Sample records for global statistical model

  1. A global goodness-of-fit statistic for Cox regression models.

    PubMed

    Parzen, M; Lipsitz, S R

    1999-06-01

    In this paper, a global goodness-of-fit test statistic for a Cox regression model, which has an approximate chi-squared distribution when the model has been correctly specified, is proposed. Our goodness-of-fit statistic is global and has power to detect if interactions or higher order powers of covariates in the model are needed. The proposed statistic is similar to the Hosmer and Lemeshow (1980, Communications in Statistics A10, 1043-1069) goodness-of-fit statistic for binary data as well as Schoenfeld's (1980, Biometrika 67, 145-153) statistic for the Cox model. The methods are illustrated using data from a Mayo Clinic trial in primary billiary cirrhosis of the liver (Fleming and Harrington, 1991, Counting Processes and Survival Analysis), in which the outcome is the time until liver transplantation or death. The are 17 possible covariates. Two Cox proportional hazards models are fit to the data, and the proposed goodness-of-fit statistic is applied to the fitted models.

  2. Evidence for a Global Sampling Process in Extraction of Summary Statistics of Item Sizes in a Set.

    PubMed

    Tokita, Midori; Ueda, Sachiyo; Ishiguchi, Akira

    2016-01-01

    Several studies have shown that our visual system may construct a "summary statistical representation" over groups of visual objects. Although there is a general understanding that human observers can accurately represent sets of a variety of features, many questions on how summary statistics, such as an average, are computed remain unanswered. This study investigated sampling properties of visual information used by human observers to extract two types of summary statistics of item sets, average and variance. We presented three models of ideal observers to extract the summary statistics: a global sampling model without sampling noise, global sampling model with sampling noise, and limited sampling model. We compared the performance of an ideal observer of each model with that of human observers using statistical efficiency analysis. Results suggest that summary statistics of items in a set may be computed without representing individual items, which makes it possible to discard the limited sampling account. Moreover, the extraction of summary statistics may not necessarily require the representation of individual objects with focused attention when the sets of items are larger than 4.

  3. Towards Direct Simulation of Future Tropical Cyclone Statistics in a High-Resolution Global Atmospheric Model

    DOE PAGES

    Wehner, Michael F.; Bala, G.; Duffy, Phillip; ...

    2010-01-01

    We present a set of high-resolution global atmospheric general circulation model (AGCM) simulations focusing on the model's ability to represent tropical storms and their statistics. We find that the model produces storms of hurricane strength with realistic dynamical features. We also find that tropical storm statistics are reasonable, both globally and in the north Atlantic, when compared to recent observations. The sensitivity of simulated tropical storm statistics to increases in sea surface temperature (SST) is also investigated, revealing that a credible late 21st century SST increase produced increases in simulated tropical storm numbers and intensities in all ocean basins. Whilemore » this paper supports previous high-resolution model and theoretical findings that the frequency of very intense storms will increase in a warmer climate, it differs notably from previous medium and high-resolution model studies that show a global reduction in total tropical storm frequency. However, we are quick to point out that this particular model finding remains speculative due to a lack of radiative forcing changes in our time-slice experiments as well as a focus on the Northern hemisphere tropical storm seasons.« less

  4. Statistical emulators of maize, rice, soybean and wheat yields from global gridded crop models

    DOE PAGES

    Blanc, Élodie

    2017-01-26

    This study provides statistical emulators of crop yields based on global gridded crop model simulations from the Inter-Sectoral Impact Model Intercomparison Project Fast Track project. The ensemble of simulations is used to build a panel of annual crop yields from five crop models and corresponding monthly summer weather variables for over a century at the grid cell level globally. This dataset is then used to estimate, for each crop and gridded crop model, the statistical relationship between yields, temperature, precipitation and carbon dioxide. This study considers a new functional form to better capture the non-linear response of yields to weather,more » especially for extreme temperature and precipitation events, and now accounts for the effect of soil type. In- and out-of-sample validations show that the statistical emulators are able to replicate spatial patterns of yields crop levels and changes overtime projected by crop models reasonably well, although the accuracy of the emulators varies by model and by region. This study therefore provides a reliable and accessible alternative to global gridded crop yield models. By emulating crop yields for several models using parsimonious equations, the tools provide a computationally efficient method to account for uncertainty in climate change impact assessments.« less

  5. Statistical emulators of maize, rice, soybean and wheat yields from global gridded crop models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Blanc, Élodie

    This study provides statistical emulators of crop yields based on global gridded crop model simulations from the Inter-Sectoral Impact Model Intercomparison Project Fast Track project. The ensemble of simulations is used to build a panel of annual crop yields from five crop models and corresponding monthly summer weather variables for over a century at the grid cell level globally. This dataset is then used to estimate, for each crop and gridded crop model, the statistical relationship between yields, temperature, precipitation and carbon dioxide. This study considers a new functional form to better capture the non-linear response of yields to weather,more » especially for extreme temperature and precipitation events, and now accounts for the effect of soil type. In- and out-of-sample validations show that the statistical emulators are able to replicate spatial patterns of yields crop levels and changes overtime projected by crop models reasonably well, although the accuracy of the emulators varies by model and by region. This study therefore provides a reliable and accessible alternative to global gridded crop yield models. By emulating crop yields for several models using parsimonious equations, the tools provide a computationally efficient method to account for uncertainty in climate change impact assessments.« less

  6. Identifiability of PBPK Models with Applications to ...

    EPA Pesticide Factsheets

    Any statistical model should be identifiable in order for estimates and tests using it to be meaningful. We consider statistical analysis of physiologically-based pharmacokinetic (PBPK) models in which parameters cannot be estimated precisely from available data, and discuss different types of identifiability that occur in PBPK models and give reasons why they occur. We particularly focus on how the mathematical structure of a PBPK model and lack of appropriate data can lead to statistical models in which it is impossible to estimate at least some parameters precisely. Methods are reviewed which can determine whether a purely linear PBPK model is globally identifiable. We propose a theorem which determines when identifiability at a set of finite and specific values of the mathematical PBPK model (global discrete identifiability) implies identifiability of the statistical model. However, we are unable to establish conditions that imply global discrete identifiability, and conclude that the only safe approach to analysis of PBPK models involves Bayesian analysis with truncated priors. Finally, computational issues regarding posterior simulations of PBPK models are discussed. The methodology is very general and can be applied to numerous PBPK models which can be expressed as linear time-invariant systems. A real data set of a PBPK model for exposure to dimethyl arsinic acid (DMA(V)) is presented to illustrate the proposed methodology. We consider statistical analy

  7. Machine Learning Predictions of a Multiresolution Climate Model Ensemble

    NASA Astrophysics Data System (ADS)

    Anderson, Gemma J.; Lucas, Donald D.

    2018-05-01

    Statistical models of high-resolution climate models are useful for many purposes, including sensitivity and uncertainty analyses, but building them can be computationally prohibitive. We generated a unique multiresolution perturbed parameter ensemble of a global climate model. We use a novel application of a machine learning technique known as random forests to train a statistical model on the ensemble to make high-resolution model predictions of two important quantities: global mean top-of-atmosphere energy flux and precipitation. The random forests leverage cheaper low-resolution simulations, greatly reducing the number of high-resolution simulations required to train the statistical model. We demonstrate that high-resolution predictions of these quantities can be obtained by training on an ensemble that includes only a small number of high-resolution simulations. We also find that global annually averaged precipitation is more sensitive to resolution changes than to any of the model parameters considered.

  8. The statistical analysis of global climate change studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hardin, J.W.

    1992-01-01

    The focus of this work is to contribute to the enhancement of the relationship between climatologists and statisticians. The analysis of global change data has been underway for many years by atmospheric scientists. Much of this analysis includes a heavy reliance on statistics and statistical inference. Some specific climatological analyses are presented and the dependence on statistics is documented before the analysis is undertaken. The first problem presented involves the fluctuation-dissipation theorem and its application to global climate models. This problem has a sound theoretical niche in the literature of both climate modeling and physics, but a statistical analysis inmore » which the data is obtained from the model to show graphically the relationship has not been undertaken. It is under this motivation that the author presents this problem. A second problem concerning the standard errors in estimating global temperatures is purely statistical in nature although very little materials exists for sampling on such a frame. This problem not only has climatological and statistical ramifications, but political ones as well. It is planned to use these results in a further analysis of global warming using actual data collected on the earth. In order to simplify the analysis of these problems, the development of a computer program, MISHA, is presented. This interactive program contains many of the routines, functions, graphics, and map projections needed by the climatologist in order to effectively enter the arena of data visualization.« less

  9. The GEOS Ozone Data Assimilation System: Specification of Error Statistics

    NASA Technical Reports Server (NTRS)

    Stajner, Ivanka; Riishojgaard, Lars Peter; Rood, Richard B.

    2000-01-01

    A global three-dimensional ozone data assimilation system has been developed at the Data Assimilation Office of the NASA/Goddard Space Flight Center. The Total Ozone Mapping Spectrometer (TOMS) total ozone and the Solar Backscatter Ultraviolet (SBUV) or (SBUV/2) partial ozone profile observations are assimilated. The assimilation, into an off-line ozone transport model, is done using the global Physical-space Statistical Analysis Scheme (PSAS). This system became operational in December 1999. A detailed description of the statistical analysis scheme, and in particular, the forecast and observation error covariance models is given. A new global anisotropic horizontal forecast error correlation model accounts for a varying distribution of observations with latitude. Correlations are largest in the zonal direction in the tropics where data is sparse. Forecast error variance model is proportional to the ozone field. The forecast error covariance parameters were determined by maximum likelihood estimation. The error covariance models are validated using x squared statistics. The analyzed ozone fields in the winter 1992 are validated against independent observations from ozone sondes and HALOE. There is better than 10% agreement between mean Halogen Occultation Experiment (HALOE) and analysis fields between 70 and 0.2 hPa. The global root-mean-square (RMS) difference between TOMS observed and forecast values is less than 4%. The global RMS difference between SBUV observed and analyzed ozone between 50 and 3 hPa is less than 15%.

  10. Evaluation of different models to estimate the global solar radiation on inclined surface

    NASA Astrophysics Data System (ADS)

    Demain, C.; Journée, M.; Bertrand, C.

    2012-04-01

    Global and diffuse solar radiation intensities are, in general, measured on horizontal surfaces, whereas stationary solar conversion systems (both flat plate solar collector and solar photovoltaic) are mounted on inclined surface to maximize the amount of solar radiation incident on the collector surface. Consequently, the solar radiation incident measured on a tilted surface has to be determined by converting solar radiation from horizontal surface to tilted surface of interest. This study evaluates the performance of 14 models transposing 10 minutes, hourly and daily diffuse solar irradiation from horizontal to inclined surface. Solar radiation data from 8 months (April to November 2011) which include diverse atmospheric conditions and solar altitudes, measured on the roof of the radiation tower of the Royal Meteorological Institute of Belgium in Uccle (Longitude 4.35°, Latitude 50.79°) were used for validation purposes. The individual model performance is assessed by an inter-comparison between the calculated and measured solar global radiation on the south-oriented surface tilted at 50.79° using statistical methods. The relative performance of the different models under different sky conditions has been studied. Comparison of the statistical errors between the different radiation models in function of the clearness index shows that some models perform better under one type of sky condition. Putting together different models acting under different sky conditions can lead to a diminution of the statistical error between global measured solar radiation and global estimated solar radiation. As models described in this paper have been developed for hourly data inputs, statistical error indexes are minimum for hourly data and increase for 10 minutes and one day frequency data.

  11. Multi-region statistical shape model for cochlear implantation

    NASA Astrophysics Data System (ADS)

    Romera, Jordi; Kjer, H. Martin; Piella, Gemma; Ceresa, Mario; González Ballester, Miguel A.

    2016-03-01

    Statistical shape models are commonly used to analyze the variability between similar anatomical structures and their use is established as a tool for analysis and segmentation of medical images. However, using a global model to capture the variability of complex structures is not enough to achieve the best results. The complexity of a proper global model increases even more when the amount of data available is limited to a small number of datasets. Typically, the anatomical variability between structures is associated to the variability of their physiological regions. In this paper, a complete pipeline is proposed for building a multi-region statistical shape model to study the entire variability from locally identified physiological regions of the inner ear. The proposed model, which is based on an extension of the Point Distribution Model (PDM), is built for a training set of 17 high-resolution images (24.5 μm voxels) of the inner ear. The model is evaluated according to its generalization ability and specificity. The results are compared with the ones of a global model built directly using the standard PDM approach. The evaluation results suggest that better accuracy can be achieved using a regional modeling of the inner ear.

  12. Characterizing and Addressing the Need for Statistical Adjustment of Global Climate Model Data

    NASA Astrophysics Data System (ADS)

    White, K. D.; Baker, B.; Mueller, C.; Villarini, G.; Foley, P.; Friedman, D.

    2017-12-01

    As part of its mission to research and measure the effects of the changing climate, the U. S. Army Corps of Engineers (USACE) regularly uses the World Climate Research Programme's Coupled Model Intercomparison Project Phase 5 (CMIP5) multi-model dataset. However, these data are generated at a global level and are not fine-tuned for specific watersheds. This often causes CMIP5 output to vary from locally observed patterns in the climate. Several downscaling methods have been developed to increase the resolution of the CMIP5 data and decrease systemic differences to support decision-makers as they evaluate results at the watershed scale. Evaluating preliminary comparisons of observed and projected flow frequency curves over the US revealed a simple framework for water resources decision makers to plan and design water resources management measures under changing conditions using standard tools. Using this framework as a basis, USACE has begun to explore to use of statistical adjustment to alter global climate model data to better match the locally observed patterns while preserving the general structure and behavior of the model data. When paired with careful measurement and hypothesis testing, statistical adjustment can be particularly effective at navigating the compromise between the locally observed patterns and the global climate model structures for decision makers.

  13. Estimating global cropland production from 1961 to 2010

    NASA Astrophysics Data System (ADS)

    Han, Pengfei; Zeng, Ning; Zhao, Fang; Lin, Xiaohui

    2017-09-01

    Global cropland net primary production (NPP) has tripled over the last 50 years, contributing 17-45 % to the increase in global atmospheric CO2 seasonal amplitude. Although many regional-scale comparisons have been made between statistical data and modeling results, long-term national comparisons across global croplands are scarce due to the lack of detailed spatiotemporal management data. Here, we conducted a simulation study of global cropland NPP from 1961 to 2010 using a process-based model called Vegetation-Global Atmosphere-Soil (VEGAS) and compared the results with Food and Agriculture Organization of the United Nations (FAO) statistical data on both continental and country scales. According to the FAO data, the global cropland NPP was 1.3, 1.8, 2.2, 2.6, 3.0, and 3.6 PgC yr-1 in the 1960s, 1970s, 1980s, 1990s, 2000s, and 2010s, respectively. The VEGAS model captured these major trends on global and continental scales. The NPP increased most notably in the US Midwest, western Europe, and the North China Plain and increased modestly in Africa and Oceania. However, significant biases remained in some regions such as Africa and Oceania, especially in temporal evolution. This finding is not surprising as VEGAS is the first global carbon cycle model with full parameterization representing the Green Revolution. To improve model performance for different major regions, we modified the default values of management intensity associated with the agricultural Green Revolution differences across various regions to better match the FAO statistical data at the continental level and for selected countries. Across all the selected countries, the updated results reduced the RMSE from 19.0 to 10.5 TgC yr-1 (˜ 45 % decrease). The results suggest that these regional differences in model parameterization are due to differences in socioeconomic development. To better explain the past changes and predict the future trends, it is important to calibrate key parameters on regional scales and develop data sets for land management history.

  14. An improved empirical dynamic control system model of global mean sea level rise and surface temperature change

    NASA Astrophysics Data System (ADS)

    Wu, Qing; Luu, Quang-Hung; Tkalich, Pavel; Chen, Ge

    2018-04-01

    Having great impacts on human lives, global warming and associated sea level rise are believed to be strongly linked to anthropogenic causes. Statistical approach offers a simple and yet conceptually verifiable combination of remotely connected climate variables and indices, including sea level and surface temperature. We propose an improved statistical reconstruction model based on the empirical dynamic control system by taking into account the climate variability and deriving parameters from Monte Carlo cross-validation random experiments. For the historic data from 1880 to 2001, we yielded higher correlation results compared to those from other dynamic empirical models. The averaged root mean square errors are reduced in both reconstructed fields, namely, the global mean surface temperature (by 24-37%) and the global mean sea level (by 5-25%). Our model is also more robust as it notably diminished the unstable problem associated with varying initial values. Such results suggest that the model not only enhances significantly the global mean reconstructions of temperature and sea level but also may have a potential to improve future projections.

  15. Coupled local facilitation and global hydrologic inhibition drive landscape geometry in a patterned peatland

    NASA Astrophysics Data System (ADS)

    Acharya, S.; Kaplan, D. A.; Casey, S.; Cohen, M. J.; Jawitz, J. W.

    2015-05-01

    Self-organized landscape patterning can arise in response to multiple processes. Discriminating among alternative patterning mechanisms, particularly where experimental manipulations are untenable, requires process-based models. Previous modeling studies have attributed patterning in the Everglades (Florida, USA) to sediment redistribution and anisotropic soil hydraulic properties. In this work, we tested an alternate theory, the self-organizing-canal (SOC) hypothesis, by developing a cellular automata model that simulates pattern evolution via local positive feedbacks (i.e., facilitation) coupled with a global negative feedback based on hydrology. The model is forced by global hydroperiod that drives stochastic transitions between two patch types: ridge (higher elevation) and slough (lower elevation). We evaluated model performance using multiple criteria based on six statistical and geostatistical properties observed in reference portions of the Everglades landscape: patch density, patch anisotropy, semivariogram ranges, power-law scaling of ridge areas, perimeter area fractal dimension, and characteristic pattern wavelength. Model results showed strong statistical agreement with reference landscapes, but only when anisotropically acting local facilitation was coupled with hydrologic global feedback, for which several plausible mechanisms exist. Critically, the model correctly generated fractal landscapes that had no characteristic pattern wavelength, supporting the invocation of global rather than scale-specific negative feedbacks.

  16. Coupled local facilitation and global hydrologic inhibition drive landscape geometry in a patterned peatland

    NASA Astrophysics Data System (ADS)

    Acharya, S.; Kaplan, D. A.; Casey, S.; Cohen, M. J.; Jawitz, J. W.

    2015-01-01

    Self-organized landscape patterning can arise in response to multiple processes. Discriminating among alternative patterning mechanisms, particularly where experimental manipulations are untenable, requires process-based models. Previous modeling studies have attributed patterning in the Everglades (Florida, USA) to sediment redistribution and anisotropic soil hydraulic properties. In this work, we tested an alternate theory, the self-organizing canal (SOC) hypothesis, by developing a cellular automata model that simulates pattern evolution via local positive feedbacks (i.e., facilitation) coupled with a global negative feedback based on hydrology. The model is forced by global hydroperiod that drives stochastic transitions between two patch types: ridge (higher elevation) and slough (lower elevation). We evaluated model performance using multiple criteria based on six statistical and geostatistical properties observed in reference portions of the Everglades landscape: patch density, patch anisotropy, semivariogram ranges, power-law scaling of ridge areas, perimeter area fractal dimension, and characteristic pattern wavelength. Model results showed strong statistical agreement with reference landscapes, but only when anisotropically acting local facilitation was coupled with hydrologic global feedback, for which several plausible mechanisms exist. Critically, the model correctly generated fractal landscapes that had no characteristic pattern wavelength, supporting the invocation of global rather than scale-specific negative feedbacks.

  17. Statistical prediction of September Arctic Sea Ice minimum based on stable teleconnections with global climate and oceanic patterns

    NASA Astrophysics Data System (ADS)

    Ionita, M.; Grosfeld, K.; Scholz, P.; Lohmann, G.

    2016-12-01

    Sea ice in both Polar Regions is an important indicator for the expression of global climate change and its polar amplification. Consequently, a broad information interest exists on sea ice, its coverage, variability and long term change. Knowledge on sea ice requires high quality data on ice extent, thickness and its dynamics. However, its predictability depends on various climate parameters and conditions. In order to provide insights into the potential development of a monthly/seasonal signal, we developed a robust statistical model based on ocean heat content, sea surface temperature and atmospheric variables to calculate an estimate of the September minimum sea ice extent for every year. Although previous statistical attempts at monthly/seasonal forecasts of September sea ice minimum show a relatively reduced skill, here it is shown that more than 97% (r = 0.98) of the September sea ice extent can predicted three months in advance by using previous months conditions via a multiple linear regression model based on global sea surface temperature (SST), mean sea level pressure (SLP), air temperature at 850hPa (TT850), surface winds and sea ice extent persistence. The statistical model is based on the identification of regions with stable teleconnections between the predictors (climatological parameters) and the predictand (here sea ice extent). The results based on our statistical model contribute to the sea ice prediction network for the sea ice outlook report (https://www.arcus.org/sipn) and could provide a tool for identifying relevant regions and climate parameters that are important for the sea ice development in the Arctic and for detecting sensitive and critical regions in global coupled climate models with focus on sea ice formation.

  18. Medial-based deformable models in nonconvex shape-spaces for medical image segmentation.

    PubMed

    McIntosh, Chris; Hamarneh, Ghassan

    2012-01-01

    We explore the application of genetic algorithms (GA) to deformable models through the proposition of a novel method for medical image segmentation that combines GA with nonconvex, localized, medial-based shape statistics. We replace the more typical gradient descent optimizer used in deformable models with GA, and the convex, implicit, global shape statistics with nonconvex, explicit, localized ones. Specifically, we propose GA to reduce typical deformable model weaknesses pertaining to model initialization, pose estimation and local minima, through the simultaneous evolution of a large number of models. Furthermore, we constrain the evolution, and thus reduce the size of the search-space, by using statistically-based deformable models whose deformations are intuitive (stretch, bulge, bend) and are driven in terms of localized principal modes of variation, instead of modes of variation across the entire shape that often fail to capture localized shape changes. Although GA are not guaranteed to achieve the global optima, our method compares favorably to the prevalent optimization techniques, convex/nonconvex gradient-based optimizers and to globally optimal graph-theoretic combinatorial optimization techniques, when applied to the task of corpus callosum segmentation in 50 mid-sagittal brain magnetic resonance images.

  19. Evolution in Cloud Population Statistics of the MJO: From AMIE Field Observations to Global Cloud-Permiting Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Chidong

    Motivated by the success of the AMIE/DYNAMO field campaign, which collected unprecedented observations of cloud and precipitation from the tropical Indian Ocean in Octber 2011 – March 2012, this project explored how such observations can be applied to assist the development of global cloud-permitting models through evaluating and correcting model biases in cloud statistics. The main accomplishment of this project were made in four categories: generating observational products for model evaluation, using AMIE/DYNAMO observations to validate global model simulations, using AMIE/DYNAMO observations in numerical studies of cloud-permitting models, and providing leadership in the field. Results from this project provide valuablemore » information for building a seamless bridge between DOE ASR program’s component on process level understanding of cloud processes in the tropics and RGCM focus on global variability and regional extremes. In particular, experience gained from this project would be directly applicable to evaluation and improvements of ACME, especially as it transitions to a non-hydrostatic variable resolution model.« less

  20. Building a statistical emulator for prediction of crop yield response to climate change: a global gridded panel data set approach

    NASA Astrophysics Data System (ADS)

    Mistry, Malcolm; De Cian, Enrica; Wing, Ian Sue

    2015-04-01

    There is widespread concern that trends and variability in weather induced by climate change will detrimentally affect global agricultural productivity and food supplies. Reliable quantification of the risks of negative impacts at regional and global scales is a critical research need, which has so far been met by forcing state-of-the-art global gridded crop models with outputs of global climate model (GCM) simulations in exercises such as the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP)-Fastrack. Notwithstanding such progress, it remains challenging to use these simulation-based projections to assess agricultural risk because their gridded fields of crop yields are fundamentally denominated as discrete combinations of warming scenarios, GCMs and crop models, and not as model-specific or model-averaged yield response functions of meteorological shifts, which may have their own independent probability of occurrence. By contrast, the empirical climate economics literature has adeptly represented agricultural responses to meteorological variables as reduced-form statistical response surfaces which identify the crop productivity impacts of additional exposure to different intervals of temperature and precipitation [cf Schlenker and Roberts, 2009]. This raises several important questions: (1) what do the equivalent reduced-form statistical response surfaces look like for crop model outputs, (2) do they exhibit systematic variation over space (e.g., crop suitability zones) or across crop models with different characteristics, (3) how do they compare to estimates based on historical observations, and (4) what are the implications for the characterization of climate risks? We address these questions by estimating statistical yield response functions for four major crops (maize, rice, wheat and soybeans) over the historical period (1971-2004) as well as future climate change scenarios (2005-2099) using ISIMIP-Fastrack data for five GCMs and seven crop models under rain-fed and irrigated management regimes. Our approach, which is patterned after Lobell and Burke [2010], is a novel application of cross-section/time-series statistical techniques from the climate economics literature to large, high-dimension, multi-model datasets, and holds considerable promise as a diagnostic methodology to elucidate uncertainties in the processes simulated by crop models, and to support the development of climate impact intercomparison exercises.

  1. Marine Geoid Undulation Assessment Over South China Sea Using Global Geopotential Models and Airborne Gravity Data

    NASA Astrophysics Data System (ADS)

    Yazid, N. M.; Din, A. H. M.; Omar, K. M.; Som, Z. A. M.; Omar, A. H.; Yahaya, N. A. Z.; Tugi, A.

    2016-09-01

    Global geopotential models (GGMs) are vital in computing global geoid undulations heights. Based on the ellipsoidal height by Global Navigation Satellite System (GNSS) observations, the accurate orthometric height can be calculated by adding precise and accurate geoid undulations model information. However, GGMs also provide data from the satellite gravity missions such as GRACE, GOCE and CHAMP. Thus, this will assist to enhance the global geoid undulations data. A statistical assessment has been made between geoid undulations derived from 4 GGMs and the airborne gravity data provided by Department of Survey and Mapping Malaysia (DSMM). The goal of this study is the selection of the best possible GGM that best matches statistically with the geoid undulations of airborne gravity data under the Marine Geodetic Infrastructures in Malaysian Waters (MAGIC) Project over marine areas in Sabah. The correlation coefficients and the RMS value for the geoid undulations of GGM and airborne gravity data were computed. The correlation coefficients between EGM 2008 and airborne gravity data is 1 while RMS value is 0.1499.In this study, the RMS value of EGM 2008 is the lowest among the others. Regarding to the statistical analysis, it clearly represents that EGM 2008 is the best fit for marine geoid undulations throughout South China Sea.

  2. Statistical Maps of Ground Magnetic Disturbance Derived from Global Geospace Models

    NASA Astrophysics Data System (ADS)

    Rigler, E. J.; Wiltberger, M. J.; Love, J. J.

    2017-12-01

    Electric currents in space are the principal driver of magnetic variations measured at Earth's surface. These in turn induce geoelectric fields that present a natural hazard for technological systems like high-voltage power distribution networks. Modern global geospace models can reasonably simulate large-scale geomagnetic response to solar wind variations, but they are less successful at deterministic predictions of intense localized geomagnetic activity that most impacts technological systems on the ground. Still, recent studies have shown that these models can accurately reproduce the spatial statistical distributions of geomagnetic activity, suggesting that their physics are largely correct. Since the magnetosphere is a largely externally driven system, most model-measurement discrepancies probably arise from uncertain boundary conditions. So, with realistic distributions of solar wind parameters to establish its boundary conditions, we use the Lyon-Fedder-Mobarry (LFM) geospace model to build a synthetic multivariate statistical model of gridded ground magnetic disturbance. From this, we analyze the spatial modes of geomagnetic response, regress on available measurements to fill in unsampled locations on the grid, and estimate the global probability distribution of extreme magnetic disturbance. The latter offers a prototype geomagnetic "hazard map", similar to those used to characterize better-known geophysical hazards like earthquakes and floods.

  3. Seed Dispersal Near and Far: Patterns Across Temperate and Tropical Forests

    Treesearch

    James S. Clark; Miles Silman; Ruth Kern; Eric Macklin; Janneke HilleRisLambers

    1999-01-01

    Dispersal affects community dynamics and vegetation response to global change. Understanding these effects requires descriptions of dispersal at local and regional scales and statistical models that permit estimation. Classical models of dispersal describe local or long-distance dispersal, but not both. The lack of statistical methods means that models have rarely been...

  4. Impact of a statistical bias correction on the projected simulated hydrological changes obtained from three GCMs and two hydrology models

    NASA Astrophysics Data System (ADS)

    Hagemann, Stefan; Chen, Cui; Haerter, Jan O.; Gerten, Dieter; Heinke, Jens; Piani, Claudio

    2010-05-01

    Future climate model scenarios depend crucially on their adequate representation of the hydrological cycle. Within the European project "Water and Global Change" (WATCH) special care is taken to couple state-of-the-art climate model output to a suite of hydrological models. This coupling is expected to lead to a better assessment of changes in the hydrological cycle. However, due to the systematic model errors of climate models, their output is often not directly applicable as input for hydrological models. Thus, the methodology of a statistical bias correction has been developed, which can be used for correcting climate model output to produce internally consistent fields that have the same statistical intensity distribution as the observations. As observations, global re-analysed daily data of precipitation and temperature are used that are obtained in the WATCH project. We will apply the bias correction to global climate model data of precipitation and temperature from the GCMs ECHAM5/MPIOM, CNRM-CM3 and LMDZ-4, and intercompare the bias corrected data to the original GCM data and the observations. Then, the orginal and the bias corrected GCM data will be used to force two global hydrology models: (1) the hydrological model of the Max Planck Institute for Meteorology (MPI-HM) consisting of the Simplified Land surface (SL) scheme and the Hydrological Discharge (HD) model, and (2) the dynamic vegetation model LPJmL operated by the Potsdam Institute for Climate Impact Research. The impact of the bias correction on the projected simulated hydrological changes will be analysed, and the resulting behaviour of the two hydrology models will be compared.

  5. Studies in the use of cloud type statistics in mission simulation

    NASA Technical Reports Server (NTRS)

    Fowler, M. G.; Willand, J. H.; Chang, D. T.; Cogan, J. L.

    1974-01-01

    A study to further improve NASA's global cloud statistics for mission simulation is reported. Regional homogeneity in cloud types was examined; most of the original region boundaries defined for cloud cover amount in previous studies were supported by the statistics on cloud types and the number of cloud layers. Conditionality in cloud statistics was also examined with special emphasis on temporal and spatial dependencies, and cloud type interdependence. Temporal conditionality was found up to 12 hours, and spatial conditionality up to 200 miles; the diurnal cycle in convective cloudiness was clearly evident. As expected, the joint occurrence of different cloud types reflected the dynamic processes which form the clouds. Other phases of the study improved the cloud type statistics for several region and proposed a mission simulation scheme combining the 4-dimensional atmospheric model, sponsored by MSFC, with the global cloud model.

  6. Weather extremes in very large, high-resolution ensembles: the weatherathome experiment

    NASA Astrophysics Data System (ADS)

    Allen, M. R.; Rosier, S.; Massey, N.; Rye, C.; Bowery, A.; Miller, J.; Otto, F.; Jones, R.; Wilson, S.; Mote, P.; Stone, D. A.; Yamazaki, Y. H.; Carrington, D.

    2011-12-01

    Resolution and ensemble size are often seen as alternatives in climate modelling. Models with sufficient resolution to simulate many classes of extreme weather cannot normally be run often enough to assess the statistics of rare events, still less how these statistics may be changing. As a result, assessments of the impact of external forcing on regional climate extremes must be based either on statistical downscaling from relatively coarse-resolution models, or statistical extrapolation from 10-year to 100-year events. Under the weatherathome experiment, part of the climateprediction.net initiative, we have compiled the Met Office Regional Climate Model HadRM3P to run on personal computer volunteered by the general public at 25 and 50km resolution, embedded within the HadAM3P global atmosphere model. With a global network of about 50,000 volunteers, this allows us to run time-slice ensembles of essentially unlimited size, exploring the statistics of extreme weather under a range of scenarios for surface forcing and atmospheric composition, allowing for uncertainty in both boundary conditions and model parameters. Current experiments, developed with the support of Microsoft Research, focus on three regions, the Western USA, Europe and Southern Africa. We initially simulate the period 1959-2010 to establish which variables are realistically simulated by the model and on what scales. Our next experiments are focussing on the Event Attribution problem, exploring how the probability of various types of extreme weather would have been different over the recent past in a world unaffected by human influence, following the design of Pall et al (2011), but extended to a longer period and higher spatial resolution. We will present the first results of the unique, global, participatory experiment and discuss the implications for the attribution of recent weather events to anthropogenic influence on climate.

  7. Globalizing Air Pollution

    NASA Astrophysics Data System (ADS)

    Lin, J.

    2017-12-01

    Recent studies have revealed the issue of globalizing air pollution through complex coupling of atmospheric transport (physical route) and economic trade (socioeconomic route). Recognition of such globalizing air pollution has important implications for understanding the impacts of regional and global consumption (of goods and services) on air quality, public health, climate and the ecosystems. And addressing these questions often requires improved modeling, measurements and economic-emission statistics. This talk will introduce the concept and mechanism of globalizing air pollution, with following demonstrations based on recent works on modeling, satellite measurement and multi-disciplinary assessment.

  8. A Statistical Multimodel Ensemble Approach to Improving Long-Range Forecasting in Pakistan

    DTIC Science & Technology

    2012-03-01

    Impact of global warming on monsoon variability in Pakistan. J. Anim. Pl. Sci., 21, no. 1, 107–110. Gillies, S., T. Murphree, and D. Meyer, 2012...are generated by multiple regression models that relate globally distributed oceanic and atmospheric predictors to local predictands. The...generated by multiple regression models that relate globally distributed oceanic and atmospheric predictors to local predictands. The predictands are

  9. Revisiting the climate impacts of cool roofs around the globe using an Earth system model

    NASA Astrophysics Data System (ADS)

    Zhang, Jiachen; Zhang, Kai; Liu, Junfeng; Ban-Weiss, George

    2016-08-01

    Solar reflective ‘cool roofs’ absorb less sunlight than traditional dark roofs, reducing solar heat gain, and decreasing the amount of heat transferred to the atmosphere. Widespread adoption of cool roofs could therefore reduce temperatures in urban areas, partially mitigating the urban heat island effect, and contributing to reversing the local impacts of global climate change. The impacts of cool roofs on global climate remain debated by past research and are uncertain. Using a sophisticated Earth system model, the impacts of cool roofs on climate are investigated at urban, continental, and global scales. We find that global adoption of cool roofs in urban areas reduces urban heat islands everywhere, with an annual- and global-mean decrease from 1.6 to 1.2 K. Decreases are statistically significant, except for some areas in Africa and Mexico where urban fraction is low, and some high-latitude areas during wintertime. Analysis of the surface and TOA energy budget in urban regions at continental-scale shows cool roofs causing increases in solar radiation leaving the Earth-atmosphere system in most regions around the globe, though the presence of aerosols and clouds are found to partially offset increases in upward radiation. Aerosols dampen cool roof-induced increases in upward solar radiation, ranging from 4% in the United States to 18% in more polluted China. Adoption of cool roofs also causes statistically significant reductions in surface air temperatures in urbanized regions of China (-0.11 ± 0.10 K) and the United States (-0.14 ± 0.12 K); India and Europe show statistically insignificant changes. Though past research has disagreed on whether widespread adoption of cool roofs would cool or warm global climate, these studies have lacked analysis on the statistical significance of global temperature changes. The research presented here indicates that adoption of cool roofs around the globe would lead to statistically insignificant reductions in global mean air temperature (-0.0021 ± 0.026 K). Thus, we suggest that while cool roofs are an effective tool for reducing building energy use in hot climates, urban heat islands, and regional air temperatures, their influence on global climate is likely negligible.

