperature field toward a stabilization path but continues to increase over the mitigation period. Quite unexpectedly, the mitigation scenario is shown to strengthen the hydrological cycle even more than SRES A1B till around 2070. We show that this is mostly a consequence of the larger increase in the negative radiative imbalance of atmosphere in E1 compared to A1B. This appears to be primarily related to decreased sulfate aerosol concentration in E1, which considerably reduces atmospheric absorption of solar radiation compared to A1B. The last decades of the 21C show a marked increase in global precipitation in A1B compared to E1, despite the fact that the two scenarios display almost the same overall increase of radiative imbalance with respect to the 20th century. Our results show that radiative cooling is weakly effective in A1B throughout the 21C. Two distinct mechanisms characterize the diverse strengthening of the hydrological cycle in the middle and end- 21C. It is only through a very large perturbation of surface fluxes that A1B achieves a larger increase in global precipitation in the last decades of the 21C. Our energy/water budget analysis shows that this behavior is ultimately due to a bifurcation in the Bowen ratio change between the two scenarios. This work warns that mitigation policies that promote aerosol abatement, may lead to an unexpected stronger intensification of the hydrological cycle and associated changes that may last for decades after global warming is effectively mitigated. On the other hand, it is also suggested that predictable components of the radiative forcing by aerosols may have the potential to effectively contribute to the decadal-scale predictability of changes in the hydrological strength.
The Impact of Globalization on African Conflicts
2003-01-01
There is no region of this world that not experienced wars, but while many parts of the world have moved towards greater political and economic ... stability and co-operation, sub-Saharan Africa remains a cauldron of instability and economic deprivation. Globalization, which in simple terms means a
Structure and Connectivity Analysis of Financial Complex System Based on G-Causality Network
NASA Astrophysics Data System (ADS)
Xu, Chuan-Ming; Yan, Yan; Zhu, Xiao-Wu; Li, Xiao-Teng; Chen, Xiao-Song
2013-11-01
The recent financial crisis highlights the inherent weaknesses of the financial market. To explore the mechanism that maintains the financial market as a system, we study the interactions of U.S. financial market from the network perspective. Applied with conditional Granger causality network analysis, network density, in-degree and out-degree rankings are important indicators to analyze the conditional causal relationships among financial agents, and further to assess the stability of U.S. financial systems. It is found that the topological structure of G-causality network in U.S. financial market changed in different stages over the last decade, especially during the recent global financial crisis. Network density of the G-causality model is much higher during the period of 2007-2009 crisis stage, and it reaches the peak value in 2008, the most turbulent time in the crisis. Ranked by in-degrees and out-degrees, insurance companies are listed in the top of 68 financial institutions during the crisis. They act as the hubs which are more easily influenced by other financial institutions and simultaneously influence others during the global financial disturbance.
Local control of globally competing patterns in coupled Swift-Hohenberg equations
NASA Astrophysics Data System (ADS)
Becker, Maximilian; Frenzel, Thomas; Niedermayer, Thomas; Reichelt, Sina; Mielke, Alexander; Bär, Markus
2018-04-01
We present analytical and numerical investigations of two anti-symmetrically coupled 1D Swift-Hohenberg equations (SHEs) with cubic nonlinearities. The SHE provides a generic formulation for pattern formation at a characteristic length scale. A linear stability analysis of the homogeneous state reveals a wave instability in addition to the usual Turing instability of uncoupled SHEs. We performed weakly nonlinear analysis in the vicinity of the codimension-two point of the Turing-wave instability, resulting in a set of coupled amplitude equations for the Turing pattern as well as left- and right-traveling waves. In particular, these complex Ginzburg-Landau-type equations predict two major things: there exists a parameter regime where multiple different patterns are stable with respect to each other and that the amplitudes of different patterns interact by local mutual suppression. In consequence, different patterns can coexist in distinct spatial regions, separated by localized interfaces. We identified specific mechanisms for controlling the position of these interfaces, which distinguish what kinds of patterns the interface connects and thus allow for global pattern selection. Extensive simulations of the original SHEs confirm our results.
Takemoto, Kazuhiro; Kajihara, Kosuke
2016-01-01
Theoretical studies have indicated that nestedness and modularity-non-random structural patterns of ecological networks-influence the stability of ecosystems against perturbations; as such, climate change and human activity, as well as other sources of environmental perturbations, affect the nestedness and modularity of ecological networks. However, the effects of climate change and human activities on ecological networks are poorly understood. Here, we used a spatial analysis approach to examine the effects of climate change and human activities on the structural patterns of food webs and mutualistic networks, and found that ecological network structure is globally affected by climate change and human impacts, in addition to current climate. In pollination networks, for instance, nestedness increased and modularity decreased in response to increased human impacts. Modularity in seed-dispersal networks decreased with temperature change (i.e., warming), whereas food web nestedness increased and modularity declined in response to global warming. Although our findings are preliminary owing to data-analysis limitations, they enhance our understanding of the effects of environmental change on ecological communities.
Climate targets and cost-effective climate stabilization pathways
NASA Astrophysics Data System (ADS)
Held, H.
2015-08-01
Climate economics has developed two main tools to derive an economically adequate response to the climate problem. Cost benefit analysis weighs in any available information on mitigation costs and benefits and thereby derives an "optimal" global mean temperature. Quite the contrary, cost effectiveness analysis allows deriving costs of potential policy targets and the corresponding cost- minimizing investment paths. The article highlights pros and cons of both approaches and then focusses on the implications of a policy that strives at limiting global warming to 2 °C compared to pre-industrial values. The related mitigation costs and changes in the energy sector are summarized according to the IPCC report of 2014. The article then points to conceptual difficulties when internalizing uncertainty in these types of analyses and suggests pragmatic solutions. Key statements on mitigation economics remain valid under uncertainty when being given the adequate interpretation. Furthermore, the expected economic value of perfect climate information is found to be on the order of hundreds of billions of Euro per year if a 2°-policy were requested. Finally, the prospects of climate policy are sketched.
Saravanan, S; Balachandran, V
2014-09-15
This study represents an integral approach towards understanding the electronic and structural aspects of 3-tert-butyl-4-methoxyphenol (TBMP). Fourier-transform Infrared (FT-IR) and Fourier-transform Raman (FT-Raman) spectra of TBMP was recorded in the region 4000-400 cm(-1) and 3500-100 cm(-1), respectively. The molecular structures, vibrational wavenumbers, infrared intensities and Raman activities were calculated using DFT (B3LYP and LSDA) methods using 6-311++G (d,p) basis set. The most stable conformer of TBMP was identified from the computational results. The assignments of vibrational spectra have been carried out with the help of normal co-ordinate analysis (NCA) following the scaled quantum mechanical force field (SQMFF) methodology. The first order hyperpolarizability (β0) and related properties (β, α0 and Δα) of TBMP have been discussed. The stability and charge delocalization of the molecule was studied by Natural Bond Orbital (NBO) analysis. UV-Visible spectrum and effects of solvents have been discussed and the electronic properties such as HOMO and LUMO energies were determined by time-dependent TD-DFT approach with B3LYP/6-311++G (d,p) level of theory. The molecule orbital contributions are studied by density of energy states (DOSs). The reactivity sites are identified by mapping the electron density into electrostatic potential surface (MEP). Mulliken analysis of atomic charges is also calculated. The thermodynamic properties at different temperatures were calculated, revealing the correlations between standard heat capacities, standard entropy and standard enthalpy changes with temperatures. Global hardness, global softness, global electrophilicity and ionization potential of the title compound are determined. Copyright © 2014 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Melvin, A. M.; Larsen, P.; Boehlert, B.; Martinich, J.; Neumann, J.; Chinowsky, P.; Schweikert, A.; Strzepek, K.
2015-12-01
Climate change poses many risks and challenges for the Arctic and sub-Arctic, including threats to infrastructure. The safety and stability of infrastructure in this region can be impacted by many factors including increased thawing of permafrost soils, reduced coastline protection due to declining arctic sea ice, and changes in inland flooding. The U.S. Environmental Protection Agency (EPA) is coordinating an effort to quantify physical and economic impacts of climate change on public infrastructure across the state of Alaska and estimate how global greenhouse gas (GHG) mitigation may avoid or reduce these impacts. This research builds on the Climate Change Impacts and Risk Analysis (CIRA) project developed for the contiguous U.S., which is described in an EPA report released in June 2015. We are using a multi-model analysis focused primarily on the impacts of changing permafrost, coastal erosion, and inland flooding on a range of infrastructure types, including transportation (e.g. roads, airports), buildings and harbors, energy sources and transmission, sewer and water systems, and others. This analysis considers multiple global GHG emission scenarios ranging from a business as usual future to significant global action. These scenarios drive climate projections through 2100 spanning a range of outcomes to capture variability amongst climate models. Projections are being combined with a recently developed public infrastructure database and integrated into a version of the Infrastructure Planning Support System (IPSS) we are modifying for use in the Arctic and sub-Arctic region. The IPSS tool allows for consideration of both adaptation and reactive responses to climate change. Results of this work will address a gap in our understanding of climate change impacts in Alaska, provide estimates of the physical and economic damages we may expect with and without global GHG mitigation, and produce important insights about infrastructure vulnerabilities in response to warming at northern latitudes.
Global stability of steady states in the classical Stefan problem for general boundary shapes
Hadžić, Mahir; Shkoller, Steve
2015-01-01
The classical one-phase Stefan problem (without surface tension) allows for a continuum of steady-state solutions, given by an arbitrary (but sufficiently smooth) domain together with zero temperature. We prove global-in-time stability of such steady states, assuming a sufficient degree of smoothness on the initial domain, but without any a priori restriction on the convexity properties of the initial shape. This is an extension of our previous result (Hadžić & Shkoller 2014 Commun. Pure Appl. Math. 68, 689–757 (doi:10.1002/cpa.21522)) in which we studied nearly spherical shapes. PMID:26261359
Voloshchuk, Natalya; Zhu, Anita Y; Snydacker, David; Montclare, Jin Kim
2009-09-15
To explore the impact of global incorporation of fluorinated aromatic amino acids on protein function, we investigated the effects of three monofluorinated phenylalanine analogs para-fluorophenylalanine (pFF), meta-fluorophenylalanine (mFF), and ortho-fluorophenylalanine (oFF) on the stability and enzymatic activity of the histone acetyltransferase (HAT), tGCN5. We selected this set of fluorinated amino acids because they bear the same size and overall polarity but alter in side chain shape and dipole direction. Our experiments showed that among three fluorinated amino acids, the global incorporation of pFF affords the smallest perturbation to the structure and function of tGCN5.
Trend Analysis of Bullying Victimization Prevalence in Spanish Adolescent Youth at School.
Sánchez-Queija, Inmaculada; García-Moya, Irene; Moreno, Carmen
2017-06-01
We analyze trends in bullying victimization prevalence in a representative sample of Spanish adolescent schoolchildren in 2006, 2010, and 2014. We distinguish between reported bullying, which is assessed via the global question in the Revised Bully/Victim Questionnaire by Olweus, and observed bullying, which is a measure developed from the answers that the adolescents gave to specific items that refer to different types of bullying that have been codified as physical, verbal, and relational bullying. For 2006 and 2010/2014, the results show stability in the assessment of reported bullying and an increase in observed bullying, analyzed both globally and within the 3 categories: physical, verbal, and relational. A valid, reliable, and accurate measure to detect cases of bullying is necessary, as is the importance of continuing efforts devoted to raising awareness and the prevention of this phenomenon. © 2017, American School Health Association.
Parallelization of implicit finite difference schemes in computational fluid dynamics
NASA Technical Reports Server (NTRS)
Decker, Naomi H.; Naik, Vijay K.; Nicoules, Michel
1990-01-01
Implicit finite difference schemes are often the preferred numerical schemes in computational fluid dynamics, requiring less stringent stability bounds than the explicit schemes. Each iteration in an implicit scheme involves global data dependencies in the form of second and higher order recurrences. Efficient parallel implementations of such iterative methods are considerably more difficult and non-intuitive. The parallelization of the implicit schemes that are used for solving the Euler and the thin layer Navier-Stokes equations and that require inversions of large linear systems in the form of block tri-diagonal and/or block penta-diagonal matrices is discussed. Three-dimensional cases are emphasized and schemes that minimize the total execution time are presented. Partitioning and scheduling schemes for alleviating the effects of the global data dependencies are described. An analysis of the communication and the computation aspects of these methods is presented. The effect of the boundary conditions on the parallel schemes is also discussed.