  10. Revisiting the Climate Impacts of Cool Roofs around the Globe Using an Earth System Model

    NASA Astrophysics Data System (ADS)

    Zhang, J.; Ban-Weiss, G. A.; Zhang, K.; Liu, J.

    2016-12-01

    Solar reflective "cool roofs" absorb less sunlight than traditional dark roofs, reducing solar heat gain, and decreasing the amount of heat transferred to the atmosphere. Widespread adoption of cool roofs could therefore reduce temperatures in urban areas, partially mitigating the urban heat island effect, and contributing to reversing the local impacts of global climate change. The impacts of cool roofs on global climate remain debated by past research and are uncertain. Using a sophisticated Earth system model, the impacts of cool roofs on climate are investigated at urban, continental, and global scales. We find that global adoption of cool roofs in urban areas reduces urban heat islands everywhere, with an annual- and global-mean decrease from 1.6 to 1.2 K. Decreases are statistically significant, except for some areas in Africa and Mexico where urban fraction is low, and some high-latitude areas during wintertime. Analysis of the surface and TOA energy budget in urban regions at continental-scale shows cool roofs causing increases in solar radiation leaving the Earth-atmosphere system in most regions around the globe, though the presence of aerosols and clouds are found to partially offset increases in upward radiation. Aerosols dampen cool roof-induced increases in upward solar radiation, ranging from 4% in the United States to 18% in more polluted China. Adoption of cool roofs also causes statistically significant reductions in surface air temperatures in urbanized regions of China (-0.11±0.10 K) and the United States (-0.14±0.12 K); India and Europe show statistically insignificant changes. Though past research has disagreed on whether widespread adoption of cool roofs would cool or warm global climate, these studies have lacked analysis on the statistical significance of global temperature changes. The research presented here indicates that adoption of cool roofs around the globe would lead to statistically insignificant reductions in global mean air temperature (-0.0021 ± 0.026 K). Thus, we suggest that while cool roofs are an effective tool for reducing building energy use in hot climates, urban heat islands, and regional air temperatures, their influence on global climate is likely negligible.

  11. An Improved Statistical Solution for Global Seismicity by the HIST-ETAS Approach

    NASA Astrophysics Data System (ADS)

    Chu, A.; Ogata, Y.; Katsura, K.

    2010-12-01

    For long-term global seismic model fitting, recent work by Chu et al. (2010) applied the spatial-temporal ETAS model (Ogata 1998) and analyzed global data partitioned into tectonic zones based on geophysical characteristics (Bird 2003), and it has shown tremendous improvements of model fitting compared with one overall global model. While the ordinary ETAS model assumes constant parameter values across the complete region analyzed, the hierarchical space-time ETAS model (HIST-ETAS, Ogata 2004) is a newly introduced approach by proposing regional distinctions of the parameters for more accurate seismic prediction. As the HIST-ETAS model has been fit to regional data of Japan (Ogata 2010), our work applies the model to describe global seismicity. Employing the Akaike's Bayesian Information Criterion (ABIC) as an assessment method, we compare the MLE results with zone divisions considered to results obtained by an overall global model. Location dependent parameters of the model and Gutenberg-Richter b-values are optimized, and seismological interpretations are discussed.

  12. Formulating Spatially Varying Performance in the Statistical Fusion Framework

    PubMed Central

    Landman, Bennett A.

    2012-01-01

    To date, label fusion methods have primarily relied either on global (e.g. STAPLE, globally weighted vote) or voxelwise (e.g. locally weighted vote) performance models. Optimality of the statistical fusion framework hinges upon the validity of the stochastic model of how a rater errs (i.e., the labeling process model). Hitherto, approaches have tended to focus on the extremes of potential models. Herein, we propose an extension to the STAPLE approach to seamlessly account for spatially varying performance by extending the performance level parameters to account for a smooth, voxelwise performance level field that is unique to each rater. This approach, Spatial STAPLE, provides significant improvements over state-of-the-art label fusion algorithms in both simulated and empirical data sets. PMID:22438513

  13. Efficient Global Aerodynamic Modeling from Flight Data

    NASA Technical Reports Server (NTRS)

    Morelli, Eugene A.

    2012-01-01

    A method for identifying global aerodynamic models from flight data in an efficient manner is explained and demonstrated. A novel experiment design technique was used to obtain dynamic flight data over a range of flight conditions with a single flight maneuver. Multivariate polynomials and polynomial splines were used with orthogonalization techniques and statistical modeling metrics to synthesize global nonlinear aerodynamic models directly and completely from flight data alone. Simulation data and flight data from a subscale twin-engine jet transport aircraft were used to demonstrate the techniques. Results showed that global multivariate nonlinear aerodynamic dependencies could be accurately identified using flight data from a single maneuver. Flight-derived global aerodynamic model structures, model parameter estimates, and associated uncertainties were provided for all six nondimensional force and moment coefficients for the test aircraft. These models were combined with a propulsion model identified from engine ground test data to produce a high-fidelity nonlinear flight simulation very efficiently. Prediction testing using a multi-axis maneuver showed that the identified global model accurately predicted aircraft responses.

  14. [Statistical prediction methods in violence risk assessment and its application].

    PubMed

    Liu, Yuan-Yuan; Hu, Jun-Mei; Yang, Min; Li, Xiao-Song

    2013-06-01

    It is an urgent global problem how to improve the violence risk assessment. As a necessary part of risk assessment, statistical methods have remarkable impacts and effects. In this study, the predicted methods in violence risk assessment from the point of statistics are reviewed. The application of Logistic regression as the sample of multivariate statistical model, decision tree model as the sample of data mining technique, and neural networks model as the sample of artificial intelligence technology are all reviewed. This study provides data in order to contribute the further research of violence risk assessment.

  15. Statistical Properties of Global Precipitation in the NCEP GFS Model and TMPA Observations for Data Assimilation

    NASA Technical Reports Server (NTRS)

    Lien, Guo-Yuan; Kalnay, Eugenia; Miyoshi, Takemasa; Huffman, George J.

    2016-01-01

    Assimilation of satellite precipitation data into numerical models presents several difficulties, with two of the most important being the non-Gaussian error distributions associated with precipitation, and large model and observation errors. As a result, improving the model forecast beyond a few hours by assimilating precipitation has been found to be difficult. To identify the challenges and propose practical solutions to assimilation of precipitation, statistics are calculated for global precipitation in a low-resolution NCEP Global Forecast System (GFS) model and the TRMM Multisatellite Precipitation Analysis (TMPA). The samples are constructed using the same model with the same forecast period, observation variables, and resolution as in the follow-on GFSTMPA precipitation assimilation experiments presented in the companion paper.The statistical results indicate that the T62 and T126 GFS models generally have positive bias in precipitation compared to the TMPA observations, and that the simulation of the marine stratocumulus precipitation is not realistic in the T62 GFS model. It is necessary to apply to precipitation either the commonly used logarithm transformation or the newly proposed Gaussian transformation to obtain a better relationship between the model and observational precipitation. When the Gaussian transformations are separately applied to the model and observational precipitation, they serve as a bias correction that corrects the amplitude-dependent biases. In addition, using a spatially andor temporally averaged precipitation variable, such as the 6-h accumulated precipitation, should be advantageous for precipitation assimilation.

  16. Load Balancing Using Time Series Analysis for Soft Real Time Systems with Statistically Periodic Loads

    NASA Technical Reports Server (NTRS)

    Hailperin, Max

    1993-01-01

    This thesis provides design and analysis of techniques for global load balancing on ensemble architectures running soft-real-time object-oriented applications with statistically periodic loads. It focuses on estimating the instantaneous average load over all the processing elements. The major contribution is the use of explicit stochastic process models for both the loading and the averaging itself. These models are exploited via statistical time-series analysis and Bayesian inference to provide improved average load estimates, and thus to facilitate global load balancing. This thesis explains the distributed algorithms used and provides some optimality results. It also describes the algorithms' implementation and gives performance results from simulation. These results show that our techniques allow more accurate estimation of the global system load ing, resulting in fewer object migration than local methods. Our method is shown to provide superior performance, relative not only to static load-balancing schemes but also to many adaptive methods.

  17. A globally calibrated scheme for generating daily meteorology from monthly statistics: Global-WGEN (GWGEN) v1.0

    NASA Astrophysics Data System (ADS)

    Sommer, Philipp S.; Kaplan, Jed O.

    2017-10-01

    While a wide range of Earth system processes occur at daily and even subdaily timescales, many global vegetation and other terrestrial dynamics models historically used monthly meteorological forcing both to reduce computational demand and because global datasets were lacking. Recently, dynamic land surface modeling has moved towards resolving daily and subdaily processes, and global datasets containing daily and subdaily meteorology have become available. These meteorological datasets, however, cover only the instrumental era of the last approximately 120 years at best, are subject to considerable uncertainty, and represent extremely large data files with associated computational costs of data input/output and file transfer. For periods before the recent past or in the future, global meteorological forcing can be provided by climate model output, but the quality of these data at high temporal resolution is low, particularly for daily precipitation frequency and amount. Here, we present GWGEN, a globally applicable statistical weather generator for the temporal downscaling of monthly climatology to daily meteorology. Our weather generator is parameterized using a global meteorological database and simulates daily values of five common variables: minimum and maximum temperature, precipitation, cloud cover, and wind speed. GWGEN is lightweight, modular, and requires a minimal set of monthly mean variables as input. The weather generator may be used in a range of applications, for example, in global vegetation, crop, soil erosion, or hydrological models. While GWGEN does not currently perform spatially autocorrelated multi-point downscaling of daily weather, this additional functionality could be implemented in future versions.

  18. Estimating global distribution of boreal, temperate, and tropical tree plant functional types using clustering techniques

    NASA Astrophysics Data System (ADS)

    Wang, Audrey; Price, David T.

    2007-03-01

    A simple integrated algorithm was developed to relate global climatology to distributions of tree plant functional types (PFT). Multivariate cluster analysis was performed to analyze the statistical homogeneity of the climate space occupied by individual tree PFTs. Forested regions identified from the satellite-based GLC2000 classification were separated into tropical, temperate, and boreal sub-PFTs for use in the Canadian Terrestrial Ecosystem Model (CTEM). Global data sets of monthly minimum temperature, growing degree days, an index of climatic moisture, and estimated PFT cover fractions were then used as variables in the cluster analysis. The statistical results for individual PFT clusters were found consistent with other global-scale classifications of dominant vegetation. As an improvement of the quantification of the climatic limitations on PFT distributions, the results also demonstrated overlapping of PFT cluster boundaries that reflected vegetation transitions, for example, between tropical and temperate biomes. The resulting global database should provide a better basis for simulating the interaction of climate change and terrestrial ecosystem dynamics using global vegetation models.

  19. Global Sensitivity Analysis of Environmental Systems via Multiple Indices based on Statistical Moments of Model Outputs

    NASA Astrophysics Data System (ADS)

    Guadagnini, A.; Riva, M.; Dell'Oca, A.

    2017-12-01

    We propose to ground sensitivity of uncertain parameters of environmental models on a set of indices based on the main (statistical) moments, i.e., mean, variance, skewness and kurtosis, of the probability density function (pdf) of a target model output. This enables us to perform Global Sensitivity Analysis (GSA) of a model in terms of multiple statistical moments and yields a quantification of the impact of model parameters on features driving the shape of the pdf of model output. Our GSA approach includes the possibility of being coupled with the construction of a reduced complexity model that allows approximating the full model response at a reduced computational cost. We demonstrate our approach through a variety of test cases. These include a commonly used analytical benchmark, a simplified model representing pumping in a coastal aquifer, a laboratory-scale tracer experiment, and the migration of fracturing fluid through a naturally fractured reservoir (source) to reach an overlying formation (target). Our strategy allows discriminating the relative importance of model parameters to the four statistical moments considered. We also provide an appraisal of the error associated with the evaluation of our sensitivity metrics by replacing the original system model through the selected surrogate model. Our results suggest that one might need to construct a surrogate model with increasing level of accuracy depending on the statistical moment considered in the GSA. The methodological framework we propose can assist the development of analysis techniques targeted to model calibration, design of experiment, uncertainty quantification and risk assessment.

  20. Local conformity induced global oscillation

    NASA Astrophysics Data System (ADS)

    Li, Dong; Li, Wei; Hu, Gang; Zheng, Zhigang

    2009-04-01

    The game ‘rock-paper-scissors’ model, with the consideration of the effect of the psychology of conformity, is investigated. The interaction between each two agents is global, but the strategy of the conformity is local for individuals. In the statistical opinion, the probability of the appearance of each strategy is uniform. The dynamical analysis of this model indicates that the equilibrium state may lose its stability at a threshold and is replaced by a globally oscillating state. The global oscillation is induced by the local conformity, which is originated from the synchronization of individual strategies.

  1. Wave and Wind Model Performance Metrics Tools

    NASA Astrophysics Data System (ADS)

    Choi, J. K.; Wang, D. W.

    2016-02-01

    Continual improvements and upgrades of Navy ocean wave and wind models are essential to the assurance of battlespace environment predictability of ocean surface wave and surf conditions in support of Naval global operations. Thus, constant verification and validation of model performance is equally essential to assure the progress of model developments and maintain confidence in the predictions. Global and regional scale model evaluations may require large areas and long periods of time. For observational data to compare against, altimeter winds and waves along the tracks from past and current operational satellites as well as moored/drifting buoys can be used for global and regional coverage. Using data and model runs in previous trials such as the planned experiment, the Dynamics of the Adriatic in Real Time (DART), we demonstrated the use of accumulated altimeter wind and wave data over several years to obtain an objective evaluation of the performance the SWAN (Simulating Waves Nearshore) model running in the Adriatic Sea. The assessment provided detailed performance of wind and wave models by using cell-averaged statistical variables maps with spatial statistics including slope, correlation, and scatter index to summarize model performance. Such a methodology is easily generalized to other regions and at global scales. Operational technology currently used by subject matter experts evaluating the Navy Coastal Ocean Model and the Hybrid Coordinate Ocean Model can be expanded to evaluate wave and wind models using tools developed for ArcMAP, a GIS application developed by ESRI. Recent inclusion of altimeter and buoy data into a format through the Naval Oceanographic Office's (NAVOCEANO) quality control system and the netCDF standards applicable to all model output makes it possible for the fusion of these data and direct model verification. Also, procedures were developed for the accumulation of match-ups of modelled and observed parameters to form a data base with which statistics are readily calculated, for the short or long term. Such a system has potential for a quick transition to operations at NAVOCEANO.

  2. An Intercomparison of the Dynamical Cores of Global Atmospheric Circulation Models for Mars

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.

    1998-01-01

    This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Center and San Jose State University, Department of Meteorology. The focus of this JRI has been to evaluate the dynamical 'cores' of two global atmospheric circulation models for Mars that are in operation at the NASA Ames Research Center. The two global circulation models in use are fundamentally different: one uses spherical harmonics in its horizontal representation of field variables; the other uses finite differences on a uniform longitude-latitude grid. Several simulations have been conducted to assess how the dynamical processors of each of these circulation models perform using identical 'simple physics' parameterizations. A variety of climate statistics (e.g., time-mean flows and eddy fields) have been compared for realistic solstitial mean basic states. Results of this research have demonstrated that the two Mars circulation models with completely different spatial representations and discretizations produce rather similar circulation statistics for first-order meteorological fields, suggestive of a tendency for convergence of numerical solutions. Second and higher-order fields can, however, vary significantly between the two models.

  3. An Intercomparison of the Dynamical Cores of Global Atmospheric Circulation Models for Mars

    NASA Technical Reports Server (NTRS)

    Hollingsworth, Jeffery L.; Bridger, Alison F. C.; Haberle, Robert M.

    1998-01-01

    This is a Final Report for a Joint Research Interchange (JRI) between NASA Ames Research Cen- ter and San Jose State University, Department of Meteorology. The focus of this JRI has been to evaluate the dynamical "cores" of two global atmospheric circulation models for Mars that are in operation at the NASA Ames Research Center. ne two global circulation models in use are fundamentally different: one uses spherical harmonics in its horizontal representation of field variables; the other uses finite differences on a uniform longitude-latitude grid. Several simulations have been conducted to assess how the dynamical processors of each of these circulation models perform using identical "simple physics" parameterizations. A variety of climate statistics (e.g., time-mean flows and eddy fields) have been compared for realistic solstitial mean basic states. Results of this research have demonstrated that the two Mars circulation models with completely different spatial representations and discretizations produce rather similar circulation statistics for first-order meteorological fields, suggestive of a tendency for convergence of numerical solutions. Second and higher-order fields can, however, vary significantly between the two models.

  4. An evaluation of 20th century climate for the Southeastern United States as simulated by Coupled Model Intercomparison Project Phase 5 (CMIP5) global climate models

    USGS Publications Warehouse

    David E. Rupp,

    2016-05-05

    The 20th century climate for the Southeastern United States and surrounding areas as simulated by global climate models used in the Coupled Model Intercomparison Project Phase 5 (CMIP5) was evaluated. A suite of statistics that characterize various aspects of the regional climate was calculated from both model simulations and observation-based datasets. CMIP5 global climate models were ranked by their ability to reproduce the observed climate. Differences in the performance of the models between regions of the United States (the Southeastern and Northwestern United States) warrant a regional-scale assessment of CMIP5 models.

  5. Wave Propagation in Non-Stationary Statistical Mantle Models at the Global Scale

    NASA Astrophysics Data System (ADS)

    Meschede, M.; Romanowicz, B. A.

    2014-12-01

    We study the effect of statistically distributed heterogeneities that are smaller than the resolution of current tomographic models on seismic waves that propagate through the Earth's mantle at teleseismic distances. Current global tomographic models are missing small-scale structure as evidenced by the failure of even accurate numerical synthetics to explain enhanced coda in observed body and surface waveforms. One way to characterize small scale heterogeneity is to construct random models and confront observed coda waveforms with predictions from these models. Statistical studies of the coda typically rely on models with simplified isotropic and stationary correlation functions in Cartesian geometries. We show how to construct more complex random models for the mantle that can account for arbitrary non-stationary and anisotropic correlation functions as well as for complex geometries. Although this method is computationally heavy, model characteristics such as translational, cylindrical or spherical symmetries can be used to greatly reduce the complexity such that this method becomes practical. With this approach, we can create 3D models of the full spherical Earth that can be radially anisotropic, i.e. with different horizontal and radial correlation functions, and radially non-stationary, i.e. with radially varying model power and correlation functions. Both of these features are crucial for a statistical description of the mantle in which structure depends to first order on the spherical geometry of the Earth. We combine different random model realizations of S velocity with current global tomographic models that are robust at long wavelengths (e.g. Meschede and Romanowicz, 2014, GJI submitted), and compute the effects of these hybrid models on the wavefield with a spectral element code (SPECFEM3D_GLOBE). We finally analyze the resulting coda waves for our model selection and compare our computations with observations. Based on these observations, we make predictions about the strength of unresolved small-scale structure and extrinsic attenuation.

  6. A two-component rain model for the prediction of attenuation and diversity improvement

    NASA Technical Reports Server (NTRS)

    Crane, R. K.

    1982-01-01

    A new model was developed to predict attenuation statistics for a single Earth-satellite or terrestrial propagation path. The model was extended to provide predictions of the joint occurrences of specified or higher attenuation values on two closely spaced Earth-satellite paths. The joint statistics provide the information required to obtain diversity gain or diversity advantage estimates. The new model is meteorologically based. It was tested against available Earth-satellite beacon observations and terrestrial path measurements. The model employs the rain climate region descriptions of the Global rain model. The rms deviation between the predicted and observed attenuation values for the terrestrial path data was 35 percent, a result consistent with the expectations of the Global model when the rain rate distribution for the path is not used in the calculation. Within the United States the rms deviation between measurement and prediction was 36 percent but worldwide it was 79 percent.

  7. Distinguishing models of reionization using future radio observations of 21-cm 1-point statistics

    NASA Astrophysics Data System (ADS)

    Watkinson, C. A.; Pritchard, J. R.

    2014-10-01

    We explore the impact of reionization topology on 21-cm statistics. Four reionization models are presented which emulate large ionized bubbles around overdense regions (21CMFAST/global-inside-out), small ionized bubbles in overdense regions (local-inside-out), large ionized bubbles around underdense regions (global-outside-in) and small ionized bubbles around underdense regions (local-outside-in). We show that first generation instruments might struggle to distinguish global models using the shape of the power spectrum alone. All instruments considered are capable of breaking this degeneracy with the variance, which is higher in outside-in models. Global models can also be distinguished at small scales from a boost in the power spectrum from a positive correlation between the density and neutral-fraction fields in outside-in models. Negative skewness is found to be unique to inside-out models and we find that pre-Square Kilometre Array (SKA) instruments could detect this feature in maps smoothed to reduce noise errors. The early, mid- and late phases of reionization imprint signatures in the brightness-temperature moments, we examine their model dependence and find pre-SKA instruments capable of exploiting these timing constraints in smoothed maps. The dimensional skewness is introduced and is shown to have stronger signatures of the early and mid-phase timing if the inside-out scenario is correct.

  8. An adaptive multi-feature segmentation model for infrared image

    NASA Astrophysics Data System (ADS)

    Zhang, Tingting; Han, Jin; Zhang, Yi; Bai, Lianfa

    2016-04-01

    Active contour models (ACM) have been extensively applied to image segmentation, conventional region-based active contour models only utilize global or local single feature information to minimize the energy functional to drive the contour evolution. Considering the limitations of original ACMs, an adaptive multi-feature segmentation model is proposed to handle infrared images with blurred boundaries and low contrast. In the proposed model, several essential local statistic features are introduced to construct a multi-feature signed pressure function (MFSPF). In addition, we draw upon the adaptive weight coefficient to modify the level set formulation, which is formed by integrating MFSPF with local statistic features and signed pressure function with global information. Experimental results demonstrate that the proposed method can make up for the inadequacy of the original method and get desirable results in segmenting infrared images.

  9. Adaptive Error Estimation in Linearized Ocean General Circulation Models

    NASA Technical Reports Server (NTRS)

    Chechelnitsky, Michael Y.

    1999-01-01

    Data assimilation methods are routinely used in oceanography. The statistics of the model and measurement errors need to be specified a priori. This study addresses the problem of estimating model and measurement error statistics from observations. We start by testing innovation based methods of adaptive error estimation with low-dimensional models in the North Pacific (5-60 deg N, 132-252 deg E) to TOPEX/POSEIDON (TIP) sea level anomaly data, acoustic tomography data from the ATOC project, and the MIT General Circulation Model (GCM). A reduced state linear model that describes large scale internal (baroclinic) error dynamics is used. The methods are shown to be sensitive to the initial guess for the error statistics and the type of observations. A new off-line approach is developed, the covariance matching approach (CMA), where covariance matrices of model-data residuals are "matched" to their theoretical expectations using familiar least squares methods. This method uses observations directly instead of the innovations sequence and is shown to be related to the MT method and the method of Fu et al. (1993). Twin experiments using the same linearized MIT GCM suggest that altimetric data are ill-suited to the estimation of internal GCM errors, but that such estimates can in theory be obtained using acoustic data. The CMA is then applied to T/P sea level anomaly data and a linearization of a global GFDL GCM which uses two vertical modes. We show that the CMA method can be used with a global model and a global data set, and that the estimates of the error statistics are robust. We show that the fraction of the GCM-T/P residual variance explained by the model error is larger than that derived in Fukumori et al.(1999) with the method of Fu et al.(1993). Most of the model error is explained by the barotropic mode. However, we find that impact of the change in the error statistics on the data assimilation estimates is very small. This is explained by the large representation error, i.e. the dominance of the mesoscale eddies in the T/P signal, which are not part of the 21 by 1" GCM. Therefore, the impact of the observations on the assimilation is very small even after the adjustment of the error statistics. This work demonstrates that simult&neous estimation of the model and measurement error statistics for data assimilation with global ocean data sets and linearized GCMs is possible. However, the error covariance estimation problem is in general highly underdetermined, much more so than the state estimation problem. In other words there exist a very large number of statistical models that can be made consistent with the available data. Therefore, methods for obtaining quantitative error estimates, powerful though they may be, cannot replace physical insight. Used in the right context, as a tool for guiding the choice of a small number of model error parameters, covariance matching can be a useful addition to the repertory of tools available to oceanographers.

  10. Statistical fluctuations in pedestrian evacuation times and the effect of social contagion

    NASA Astrophysics Data System (ADS)

    Nicolas, Alexandre; Bouzat, Sebastián; Kuperman, Marcelo N.

    2016-08-01

    Mathematical models of pedestrian evacuation and the associated simulation software have become essential tools for the assessment of the safety of public facilities and buildings. While a variety of models is now available, their calibration and test against empirical data are generally restricted to global averaged quantities; the statistics compiled from the time series of individual escapes ("microscopic" statistics) measured in recent experiments are thus overlooked. In the same spirit, much research has primarily focused on the average global evacuation time, whereas the whole distribution of evacuation times over some set of realizations should matter. In the present paper we propose and discuss the validity of a simple relation between this distribution and the microscopic statistics, which is theoretically valid in the absence of correlations. To this purpose, we develop a minimal cellular automaton, with features that afford a semiquantitative reproduction of the experimental microscopic statistics. We then introduce a process of social contagion of impatient behavior in the model and show that the simple relation under test may dramatically fail at high contagion strengths, the latter being responsible for the emergence of strong correlations in the system. We conclude with comments on the potential practical relevance for safety science of calculations based on microscopic statistics.

  11. Methods to achieve accurate projection of regional and global raster databases

    USGS Publications Warehouse

    Usery, E. Lynn; Seong, Jeong Chang; Steinwand, Dan

    2002-01-01

    Modeling regional and global activities of climatic and human-induced change requires accurate geographic data from which we can develop mathematical and statistical tabulations of attributes and properties of the environment. Many of these models depend on data formatted as raster cells or matrices of pixel values. Recently, it has been demonstrated that regional and global raster datasets are subject to significant error from mathematical projection and that these errors are of such magnitude that model results may be jeopardized (Steinwand, et al., 1995; Yang, et al., 1996; Usery and Seong, 2001; Seong and Usery, 2001). There is a need to develop methods of projection that maintain the accuracy of these datasets to support regional and global analyses and modeling

  12. Reduction of chemical reaction models

    NASA Technical Reports Server (NTRS)

    Frenklach, Michael

    1991-01-01

    An attempt is made to reconcile the different terminologies pertaining to reduction of chemical reaction models. The approaches considered include global modeling, response modeling, detailed reduction, chemical lumping, and statistical lumping. The advantages and drawbacks of each of these methods are pointed out.

  13. Assessment of Global Forecast Ocean Assimilation Model (FOAM) using new satellite SST data

    NASA Astrophysics Data System (ADS)

    Ascione Kenov, Isabella; Sykes, Peter; Fiedler, Emma; McConnell, Niall; Ryan, Andrew; Maksymczuk, Jan

    2016-04-01

    There is an increased demand for accurate ocean weather information for applications in the field of marine safety and navigation, water quality, offshore commercial operations, monitoring of oil spills and pollutants, among others. The Met Office, UK, provides ocean forecasts to customers from governmental, commercial and ecological sectors using the Global Forecast Ocean Assimilation Model (FOAM), an operational modelling system which covers the global ocean and runs daily, using the NEMO (Nucleus for European Modelling of the Ocean) ocean model with horizontal resolution of 1/4° and 75 vertical levels. The system assimilates salinity and temperature profiles, sea surface temperature (SST), sea surface height (SSH), and sea ice concentration observations on a daily basis. In this study, the FOAM system is updated to assimilate Advanced Microwave Scanning Radiometer 2 (AMSR2) and the Spinning Enhanced Visible and Infrared Imager (SEVIRI) SST data. Model results from one month trials are assessed against observations using verification tools which provide a quantitative description of model performance and error, based on statistical metrics, including mean error, root mean square error (RMSE), correlation coefficient, and Taylor diagrams. A series of hindcast experiments is used to run the FOAM system with AMSR2 and SEVIRI SST data, using a control run for comparison. Results show that all trials perform well on the global ocean and that largest SST mean errors were found in the Southern hemisphere. The geographic distribution of the model error for SST and temperature profiles are discussed using statistical metrics evaluated over sub-regions of the global ocean.

  14. Revised Perturbation Statistics for the Global Scale Atmospheric Model

    NASA Technical Reports Server (NTRS)

    Justus, C. G.; Woodrum, A.

    1975-01-01

    Magnitudes and scales of atmospheric perturbations about the monthly mean for the thermodynamic variables and wind components are presented by month at various latitudes. These perturbation statistics are a revision of the random perturbation data required for the global scale atmospheric model program and are from meteorological rocket network statistical summaries in the 22 to 65 km height range and NASA grenade and pitot tube data summaries in the region up to 90 km. The observed perturbations in the thermodynamic variables were adjusted to make them consistent with constraints required by the perfect gas law and the hydrostatic equation. Vertical scales were evaluated by Buell's depth of pressure system equation and from vertical structure function analysis. Tables of magnitudes and vertical scales are presented for each month at latitude 10, 30, 50, 70, and 90 degrees.

  15. Time series modelling of global mean temperature for managerial decision-making.

    PubMed

    Romilly, Peter

    2005-07-01

    Climate change has important implications for business and economic activity. Effective management of climate change impacts will depend on the availability of accurate and cost-effective forecasts. This paper uses univariate time series techniques to model the properties of a global mean temperature dataset in order to develop a parsimonious forecasting model for managerial decision-making over the short-term horizon. Although the model is estimated on global temperature data, the methodology could also be applied to temperature data at more localised levels. The statistical techniques include seasonal and non-seasonal unit root testing with and without structural breaks, as well as ARIMA and GARCH modelling. A forecasting evaluation shows that the chosen model performs well against rival models. The estimation results confirm the findings of a number of previous studies, namely that global mean temperatures increased significantly throughout the 20th century. The use of GARCH modelling also shows the presence of volatility clustering in the temperature data, and a positive association between volatility and global mean temperature.

  16. User Selection Criteria of Airspace Designs in Flexible Airspace Management

    NASA Technical Reports Server (NTRS)

    Lee, Hwasoo E.; Lee, Paul U.; Jung, Jaewoo; Lai, Chok Fung

    2011-01-01

    A method for identifying global aerodynamic models from flight data in an efficient manner is explained and demonstrated. A novel experiment design technique was used to obtain dynamic flight data over a range of flight conditions with a single flight maneuver. Multivariate polynomials and polynomial splines were used with orthogonalization techniques and statistical modeling metrics to synthesize global nonlinear aerodynamic models directly and completely from flight data alone. Simulation data and flight data from a subscale twin-engine jet transport aircraft were used to demonstrate the techniques. Results showed that global multivariate nonlinear aerodynamic dependencies could be accurately identified using flight data from a single maneuver. Flight-derived global aerodynamic model structures, model parameter estimates, and associated uncertainties were provided for all six nondimensional force and moment coefficients for the test aircraft. These models were combined with a propulsion model identified from engine ground test data to produce a high-fidelity nonlinear flight simulation very efficiently. Prediction testing using a multi-axis maneuver showed that the identified global model accurately predicted aircraft responses.

  17. Application of neural network technique to determine a corrector surface for global geopotential model using GPS/levelling measurements in Egypt

    NASA Astrophysics Data System (ADS)

    Elshambaky, Hossam Talaat

    2018-01-01

    Owing to the appearance of many global geopotential models, it is necessary to determine the most appropriate model for use in Egyptian territory. In this study, we aim to investigate three global models, namely EGM2008, EIGEN-6c4, and GECO. We use five mathematical transformation techniques, i.e., polynomial expression, exponential regression, least-squares collocation, multilayer feed forward neural network, and radial basis neural networks to make the conversion from regional geometrical geoid to global geoid models and vice versa. From a statistical comparison study based on quality indexes between previous transformation techniques, we confirm that the multilayer feed forward neural network with two neurons is the most accurate of the examined transformation technique, and based on the mean tide condition, EGM2008 represents the most suitable global geopotential model for use in Egyptian territory to date. The final product gained from this study was the corrector surface that was used to facilitate the transformation process between regional geometrical geoid model and the global geoid model.

  18. Load Balancing Using Time Series Analysis for Soft Real Time Systems with Statistically Periodic Loads

    NASA Technical Reports Server (NTRS)

    Hailperin, M.

    1993-01-01

    This thesis provides design and analysis of techniques for global load balancing on ensemble architectures running soft-real-time object-oriented applications with statistically periodic loads. It focuses on estimating the instantaneous average load over all the processing elements. The major contribution is the use of explicit stochastic process models for both the loading and the averaging itself. These models are exploited via statistical time-series analysis and Bayesian inference to provide improved average load estimates, and thus to facilitate global load balancing. This thesis explains the distributed algorithms used and provides some optimality results. It also describes the algorithms' implementation and gives performance results from simulation. These results show that the authors' techniques allow more accurate estimation of the global system loading, resulting in fewer object migrations than local methods. The authors' method is shown to provide superior performance, relative not only to static load-balancing schemes but also to many adaptive load-balancing methods. Results from a preliminary analysis of another system and from simulation with a synthetic load provide some evidence of more general applicability.

  19. A global reconstruction of climate-driven subdecadal water storage variability

    NASA Astrophysics Data System (ADS)

    Humphrey, V.; Gudmundsson, L.; Seneviratne, S. I.

    2017-03-01

    Since 2002, the Gravity Recovery and Climate Experiment (GRACE) mission has provided unprecedented observations of global mass redistribution caused by hydrological processes. However, there are still few sources on pre-2002 global terrestrial water storage (TWS). Classical approaches to retrieve past TWS rely on either land surface models (LSMs) or basin-scale water balance calculations. Here we propose a new approach which statistically relates anomalies in atmospheric drivers to monthly GRACE anomalies. Gridded subdecadal TWS changes and time-dependent uncertainty intervals are reconstructed for the period 1985-2015. Comparisons with model results demonstrate the performance and robustness of the derived data set, which represents a new and valuable source for studying subdecadal TWS variability, closing the ocean/land water budgets and assessing GRACE uncertainties. At midpoint between GRACE observations and LSM simulations, the statistical approach provides TWS estimates (doi:10.5905/ethz-1007-85) that are essentially derived from observations and are based on a limited number of transparent model assumptions.

  20. Statistical wave climate projections for coastal impact assessments

    NASA Astrophysics Data System (ADS)

    Camus, P.; Losada, I. J.; Izaguirre, C.; Espejo, A.; Menéndez, M.; Pérez, J.

    2017-09-01

    Global multimodel wave climate projections are obtained at 1.0° × 1.0° scale from 30 Coupled Model Intercomparison Project Phase 5 (CMIP5) global circulation model (GCM) realizations. A semi-supervised weather-typing approach based on a characterization of the ocean wave generation areas and the historical wave information from the recent GOW2 database are used to train the statistical model. This framework is also applied to obtain high resolution projections of coastal wave climate and coastal impacts as port operability and coastal flooding. Regional projections are estimated using the collection of weather types at spacing of 1.0°. This assumption is feasible because the predictor is defined based on the wave generation area and the classification is guided by the local wave climate. The assessment of future changes in coastal impacts is based on direct downscaling of indicators defined by empirical formulations (total water level for coastal flooding and number of hours per year with overtopping for port operability). Global multimodel projections of the significant wave height and peak period are consistent with changes obtained in previous studies. Statistical confidence of expected changes is obtained due to the large number of GCMs to construct the ensemble. The proposed methodology is proved to be flexible to project wave climate at different spatial scales. Regional changes of additional variables as wave direction or other statistics can be estimated from the future empirical distribution with extreme values restricted to high percentiles (i.e., 95th, 99th percentiles). The statistical framework can also be applied to evaluate regional coastal impacts integrating changes in storminess and sea level rise.