"Boyz to Men": Masculinities, Schooling and Labour Transitions in De-Industrial Times.
ERIC Educational Resources Information Center
Nayak, Anoop
2003-01-01
In postindustrial society, masculinities at school must be understood in the context of family, history, locality, and global change. An ethnography of white working-class male school subculture shows how they resist globalization by asserting traditional masculinity, providing the illusion of stability. (Contains 40 references.) (SK)
Applying PCI in Combination Swivel Head Wrench
NASA Astrophysics Data System (ADS)
Chen, Tsang-Chiang; Yang, Chun-Ming; Hsu, Chang-Hsien; Hung, Hsiang-Wen
2017-09-01
Taiwan’s traditional industries are subject to competition in the era of globalization and environmental change, the industry is facing economic pressure and shock, and now sustainable business can only continue to improve production efficiency and quality of technology, in order to stabilize the market, to obtain high occupancy. The use of process capability indices to monitor the quality of the ratchet wrench to find the key function of the dual-use ratchet wrench, the actual measurement data, The use of process capability Cpk index analysis, and draw Process Capability Analysis Chart model. Finally, this study explores the current situation of this case and proposes a lack of improvement and improvement methods to improve the overall quality and thereby enhance the overall industry.
NASA Technical Reports Server (NTRS)
Joshi, S. M.
1985-01-01
Robustness properties are investigated for two types of controllers for large flexible space structures, which use collocated sensors and actuators. The first type is an attitude controller which uses negative definite feedback of measured attitude and rate, while the second type is a damping enhancement controller which uses only velocity (rate) feedback. It is proved that collocated attitude controllers preserve closed loop global asymptotic stability when linear actuator/sensor dynamics satisfying certain phase conditions are present, or monotonic increasing nonlinearities are present. For velocity feedback controllers, the global asymptotic stability is proved under much weaker conditions. In particular, they have 90 phase margin and can tolerate nonlinearities belonging to the (0,infinity) sector in the actuator/sensor characteristics. The results significantly enhance the viability of both types of collocated controllers, especially when the available information about the large space structure (LSS) parameters is inadequate or inaccurate.
Zhang, Yunhai; Loreau, Michel; He, Nianpeng; Zhang, Guangming; Han, Xingguo
2017-01-01
Summary 1. Global reactive nitrogen (N) is projected to further increase in the coming years. Previous studies have demonstrated that N enrichment weakens the temporal stability of the ecosystem and the primary productivity through decreased biodiversity and species asynchrony. Mowing is a globally common practise in grasslands; and infrequent mowing can maintain or increase plant diversity under N enrichment conditions. However, it is unclear how infrequent mowing affects ecosystem stability in the face of N enrichment. 2. By independently manipulating the frequency (twice vs. monthly additions per year) and rate (i.e. 0, 1, 2, 3, 5, 10, 15, 20, and 50 g N m−2 year−1) of NH4NO3 inputs and mowing (unmown vs. mown) over 3 years (2011–2013) in a temperate grassland of northern China, we aimed to examine the interactive effects of N enrichment and mowing on ecosystem stability. 3. The results show that mowing maintained a positive relationship between species richness and ecosystem stability despite N addition, but that it exacerbated the negative effects of N addition on ecosystem stability. Mowing increased mean primary productivity and plant species richness, but it also increased the synchrony of population fluctuations and the variability of primary productivity under N enrichment, thereby contributing to a decline in the ecosystem stability. 4. Thus, our study reveals that infrequent mowing can buffer the negative effects of N enrichment on biodiversity to some extent and further increase the primary productivity, but it exacerbates the loss of ecosystem stability with N enrichment, thereby threatening local and/or semiarid regional food security. PMID:28867865
Zhang, Yunhai; Loreau, Michel; He, Nianpeng; Zhang, Guangming; Han, Xingguo
2017-08-04
1. Global reactive nitrogen (N) is projected to further increase in the coming years. Previous studies have demonstrated that N enrichment weakens the temporal stability of the ecosystem and the primary productivity through decreased biodiversity and species asynchrony. Mowing is a globally common practise in grasslands; and infrequent mowing can maintain or increase plant diversity under N enrichment conditions. However, it is unclear how infrequent mowing affects ecosystem stability in the face of N enrichment. 2. By independently manipulating the frequency (twice vs. monthly additions per year) and rate (i.e. 0, 1, 2, 3, 5, 10, 15, 20, and 50 g N m -2 year -1 ) of NH 4 NO 3 inputs and mowing (unmown vs. mown) over 3 years (2011-2013) in a temperate grassland of northern China, we aimed to examine the interactive effects of N enrichment and mowing on ecosystem stability. 3. The results show that mowing maintained a positive relationship between species richness and ecosystem stability despite N addition, but that it exacerbated the negative effects of N addition on ecosystem stability. Mowing increased mean primary productivity and plant species richness, but it also increased the synchrony of population fluctuations and the variability of primary productivity under N enrichment, thereby contributing to a decline in the ecosystem stability. 4. Thus, our study reveals that infrequent mowing can buffer the negative effects of N enrichment on biodiversity to some extent and further increase the primary productivity, but it exacerbates the loss of ecosystem stability with N enrichment, thereby threatening local and/or semiarid regional food security.
Structural stability of DNA origami nanostructures in the presence of chaotropic agents.
Ramakrishnan, Saminathan; Krainer, Georg; Grundmeier, Guido; Schlierf, Michael; Keller, Adrian
2016-05-21
DNA origami represent powerful platforms for single-molecule investigations of biomolecular processes. The required structural integrity of the DNA origami may, however, pose significant limitations regarding their applicability, for instance in protein folding studies that require strongly denaturing conditions. Here, we therefore report a detailed study on the stability of 2D DNA origami triangles in the presence of the strong chaotropic denaturing agents urea and guanidinium chloride (GdmCl) and its dependence on concentration and temperature. At room temperature, the DNA origami triangles are stable up to at least 24 h in both denaturants at concentrations as high as 6 M. At elevated temperatures, however, structural stability is governed by variations in the melting temperature of the individual staple strands. Therefore, the global melting temperature of the DNA origami does not represent an accurate measure of their structural stability. Although GdmCl has a stronger effect on the global melting temperature, its attack results in less structural damage than observed for urea under equivalent conditions. This enhanced structural stability most likely originates from the ionic nature of GdmCl. By rational design of the arrangement and lengths of the individual staple strands used for the folding of a particular shape, however, the structural stability of DNA origami may be enhanced even further to meet individual experimental requirements. Overall, their high stability renders DNA origami promising platforms for biomolecular studies in the presence of chaotropic agents, including single-molecule protein folding or structural switching.
Complex dynamics of an SEIR epidemic model with saturated incidence rate and treatment
NASA Astrophysics Data System (ADS)
Khan, Muhammad Altaf; Khan, Yasir; Islam, Saeed
2018-03-01
In this paper, we describe the dynamics of an SEIR epidemic model with saturated incidence, treatment function, and optimal control. Rigorous mathematical results have been established for the model. The stability analysis of the model is investigated and found that the model is locally asymptotically stable when R0 < 1. The model is locally as well as globally asymptotically stable at endemic equilibrium when R0 > 1. The proposed model may possess a backward bifurcation. The optimal control problem is designed and obtained their necessary results. Numerical results have been presented for justification of theoretical results.
The cetaceopteryx: A global range military transport aircraft
NASA Technical Reports Server (NTRS)
Brivkalns, Chad; English, Nicole; Kazemi, Tahmineh; Kopel, Kim; Kroger, Seth; Ortega, ED
1993-01-01
This paper presents a design of a military transport aircraft capable of carrying 800,000 lbs of payload from any point in the United States to any other point in the world. Such massive airlift requires aggressive use of advanced technology and a unique configuration. The Cetaceopteyx features a joined wing, canard and six turbofan engines. The aircraft has a cost 1.07 billion (1993) dollars each. This paper presents in detail the mission description, preliminary sizing, aircraft configuration, wing design, fuselage design, empennage design, propulsion system, landing gear design, structures, drag, stability and control, systems layout, and cost analysis of the aircraft.
A National Security Strategy for A New Century.
1997-05-01
enhancing the prospects for political stability , peaceful conflict resolution and greater hope for the people of the world. At the same time, the dangers we...proliferation of weapons of mass destruction are global concerns that transcend national borders; and environmental damage and rapid population growth undermine economic prosperity and political stability in many countries.
Non-Linear Spring Equations and Stability
ERIC Educational Resources Information Center
Fay, Temple H.; Joubert, Stephan V.
2009-01-01
We discuss the boundary in the Poincare phase plane for boundedness of solutions to spring model equations of the form [second derivative of]x + x + epsilonx[superscript 2] = Fcoswt and the [second derivative of]x + x + epsilonx[superscript 3] = Fcoswt and report the results of a systematic numerical investigation on the global stability of…
Management of a Single Species Fishery with Stage Structure
ERIC Educational Resources Information Center
Kar, T. K.; Pahari, U. K.; Chaudhuri, K. S.
2004-01-01
A dynamic model for a single species fishery with stage structure is proposed using taxation as a control instrument to protect the fish population from overexploitation. Criteria for local stability and global stability of the system are derived. The optimal tax policy is established by using Pontryagin's maximal principle. By numerical…
Phenotypic Stability of Zea mays Grain Yield and Its Attributing Traits under Drought Stress
Ali, Fawad; Ahsan, Muhammad; Ali, Qurban; Kanwal, Naila
2017-01-01
Phenotypic stability under stress environment facilitate the fitness of genotype and opens new horizons to explore the cryptic genetic variation. Variation in tolerance to drought stress, a major grain yield constraint to global maize production, was identified, at the phenotypic and genotypic level. Here we found a prominent hybrid H9 that showed fitness over four growing seasons for grain yield under water stress conditions. Genotypic and phenotypic correlation of yield attributing traits over four seasons demonstrated that cobs per plant, 100 seed weight, number of grains rows per cob, total dry matter, cob diameter had positive association (r2 = 0.3–0.9) to grain yield. The perturbation was found for chlorophyll content as it showed moderate to strong association (P < 0.01) over four seasons, might be due to environment or genotype dependent. Highest heritability (95%) and genetic advance (79%) for grain yield was found in H9 over four consecutive crop growing seasons. Combined analysis over four seasons showed that studied variables together explained 85% of total variation in dependent structure (grain yield) obtained by Principal component analysis. This significant finding is the best example of phenotypic stability of grain yield in H9 and made it best fitted for grain yield under drought stress scenario. Detailed genetic analysis of H9 will help us to identify significant loci and alleles that made H9 the best fitted and it could serve as a potential source to generate novel transgressive levels of tolerance for drought stress in arid/semiarid regions. PMID:28878785
Phenotypic Stability of Zea mays Grain Yield and Its Attributing Traits under Drought Stress.
Ali, Fawad; Ahsan, Muhammad; Ali, Qurban; Kanwal, Naila
2017-01-01
Phenotypic stability under stress environment facilitate the fitness of genotype and opens new horizons to explore the cryptic genetic variation. Variation in tolerance to drought stress, a major grain yield constraint to global maize production, was identified, at the phenotypic and genotypic level. Here we found a prominent hybrid H 9 that showed fitness over four growing seasons for grain yield under water stress conditions. Genotypic and phenotypic correlation of yield attributing traits over four seasons demonstrated that cobs per plant, 100 seed weight, number of grains rows per cob, total dry matter, cob diameter had positive association ( r 2 = 0.3-0.9) to grain yield. The perturbation was found for chlorophyll content as it showed moderate to strong association ( P < 0.01) over four seasons, might be due to environment or genotype dependent. Highest heritability (95%) and genetic advance (79%) for grain yield was found in H 9 over four consecutive crop growing seasons. Combined analysis over four seasons showed that studied variables together explained 85% of total variation in dependent structure (grain yield) obtained by Principal component analysis. This significant finding is the best example of phenotypic stability of grain yield in H 9 and made it best fitted for grain yield under drought stress scenario. Detailed genetic analysis of H 9 will help us to identify significant loci and alleles that made H 9 the best fitted and it could serve as a potential source to generate novel transgressive levels of tolerance for drought stress in arid/semiarid regions.