  1. Chapman Conference on the Hydrologic Aspects of Global Climate Change, Lake Chelan, WA, June 12-14, 1990, Selected Papers

    NASA Technical Reports Server (NTRS)

    Lettenmaier, Dennis P. (Editor); Rind, D. (Editor)

    1992-01-01

    The present conference on the hydrological aspects of global climate change discusses land-surface schemes for future climate models, modeling of the land-surface boundary in climate models as a composite of independent vegetation, a land-surface hydrology parameterizaton with subgrid variability for general circulation models, and conceptual aspects of a statistical-dynamical approach to represent landscape subgrid-scale heterogeneities in atmospheric models. Attention is given to the impact of global warming on river runoff, the influence of atmospheric moisture transport on the fresh water balance of the Atlantic drainage basin, a comparison of observations and model simulations of tropospheric water vapor, and the use of weather types to disaggregate the prediction of general circulation models. Topics addressed include the potential response of an Arctic watershed during a period of global warming and the sensitivity of groundwater recharge estimates to climate variability and change.

  2. Similar Estimates of Temperature Impacts on Global Wheat Yield by Three Independent Methods

    NASA Technical Reports Server (NTRS)

    Liu, Bing; Asseng, Senthold; Muller, Christoph; Ewart, Frank; Elliott, Joshua; Lobell, David B.; Martre, Pierre; Ruane, Alex C.; Wallach, Daniel; Jones, James W.; hide

    2016-01-01

    The potential impact of global temperature change on global crop yield has recently been assessed with different methods. Here we show that grid-based and point-based simulations and statistical regressions (from historic records), without deliberate adaptation or CO2 fertilization effects, produce similar estimates of temperature impact on wheat yields at global and national scales. With a 1 C global temperature increase, global wheat yield is projected to decline between 4.1% and 6.4%. Projected relative temperature impacts from different methods were similar for major wheat-producing countries China, India, USA and France, but less so for Russia. Point-based and grid-based simulations, and to some extent the statistical regressions, were consistent in projecting that warmer regions are likely to suffer more yield loss with increasing temperature than cooler regions. By forming a multi-method ensemble, it was possible to quantify 'method uncertainty' in addition to model uncertainty. This significantly improves confidence in estimates of climate impacts on global food security.

  3. Similar estimates of temperature impacts on global wheat yield by three independent methods

    NASA Astrophysics Data System (ADS)

    Liu, Bing; Asseng, Senthold; Müller, Christoph; Ewert, Frank; Elliott, Joshua; Lobell, David B.; Martre, Pierre; Ruane, Alex C.; Wallach, Daniel; Jones, James W.; Rosenzweig, Cynthia; Aggarwal, Pramod K.; Alderman, Phillip D.; Anothai, Jakarat; Basso, Bruno; Biernath, Christian; Cammarano, Davide; Challinor, Andy; Deryng, Delphine; Sanctis, Giacomo De; Doltra, Jordi; Fereres, Elias; Folberth, Christian; Garcia-Vila, Margarita; Gayler, Sebastian; Hoogenboom, Gerrit; Hunt, Leslie A.; Izaurralde, Roberto C.; Jabloun, Mohamed; Jones, Curtis D.; Kersebaum, Kurt C.; Kimball, Bruce A.; Koehler, Ann-Kristin; Kumar, Soora Naresh; Nendel, Claas; O'Leary, Garry J.; Olesen, Jørgen E.; Ottman, Michael J.; Palosuo, Taru; Prasad, P. V. Vara; Priesack, Eckart; Pugh, Thomas A. M.; Reynolds, Matthew; Rezaei, Ehsan E.; Rötter, Reimund P.; Schmid, Erwin; Semenov, Mikhail A.; Shcherbak, Iurii; Stehfest, Elke; Stöckle, Claudio O.; Stratonovitch, Pierre; Streck, Thilo; Supit, Iwan; Tao, Fulu; Thorburn, Peter; Waha, Katharina; Wall, Gerard W.; Wang, Enli; White, Jeffrey W.; Wolf, Joost; Zhao, Zhigan; Zhu, Yan

    2016-12-01

    The potential impact of global temperature change on global crop yield has recently been assessed with different methods. Here we show that grid-based and point-based simulations and statistical regressions (from historic records), without deliberate adaptation or CO2 fertilization effects, produce similar estimates of temperature impact on wheat yields at global and national scales. With a 1 °C global temperature increase, global wheat yield is projected to decline between 4.1% and 6.4%. Projected relative temperature impacts from different methods were similar for major wheat-producing countries China, India, USA and France, but less so for Russia. Point-based and grid-based simulations, and to some extent the statistical regressions, were consistent in projecting that warmer regions are likely to suffer more yield loss with increasing temperature than cooler regions. By forming a multi-method ensemble, it was possible to quantify `method uncertainty’ in addition to model uncertainty. This significantly improves confidence in estimates of climate impacts on global food security.

  4. Observations of geographically correlated orbit errors for TOPEX/Poseidon using the global positioning system

    NASA Technical Reports Server (NTRS)

    Christensen, E. J.; Haines, B. J.; Mccoll, K. C.; Nerem, R. S.

    1994-01-01

    We have compared Global Positioning System (GPS)-based dynamic and reduced-dynamic TOPEX/Poseidon orbits over three 10-day repeat cycles of the ground-track. The results suggest that the prelaunch joint gravity model (JGM-1) introduces geographically correlated errors (GCEs) which have a strong meridional dependence. The global distribution and magnitude of these GCEs are consistent with a prelaunch covariance analysis, with estimated and predicted global rms error statistics of 2.3 and 2.4 cm rms, respectively. Repeating the analysis with the post-launch joint gravity model (JGM-2) suggests that a portion of the meridional dependence observed in JGM-1 still remains, with global rms error of 1.2 cm.

  5. Statistical Downscaling of WRF-Chem Model: An Air Quality Analysis over Bogota, Colombia

    NASA Astrophysics Data System (ADS)

    Kumar, Anikender; Rojas, Nestor

    2015-04-01

    Statistical downscaling is a technique that is used to extract high-resolution information from regional scale variables produced by coarse resolution models such as Chemical Transport Models (CTMs). The fully coupled WRF-Chem (Weather Research and Forecasting with Chemistry) model is used to simulate air quality over Bogota. Bogota is a tropical Andean megacity located over a high-altitude plateau in the middle of very complex terrain. The WRF-Chem model was adopted for simulating the hourly ozone concentrations. The computational domains were chosen of 120x120x32, 121x121x32 and 121x121x32 grid points with horizontal resolutions of 27, 9 and 3 km respectively. The model was initialized with real boundary conditions using NCAR-NCEP's Final Analysis (FNL) and a 1ox1o (~111 km x 111 km) resolution. Boundary conditions were updated every 6 hours using reanalysis data. The emission rates were obtained from global inventories, namely the REanalysis of the TROpospheric (RETRO) chemical composition and the Emission Database for Global Atmospheric Research (EDGAR). Multiple linear regression and artificial neural network techniques are used to downscale the model output at each monitoring stations. The results confirm that the statistically downscaled outputs reduce simulated errors by up to 25%. This study provides a general overview of statistical downscaling of chemical transport models and can constitute a reference for future air quality modeling exercises over Bogota and other Colombian cities.

  6. Evaluation and Applications of Cloud Climatologies from CALIOP

    NASA Technical Reports Server (NTRS)

    Winker, David; Getzewitch, Brian; Vaughan, Mark

    2008-01-01

    Clouds have a major impact on the Earth radiation budget and differences in the representation of clouds in global climate models are responsible for much of the spread in predicted climate sensitivity. Existing cloud climatologies, against which these models can be tested, have many limitations. The CALIOP lidar, carried on the CALIPSO satellite, has now acquired over two years of nearly continuous cloud and aerosol observations. This dataset provides an improved basis for the characterization of 3-D global cloudiness. Global average cloud cover measured by CALIOP is about 75%, significantly higher than for existing cloud climatologies due to the sensitivity of CALIOP to optically thin cloud. Day/night biases in cloud detection appear to be small. This presentation will discuss detection sensitivity and other issues associated with producing a cloud climatology, characteristics of cloud cover statistics derived from CALIOP data, and applications of those statistics.

  7. Statistical ecology comes of age.

    PubMed

    Gimenez, Olivier; Buckland, Stephen T; Morgan, Byron J T; Bez, Nicolas; Bertrand, Sophie; Choquet, Rémi; Dray, Stéphane; Etienne, Marie-Pierre; Fewster, Rachel; Gosselin, Frédéric; Mérigot, Bastien; Monestiez, Pascal; Morales, Juan M; Mortier, Frédéric; Munoz, François; Ovaskainen, Otso; Pavoine, Sandrine; Pradel, Roger; Schurr, Frank M; Thomas, Len; Thuiller, Wilfried; Trenkel, Verena; de Valpine, Perry; Rexstad, Eric

    2014-12-01

    The desire to predict the consequences of global environmental change has been the driver towards more realistic models embracing the variability and uncertainties inherent in ecology. Statistical ecology has gelled over the past decade as a discipline that moves away from describing patterns towards modelling the ecological processes that generate these patterns. Following the fourth International Statistical Ecology Conference (1-4 July 2014) in Montpellier, France, we analyse current trends in statistical ecology. Important advances in the analysis of individual movement, and in the modelling of population dynamics and species distributions, are made possible by the increasing use of hierarchical and hidden process models. Exciting research perspectives include the development of methods to interpret citizen science data and of efficient, flexible computational algorithms for model fitting. Statistical ecology has come of age: it now provides a general and mathematically rigorous framework linking ecological theory and empirical data.

  8. Statistical ecology comes of age

    PubMed Central

    Gimenez, Olivier; Buckland, Stephen T.; Morgan, Byron J. T.; Bez, Nicolas; Bertrand, Sophie; Choquet, Rémi; Dray, Stéphane; Etienne, Marie-Pierre; Fewster, Rachel; Gosselin, Frédéric; Mérigot, Bastien; Monestiez, Pascal; Morales, Juan M.; Mortier, Frédéric; Munoz, François; Ovaskainen, Otso; Pavoine, Sandrine; Pradel, Roger; Schurr, Frank M.; Thomas, Len; Thuiller, Wilfried; Trenkel, Verena; de Valpine, Perry; Rexstad, Eric

    2014-01-01

    The desire to predict the consequences of global environmental change has been the driver towards more realistic models embracing the variability and uncertainties inherent in ecology. Statistical ecology has gelled over the past decade as a discipline that moves away from describing patterns towards modelling the ecological processes that generate these patterns. Following the fourth International Statistical Ecology Conference (1–4 July 2014) in Montpellier, France, we analyse current trends in statistical ecology. Important advances in the analysis of individual movement, and in the modelling of population dynamics and species distributions, are made possible by the increasing use of hierarchical and hidden process models. Exciting research perspectives include the development of methods to interpret citizen science data and of efficient, flexible computational algorithms for model fitting. Statistical ecology has come of age: it now provides a general and mathematically rigorous framework linking ecological theory and empirical data. PMID:25540151

  9. Modeling Soot Oxidation and Gasification with Bayesian Statistics

    DOE PAGES

    Josephson, Alexander J.; Gaffin, Neal D.; Smith, Sean T.; ...

    2017-08-22

    This paper presents a statistical method for model calibration using data collected from literature. The method is used to calibrate parameters for global models of soot consumption in combustion systems. This consumption is broken into two different submodels: first for oxidation where soot particles are attacked by certain oxidizing agents; second for gasification where soot particles are attacked by H 2O or CO 2 molecules. Rate data were collected from 19 studies in the literature and evaluated using Bayesian statistics to calibrate the model parameters. Bayesian statistics are valued in their ability to quantify uncertainty in modeling. The calibrated consumptionmore » model with quantified uncertainty is presented here along with a discussion of associated implications. The oxidation results are found to be consistent with previous studies. Significant variation is found in the CO 2 gasification rates.« less

  10. Modeling Soot Oxidation and Gasification with Bayesian Statistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josephson, Alexander J.; Gaffin, Neal D.; Smith, Sean T.

    This paper presents a statistical method for model calibration using data collected from literature. The method is used to calibrate parameters for global models of soot consumption in combustion systems. This consumption is broken into two different submodels: first for oxidation where soot particles are attacked by certain oxidizing agents; second for gasification where soot particles are attacked by H 2O or CO 2 molecules. Rate data were collected from 19 studies in the literature and evaluated using Bayesian statistics to calibrate the model parameters. Bayesian statistics are valued in their ability to quantify uncertainty in modeling. The calibrated consumptionmore » model with quantified uncertainty is presented here along with a discussion of associated implications. The oxidation results are found to be consistent with previous studies. Significant variation is found in the CO 2 gasification rates.« less

  11. Structural uncertainty of downscaled climate model output in a difficult-to-resolve environment: data sparseness and parameterization error contribution to statistical and dynamical downscaling output in the U.S. Caribbean region

    NASA Astrophysics Data System (ADS)

    Terando, A. J.; Grade, S.; Bowden, J.; Henareh Khalyani, A.; Wootten, A.; Misra, V.; Collazo, J.; Gould, W. A.; Boyles, R.

    2016-12-01

    Sub-tropical island nations may be particularly vulnerable to anthropogenic climate change because of predicted changes in the hydrologic cycle that would lead to significant drying in the future. However, decision makers in these regions have seen their adaptation planning efforts frustrated by the lack of island-resolving climate model information. Recently, two investigations have used statistical and dynamical downscaling techniques to develop climate change projections for the U.S. Caribbean region (Puerto Rico and U.S. Virgin Islands). We compare the results from these two studies with respect to three commonly downscaled CMIP5 global climate models (GCMs). The GCMs were dynamically downscaled at a convective-permitting scale using two different regional climate models. The statistical downscaling approach was conducted at locations with long-term climate observations and then further post-processed using climatologically aided interpolation (yielding two sets of projections). Overall, both approaches face unique challenges. The statistical approach suffers from a lack of observations necessary to constrain the model, particularly at the land-ocean boundary and in complex terrain. The dynamically downscaled model output has a systematic dry bias over the island despite ample availability of moisture in the atmospheric column. Notwithstanding these differences, both approaches are consistent in projecting a drier climate that is driven by the strong global-scale anthropogenic forcing.

  12. Global map of lithosphere thermal thickness on a 1 deg x 1 deg grid - digitally available

    NASA Astrophysics Data System (ADS)

    Artemieva, Irina

    2014-05-01

    This presentation reports a 1 deg ×1 deg global thermal model for the continental lithosphere (TC1). The model is digitally available from the author's web-site: www.lithosphere.info. Geotherms for continental terranes of different ages (early Archean to present) are constrained by reliable data on borehole heat flow measurements (Artemieva and Mooney, 2001), checked with the original publications for data quality, and corrected for paleo-temperature effects where needed. These data are supplemented by cratonic geotherms based on xenolith data. Since heat flow measurements cover not more than half of the continents, the remaining areas (ca. 60% of the continents) are filled by the statistical numbers derived from the thermal model constrained by borehole data. Continental geotherms are statistically analyzed as a function of age and are used to estimate lithospheric temperatures in continental regions with no or low quality heat flow data. This analysis requires knowledge of lithosphere age globally. A compilation of tectono-thermal ages of lithospheric terranes on a 1 deg × 1 deg grid forms the basis for the statistical analysis. It shows that, statistically, lithospheric thermal thickness z (in km) depends on tectono-thermal age t (in Ma) as: z=0.04t+93.6. This relationship formed the basis for a global thermal model of the continental lithosphere (TC1). Statistical analysis of continental geotherms also reveals that this relationship holds for the Archean cratons in general, but not in detail. Particularly, thick (more than 250 km) lithosphere is restricted solely to young Archean terranes (3.0-2.6 Ga), while in old Archean cratons (3.6-3.0 Ga) lithospheric roots do not extend deeper than 200-220 km. The TC1 model is presented by a set of maps, which show significant thermal heterogeneity within continental upper mantle. The strongest lateral temperature variations (as large as 800 deg C) are typical of the shallow mantle (depth less than 100 km). A map of the depth to a 600 deg C isotherm in continental upper mantle is presented as a proxy to the elastic thickness of the cratonic lithosphere, in which flexural rigidity is dominated by olivine rheology of the mantle. The TC1 model of the lithosphere thickness is used to calculate the growth and preservation rates of the lithosphere since the Archean.

  13. Empirical support for global integrated assessment modeling: Productivity trends and technological change in developing countries' agriculture and electric power sectors

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sathaye, Jayant A.

    2000-04-01

    Integrated assessment (IA) modeling of climate policy is increasingly global in nature, with models incorporating regional disaggregation. The existing empirical basis for IA modeling, however, largely arises from research on industrialized economies. Given the growing importance of developing countries in determining long-term global energy and carbon emissions trends, filling this gap with improved statistical information on developing countries' energy and carbon-emissions characteristics is an important priority for enhancing IA modeling. Earlier research at LBNL on this topic has focused on assembling and analyzing statistical data on productivity trends and technological change in the energy-intensive manufacturing sectors of five developing countries,more » India, Brazil, Mexico, Indonesia, and South Korea. The proposed work will extend this analysis to the agriculture and electric power sectors in India, South Korea, and two other developing countries. They will also examine the impact of alternative model specifications on estimates of productivity growth and technological change for each of the three sectors, and estimate the contribution of various capital inputs--imported vs. indigenous, rigid vs. malleable-- in contributing to productivity growth and technological change. The project has already produced a data resource on the manufacturing sector which is being shared with IA modelers. This will be extended to the agriculture and electric power sectors, which would also be made accessible to IA modeling groups seeking to enhance the empirical descriptions of developing country characteristics. The project will entail basic statistical and econometric analysis of productivity and energy trends in these developing country sectors, with parameter estimates also made available to modeling groups. The parameter estimates will be developed using alternative model specifications that could be directly utilized by the existing IAMs for the manufacturing, agriculture, and electric power sectors.« less

  14. A Decision Model for Supporting Task Allocation Processes in Global Software Development

    NASA Astrophysics Data System (ADS)

    Lamersdorf, Ansgar; Münch, Jürgen; Rombach, Dieter

    Today, software-intensive systems are increasingly being developed in a globally distributed way. However, besides its benefit, global development also bears a set of risks and problems. One critical factor for successful project management of distributed software development is the allocation of tasks to sites, as this is assumed to have a major influence on the benefits and risks. We introduce a model that aims at improving management processes in globally distributed projects by giving decision support for task allocation that systematically regards multiple criteria. The criteria and causal relationships were identified in a literature study and refined in a qualitative interview study. The model uses existing approaches from distributed systems and statistical modeling. The article gives an overview of the problem and related work, introduces the empirical and theoretical foundations of the model, and shows the use of the model in an example scenario.

  15. Climate model biases and statistical downscaling for application in hydrologic model

    USDA-ARS?s Scientific Manuscript database

    Climate change impact studies use global climate model (GCM) simulations to define future temperature and precipitation. The best available bias-corrected GCM output was obtained from Coupled Model Intercomparison Project phase 5 (CMIP5). CMIP5 data (temperature and precipitation) are available in d...

  16. Evaluating climate models: Should we use weather or climate observations?

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Oglesby, Robert J; Erickson III, David J

    2009-12-01

    Calling the numerical models that we use for simulations of climate change 'climate models' is a bit of a misnomer. These 'general circulation models' (GCMs, AKA global climate models) and their cousins the 'regional climate models' (RCMs) are actually physically-based weather simulators. That is, these models simulate, either globally or locally, daily weather patterns in response to some change in forcing or boundary condition. These simulated weather patterns are then aggregated into climate statistics, very much as we aggregate observations into 'real climate statistics'. Traditionally, the output of GCMs has been evaluated using climate statistics, as opposed to their abilitymore » to simulate realistic daily weather observations. At the coarse global scale this may be a reasonable approach, however, as RCM's downscale to increasingly higher resolutions, the conjunction between weather and climate becomes more problematic. We present results from a series of present-day climate simulations using the WRF ARW for domains that cover North America, much of Latin America, and South Asia. The basic domains are at a 12 km resolution, but several inner domains at 4 km have also been simulated. These include regions of complex topography in Mexico, Colombia, Peru, and Sri Lanka, as well as a region of low topography and fairly homogeneous land surface type (the U.S. Great Plains). Model evaluations are performed using standard climate analyses (e.g., reanalyses; NCDC data) but also using time series of daily station observations. Preliminary results suggest little difference in the assessment of long-term mean quantities, but the variability on seasonal and interannual timescales is better described. Furthermore, the value-added by using daily weather observations as an evaluation tool increases with the model resolution.« less

  17. Evolution in Cloud Population Statistics of the MJO: From AMIE Field Observations to Global-Cloud Permitting Models Final Report

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kollias, Pavlos

    This is a multi-institutional, collaborative project using a three-tier modeling approach to bridge field observations and global cloud-permitting models, with emphases on cloud population structural evolution through various large-scale environments. Our contribution was in data analysis for the generation of high value cloud and precipitation products and derive cloud statistics for model validation. There are two areas in data analysis that we contributed: the development of a synergistic cloud and precipitation cloud classification that identify different cloud (e.g. shallow cumulus, cirrus) and precipitation types (shallow, deep, convective, stratiform) using profiling ARM observations and the development of a quantitative precipitation ratemore » retrieval algorithm using profiling ARM observations. Similar efforts have been developed in the past for precipitation (weather radars), but not for the millimeter-wavelength (cloud) radar deployed at the ARM sites.« less

  18. Global Pyrogeography: the Current and Future Distribution of Wildfire

    PubMed Central

    Krawchuk, Meg A.; Moritz, Max A.; Parisien, Marc-André; Van Dorn, Jeff; Hayhoe, Katharine

    2009-01-01

    Climate change is expected to alter the geographic distribution of wildfire, a complex abiotic process that responds to a variety of spatial and environmental gradients. How future climate change may alter global wildfire activity, however, is still largely unknown. As a first step to quantifying potential change in global wildfire, we present a multivariate quantification of environmental drivers for the observed, current distribution of vegetation fires using statistical models of the relationship between fire activity and resources to burn, climate conditions, human influence, and lightning flash rates at a coarse spatiotemporal resolution (100 km, over one decade). We then demonstrate how these statistical models can be used to project future changes in global fire patterns, highlighting regional hotspots of change in fire probabilities under future climate conditions as simulated by a global climate model. Based on current conditions, our results illustrate how the availability of resources to burn and climate conditions conducive to combustion jointly determine why some parts of the world are fire-prone and others are fire-free. In contrast to any expectation that global warming should necessarily result in more fire, we find that regional increases in fire probabilities may be counter-balanced by decreases at other locations, due to the interplay of temperature and precipitation variables. Despite this net balance, our models predict substantial invasion and retreat of fire across large portions of the globe. These changes could have important effects on terrestrial ecosystems since alteration in fire activity may occur quite rapidly, generating ever more complex environmental challenges for species dispersing and adjusting to new climate conditions. Our findings highlight the potential for widespread impacts of climate change on wildfire, suggesting severely altered fire regimes and the need for more explicit inclusion of fire in research on global vegetation-climate change dynamics and conservation planning. PMID:19352494

  19. The Role of Discrete Global Grid Systems in the Global Statistical Geospatial Framework

    NASA Astrophysics Data System (ADS)

    Purss, M. B. J.; Peterson, P.; Minchin, S. A.; Bermudez, L. E.

    2016-12-01

    The United Nations Committee of Experts on Global Geospatial Information Management (UN-GGIM) has proposed the development of a Global Statistical Geospatial Framework (GSGF) as a mechanism for the establishment of common analytical systems that enable the integration of statistical and geospatial information. Conventional coordinate reference systems address the globe with a continuous field of points suitable for repeatable navigation and analytical geometry. While this continuous field is represented on a computer in a digitized and discrete fashion by tuples of fixed-precision floating point values, it is a non-trivial exercise to relate point observations spatially referenced in this way to areal coverages on the surface of the Earth. The GSGF states the need to move to gridded data delivery and the importance of using common geographies and geocoding. The challenges associated with meeting these goals are not new and there has been a significant effort within the geospatial community to develop nested gridding standards to tackle these issues over many years. These efforts have recently culminated in the development of a Discrete Global Grid Systems (DGGS) standard which has been developed under the auspices of Open Geospatial Consortium (OGC). DGGS provide a fixed areal based geospatial reference frame for the persistent location of measured Earth observations, feature interpretations, and modelled predictions. DGGS address the entire planet by partitioning it into a discrete hierarchical tessellation of progressively finer resolution cells, which are referenced by a unique index that facilitates rapid computation, query and analysis. The geometry and location of the cell is the principle aspect of a DGGS. Data integration, decomposition, and aggregation is optimised in the DGGS hierarchical structure and can be exploited for efficient multi-source data processing, storage, discovery, transmission, visualization, computation, analysis, and modelling. During the 6th Session of the UN-GGIM in August 2016 the role of DGGS in the context of the GSGF was formally acknowledged. This paper proposes to highlight the synergies and role of DGGS in the Global Statistical Geospatial Framework and to show examples of the use of DGGS to combine geospatial statistics with traditional geoscientific data.

  20. Changes in Extremely Hot Summers over the Global Land Area under Various Warming Targets.

    PubMed

    Wang, Lei; Huang, Jianbin; Luo, Yong; Yao, Yao; Zhao, Zongci

    2015-01-01

    Summer temperature extremes over the global land area were investigated by comparing 26 models of the fifth phase of the Coupled Model Intercomparison Project (CMIP5) with observations from the Goddard Institute for Space Studies (GISS) and the Climate Research Unit (CRU). Monthly data of the observations and models were averaged for each season, and statistics were calculated for individual models before averaging them to obtain ensemble means. The summers with temperature anomalies (relative to 1951-1980) exceeding 3σ (σ is based on the local internal variability) are defined as "extremely hot". The models well reproduced the statistical characteristics evolution, and partly captured the spatial distributions of historical summer temperature extremes. If the global mean temperature increases 2°C relative to the pre-industrial level, "extremely hot" summers are projected to occur over nearly 40% of the land area (multi-model ensemble mean projection). Summers that exceed 5σ warming are projected to occur over approximately 10% of the global land area, which were rarely observed during the reference period. Scenarios reaching warming levels of 3°C to 5°C were also analyzed. After exceeding the 5°C warming target, "extremely hot" summers are projected to occur throughout the entire global land area, and summers that exceed 5σ warming would become common over 70% of the land area. In addition, the areas affected by "extremely hot" summers are expected to rapidly expand by more than 25%/°C as the global mean temperature increases by up to 3°C before slowing to less than 16%/°C as the temperature continues to increase by more than 3°C. The area that experiences summers with warming of 5σ or more above the warming target of 2°C is likely to maintain rapid expansion of greater than 17%/°C. To reduce the impacts and damage from severely hot summers, the global mean temperature increase should remain low.

  1. National Centers for Environmental Prediction

    Science.gov Websites

    Statistics Observational Data Processing Data Assimilation Monsoon Desk Model Transition Seminars Seminar Documentation for operational and research users Operational Models All of the secondary bulleted items will be climate MOM4 HYCOM-Wavewatch Modeling Research Global and regional Institutionally supported components

  2. An analytic technique for statistically modeling random atomic clock errors in estimation

    NASA Technical Reports Server (NTRS)

    Fell, P. J.

    1981-01-01

    Minimum variance estimation requires that the statistics of random observation errors be modeled properly. If measurements are derived through the use of atomic frequency standards, then one source of error affecting the observable is random fluctuation in frequency. This is the case, for example, with range and integrated Doppler measurements from satellites of the Global Positioning and baseline determination for geodynamic applications. An analytic method is presented which approximates the statistics of this random process. The procedure starts with a model of the Allan variance for a particular oscillator and develops the statistics of range and integrated Doppler measurements. A series of five first order Markov processes is used to approximate the power spectral density obtained from the Allan variance.

  3. On the Land-Ocean Contrast of Tropical Convection and Microphysics Statistics Derived from TRMM Satellite Signals and Global Storm-Resolving Models

    NASA Technical Reports Server (NTRS)

    Matsui, Toshihisa; Chern, Jiun-Dar; Tao, Wei-Kuo; Lang, Stephen E.; Satoh, Masaki; Hashino, Tempei; Kubota, Takuji

    2016-01-01

    A 14-year climatology of Tropical Rainfall Measuring Mission (TRMM) collocated multi-sensor signal statistics reveal a distinct land-ocean contrast as well as geographical variability of precipitation type, intensity, and microphysics. Microphysics information inferred from the TRMM precipitation radar and Microwave Imager (TMI) show a large land-ocean contrast for the deep category, suggesting continental convective vigor. Over land, TRMM shows higher echo-top heights and larger maximum echoes, suggesting taller storms and more intense precipitation, as well as larger microwave scattering, suggesting the presence of morelarger frozen convective hydrometeors. This strong land-ocean contrast in deep convection is invariant over seasonal and multi-year time-scales. Consequently, relatively short-term simulations from two global storm-resolving models can be evaluated in terms of their land-ocean statistics using the TRMM Triple-sensor Three-step Evaluation via a satellite simulator. The models evaluated are the NASA Multi-scale Modeling Framework (MMF) and the Non-hydrostatic Icosahedral Cloud Atmospheric Model (NICAM). While both simulations can represent convective land-ocean contrasts in warm precipitation to some extent, near-surface conditions over land are relatively moisture in NICAM than MMF, which appears to be the key driver in the divergent warm precipitation results between the two models. Both the MMF and NICAM produced similar frequencies of large CAPE between land and ocean. The dry MMF boundary layer enhanced microwave scattering signals over land, but only NICAM had an enhanced deep convection frequency over land. Neither model could reproduce a realistic land-ocean contrast in in deep convective precipitation microphysics. A realistic contrast between land and ocean remains an issue in global storm-resolving modeling.

  4. Generalized functional linear models for gene-based case-control association studies.

    PubMed

    Fan, Ruzong; Wang, Yifan; Mills, James L; Carter, Tonia C; Lobach, Iryna; Wilson, Alexander F; Bailey-Wilson, Joan E; Weeks, Daniel E; Xiong, Momiao

    2014-11-01

    By using functional data analysis techniques, we developed generalized functional linear models for testing association between a dichotomous trait and multiple genetic variants in a genetic region while adjusting for covariates. Both fixed and mixed effect models are developed and compared. Extensive simulations show that Rao's efficient score tests of the fixed effect models are very conservative since they generate lower type I errors than nominal levels, and global tests of the mixed effect models generate accurate type I errors. Furthermore, we found that the Rao's efficient score test statistics of the fixed effect models have higher power than the sequence kernel association test (SKAT) and its optimal unified version (SKAT-O) in most cases when the causal variants are both rare and common. When the causal variants are all rare (i.e., minor allele frequencies less than 0.03), the Rao's efficient score test statistics and the global tests have similar or slightly lower power than SKAT and SKAT-O. In practice, it is not known whether rare variants or common variants in a gene region are disease related. All we can assume is that a combination of rare and common variants influences disease susceptibility. Thus, the improved performance of our models when the causal variants are both rare and common shows that the proposed models can be very useful in dissecting complex traits. We compare the performance of our methods with SKAT and SKAT-O on real neural tube defects and Hirschsprung's disease datasets. The Rao's efficient score test statistics and the global tests are more sensitive than SKAT and SKAT-O in the real data analysis. Our methods can be used in either gene-disease genome-wide/exome-wide association studies or candidate gene analyses. © 2014 WILEY PERIODICALS, INC.

  5. Generalized Functional Linear Models for Gene-based Case-Control Association Studies

    PubMed Central

    Mills, James L.; Carter, Tonia C.; Lobach, Iryna; Wilson, Alexander F.; Bailey-Wilson, Joan E.; Weeks, Daniel E.; Xiong, Momiao

    2014-01-01

    By using functional data analysis techniques, we developed generalized functional linear models for testing association between a dichotomous trait and multiple genetic variants in a genetic region while adjusting for covariates. Both fixed and mixed effect models are developed and compared. Extensive simulations show that Rao's efficient score tests of the fixed effect models are very conservative since they generate lower type I errors than nominal levels, and global tests of the mixed effect models generate accurate type I errors. Furthermore, we found that the Rao's efficient score test statistics of the fixed effect models have higher power than the sequence kernel association test (SKAT) and its optimal unified version (SKAT-O) in most cases when the causal variants are both rare and common. When the causal variants are all rare (i.e., minor allele frequencies less than 0.03), the Rao's efficient score test statistics and the global tests have similar or slightly lower power than SKAT and SKAT-O. In practice, it is not known whether rare variants or common variants in a gene are disease-related. All we can assume is that a combination of rare and common variants influences disease susceptibility. Thus, the improved performance of our models when the causal variants are both rare and common shows that the proposed models can be very useful in dissecting complex traits. We compare the performance of our methods with SKAT and SKAT-O on real neural tube defects and Hirschsprung's disease data sets. The Rao's efficient score test statistics and the global tests are more sensitive than SKAT and SKAT-O in the real data analysis. Our methods can be used in either gene-disease genome-wide/exome-wide association studies or candidate gene analyses. PMID:25203683

  6. Perception of global image contrast involves transparent spatial filtering and the integration and suppression of local contrasts (not RMS contrast)

    PubMed Central

    2017-01-01

    When adjusting the contrast setting on a television set, we experience a perceptual change in the global image contrast. But how is that statistic computed? We addressed this using a contrast-matching task for checkerboard configurations of micro-patterns in which the contrasts and spatial spreads of two interdigitated components were controlled independently. When the patterns differed greatly in contrast, the higher contrast determined the perceived global contrast. Crucially, however, low contrast additions of one pattern to intermediate contrasts of the other caused a paradoxical reduction in the perceived global contrast. None of the following metrics/models predicted this: max, linear sum, average, energy, root mean squared (RMS), Legge and Foley. However, a nonlinear gain control model, derived from contrast detection and discrimination experiments, incorporating wide-field summation and suppression, did predict the results with no free parameters, but only when spatial filtering was removed. We conclude that our model describes fundamental processes in human contrast vision (the pattern of results was the same for expert and naive observers), but that above threshold—when contrast pedestals are clearly visible—vision's spatial filtering characteristics become transparent, tending towards those of a delta function prior to spatial summation. The global contrast statistic from our model is as easily derived as the RMS contrast of an image, and since it more closely relates to human perception, we suggest it be used as an image contrast metric in practical applications. PMID:28989735

  7. The beta distribution: A statistical model for world cloud cover

    NASA Technical Reports Server (NTRS)

    Falls, L. W.

    1973-01-01

    Much work has been performed in developing empirical global cloud cover models. This investigation was made to determine an underlying theoretical statistical distribution to represent worldwide cloud cover. The beta distribution with probability density function is given to represent the variability of this random variable. It is shown that the beta distribution possesses the versatile statistical characteristics necessary to assume the wide variety of shapes exhibited by cloud cover. A total of 160 representative empirical cloud cover distributions were investigated and the conclusion was reached that this study provides sufficient statical evidence to accept the beta probability distribution as the underlying model for world cloud cover.

  8. The impact of Cenozoic cooling on assemblage diversity in planktonic foraminifera

    PubMed Central

    Pearson, Paul N.; Dunkley Jones, Tom; Farnsworth, Alexander; Lunt, Daniel J.; Markwick, Paul; Purvis, Andy

    2016-01-01

    The Cenozoic planktonic foraminifera (PF) (calcareous zooplankton) have arguably the most detailed fossil record of any group. The quality of this record allows models of environmental controls on macroecology, developed for Recent assemblages, to be tested on intervals with profoundly different climatic conditions. These analyses shed light on the role of long-term global cooling in establishing the modern latitudinal diversity gradient (LDG)—one of the most powerful generalizations in biogeography and macroecology. Here, we test the transferability of environment-diversity models developed for modern PF assemblages to the Eocene epoch (approx. 56–34 Ma), a time of pronounced global warmth. Environmental variables from global climate models are combined with Recent environment–diversity models to predict Eocene richness gradients, which are then compared with observed patterns. The results indicate the modern LDG—lower richness towards the poles—developed through the Eocene. Three possible causes are suggested for the mismatch between statistical model predictions and data in the Early Eocene: the environmental estimates are inaccurate, the statistical model misses a relevant variable, or the intercorrelations among facets of diversity—e.g. richness, evenness, functional diversity—have changed over geological time. By the Late Eocene, environment–diversity relationships were much more similar to those found today. PMID:26977064

  9. Plausible rice yield losses under future climate warming.

    PubMed

    Zhao, Chuang; Piao, Shilong; Wang, Xuhui; Huang, Yao; Ciais, Philippe; Elliott, Joshua; Huang, Mengtian; Janssens, Ivan A; Li, Tao; Lian, Xu; Liu, Yongwen; Müller, Christoph; Peng, Shushi; Wang, Tao; Zeng, Zhenzhong; Peñuelas, Josep

    2016-12-19

    Rice is the staple food for more than 50% of the world's population 1-3 . Reliable prediction of changes in rice yield is thus central for maintaining global food security. This is an extraordinary challenge. Here, we compare the sensitivity of rice yield to temperature increase derived from field warming experiments and three modelling approaches: statistical models, local crop models and global gridded crop models. Field warming experiments produce a substantial rice yield loss under warming, with an average temperature sensitivity of -5.2 ± 1.4% K -1 . Local crop models give a similar sensitivity (-6.3 ± 0.4% K -1 ), but statistical and global gridded crop models both suggest less negative impacts of warming on yields (-0.8 ± 0.3% and -2.4 ± 3.7% K -1 , respectively). Using data from field warming experiments, we further propose a conditional probability approach to constrain the large range of global gridded crop model results for the future yield changes in response to warming by the end of the century (from -1.3% to -9.3% K -1 ). The constraint implies a more negative response to warming (-8.3 ± 1.4% K -1 ) and reduces the spread of the model ensemble by 33%. This yield reduction exceeds that estimated by the International Food Policy Research Institute assessment (-4.2 to -6.4% K -1 ) (ref. 4). Our study suggests that without CO 2 fertilization, effective adaptation and genetic improvement, severe rice yield losses are plausible under intensive climate warming scenarios.

  10. An observationally constrained estimate of global dust aerosol optical depth

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ridley, David A.; Heald, Colette L.; Kok, Jasper F.

    Here, the role of mineral dust in climate and ecosystems has been largely quantified using global climate and chemistry model simulations of dust emission, transport, and deposition. However, differences between these model simulations are substantial, with estimates of global dust aerosol optical depth (AOD) that vary by over a factor of 5. Here we develop an observationally based estimate of the global dust AOD, using multiple satellite platforms, in situ AOD observations and four state-of-the-science global models over 2004–2008. We estimate that the global dust AOD at 550 nm is 0.030 ± 0.005 (1σ), higher than the AeroCom model medianmore » (0.023) and substantially narrowing the uncertainty. The methodology used provides regional, seasonal dust AOD and the associated statistical uncertainty for key dust regions around the globe with which model dust schemes can be evaluated. Exploring the regional and seasonal differences in dust AOD between our observationally based estimate and the four models in this study, we find that emissions in Africa are often overrepresented at the expense of Asian and Middle Eastern emissions and that dust removal appears to be too rapid in most models.« less

  11. An observationally constrained estimate of global dust aerosol optical depth

    DOE PAGES

    Ridley, David A.; Heald, Colette L.; Kok, Jasper F.; ...

    2016-12-06

    Here, the role of mineral dust in climate and ecosystems has been largely quantified using global climate and chemistry model simulations of dust emission, transport, and deposition. However, differences between these model simulations are substantial, with estimates of global dust aerosol optical depth (AOD) that vary by over a factor of 5. Here we develop an observationally based estimate of the global dust AOD, using multiple satellite platforms, in situ AOD observations and four state-of-the-science global models over 2004–2008. We estimate that the global dust AOD at 550 nm is 0.030 ± 0.005 (1σ), higher than the AeroCom model medianmore » (0.023) and substantially narrowing the uncertainty. The methodology used provides regional, seasonal dust AOD and the associated statistical uncertainty for key dust regions around the globe with which model dust schemes can be evaluated. Exploring the regional and seasonal differences in dust AOD between our observationally based estimate and the four models in this study, we find that emissions in Africa are often overrepresented at the expense of Asian and Middle Eastern emissions and that dust removal appears to be too rapid in most models.« less

  12. Optimizing human activity patterns using global sensitivity analysis.

    PubMed

    Fairchild, Geoffrey; Hickmann, Kyle S; Mniszewski, Susan M; Del Valle, Sara Y; Hyman, James M

    2014-12-01

    Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule's regularity for a population. We show how to tune an activity's regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimization problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. We use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations.

  13. Optimizing human activity patterns using global sensitivity analysis

    PubMed Central

    Hickmann, Kyle S.; Mniszewski, Susan M.; Del Valle, Sara Y.; Hyman, James M.

    2014-01-01

    Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule’s regularity for a population. We show how to tune an activity’s regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimization problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. We use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations. PMID:25580080

  14. Optimizing human activity patterns using global sensitivity analysis

    DOE PAGES

    Fairchild, Geoffrey; Hickmann, Kyle S.; Mniszewski, Susan M.; ...

    2013-12-10

    Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule’s regularity for a population. We show how to tune an activity’s regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimizationmore » problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. Here we use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Finally, though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations.« less

  15. Statistical classification of drug incidents due to look-alike sound-alike mix-ups.

    PubMed

    Wong, Zoie Shui Yee

    2016-06-01

    It has been recognised that medication names that look or sound similar are a cause of medication errors. This study builds statistical classifiers for identifying medication incidents due to look-alike sound-alike mix-ups. A total of 227 patient safety incident advisories related to medication were obtained from the Canadian Patient Safety Institute's Global Patient Safety Alerts system. Eight feature selection strategies based on frequent terms, frequent drug terms and constituent terms were performed. Statistical text classifiers based on logistic regression, support vector machines with linear, polynomial, radial-basis and sigmoid kernels and decision tree were trained and tested. The models developed achieved an average accuracy of above 0.8 across all the model settings. The receiver operating characteristic curves indicated the classifiers performed reasonably well. The results obtained in this study suggest that statistical text classification can be a feasible method for identifying medication incidents due to look-alike sound-alike mix-ups based on a database of advisories from Global Patient Safety Alerts. © The Author(s) 2014.

  16. Paleosecular variation and time-averaged field analysis over the last 10 Ma from a new global dataset (PSV10)

    NASA Astrophysics Data System (ADS)

    Cromwell, G.; Johnson, C. L.; Tauxe, L.; Constable, C.; Jarboe, N.

    2015-12-01

    Previous paleosecular variation (PSV) and time-averaged field (TAF) models draw on compilations of paleodirectional data that lack equatorial and high latitude sites and use latitudinal virtual geomagnetic pole (VGP) cutoffs designed to remove transitional field directions. We present a new selected global dataset (PSV10) of paleodirectional data spanning the last 10 Ma. We include all results calculated with modern laboratory methods, regardless of site VGP colatitude, that meet statistically derived selection criteria. We exclude studies that target transitional field states or identify significant tectonic effects, and correct for any bias from serial correlation by averaging directions from sequential lava flows. PSV10 has an improved global distribution compared with previous compilations, comprising 1519 sites from 71 studies. VGP dispersion in PSV10 varies with latitude, exhibiting substantially higher values in the southern hemisphere than at corresponding northern latitudes. Inclination anomaly estimates at many latitudes are within error of an expected GAD field, but significant negative anomalies are found at equatorial and mid-northern latitudes. Current PSV models Model G and TK03 do not fit observed PSV or TAF latitudinal behavior in PSV10, or subsets of normal and reverse polarity data, particularly for southern hemisphere sites. Attempts to fit these observations with simple modifications to TK03 showed slight statistical improvements, but still exceed acceptable errors. The root-mean-square misfit of TK03 (and subsequent iterations) is substantially lower for the normal polarity subset of PSV10, compared to reverse polarity data. Two-thirds of data in PSV10 are normal polarity, most which are from the last 5 Ma, so we develop a new TAF model using this subset of data. We use the resulting TAF model to explore whether new statistical PSV models can better describe our new global compilation.

  17. An Analysis of San Diego's Housing Market Using a Geographically Weighted Regression Approach

    NASA Astrophysics Data System (ADS)

    Grant, Christina P.

    San Diego County real estate transaction data was evaluated with a set of linear models calibrated by ordinary least squares and geographically weighted regression (GWR). The goal of the analysis was to determine whether the spatial effects assumed to be in the data are best studied globally with no spatial terms, globally with a fixed effects submarket variable, or locally with GWR. 18,050 single-family residential sales which closed in the six months between April 2014 and September 2014 were used in the analysis. Diagnostic statistics including AICc, R2, Global Moran's I, and visual inspection of diagnostic plots and maps indicate superior model performance by GWR as compared to both global regressions.

  18. Statistical Surrogate Modeling of Atmospheric Dispersion Events Using Bayesian Adaptive Splines

    NASA Astrophysics Data System (ADS)

    Francom, D.; Sansó, B.; Bulaevskaya, V.; Lucas, D. D.

    2016-12-01

    Uncertainty in the inputs of complex computer models, including atmospheric dispersion and transport codes, is often assessed via statistical surrogate models. Surrogate models are computationally efficient statistical approximations of expensive computer models that enable uncertainty analysis. We introduce Bayesian adaptive spline methods for producing surrogate models that capture the major spatiotemporal patterns of the parent model, while satisfying all the necessities of flexibility, accuracy and computational feasibility. We present novel methodological and computational approaches motivated by a controlled atmospheric tracer release experiment conducted at the Diablo Canyon nuclear power plant in California. Traditional methods for building statistical surrogate models often do not scale well to experiments with large amounts of data. Our approach is well suited to experiments involving large numbers of model inputs, large numbers of simulations, and functional output for each simulation. Our approach allows us to perform global sensitivity analysis with ease. We also present an approach to calibration of simulators using field data.

  19. Impact of Assimilation on Heavy Rainfall Simulations Using WRF Model: Sensitivity of Assimilation Results to Background Error Statistics

    NASA Astrophysics Data System (ADS)

    Rakesh, V.; Kantharao, B.

    2017-03-01

    Data assimilation is considered as one of the effective tools for improving forecast skill of mesoscale models. However, for optimum utilization and effective assimilation of observations, many factors need to be taken into account while designing data assimilation methodology. One of the critical components that determines the amount and propagation observation information into the analysis, is model background error statistics (BES). The objective of this study is to quantify how BES in data assimilation impacts on simulation of heavy rainfall events over a southern state in India, Karnataka. Simulations of 40 heavy rainfall events were carried out using Weather Research and Forecasting Model with and without data assimilation. The assimilation experiments were conducted using global and regional BES while the experiment with no assimilation was used as the baseline for assessing the impact of data assimilation. The simulated rainfall is verified against high-resolution rain-gage observations over Karnataka. Statistical evaluation using several accuracy and skill measures shows that data assimilation has improved the heavy rainfall simulation. Our results showed that the experiment using regional BES outperformed the one which used global BES. Critical thermo-dynamic variables conducive for heavy rainfall like convective available potential energy simulated using regional BES is more realistic compared to global BES. It is pointed out that these results have important practical implications in design of forecast platforms while decision-making during extreme weather events

  20. GAMBIT: the global and modular beyond-the-standard-model inference tool

    NASA Astrophysics Data System (ADS)

    Athron, Peter; Balazs, Csaba; Bringmann, Torsten; Buckley, Andy; Chrząszcz, Marcin; Conrad, Jan; Cornell, Jonathan M.; Dal, Lars A.; Dickinson, Hugh; Edsjö, Joakim; Farmer, Ben; Gonzalo, Tomás E.; Jackson, Paul; Krislock, Abram; Kvellestad, Anders; Lundberg, Johan; McKay, James; Mahmoudi, Farvah; Martinez, Gregory D.; Putze, Antje; Raklev, Are; Ripken, Joachim; Rogan, Christopher; Saavedra, Aldo; Savage, Christopher; Scott, Pat; Seo, Seon-Hee; Serra, Nicola; Weniger, Christoph; White, Martin; Wild, Sebastian

    2017-11-01

    We describe the open-source global fitting package GAMBIT: the Global And Modular Beyond-the-Standard-Model Inference Tool. GAMBIT combines extensive calculations of observables and likelihoods in particle and astroparticle physics with a hierarchical model database, advanced tools for automatically building analyses of essentially any model, a flexible and powerful system for interfacing to external codes, a suite of different statistical methods and parameter scanning algorithms, and a host of other utilities designed to make scans faster, safer and more easily-extendible than in the past. Here we give a detailed description of the framework, its design and motivation, and the current models and other specific components presently implemented in GAMBIT. Accompanying papers deal with individual modules and present first GAMBIT results. GAMBIT can be downloaded from gambit.hepforge.org.

  1. Determining relevant parameters for a statistical tropical cyclone genesis tool based upon global model output

    NASA Astrophysics Data System (ADS)

    Halperin, D.; Hart, R. E.; Fuelberg, H. E.; Cossuth, J.

    2013-12-01

    Predicting tropical cyclone (TC) genesis has been a vexing problem for forecasters. While the literature describes environmental conditions which are necessary for TC genesis, predicting if and when a specific disturbance will organize and become a TC remains a challenge. As recently as 5-10 years ago, global models possessed little if any skill in forecasting TC genesis. However, due to increased resolution and more advanced model parameterizations, we have reached the point where global models can provide useful TC genesis guidance to operational forecasters. A recent study evaluated five global models' ability to predict TC genesis out to four days over the North Atlantic basin (Halperin et al. 2013). The results indicate that the models are indeed able to capture the genesis time and location correctly a fair percentage of the time. The study also uncovered model biases. For example, probability of detection and false alarm rate varies spatially within the basin. Also, as expected, the models' performance decreases with increasing lead time. In order to explain these and other biases, it is useful to analyze the model-indicated genesis events further to determine whether or not there are systematic differences between successful forecasts (hits), false alarms, and miss events. This study will examine composites of a number of physically-relevant environmental parameters (e.g., magnitude of vertical wind shear, aerially averaged mid-level relative humidity) and disturbance-based parameters (e.g., 925 hPa maximum wind speed, vertical alignment of relative vorticity) among each TC genesis event classification (i.e., hit, false alarm, miss). We will use standard statistical tests (e.g., Student's t test, Mann-Whitney-U Test) to calculate whether or not any differences are statistically significant. We also plan to discuss how these composite results apply to a few illustrative case studies. The results may help determine which aspects of the forecast are (in)correct and whether the incorrect aspects can be bias-corrected. This, in turn, may allow us to further enhance probabilistic forecasts of TC genesis.

  2. A Global Data Analysis for Representing Sediment and Particulate Organic Carbon Yield in Earth System Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Tan, Zeli; Leung, L. Ruby; Li, Hongyi

    Although sediment yield (SY) from water erosion is ubiquitous and its environmental consequences are well recognized, its impacts on the global carbon cycle remain largely uncertain. This knowledge gap is partly due to the lack of soil erosion modeling in Earth System Models (ESMs), which are important tools used to understand the global carbon cycle and explore its changes. This study analyzed sediment and particulate organic carbon yield (CY) data from 1081 and 38 small catchments (0.1-200 km27 ), respectively, in different environments across the globe. Using multiple statistical analysis techniques, we explored environmental factors and hydrological processes important formore » SY and CY modeling in ESMs. Our results show clear correlations of high SY with traditional agriculture, seismicity and heavy storms, as well as strong correlations between SY and annual peak runoff. These highlight the potential limitation of SY models that represent only interrill and rill erosion because shallow overland flow and rill flow have limited transport capacity due to their hydraulic geometry to produce high SY. Further, our results suggest that SY modeling in ESMs should be implemented at the event scale to produce the catastrophic mass transport during episodic events. Several environmental factors such as seismicity and land management that are often not considered in current catchment-scale SY models can be important in controlling global SY. Our analyses show that SY is likely the primary control on CY in small catchments and a statistically significant empirical relationship is established to calculate SY and CY jointly in ESMs.« less

  3. An effective drift correction for dynamical downscaling of decadal global climate predictions

    NASA Astrophysics Data System (ADS)

    Paeth, Heiko; Li, Jingmin; Pollinger, Felix; Müller, Wolfgang A.; Pohlmann, Holger; Feldmann, Hendrik; Panitz, Hans-Jürgen

    2018-04-01

    Initialized decadal climate predictions with coupled climate models are often marked by substantial climate drifts that emanate from a mismatch between the climatology of the coupled model system and the data set used for initialization. While such drifts may be easily removed from the prediction system when analyzing individual variables, a major problem prevails for multivariate issues and, especially, when the output of the global prediction system shall be used for dynamical downscaling. In this study, we present a statistical approach to remove climate drifts in a multivariate context and demonstrate the effect of this drift correction on regional climate model simulations over the Euro-Atlantic sector. The statistical approach is based on an empirical orthogonal function (EOF) analysis adapted to a very large data matrix. The climate drift emerges as a dramatic cooling trend in North Atlantic sea surface temperatures (SSTs) and is captured by the leading EOF of the multivariate output from the global prediction system, accounting for 7.7% of total variability. The SST cooling pattern also imposes drifts in various atmospheric variables and levels. The removal of the first EOF effectuates the drift correction while retaining other components of intra-annual, inter-annual and decadal variability. In the regional climate model, the multivariate drift correction of the input data removes the cooling trends in most western European land regions and systematically reduces the discrepancy between the output of the regional climate model and observational data. In contrast, removing the drift only in the SST field from the global model has hardly any positive effect on the regional climate model.

  4. Performance and Evaluation of the Global Modeling and Assimilation Office Observing System Simulation Experiment

    NASA Technical Reports Server (NTRS)

    Prive, Nikki; Errico, R. M.; Carvalho, D.

    2018-01-01

    The National Aeronautics and Space Administration Global Modeling and Assimilation Office (NASA/GMAO) has spent more than a decade developing and implementing a global Observing System Simulation Experiment framework for use in evaluting both new observation types as well as the behavior of data assimilation systems. The NASA/GMAO OSSE has constantly evolved to relect changes in the Gridpoint Statistical Interpolation data assimiation system, the Global Earth Observing System model, version 5 (GEOS-5), and the real world observational network. Software and observational datasets for the GMAO OSSE are publicly available, along with a technical report. Substantial modifications have recently been made to the NASA/GMAO OSSE framework, including the character of synthetic observation errors, new instrument types, and more sophisticated atmospheric wind vectors. These improvements will be described, along with the overall performance of the current OSSE. Lessons learned from investigations into correlated errors and model error will be discussed.

  5. Statistics of the geomagnetic secular variation for the past 5Ma

    NASA Technical Reports Server (NTRS)

    Constable, C. G.; Parker, R. L.

    1986-01-01

    A new statistical model is proposed for the geomagnetic secular variation over the past 5Ma. Unlike previous models, the model makes use of statistical characteristics of the present day geomagnetic field. The spatial power spectrum of the non-dipole field is consistent with a white source near the core-mantle boundary with Gaussian distribution. After a suitable scaling, the spherical harmonic coefficients may be regarded as statistical samples from a single giant Gaussian process; this is the model of the non-dipole field. The model can be combined with an arbitrary statistical description of the dipole and probability density functions and cumulative distribution functions can be computed for declination and inclination that would be observed at any site on Earth's surface. Global paleomagnetic data spanning the past 5Ma are used to constrain the statistics of the dipole part of the field. A simple model is found to be consistent with the available data. An advantage of specifying the model in terms of the spherical harmonic coefficients is that it is a complete statistical description of the geomagnetic field, enabling us to test specific properties for a general description. Both intensity and directional data distributions may be tested to see if they satisfy the expected model distributions.

  6. Statistics of the geomagnetic secular variation for the past 5 m.y

    NASA Technical Reports Server (NTRS)

    Constable, C. G.; Parker, R. L.

    1988-01-01

    A new statistical model is proposed for the geomagnetic secular variation over the past 5Ma. Unlike previous models, the model makes use of statistical characteristics of the present day geomagnetic field. The spatial power spectrum of the non-dipole field is consistent with a white source near the core-mantle boundary with Gaussian distribution. After a suitable scaling, the spherical harmonic coefficients may be regarded as statistical samples from a single giant Gaussian process; this is the model of the non-dipole field. The model can be combined with an arbitrary statistical description of the dipole and probability density functions and cumulative distribution functions can be computed for declination and inclination that would be observed at any site on Earth's surface. Global paleomagnetic data spanning the past 5Ma are used to constrain the statistics of the dipole part of the field. A simple model is found to be consistent with the available data. An advantage of specifying the model in terms of the spherical harmonic coefficients is that it is a complete statistical description of the geomagnetic field, enabling us to test specific properties for a general description. Both intensity and directional data distributions may be tested to see if they satisfy the expected model distributions.

  7. Glass viscosity calculation based on a global statistical modelling approach

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fluegel, Alex

    2007-02-01

    A global statistical glass viscosity model was developed for predicting the complete viscosity curve, based on more than 2200 composition-property data of silicate glasses from the scientific literature, including soda-lime-silica container and float glasses, TV panel glasses, borosilicate fiber wool and E type glasses, low expansion borosilicate glasses, glasses for nuclear waste vitrification, lead crystal glasses, binary alkali silicates, and various further compositions from over half a century. It is shown that within a measurement series from a specific laboratory the reported viscosity values are often over-estimated at higher temperatures due to alkali and boron oxide evaporation during the measurementmore » and glass preparation, including data by Lakatos et al. (1972) and the recently published High temperature glass melt property database for process modeling by Seward et al. (2005). Similarly, in the glass transition range many experimental data of borosilicate glasses are reported too high due to phase separation effects. The developed global model corrects those errors. The model standard error was 9-17°C, with R^2 = 0.985-0.989. The prediction 95% confidence interval for glass in mass production largely depends on the glass composition of interest, the composition uncertainty, and the viscosity level. New insights in the mixed-alkali effect are provided.« less

  8. Accounting for Global Climate Model Projection Uncertainty in Modern Statistical Downscaling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Johannesson, G

    2010-03-17

    Future climate change has emerged as a national and a global security threat. To carry out the needed adaptation and mitigation steps, a quantification of the expected level of climate change is needed, both at the global and the regional scale; in the end, the impact of climate change is felt at the local/regional level. An important part of such climate change assessment is uncertainty quantification. Decision and policy makers are not only interested in 'best guesses' of expected climate change, but rather probabilistic quantification (e.g., Rougier, 2007). For example, consider the following question: What is the probability that themore » average summer temperature will increase by at least 4 C in region R if global CO{sub 2} emission increases by P% from current levels by time T? It is a simple question, but one that remains very difficult to answer. It is answering these kind of questions that is the focus of this effort. The uncertainty associated with future climate change can be attributed to three major factors: (1) Uncertainty about future emission of green house gasses (GHG). (2) Given a future GHG emission scenario, what is its impact on the global climate? (3) Given a particular evolution of the global climate, what does it mean for a particular location/region? In what follows, we assume a particular GHG emission scenario has been selected. Given the GHG emission scenario, the current batch of the state-of-the-art global climate models (GCMs) is used to simulate future climate under this scenario, yielding an ensemble of future climate projections (which reflect, to some degree our uncertainty of being able to simulate future climate give a particular GHG scenario). Due to the coarse-resolution nature of the GCM projections, they need to be spatially downscaled for regional impact assessments. To downscale a given GCM projection, two methods have emerged: dynamical downscaling and statistical (empirical) downscaling (SDS). Dynamic downscaling involves configuring and running a regional climate model (RCM) nested within a given GCM projection (i.e., the GCM provides bounder conditions for the RCM). On the other hand, statistical downscaling aims at establishing a statistical relationship between observed local/regional climate variables of interest and synoptic (GCM-scale) climate predictors. The resulting empirical relationship is then applied to future GCM projections. A comparison of the pros and cons of dynamical versus statistical downscaling is outside the scope of this effort, but has been extensively studied and the reader is referred to Wilby et al. (1998); Murphy (1999); Wood et al. (2004); Benestad et al. (2007); Fowler et al. (2007), and references within those. The scope of this effort is to study methodology, a statistical framework, to propagate and account for GCM uncertainty in regional statistical downscaling assessment. In particular, we will explore how to leverage an ensemble of GCM projections to quantify the impact of the GCM uncertainty in such an assessment. There are three main component to this effort: (1) gather the necessary climate-related data for a regional SDS study, including multiple GCM projections, (2) carry out SDS, and (3) assess the uncertainty. The first step is carried out using tools written in the Python programming language, while analysis tools were developed in the statistical programming language R; see Figure 1.« less

  9. Multidecadal Scale Detection Time for Potentially Increasing Atlantic Storm Surges in a Warming Climate

    NASA Astrophysics Data System (ADS)

    Lee, Benjamin Seiyon; Haran, Murali; Keller, Klaus

    2017-10-01

    Storm surges are key drivers of coastal flooding, which generate considerable risks. Strategies to manage these risks can hinge on the ability to (i) project the return periods of extreme storm surges and (ii) detect potential changes in their statistical properties. There are several lines of evidence linking rising global average temperatures and increasingly frequent extreme storm surges. This conclusion is, however, subject to considerable structural uncertainty. This leads to two main questions: What are projections under various plausible statistical models? How long would it take to distinguish among these plausible statistical models? We address these questions by analyzing observed and simulated storm surge data. We find that (1) there is a positive correlation between global mean temperature rise and increasing frequencies of extreme storm surges; (2) there is considerable uncertainty underlying the strength of this relationship; and (3) if the frequency of storm surges is increasing, this increase can be detected within a multidecadal timescale (≈20 years from now).

  10. Statistical analysis of modeling error in structural dynamic systems

    NASA Technical Reports Server (NTRS)

    Hasselman, T. K.; Chrostowski, J. D.

    1990-01-01

    The paper presents a generic statistical model of the (total) modeling error for conventional space structures in their launch configuration. Modeling error is defined as the difference between analytical prediction and experimental measurement. It is represented by the differences between predicted and measured real eigenvalues and eigenvectors. Comparisons are made between pre-test and post-test models. Total modeling error is then subdivided into measurement error, experimental error and 'pure' modeling error, and comparisons made between measurement error and total modeling error. The generic statistical model presented in this paper is based on the first four global (primary structure) modes of four different structures belonging to the generic category of Conventional Space Structures (specifically excluding large truss-type space structures). As such, it may be used to evaluate the uncertainty of predicted mode shapes and frequencies, sinusoidal response, or the transient response of other structures belonging to the same generic category.

  11. Modelling 1-minute directional observations of the global irradiance.

    NASA Astrophysics Data System (ADS)

    Thejll, Peter; Pagh Nielsen, Kristian; Andersen, Elsa; Furbo, Simon

    2016-04-01

    Direct and diffuse irradiances from the sky has been collected at 1-minute intervals for about a year from the experimental station at the Technical University of Denmark for the IEA project "Solar Resource Assessment and Forecasting". These data were gathered by pyrheliometers tracking the Sun, as well as with apertured pyranometers gathering 1/8th and 1/16th of the light from the sky in 45 degree azimuthal ranges pointed around the compass. The data are gathered in order to develop detailed models of the potentially available solar energy and its variations at high temporal resolution in order to gain a more detailed understanding of the solar resource. This is important for a better understanding of the sub-grid scale cloud variation that cannot be resolved with climate and weather models. It is also important for optimizing the operation of active solar energy systems such as photovoltaic plants and thermal solar collector arrays, and for passive solar energy and lighting to buildings. We present regression-based modelling of the observed data, and focus, here, on the statistical properties of the model fits. Using models based on the one hand on what is found in the literature and on physical expectations, and on the other hand on purely statistical models, we find solutions that can explain up to 90% of the variance in global radiation. The models leaning on physical insights include terms for the direct solar radiation, a term for the circum-solar radiation, a diffuse term and a term for the horizon brightening/darkening. The purely statistical model is found using data- and formula-validation approaches picking model expressions from a general catalogue of possible formulae. The method allows nesting of expressions, and the results found are dependent on and heavily constrained by the cross-validation carried out on statistically independent testing and training data-sets. Slightly better fits -- in terms of variance explained -- is found using the purely statistical fitting/searching approach. We describe the methods applied, results found, and discuss the different potentials of the physics- and statistics-only based model-searches.

  12. Global Sensitivity of Simulated Water Balance Indicators Under Future Climate Change in the Colorado Basin

    DOE PAGES

    Bennett, Katrina Eleanor; Urrego Blanco, Jorge Rolando; Jonko, Alexandra; ...

    2017-11-20

    The Colorado River basin is a fundamentally important river for society, ecology and energy in the United States. Streamflow estimates are often provided using modeling tools which rely on uncertain parameters; sensitivity analysis can help determine which parameters impact model results. Despite the fact that simulated flows respond to changing climate and vegetation in the basin, parameter sensitivity of the simulations under climate change has rarely been considered. In this study, we conduct a global sensitivity analysis to relate changes in runoff, evapotranspiration, snow water equivalent and soil moisture to model parameters in the Variable Infiltration Capacity (VIC) hydrologic model.more » Here, we combine global sensitivity analysis with a space-filling Latin Hypercube sampling of the model parameter space and statistical emulation of the VIC model to examine sensitivities to uncertainties in 46 model parameters following a variance-based approach.« less

  13. Global Sensitivity of Simulated Water Balance Indicators Under Future Climate Change in the Colorado Basin

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bennett, Katrina Eleanor; Urrego Blanco, Jorge Rolando; Jonko, Alexandra

    The Colorado River basin is a fundamentally important river for society, ecology and energy in the United States. Streamflow estimates are often provided using modeling tools which rely on uncertain parameters; sensitivity analysis can help determine which parameters impact model results. Despite the fact that simulated flows respond to changing climate and vegetation in the basin, parameter sensitivity of the simulations under climate change has rarely been considered. In this study, we conduct a global sensitivity analysis to relate changes in runoff, evapotranspiration, snow water equivalent and soil moisture to model parameters in the Variable Infiltration Capacity (VIC) hydrologic model.more » Here, we combine global sensitivity analysis with a space-filling Latin Hypercube sampling of the model parameter space and statistical emulation of the VIC model to examine sensitivities to uncertainties in 46 model parameters following a variance-based approach.« less

  14. Benchmarking the mesoscale variability in global ocean eddy-permitting numerical systems

    NASA Astrophysics Data System (ADS)

    Cipollone, Andrea; Masina, Simona; Storto, Andrea; Iovino, Doroteaciro

    2017-10-01

    The role of data assimilation procedures on representing ocean mesoscale variability is assessed by applying eddy statistics to a state-of-the-art global ocean reanalysis (C-GLORS), a free global ocean simulation (performed with the NEMO system) and an observation-based dataset (ARMOR3D) used as an independent benchmark. Numerical results are computed on a 1/4 ∘ horizontal grid (ORCA025) and share the same resolution with ARMOR3D dataset. This "eddy-permitting" resolution is sufficient to allow ocean eddies to form. Further to assessing the eddy statistics from three different datasets, a global three-dimensional eddy detection system is implemented in order to bypass the need of regional-dependent definition of thresholds, typical of commonly adopted eddy detection algorithms. It thus provides full three-dimensional eddy statistics segmenting vertical profiles from local rotational velocities. This criterion is crucial for discerning real eddies from transient surface noise that inevitably affects any two-dimensional algorithm. Data assimilation enhances and corrects mesoscale variability on a wide range of features that cannot be well reproduced otherwise. The free simulation fairly reproduces eddies emerging from western boundary currents and deep baroclinic instabilities, while underestimates shallower vortexes that populate the full basin. The ocean reanalysis recovers most of the missing turbulence, shown by satellite products , that is not generated by the model itself and consistently projects surface variability deep into the water column. The comparison with the statistically reconstructed vertical profiles from ARMOR3D show that ocean data assimilation is able to embed variability into the model dynamics, constraining eddies with in situ and altimetry observation and generating them consistently with local environment.

  15. Statistical Compression for Climate Model Output

    NASA Astrophysics Data System (ADS)

    Hammerling, D.; Guinness, J.; Soh, Y. J.

    2017-12-01

    Numerical climate model simulations run at high spatial and temporal resolutions generate massive quantities of data. As our computing capabilities continue to increase, storing all of the data is not sustainable, and thus is it important to develop methods for representing the full datasets by smaller compressed versions. We propose a statistical compression and decompression algorithm based on storing a set of summary statistics as well as a statistical model describing the conditional distribution of the full dataset given the summary statistics. We decompress the data by computing conditional expectations and conditional simulations from the model given the summary statistics. Conditional expectations represent our best estimate of the original data but are subject to oversmoothing in space and time. Conditional simulations introduce realistic small-scale noise so that the decompressed fields are neither too smooth nor too rough compared with the original data. Considerable attention is paid to accurately modeling the original dataset-one year of daily mean temperature data-particularly with regard to the inherent spatial nonstationarity in global fields, and to determining the statistics to be stored, so that the variation in the original data can be closely captured, while allowing for fast decompression and conditional emulation on modest computers.

  16. Newer classification and regression tree techniques: Bagging and Random Forests for ecological prediction

    Treesearch

    Anantha M. Prasad; Louis R. Iverson; Andy Liaw; Andy Liaw

    2006-01-01

    We evaluated four statistical models - Regression Tree Analysis (RTA), Bagging Trees (BT), Random Forests (RF), and Multivariate Adaptive Regression Splines (MARS) - for predictive vegetation mapping under current and future climate scenarios according to the Canadian Climate Centre global circulation model.

  17. A source-specific model for lossless compression of global Earth data

    NASA Astrophysics Data System (ADS)

    Kess, Barbara Lynne

    A Source Specific Model for Global Earth Data (SSM-GED) is a lossless compression method for large images that captures global redundancy in the data and achieves a significant improvement over CALIC and DCXT-BT/CARP, two leading lossless compression schemes. The Global Land 1-Km Advanced Very High Resolution Radiometer (AVHRR) data, which contains 662 Megabytes (MB) per band, is an example of a large data set that requires decompression of regions of the data. For this reason, SSM-GED compresses the AVHRR data as a collection of subwindows. This approach defines the statistical parameters for the model prior to compression. Unlike universal models that assume no a priori knowledge of the data, SSM-GED captures global redundancy that exists among all of the subwindows of data. The overlap in parameters among subwindows of data enables SSM-GED to improve the compression rate by increasing the number of parameters and maintaining a small model cost for each subwindow of data. This lossless compression method is applicable to other large volumes of image data such as video.