Review of economic and energy sector implications of adopting global climate change policies
DOE Office of Scientific and Technical Information (OSTI.GOV)
Novak, M.H.
1997-12-31
This paper summarizes a number of studies examining potential economic impacts of global climate change policies. Implications for the United States as a whole, the U.S. energy sector, the U.S. economy, businesses and consumers, and world economies are considered. Impact assessments are performed of U.S. carbon emissions, carbon taxes, and carbon restrictions by comparing estimates from various organizations. The following conclusions were made from the economic studies: (1) the economic cost of carbon abatement is expensive; (2) the cost of unilateral action is very expensive with little quantifiable evidence that global emissions are reduced; (3) multilateral actions of developed countriesmore » are also very expensive, but there is quantifiable evidence of global emissions reductions; and (4) global actions have only been theoretically addressed. Paralleling these findings, the energy analyses show that the U.S. is technologically unprepared to give up fossil fuels. As a result: (1) carbon is not stabilized without a high tax, (2) stabilization of carbon is elusive, (3) technology is the only long-term answer, and (4) targeted programs may be appropriate to force technology development. 8 tabs.« less
Villanueva, Josep; Villegas, Virtudes; Querol, Enrique; Avilés, Francesc X; Serrano, Luis
2002-09-01
In the post-genomic era, several projects focused on the massive experimental resolution of the three-dimensional structures of all the proteins of different organisms have been initiated. Simultaneously, significant progress has been made in the ab initio prediction of protein three-dimensional structure. One of the keys to the success of such a prediction is the use of local information (i.e. secondary structure). Here we describe a new limited proteolysis methodology, based on the use of unspecific exoproteases coupled with matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS), to map quickly secondary structure elements of a protein from both ends, the N- and C-termini. We show that the proteolytic patterns (mass spectra series) obtained can be interpreted in the light of the conformation and local stability of the analyzed proteins, a direct correlation being observed between the predicted and the experimentally derived protein secondary structure. Further, this methodology can be easily applied to check rapidly the folding state of a protein and characterize mutational effects on protein conformation and stability. Moreover, given global stability information, this methodology allows one to locate the protein regions of increased or decreased conformational stability. All of this can be done with a small fraction of the amount of protein required by most of the other methods for conformational analysis. Thus limited exoproteolysis, together with MALDI-TOF MS, can be a useful tool to achieve quickly the elucidation of protein structure and stability. Copyright 2002 John Wiley & Sons, Ltd.
Three-axis stabilization of spacecraft using parameter-independent nonlinear quaternion feedback
NASA Technical Reports Server (NTRS)
Joshi, Suresh M.; Kelkar, Atul G.
1994-01-01
This paper considers the problem of rigid spacecraft. A nonlinear control law which uses the feedback of the unit quaternion and the measured angular velocities is proposed and is shown to provide global asymptotic stability. The control law does not require the knowledge of the system parameters, and is therefore robust to modeling errors. The significance of the control law is that it can be used for large-angle maneuvers with guaranteed stability.
The Impact on Strategic Stability of Ballistic Missile Defense in Eastern Europe
2009-06-12
how did we get to this point? And what does it mean for strategic stability? Is there even still such a thing in a post-Cold War and post-Anti...Despite these radical changes to global security since the end of the Cold War, very few examinations of exactly what strategic stability means ...examining the historical definition of the phrase and researching the various perturbations that have resulted from changing national nuclear capabilities
NASA Astrophysics Data System (ADS)
Yu, Fei; Hui, Mei; Zhao, Yue-jin
2009-08-01
The image block matching algorithm based on motion vectors of correlative pixels in oblique direction is presented for digital image stabilization. The digital image stabilization is a new generation of image stabilization technique which can obtains the information of relative motion among frames of dynamic image sequences by the method of digital image processing. In this method the matching parameters are calculated from the vectors projected in the oblique direction. The matching parameters based on the vectors contain the information of vectors in transverse and vertical direction in the image blocks at the same time. So the better matching information can be obtained after making correlative operation in the oblique direction. And an iterative weighted least square method is used to eliminate the error of block matching. The weights are related with the pixels' rotational angle. The center of rotation and the global emotion estimation of the shaking image can be obtained by the weighted least square from the estimation of each block chosen evenly from the image. Then, the shaking image can be stabilized with the center of rotation and the global emotion estimation. Also, the algorithm can run at real time by the method of simulated annealing in searching method of block matching. An image processing system based on DSP was used to exam this algorithm. The core processor in the DSP system is TMS320C6416 of TI, and the CCD camera with definition of 720×576 pixels was chosen as the input video signal. Experimental results show that the algorithm can be performed at the real time processing system and have an accurate matching precision.
Improvement of global and regional mean sea level derived from satellite altimetry multi missions
NASA Astrophysics Data System (ADS)
Ablain, M.; Faugere, Y.; Larnicol, G.; Picot, N.; Cazenave, A.; Benveniste, J.
2012-04-01
With the satellite altimetry missions, the global mean sea level (GMSL) has been calculated on a continual basis since January 1993. 'Verification' phases, during which the satellites follow each other in close succession (Topex/Poseidon--Jason-1, then Jason-1--Jason-2), help to link up these different missions by precisely determining any bias between them. Envisat, ERS-1 and ERS-2 are also used, after being adjusted on these reference missions, in order to compute Mean Sea Level at high latitudes (higher than 66°N and S), and also to improve spatial resolution by combining all these missions together. The global mean sea level (MSL) deduced from TOPEX/Poseidon, Jason-1 and Jason-2 provide a global rate of 3.2 mm from 1993 to 2010 applying the post glacial rebound (MSL aviso website http://www.jason.oceanobs.com/msl). Besides, the regional sea level trends bring out an inhomogeneous repartition of the ocean elevation with local MSL slopes ranging from + 8 mm/yr to - 8 mm/year. A study published in 2009 [Ablain et al., 2009] has shown that the global MSL trend unceratainty was estimated at +/-0.6 mm/year with a confidence interval of 90%. The main sources of errors at global and regional scales are due to the orbit calculation and the wet troposphere correction. But others sea-level components have also a significant impact on the long-term stability of MSL as for instance the stability of instrumental parameters and the atmospheric corrections. Thanks to recent studies performed in the frame of the SALP project (supported by CNES) and Sea-level Climate Change Initiative project (supported by ESA), strong improvements have been provided for the estimation of the global and regional MSL trends. In this paper, we propose to describe them; they concern the orbit calculation thanks to new gravity fields, the atmospheric corrections thanks to ERA-interim reanalyses, the wet troposphere corrections thanks to the stability improvement, and also empirical corrections allowing us to link regional time series together better. These improvements are described at global and regional scale for all the altimetry missions.
Bifurcations and degenerate periodic points in a three dimensional chaotic fluid flow
DOE Office of Scientific and Technical Information (OSTI.GOV)
Smith, L. D., E-mail: lachlan.smith@monash.edu; CSIRO Mineral Resources, Clayton, Victoria 3800; Rudman, M.
2016-05-15
Analysis of the periodic points of a conservative periodic dynamical system uncovers the basic kinematic structure of the transport dynamics and identifies regions of local stability or chaos. While elliptic and hyperbolic points typically govern such behaviour in 3D systems, degenerate (parabolic) points also play an important role. These points represent a bifurcation in local stability and Lagrangian topology. In this study, we consider the ramifications of the two types of degenerate periodic points that occur in a model 3D fluid flow. (1) Period-tripling bifurcations occur when the local rotation angle associated with elliptic points is reversed, creating a reversalmore » in the orientation of associated Lagrangian structures. Even though a single unstable point is created, the bifurcation in local stability has a large influence on local transport and the global arrangement of manifolds as the unstable degenerate point has three stable and three unstable directions, similar to hyperbolic points, and occurs at the intersection of three hyperbolic periodic lines. The presence of period-tripling bifurcation points indicates regions of both chaos and confinement, with the extent of each depending on the nature of the associated manifold intersections. (2) The second type of bifurcation occurs when periodic lines become tangent to local or global invariant surfaces. This bifurcation creates both saddle–centre bifurcations which can create both chaotic and stable regions, and period-doubling bifurcations which are a common route to chaos in 2D systems. We provide conditions for the occurrence of these tangent bifurcations in 3D conservative systems, as well as constraints on the possible types of tangent bifurcation that can occur based on topological considerations.« less
NASA Astrophysics Data System (ADS)
Tshibangu, Jean-Pierre; Deloge, K. Pierre-Alexandre; Deschamps, Benoît; Coudyzer, Christophe
The Tournais region is characterised by famous outcrops of carboniferous limestone which is mined out for cement and raw material production. The four main quarries found in the Region, i.e. Gaurain-Ramecroix, Milieu, Antoing and Lemay; are owned by the three main cement producers in Belgium: Italcimenti, Holcim and CBR. The global production of limestone is about 20 millions tons per year, giving big pits with depths up to 150 m. With the growth of the pits, the quarries are approaching each other leading to the problem of managing the reserves contained in the separating walls and their mechanical stability. The limestone deposit is composed of different seams having varying thickness, chemical com- position and even mechanical properties. The deposit has an overall horizontal dip and is intersected by two main sets of discontinuities with a spacing of about 10 m or less. It is also crossed by a set of east to west faults but the quarries are implanted in the in between areas, so to not be crossed by these faults. The layers and specially the shallow ones are characterised by a typical karstic weathering giving open or filled cavities. This paper presents the global work quarried out in order to study the stability of the Lemays quarry. First a description of the orientation and spacing of discontinuities is presented, and an attempt made to correlate to the development of weathering. Mechanical laboratory tests have been performed and a qualification of the rock mass assessed. A coupled approach is then presented using a mining planning analysis and mechanical simulation (i.e. Finite Element method).
Global stability and tumor clearance conditions for a cancer chemotherapy system
NASA Astrophysics Data System (ADS)
Valle, Paul A.; Starkov, Konstantin E.; Coria, Luis N.
2016-11-01
In this paper we study the global dynamics of a cancer chemotherapy system presented by de Pillis et al. (2007). This mathematical model describes the interaction between tumor cells, effector-immune cells, circulating lymphocytes and chemotherapy treatment. By applying the localization method of compact invariant sets, we find lower and upper bounds for these three cells populations. Further, we define a bounded domain in R+,04 where all compact invariant sets of the system are located and provide conditions under which this domain is positively invariant. We apply LaSalle's invariance principle and one result concerning two-dimensional competitive systems in order to derive sufficient conditions for tumor clearance and global asymptotic stability of the tumor-free equilibrium point. These conditions are computed by using bounds of the localization domain and they are given in terms of the chemotherapy treatment. Finally, we perform numerical simulations in order to illustrate our results.
The Potential and Flux Landscape Theory of Ecology
Zhang, Kun; Wang, Erkang; Wang, Jin
2014-01-01
The species in ecosystems are mutually interacting and self sustainable stable for a certain period. Stability and dynamics are crucial for understanding the structure and the function of ecosystems. We developed a potential and flux landscape theory of ecosystems to address these issues. We show that the driving force of the ecological dynamics can be decomposed to the gradient of the potential landscape and the curl probability flux measuring the degree of the breaking down of the detailed balance (due to in or out flow of the energy to the ecosystems). We found that the underlying intrinsic potential landscape is a global Lyapunov function monotonically going down in time and the topology of the landscape provides a quantitative measure for the global stability of the ecosystems. We also quantified the intrinsic energy, the entropy, the free energy and constructed the non-equilibrium thermodynamics for the ecosystems. We studied several typical and important ecological systems: the predation, competition, mutualism and a realistic lynx-snowshoe hare model. Single attractor, multiple attractors and limit cycle attractors emerge from these studies. We studied the stability and robustness of the ecosystems against the perturbations in parameters and the environmental fluctuations. We also found that the kinetic paths between the multiple attractors do not follow the gradient paths of the underlying landscape and are irreversible because of the non-zero flux. This theory provides a novel way for exploring the global stability, function and the robustness of ecosystems. PMID:24497975
Ren, Shanjing
In this paper, an SEIR epidemic model for an imperfect treatment disease with age-dependent latency and relapse is proposed. The model is well-suited to model tuberculosis. The basic reproduction number R0 is calculated. We obtain the global behavior of the model in terms of R0. If R0< 1, the disease-free equilibrium is globally asymptotically stable, whereas if R0>1, a Lyapunov functional is used to show that the endemic equilibrium is globally stable amongst solutions for which the disease is present.