  18. Does extreme precipitation intensity depend on the emissions scenario?

    NASA Astrophysics Data System (ADS)

    Pendergrass, Angeline; Lehner, Flavio; Sanderson, Benjamin; Xu, Yangyang

    2016-04-01

    The rate of increase of global-mean precipitation per degree surface temperature increase differs for greenhouse gas and aerosol forcings, and therefore depends on the change in composition of the emissions scenario used to drive climate model simulations for the remainder of the century. We investigate whether or not this is also the case for extreme precipitation simulated by a multi-model ensemble driven by four realistic emissions scenarios. In most models, the rate of increase of maximum annual daily rainfall per degree global warming in the multi-model ensemble is statistically indistinguishable across the four scenarios, whether this extreme precipitation is calculated globally, over all land, or over extra-tropical land. These results indicate that, in most models, extreme precipitation depends on the total amount of warming and does not depend on emissions scenario, in contrast to mean precipitation.

  19. Global 7 km mesh nonhydrostatic Model Intercomparison Project for improving TYphoon forecast (TYMIP-G7): experimental design and preliminary results

    NASA Astrophysics Data System (ADS)

    Nakano, Masuo; Wada, Akiyoshi; Sawada, Masahiro; Yoshimura, Hiromasa; Onishi, Ryo; Kawahara, Shintaro; Sasaki, Wataru; Nasuno, Tomoe; Yamaguchi, Munehiko; Iriguchi, Takeshi; Sugi, Masato; Takeuchi, Yoshiaki

    2017-03-01

    Recent advances in high-performance computers facilitate operational numerical weather prediction by global hydrostatic atmospheric models with horizontal resolutions of ˜ 10 km. Given further advances in such computers and the fact that the hydrostatic balance approximation becomes invalid for spatial scales < 10 km, the development of global nonhydrostatic models with high accuracy is urgently required. The Global 7 km mesh nonhydrostatic Model Intercomparison Project for improving TYphoon forecast (TYMIP-G7) is designed to understand and statistically quantify the advantages of high-resolution nonhydrostatic global atmospheric models to improve tropical cyclone (TC) prediction. A total of 137 sets of 5-day simulations using three next-generation nonhydrostatic global models with horizontal resolutions of 7 km and a conventional hydrostatic global model with a horizontal resolution of 20 km were run on the Earth Simulator. The three 7 km mesh nonhydrostatic models are the nonhydrostatic global spectral atmospheric Double Fourier Series Model (DFSM), the Multi-Scale Simulator for the Geoenvironment (MSSG) and the Nonhydrostatic ICosahedral Atmospheric Model (NICAM). The 20 km mesh hydrostatic model is the operational Global Spectral Model (GSM) of the Japan Meteorological Agency. Compared with the 20 km mesh GSM, the 7 km mesh models reduce systematic errors in the TC track, intensity and wind radii predictions. The benefits of the multi-model ensemble method were confirmed for the 7 km mesh nonhydrostatic global models. While the three 7 km mesh models reproduce the typical axisymmetric mean inner-core structure, including the primary and secondary circulations, the simulated TC structures and their intensities in each case are very different for each model. In addition, the simulated track is not consistently better than that of the 20 km mesh GSM. These results suggest that the development of more sophisticated initialization techniques and model physics is needed to further improve the TC prediction.

  20. Neocortical dynamics at multiple scales: EEG standing waves, statistical mechanics, and physical analogs.

    PubMed

    Ingber, Lester; Nunez, Paul L

    2011-02-01

    The dynamic behavior of scalp potentials (EEG) is apparently due to some combination of global and local processes with important top-down and bottom-up interactions across spatial scales. In treating global mechanisms, we stress the importance of myelinated axon propagation delays and periodic boundary conditions in the cortical-white matter system, which is topologically close to a spherical shell. By contrast, the proposed local mechanisms are multiscale interactions between cortical columns via short-ranged non-myelinated fibers. A mechanical model consisting of a stretched string with attached nonlinear springs demonstrates the general idea. The string produces standing waves analogous to large-scale coherent EEG observed in some brain states. The attached springs are analogous to the smaller (mesoscopic) scale columnar dynamics. Generally, we expect string displacement and EEG at all scales to result from both global and local phenomena. A statistical mechanics of neocortical interactions (SMNI) calculates oscillatory behavior consistent with typical EEG, within columns, between neighboring columns via short-ranged non-myelinated fibers, across cortical regions via myelinated fibers, and also derives a string equation consistent with the global EEG model. Copyright © 2010 Elsevier Inc. All rights reserved.

  1. Atmospheric and oceanographic research review, 1978. [global weather, ocean/air interactions, and climate

    NASA Technical Reports Server (NTRS)

    1978-01-01

    Research activities related to global weather, ocean/air interactions, and climate are reported. The global weather research is aimed at improving the assimilation of satellite-derived data in weather forecast models, developing analysis/forecast models that can more fully utilize satellite data, and developing new measures of forecast skill to properly assess the impact of satellite data on weather forecasting. The oceanographic research goal is to understand and model the processes that determine the general circulation of the oceans, focusing on those processes that affect sea surface temperature and oceanic heat storage, which are the oceanographic variables with the greatest influence on climate. The climate research objective is to support the development and effective utilization of space-acquired data systems in climate forecast models and to conduct sensitivity studies to determine the affect of lower boundary conditions on climate and predictability studies to determine which global climate features can be modeled either deterministically or statistically.

  2. Projecting future precipitation and temperature at sites with diverse climate through multiple statistical downscaling schemes

    NASA Astrophysics Data System (ADS)

    Vallam, P.; Qin, X. S.

    2017-10-01

    Anthropogenic-driven climate change would affect the global ecosystem and is becoming a world-wide concern. Numerous studies have been undertaken to determine the future trends of meteorological variables at different scales. Despite these studies, there remains significant uncertainty in the prediction of future climates. To examine the uncertainty arising from using different schemes to downscale the meteorological variables for the future horizons, projections from different statistical downscaling schemes were examined. These schemes included statistical downscaling method (SDSM), change factor incorporated with LARS-WG, and bias corrected disaggregation (BCD) method. Global circulation models (GCMs) based on CMIP3 (HadCM3) and CMIP5 (CanESM2) were utilized to perturb the changes in the future climate. Five study sites (i.e., Alice Springs, Edmonton, Frankfurt, Miami, and Singapore) with diverse climatic conditions were chosen for examining the spatial variability of applying various statistical downscaling schemes. The study results indicated that the regions experiencing heavy precipitation intensities were most likely to demonstrate the divergence between the predictions from various statistical downscaling methods. Also, the variance computed in projecting the weather extremes indicated the uncertainty derived from selection of downscaling tools and climate models. This study could help gain an improved understanding about the features of different downscaling approaches and the overall downscaling uncertainty.

  3. Simulation skill of APCC set of global climate models for Asian summer monsoon rainfall variability

    NASA Astrophysics Data System (ADS)

    Singh, U. K.; Singh, G. P.; Singh, Vikas

    2015-04-01

    The performance of 11 Asia-Pacific Economic Cooperation Climate Center (APCC) global climate models (coupled and uncoupled both) in simulating the seasonal summer (June-August) monsoon rainfall variability over Asia (especially over India and East Asia) has been evaluated in detail using hind-cast data (3 months advance) generated from APCC which provides the regional climate information product services based on multi-model ensemble dynamical seasonal prediction systems. The skill of each global climate model over Asia was tested separately in detail for the period of 21 years (1983-2003), and simulated Asian summer monsoon rainfall (ASMR) has been verified using various statistical measures for Indian and East Asian land masses separately. The analysis found a large variation in spatial ASMR simulated with uncoupled model compared to coupled models (like Predictive Ocean Atmosphere Model for Australia, National Centers for Environmental Prediction and Japan Meteorological Agency). The simulated ASMR in coupled model was closer to Climate Prediction Centre Merged Analysis of Precipitation (CMAP) compared to uncoupled models although the amount of ASMR was underestimated in both models. Analysis also found a high spread in simulated ASMR among the ensemble members (suggesting that the model's performance is highly dependent on its initial conditions). The correlation analysis between sea surface temperature (SST) and ASMR shows that that the coupled models are strongly associated with ASMR compared to the uncoupled models (suggesting that air-sea interaction is well cared in coupled models). The analysis of rainfall using various statistical measures suggests that the multi-model ensemble (MME) performed better compared to individual model and also separate study indicate that Indian and East Asian land masses are more useful compared to Asia monsoon rainfall as a whole. The results of various statistical measures like skill of multi-model ensemble, large spread among the ensemble members of individual model, strong teleconnection (correlation analysis) with SST, coefficient of variation, inter-annual variability, analysis of Taylor diagram, etc. suggest that there is a need to improve coupled model instead of uncoupled model for the development of a better dynamical seasonal forecast system.

  4. Drought Persistence Errors in Global Climate Models

    NASA Astrophysics Data System (ADS)

    Moon, H.; Gudmundsson, L.; Seneviratne, S. I.

    2018-04-01

    The persistence of drought events largely determines the severity of socioeconomic and ecological impacts, but the capability of current global climate models (GCMs) to simulate such events is subject to large uncertainties. In this study, the representation of drought persistence in GCMs is assessed by comparing state-of-the-art GCM model simulations to observation-based data sets. For doing so, we consider dry-to-dry transition probabilities at monthly and annual scales as estimates for drought persistence, where a dry status is defined as negative precipitation anomaly. Though there is a substantial spread in the drought persistence bias, most of the simulations show systematic underestimation of drought persistence at global scale. Subsequently, we analyzed to which degree (i) inaccurate observations, (ii) differences among models, (iii) internal climate variability, and (iv) uncertainty of the employed statistical methods contribute to the spread in drought persistence errors using an analysis of variance approach. The results show that at monthly scale, model uncertainty and observational uncertainty dominate, while the contribution from internal variability is small in most cases. At annual scale, the spread of the drought persistence error is dominated by the statistical estimation error of drought persistence, indicating that the partitioning of the error is impaired by the limited number of considered time steps. These findings reveal systematic errors in the representation of drought persistence in current GCMs and suggest directions for further model improvement.

  5. Inferring general relations between network characteristics from specific network ensembles.

    PubMed

    Cardanobile, Stefano; Pernice, Volker; Deger, Moritz; Rotter, Stefan

    2012-01-01

    Different network models have been suggested for the topology underlying complex interactions in natural systems. These models are aimed at replicating specific statistical features encountered in real-world networks. However, it is rarely considered to which degree the results obtained for one particular network class can be extrapolated to real-world networks. We address this issue by comparing different classical and more recently developed network models with respect to their ability to generate networks with large structural variability. In particular, we consider the statistical constraints which the respective construction scheme imposes on the generated networks. After having identified the most variable networks, we address the issue of which constraints are common to all network classes and are thus suitable candidates for being generic statistical laws of complex networks. In fact, we find that generic, not model-related dependencies between different network characteristics do exist. This makes it possible to infer global features from local ones using regression models trained on networks with high generalization power. Our results confirm and extend previous findings regarding the synchronization properties of neural networks. Our method seems especially relevant for large networks, which are difficult to map completely, like the neural networks in the brain. The structure of such large networks cannot be fully sampled with the present technology. Our approach provides a method to estimate global properties of under-sampled networks in good approximation. Finally, we demonstrate on three different data sets (C. elegans neuronal network, R. prowazekii metabolic network, and a network of synonyms extracted from Roget's Thesaurus) that real-world networks have statistical relations compatible with those obtained using regression models.

  6. Present-day constraint for tropical Pacific precipitation changes due to global warming in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Ham, Yoo-Geun; Kug, Jong-Seong

    2016-11-01

    The sensitivity of the precipitation responses to greenhouse warming can depend on the present-day climate. In this study, a robust linkage between the present-day precipitation climatology and precipitation change owing to global warming is examined in inter-model space. A model with drier climatology in the present-day simulation tends to simulate an increase in climatological precipitation owing to global warming. Moreover, the horizontal gradient of the present-day precipitation climatology plays an important role in determining the precipitation changes. On the basis of these robust relationships, future precipitation changes are calibrated by removing the impact of the present-day precipitation bias in the climate models. To validate this result, the perfect model approach is adapted, which treats a particular model's precipitation change as an observed change. The results suggest that the precipitation change pattern can be generally improved by applying the present statistical approach.

  7. Predicting Statistical Response and Extreme Events in Uncertainty Quantification through Reduced-Order Models

    NASA Astrophysics Data System (ADS)

    Qi, D.; Majda, A.

    2017-12-01

    A low-dimensional reduced-order statistical closure model is developed for quantifying the uncertainty in statistical sensitivity and intermittency in principal model directions with largest variability in high-dimensional turbulent system and turbulent transport models. Imperfect model sensitivity is improved through a recent mathematical strategy for calibrating model errors in a training phase, where information theory and linear statistical response theory are combined in a systematic fashion to achieve the optimal model performance. The idea in the reduced-order method is from a self-consistent mathematical framework for general systems with quadratic nonlinearity, where crucial high-order statistics are approximated by a systematic model calibration procedure. Model efficiency is improved through additional damping and noise corrections to replace the expensive energy-conserving nonlinear interactions. Model errors due to the imperfect nonlinear approximation are corrected by tuning the model parameters using linear response theory with an information metric in a training phase before prediction. A statistical energy principle is adopted to introduce a global scaling factor in characterizing the higher-order moments in a consistent way to improve model sensitivity. Stringent models of barotropic and baroclinic turbulence are used to display the feasibility of the reduced-order methods. Principal statistical responses in mean and variance can be captured by the reduced-order models with accuracy and efficiency. Besides, the reduced-order models are also used to capture crucial passive tracer field that is advected by the baroclinic turbulent flow. It is demonstrated that crucial principal statistical quantities like the tracer spectrum and fat-tails in the tracer probability density functions in the most important large scales can be captured efficiently with accuracy using the reduced-order tracer model in various dynamical regimes of the flow field with distinct statistical structures.

  8. Changes in Extremely Hot Summers over the Global Land Area under Various Warming Targets

    PubMed Central

    Wang, Lei; Huang, Jianbin; Luo, Yong; Yao, Yao; Zhao, Zongci

    2015-01-01

    Summer temperature extremes over the global land area were investigated by comparing 26 models of the fifth phase of the Coupled Model Intercomparison Project (CMIP5) with observations from the Goddard Institute for Space Studies (GISS) and the Climate Research Unit (CRU). Monthly data of the observations and models were averaged for each season, and statistics were calculated for individual models before averaging them to obtain ensemble means. The summers with temperature anomalies (relative to 1951–1980) exceeding 3σ (σ is based on the local internal variability) are defined as “extremely hot”. The models well reproduced the statistical characteristics evolution, and partly captured the spatial distributions of historical summer temperature extremes. If the global mean temperature increases 2°C relative to the pre-industrial level, “extremely hot” summers are projected to occur over nearly 40% of the land area (multi-model ensemble mean projection). Summers that exceed 5σ warming are projected to occur over approximately 10% of the global land area, which were rarely observed during the reference period. Scenarios reaching warming levels of 3°C to 5°C were also analyzed. After exceeding the 5°C warming target, “extremely hot” summers are projected to occur throughout the entire global land area, and summers that exceed 5σ warming would become common over 70% of the land area. In addition, the areas affected by “extremely hot” summers are expected to rapidly expand by more than 25%/°C as the global mean temperature increases by up to 3°C before slowing to less than 16%/°C as the temperature continues to increase by more than 3°C. The area that experiences summers with warming of 5σ or more above the warming target of 2°C is likely to maintain rapid expansion of greater than 17%/°C. To reduce the impacts and damage from severely hot summers, the global mean temperature increase should remain low. PMID:26090931

  9. Ten Years of Cloud Properties from MODIS: Global Statistics and Use in Climate Model Evaluation

    NASA Technical Reports Server (NTRS)

    Platnick, Steven E.

    2011-01-01

    The NASA Moderate Resolution Imaging Spectroradiometer (MODIS), launched onboard the Terra and Aqua spacecrafts, began Earth observations on February 24, 2000 and June 24,2002, respectively. Among the algorithms developed and applied to this sensor, a suite of cloud products includes cloud masking/detection, cloud-top properties (temperature, pressure), and optical properties (optical thickness, effective particle radius, water path, and thermodynamic phase). All cloud algorithms underwent numerous changes and enhancements between for the latest Collection 5 production version; this process continues with the current Collection 6 development. We will show example MODIS Collection 5 cloud climatologies derived from global spatial . and temporal aggregations provided in the archived gridded Level-3 MODIS atmosphere team product (product names MOD08 and MYD08 for MODIS Terra and Aqua, respectively). Data sets in this Level-3 product include scalar statistics as well as 1- and 2-D histograms of many cloud properties, allowing for higher order information and correlation studies. In addition to these statistics, we will show trends and statistical significance in annual and seasonal means for a variety of the MODIS cloud properties, as well as the time required for detection given assumed trends. To assist in climate model evaluation, we have developed a MODIS cloud simulator with an accompanying netCDF file containing subsetted monthly Level-3 statistical data sets that correspond to the simulator output. Correlations of cloud properties with ENSO offer the potential to evaluate model cloud sensitivity; initial results will be discussed.

  10. Enhancing the Biological Relevance of Secretome-Based Proteomics by Linking Tumor Cell Proliferation and Protein Secretion.

    PubMed

    Gregori, Josep; Méndez, Olga; Katsila, Theodora; Pujals, Mireia; Salvans, Cándida; Villarreal, Laura; Arribas, Joaquin; Tabernero, Josep; Sánchez, Alex; Villanueva, Josep

    2014-07-15

    Secretome profiling has become a methodology of choice for the identification of tumor biomarkers. We hypothesized that due to the dynamic nature of secretomes cellular perturbations could affect their composition but also change the global amount of protein secreted per cell. We confirmed our hypothesis by measuring the levels of secreted proteins taking into account the amount of proteome produced per cell. Then, we established a correlation between cell proliferation and protein secretion that explained the observed changes in global protein secretion. Next, we implemented a normalization correcting the statistical results of secretome studies by the global protein secretion of cells into a generalized linear model (GLM). The application of the normalization to two biological perturbations on tumor cells resulted in drastic changes in the list of statistically significant proteins. Furthermore, we found that known epithelial-to-mesenchymal transition (EMT) effectors were only statistically significant when the normalization was applied. Therefore, the normalization proposed here increases the sensitivity of statistical tests by increasing the number of true-positives. From an oncology perspective, the correlation between protein secretion and cellular proliferation suggests that slow-growing tumors could have high-protein secretion rates and consequently contribute strongly to tumor paracrine signaling.

  11. Statistical downscaling modeling with quantile regression using lasso to estimate extreme rainfall

    NASA Astrophysics Data System (ADS)

    Santri, Dewi; Wigena, Aji Hamim; Djuraidah, Anik

    2016-02-01

    Rainfall is one of the climatic elements with high diversity and has many negative impacts especially extreme rainfall. Therefore, there are several methods that required to minimize the damage that may occur. So far, Global circulation models (GCM) are the best method to forecast global climate changes include extreme rainfall. Statistical downscaling (SD) is a technique to develop the relationship between GCM output as a global-scale independent variables and rainfall as a local- scale response variable. Using GCM method will have many difficulties when assessed against observations because GCM has high dimension and multicollinearity between the variables. The common method that used to handle this problem is principal components analysis (PCA) and partial least squares regression. The new method that can be used is lasso. Lasso has advantages in simultaneuosly controlling the variance of the fitted coefficients and performing automatic variable selection. Quantile regression is a method that can be used to detect extreme rainfall in dry and wet extreme. Objective of this study is modeling SD using quantile regression with lasso to predict extreme rainfall in Indramayu. The results showed that the estimation of extreme rainfall (extreme wet in January, February and December) in Indramayu could be predicted properly by the model at quantile 90th.

  12. Effects of experimental protocol on global vegetation model accuracy: a comparison of simulated and observed vegetation patterns for Asia

    USGS Publications Warehouse

    Tang, Guoping; Shafer, Sarah L.; Barlein, Patrick J.; Holman, Justin O.

    2009-01-01

    Prognostic vegetation models have been widely used to study the interactions between environmental change and biological systems. This study examines the sensitivity of vegetation model simulations to: (i) the selection of input climatologies representing different time periods and their associated atmospheric CO2 concentrations, (ii) the choice of observed vegetation data for evaluating the model results, and (iii) the methods used to compare simulated and observed vegetation. We use vegetation simulated for Asia by the equilibrium vegetation model BIOME4 as a typical example of vegetation model output. BIOME4 was run using 19 different climatologies and their associated atmospheric CO2 concentrations. The Kappa statistic, Fuzzy Kappa statistic and a newly developed map-comparison method, the Nomad index, were used to quantify the agreement between the biomes simulated under each scenario and the observed vegetation from three different global land- and tree-cover data sets: the global Potential Natural Vegetation data set (PNV), the Global Land Cover Characteristics data set (GLCC), and the Global Land Cover Facility data set (GLCF). The results indicate that the 30-year mean climatology (and its associated atmospheric CO2 concentration) for the time period immediately preceding the collection date of the observed vegetation data produce the most accurate vegetation simulations when compared with all three observed vegetation data sets. The study also indicates that the BIOME4-simulated vegetation for Asia more closely matches the PNV data than the other two observed vegetation data sets. Given the same observed data, the accuracy assessments of the BIOME4 simulations made using the Kappa, Fuzzy Kappa and Nomad index map-comparison methods agree well when the compared vegetation types consist of a large number of spatially continuous grid cells. The results of this analysis can assist model users in designing experimental protocols for simulating vegetation.

  13. Analysis and modeling of wafer-level process variability in 28 nm FD-SOI using split C-V measurements

    NASA Astrophysics Data System (ADS)

    Pradeep, Krishna; Poiroux, Thierry; Scheer, Patrick; Juge, André; Gouget, Gilles; Ghibaudo, Gérard

    2018-07-01

    This work details the analysis of wafer level global process variability in 28 nm FD-SOI using split C-V measurements. The proposed approach initially evaluates the native on wafer process variability using efficient extraction methods on split C-V measurements. The on-wafer threshold voltage (VT) variability is first studied and modeled using a simple analytical model. Then, a statistical model based on the Leti-UTSOI compact model is proposed to describe the total C-V variability in different bias conditions. This statistical model is finally used to study the contribution of each process parameter to the total C-V variability.

  14. Forecasting an invasive species’ distribution with global distribution data, local data, and physiological information

    USGS Publications Warehouse

    Jarnevich, Catherine S.; Young, Nicholas E.; Talbert, Marian; Talbert, Colin

    2018-01-01

    Understanding invasive species distributions and potential invasions often requires broad‐scale information on the environmental tolerances of the species. Further, resource managers are often faced with knowing these broad‐scale relationships as well as nuanced environmental factors related to their landscape that influence where an invasive species occurs and potentially could occur. Using invasive buffelgrass (Cenchrus ciliaris), we developed global models and local models for Saguaro National Park, Arizona, USA, based on location records and literature on physiological tolerances to environmental factors to investigate whether environmental relationships of a species at a global scale are also important at local scales. In addition to correlative models with five commonly used algorithms, we also developed a model using a priori user‐defined relationships between occurrence and environmental characteristics based on a literature review. All correlative models at both scales performed well based on statistical evaluations. The user‐defined curves closely matched those produced by the correlative models, indicating that the correlative models may be capturing mechanisms driving the distribution of buffelgrass. Given climate projections for the region, both global and local models indicate that conditions at Saguaro National Park may become more suitable for buffelgrass. Combining global and local data with correlative models and physiological information provided a holistic approach to forecasting invasive species distributions.

  15. Decompression models: review, relevance and validation capabilities.

    PubMed

    Hugon, J

    2014-01-01

    For more than a century, several types of mathematical models have been proposed to describe tissue desaturation mechanisms in order to limit decompression sickness. These models are statistically assessed by DCS cases, and, over time, have gradually included bubble formation biophysics. This paper proposes to review this evolution and discuss its limitations. This review is organized around the comparison of decompression model biophysical criteria and theoretical foundations. Then, the DCS-predictive capability was analyzed to assess whether it could be improved by combining different approaches. Most of the operational decompression models have a neo-Haldanian form. Nevertheless, bubble modeling has been gaining popularity, and the circulating bubble amount has become a major output. By merging both views, it seems possible to build a relevant global decompression model that intends to simulate bubble production while predicting DCS risks for all types of exposures and decompression profiles. A statistical approach combining both DCS and bubble detection databases has to be developed to calibrate a global decompression model. Doppler ultrasound and DCS data are essential: i. to make correlation and validation phases reliable; ii. to adjust biophysical criteria to fit at best the observed bubble kinetics; and iii. to build a relevant risk function.

  16. Performance assessment of different day-of-the-year-based models for estimating global solar radiation - Case study: Egypt

    NASA Astrophysics Data System (ADS)

    Hassan, Gasser E.; Youssef, M. Elsayed; Ali, Mohamed A.; Mohamed, Zahraa E.; Shehata, Ali I.

    2016-11-01

    Different models are introduced to predict the daily global solar radiation in different locations but there is no specific model based on the day of the year is proposed for many locations around the world. In this study, more than 20 years of measured data for daily global solar radiation on a horizontal surface are used to develop and validate seven models to estimate the daily global solar radiation by day of the year for ten cities around Egypt as a case study. Moreover, the generalization capability for the best models is examined all over the country. The regression analysis is employed to calculate the coefficients of different suggested models. The statistical indicators namely, RMSE, MABE, MAPE, r and R2 are calculated to evaluate the performance of the developed models. Based on the validation with the available data, the results show that the hybrid sine and cosine wave model and 4th order polynomial model have the best performance among other suggested models. Consequently, these two models coupled with suitable coefficients can be used for estimating the daily global solar radiation on a horizontal surface for each city, and also for all the locations around the studied region. It is believed that the established models in this work are applicable and significant for quick estimation for the average daily global solar radiation on a horizontal surface with higher accuracy. The values of global solar radiation generated by this approach can be utilized in the design and estimation of the performance of different solar applications.

  17. Projected changes, climate change signal, and uncertainties in the CMIP5-based projections of ocean surface wave heights

    NASA Astrophysics Data System (ADS)

    Wang, Xiaolan; Feng, Yang; Swail, Val R.

    2016-04-01

    Ocean surface waves can be major hazards in coastal and offshore activities. However, wave observations are available only at limited locations and cover only the recent few decades. Also, there exists very limited information on ocean wave behavior in response to climate change, because such information is not simulated in current global climate models. In a recent study, we used a multivariate regression model with lagged dependent variable to make statistical global projections of changes in significant wave heights (Hs) using mean sea level pressure (SLP) information from 20 CMIP5 climate models for the twenty-first century. The statistical model was calibrated and validated using the ERA-Interim reanalysis of Hs and SLP for the period 1981-2010. The results show Hs increases in the tropics (especially in the eastern tropical Pacific) and in southern hemisphere high-latitudes. Under the projected 2070-2099 climate condition of the RCP8.5 scenario, the occurrence frequency of the present-day one-in-10-year extreme wave heights is likely to double or triple in several coastal regions around the world (e.g., the Chilean coast, Gulf of Oman, Gulf of Bengal, Gulf of Mexico). More recently, we used the analysis of variance approaches to quantify the climate change signal and uncertainty in multi-model ensembles of statistical Hs simulations globally, which are based on the CMIP5 historical, RCP4.5 and RCP8.5 forcing scenario simulations of SLP. In a 4-model 3-run ensemble, the 4-model common signal of climate change is found to strengthen over time, as would be expected. For the historical followed by RCP8.5 scenario, the common signal in annual mean Hs is found to be significant over 16.6%, 55.0% and 82.2% of the area by year 2005, 2050 and 2099, respectively. For the annual maximum, the signal is much weaker. The signal is strongest in the eastern tropical Pacific, featuring significant increases in both the annual mean and maximum of Hs in this region. The climate model uncertainty (i.e., inter-model variability) is significant over 99.9% of the area; its magnitude is comparable to or greater than the climate change signal by 2099 over most areas, except in the eastern tropical Pacific where the signal is much larger. In a 20-model 2-scenario single-run ensemble of statistical Hs simulations for the period 2006-2099, the model uncertainty is found to be significant globally; it is about 10 times as large as the scenario uncertainty between RCP4.5 and RCP8.5 scenarios.

  18. Explaining patterns in the ratification of global environmental treaties

    NASA Technical Reports Server (NTRS)

    Cook, David W.

    1991-01-01

    A study was made of the ratification behavior of 160 countries with respect to 38 global environmental treaties. The study identifies and explains patterns in the ratification of treaties, providing two means of assessing the likelihood that any given country will support global environmental treaties. National ratification totals reveal a pattern of high ratification by countries in Western Europe, North America, Japan, Australia, and New Zealand. A country's standing within the range of high to low ratification rates can be explained by the statistical model developed in the study. This research allows one to identify countries likely to support global environmental treaties.

  19. Global optical model potential for A=3 projectiles

    NASA Astrophysics Data System (ADS)

    Pang, D. Y.; Roussel-Chomaz, P.; Savajols, H.; Varner, R. L.; Wolski, R.

    2009-02-01

    A global optical model potential (GDP08) for He3 projectiles has been obtained by simultaneously fitting the elastic scattering data of He3 from targets of 40⩽AT⩽209 at incident energies of 30⩽Einc⩽217 MeV. Uncertainties and correlation coefficients between the global potential parameters were obtained by using the bootstrap statistical method. GDP08 was found to satisfactorily account for the elastic scattering of H3 as well, which makes it a global optical potential for the A=3 nuclei. Optical model calculations using the GDP08 global potential are compared with the experimental angular distributions of differential cross sections for He3-nucleus and H3-nucleus scattering from different targets of 6⩽AT⩽232 at incident energies of 4⩽Einc⩽450 MeV. The optical potential for the doubly-magic nucleus Ca40, the low-energy correction to the real potential for nuclei with 58≲AT≲120 at Einc<30 MeV, the comparison with double-folding model calculations and the CH89 potential, and the spin-orbit potential parameters are discussed.

  20. Low and High Frequency Models of Response Statistics of a Cylindrical Orthogrid Vehicle Panel to Acoustic Excitation

    NASA Technical Reports Server (NTRS)

    Smith, Andrew; LaVerde, Bruce; Teague, David; Gardner, Bryce; Cotoni, Vincent

    2010-01-01

    This presentation further develops the orthogrid vehicle panel work. Employed Hybrid Module capabilities to assess both low/mid frequency and high frequency models in the VA One simulation environment. The response estimates from three modeling approaches are compared to ground test measurements. Detailed Finite Element Model of the Test Article -Expect to capture both the global panel modes and the local pocket mode response, but at a considerable analysis expense (time & resources). A Composite Layered Construction equivalent global stiffness approximation using SEA -Expect to capture response of the global panel modes only. An SEA approximation using the Periodic Subsystem Formulation. A finite element model of a single periodic cell is used to derive the vibroacoustic properties of the entire periodic structure (modal density, radiation efficiency, etc. Expect to capture response at various locations on the panel (on the skin and on the ribs) with less analysis expense

  1. Modeling urbanization patterns at a global scale with generative adversarial networks

    NASA Astrophysics Data System (ADS)

    Albert, A. T.; Strano, E.; Gonzalez, M.

    2017-12-01

    Current demographic projections show that, in the next 30 years, global population growth will mostly take place in developing countries. Coupled with a decrease in density, such population growth could potentially double the land occupied by settlements by 2050. The lack of reliable and globally consistent socio-demographic data, coupled with the limited predictive performance underlying traditional urban spatial explicit models, call for developing better predictive methods, calibrated using a globally-consistent dataset. Thus, richer models of the spatial interplay between the urban built-up land, population distribution and energy use are central to the discussion around the expansion and development of cities, and their impact on the environment in the context of a changing climate. In this talk we discuss methods for, and present an analysis of, urban form, defined as the spatial distribution of macroeconomic quantities that characterize a city, using modern machine learning methods and best-available remote-sensing data for the world's largest 25,000 cities. We first show that these cities may be described by a small set of patterns in radial building density, nighttime luminosity, and population density, which highlight, to first order, differences in development and land use across the world. We observe significant, spatially-dependent variance around these typical patterns, which would be difficult to model using traditional statistical methods. We take a first step in addressing this challenge by developing CityGAN, a conditional generative adversarial network model for simulating realistic urban forms. To guide learning and measure the quality of the simulated synthetic cities, we develop a specialized loss function for GAN optimization that incorporates standard spatial statistics used by urban analysis experts. Our framework is a stark departure from both the standard physics-based approaches in the literature (that view urban forms as fractals with a scale-free behavior), and the traditional statistical learning approaches (whereby values of individual pixels are modeled as functions of locally-defined, hand-engineered features). This is a first-of-its-kind analysis of urban forms using data at a planetary scale.

  2. Accuracy Assessment of Global Barotropic Ocean Tide Models

    DTIC Science & Technology

    2014-08-07

    with our models (with values 182.7◦, 182.0◦, 181.8◦, 183.7◦, 181.8◦, 182.3◦, and 182.2◦). The cause of this problem has not been resolved, but...some- times on both sides of the island—see Figure 4. While these problem stations skew the global RMS statistics, they are nonetheless instructive...DTU10), the mean RMS difference amounts to 16% of the M2 average amplitude and more than 30% for S2, K1, and O1. This illustrates the problem that

  3. Influence of El Niño Southern Oscillation on global hydropower production

    NASA Astrophysics Data System (ADS)

    Ng, Jia Yi; Turner, Sean W. D.; Galelli, Stefano

    2017-03-01

    El Niño Southern Oscillation (ENSO) strongly influences the global climate system, affecting hydrology in many of the world’s river basins. This raises the prospect of ENSO-driven variability in global and regional hydroelectric power generation. Here we study these effects by generating time series of power production for 1593 hydropower dams, which collectively represent more than half of the world’s existing installed hydropower capacity. The time series are generated by forcing a detailed dam model with monthly-resolution, 20th century inflows—the model includes plant specifications, storage dynamics and realistic operating schemes, and runs irrespectively of the dam construction year. More than one third of simulated dams exhibit statistically significant annual energy production anomalies in at least one of the two ENSO phases of El Niño and La Niña. For most dams, the variability of relative anomalies in power production tends to be less than that of the forcing inflows—a consequence of dam design specifications, namely maximum turbine release rate and reservoir storage, which allows inflows to accumulate for power generation in subsequent dry years. Production is affected most prominently in Northwest United States, South America, Central America, the Iberian Peninsula, Southeast Asia and Southeast Australia. When aggregated globally, positive and negative energy production anomalies effectively cancel each other out, resulting in a weak and statistically insignificant net global anomaly for both ENSO phases.

  4. Estimating the volume and age of water stored in global lakes using a geo-statistical approach

    PubMed Central

    Messager, Mathis Loïc; Lehner, Bernhard; Grill, Günther; Nedeva, Irena; Schmitt, Oliver

    2016-01-01

    Lakes are key components of biogeochemical and ecological processes, thus knowledge about their distribution, volume and residence time is crucial in understanding their properties and interactions within the Earth system. However, global information is scarce and inconsistent across spatial scales and regions. Here we develop a geo-statistical model to estimate the volume of global lakes with a surface area of at least 10 ha based on the surrounding terrain information. Our spatially resolved database shows 1.42 million individual polygons of natural lakes with a total surface area of 2.67 × 106 km2 (1.8% of global land area), a total shoreline length of 7.2 × 106 km (about four times longer than the world's ocean coastline) and a total volume of 181.9 × 103 km3 (0.8% of total global non-frozen terrestrial water stocks). We also compute mean and median hydraulic residence times for all lakes to be 1,834 days and 456 days, respectively. PMID:27976671

  5. An evaluation of the variable-resolution CESM for modeling California's climate: Evaluation of VR-CESM for Modeling California's Climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Xingying; Rhoades, Alan M.; Ullrich, Paul A.