Li, Chunhe; Wang, Jin
2013-01-01
Cellular reprogramming has been recently intensively studied experimentally. We developed a global potential landscape and kinetic path framework to explore a human stem cell developmental network composed of 52 genes. We uncovered the underlying landscape for the stem cell network with two basins of attractions representing stem and differentiated cell states, quantified and exhibited the high dimensional biological paths for the differentiation and reprogramming process, connecting the stem cell state and differentiated cell state. Both the landscape and non-equilibrium curl flux determine the dynamics of cell differentiation jointly. Flux leads the kinetic paths to be deviated from the steepest descent gradient path, and the corresponding differentiation and reprogramming paths are irreversible. Quantification of paths allows us to find out how the differentiation and reprogramming occur and which important states they go through. We show the developmental process proceeds as moving from the stem cell basin of attraction to the differentiation basin of attraction. The landscape topography characterized by the barrier heights and transition rates quantitatively determine the global stability and kinetic speed of cell fate decision process for development. Through the global sensitivity analysis, we provided some specific predictions for the effects of key genes and regulation connections on the cellular differentiation or reprogramming process. Key links from sensitivity analysis and biological paths can be used to guide the differentiation designs or reprogramming tactics. PMID:23935477
Middendorf, Jill M; Shortkroff, Sonya; Dugopolski, Caroline; Kennedy, Stephen; Siemiatkoski, Joseph; Bartell, Lena R; Cohen, Itai; Bonassar, Lawrence J
2017-11-07
Many studies have measured the global compressive properties of tissue engineered (TE) cartilage grown on porous scaffolds. Such scaffolds are known to exhibit strain softening due to local buckling under loading. As matrix is deposited onto these scaffolds, the global compressive properties increase. However the relationship between the amount and distribution of matrix in the scaffold and local buckling is unknown. To address this knowledge gap, we studied how local strain and construct buckling in human TE constructs changes over culture times and GAG content. Confocal elastography techniques and digital image correlation (DIC) were used to measure and record buckling modes and local strains. Receiver operating characteristic (ROC) curves were used to quantify construct buckling. The results from the ROC analysis were placed into Kaplan-Meier survival function curves to establish the probability that any point in a construct buckled. These analysis techniques revealed the presence of buckling at early time points, but bending at later time points. An inverse correlation was observed between the probability of buckling and the total GAG content of each construct. This data suggests that increased GAG content prevents the onset of construct buckling and improves the microscale compressive tissue properties. This increase in GAG deposition leads to enhanced global compressive properties by prevention of microscale buckling. Copyright © 2017 Elsevier Ltd. All rights reserved.
Carbon cycle confidence and uncertainty: Exploring variation among soil biogeochemical models
Wieder, William R.; Hartman, Melannie D.; Sulman, Benjamin N.; ...
2017-11-09
Emerging insights into factors responsible for soil organic matter stabilization and decomposition are being applied in a variety of contexts, but new tools are needed to facilitate the understanding, evaluation, and improvement of soil biogeochemical theory and models at regional to global scales. To isolate the effects of model structural uncertainty on the global distribution of soil carbon stocks and turnover times we developed a soil biogeochemical testbed that forces three different soil models with consistent climate and plant productivity inputs. The models tested here include a first-order, microbial implicit approach (CASA-CNP), and two recently developed microbially explicit models thatmore » can be run at global scales (MIMICS and CORPSE). When forced with common environmental drivers, the soil models generated similar estimates of initial soil carbon stocks (roughly 1,400 Pg C globally, 0–100 cm), but each model shows a different functional relationship between mean annual temperature and inferred turnover times. Subsequently, the models made divergent projections about the fate of these soil carbon stocks over the 20th century, with models either gaining or losing over 20 Pg C globally between 1901 and 2010. Single-forcing experiments with changed inputs, tem- perature, and moisture suggest that uncertainty associated with freeze-thaw processes as well as soil textural effects on soil carbon stabilization were larger than direct temper- ature uncertainties among models. Finally, the models generated distinct projections about the timing and magnitude of seasonal heterotrophic respiration rates, again reflecting structural uncertainties that were related to environmental sensitivities and assumptions about physicochemical stabilization of soil organic matter. Here, by providing a computationally tractable and numerically consistent framework to evaluate models we aim to better understand uncertainties among models and generate insights about fac- tors regulating the turnover of soil organic matter.« less
Carbon cycle confidence and uncertainty: Exploring variation among soil biogeochemical models
DOE Office of Scientific and Technical Information (OSTI.GOV)
Wieder, William R.; Hartman, Melannie D.; Sulman, Benjamin N.
Emerging insights into factors responsible for soil organic matter stabilization and decomposition are being applied in a variety of contexts, but new tools are needed to facilitate the understanding, evaluation, and improvement of soil biogeochemical theory and models at regional to global scales. To isolate the effects of model structural uncertainty on the global distribution of soil carbon stocks and turnover times we developed a soil biogeochemical testbed that forces three different soil models with consistent climate and plant productivity inputs. The models tested here include a first-order, microbial implicit approach (CASA-CNP), and two recently developed microbially explicit models thatmore » can be run at global scales (MIMICS and CORPSE). When forced with common environmental drivers, the soil models generated similar estimates of initial soil carbon stocks (roughly 1,400 Pg C globally, 0–100 cm), but each model shows a different functional relationship between mean annual temperature and inferred turnover times. Subsequently, the models made divergent projections about the fate of these soil carbon stocks over the 20th century, with models either gaining or losing over 20 Pg C globally between 1901 and 2010. Single-forcing experiments with changed inputs, tem- perature, and moisture suggest that uncertainty associated with freeze-thaw processes as well as soil textural effects on soil carbon stabilization were larger than direct temper- ature uncertainties among models. Finally, the models generated distinct projections about the timing and magnitude of seasonal heterotrophic respiration rates, again reflecting structural uncertainties that were related to environmental sensitivities and assumptions about physicochemical stabilization of soil organic matter. Here, by providing a computationally tractable and numerically consistent framework to evaluate models we aim to better understand uncertainties among models and generate insights about fac- tors regulating the turnover of soil organic matter.« less
NASA Astrophysics Data System (ADS)
Hutt, Axel; Longtin, Andre; Schimansky-Geier, Lutz
2008-05-01
This work studies the spatio-temporal dynamics of a generic integral-differential equation subject to additive random fluctuations. It introduces a combination of the stochastic center manifold approach for stochastic differential equations and the adiabatic elimination for Fokker-Planck equations, and studies analytically the systems’ stability near Turing bifurcations. In addition two types of fluctuation are studied, namely fluctuations uncorrelated in space and time, and global fluctuations, which are constant in space but uncorrelated in time. We show that the global fluctuations shift the Turing bifurcation threshold. This shift is proportional to the fluctuation variance. Applications to a neural field equation and the Swift-Hohenberg equation reveal the shift of the bifurcation to larger control parameters, which represents a stabilization of the system. All analytical results are confirmed by numerical simulations of the occurring mode equations and the full stochastic integral-differential equation. To gain some insight into experimental manifestations, the sum of uncorrelated and global additive fluctuations is studied numerically and the analytical results on global fluctuations are confirmed qualitatively.
Tsuboi, Kazuya; Yamamoto, Hiroshi
2012-09-01
Fabry disease is a rare, X-linked, inherited lysosomal storage disorder that can be treated with the enzymes agalsidase alfa (Replagal) and agalsidase beta (Fabrazyme). Currently, there is a global shortage of agalsidase beta, and this has increased global demand for agalsidase alfa. We assess the feasibility of switching patients on agalsidase beta treatment to agalsidase alfa instead. This analysis is part of an ongoing observational study involving 11 patients with Fabry disease in whom the treatment was switched from agalsidase beta (1 mg/kg every other week) to agalsidase alfa (0.2 mg/kg every other week). Data were collected for a minimum of 36 months: 24 months before and 12 months after the switch. Serial data were evaluated with respect to renal function, cardiac mass, pain, quality of life, and tolerability/safety. Indexes of renal function (estimated glomerular filtration rate) and cardiac mass (left-ventricular mass index), pain (Brief Pain Inventory), and quality of life (EuroQoL-Dimensions) clearly showed that, in patients switched to agalsidase alfa, Fabry disease stabilized during the 12 months of follow-up. Despite the limitations of this preliminary observational study, it was found that all the patients maintained disease stability when treated with agalsidase alfa, as evidenced by estimated glomerular filtration rate, left-ventricular mass index, pain scores, and quality-of-life indexes, throughout 12 months of follow-up.
Tsuboi, Kazuya; Yamamoto, Hiroshi
2012-09-01
Fabry disease is a rare, X-linked, inherited lysosomal storage disorder that can be treated with the enzymes agalsidasealfa (Replagal) and agalsidase beta (Fabrazyme). Currently, there is a global shortage of agalsidase beta, and this has increased global demand for agalsidase alfa. We assess the feasibility of switching patients on agalsidase beta treatment to agalsidase alfa instead. This analysis is part of an ongoing observational study involving 11 patients with Fabry disease in whom the treatment was switched from agalsidase beta (1 mg/kg every other week) to agalsidase alfa (0.2 mg/kg every other week). Data were collected for a minimum of 36 months: 24 months before and 12 months after the switch. Serial data were evaluated with respect to renal function, cardiac mass, pain, quality of life, and tolerability/safety. Indexes of renal function (estimated glomerular filtration rate) and cardiac mass (left-ventricular mass index), pain (Brief Pain Inventory), and quality of life (EuroQoL-Dimensions) clearly showed that, in patients switched to agalsidase alfa, Fabry disease stabilized during the 12 months of follow-up. Despite the limitations of this preliminary observational study, it was found that all the patients maintained disease stability when treated with agalsidase alfa, as evidenced by estimated glomerular filtration rate, left-ventricular mass index,pain scores, and quality-of-life indexes, throughout 12 months of follow-up.
The GGOS Global Space Geodesy Network and its Evolution
NASA Astrophysics Data System (ADS)
Pearlman, M. R.; Pavlis, E. C.; Ma, C.; Noll, C. E.; Neilan, R. E.; Stowers, D. A.; Wetzel, S.
2013-12-01
The improvements in the reference frame and other space geodesy data products spelled out in the GGOS 2020 plan will evolve over time as new space geodesy sites enhance the global distribution of the network and new technologies are implemented at the sites thus enabling improved data processing and analysis. The goal of 30 globally distributed core sites with VLBI, SLR, GNSS and DORIS (where available) will take time to materialize. Co-location sites with less than the full core complement will continue to play a very important role in filling out the network while it is evolving and even after full implementation. GGOS through its Call for Participation, bi-lateral and multi-lateral discussions and work through the IAG Services has been encouraging current groups to upgrade and new groups to join the activity. Simulations examine the projected accuracy and stability of the network that would exist in five- and ten-years time, were the proposed expansion to fully materialize by then. Over the last year additional sites have joined the GGOS network, and ground techniques have continued to make progress in new technology systems. This talk will give an update on the current expansion of the global network and the projection for the network configuration that we forecast over the next 10 years.
Milfont, Taciano L
2012-06-01
If the long-term goal of limiting warming to less than 2°C is to be achieved, rapid and sustained reductions of greenhouse gas emissions are required. These reductions will demand political leadership and widespread public support for action on global warming and climate change. Public knowledge, level of concern, and perceived personal efficacy, in positively affecting these issues are key variables in understanding public support for mitigation action. Previous research has documented some contradictory associations between knowledge, personal efficacy, and concern about global warming and climate change, but these cross-sectional findings limit inferences about temporal stability and direction of influence. This study examines the relationships between these three variables over a one-year period and three waves with national data from New Zealand. Results showed a positive association between the variables, and the pattern of findings was stable and consistent across the three data points. More importantly, results indicate that concern mediates the influence of knowledge on personal efficacy. Knowing more about global warming and climate change increases overall concern about the risks of these issues, and this increased concern leads to greater perceived efficacy and responsibility to help solving them. Implications for risk communication are discussed. © 2012 Society for Risk Analysis.