    In this paper, the recently developed variable-resolution option within the Community Earth System Model (VR-CESM) is assessed for long-term regional climate modeling of California at 0.25° (~ 28 km) and 0.125° (~ 14 km) horizontal resolutions. The mean climatology of near-surface temperature and precipitation is analyzed and contrasted with reanalysis, gridded observational data sets, and a traditional regional climate model (RCM)—the Weather Research and Forecasting (WRF) model. Statistical metrics for model evaluation and tests for differential significance have been extensively applied. VR-CESM tended to produce a warmer summer (by about 1–3°C) and overestimated overall winter precipitation (about 25%–35%) compared tomore » reference data sets when sea surface temperatures were prescribed. Increasing resolution from 0.25° to 0.125° did not produce a statistically significant improvement in the model results. By comparison, the analogous WRF climatology (constrained laterally and at the sea surface by ERA-Interim reanalysis) was ~1–3°C colder than the reference data sets, underestimated precipitation by ~20%–30% at 27 km resolution, and overestimated precipitation by ~ 65–85% at 9 km. Overall, VR-CESM produced comparable statistical biases to WRF in key climatological quantities. Moreover, this assessment highlights the value of variable-resolution global climate models (VRGCMs) in capturing fine-scale atmospheric processes, projecting future regional climate, and addressing the computational expense of uniform-resolution global climate models.« less

  6. An evaluation of the variable-resolution CESM for modeling California's climate: Evaluation of VR-CESM for Modeling California's Climate

    DOE PAGES

    Huang, Xingying; Rhoades, Alan M.; Ullrich, Paul A.; ...

    2016-03-01

    In this paper, the recently developed variable-resolution option within the Community Earth System Model (VR-CESM) is assessed for long-term regional climate modeling of California at 0.25° (~ 28 km) and 0.125° (~ 14 km) horizontal resolutions. The mean climatology of near-surface temperature and precipitation is analyzed and contrasted with reanalysis, gridded observational data sets, and a traditional regional climate model (RCM)—the Weather Research and Forecasting (WRF) model. Statistical metrics for model evaluation and tests for differential significance have been extensively applied. VR-CESM tended to produce a warmer summer (by about 1–3°C) and overestimated overall winter precipitation (about 25%–35%) compared tomore » reference data sets when sea surface temperatures were prescribed. Increasing resolution from 0.25° to 0.125° did not produce a statistically significant improvement in the model results. By comparison, the analogous WRF climatology (constrained laterally and at the sea surface by ERA-Interim reanalysis) was ~1–3°C colder than the reference data sets, underestimated precipitation by ~20%–30% at 27 km resolution, and overestimated precipitation by ~ 65–85% at 9 km. Overall, VR-CESM produced comparable statistical biases to WRF in key climatological quantities. Moreover, this assessment highlights the value of variable-resolution global climate models (VRGCMs) in capturing fine-scale atmospheric processes, projecting future regional climate, and addressing the computational expense of uniform-resolution global climate models.« less

  7. Projection of climatic suitability for Aedes albopictus Skuse (Culicidae) in Europe under climate change conditions

    NASA Astrophysics Data System (ADS)

    Fischer, Dominik; Thomas, Stephanie Margarete; Niemitz, Franziska; Reineking, Björn; Beierkuhnlein, Carl

    2011-07-01

    During the last decades the disease vector Aedes albopictus ( Ae. albopictus) has rapidly spread around the globe. The spread of this species raises serious public health concerns. Here, we model the present distribution and the future climatic suitability of Europe for this vector in the face of climate change. In order to achieve the most realistic current prediction and future projection, we compare the performance of four different modelling approaches, differentiated by the selection of climate variables (based on expert knowledge vs. statistical criteria) and by the geographical range of presence records (native range vs. global range). First, models of the native and global range were built with MaxEnt and were either based on (1) statistically selected climatic input variables or (2) input variables selected with expert knowledge from the literature. Native models show high model performance (AUC: 0.91-0.94) for the native range, but do not predict the European distribution well (AUC: 0.70-0.72). Models based on the global distribution of the species, however, were able to identify all regions where Ae. albopictus is currently established, including Europe (AUC: 0.89-0.91). In a second step, the modelled bioclimatic envelope of the global range was projected to future climatic conditions in Europe using two emission scenarios implemented in the regional climate model COSMO-CLM for three time periods 2011-2040, 2041-2070, and 2071-2100. For both global-driven models, the results indicate that climatically suitable areas for the establishment of Ae. albopictus will increase in western and central Europe already in 2011-2040 and with a temporal delay in eastern Europe. On the other hand, a decline in climatically suitable areas in southern Europe is pronounced in the Expert knowledge based model. Our projections appear unaffected by non-analogue climate, as this is not detected by Multivariate Environmental Similarity Surface analysis. The generated risk maps can aid in identifying suitable habitats for Ae. albopictus and hence support monitoring and control activities to avoid disease vector establishment.

  8. A bilayer Double Semion model with symmetry-enriched topological order

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ortiz, L., E-mail: lauraort@ucm.es; Martin-Delgado, M.A.

    2016-12-15

    We construct a new model of two-dimensional quantum spin systems that combines intrinsic topological orders and a global symmetry called flavour symmetry. It is referred as the bilayer Doubled Semion model (bDS) and is an instance of symmetry-enriched topological order. A honeycomb bilayer lattice is introduced to combine a Double Semion Topological Order with a global spin–flavour symmetry to get the fractionalization of its quasiparticles. The bDS model exhibits non-trivial braiding self-statistics of excitations and its dual model constitutes a Symmetry-Protected Topological Order with novel edge states. This dual model gives rise to a bilayer Non-Trivial Paramagnet that is invariantmore » under the flavour symmetry and the well-known spin flip symmetry.« less

  9. El Niño/Southern Oscillation response to global warming

    PubMed Central

    Latif, M.; Keenlyside, N. S.

    2009-01-01

    The El Niño/Southern Oscillation (ENSO) phenomenon, originating in the Tropical Pacific, is the strongest natural interannual climate signal and has widespread effects on the global climate system and the ecology of the Tropical Pacific. Any strong change in ENSO statistics will therefore have serious climatic and ecological consequences. Most global climate models do simulate ENSO, although large biases exist with respect to its characteristics. The ENSO response to global warming differs strongly from model to model and is thus highly uncertain. Some models simulate an increase in ENSO amplitude, others a decrease, and others virtually no change. Extremely strong changes constituting tipping point behavior are not simulated by any of the models. Nevertheless, some interesting changes in ENSO dynamics can be inferred from observations and model integrations. Although no tipping point behavior is envisaged in the physical climate system, smooth transitions in it may give rise to tipping point behavior in the biological, chemical, and even socioeconomic systems. For example, the simulated weakening of the Pacific zonal sea surface temperature gradient in the Hadley Centre model (with dynamic vegetation included) caused rapid Amazon forest die-back in the mid-twenty-first century, which in turn drove a nonlinear increase in atmospheric CO2, accelerating global warming. PMID:19060210

  10. Modelling water use in global hydrological models: review, challenges and directions

    NASA Astrophysics Data System (ADS)

    Bierkens, M. F.; de Graaf, I.; Wada, Y.; Wanders, N.; Van Beek, L. P.

    2017-12-01

    During the late 1980s and early 1990s, awareness of the shortage of global water resources lead to the first detailed global water resources assessments using regional statistics of water use and observations of meteorological and hydrological variables. Shortly thereafter, the first macroscale hydrological models (MHM) appeared. In these models, blue water (i.e., surface water and renewable groundwater) availability was calculated by accumulating runoff over a stream network and comparing it with population densities or with estimated water demand for agriculture, industry and households. In this talk we review the evolution of human impact modelling in global land models with a focus on global water resources, touching upon developments of the last 15 years: i.e. calculating human water scarcity; estimating groundwater depletion; adding dams and reservoirs; fully integrating water use (demand, withdrawal, consumption, return flow) in the hydrology; simulating the effects of land use change. We show example studies for each of these steps. We identify We identify major challenges that hamper the further development of integrated water resources modelling. Examples of these are: 1) simulating reservoir operations; 2) including local infrastructure and redistribution; 3) using the correct allocations rules; 4) projecting future water demand and water use. For each of these challenges we signify promising directions for further research.

  11. El Nino/Southern Oscillation response to global warming.

    PubMed

    Latif, M; Keenlyside, N S

    2009-12-08

    The El Niño/Southern Oscillation (ENSO) phenomenon, originating in the Tropical Pacific, is the strongest natural interannual climate signal and has widespread effects on the global climate system and the ecology of the Tropical Pacific. Any strong change in ENSO statistics will therefore have serious climatic and ecological consequences. Most global climate models do simulate ENSO, although large biases exist with respect to its characteristics. The ENSO response to global warming differs strongly from model to model and is thus highly uncertain. Some models simulate an increase in ENSO amplitude, others a decrease, and others virtually no change. Extremely strong changes constituting tipping point behavior are not simulated by any of the models. Nevertheless, some interesting changes in ENSO dynamics can be inferred from observations and model integrations. Although no tipping point behavior is envisaged in the physical climate system, smooth transitions in it may give rise to tipping point behavior in the biological, chemical, and even socioeconomic systems. For example, the simulated weakening of the Pacific zonal sea surface temperature gradient in the Hadley Centre model (with dynamic vegetation included) caused rapid Amazon forest die-back in the mid-twenty-first century, which in turn drove a nonlinear increase in atmospheric CO(2), accelerating global warming.

  12. α -induced reactions on 115In: Cross section measurements and statistical model analysis

    NASA Astrophysics Data System (ADS)

    Kiss, G. G.; Szücs, T.; Mohr, P.; Török, Zs.; Huszánk, R.; Gyürky, Gy.; Fülöp, Zs.

    2018-05-01

    Background: α -nucleus optical potentials are basic ingredients of statistical model calculations used in nucleosynthesis simulations. While the nucleon+nucleus optical potential is fairly well known, for the α +nucleus optical potential several different parameter sets exist and large deviations, reaching sometimes even an order of magnitude, are found between the cross section predictions calculated using different parameter sets. Purpose: A measurement of the radiative α -capture and the α -induced reaction cross sections on the nucleus 115In at low energies allows a stringent test of statistical model predictions. Since experimental data are scarce in this mass region, this measurement can be an important input to test the global applicability of α +nucleus optical model potentials and further ingredients of the statistical model. Methods: The reaction cross sections were measured by means of the activation method. The produced activities were determined by off-line detection of the γ rays and characteristic x rays emitted during the electron capture decay of the produced Sb isotopes. The 115In(α ,γ )119Sb and 115In(α ,n )Sb118m reaction cross sections were measured between Ec .m .=8.83 and 15.58 MeV, and the 115In(α ,n )Sb118g reaction was studied between Ec .m .=11.10 and 15.58 MeV. The theoretical analysis was performed within the statistical model. Results: The simultaneous measurement of the (α ,γ ) and (α ,n ) cross sections allowed us to determine a best-fit combination of all parameters for the statistical model. The α +nucleus optical potential is identified as the most important input for the statistical model. The best fit is obtained for the new Atomki-V1 potential, and good reproduction of the experimental data is also achieved for the first version of the Demetriou potentials and the simple McFadden-Satchler potential. The nucleon optical potential, the γ -ray strength function, and the level density parametrization are also constrained by the data although there is no unique best-fit combination. Conclusions: The best-fit calculations allow us to extrapolate the low-energy (α ,γ ) cross section of 115In to the astrophysical Gamow window with reasonable uncertainties. However, still further improvements of the α -nucleus potential are required for a global description of elastic (α ,α ) scattering and α -induced reactions in a wide range of masses and energies.

  13. Estimating daily global solar radiation by day of the year in Algeria

    NASA Astrophysics Data System (ADS)

    Aoun, Nouar; Bouchouicha, Kada

    2017-05-01

    This study presents six empirical models based on the day-of-the-year number for estimating global solar radiation on a horizontal surface. For this case study, 21 years of experimental data sets for 21 cities over the whole Algerian territory are utilized to develop these models for each city and for all of Algeria. In this study, the territory of Algeria was divided into four different climatic zones, i.e., Arid, Semi-arid, Highlands and Mediterranean. The accuracy of the all-Algeria model was tested for each city and for each climate zone. To evaluate the accuracy of the models, the RMSE, rRMSE, MABE, MAPE, and R, which are the most commonly applied statistical parameters, were utilized. The results show that the six developed models provide excellent predictions for global solar radiation for each city and for all-Algeria. Furthermore, the model showing the greatest accuracy is the sine and cosine wave trigonometric model.

  14. A Method for Retrieving Ground Flash Fraction from Satellite Lightning Imager Data

    NASA Technical Reports Server (NTRS)

    Koshak, William J.

    2009-01-01

    A general theory for retrieving the fraction of ground flashes in N lightning observed by a satellite-based lightning imager is provided. An "exponential model" is applied as a physically reasonable constraint to describe the measured optical parameter distributions, and population statistics (i.e., mean, variance) are invoked to add additional constraints to the retrieval process. The retrieval itself is expressed in terms of a Bayesian inference, and the Maximum A Posteriori (MAP) solution is obtained. The approach is tested by performing simulated retrievals, and retrieval error statistics are provided. The ability to retrieve ground flash fraction has important benefits to the atmospheric chemistry community. For example, using the method to partition the existing satellite global lightning climatology into separate ground and cloud flash climatologies will improve estimates of lightning nitrogen oxides (NOx) production; this in turn will improve both regional air quality and global chemistry/climate model predictions.

  15. Statistical analysis for understanding and predicting battery degradations in real-life electric vehicle use

    NASA Astrophysics Data System (ADS)

    Barré, Anthony; Suard, Frédéric; Gérard, Mathias; Montaru, Maxime; Riu, Delphine

    2014-01-01

    This paper describes the statistical analysis of recorded data parameters of electrical battery ageing during electric vehicle use. These data permit traditional battery ageing investigation based on the evolution of the capacity fade and resistance raise. The measured variables are examined in order to explain the correlation between battery ageing and operating conditions during experiments. Such study enables us to identify the main ageing factors. Then, detailed statistical dependency explorations present the responsible factors on battery ageing phenomena. Predictive battery ageing models are built from this approach. Thereby results demonstrate and quantify a relationship between variables and battery ageing global observations, and also allow accurate battery ageing diagnosis through predictive models.

  16. Statistical properties of a cloud ensemble - A numerical study

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Simpson, Joanne; Soong, Su-Tzai

    1987-01-01

    The statistical properties of cloud ensembles under a specified large-scale environment, such as mass flux by cloud drafts and vertical velocity as well as the condensation and evaporation associated with these cloud drafts, are examined using a three-dimensional numerical cloud ensemble model described by Soong and Ogura (1980) and Tao and Soong (1986). The cloud drafts are classified as active and inactive, and separate contributions to cloud statistics in areas of different cloud activity are then evaluated. The model results compare well with results obtained from aircraft measurements of a well-organized ITCZ rainband that occurred on August 12, 1974, during the Global Atmospheric Research Program's Atlantic Tropical Experiment.

  17. GIA Model Statistics for GRACE Hydrology, Cryosphere, and Ocean Science

    NASA Astrophysics Data System (ADS)

    Caron, L.; Ivins, E. R.; Larour, E.; Adhikari, S.; Nilsson, J.; Blewitt, G.

    2018-03-01

    We provide a new analysis of glacial isostatic adjustment (GIA) with the goal of assembling the model uncertainty statistics required for rigorously extracting trends in surface mass from the Gravity Recovery and Climate Experiment (GRACE) mission. Such statistics are essential for deciphering sea level, ocean mass, and hydrological changes because the latter signals can be relatively small (≤2 mm/yr water height equivalent) over very large regions, such as major ocean basins and watersheds. With abundant new >7 year continuous measurements of vertical land motion (VLM) reported by Global Positioning System stations on bedrock and new relative sea level records, our new statistical evaluation of GIA uncertainties incorporates Bayesian methodologies. A unique aspect of the method is that both the ice history and 1-D Earth structure vary through a total of 128,000 forward models. We find that best fit models poorly capture the statistical inferences needed to correctly invert for lower mantle viscosity and that GIA uncertainty exceeds the uncertainty ascribed to trends from 14 years of GRACE data in polar regions.

  18. Modeling global scene factors in attention

    NASA Astrophysics Data System (ADS)

    Torralba, Antonio

    2003-07-01

    Models of visual attention have focused predominantly on bottom-up approaches that ignored structured contextual and scene information. I propose a model of contextual cueing for attention guidance based on the global scene configuration. It is shown that the statistics of low-level features across the whole image can be used to prime the presence or absence of objects in the scene and to predict their location, scale, and appearance before exploring the image. In this scheme, visual context information can become available early in the visual processing chain, which allows modulation of the saliency of image regions and provides an efficient shortcut for object detection and recognition. 2003 Optical Society of America

  19. Heat balance statistics derived from four-dimensional assimilations with a global circulation model

    NASA Technical Reports Server (NTRS)

    Schubert, S. D.; Herman, G. F.

    1981-01-01

    The reported investigation was conducted to develop a reliable procedure for obtaining the diabatic and vertical terms required for atmospheric heat balance studies. The method developed employs a four-dimensional assimilation mode in connection with the general circulation model of NASA's Goddard Laboratory for Atmospheric Sciences. The initial analysis was conducted with data obtained in connection with the 1976 Data Systems Test. On the basis of the results of the investigation, it appears possible to use the model's observationally constrained diagnostics to provide estimates of the global distribution of virtually all of the quantities which are needed to compute the atmosphere's heat and energy balance.

  20. Statistical models of global Langmuir mixing

    NASA Astrophysics Data System (ADS)

    Li, Qing; Fox-Kemper, Baylor; Breivik, Øyvind; Webb, Adrean

    2017-05-01

    The effects of Langmuir mixing on the surface ocean mixing may be parameterized by applying an enhancement factor which depends on wave, wind, and ocean state to the turbulent velocity scale in the K-Profile Parameterization. Diagnosing the appropriate enhancement factor online in global climate simulations is readily achieved by coupling with a prognostic wave model, but with significant computational and code development expenses. In this paper, two alternatives that do not require a prognostic wave model, (i) a monthly mean enhancement factor climatology, and (ii) an approximation to the enhancement factor based on the empirical wave spectra, are explored and tested in a global climate model. Both appear to reproduce the Langmuir mixing effects as estimated using a prognostic wave model, with nearly identical and substantial improvements in the simulated mixed layer depth and intermediate water ventilation over control simulations, but significantly less computational cost. Simpler approaches, such as ignoring Langmuir mixing altogether or setting a globally constant Langmuir number, are found to be deficient. Thus, the consequences of Stokes depth and misaligned wind and waves are important.

  1. Trends in the predictive performance of raw ensemble weather forecasts

    NASA Astrophysics Data System (ADS)

    Hemri, Stephan; Scheuerer, Michael; Pappenberger, Florian; Bogner, Konrad; Haiden, Thomas

    2015-04-01

    Over the last two decades the paradigm in weather forecasting has shifted from being deterministic to probabilistic. Accordingly, numerical weather prediction (NWP) models have been run increasingly as ensemble forecasting systems. The goal of such ensemble forecasts is to approximate the forecast probability distribution by a finite sample of scenarios. Global ensemble forecast systems, like the European Centre for Medium-Range Weather Forecasts (ECMWF) ensemble, are prone to probabilistic biases, and are therefore not reliable. They particularly tend to be underdispersive for surface weather parameters. Hence, statistical post-processing is required in order to obtain reliable and sharp forecasts. In this study we apply statistical post-processing to ensemble forecasts of near-surface temperature, 24-hour precipitation totals, and near-surface wind speed from the global ECMWF model. Our main objective is to evaluate the evolution of the difference in skill between the raw ensemble and the post-processed forecasts. The ECMWF ensemble is under continuous development, and hence its forecast skill improves over time. Parts of these improvements may be due to a reduction of probabilistic bias. Thus, we first hypothesize that the gain by post-processing decreases over time. Based on ECMWF forecasts from January 2002 to March 2014 and corresponding observations from globally distributed stations we generate post-processed forecasts by ensemble model output statistics (EMOS) for each station and variable. Parameter estimates are obtained by minimizing the Continuous Ranked Probability Score (CRPS) over rolling training periods that consist of the n days preceding the initialization dates. Given the higher average skill in terms of CRPS of the post-processed forecasts for all three variables, we analyze the evolution of the difference in skill between raw ensemble and EMOS forecasts. The fact that the gap in skill remains almost constant over time, especially for near-surface wind speed, suggests that improvements to the atmospheric model have an effect quite different from what calibration by statistical post-processing is doing. That is, they are increasing potential skill. Thus this study indicates that (a) further model development is important even if one is just interested in point forecasts, and (b) statistical post-processing is important because it will keep adding skill in the foreseeable future.

  2. Improving Incremental Balance in the GSI 3DVAR Analysis System

    NASA Technical Reports Server (NTRS)

    Errico, Ronald M.; Yang, Runhua; Kleist, Daryl T.; Parrish, David F.; Derber, John C.; Treadon, Russ

    2008-01-01

    The Gridpoint Statistical Interpolation (GSI) analysis system is a unified global/regional 3DVAR analysis code that has been under development for several years at the National Centers for Environmental Prediction (NCEP)/Environmental Modeling Center. It has recently been implemented into operations at NCEP in both the global and North American data assimilation systems (GDAS and NDAS). An important aspect of this development has been improving the balance of the analysis produced by GSI. The improved balance between variables has been achieved through the inclusion of a Tangent Linear Normal Mode Constraint (TLNMC). The TLNMC method has proven to be very robust and effective. The TLNMC as part of the global GSI system has resulted in substantial improvement in data assimilation both at NCEP and at the NASA Global Modeling and Assimilation Office (GMAO).

  3. Pseudochaotic dynamics near global periodicity

    NASA Astrophysics Data System (ADS)

    Fan, Rong; Zaslavsky, George M.

    2007-09-01

    In this paper, we study a piecewise linear version of kicked oscillator model: saw-tooth map. A special case of global periodicity, in which every phase point belongs to a periodic orbit, is presented. With few analytic results known for the corresponding map on torus, we numerically investigate transport properties and statistical behavior of Poincaré recurrence time in two cases of deviation from global periodicity. A non-KAM behavior of the system, as well as subdiffusion and superdiffusion, are observed through numerical simulations. Statistics of Poincaré recurrences shows Kac lemma is valid in the system and there is a relation between the transport exponent and the Poincaré recurrence exponent. We also perform careful numerical computation of capacity, information and correlation dimensions of the so-called exceptional set in both cases. Our results show that the fractal dimension of the exceptional set is strictly less than 2 and that the fractal structures are unifractal rather than multifractal.

  4. Comparison of Bruch's Membrane Opening Minimum Rim Width Among Those With Normal Ocular Health by Race.

    PubMed

    Rhodes, Lindsay A; Huisingh, Carrie E; Quinn, Adam E; McGwin, Gerald; LaRussa, Frank; Box, Daniel; Owsley, Cynthia; Girkin, Christopher A

    2017-02-01

    To examine if racial differences in Bruch's membrane opening minimum rim width (BMO-MRW) in spectral-domain optical coherence tomography (SDOCT) exist, specifically between people of African descent (AD) and European descent (ED) in normal ocular health. Cross-sectional study. Patients presenting for a comprehensive eye examination at retail-based primary eye clinics were enrolled based on ≥1 of the following at-risk criteria for glaucoma: AD aged ≥40 years, ED aged ≥50 years, diabetes, family history of glaucoma, and/or pre-existing diagnosis of glaucoma. Participants with normal optic nerves on examination received SDOCT of the optic nerve head (24 radial scans). Global and regional (temporal, superotemporal, inferotemporal, nasal, superonasal, and inferonasal) BMO-MRW were measured and compared by race using generalized estimating equations. Models were adjusted for age, sex, and BMO area. SDOCT scans from 269 eyes (148 participants) were included in the analysis. Mean global BMO-MRW declined as age increased. After adjusting for age, sex, and BMO area, there was not a statistically significant difference in mean global BMO-MRW by race (P = .60). Regionally, the mean BMO-MRW was lower in the crude model among AD eyes in the temporal, superotemporal, and nasal regions and higher in the inferotemporal, superonasal, and inferonasal regions. However, in the adjusted model, these differences were not statistically significant. BMO-MRW was not statistically different between those of AD and ED. Race-specific normative data may not be necessary for the deployment of BMO-MRW in AD patients. Copyright © 2016 Elsevier Inc. All rights reserved.

  5. Comparison of Bruch's Membrane Opening-Minimum Rim Width among Those with Normal Ocular Health by Race

    PubMed Central

    Rhodes, Lindsay A.; Huisingh, Carrie E.; Quinn, Adam E.; McGwin, Gerald; LaRussa, Frank; Box, Daniel; Owsley, Cynthia; Girkin, Christopher A.

    2016-01-01

    Purpose To examine if racial differences in Bruch's membrane opening-minimum rim width (BMO-MRW) in spectral domain optical coherence tomography (SDOCT) exist, specifically between people of African descent (AD) and European descent (ED) in normal ocular health. Design Cross-sectional study Methods Patients presenting for a comprehensive eye exam at retail-based primary eye clinics were enrolled based on ≥1 of the following at-risk criteria for glaucoma: AD aged ≥ 40 years, ED aged ≥50 years, diabetes, family history of glaucoma, and/or preexisting diagnosis of glaucoma. Participants with normal optic nerves on exam received SDOCT of the optic nerve head (24 radial scans). Global and regional (temporal, superotemporal, inferotemporal, nasal, superonasal, and inferonasal) BMO-MRW were measured and compared by race using generalized estimating equations. Models were adjusted for age, gender, and BMO area. Results SDOCT scans from 269 eyes (148 participants) were included in the analysis. Mean global BMO-MRW declined as age increased. After adjusting for age, gender, and BMO area, there was not a statistically significant difference in mean global BMO-MRW by race (P = 0.60). Regionally, the mean BMO-MRW was lower in the crude model among AD eyes in the temporal, superotemporal, and nasal regions and higher in the inferotemporal, superonasal, and inferonasal regions. However, in the adjusted model, these differences were not statistically significant. Conclusions BMO-MRW was not statistically different between those of AD and ED. Race-specific normative data may not be necessary for the deployment of BMO-MRW in AD patients. PMID:27825982

  6. Madden–Julian Oscillation prediction skill of a new-generation global model demonstrated using a supercomputer

    PubMed Central

    Miyakawa, Tomoki; Satoh, Masaki; Miura, Hiroaki; Tomita, Hirofumi; Yashiro, Hisashi; Noda, Akira T.; Yamada, Yohei; Kodama, Chihiro; Kimoto, Masahide; Yoneyama, Kunio

    2014-01-01

    Global cloud/cloud system-resolving models are perceived to perform well in the prediction of the Madden–Julian Oscillation (MJO), a huge eastward -propagating atmospheric pulse that dominates intraseasonal variation of the tropics and affects the entire globe. However, owing to model complexity, detailed analysis is limited by computational power. Here we carry out a simulation series using a recently developed supercomputer, which enables the statistical evaluation of the MJO prediction skill of a costly new-generation model in a manner similar to operational forecast models. We estimate the current MJO predictability of the model as 27 days by conducting simulations including all winter MJO cases identified during 2003–2012. The simulated precipitation patterns associated with different MJO phases compare well with observations. An MJO case captured in a recent intensive observation is also well reproduced. Our results reveal that the global cloud-resolving approach is effective in understanding the MJO and in providing month-long tropical forecasts. PMID:24801254

  7. Madden-Julian Oscillation prediction skill of a new-generation global model demonstrated using a supercomputer.

    PubMed

    Miyakawa, Tomoki; Satoh, Masaki; Miura, Hiroaki; Tomita, Hirofumi; Yashiro, Hisashi; Noda, Akira T; Yamada, Yohei; Kodama, Chihiro; Kimoto, Masahide; Yoneyama, Kunio

    2014-05-06

    Global cloud/cloud system-resolving models are perceived to perform well in the prediction of the Madden-Julian Oscillation (MJO), a huge eastward -propagating atmospheric pulse that dominates intraseasonal variation of the tropics and affects the entire globe. However, owing to model complexity, detailed analysis is limited by computational power. Here we carry out a simulation series using a recently developed supercomputer, which enables the statistical evaluation of the MJO prediction skill of a costly new-generation model in a manner similar to operational forecast models. We estimate the current MJO predictability of the model as 27 days by conducting simulations including all winter MJO cases identified during 2003-2012. The simulated precipitation patterns associated with different MJO phases compare well with observations. An MJO case captured in a recent intensive observation is also well reproduced. Our results reveal that the global cloud-resolving approach is effective in understanding the MJO and in providing month-long tropical forecasts.

  8. A Temperature-Based Model for Estimating Monthly Average Daily Global Solar Radiation in China

    PubMed Central

    Li, Huashan; Cao, Fei; Wang, Xianlong; Ma, Weibin

    2014-01-01

    Since air temperature records are readily available around the world, the models based on air temperature for estimating solar radiation have been widely accepted. In this paper, a new model based on Hargreaves and Samani (HS) method for estimating monthly average daily global solar radiation is proposed. With statistical error tests, the performance of the new model is validated by comparing with the HS model and its two modifications (Samani model and Chen model) against the measured data at 65 meteorological stations in China. Results show that the new model is more accurate and robust than the HS, Samani, and Chen models in all climatic regions, especially in the humid regions. Hence, the new model can be recommended for estimating solar radiation in areas where only air temperature data are available in China. PMID:24605046

  9. Probabilistic Evaluation of Competing Climate Models

    NASA Astrophysics Data System (ADS)

    Braverman, A. J.; Chatterjee, S.; Heyman, M.; Cressie, N.

    2017-12-01

    A standard paradigm for assessing the quality of climate model simulations is to compare what these models produce for past and present time periods, to observations of the past and present. Many of these comparisons are based on simple summary statistics called metrics. Here, we propose an alternative: evaluation of competing climate models through probabilities derived from tests of the hypothesis that climate-model-simulated and observed time sequences share common climate-scale signals. The probabilities are based on the behavior of summary statistics of climate model output and observational data, over ensembles of pseudo-realizations. These are obtained by partitioning the original time sequences into signal and noise components, and using a parametric bootstrap to create pseudo-realizations of the noise sequences. The statistics we choose come from working in the space of decorrelated and dimension-reduced wavelet coefficients. We compare monthly sequences of CMIP5 model output of average global near-surface temperature anomalies to similar sequences obtained from the well-known HadCRUT4 data set, as an illustration.

  10. Can climate variability information constrain a hydrological model for an ungauged Costa Rican catchment?

    NASA Astrophysics Data System (ADS)

    Quesada-Montano, Beatriz; Westerberg, Ida K.; Fuentes-Andino, Diana; Hidalgo-Leon, Hugo; Halldin, Sven

    2017-04-01

    Long-term hydrological data are key to understanding catchment behaviour and for decision making within water management and planning. Given the lack of observed data in many regions worldwide, hydrological models are an alternative for reproducing historical streamflow series. Additional types of information - to locally observed discharge - can be used to constrain model parameter uncertainty for ungauged catchments. Climate variability exerts a strong influence on streamflow variability on long and short time scales, in particular in the Central-American region. We therefore explored the use of climate variability knowledge to constrain the simulated discharge uncertainty of a conceptual hydrological model applied to a Costa Rican catchment, assumed to be ungauged. To reduce model uncertainty we first rejected parameter relationships that disagreed with our understanding of the system. We then assessed how well climate-based constraints applied at long-term, inter-annual and intra-annual time scales could constrain model uncertainty. Finally, we compared the climate-based constraints to a constraint on low-flow statistics based on information obtained from global maps. We evaluated our method in terms of the ability of the model to reproduce the observed hydrograph and the active catchment processes in terms of two efficiency measures, a statistical consistency measure, a spread measure and 17 hydrological signatures. We found that climate variability knowledge was useful for reducing model uncertainty, in particular, unrealistic representation of deep groundwater processes. The constraints based on global maps of low-flow statistics provided more constraining information than those based on climate variability, but the latter rejected slow rainfall-runoff representations that the low flow statistics did not reject. The use of such knowledge, together with information on low-flow statistics and constraints on parameter relationships showed to be useful to constrain model uncertainty for an - assumed to be - ungauged basin. This shows that our method is promising for reconstructing long-term flow data for ungauged catchments on the Pacific side of Central America, and that similar methods can be developed for ungauged basins in other regions where climate variability exerts a strong control on streamflow variability.

  11. What Fraction of Global Fire Activity Can Be Forecast Using Sea Surface Temperatures?

    NASA Astrophysics Data System (ADS)

    Chen, Y.; Randerson, J. T.; Morton, D. C.; Andela, N.; Giglio, L.

    2015-12-01

    Variations in sea surface temperatures (SSTs) can influence climate dynamics in local and remote land areas, and thus influence fire-climate interactions that govern burned area. SST information has been recently used in statistical models to create seasonal outlooks of fire season severity in South America and as the initial condition for dynamical model predictions of fire activity in Indonesia. However, the degree to which large-scale ocean-atmosphere interactions can influence burned area in other continental regions has not been systematically explored. Here we quantified the amount of global burned area that can be predicted using SSTs in 14 different oceans regions as statistical predictors. We first examined lagged correlations between GFED4s burned area and the 14 ocean climate indices (OCIs) individually. The maximum correlations from different OCIs were used to construct a global map of fire predictability. About half of the global burned area can be forecast by this approach 3 months before the peak burning month (with a Pearson's r of 0.5 or higher), with the highest levels of predictability in Central America and Equatorial Asia. Several hotspots of predictability were identified using k-means cluster analysis. Within these regions, we tested the improvements of the forecast by using two OCIs from different oceans. Our forecast models were based on near-real-time SST data and may therefore support the development of new seasonal outlooks for fire activity that can aid the sustainable management of these fire-prone ecosystems.

  12. Landslide Susceptibility Statistical Methods: A Critical and Systematic Literature Review

    NASA Astrophysics Data System (ADS)

    Mihir, Monika; Malamud, Bruce; Rossi, Mauro; Reichenbach, Paola; Ardizzone, Francesca

    2014-05-01

    Landslide susceptibility assessment, the subject of this systematic review, is aimed at understanding the spatial probability of slope failures under a set of geomorphological and environmental conditions. It is estimated that about 375 landslides that occur globally each year are fatal, with around 4600 people killed per year. Past studies have brought out the increasing cost of landslide damages which primarily can be attributed to human occupation and increased human activities in the vulnerable environments. Many scientists, to evaluate and reduce landslide risk, have made an effort to efficiently map landslide susceptibility using different statistical methods. In this paper, we do a critical and systematic landslide susceptibility literature review, in terms of the different statistical methods used. For each of a broad set of studies reviewed we note: (i) study geography region and areal extent, (ii) landslide types, (iii) inventory type and temporal period covered, (iv) mapping technique (v) thematic variables used (vi) statistical models, (vii) assessment of model skill, (viii) uncertainty assessment methods, (ix) validation methods. We then pulled out broad trends within our review of landslide susceptibility, particularly regarding the statistical methods. We found that the most common statistical methods used in the study of landslide susceptibility include logistic regression, artificial neural network, discriminant analysis and weight of evidence. Although most of the studies we reviewed assessed the model skill, very few assessed model uncertainty. In terms of geographic extent, the largest number of landslide susceptibility zonations were in Turkey, Korea, Spain, Italy and Malaysia. However, there are also many landslides and fatalities in other localities, particularly India, China, Philippines, Nepal and Indonesia, Guatemala, and Pakistan, where there are much fewer landslide susceptibility studies available in the peer-review literature. This raises some concern that existing studies do not always cover all the regions globally that currently experience landslides and landslide fatalities.

  13. Maintaining Atmospheric Mass and Water Balance Within Reanalysis

    NASA Technical Reports Server (NTRS)

    Takacs, Lawrence L.; Suarez, Max; Todling, Ricardo

    2015-01-01

    This report describes the modifications implemented into the Goddard Earth Observing System Version-5 (GEOS-5) Atmospheric Data Assimilation System (ADAS) to maintain global conservation of dry atmospheric mass as well as to preserve the model balance of globally integrated precipitation and surface evaporation during reanalysis. Section 1 begins with a review of these global quantities from four current reanalysis efforts. Section 2 introduces the modifications necessary to preserve these constraints within the atmospheric general circulation model (AGCM), the Gridpoint Statistical Interpolation (GSI) analysis procedure, and the Incremental Analysis Update (IAU) algorithm. Section 3 presents experiments quantifying the impact of the new procedure. Section 4 shows preliminary results from its use within the GMAO MERRA-2 Reanalysis project. Section 5 concludes with a summary.

  14. September Arctic Sea Ice minimum prediction - a new skillful statistical approach

    NASA Astrophysics Data System (ADS)

    Ionita-Scholz, Monica; Grosfeld, Klaus; Scholz, Patrick; Treffeisen, Renate; Lohmann, Gerrit

    2017-04-01

    Sea ice in both Polar Regions is an important indicator for the expression of global climate change and its polar amplification. Consequently, a broad interest exists on sea ice, its coverage, variability and long term change. Knowledge on sea ice requires high quality data on ice extent, thickness and its dynamics. However, its predictability is complex and it depends on various climate and oceanic parameters and conditions. In order to provide insights into the potential development of a monthly/seasonal signal of sea ice evolution, we developed a robust statistical model based on ocean heat content, sea surface temperature and different atmospheric variables to calculate an estimate of the September Sea ice extent (SSIE) on monthly time scale. Although previous statistical attempts at monthly/seasonal forecasts of SSIE show a relatively reduced skill, we show here that more than 92% (r = 0.96) of the September sea ice extent can be predicted at the end of May by using previous months' climate and oceanic conditions. The skill of the model increases with a decrease in the time lag used for the forecast. At the end of August, our predictions are even able to explain 99% of the SSIE. Our statistical model captures both the general trend as well as the interannual variability of the SSIE. Moreover, it is able to properly forecast the years with extreme high/low SSIE (e.g. 1996/ 2007, 2012, 2013). Besides its forecast skill for SSIE, the model could provide a valuable tool for identifying relevant regions and climate parameters that are important for the sea ice development in the Arctic and for detecting sensitive and critical regions in global coupled climate models with focus on sea ice formation.

  15. Fundamental statistical relationships between monthly and daily meteorological variables: Temporal downscaling of weather based on a global observational dataset

    NASA Astrophysics Data System (ADS)

    Sommer, Philipp; Kaplan, Jed

    2016-04-01

    Accurate modelling of large-scale vegetation dynamics, hydrology, and other environmental processes requires meteorological forcing on daily timescales. While meteorological data with high temporal resolution is becoming increasingly available, simulations for the future or distant past are limited by lack of data and poor performance of climate models, e.g., in simulating daily precipitation. To overcome these limitations, we may temporally downscale monthly summary data to a daily time step using a weather generator. Parameterization of such statistical models has traditionally been based on a limited number of observations. Recent developments in the archiving, distribution, and analysis of "big data" datasets provide new opportunities for the parameterization of a temporal downscaling model that is applicable over a wide range of climates. Here we parameterize a WGEN-type weather generator using more than 50 million individual daily meteorological observations, from over 10'000 stations covering all continents, based on the Global Historical Climatology Network (GHCN) and Synoptic Cloud Reports (EECRA) databases. Using the resulting "universal" parameterization and driven by monthly summaries, we downscale mean temperature (minimum and maximum), cloud cover, and total precipitation, to daily estimates. We apply a hybrid gamma-generalized Pareto distribution to calculate daily precipitation amounts, which overcomes much of the inability of earlier weather generators to simulate high amounts of daily precipitation. Our globally parameterized weather generator has numerous applications, including vegetation and crop modelling for paleoenvironmental studies.

  16. Global alliances effect in coalition forming

    NASA Astrophysics Data System (ADS)

    Vinogradova, Galina; Galam, Serge

    2014-11-01

    Coalition forming is investigated among countries, which are coupled with short range interactions, under the influence of externally-set opposing global alliances. The model extends a recent Natural Model of coalition forming inspired from Statistical Physics, where instabilities are a consequence of decentralized maximization of the individual benefits of actors. In contrast to physics where spins can only evaluate the immediate cost/benefit of a flip of orientation, countries have a long horizon of rationality, which associates with the ability to envision a way up to a better configuration even at the cost of passing through intermediate loosing states. The stabilizing effect is produced through polarization by the global alliances of either a particular unique global interest factor or multiple simultaneous ones. This model provides a versatile theoretical tool for the analysis of real cases and design of novel strategies. Such analysis is provided for several real cases including the Eurozone. The results shed a new light on the understanding of the complex phenomena of planned stabilization in the coalition forming.

  17. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Jiachen; Zhang, Kai; Liu, Junfeng

    Solar reflective “cool roofs” absorb less sunlight than traditional dark roofs, reducing solar heat gain, and decreasing the amount of heat transferred to the atmosphere. Widespread adoption of cool roofs could therefore reduce temperatures in urban areas, partially mitigating the urban heat island effect, and contributing to reversing the local impacts of global climate change. The impacts of cool roofs on global climate remain debated by past research and are uncertain. Using a sophisticated Earth system model, the impacts of cool roofs on climate are investigated at urban, continental, and global scales. We find that global adoption of cool roofsmore » in urban areas reduces urban heat islands everywhere, with an annual- and global-mean decrease from 1.6 to 1.2 K. Decreases are statistically significant, except for some areas in Africa and Mexico where urban fraction is low, and some high-latitude areas during wintertime. Analysis of the surface and TOA energy budget in urban regions at continental-scale shows cool roofs causing increases in solar radiation leaving the Earth-atmosphere system in most regions around the globe, though the presence of aerosols and clouds are found to partially offset increases in upward radiation. Aerosols dampen cool roof-induced increases in upward solar radiation, ranging from 4% in the United States to 18% in more polluted China. Adoption of cool roofs also causes statistically significant reductions in surface air temperatures in urbanized regions of China (0.11±0.10 K) and the United States (0.14±0.12 K); India and Europe show statistically insignificant changes. The research presented here indicates that adoption of cool roofs around the globe would lead to statistically insignificant reductions in global mean air temperature (0.0021 ±0.026 K). This counters past research suggesting that cool roofs can reduce, or even increase global mean temperatures. Thus, we suggest that while cool roofs are an effective tool for reducing building energy use in hot climates, urban heat islands, and regional air temperatures, their influence on global climate is likely negligible.« less

  18. Large-scale circulation patterns, instability factors and global precipitation modeling as influenced by external forcing

    NASA Astrophysics Data System (ADS)

    Bundel, A.; Kulikova, I.; Kruglova, E.; Muravev, A.

    2003-04-01

    The scope of the study is to estimate the relationship between large-scale circulation regimes, various instability indices and global precipitation with different boundary conditions, considered as external forcing. The experiments were carried out in the ensemble-prediction framework of the dynamic-statistical monthly forecast scheme run in the Hydrometeorological Research Center of Russia every ten days. The extension to seasonal intervals makes it necessary to investigate the role of slowly changing boundary conditions among which the sea surface temperature (SST) may be defined as the most effective factor. Continuous integrations of the global spectral T41L15 model for the whole year 2000 (starting from January 1) were performed with the climatic SST and the Reynolds Archive SSTs. Monthly values of the SST were projected on the year days using spline interpolation technique. First, the global precipitation values in experiments were compared to the GPCP (Global Precipitation Climate Program) daily observation data. Although the global mean precipitation is underestimated by the model, some large-scale regional amounts correspond to the real ones (e.g. for Europe) fairly well. On the whole, however, anomaly phases failed to be reproduced. The precipitation averaged over the whole land revealed a greater sensitivity to the SSTs than that over the oceans. The wavelet analysis was applied to separate the low- and high-frequency signal of the SST influence on the large-scale circulation and precipitation. A derivative of the Wallace-Gutzler teleconnection index for the East-Atlantic oscillation was taken as the circulation characteristic. The daily oscillation index values and precipitation amounts averaged over Europe were decomposed using wavelet approach with different “mother wavelets” up to approximation level 3. It was demonstrated that an increase in the precipitation amount over Europe was associated with the zonal flow intensification over the Northern Atlantic when the real SSTs were used. Blocking structures in the circulation caused decreasing precipitation amounts. The wavelet approach gave a more distinctive discrimination in the modeled circulation and precipitation patterns versus different external forcing than a number of other statistical techniques. Several atmospheric instability indices (e.g. the Phillips like parameters, Richardson number etc) were additionally used in post-processing for a more detailed validation of the modeled large-scale and total precipitation amounts. It was shown that a reasonable variety of instability indices must be used for such validations and for precipitation output corrections. Their statistical stability may be substantiated only on the ensemble modeling basis. This work was performed with the financial support of the Russian Foundation for Basic Research (02-05-64655).

  19. Combined constraints on global ocean primary production using observations and models

    NASA Astrophysics Data System (ADS)

    Buitenhuis, Erik T.; Hashioka, Taketo; Quéré, Corinne Le

    2013-09-01

    production is at the base of the marine food web and plays a central role for global biogeochemical cycles. Yet global ocean primary production is known to only a factor of 2, with previous estimates ranging from 38 to 65 Pg C yr-1 and no formal uncertainty analysis. Here, we present an improved global ocean biogeochemistry model that includes a mechanistic representation of photosynthesis and a new observational database of net primary production (NPP) in the ocean. We combine the model and observations to constrain particulate NPP in the ocean with statistical metrics. The PlankTOM5.3 model includes a new photosynthesis formulation with a dynamic representation of iron-light colimitation, which leads to a considerable improvement of the interannual variability of surface chlorophyll. The database includes a consistent set of 50,050 measurements of 14C primary production. The model best reproduces observations when global NPP is 58 ± 7 Pg C yr-1, with a most probable value of 56 Pg C yr-1. The most probable value is robust to the model used. The uncertainty represents 95% confidence intervals. It considers all random errors in the model and observations, but not potential biases in the observations. We show that tropical regions (23°S-23°N) contribute half of the global NPP, while NPPs in the Northern and Southern Hemispheres are approximately equal in spite of the larger ocean area in the South.

  20. Combining inventories of land cover and forest resources with prediction models and remotely sensed data

    Treesearch

    Raymond L. Czaplewski

    1989-01-01

    It is difficult to design systems for national and global resource inventory and analysis that efficiently satisfy changing, and increasingly complex objectives. It is proposed that individual inventory, monitoring, modeling, and remote sensing systems be specialized to achieve portions of the objectives. These separate systems can be statistically linked to accomplish...

  1. Climate change presents increased potential for very large fires in the contiguous United States

    Treesearch

    R. Barbero; J. T. Abatzoglou; Sim Larkin; C. A. Kolden; B. Stocks

    2015-01-01

    Very large fires (VLFs) have important implications for communities, ecosystems, air quality and fire suppression expenditures. VLFs over the contiguous US have been strongly linked with meteorological and climatological variability. Building on prior modelling of VLFs (>5000 ha), an ensemble of 17 global climate models were statistically downscaled over the US...

  2. Assessing risk factors for dental caries: a statistical modeling approach.

    PubMed

    Trottini, Mario; Bossù, Maurizio; Corridore, Denise; Ierardo, Gaetano; Luzzi, Valeria; Saccucci, Matteo; Polimeni, Antonella

    2015-01-01

    The problem of identifying potential determinants and predictors of dental caries is of key importance in caries research and it has received considerable attention in the scientific literature. From the methodological side, a broad range of statistical models is currently available to analyze dental caries indices (DMFT, dmfs, etc.). These models have been applied in several studies to investigate the impact of different risk factors on the cumulative severity of dental caries experience. However, in most of the cases (i) these studies focus on a very specific subset of risk factors; and (ii) in the statistical modeling only few candidate models are considered and model selection is at best only marginally addressed. As a result, our understanding of the robustness of the statistical inferences with respect to the choice of the model is very limited; the richness of the set of statistical models available for analysis in only marginally exploited; and inferences could be biased due the omission of potentially important confounding variables in the model's specification. In this paper we argue that these limitations can be overcome considering a general class of candidate models and carefully exploring the model space using standard model selection criteria and measures of global fit and predictive performance of the candidate models. Strengths and limitations of the proposed approach are illustrated with a real data set. In our illustration the model space contains more than 2.6 million models, which require inferences to be adjusted for 'optimism'.

  3. Application of a Global-to-Beam Irradiance Model to the NASA GEWEX SRB Dataset: An Extension of the NASA Surface Meteorology and Solar Energy Datasets

    NASA Technical Reports Server (NTRS)

    Zhang, Taiping; Stackhouse, Paul W., Jr.; Chandler, William S.; Westberg, David J.

    2014-01-01

    The DIRINDEX model was designed to estimate hourly solar beam irradiances from hourly global horizontal irradiances. This model was applied to the NASA GEWEX SRB(Rel. 3.0) 3-hourly global horizontal irradiance data to derive3-hourly global maps of beam, or direct normal, irradiance for the period from January 2000 to December 2005 at the 1 deg. x 1 deg. resolution. The DIRINDEX model is a combination of the DIRINT model, a quasi-physical global-to-beam irradiance model based on regression of hourly observed data, and a broadband simplified version of the SOLIS clear-sky beam irradiance model. In this study, the input variables of the DIRINDEX model are 3-hourly global horizontal irradiance, solar zenith angle, dew-point temperature, surface elevation, surface pressure, sea-level pressure, aerosol optical depth at 700 nm, and column water vapor. The resulting values of the 3-hourly direct normal irradiance are then used to compute daily and monthly means. The results are validated against the ground-based BSRN data. The monthly means show better agreement with the BSRN data than the results from an earlier endeavor which empirically derived the monthly mean direct normal irradiance from the GEWEX SRB monthly mean global horizontal irradiance. To assimilate the observed information into the final results, the direct normal fluxes from the DIRINDEX model are adjusted according to the comparison statistics in the latitude-longitude-cosine of solar zenith angle phase space, in which the inverse-distance interpolation is used for the adjustment. Since the NASA Surface meteorology and Solar Energy derives its data from the GEWEX SRB datasets, the results discussed herein will serve to extend the former.

  4. Understanding system dynamics of an adaptive enzyme network from globally profiled kinetic parameters.

    PubMed

    Chiang, Austin W T; Liu, Wei-Chung; Charusanti, Pep; Hwang, Ming-Jing

    2014-01-15

    A major challenge in mathematical modeling of biological systems is to determine how model parameters contribute to systems dynamics. As biological processes are often complex in nature, it is desirable to address this issue using a systematic approach. Here, we propose a simple methodology that first performs an enrichment test to find patterns in the values of globally profiled kinetic parameters with which a model can produce the required system dynamics; this is then followed by a statistical test to elucidate the association between individual parameters and different parts of the system's dynamics. We demonstrate our methodology on a prototype biological system of perfect adaptation dynamics, namely the chemotaxis model for Escherichia coli. Our results agreed well with those derived from experimental data and theoretical studies in the literature. Using this model system, we showed that there are motifs in kinetic parameters and that these motifs are governed by constraints of the specified system dynamics. A systematic approach based on enrichment statistical tests has been developed to elucidate the relationships between model parameters and the roles they play in affecting system dynamics of a prototype biological network. The proposed approach is generally applicable and therefore can find wide use in systems biology modeling research.

  5. Long-memory and the sea level-temperature relationship: a fractional cointegration approach.

    PubMed

    Ventosa-Santaulària, Daniel; Heres, David R; Martínez-Hernández, L Catalina

    2014-01-01

    Through thermal expansion of oceans and melting of land-based ice, global warming is very likely contributing to the sea level rise observed during the 20th century. The amount by which further increases in global average temperature could affect sea level is only known with large uncertainties due to the limited capacity of physics-based models to predict sea levels from global surface temperatures. Semi-empirical approaches have been implemented to estimate the statistical relationship between these two variables providing an alternative measure on which to base potentially disrupting impacts on coastal communities and ecosystems. However, only a few of these semi-empirical applications had addressed the spurious inference that is likely to be drawn when one nonstationary process is regressed on another. Furthermore, it has been shown that spurious effects are not eliminated by stationary processes when these possess strong long memory. Our results indicate that both global temperature and sea level indeed present the characteristics of long memory processes. Nevertheless, we find that these variables are fractionally cointegrated when sea-ice extent is incorporated as an instrumental variable for temperature which in our estimations has a statistically significant positive impact on global sea level.

  6. Sensitivities of the hydrologic cycle to model physics, grid resolution, and ocean type in the aquaplanet Community Atmosphere Model

    NASA Astrophysics Data System (ADS)

    Benedict, James J.; Medeiros, Brian; Clement, Amy C.; Pendergrass, Angeline G.