The Causes and Dynamics of Conflict in Sub-Saharan Africa
2009-05-10
economic stability gained from two trends: the spread of constitutional democracy and economic globalization. Two major occurrences, colonialism and the Cold War, prevented the Sub-Saharan states from following these two trends. The disruption in sovereignty caused by colonialism, which was then followed by hastily formed governments during the Cold War, spawned conditions of corruption, scarcity, and violent competition. These conditions make it difficult for African states to achieve lasting stability and advance economically. As a result, any stability gained is often
Huang, Tingwen; Li, Chuandong; Duan, Shukai; Starzyk, Janusz A
2012-06-01
This paper focuses on the hybrid effects of parameter uncertainty, stochastic perturbation, and impulses on global stability of delayed neural networks. By using the Ito formula, Lyapunov function, and Halanay inequality, we established several mean-square stability criteria from which we can estimate the feasible bounds of impulses, provided that parameter uncertainty and stochastic perturbations are well-constrained. Moreover, the present method can also be applied to general differential systems with stochastic perturbation and impulses.
A summary of impacts of wind power integration on power system small-signal stability
NASA Astrophysics Data System (ADS)
Yan, Lei; Wang, Kewen
2017-05-01
Wind power has been increasingly integrated into power systems over the last few decades because of the global energy crisis and the pressure on environmental protection, and the stability of the system connected with wind power is becoming more prominent. This paper summaries the research status, achievements as well as deficiencies of the research on the impact of wind power integration on power system small-signal stability. In the end, the further research needed are discussed.
Stability for a class of difference equations
NASA Astrophysics Data System (ADS)
Muroya, Yoshiaki; Ishiwata, Emiko
2009-06-01
We consider the following non-autonomous and nonlinear difference equations with unbounded delays: where 0
ERIC Educational Resources Information Center
Torre, Kjerstin; Balasubramaniam, Ramesh
2011-01-01
We address the complex relationship between the stability, variability, and adaptability of psychological systems by decomposing the global variance of serial performance into two independent parts: the local variance (LV) and the serial correlation structure. For two time series with equal LV, the presence of persistent long-range correlations…
NASA Astrophysics Data System (ADS)
Tokatli, A.; Ucun, F.; Sütçü, K.; Osmanoğlu, Y. E.; Osmanoğlu, Ş.
2018-02-01
In this study the conformational behavior of cycloheximide in the gas and solution (CHCl3) phases has theoretically been investigated by spectroscopic and quantum chemical properties using density functional theory (wB97X-D) method with 6-31++G(d,p) basis set, for the first time. The calculated IR results reveal that in the ground state the molecule exits as a mixture of the chair and twist-boat conformers in the gas phase, while the calculated NMR results reveal that it only exits as the chair conformer in the solution phase. In order to obtain the contributions coming from intramolecular interactions to the stability of the conformers in the gas and solution phases, the quantum theory of atoms in molecules (QTAIM), noncovalent interactions (NCI) method, and natural bond orbital analysis (NBO) have been employed. The QTAIM and NCI methods indicated that by intramolecular interactions with bond critical point (BCP) the twist-boat conformer is more stabilized than the chair conformer, while by steric interactions it is more destabilized. Considering that these interactions balance each other, the stabilities of the conformers are understood to be dictated by the van der Waals interactions. The NBO analyses show that the hyperconjugative and steric effects play an important role in the stabilization in the gas and solution phases. Furthermore, to get a better understanding of the chemical behavior of this important antibiotic drug we have evaluated and, commented the global and local reactivity descriptors of the both conformers. Finally, the EPR analysis of γ-irradiated cycloheximide has been done. The comparison of the experimental and calculated data have showed the inducement of a radical structure of (CH2)2ĊCH2 in the molecule. The experimental EPR spectrum has also confirmed that the molecule simultaneously exists in the chair and twist-boat conformers in the solid phase.
Stability Of Oscillatory Rotating-Disk Boundary Layers
NASA Astrophysics Data System (ADS)
Morgan, Scott; Davies, Christopher
2017-11-01
The rotating disk boundary layer has long been considered as an archetypal model for studying the stability of three-dimensional boundary-layer flows. It is one of the few truly three-dimensional configurations for which there is an exact similarity solution of the Navier-Stokes equations. Due to a crossflow inflexion point instability, the investigation of strategies for controlling the behaviour of disturbances that develop in the rotating disk flow may prove to be helpful for the identification and assessment of aerodynamical technologies that have the potential to maintain laminar flow over swept wings. We will consider the changes in the stability behaviour which arise when the base-flow is altered by imposing a periodic modulation in the rotation rate of the disk surface. Following similar work by Thomas et al., preliminary results indicate that this modification can lead to significant stabilising effects. Current work encompasses linearised DNS, complemented by a local in time analysis made possible by imposing an artificial frozen flow approximation. This is deployed together with a more exact global treatment based upon Floquet theory, which avoids the need for any simplification of the temporal dependency of the base-flow.
Wave energy analysis based on simulation wave data in the China Sea
NASA Astrophysics Data System (ADS)
Gao, Zhan-sheng; Qian, Yu-hao; Sui, Yu-wei; Chen, Xuan; Zhang, Da
2018-05-01
In the current world, where human beings are severely plagued by environmental problems and energy crisis, the full and reasonable utilization of marine new energy resources will contribute to alleviating the energy crisis, contributing to global energy-saving, emission reduction and environmental protection, thus to promote sustainable development. In this study, we firstly simulated a 10-year (1991-2000) 6-hourly wave data of the China Sea, by using the Simulating WAves Nearshore (SWAN) wave model nested with WAVEWATCH-III (WW3) wave model forced with Cross-Calibrated, Multi-Platform (CCMP) wind data. Considering the value size and stability of the wave energy density, we analyzed the overall characteristics of the China Sea wave energy with using the simulation wave data. Results show that: (1) The wave energy density in January and October is distinctly higher than that in April and July. The large center of annual average Wave energy density is located in the north of the South China Sea (of about 12-16 kW/m). (2) Synthetically considering the value size and stability of the wave energy density and stability, the energy-rich area is found to be located in the north region of the South China Sea.
NASA Astrophysics Data System (ADS)
Llewellyn-Jones, D. T.; Corlett, G. K.; Remedios, J. J.; Noyes, E. J.; Good, S. A.
2007-05-01
Sea-Surface Temperature (SST) is an important indicator of global change, designated by GCOS as an essential Climate Variable (ECV). The detection of trends in Global SST requires rigorous measurements that are not only global, but also highly accurate and consistent. Space instruments can provide the means to achieve these required attributes in SST data. This paper presents an analysis of 15 years of SST data from two independent data sets, generated from the (A)ATSR and AVHRR series of sensors respectively. The analyses reveal trends of increasing global temperature between 0.13°C to 0.18 °C, per decade, closely matching that expected from some current predictions. A high level of consistency in the results from the two independent observing systems is seen, which gives increased confidence in data from both systems and also enables comparative analyses of the accuracy and stability of both data sets to be carried out. The conclusion is that these satellite SST data-sets provide important means to quantify and explore the processes of climate change. An analysis based upon singular value decomposition, allowing the removal of gross transitory disturbances, notably the El Niño, in order to examine regional areas of change other than the tropical Pacific, is also presented. Interestingly, although El Niño events clearly affect SST globally, they are found to have a non- significant (within error) effect on the calculated trends, which changed by only 0.01 K/decade when the pattern of El Niño and the associated variations was removed from the SST record. Although similar global trends were calculated for these two independent data sets, larger regional differences are noted. Evidence of decreased temperatures after the eruption of Mount Pinatubo in 1991 was also observed. The methodology demonstrated here can be applied to other data-sets, which cover long time-series observations of geophysical observations in order to characterise long-term change.
Are all temperate lakes eutrophying in a warmer world?
NASA Astrophysics Data System (ADS)
Paltsev, A.; Creed, I. F.
2017-12-01
Freshwater lakes are at risk of eutrophication due to climate change and intensification of human activities on the planet. In relatively undisturbed areas of the temperate forest biome, lakes are "sentinels" of the effects of rising temperatures. We hypothesise that rising temperatures are driving a shift from nutrient-poor oligotrophic states to nutrient-rich eutrophic states. To test this hypothesis, we examined a time series of satellite based chlorophyll-a (a proxy of algal biomass) of 12,000+ lakes over 30 years in the Canadian portion of the Laurentian Great Lakes basin. From the time series, non-stationary trends (detected by Mann-Kendall analysis) and stationary cycles (revealed through Morlet wavelet analysis) were removed, and the standard deviation (SD) of the remaining residuals was used as an indicator of lake stability. Four classes of lake stability were identified: (1) stable (SD is consistently low); (2) destabilizing (SD increases over time); (3) unstable (SD is consistently high); and (4) stabilizing lakes (SD decreases over time). Stable lakes were either oligotrophic or eutrophic indicating the presence of two stable states in the region. Destabilizing lakes were shifting from oligotrophic to lakes with a higher trophic status (indicating eutrophication), unstable lakes were mostly mesotrophic, and stabilizing lakes were shifting from eutrophic to the lakes with lower trophic status (indicating oligotrophication). In contrast to common expectations, while many lakes (2142) were shifting from oligotrophic to eutrophic states, more lakes (3199) were showing the opposite trend and shifting from eutrophic to oligotrophic states. This finding reveals a complexity of lake responses to rising temperatures and the need to improve understanding of why some lakes shift while others do not. Future work is focused on exploring the interactive effects of global, regional, and local drivers of lake trophic states.
Thermal Rayleigh-Marangoni convection in a three-layer liquid-metal-battery model.
Köllner, Thomas; Boeck, Thomas; Schumacher, Jörg
2017-05-01
The combined effects of buoyancy-driven Rayleigh-Bénard convection (RC) and surface tension-driven Marangoni convection (MC) are studied in a triple-layer configuration which serves as a simplified model for a liquid metal battery (LMB). The three-layer model consists of a liquid metal alloy cathode, a molten salt separation layer, and a liquid metal anode at the top. Convection is triggered by the temperature gradient between the hot electrolyte and the colder electrodes, which is a consequence of the release of resistive heat during operation. We present a linear stability analysis of the state of pure thermal conduction in combination with three-dimensional direct numerical simulations of the nonlinear turbulent evolution on the basis of a pseudospectral method. Five different modes of convection are identified in the configuration, which are partly coupled to each other: RC in the upper electrode, RC with internal heating in the molten salt layer, and MC at both interfaces between molten salt and electrode as well as anticonvection in the middle layer and lower electrode. The linear stability analysis confirms that the additional Marangoni effect in the present setup increases the growth rates of the linearly unstable modes, i.e., Marangoni and Rayleigh-Bénard instability act together in the molten salt layer. The critical Grashof and Marangoni numbers decrease with increasing middle layer thickness. The calculated thresholds for the onset of convection are found for realistic current densities of laboratory-sized LMBs. The global turbulent heat transfer follows scaling predictions for internally heated RC. The global turbulent momentum transfer is comparable with turbulent convection in the classical Rayleigh-Bénard case. In summary, our studies show that incorporating Marangoni effects generates smaller flow structures, alters the velocity magnitudes, and enhances the turbulent heat transfer across the triple-layer configuration.
Thermal Rayleigh-Marangoni convection in a three-layer liquid-metal-battery model
NASA Astrophysics Data System (ADS)
Köllner, Thomas; Boeck, Thomas; Schumacher, Jörg
2017-05-01
The combined effects of buoyancy-driven Rayleigh-Bénard convection (RC) and surface tension-driven Marangoni convection (MC) are studied in a triple-layer configuration which serves as a simplified model for a liquid metal battery (LMB). The three-layer model consists of a liquid metal alloy cathode, a molten salt separation layer, and a liquid metal anode at the top. Convection is triggered by the temperature gradient between the hot electrolyte and the colder electrodes, which is a consequence of the release of resistive heat during operation. We present a linear stability analysis of the state of pure thermal conduction in combination with three-dimensional direct numerical simulations of the nonlinear turbulent evolution on the basis of a pseudospectral method. Five different modes of convection are identified in the configuration, which are partly coupled to each other: RC in the upper electrode, RC with internal heating in the molten salt layer, and MC at both interfaces between molten salt and electrode as well as anticonvection in the middle layer and lower electrode. The linear stability analysis confirms that the additional Marangoni effect in the present setup increases the growth rates of the linearly unstable modes, i.e., Marangoni and Rayleigh-Bénard instability act together in the molten salt layer. The critical Grashof and Marangoni numbers decrease with increasing middle layer thickness. The calculated thresholds for the onset of convection are found for realistic current densities of laboratory-sized LMBs. The global turbulent heat transfer follows scaling predictions for internally heated RC. The global turbulent momentum transfer is comparable with turbulent convection in the classical Rayleigh-Bénard case. In summary, our studies show that incorporating Marangoni effects generates smaller flow structures, alters the velocity magnitudes, and enhances the turbulent heat transfer across the triple-layer configuration.
Chieng, Norman; Cicerone, Marcus T.; Zhong, Qin; Liu, Ming; Pikal, Michael J.
2013-01-01
Amorphous HES/disaccharide (trehalose or sucrose) formulations, with and without added polyols (glycerol and sorbitol) and disaccharide formulations of human growth hormone (hGH), were prepared by freeze drying and characterized with particular interest in methodology for using high precision density measurements to evaluate free volume changes and a focus on comparisons between “free volume” changes obtained from analysis of density data, fast dynamics (local mobility), and PALS characterization of “free volume” hole size. Density measurements were performed using a helium gas pycnometer, and fast dynamics was characterized using incoherent neutron scattering spectrometer. Addition of sucrose and trehalose to hGH decreases free volume in the system with sucrose marginally more effective than trehalose, consistent with superior pharmaceutical stability of sucrose hGH formulations well below Tg relative to trehalose. We find that density data may be analyzed in terms of free volume changes by evaluation of volume changes on mixing and calculation of apparent specific volumes from the densities. Addition of sucrose to HES decreases free volume, but the effect of trehalose is not detectable above experimental error. Addition of sorbitol or glycerol to HES/trehalose base formulations appears to significantly decrease free volume, consistent with the positive impact of such additions on pharmaceutical stability (i.e., degradation) in the glassy state. Free volume changes, evaluated from density data, fast dynamics amplitude of local motion, and PALS hole size data generally are in qualitative agreement for the HES/disaccharide systems studied. All predict decreasing molecular mobility as disaccharides are added to HES. Global mobility as measured by enthalpy relaxation times, increases as disaccharides, particularly sucrose, are added to HES. PMID:23623797
VARS-TOOL: A Comprehensive, Efficient, and Robust Sensitivity Analysis Toolbox
NASA Astrophysics Data System (ADS)
Razavi, S.; Sheikholeslami, R.; Haghnegahdar, A.; Esfahbod, B.
2016-12-01
VARS-TOOL is an advanced sensitivity and uncertainty analysis toolbox, applicable to the full range of computer simulation models, including Earth and Environmental Systems Models (EESMs). The toolbox was developed originally around VARS (Variogram Analysis of Response Surfaces), which is a general framework for Global Sensitivity Analysis (GSA) that utilizes the variogram/covariogram concept to characterize the full spectrum of sensitivity-related information, thereby providing a comprehensive set of "global" sensitivity metrics with minimal computational cost. VARS-TOOL is unique in that, with a single sample set (set of simulation model runs), it generates simultaneously three philosophically different families of global sensitivity metrics, including (1) variogram-based metrics called IVARS (Integrated Variogram Across a Range of Scales - VARS approach), (2) variance-based total-order effects (Sobol approach), and (3) derivative-based elementary effects (Morris approach). VARS-TOOL is also enabled with two novel features; the first one being a sequential sampling algorithm, called Progressive Latin Hypercube Sampling (PLHS), which allows progressively increasing the sample size for GSA while maintaining the required sample distributional properties. The second feature is a "grouping strategy" that adaptively groups the model parameters based on their sensitivity or functioning to maximize the reliability of GSA results. These features in conjunction with bootstrapping enable the user to monitor the stability, robustness, and convergence of GSA with the increase in sample size for any given case study. VARS-TOOL has been shown to achieve robust and stable results within 1-2 orders of magnitude smaller sample sizes (fewer model runs) than alternative tools. VARS-TOOL, available in MATLAB and Python, is under continuous development and new capabilities and features are forthcoming.
NASA Astrophysics Data System (ADS)
Li, Kelin
2010-02-01
In this article, a class of impulsive bidirectional associative memory (BAM) fuzzy cellular neural networks (FCNNs) with time-varying delays is formulated and investigated. By employing delay differential inequality and M-matrix theory, some sufficient conditions ensuring the existence, uniqueness and global exponential stability of equilibrium point for impulsive BAM FCNNs with time-varying delays are obtained. In particular, a precise estimate of the exponential convergence rate is also provided, which depends on system parameters and impulsive perturbation intention. It is believed that these results are significant and useful for the design and applications of BAM FCNNs. An example is given to show the effectiveness of the results obtained here.
Lowes, Steve; Jersey, Jim; Shoup, Ronald; Garofolo, Fabio; Needham, Shane; Couerbe, Philippe; Lansing, Tim; Bhatti, Masood; Sheldon, Curtis; Hayes, Roger; Islam, Rafiq; Lin, Zhongping; Garofolo, Wei; Moussallie, Marc; Teixeira, Leonardo de Souza; Rocha, Thais; Jardieu, Paula; Truog, James; Lin, Jenny; Lundberg, Richard; Breau, Alan; Dilger, Carmen; Bouhajib, Mohammed; Levesque, Ann; Gagnon-Carignan, Sofi; Jenkins, Rand; Nicholson, Robert; Lin, Ming Hung; Karnik, Shane; DeMaio, William; Smith, Kirk; Cojocaru, Laura; Allen, Mike; Fatmi, Saadya; Sayyarpour, Farhad; Malone, Michele; Fang, Xinping
2012-04-01
The Global CRO Council for Bioanalysis (GCC) was formed in September 2010. Since then, the representatives of the member companies come together periodically to openly discuss bioanalysis and the regulatory challenges unique to the outsourcing industry. The 4th GCC Closed Forum brought together experts from bioanalytical CROs to share and discuss recent issues in regulated bioanalysis, such as the impact of coadministered drugs on stability, some differences between European Medicines Agency and US FDA bioanalytical guidance documents and lessons learned following recent Untitled Letters. Recent 483s and agency findings, as well as issues on method carryover, were also part of the topics discussed.
Uniform Persistence and Global Stability for a Brain Tumor and Immune System Interaction
NASA Astrophysics Data System (ADS)
Khajanchi, Subhas
This paper describes the synergistic interaction between the growth of malignant gliomas and the immune system interactions using a system of coupled ordinary differential equations (ODEs). The proposed mathematical model comprises the interaction of glioma cells, macrophages, activated Cytotoxic T-Lymphocytes (CTLs), the immunosuppressive factor TGF-β and the immuno-stimulatory factor IFN-γ. The dynamical behavior of the proposed system both analytically and numerically is investigated from the point of view of stability. By constructing Lyapunov functions, the global behavior of the glioma-free and the interior equilibrium point have been analyzed under some assumptions. Finally, we perform numerical simulations in order to illustrate our analytical findings by varying the system parameters.
Building toy models of proteins using coevolutionary information
NASA Astrophysics Data System (ADS)
Cheng, Ryan; Raghunathan, Mohit; Onuchic, Jose
2015-03-01
Recent developments in global statistical methodologies have advanced the analysis of large collections of protein sequences for coevolutionary information. Coevolution between amino acids in a protein arises from compensatory mutations that are needed to maintain the stability or function of a protein over the course of evolution. This gives rise to quantifiable correlations between amino acid positions within the multiple sequence alignment of a protein family. Here, we use Direct Coupling Analysis (DCA) to infer a Potts model Hamiltonian governing the correlated mutations in a protein family to obtain the sequence-dependent interaction energies of a toy protein model. We demonstrate that this methodology predicts residue-residue interaction energies that are consistent with experimental mutational changes in protein stabilities as well as other computational methodologies. Furthermore, we demonstrate with several examples that DCA could be used to construct a structure-based model that quantitatively agrees with experimental data on folding mechanisms. This work serves as a potential framework for generating models of proteins that are enriched by evolutionary data that can potentially be used to engineer key functional motions and interactions in protein systems. This research has been supported by the NSF INSPIRE award MCB-1241332 and by the CTBP sponsored by the NSF (Grant PHY-1427654).
Impacts of climate change on the global forest sector
Perez-Garcia, J.; Joyce, L.A.; McGuire, A.D.; Xiao, X.
2002-01-01
The path and magnitude of future anthropogenic emissions of carbon dioxide will likely influence changes in climate that may impact the global forest sector. These responses in the global forest sector may have implications for international efforts to stabilize the atmospheric concentration of carbon dioxide. This study takes a step toward including the role of global forest sector in integrated assessments of the global carbon cycle by linking global models of climate dynamics, ecosystem processes and forest economics to assess the potential responses of the global forest sector to different levels of greenhouse gas emissions. We utilize three climate scenarios and two economic scenarios to represent a range of greenhouse gas emissions and economic behavior. At the end of the analysis period (2040), the potential responses in regional forest growing stock simulated by the global ecosystem model range from decreases and increases for the low emissions climate scenario to increases in all regions for the high emissions climate scenario. The changes in vegetation are used to adjust timber supply in the softwood and hardwood sectors of the economic model. In general, the global changes in welfare are positive, but small across all scenarios. At the regional level, the changes in welfare can be large and either negative or positive. Markets and trade in forest products play important roles in whether a region realizes any gains associated with climate change. In general, regions with the lowest wood fiber production cost are able to expand harvests. Trade in forest products leads to lower prices elsewhere. The low-cost regions expand market shares and force higher-cost regions to decrease their harvests. Trade produces different economic gains and losses across the globe even though, globally, economic welfare increases. The results of this study indicate that assumptions within alternative climate scenarios and about trade in forest products are important factors that strongly influence the effects of climate change on the global forest sector.
NASA Astrophysics Data System (ADS)
Kubota, T.; Aditian, A.
2014-12-01
Deriving the analysis of rainfall data in various mountainous locations, increase in rainfall that is deemed to be induced by the global climate change is obvious in Kyushu district, western Japan. On this point of view, its long term impact on the forest slope stability is analyzed with field investigation and numerical simulation such as finite element method (FEM). On the other hand, the influence of earthquake such as cracks on the slope due to seismic vibration was also analyzed with FEM. In this case, the slope stability analysis to obtain the factor of safety "Fs" is conducted. Here, in case of the Fs > 1.0, the slope is stable. In addition, the slope stabilizing effect of the forest mainly due to the roots strength is evaluated on some unstable slopes. Simultaneously, a holistic estimation over landslide groups is conducted by comparing "Fs" on forest slopes with non- forest slopes. Therefore, the following conclusions are obtained: 1) Comparing the Fs without increased rainfall from the previous decade and the one with actual rainfall, the former case is 1.04 ~1.06 times more stable than the latter. 2) On the other hand, the forest slopes are estimated to be up to approximately 1.5 to 2.5 times more stable than the slope without forest. Therefore, the slope stabilizing effect by the forest is much higher than the increasing rainfall influence i.e. the climate change effect. These results imply that an appropriate forest existence is important under the climate change condition to prevent forest slope degradation. 3) Comparing with the destabilization of the slope by seismic activities (vibration) due to the reduction of soil strength and "cracks = slope deformation" (8~9 % to 30% reduction in Fs even after an earthquake of 490gal), the influence of the long term rainfall increase on slopes (such as 1% decrease in Fs) is relatively small in the study area.
Coping With Chaos: Promoting Democracy & Regional Stability in the Post-Counterinsurgency Era
1993-04-30
effort should be located in the reconstituted Narcotics and Crime bureau directly under the new Undersecretary of State for Global Issues primarily...Rights at DoD and the Global Issues unit at the NSC. The existence of this interconnected bureaucratic architecture will help all three agencies...State where the yawning gap between security assistance and " global issues " needs to bridged. The policy planners need to wicker all of this into a new
Yasuda, Akihito; Onuki, Yoshinori; Obata, Yasuko; Yamamoto, Rie; Takayama, Kozo
2013-01-01
The "quality by design" concept in pharmaceutical formulation development requires the establishment of a science-based rationale and a design space. We integrated thin-plate spline (TPS) interpolation and Kohonen's self-organizing map (SOM) to visualize the latent structure underlying causal factors and pharmaceutical responses. As a model pharmaceutical product, theophylline tablets were prepared based on a standard formulation. The tensile strength, disintegration time, and stability of these variables were measured as response variables. These responses were predicted quantitatively based on nonlinear TPS. A large amount of data on these tablets was generated and classified into several clusters using an SOM. The experimental values of the responses were predicted with high accuracy, and the data generated for the tablets were classified into several distinct clusters. The SOM feature map allowed us to analyze the global and local correlations between causal factors and tablet characteristics. The results of this study suggest that increasing the proportion of microcrystalline cellulose (MCC) improved the tensile strength and the stability of tensile strength of these theophylline tablets. In addition, the proportion of MCC has an optimum value for disintegration time and stability of disintegration. Increasing the proportion of magnesium stearate extended disintegration time. Increasing the compression force improved tensile strength, but degraded the stability of disintegration. This technique provides a better understanding of the relationships between causal factors and pharmaceutical responses in theophylline tablet formulations.
Chiang, Kai-Wei; Liao, Jhen-Kai; Tsai, Guang-Je; Chang, Hsiu-Wen
2015-01-01
Hardware sensors embedded in a smartphone allow the device to become an excellent mobile navigator. A smartphone is ideal for this task because its great international popularity has led to increased phone power and since most of the necessary infrastructure is already in place. However, using a smartphone for indoor pedestrian navigation can be problematic due to the low accuracy of sensors, imprecise predictability of pedestrian motion, and inaccessibility of the Global Navigation Satellite System (GNSS) in some indoor environments. Pedestrian Dead Reckoning (PDR) is one of the most common technologies used for pedestrian navigation, but in its present form, various errors tend to accumulate. This study introduces a fuzzy decision tree (FDT) aided by map information to improve the accuracy and stability of PDR with less dependency on infrastructure. First, the map is quickly surveyed by the Indoor Mobile Mapping System (IMMS). Next, Bluetooth beacons are implemented to enable the initializing of any position. Finally, map-aided FDT can estimate navigation solutions in real time. The experiments were conducted in different fields using a variety of smartphones and users in order to verify stability. The contrast PDR system demonstrates low stability for each case without pre-calibration and post-processing, but the proposed low-complexity FDT algorithm shows good stability and accuracy under the same conditions. PMID:26729114
NASA Technical Reports Server (NTRS)
Babcock, P. S., IV
1986-01-01
Nonlinear system controller design based on the domain of attraction is presented. This is particularly suited to investigating Closed Ecological Life Support Systems (CELSS) models. In particular, the dynamic consequences of changes in the waste storage capacity and system mass, and how information is used for control in CELSS models are examined. The models' high dimensionality and nonlinear state equations make them difficult to analyze by any other technique. The domain of attraction is the region in initial conditions that tend toward an attractor and it is delineated by randomly selecting initial conditions from the region of state space being investigated. Error analysis is done by repeating the domain simulations with independent samples. A refinement of this region is the domain of performance which is the region of initial conditions meeting a performance criteria. In nonlinear systems, local stability does not insure stability over a larger region. The domain of attraction marks out this stability region; hence, it can be considered a measure of a nonlinear system's ability to recovery from state perturbations. Considering random perturbations, the minimum radius of the domain is a measure of the magnitude of perturbations for which recovery is guaranteed. Design of both linear and nonlinear controllers are shown. Three CELSS models, with 9 to 30 state variable, are presented. Measures of the domain of attraction are used to show the global behavior of these models under a variety of design and controller scenarios.
Effects of deterministic and random refuge in a prey-predator model with parasite infection.
Mukhopadhyay, B; Bhattacharyya, R
2012-09-01
Most natural ecosystem populations suffer from various infectious diseases and the resulting host-pathogen dynamics is dependent on host's characteristics. On the other hand, empirical evidences show that for most host pathogen systems, a part of the host population always forms a refuge. To study the role of refuge on the host-pathogen interaction, we study a predator-prey-pathogen model where the susceptible and the infected prey can undergo refugia of constant size to evade predator attack. The stability aspects of the model system is investigated from a local and global perspective. The study reveals that the refuge sizes for the susceptible and the infected prey are the key parameters that control possible predator extinction as well as species co-existence. Next we perform a global study of the model system using Lyapunov functions and show the existence of a global attractor. Finally we perform a stochastic extension of the basic model to study the phenomenon of random refuge arising from various intrinsic, habitat-related and environmental factors. The stochastic model is analyzed for exponential mean square stability. Numerical study of the stochastic model shows that increasing the refuge rates has a stabilizing effect on the stochastic dynamics. Copyright © 2012 Elsevier Inc. All rights reserved.
Asymptotic analysis of numerical wave propagation in finite difference equations
NASA Technical Reports Server (NTRS)
Giles, M.; Thompkins, W. T., Jr.
1983-01-01
An asymptotic technique is developed for analyzing the propagation and dissipation of wave-like solutions to finite difference equations. It is shown that for each fixed complex frequency there are usually several wave solutions with different wavenumbers and the slowly varying amplitude of each satisfies an asymptotic amplitude equation which includes the effects of smoothly varying coefficients in the finite difference equations. The local group velocity appears in this equation as the velocity of convection of the amplitude. Asymptotic boundary conditions coupling the amplitudes of the different wave solutions are also derived. A wavepacket theory is developed which predicts the motion, and interaction at boundaries, of wavepackets, wave-like disturbances of finite length. Comparison with numerical experiments demonstrates the success and limitations of the theory. Finally an asymptotic global stability analysis is developed.
Evolutionary technology adoption in an oligopoly market with forward-looking firms
NASA Astrophysics Data System (ADS)
Lamantia, F.; Radi, D.
2018-05-01
In this paper, we propose an evolutionary oligopoly game of technology adoption in a market with isoelastic demand and two possible (linear) production technologies. While one technology is characterized by lower marginal costs, the magnitude of fixed costs entails that a technology does not necessarily dominate the other. Firms are forward-looking as they assess the profitability of employing either technology according to the corresponding expected profits. The dynamics of the system is studied through a piecewise-smooth map, for which we present a local stability analysis of equilibria and show the occurrence of smooth and border collision bifurcations. Global analysis of the model is also presented to show the coexistence of attractors and its economic significance. This investigation reveals that firms can fail to learn to adopt the more efficient technology.
Evolutionary technology adoption in an oligopoly market with forward-looking firms.
Lamantia, F; Radi, D
2018-05-01
In this paper, we propose an evolutionary oligopoly game of technology adoption in a market with isoelastic demand and two possible (linear) production technologies. While one technology is characterized by lower marginal costs, the magnitude of fixed costs entails that a technology does not necessarily dominate the other. Firms are forward-looking as they assess the profitability of employing either technology according to the corresponding expected profits. The dynamics of the system is studied through a piecewise-smooth map, for which we present a local stability analysis of equilibria and show the occurrence of smooth and border collision bifurcations. Global analysis of the model is also presented to show the coexistence of attractors and its economic significance. This investigation reveals that firms can fail to learn to adopt the more efficient technology.
Conventional Prompt Global Strike: Valuable Military Option or Threat to Global Stability?
2005-09-01
The Strategic Rocket Forces, 1991-2002,” in Russian Military Reform : 1992- 2002, ed. Anne C. Aldis and Roger McDermott (Portland, OR: Frank Cass...Redefining the Threat and the War on Terrorism,” in Russian Military Reform 1992-2002, ed. Anne C. Aldis and Roger N. Mc Dermott (Portland, OR: Frank...
Watershed challenges for the 21st Century: A global perspective for mountainous terrain
Roy C. Sidle
2000-01-01
Three global challenges for watershed researchers in the 21st century are examined in this paper. These challenges are obtaining better assessments of terrain stability; understanding hydrologic responses at different watershed scales; and developing better methods for analyzing and assessing cumulative watershed effects. These topics are only a subset of the pressing...
Ecosystem soils influence the cycling of nutrients, movement and storage of water, and serve as an important global reservoir of carbon (C). The accumulation and storage of C in soils is a major factor in the global C cycle and is crucial for sustaining ecosystem health and func...
Soils influence the cycling of nutrients, movement and storage of water, and serve as an important global reservoir of carbon (C). The accumulation and storage of C in soils is a major factor in the global C cycle and is crucial for sustaining ecosystem health and function, yet ...
Structural and electronic properties for atomic clusters
NASA Astrophysics Data System (ADS)
Sun, Yan
We have studied the structural and electronic properties for different groups of atomic clusters by doing a global search on the potential energy surface using the Taboo Search in Descriptors Space (TSDS) method and calculating the energies with Kohn-Sham Density Functional Theory (KS-DFT). Our goal was to find the structural and electronic principles for predicting the structure and stability of clusters. For Ben (n = 3--20), we have found that the evolution of geometric and electronic properties with size reflects a change in the nature of the bonding from van der Waals to metallic and then bulk-like. The cluster sizes with extra stability agree well with the predictions of the jellium model. In the 4d series of transition metal (TM) clusters, as the d-type bonding becomes more important, the preferred geometric structure changes from icosahedral (Y, Zr), to distorted compact structures (Nb, Mo), and FCC or simple cubic crystal fragments (Tc, Ru, Rh) due to the localized nature of the d-type orbital. Analysis of relative isomer energies and their electronic density of states suggest that these clusters tend to follow a maximum hardness principle (MHP). For A4B12 clusters (A is divalent, B is monovalent), we found unusually large (on average 1.95 eV) HOMO-LUMO gap values. This shows the extra stability at an electronic closed shell (20 electrons) predicted by the jellium model. The importance of symmetry, closed electronic and ionic shells in stability is shown by the relative stability of homotops of Mg4Ag12 which also provides support for the hypothesis that clusters that satisfy more than one stability criterion ("double magic") should be particularly stable.
L.W. Ngatia; Y.P. Hsieh; D. Nemours; R. Fu; R.W. Taylor
2017-01-01
Phosphorus (P) eutrophication is a major pollution problem globally, with unprecedented amount of P emanating from agricultural sources. But little is known about the optimization of soil-biochar P sorption capacity. The study objective was to determine how biochar feedstocks and pyrolysis conditions influences carbon (C) thermal stability, C composition and pH and in...
NASA Technical Reports Server (NTRS)
Ryaciotaki-Boussalis, Helen A.; Wang, Shyh Jong
1989-01-01
The problem of vibration suppression in segmented reflector telescopes is considered. The decomposition of the structure into smaller components is discussed, and control laws for vibration suppression as well as conditions for stability at the local level are derived. These conditions and the properties of the interconnecting patterns are then utilized to obtain sufficient conditions for global stability.
Imitation dynamics of vaccine decision-making behaviours based on the game theory.
Yang, Junyuan; Martcheva, Maia; Chen, Yuming
2016-01-01
Based on game theory, we propose an age-structured model to investigate the imitation dynamics of vaccine uptake. We first obtain the existence and local stability of equilibria. We show that Hopf bifurcation can occur. We also establish the global stability of the boundary equilibria and persistence of the disease. The theoretical results are supported by numerical simulations.
Study of Second Stability for Global ITG Modes in MHD-stable Equilibria
NASA Astrophysics Data System (ADS)
Fivaz, Mathieu; Sauter, Olivier; Appert, Kurt; Tran, Trach-Minh; Vaclavik, Jan
1997-11-01
We study finite pressure effects on the Ion Temperature Gradient (ITG) instabilities; these modes are stabilized when the magnetic field gradient is reversed at high β [1]. This second stability regime for ITG modes is studied in details with a global linear gyrokinetic Particle-In-Cell code which takes the full toroidal MHD equilibrium data from the equilibrium solver CHEASE [2]. Both the trapped-ion and the toroidal ITG regimes are explored. In contrast to second stability for MHD ballooning modes, low magnetic shear and high values of the safety factor do not facilitate strongly the access to the second-stable ITG regime. The consequences for anomalous ion heat transport in tokamaks are explored. We use the results to find optimized configurations that are stable to ideal MHD modes for both the long (kink) and short (ballooning) wavelengths and where the ITG modes are stable or have very low growth rates; such configurations might present very low level of anomalous transport. [1] M. Fivaz, T.M. Tran, K. Appert, J. Vaclavik and S. E. Parker, Phys. Rev. Lett. 78, 1997, p. 3471 [2] H. Lütjens, A. Bondeson and O. Sauter, Comput. Phys. Commun. 97, 1996, p. 219
A new approach to stability and oscillations of constrained drops and capillary bridges
NASA Astrophysics Data System (ADS)
Fabre, David; Chireux, Veronique; Risso, Frederic; Tordjeman, Philippe
2014-11-01
Static equilibria of liquid inclusions under the effect of gravity and capillarity is a large class of situations which encompasses drops hanging from a ceiling or from a capillary, sessile drops, liquid bridges, etc... In such equilibria the surface shape is governed by the Yong-Laplace equation, which is usually solved in a local way using a ``shooting'' method. We introduce a new method which solves the Laplace-Young in a global way, using an iterative deformation of the shape towards the equilibrium shape. The method is easy to implement and versatile, and allows to prescribe constraints such as the volume of liquid, the angle of attachment, etc... We subsequently consider the issue of stability and oscillations of such configurations. Using finite elements and considering small-amplitude displacements of the surface with respect to the static configuration previously computed, we introduce a global stability approach which allows to predict the stability limits, the oscillation frequencies and the eigenmode shapes for quite general geometries. The approach will be illustrated and compared with experiments in two situations, namely a drop attached to a capilary and a liquid bridge resulting from the coalescence of two facing millimetric drops.
Islam, Rafiq; Briscoe, Chad; Bower, Joseph; Cape, Stephanie; Arnold, Mark; Hayes, Roger; Warren, Mark; Karnik, Shane; Stouffer, Bruce; Xiao, Yi Qun; van der Strate, Barry; Sikkema, Daniel; Fang, Xinping; Tudoroniu, Ariana; Tayyem, Rabab; Brant, Ashley; Spriggs, Franklin; Barry, Colin; Khan, Masood; Keyhani, Anahita; Zimmer, Jennifer; Caturla, Maria Cruz; Couerbe, Philippe; Khadang, Ardeshir; Bourdage, James; Datin, Jim; Zemo, Jennifer; Hughes, Nicola; Fatmi, Saadya; Sheldon, Curtis; Fountain, Scott; Satterwhite, Christina; Colletti, Kelly; Vija, Jenifer; Yu, Mathilde; Stamatopoulos, John; Lin, Jenny; Wilfahrt, Jim; Dinan, Andrew; Ohorodnik, Susan; Hulse, James; Patel, Vimal; Garofolo, Wei; Savoie, Natasha; Brown, Michael; Papac, Damon; Buonarati, Mike; Hristopoulos, George; Beaver, Chris; Boudreau, Nadine; Williard, Clark; Liu, Yansheng; Ray, Gene; Warrino, Dominic; Xu, Allan; Green, Rachel; Hayward-Sewell, Joanne; Marcelletti, John; Sanchez, Christina; Kennedy, Michael; Charles, Jessica St; Bouhajib, Mohammed; Nehls, Corey; Tabler, Edward; Tu, Jing; Joyce, Philip; Iordachescu, Adriana; DuBey, Ira; Lindsay, John; Yamashita, Jim; Wells, Edward
2018-04-01
The 11th Global CRO Council Closed Forum was held in Universal City, CA, USA on 3 April 2017. Representatives from international CRO members offering bioanalytical services were in attendance in order to discuss scientific and regulatory issues specific to bioanalysis. The second CRO-Pharma Scientific Interchange Meeting was held on 7 April 2017, which included Pharma representatives' sharing perspectives on the topics discussed earlier in the week with the CRO members. The issues discussed at the meetings included cumulative stability evaluations, matrix stability evaluations, the 2016 US FDA Immunogenicity Guidance and recent and unexpected FDA Form 483s on immunogenicity assays, the bioanalytical laboratory's role in writing PK sample collection instructions, biosimilars, CRO perspectives on the use of chiral versus achiral methods, hybrid LBA/LCMS assays, applications of fit-for-purpose validation and, at the Global CRO Council Closed Forum only, the status and trend of current regulated bioanalytical practice in China under CFDA's new BMV policy. Conclusions from discussions of these topics at both meetings are included in this report.
Mode transition of a Hall thruster discharge plasma
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hara, Kentaro, E-mail: kenhara@umich.edu; Sekerak, Michael J., E-mail: msekerak@umich.edu; Boyd, Iain D.
2014-05-28
A Hall thruster is a cross-field plasma device used for spacecraft propulsion. An important unresolved issue in the development of Hall thrusters concerns the effect of discharge oscillations in the range of 10–30 kHz on their performance. The use of a high speed Langmuir probe system and ultra-fast imaging of the discharge plasma of a Hall thruster suggests that the discharge oscillation mode, often called the breathing mode, is strongly correlated to an axial global ionization mode. Stabilization of the global oscillation mode is achieved as the magnetic field is increased and azimuthally rotating spokes are observed. A hybrid-direct kinetic simulationmore » that takes into account the transport of electronically excited atoms is used to model the discharge plasma of a Hall thruster. The predicted mode transition agrees with experiments in terms of the mean discharge current, the amplitude of discharge current oscillation, and the breathing mode frequency. It is observed that the stabilization of the global oscillation mode is associated with reduced electron transport that suppresses the ionization process inside the channel. As the Joule heating balances the other loss terms including the effects of wall loss and inelastic collisions, the ionization oscillation is damped, and the discharge oscillation stabilizes. A wide range of the stable operation is supported by the formation of a space charge saturated sheath that stabilizes the electron axial drift and balances the Joule heating as the magnetic field increases. Finally, it is indicated from the numerical results that there is a strong correlation between the emitted light intensity and the discharge current.« less
Salt bridge as a gatekeeper against partial unfolding.
Hinzman, Mark W; Essex, Morgan E; Park, Chiwook
2016-05-01
Salt bridges are frequently observed in protein structures. Because the energetic contribution of salt bridges is strongly dependent on the environmental context, salt bridges are believed to contribute to the structural specificity rather than the stability. To test the role of salt bridges in enhancing structural specificity, we investigated the contribution of a salt bridge to the energetics of native-state partial unfolding in a cysteine-free version of Escherichia coli ribonuclease H (RNase H*). Thermolysin cleaves a protruding loop of RNase H(*) through transient partial unfolding under native conditions. Lys86 and Asp108 in RNase H(*) form a partially buried salt bridge that tethers the protruding loop. Investigation of the global stability of K86Q/D108N RNase H(*) showed that the salt bridge does not significantly contribute to the global stability. However, K86Q/D108N RNase H(*) is greatly more susceptible to proteolysis by thermolysin than wild-type RNase H(*) is. The free energy for partial unfolding determined by native-state proteolysis indicates that the salt bridge significantly increases the energy for partial unfolding by destabilizing the partially unfolded form. Double mutant cycles with single and double mutations of the salt bridge suggest that the partially unfolded form is destabilized due to a significant decrease in the interaction energy between Lys86 and Asp108 upon partial unfolding. This study demonstrates that, even in the case that a salt bridge does not contribute to the global stability, the salt bridge may function as a gatekeeper against partial unfolding that disturbs the optimal geometry of the salt bridge. © 2016 The Protein Society.
Aero-thermo-dynamic analysis of a low ballistic coefficient deployable capsule in Earth re-entry
NASA Astrophysics Data System (ADS)
Zuppardi, G.; Savino, R.; Mongelluzzo, G.
2016-10-01
The paper deals with a microsatellite and the related deployable recovery capsule. The aero-brake is folded at launch and deployed in space and is able to perform a de-orbiting controlled re-entry. This kind of capsule, with a flexible, high temperature resistant fabric, thanks to its lightness and modulating capability, can be an alternative to the current ;conventional; recovery capsules. The present authors already analyzed the trajectory and the aerodynamic behavior of low ballistic coefficient capsules during Earth re-entry and Mars entry. In previous studies, aerodynamic longitudinal stability analysis and evaluation of thermal and aerodynamic loads for a possible suborbital re-entry demonstrator were carried out in both continuum and rarefied regimes. The present study is aimed at providing preliminary information about thermal and aerodynamic loads and longitudinal stability for a similar deployable capsule, as well as information about the electronic composition of the plasma sheet and its possible influence on radio communications at the altitudes where GPS black-out could occur. Since the computer tests were carried out at high altitudes, therefore in rarefied flow fields, use of Direct Simulation Monte Carlo codes was mandatory. The computations involved both global aerodynamic quantities (drag and longitudinal moment coefficients) and local aerodynamic quantities (heat flux and pressure distributions along the capsule surface). The results verified that the capsule at high altitude (150 km) is self-stabilizing; it is stable around the nominal attitude or at zero angle of attack and unstable around the reverse attitude or at 180° angle of attack. The analysis also pointed out the presence of extra statically stable equilibrium trim points.
NASA Astrophysics Data System (ADS)
Gourley, Stephen A.; Kuang, Yang
We present a global study on the stability of the equilibria in a nonlinear autonomous neutral delay differential population model formulated by Bocharov and Hadeler. This model may be suitable for describing the intriguing dynamics of an insect population with long larval and short adult phases such as the periodical cicada. We circumvent the usual difficulties associated with the study of the stability of a nonlinear neutral delay differential model by transforming it to an appropriate non-neutral nonautonomous delay differential equation with unbounded delay. In the case that no juveniles give birth, we establish the positivity and boundedness of solutions by ad hoc methods and global stability of the extinction and positive equilibria by the method of iteration. We also show that if the time adjusted instantaneous birth rate at the time of maturation is greater than 1, then the population will grow without bound, regardless of the population death process.
A new smooth robust control design for uncertain nonlinear systems with non-vanishing disturbances
NASA Astrophysics Data System (ADS)
Xian, Bin; Zhang, Yao
2016-06-01
In this paper, we consider the control problem for a general class of nonlinear system subjected to uncertain dynamics and non-varnishing disturbances. A smooth nonlinear control algorithm is presented to tackle these uncertainties and disturbances. The proposed control design employs the integral of a nonlinear sigmoid function to compensate the uncertain dynamics, and achieve a uniformly semi-global practical asymptotic stable tracking control of the system outputs. A novel Lyapunov-based stability analysis is employed to prove the convergence of the tracking errors and the stability of the closed-loop system. Numerical simulation results on a two-link robot manipulator are presented to illustrate the performance of the proposed control algorithm comparing with the layer-boundary sliding mode controller and the robust of integration of sign of error control design. Furthermore, real-time experiment results for the attitude control of a quadrotor helicopter are also included to confirm the effectiveness of the proposed algorithm.
Positioning stability improvement with inter-system biases on multi-GNSS PPP
NASA Astrophysics Data System (ADS)
Choi, Byung-Kyu; Yoon, Hasu
2018-07-01
The availability of multiple signals from different Global Navigation Satellite System (GNSS) constellations provides opportunities for improving positioning accuracy and initial convergence time. With dual-frequency observations from the four constellations (GPS, GLONASS, Galileo, and BeiDou), it is possible to investigate combined GNSS precise point positioning (PPP) accuracy and stability. The differences between GNSS systems result in inter-system biases (ISBs). We consider several ISB values such as GPS-GLONASS, GPS-Galileo, and GPS-BeiDou. These biases are compliant with key parameters defined in the multi-GNSS PPP processing. In this study, we present a unified PPP method that sets ISB values as fixed or constant. A comprehensive analysis that includes satellite visibility, position dilution of precision, position accuracy is performed to evaluate a unified PPP method with constrained cut-off elevation angles. Compared to the conventional PPP solutions, our approach shows more stable positioning at a constrained cut-off elevation angle of 50 degrees.
Dynamic effects of memory in a cobweb model with competing technologies
NASA Astrophysics Data System (ADS)
Agliari, Anna; Naimzada, Ahmad; Pecora, Nicolò
2017-02-01
We analyze a simple model based on the cobweb demand-supply framework with costly innovators and free imitators and study the endogenous dynamics of price and firms' fractions in a homogeneous good market. The evolutionary selection between technologies depends on a performance measure in which a memory parameter is introduced. The resulting dynamics is then described by a two-dimensional map. In addition to the locally stabilizing effect due to the presence of memory, we show the existence of a double stability threshold which entails for different dynamic scenarios occurring when the memory parameter takes extreme values (i.e. when consideration of the last profit realization prevails or it is too much neglected). The eventuality of different coexisting attractors as well as the structure of the basins of attraction that characterizes the path dependence property of the model with memory is shown. In particular, through global analysis we also illustrate particular bifurcations sequences that may increase the complexity of the related basins of attraction.