    2017-06-01

    Precipitation distributions and extremes play a fundamental role in shaping Earth's climate and yet are poorly represented in many global climate models. Here, a suite of idealized Community Atmosphere Model (CAM) aquaplanet simulations is examined to assess the aquaplanet's ability to reproduce hydroclimate statistics of real-Earth configurations and to investigate sensitivities of precipitation distributions and extremes to model physics, horizontal grid resolution, and ocean type. Little difference in precipitation statistics is found between aquaplanets using time-constant sea-surface temperatures and those implementing a slab ocean model with a 50 m mixed-layer depth. In contrast, CAM version 5.3 (CAM5.3) produces more time mean, zonally averaged precipitation than CAM version 4 (CAM4), while CAM4 generates significantly larger precipitation variance and frequencies of extremely intense precipitation events. The largest model configuration-based precipitation sensitivities relate to choice of horizontal grid resolution in the selected range 1-2°. Refining grid resolution has significant physics-dependent effects on tropical precipitation: for CAM4, time mean zonal mean precipitation increases along the Equator and the intertropical convergence zone (ITCZ) narrows, while for CAM5.3 precipitation decreases along the Equator and the twin branches of the ITCZ shift poleward. Increased grid resolution also reduces light precipitation frequencies and enhances extreme precipitation for both CAM4 and CAM5.3 resulting in better alignment with observational estimates. A discussion of the potential implications these hydrologic cycle sensitivities have on the interpretation of precipitation statistics in future climate projections is also presented.Plain Language SummaryPrecipitation plays a fundamental role in shaping Earth's climate. Global climate models predict the average precipitation reasonably well but often struggle to accurately represent how often it precipitates and at what intensity. Model precipitation errors are closely tied to imperfect representations of physical processes too small to be resolved on the model grid. The problem is compounded by the complexity of contemporary climate models and the many model configuration options available. In this study, we use an aquaplanet, a simplified global climate model entirely devoid of land masses, to explore the response of precipitation to several aspects of model configuration in a present-day climate state. Our results suggest that critical precipitation patterns, including extreme precipitation events that have large socio-economic impacts, are strongly sensitive to horizontal grid resolution and the representation of unresolved physical processes. Identification and understanding of such model configuration-related precipitation responses in the present-day climate will provide a more accurate estimate of model uncertainty necessary for an improved interpretation of precipitation changes in global warming projections.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012CliPa...8.1339S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012CliPa...8.1339S"><span>Statistical framework for evaluation of climate model simulations by use of climate proxy data from the last millennium - Part 1: Theory</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Sundberg, R.; Moberg, A.; Hind, A.</p> <p>2012-08-01</p> <p>A statistical framework for comparing the output of ensemble simulations from global climate models with networks of climate proxy and instrumental records has been developed, focusing on near-surface temperatures for the last millennium. This framework includes the formulation of a joint statistical model for proxy data, instrumental data and simulation data, which is used to optimize a quadratic distance measure for ranking climate model simulations. An essential underlying assumption is that the simulations and the proxy/instrumental series have a shared component of variability that is due to temporal changes in external forcing, such as volcanic aerosol load, solar irradiance or greenhouse gas concentrations. Two statistical tests have been formulated. Firstly, a preliminary test establishes whether a significant temporal correlation exists between instrumental/proxy and simulation data. Secondly, the distance measure is expressed in the form of a test statistic of whether a forced simulation is closer to the instrumental/proxy series than unforced simulations. The proposed framework allows any number of proxy locations to be used jointly, with different seasons, record lengths and statistical precision. The goal is to objectively rank several competing climate model simulations (e.g. with alternative model parameterizations or alternative forcing histories) by means of their goodness of fit to the unobservable true past climate variations, as estimated from noisy proxy data and instrumental observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29196525','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29196525"><span>Mapping local and global variability in plant trait distributions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Butler, Ethan E; Datta, Abhirup; Flores-Moreno, Habacuc; Chen, Ming; Wythers, Kirk R; Fazayeli, Farideh; Banerjee, Arindam; Atkin, Owen K; Kattge, Jens; Amiaud, Bernard; Blonder, Benjamin; Boenisch, Gerhard; Bond-Lamberty, Ben; Brown, Kerry A; Byun, Chaeho; Campetella, Giandiego; Cerabolini, Bruno E L; Cornelissen, Johannes H C; Craine, Joseph M; Craven, Dylan; de Vries, Franciska T; Díaz, Sandra; Domingues, Tomas F; Forey, Estelle; González-Melo, Andrés; Gross, Nicolas; Han, Wenxuan; Hattingh, Wesley N; Hickler, Thomas; Jansen, Steven; Kramer, Koen; Kraft, Nathan J B; Kurokawa, Hiroko; Laughlin, Daniel C; Meir, Patrick; Minden, Vanessa; Niinemets, Ülo; Onoda, Yusuke; Peñuelas, Josep; Read, Quentin; Sack, Lawren; Schamp, Brandon; Soudzilovskaia, Nadejda A; Spasojevic, Marko J; Sosinski, Enio; Thornton, Peter E; Valladares, Fernando; van Bodegom, Peter M; Williams, Mathew; Wirth, Christian; Reich, Peter B</p> <p>2017-12-19</p> <p>Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusing on a set of plant traits closely coupled to photosynthesis and foliar respiration-specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen ([Formula: see text]) and phosphorus ([Formula: see text]), we characterize how traits vary within and among over 50,000 [Formula: see text]-km cells across the entire vegetated land surface. We do this in several ways-without defining the PFT of each grid cell and using 4 or 14 PFTs; each model's predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps reveal that the most diverse grid cells possess trait variability close to the range of global PFT means.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.A31A3012K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.A31A3012K"><span>The Mpi-M Aerosol Climatology (MAC)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kinne, S.</p> <p>2014-12-01</p> <p>Monthly gridded global data-sets for aerosol optical properties (AOD, SSA and g) and for aerosol microphysical properties (CCN and IN) offer a (less complex) alternate path to include aerosol radiative effects and aerosol impacts on cloud-microphysics in global simulations. Based on merging AERONET sun-/sky-photometer data onto background maps provided by AeroCom phase 1 modeling output and AERONET sun-/the MPI-M Aerosol Climatology (MAC) version 1 was developed and applied in IPCC simulations with ECHAM and as ancillary data-set in satellite-based global data-sets. An updated version 2 of this climatology will be presented now applying central values from the more recent AeroCom phase 2 modeling and utilizing the better global coverage of trusted sun-photometer data - including statistics from the Marine Aerosol network (MAN). Applications include spatial distributions of estimates for aerosol direct and aerosol indirect radiative effects.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19910062731&hterms=methane+composition&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmethane%2Bcomposition','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19910062731&hterms=methane+composition&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dmethane%2Bcomposition"><span>Three-Dimensional Model Synthesis of the Global Methane Cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Fung, I.; Prather, M.; John, J.; Lerner, J.; Matthews, E.</p> <p>1991-01-01</p> <p>A synthesis of the global methane cycle is presented to attempt to generate an accurate global methane budget. Methane-flux measurements, energy data, and agricultural statistics are merged with databases of land-surface characteristics and anthropogenic activities. The sources and sinks of methane are estimated based on atmospheric methane composition and variations, and a global 3D transport model simulates the corresponding atmospheric responses. The geographic and seasonal variations of candidate budgets are compared with observational data, and the available observations are used to constrain the plausible methane budgets. The preferred budget includes annual destruction rates and annual emissions for various sources. The lack of direct flux measurements in the regions of many of these fluxes makes the unique determination of each term impossible. OH oxidation is found to be the largest single term, although more measurements of this and other terms are recommended.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5334440','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5334440"><span>Dispositional optimism and sleep quality: a test of mediating pathways</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Cribbet, Matthew; Kent de Grey, Robert G.; Cronan, Sierra; Trettevik, Ryan; Smith, Timothy W.</p> <p>2016-01-01</p> <p>Dispositional optimism has been related to beneficial influences on physical health outcomes. However, its links to global sleep quality and the psychological mediators responsible for such associations are less studied. This study thus examined if trait optimism predicted global sleep quality, and if measures of subjective well-being were statistical mediators of such links. A community sample of 175 participants (93 men, 82 women) completed measures of trait optimism, depression, and life satisfaction. Global sleep quality was assessed using the Pittsburgh Sleep Quality Index. Results indicated that trait optimism was a strong predictor of better PSQI global sleep quality. Moreover, this association was mediated by depression and life satisfaction in both single and multiple mediator models. These results highlight the importance of optimism for the restorative process of sleep, as well as the utility of multiple mediator models in testing distinct psychological pathways. PMID:27592128</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27592128','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27592128"><span>Dispositional optimism and sleep quality: a test of mediating pathways.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Uchino, Bert N; Cribbet, Matthew; de Grey, Robert G Kent; Cronan, Sierra; Trettevik, Ryan; Smith, Timothy W</p> <p>2017-04-01</p> <p>Dispositional optimism has been related to beneficial influences on physical health outcomes. However, its links to global sleep quality and the psychological mediators responsible for such associations are less studied. This study thus examined if trait optimism predicted global sleep quality, and if measures of subjective well-being were statistical mediators of such links. A community sample of 175 participants (93 men, 82 women) completed measures of trait optimism, depression, and life satisfaction. Global sleep quality was assessed using the Pittsburgh Sleep Quality Index. Results indicated that trait optimism was a strong predictor of better PSQI global sleep quality. Moreover, this association was mediated by depression and life satisfaction in both single and multiple mediator models. These results highlight the importance of optimism for the restorative process of sleep, as well as the utility of multiple mediator models in testing distinct psychological pathways.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AIPC.1621..409K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AIPC.1621..409K"><span>Curve fitting methods for solar radiation data modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Karim, Samsul Ariffin Abdul; Singh, Balbir Singh Mahinder</p> <p>2014-10-01</p> <p>This paper studies the use of several type of curve fitting method to smooth the global solar radiation data. After the data have been fitted by using curve fitting method, the mathematical model of global solar radiation will be developed. The error measurement was calculated by using goodness-fit statistics such as root mean square error (RMSE) and the value of R2. The best fitting methods will be used as a starting point for the construction of mathematical modeling of solar radiation received in Universiti Teknologi PETRONAS (UTP) Malaysia. Numerical results indicated that Gaussian fitting and sine fitting (both with two terms) gives better results as compare with the other fitting methods.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22308067-curve-fitting-methods-solar-radiation-data-modeling','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22308067-curve-fitting-methods-solar-radiation-data-modeling"><span>Curve fitting methods for solar radiation data modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Karim, Samsul Ariffin Abdul, E-mail: samsul-ariffin@petronas.com.my, E-mail: balbir@petronas.com.my; Singh, Balbir Singh Mahinder, E-mail: samsul-ariffin@petronas.com.my, E-mail: balbir@petronas.com.my</p> <p>2014-10-24</p> <p>This paper studies the use of several type of curve fitting method to smooth the global solar radiation data. After the data have been fitted by using curve fitting method, the mathematical model of global solar radiation will be developed. The error measurement was calculated by using goodness-fit statistics such as root mean square error (RMSE) and the value of R{sup 2}. The best fitting methods will be used as a starting point for the construction of mathematical modeling of solar radiation received in Universiti Teknologi PETRONAS (UTP) Malaysia. Numerical results indicated that Gaussian fitting and sine fitting (both withmore » two terms) gives better results as compare with the other fitting methods.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.2082D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.2082D"><span>Resolving Tropical Cyclone Intensity in Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Davis, C. A.</p> <p>2018-02-01</p> <p>In recent years, global weather forecast models and global climate models have begun to depict intense tropical cyclones, even up to category 5 on the Saffir-Simpson scale. In light of the limitation of horizontal resolution in such models, the author performs calculations, using the extended Best Track data for Atlantic tropical cyclones, to estimate the ability of models with differing grid spacing to represent Atlantic tropical cyclone intensity statistically. Results indicate that, under optimistic assumptions, models with horizontal grid spacing of one fourth degree or coarser should not produce a realistic number of category 4 and 5 storms unless there are errors in spatial attributes of the wind field. Furthermore, the case of Irma (2017) is used to demonstrate the importance of a realistic depiction of angular momentum and to motivate the use of angular momentum in model evaluation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28789724','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28789724"><span>Invited review: A position on the Global Livestock Environmental Assessment Model (GLEAM).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>MacLeod, M J; Vellinga, T; Opio, C; Falcucci, A; Tempio, G; Henderson, B; Makkar, H; Mottet, A; Robinson, T; Steinfeld, H; Gerber, P J</p> <p>2018-02-01</p> <p>The livestock sector is one of the fastest growing subsectors of the agricultural economy and, while it makes a major contribution to global food supply and economic development, it also consumes significant amounts of natural resources and alters the environment. In order to improve our understanding of the global environmental impact of livestock supply chains, the Food and Agriculture Organization of the United Nations has developed the Global Livestock Environmental Assessment Model (GLEAM). The purpose of this paper is to provide a review of GLEAM. Specifically, it explains the model architecture, methods and functionality, that is the types of analysis that the model can perform. The model focuses primarily on the quantification of greenhouse gases emissions arising from the production of the 11 main livestock commodities. The model inputs and outputs are managed and produced as raster data sets, with spatial resolution of 0.05 decimal degrees. The Global Livestock Environmental Assessment Model v1.0 consists of five distinct modules: (a) the Herd Module; (b) the Manure Module; (c) the Feed Module; (d) the System Module; (e) the Allocation Module. In terms of the modelling approach, GLEAM has several advantages. For example spatial information on livestock distributions and crops yields enables rations to be derived that reflect the local availability of feed resources in developing countries. The Global Livestock Environmental Assessment Model also contains a herd model that enables livestock statistics to be disaggregated and variation in livestock performance and management to be captured. Priorities for future development of GLEAM include: improving data quality and the methods used to perform emissions calculations; extending the scope of the model to include selected additional environmental impacts and to enable predictive modelling; and improving the utility of GLEAM output.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16461461','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16461461"><span>The role of the airline transportation network in the prediction and predictability of global epidemics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Colizza, Vittoria; Barrat, Alain; Barthélemy, Marc; Vespignani, Alessandro</p> <p>2006-02-14</p> <p>The systematic study of large-scale networks has unveiled the ubiquitous presence of connectivity patterns characterized by large-scale heterogeneities and unbounded statistical fluctuations. These features affect dramatically the behavior of the diffusion processes occurring on networks, determining the ensuing statistical properties of their evolution pattern and dynamics. In this article, we present a stochastic computational framework for the forecast of global epidemics that considers the complete worldwide air travel infrastructure complemented with census population data. We address two basic issues in global epidemic modeling: (i) we study the role of the large scale properties of the airline transportation network in determining the global diffusion pattern of emerging diseases; and (ii) we evaluate the reliability of forecasts and outbreak scenarios with respect to the intrinsic stochasticity of disease transmission and traffic flows. To address these issues we define a set of quantitative measures able to characterize the level of heterogeneity and predictability of the epidemic pattern. These measures may be used for the analysis of containment policies and epidemic risk assessment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2000PhDT........95F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2000PhDT........95F"><span>A digital spatial predictive model of land-use change using economic and environmental inputs and a statistical tree classification approach: Thailand, 1970s--1990s</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Felkner, John Sames</p> <p></p> <p>The scale and extent of global land use change is massive, and has potentially powerful effects on the global climate and global atmospheric composition (Turner & Meyer, 1994). Because of this tremendous change and impact, there is an urgent need for quantitative, empirical models of land use change, especially predictive models with an ability to capture the trajectories of change (Agarwal, Green, Grove, Evans, & Schweik, 2000; Lambin et al., 1999). For this research, a spatial statistical predictive model of land use change was created and run in two provinces of Thailand. The model utilized an extensive spatial database, and used a classification tree approach for explanatory model creation and future land use (Breiman, Friedman, Olshen, & Stone, 1984). Eight input variables were used, and the trees were run on a dependent variable of land use change measured from 1979 to 1989 using classified satellite imagery. The derived tree models were used to create probability of change surfaces, and these were then used to create predicted land cover maps for 1999. These predicted 1999 maps were compared with actual 1999 landcover derived from 1999 Landsat 7 imagery. The primary research hypothesis was that an explanatory model using both economic and environmental input variables would better predict future land use change than would either a model using only economic variables or a model using only environmental. Thus, the eight input variables included four economic and four environmental variables. The results indicated a very slight superiority of the full models to predict future agricultural change and future deforestation, but a slight superiority of the economic models to predict future built change. However, the margins of superiority were too small to be statistically significant. The resulting tree structures were used, however, to derive a series of principles or "rules" governing land use change in both provinces. The model was able to predict future land use, given a series of assumptions, with 90 percent overall accuracies. The model can be used in other developing or developed country locations for future land use prediction, determination of future threatened areas, or to derive "rules" or principles driving land use change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20090009148','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20090009148"><span>Global Precipitation Measurement (GPM) Ground Validation (GV) Science Implementation Plan</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Petersen, Walter A.; Hou, Arthur Y.</p> <p>2008-01-01</p> <p>For pre-launch algorithm development and post-launch product evaluation Global Precipitation Measurement (GPM) Ground Validation (GV) goes beyond direct comparisons of surface rain rates between ground and satellite measurements to provide the means for improving retrieval algorithms and model applications.Three approaches to GPM GV include direct statistical validation (at the surface), precipitation physics validation (in a vertical columns), and integrated science validation (4-dimensional). These three approaches support five themes: core satellite error characterization; constellation satellites validation; development of physical models of snow, cloud water, and mixed phase; development of cloud-resolving model (CRM) and land-surface models to bridge observations and algorithms; and, development of coupled CRM-land surface modeling for basin-scale water budget studies and natural hazard prediction. This presentation describes the implementation of these approaches.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1335322-global-sensitivity-analysis-probabilistic-calibration-predictive-assessment-data-assimilation-linked-ecosystem-carbon-model','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1335322-global-sensitivity-analysis-probabilistic-calibration-predictive-assessment-data-assimilation-linked-ecosystem-carbon-model"><span>Global sensitivity analysis, probabilistic calibration, and predictive assessment for the data assimilation linked ecosystem carbon model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Safta, C.; Ricciuto, Daniel M.; Sargsyan, Khachik; ...</p> <p>2015-07-01</p> <p>In this paper we propose a probabilistic framework for an uncertainty quantification (UQ) study of a carbon cycle model and focus on the comparison between steady-state and transient simulation setups. A global sensitivity analysis (GSA) study indicates the parameters and parameter couplings that are important at different times of the year for quantities of interest (QoIs) obtained with the data assimilation linked ecosystem carbon (DALEC) model. We then employ a Bayesian approach and a statistical model error term to calibrate the parameters of DALEC using net ecosystem exchange (NEE) observations at the Harvard Forest site. The calibration results are employedmore » in the second part of the paper to assess the predictive skill of the model via posterior predictive checks.« less</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_8");'>8</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li class="active"><span>10</span></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_10 --> <div id="page_11" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="201"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhRvF...2j3201Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhRvF...2j3201Z"><span>Principal curvatures and area ratio of propagating surfaces in isotropic turbulence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zheng, Tianhang; You, Jiaping; Yang, Yue</p> <p>2017-10-01</p> <p>We study the statistics of principal curvatures and the surface area ratio of propagating surfaces with a constant or nonconstant propagating velocity in isotropic turbulence using direct numerical simulation. Propagating surface elements initially constitute a plane to model a planar premixed flame front. When the statistics of evolving propagating surfaces reach the stationary stage, the statistical profiles of principal curvatures scaled by the Kolmogorov length scale versus the constant displacement speed scaled by the Kolmogorov velocity scale collapse at different Reynolds numbers. The magnitude of averaged principal curvatures and the number of surviving surface elements without cusp formation decrease with increasing displacement speed. In addition, the effect of surface stretch on the nonconstant displacement speed inhibits the cusp formation on surface elements at negative Markstein numbers. In order to characterize the wrinkling process of the global propagating surface, we develop a model to demonstrate that the increase of the surface area ratio is primarily due to positive Lagrangian time integrations of the area-weighted averaged tangential strain-rate term and propagation-curvature term. The difference between the negative averaged mean curvature and the positive area-weighted averaged mean curvature characterizes the cellular geometry of the global propagating surface.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.emc.ncep.noaa.gov/gcwmb/mdls.php','SCIGOVWS'); return false;" href="http://www.emc.ncep.noaa.gov/gcwmb/mdls.php"><span>National Centers for Environmental Prediction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>Statistics <em>Observational</em> Data Processing Data Assimilation Monsoon Desk Model Transition Seminars Seminar (CFS) HURRICANE WEATHER <em>RESEARCH</em> and FORECASTING (HWRF) GLOBAL ENSEMBLE FORECAST SYSTEM (GEFS) NATIONAL Climate Prediction (NCWCP) 5830 University <em>Research</em> Court College Park, MD 20740 Page Author: EMC</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.emc.ncep.noaa.gov/gcwmb/mis.php','SCIGOVWS'); return false;" href="http://www.emc.ncep.noaa.gov/gcwmb/mis.php"><span>National Centers for Environmental Prediction</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>Statistics <em>Observational</em> Data Processing Data Assimilation Monsoon Desk Model Transition Seminars Seminar conducts a program of <em>research</em> and development in support of the National Centers for Environmental Prediction (NCEP) operational forecasting mission for global prediction. This <em>research</em> and development in</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1389478','SCIGOV-DOEDE'); return false;" href="https://www.osti.gov/servlets/purl/1389478"><span>Global Carbon Project: the Global Carbon Budget 2015 (V.1.0., issued Nov. 2015 and V.1.1, issued Dec. 2015)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/dataexplorer">DOE Data Explorer</a></p> <p>Le Quere, C. [University of East Anglia, Norwich UK; Moriarty, R. [University of East Anglia, Norwich UK; Andrew, R. M. [Univ. of Oslo (Norway); Canadell, J. G. [Commonwealth Scientific and Industrial Research Organization (CSIRO) Oceans and Atmosphere, Canberra ACT (Australia); Sitch, S. [University of Exeter, Exter UK; Boden, T. A. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States) Carbon Dioxide Information Analysis Center (CDIAC); al., et</p> <p>2015-01-01</p> <p>Accurate assessment of anthropogenic carbon dioxide (CO2) emissions and their redistribution among the atmosphere, ocean, and terrestrial biosphere is important to better understand the global carbon cycle, support the development of climate policies, and project future climate change. Here we describe data sets and a methodology to quantify all major components of the global carbon budget, including their uncertainties, based on the combination of a range of data, algorithms, statistics, and model estimates and their interpretation by a broad scientific community. We discuss changes compared to previous estimates as well as consistency within and among components, alongside methodology and data limitations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930066535&hterms=sea+ice+albedo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dsea%2Bice%2Balbedo','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930066535&hterms=sea+ice+albedo&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dsea%2Bice%2Balbedo"><span>Operational satellites and the global monitoring of snow and ice</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Walsh, John E.</p> <p>1991-01-01</p> <p>The altitudinal dependence of the global warming projected by global climate models is at least partially attributable to the albedo-temperature feedback involving snow and ice, which must be regarded as key variables in the monitoring for global change. Statistical analyses of data from IR and microwave sensors monitoring the areal coverage and extent of sea ice have led to mixed conclusions about recent trends of hemisphere sea ice coverage. Seasonal snow cover has been mapped for over 20 years by NOAA/NESDIS on the basis of imagery from a variety of satellite sensors. Multichannel passive microwave data show some promise for the routine monitoring of snow depth over unforested land areas.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170003517&hterms=Reddy&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DReddy','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170003517&hterms=Reddy&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3DReddy"><span>Global Gridded Crop Model Evaluation: Benchmarking, Skills, Deficiencies and Implications.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Muller, Christoph; Elliott, Joshua; Chryssanthacopoulos, James; Arneth, Almut; Balkovic, Juraj; Ciais, Philippe; Deryng, Delphine; Folberth, Christian; Glotter, Michael; Hoek, Steven; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20170003517'); toggleEditAbsImage('author_20170003517_show'); toggleEditAbsImage('author_20170003517_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20170003517_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20170003517_hide"></p> <p>2017-01-01</p> <p>Crop models are increasingly used to simulate crop yields at the global scale, but so far there is no general framework on how to assess model performance. Here we evaluate the simulation results of 14 global gridded crop modeling groups that have contributed historic crop yield simulations for maize, wheat, rice and soybean to the Global Gridded Crop Model Intercomparison (GGCMI) of the Agricultural Model Intercomparison and Improvement Project (AgMIP). Simulation results are compared to reference data at global, national and grid cell scales and we evaluate model performance with respect to time series correlation, spatial correlation and mean bias. We find that global gridded crop models (GGCMs) show mixed skill in reproducing time series correlations or spatial patterns at the different spatial scales. Generally, maize, wheat and soybean simulations of many GGCMs are capable of reproducing larger parts of observed temporal variability (time series correlation coefficients (r) of up to 0.888 for maize, 0.673 for wheat and 0.643 for soybean at the global scale) but rice yield variability cannot be well reproduced by most models. Yield variability can be well reproduced for most major producing countries by many GGCMs and for all countries by at least some. A comparison with gridded yield data and a statistical analysis of the effects of weather variability on yield variability shows that the ensemble of GGCMs can explain more of the yield variability than an ensemble of regression models for maize and soybean, but not for wheat and rice. We identify future research needs in global gridded crop modeling and for all individual crop modeling groups. In the absence of a purely observation-based benchmark for model evaluation, we propose that the best performing crop model per crop and region establishes the benchmark for all others, and modelers are encouraged to investigate how crop model performance can be increased. We make our evaluation system accessible to all crop modelers so that other modeling groups can also test their model performance against the reference data and the GGCMI benchmark.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.4204Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.4204Z"><span>Global CO2 flux inversions from remote-sensing data with systematic errors using hierarchical statistical models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zammit-Mangion, Andrew; Stavert, Ann; Rigby, Matthew; Ganesan, Anita; Rayner, Peter; Cressie, Noel</p> <p>2017-04-01</p> <p>The Orbiting Carbon Observatory-2 (OCO-2) satellite was launched on 2 July 2014, and it has been a source of atmospheric CO2 data since September 2014. The OCO-2 dataset contains a number of variables, but the one of most interest for flux inversion has been the column-averaged dry-air mole fraction (in units of ppm). These global level-2 data offer the possibility of inferring CO2 fluxes at Earth's surface and tracking those fluxes over time. However, as well as having a component of random error, the OCO-2 data have a component of systematic error that is dependent on the instrument's mode, namely land nadir, land glint, and ocean glint. Our statistical approach to CO2-flux inversion starts with constructing a statistical model for the random and systematic errors with parameters that can be estimated from the OCO-2 data and possibly in situ sources from flasks, towers, and the Total Column Carbon Observing Network (TCCON). Dimension reduction of the flux field is achieved through the use of physical basis functions, while temporal evolution of the flux is captured by modelling the basis-function coefficients as a vector autoregressive process. For computational efficiency, flux inversion uses only three months of sensitivities of mole fraction to changes in flux, computed using MOZART; any residual variation is captured through the modelling of a stochastic process that varies smoothly as a function of latitude. The second stage of our statistical approach is to simulate from the posterior distribution of the basis-function coefficients and all unknown parameters given the data using a fully Bayesian Markov chain Monte Carlo (MCMC) algorithm. Estimates and posterior variances of the flux field can then be obtained straightforwardly from this distribution. Our statistical approach is different than others, as it simultaneously makes inference (and quantifies uncertainty) on both the error components' parameters and the CO2 fluxes. We compare it to more classical approaches through an Observing System Simulation Experiment (OSSE) on a global scale. By changing the size of the random and systematic errors in the OSSE, we can determine the corresponding spatial and temporal resolutions at which useful flux signals could be detected from the OCO-2 data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018CNSNS..59..515X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018CNSNS..59..515X"><span>Measurement-based perturbation theory and differential equation parameter estimation with applications to satellite gravimetry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, Peiliang</p> <p>2018-06-01</p> <p>The numerical integration method has been routinely used by major institutions worldwide, for example, NASA Goddard Space Flight Center and German Research Center for Geosciences (GFZ), to produce global gravitational models from satellite tracking measurements of CHAMP and/or GRACE types. Such Earth's gravitational products have found widest possible multidisciplinary applications in Earth Sciences. The method is essentially implemented by solving the differential equations of the partial derivatives of the orbit of a satellite with respect to the unknown harmonic coefficients under the conditions of zero initial values. From the mathematical and statistical point of view, satellite gravimetry from satellite tracking is essentially the problem of estimating unknown parameters in the Newton's nonlinear differential equations from satellite tracking measurements. We prove that zero initial values for the partial derivatives are incorrect mathematically and not permitted physically. The numerical integration method, as currently implemented and used in mathematics and statistics, chemistry and physics, and satellite gravimetry, is groundless, mathematically and physically. Given the Newton's nonlinear governing differential equations of satellite motion with unknown equation parameters and unknown initial conditions, we develop three methods to derive new local solutions around a nominal reference orbit, which are linked to measurements to estimate the unknown corrections to approximate values of the unknown parameters and the unknown initial conditions. Bearing in mind that satellite orbits can now be tracked almost continuously at unprecedented accuracy, we propose the measurement-based perturbation theory and derive global uniformly convergent solutions to the Newton's nonlinear governing differential equations of satellite motion for the next generation of global gravitational models. Since the solutions are global uniformly convergent, theoretically speaking, they are able to extract smallest possible gravitational signals from modern and future satellite tracking measurements, leading to the production of global high-precision, high-resolution gravitational models. By directly turning the nonlinear differential equations of satellite motion into the nonlinear integral equations, and recognizing the fact that satellite orbits are measured with random errors, we further reformulate the links between satellite tracking measurements and the global uniformly convergent solutions to the Newton's governing differential equations as a condition adjustment model with unknown parameters, or equivalently, the weighted least squares estimation of unknown differential equation parameters with equality constraints, for the reconstruction of global high-precision, high-resolution gravitational models from modern (and future) satellite tracking measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21909295','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21909295"><span>Validation of the gravity model in predicting the global spread of influenza.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Xinhai; Tian, Huidong; Lai, Dejian; Zhang, Zhibin</p> <p>2011-08-01</p> <p>The gravity model is often used in predicting the spread of influenza. We use the data of influenza A (H1N1) to check the model's performance and validation, in order to determine the scope of its application. In this article, we proposed to model the pattern of global spread of the virus via a few important socio-economic indicators. We applied the epidemic gravity model for modelling the virus spread globally through the estimation of parameters of a generalized linear model. We compiled the daily confirmed cases of influenza A (H1N1) in each country as reported to the WHO and each state in the USA, and established the model to describe the relationship between the confirmed cases and socio-economic factors such as population size, per capita gross domestic production (GDP), and the distance between the countries/states and the country where the first confirmed case was reported (i.e., Mexico). The covariates we selected for the model were all statistically significantly associated with the global spread of influenza A (H1N1). However, within the USA, the distance and GDP were not significantly associated with the number of confirmed cases. The combination of the gravity model and generalized linear model provided a quick assessment of pandemic spread globally. The gravity model is valid if the spread period is long enough for estimating the model parameters. Meanwhile, the distance between donor and recipient communities has a good gradient. Besides, the spread should be at the early stage if a single source is taking into account.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70047195','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70047195"><span>Crater-based dating of geological units on Mars: methods and application for the new global geological map</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Platz, Thomas; Michael, Gregory; Tanaka, Kenneth L.; Skinner, James A.; Fortezzo, Corey M.</p> <p>2013-01-01</p> <p>The new, post-Viking generation of Mars orbital imaging and topographical data provide significant higher-resolution details of surface morphologies, which induced a new effort to photo-geologically map the surface of Mars at 1:20,000,000 scale. Although from unit superposition relations a relative stratigraphical framework can be compiled, it was the ambition of this mapping project to provide absolute unit age constraints through crater statistics. In this study, the crater counting method is described in detail, starting with the selection of image data, type locations (both from the mapper’s and crater counter’s perspectives) and the identification of impact craters. We describe the criteria used to validate and analyse measured crater populations, and to derive and interpret crater model ages. We provide examples of how geological information about the unit’s resurfacing history can be retrieved from crater size–frequency distributions. Three cases illustrate short-, intermediate, and long-term resurfacing histories. In addition, we introduce an interpretation-independent visualisation of the crater resurfacing history that uses the reduction of the crater population in a given size range relative to the expected population given the observed crater density at larger sizes. From a set of potential type locations, 48 areas from 22 globally mapped units were deemed suitable for crater counting. Because resurfacing ages were derived from crater statistics, these secondary ages were used to define the unit age rather than the base age. Using the methods described herein, we modelled ages that are consistent with the interpreted stratigraphy. Our derived model ages allow age assignments to be included in unit names. We discuss the limitations of using the crater dating technique for global-scale geological mapping. Finally, we present recommendations for the documentation and presentation of crater statistics in publications.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23211414','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23211414"><span>Data resource profile: United Nations Children's Fund (UNICEF).</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Murray, Colleen; Newby, Holly</p> <p>2012-12-01</p> <p>The United Nations Children's Fund (UNICEF) plays a leading role in the collection, compilation, analysis and dissemination of data to inform sound policies, legislation and programmes for promoting children's rights and well-being, and for global monitoring of progress towards the Millennium Development Goals. UNICEF maintains a set of global databases representing nearly 200 countries and covering the areas of child mortality, child health, maternal health, nutrition, immunization, water and sanitation, HIV/AIDS, education and child protection. These databases consist of internationally comparable and statistically sound data, and are updated annually through a process that draws on a wealth of data provided by UNICEF's wide network of >150 field offices. The databases are composed primarily of estimates from household surveys, with data from censuses, administrative records, vital registration systems and statistical models contributing to some key indicators as well. The data are assessed for quality based on a set of objective criteria to ensure that only the most reliable nationally representative information is included. For most indicators, data are available at the global, regional and national levels, plus sub-national disaggregation by sex, urban/rural residence and household wealth. The global databases are featured in UNICEF's flagship publications, inter-agency reports, including the Secretary General's Millennium Development Goals Report and Countdown to 2015, sector-specific reports and statistical country profiles. They are also publicly available on www.childinfo.org, together with trend data and equity analyses.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1692631','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=1692631"><span>Statistical limitations in functional neuroimaging. I. Non-inferential methods and statistical models.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Petersson, K M; Nichols, T E; Poline, J B; Holmes, A P</p> <p>1999-01-01</p> <p>Functional neuroimaging (FNI) provides experimental access to the intact living brain making it possible to study higher cognitive functions in humans. In this review and in a companion paper in this issue, we discuss some common methods used to analyse FNI data. The emphasis in both papers is on assumptions and limitations of the methods reviewed. There are several methods available to analyse FNI data indicating that none is optimal for all purposes. In order to make optimal use of the methods available it is important to know the limits of applicability. For the interpretation of FNI results it is also important to take into account the assumptions, approximations and inherent limitations of the methods used. This paper gives a brief overview over some non-inferential descriptive methods and common statistical models used in FNI. Issues relating to the complex problem of model selection are discussed. In general, proper model selection is a necessary prerequisite for the validity of the subsequent statistical inference. The non-inferential section describes methods that, combined with inspection of parameter estimates and other simple measures, can aid in the process of model selection and verification of assumptions. The section on statistical models covers approaches to global normalization and some aspects of univariate, multivariate, and Bayesian models. Finally, approaches to functional connectivity and effective connectivity are discussed. In the companion paper we review issues related to signal detection and statistical inference. PMID:10466149</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/53837','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/53837"><span>Climate change and the eco-hydrology of fire: Will area burned increase in a warming western USA?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Donald McKenzie; Jeremy S. Littell</p> <p>2017-01-01</p> <p>Wildfire area is predicted to increase with global warming. Empirical statistical models and process-based simulations agree almost universally. The key relationship for this unanimity, observed at multiple spatial and temporal scales, is between drought and fire. Predictive models often focus on ecosystems in which this relationship appears to be particularly strong,...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSPC14B2064M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSPC14B2064M"><span>Climate change, estuaries and anadromous fish habitat in the northeastern United States: models, downscaling and uncertainty</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Muhling, B.; Gaitan, C. F.; Tommasi, D.; Saba, V. S.; Stock, C. A.; Dixon, K. W.</p> <p>2016-02-01</p> <p>Estuaries of the northeastern United States provide essential habitat for many anadromous fishes, across a range of life stages. Climate change is likely to impact estuarine environments and habitats through multiple pathways. Increasing air temperatures will result in a warming water column, and potentially increased stratification. In addition, changes to precipitation patterns may alter freshwater inflow dynamics, leading to altered seasonal salinity regimes. However, the spatial resolution of global climate models is generally insufficient to resolve these processes at the scale of individual estuaries. Global models can be downscaled to a regional resolution using a variety of dynamical and statistical methods. In this study, we examined projections of estuarine conditions, and future habitat extent, for several anadromous fishes in the Chesapeake Bay using different statistical downscaling methods. Sources of error from physical and biological models were quantified, and key areas of uncertainty were highlighted. Results suggested that future projections of the distribution and recruitment of species most strongly linked to freshwater flow dynamics had the highest levels of uncertainty. The sensitivity of different life stages to environmental conditions, and the population-level responses of anadromous species to climate change, were identified as important areas for further research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC31F1176P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC31F1176P"><span>Trends and associated uncertainty in the global mean temperature record</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Poppick, A. N.; Moyer, E. J.; Stein, M.</p> <p>2016-12-01</p> <p>Physical models suggest that the Earth's mean temperature warms in response to changing CO2 concentrations (and hence increased radiative forcing); given physical uncertainties in this relationship, the historical temperature record is a source of empirical information about global warming. A persistent thread in many analyses of the historical temperature record, however, is the reliance on methods that appear to deemphasize both physical and statistical assumptions. Examples include regression models that treat time rather than radiative forcing as the relevant covariate, and time series methods that account for natural variability in nonparametric rather than parametric ways. We show here that methods that deemphasize assumptions can limit the scope of analysis and can lead to misleading inferences, particularly in the setting considered where the data record is relatively short and the scale of temporal correlation is relatively long. A proposed model that is simple but physically informed provides a more reliable estimate of trends and allows a broader array of questions to be addressed. In accounting for uncertainty, we also illustrate how parametric statistical models that are attuned to the important characteristics of natural variability can be more reliable than ostensibly more flexible approaches.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3166731','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3166731"><span>Validation of the Gravity Model in Predicting the Global Spread of Influenza</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Li, Xinhai; Tian, Huidong; Lai, Dejian; Zhang, Zhibin</p> <p>2011-01-01</p> <p>The gravity model is often used in predicting the spread of influenza. We use the data of influenza A (H1N1) to check the model’s performance and validation, in order to determine the scope of its application. In this article, we proposed to model the pattern of global spread of the virus via a few important socio-economic indicators. We applied the epidemic gravity model for modelling the virus spread globally through the estimation of parameters of a generalized linear model. We compiled the daily confirmed cases of influenza A (H1N1) in each country as reported to the WHO and each state in the USA, and established the model to describe the relationship between the confirmed cases and socio-economic factors such as population size, per capita gross domestic production (GDP), and the distance between the countries/states and the country where the first confirmed case was reported (i.e., Mexico). The covariates we selected for the model were all statistically significantly associated with the global spread of influenza A (H1N1). However, within the USA, the distance and GDP were not significantly associated with the number of confirmed cases. The combination of the gravity model and generalized linear model provided a quick assessment of pandemic spread globally. The gravity model is valid if the spread period is long enough for estimating the model parameters. Meanwhile, the distance between donor and recipient communities has a good gradient. Besides, the spread should be at the early stage if a single source is taking into account. PMID:21909295</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.5747D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.5747D"><span>Partitioning nitrogen losses by natural abundance nitrogen isotope composition in a process-based statistical modelling framework</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dong, Ning; Wright, Ian; Prentice, Iain Colin</p> <p>2017-04-01</p> <p>Natural abundance of the stable isotope 15N is an under-utilized resource for research on the global terrestrial nitrogen cycle. Mass balance considerations suggest that if reactive N inputs have a roughly constant isotopic signature, soil δ15N should be mainly determined by the fraction of N losses by leaching - which barely discriminates against 15N - versus gaseous N losses, which discriminate strongly against 15N. We defined simple process-oriented functions of runoff (frunoff) and soil temperature (ftemp) and investigated the dependencies of soil and foliage δ15N (from global compilations of both types of measurement) on their ratio. Both plant and soil δ15N were found to systematically increase with ftemp/frunoff. Consistent with previous analyses, foliage δ15N was offset (more negative) with respect to soil δ15N, with significant differences in this offset between (from largest to smallest offset) ericoid, ectomycorrhizal, arbuscular mycorrhizal and non-mycorrhizal associated plants. δ15N values tend to be large and positive in the driest environments and to decline as frunoff increases, while also being lower in cold environments and increasing as ftemp increases. The fitted statistical model was used to estimate the gaseous fraction of total N losses from ecosystems (fgas) on a global grid basis. In common with earlier results, the largest values of fgas are predicted in the tropics and semi-arid subtropics. This analysis provides an indirectly estimated global mapping of fgas, which could be used as an improved benchmark for terrestrial nitrogen cycle models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ASCMO...3...33P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ASCMO...3...33P"><span>Estimating trends in the global mean temperature record</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Poppick, Andrew; Moyer, Elisabeth J.; Stein, Michael L.</p> <p>2017-06-01</p> <p>Given uncertainties in physical theory and numerical climate simulations, the historical temperature record is often used as a source of empirical information about climate change. Many historical trend analyses appear to de-emphasize physical and statistical assumptions: examples include regression models that treat time rather than radiative forcing as the relevant covariate, and time series methods that account for internal variability in nonparametric rather than parametric ways. However, given a limited data record and the presence of internal variability, estimating radiatively forced temperature trends in the historical record necessarily requires some assumptions. Ostensibly empirical methods can also involve an inherent conflict in assumptions: they require data records that are short enough for naive trend models to be applicable, but long enough for long-timescale internal variability to be accounted for. In the context of global mean temperatures, empirical methods that appear to de-emphasize assumptions can therefore produce misleading inferences, because the trend over the twentieth century is complex and the scale of temporal correlation is long relative to the length of the data record. We illustrate here how a simple but physically motivated trend model can provide better-fitting and more broadly applicable trend estimates and can allow for a wider array of questions to be addressed. In particular, the model allows one to distinguish, within a single statistical framework, between uncertainties in the shorter-term vs. longer-term response to radiative forcing, with implications not only on historical trends but also on uncertainties in future projections. We also investigate the consequence on inferred uncertainties of the choice of a statistical description of internal variability. While nonparametric methods may seem to avoid making explicit assumptions, we demonstrate how even misspecified parametric statistical methods, if attuned to the important characteristics of internal variability, can result in more accurate uncertainty statements about trends.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA617349','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA617349"><span>Real-Time Identification of Wheel Terrain Interaction Models for Enhanced Autonomous Vehicle Mobility</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-04-24</p> <p>tim at io n Er ro r ( cm ) 0 2 4 6 8 10 Color Statistics Angelova...Color_Statistics_Error) / Average_Slip_Error Position Estimation Error: Global Pose Po si tio n Es tim at io n Er ro r ( cm ) 0 2 4 6 8 10 12 Color...get some kind of clearance for releasing pose and odometry data) collected at the following sites – Taylor, Gascola, Somerset, Fort Bliss and</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70184967','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70184967"><span>Evaluating simplistic methods to understand current distributions and forecast distribution changes under climate change scenarios: An example with coypu (Myocastor coypus)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Jarnevich, Catherine S.; Young, Nicholas E; Sheffels, Trevor R.; Carter, Jacoby; Systma, Mark D.; Talbert, Colin</p> <p>2017-01-01</p> <p>Invasive species provide a unique opportunity to evaluate factors controlling biogeographic distributions; we can consider introduction success as an experiment testing suitability of environmental conditions. Predicting potential distributions of spreading species is not easy, and forecasting potential distributions with changing climate is even more difficult. Using the globally invasive coypu (Myocastor coypus [Molina, 1782]), we evaluate and compare the utility of a simplistic ecophysiological based model and a correlative model to predict current and future distribution. The ecophysiological model was based on winter temperature relationships with nutria survival. We developed correlative statistical models using the Software for Assisted Habitat Modeling and biologically relevant climate data with a global extent. We applied the ecophysiological based model to several global circulation model (GCM) predictions for mid-century. We used global coypu introduction data to evaluate these models and to explore a hypothesized physiological limitation, finding general agreement with known coypu distribution locally and globally and support for an upper thermal tolerance threshold. Global circulation model based model results showed variability in coypu predicted distribution among GCMs, but had general agreement of increasing suitable area in the USA. Our methods highlighted the dynamic nature of the edges of the coypu distribution due to climate non-equilibrium, and uncertainty associated with forecasting future distributions. Areas deemed suitable habitat, especially those on the edge of the current known range, could be used for early detection of the spread of coypu populations for management purposes. Combining approaches can be beneficial to predicting potential distributions of invasive species now and in the future and in exploring hypotheses of factors controlling distributions.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_9");'>9</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li class="active"><span>11</span></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_11 --> <div id="page_12" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="221"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017PhDT.........6Q','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017PhDT.........6Q"><span>Strategies for Reduced-Order Models in Uncertainty Quantification of Complex Turbulent Dynamical Systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Qi, Di</p> <p></p> <p>Turbulent dynamical systems are ubiquitous in science and engineering. Uncertainty quantification (UQ) in turbulent dynamical systems is a grand challenge where the goal is to obtain statistical estimates for key physical quantities. In the development of a proper UQ scheme for systems characterized by both a high-dimensional phase space and a large number of instabilities, significant model errors compared with the true natural signal are always unavoidable due to both the imperfect understanding of the underlying physical processes and the limited computational resources available. One central issue in contemporary research is the development of a systematic methodology for reduced order models that can recover the crucial features both with model fidelity in statistical equilibrium and with model sensitivity in response to perturbations. In the first part, we discuss a general mathematical framework to construct statistically accurate reduced-order models that have skill in capturing the statistical variability in the principal directions of a general class of complex systems with quadratic nonlinearity. A systematic hierarchy of simple statistical closure schemes, which are built through new global statistical energy conservation principles combined with statistical equilibrium fidelity, are designed and tested for UQ of these problems. Second, the capacity of imperfect low-order stochastic approximations to model extreme events in a passive scalar field advected by turbulent flows is investigated. The effects in complicated flow systems are considered including strong nonlinear and non-Gaussian interactions, and much simpler and cheaper imperfect models with model error are constructed to capture the crucial statistical features in the stationary tracer field. Several mathematical ideas are introduced to improve the prediction skill of the imperfect reduced-order models. Most importantly, empirical information theory and statistical linear response theory are applied in the training phase for calibrating model errors to achieve optimal imperfect model parameters; and total statistical energy dynamics are introduced to improve the model sensitivity in the prediction phase especially when strong external perturbations are exerted. The validity of reduced-order models for predicting statistical responses and intermittency is demonstrated on a series of instructive models with increasing complexity, including the stochastic triad model, the Lorenz '96 model, and models for barotropic and baroclinic turbulence. The skillful low-order modeling methods developed here should also be useful for other applications such as efficient algorithms for data assimilation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMNG11A1584D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMNG11A1584D"><span>The Spatial Scaling of Global Rainfall Extremes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Devineni, N.; Xi, C.; Lall, U.; Rahill-Marier, B.</p> <p>2013-12-01</p> <p>Floods associated with severe storms are a significant source of risk for property, life and supply chains. These property losses tend to be determined as much by the duration of flooding as by the depth and velocity of inundation. High duration floods are typically induced by persistent rainfall (upto 30 day duration) as seen recently in Thailand, Pakistan, the Ohio and the Mississippi Rivers, France, and Germany. Events related to persistent and recurrent rainfall appear to correspond to the persistence of specific global climate patterns that may be identifiable from global, historical data fields, and also from climate models that project future conditions. A clear understanding of the space-time rainfall patterns for events or for a season will enable in assessing the spatial distribution of areas likely to have a high/low inundation potential for each type of rainfall forcing. In this paper, we investigate the statistical properties of the spatial manifestation of the rainfall exceedances. We also investigate the connection of persistent rainfall events at different latitudinal bands to large-scale climate phenomena such as ENSO. Finally, we present the scaling phenomena of contiguous flooded areas as a result of large scale organization of long duration rainfall events. This can be used for spatially distributed flood risk assessment conditional on a particular rainfall scenario. Statistical models for spatio-temporal loss simulation including model uncertainty to support regional and portfolio analysis can be developed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160010658','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160010658"><span>How Universal Is the Relationship Between Remotely Sensed Vegetation Indices (VI) and Crop Leaf Area Index (LAI)?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kang, Yanghui; Ozdogan, Mutlu; Zipper, Samuel C.; Roman, Miguel</p> <p>2016-01-01</p> <p>Global LAI-VI relationships are statistically significant, crop-specific, and mostly non-linear. This research enables the operationalization of large-area crop modeling and, by extension, has relevance to both fundamental and applied agroecosystem research.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMOS21B..02M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMOS21B..02M"><span>Modeling extreme sea levels due to tropical and extra-tropical cyclones at the global-scale</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Muis, S.; Lin, N.; Verlaan, M.; Winsemius, H.; Ward, P.; Aerts, J.</p> <p>2017-12-01</p> <p>Extreme sea levels, a combination of storm surges and astronomical tides, can cause catastrophic floods. Due to their intense wind speeds and low pressure, tropical cyclones (TCs) typically cause higher storm surges than extra-tropical cyclones (ETCs), but ETCs may still contribute significantly to the overall flood risk. In this contribution, we show a novel approach to model extreme sea levels due to both tropical and extra-tropical cyclones at the global-scale. Using a global hydrodynamic model we have developed the Global Tide and Surge Reanalysis (GTSR) dataset (Muis et al., 2016), which provides daily maximum timeseries of storm tide from 1979 to 2014. GTSR is based on wind and pressure fields from the ERA-Interim climate reanalysis (Dee at al., 2011). A severe limitation of the GTSR dataset is the underrepresentation of TCs. This is due to the relatively coarse grid resolution of ERA-Interim, which means that the strong intensities of TCs are not fully included. Furthermore, the length of ERA-Interim is too short to estimate the probabilities of extreme TCs in a reliable way. We will discuss potential ways to address this limitation, and demonstrate how to improve the global GTSR framework. We will apply the improved framework to the east coast of the United States. First, we improve our meteorological forcing by applying a parametric hurricane model (Holland 1980), and we improve the tide and surge reanalysis dataset (Muis et al., 2016) by explicitly modeling the historical TCs in the Extended Best Track dataset (Demuth et al., 2006). Second, we improve our sampling by statistically extending the observed TC record to many thousands of years (Emanuel et al., 2006). The improved framework allows for the mapping of probabilities of extreme sea levels, including extremes TC events, for the east coast of the United States. ReferencesDee et al (2011). The ERA-Interim reanalysis: configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 137, 553-97. Emanuel et al (2006). A Statistical Deterministic Approach to Hurricane Risk Assessment/ Bull. Am. Meteorol. Soc. 87, 299-314. Holland (1980). An analytic model of the wind and pressure profiles in hurricanes. Mon. Weather Rev. 108, 1212-1218. Muis et al (2016). A global reanalysis of storm surge and extreme sea levels. Nat. Commun. 7, 1-11</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25459168','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25459168"><span>Novice nurses' level of global interdependence identity: a quantitative research study.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kozlowski-Gibson, Maria</p> <p>2015-01-01</p> <p>Often, therapeutic relationships are cross-cultural in nature, which places both nurses and patients at risk for stress, depression, and anxiety. The purpose of this investigation was to describe novice nurses' level of global interdependence identity, as manifested by worldminded attitudes, and identify the strongest predictors of worldminded attitudes. Prospective descriptive with multiple regression study. The various nursing units of a large hospital in the great Cleveland, OH, area. The participants were novice nurses up to two years after graduation from nursing school and employed as hospital clinicians. Descriptive statistics with the mean and standard deviation of the scores was used for the delineation of the development of the participants. The study relied on a survey instrument, the Scale to Measure Worldminded Attitudes developed by Sampson and Smith (1957). The numerical data was scored and organized on a Microsoft Excel spreadsheet. The Statistical Package for Social Sciences (SPSS) version 21 was the program used to assist with analysis. The assessment of the models created through regression was completed using the model summary and analysis of variance (ANOVA). The nurses' mean level of global interdependence identity was slightly above the neutral point between extreme national-mindedness and full development of global interdependence identity. The best predictors of worldminded attitudes were immigration, patriotism, and war conceptualized under a global frame of reference. Novice nurses did not demonstrate an optimum developmental status of global interdependence identity to safeguard cross-cultural encounters with patients. The recommendation is the inclusion of immigration, patriotism, and war in the nursing curriculum and co-curriculum to promote student development and a turnaround improvement in patient experience. Copyright © 2014 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20130014831','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20130014831"><span>Micromechanics Fatigue Damage Analysis Modeling for Fabric Reinforced Ceramic Matrix Composites</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Min, J. B.; Xue, D.; Shi, Y.</p> <p>2013-01-01</p> <p>A micromechanics analysis modeling method was developed to analyze the damage progression and fatigue failure of fabric reinforced composite structures, especially for the brittle ceramic matrix material composites. A repeating unit cell concept of fabric reinforced composites was used to represent the global composite structure. The thermal and mechanical properties of the repeating unit cell were considered as the same as those of the global composite structure. The three-phase micromechanics, the shear-lag, and the continuum fracture mechanics models were integrated with a statistical model in the repeating unit cell to predict the progressive damages and fatigue life of the composite structures. The global structure failure was defined as the loss of loading capability of the repeating unit cell, which depends on the stiffness reduction due to material slice failures and nonlinear material properties in the repeating unit cell. The present methodology is demonstrated with the analysis results evaluated through the experimental test performed with carbon fiber reinforced silicon carbide matrix plain weave composite specimens.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28864240','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28864240"><span>Global motion perception is associated with motor function in 2-year-old children.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Thompson, Benjamin; McKinlay, Christopher J D; Chakraborty, Arijit; Anstice, Nicola S; Jacobs, Robert J; Paudel, Nabin; Yu, Tzu-Ying; Ansell, Judith M; Wouldes, Trecia A; Harding, Jane E</p> <p>2017-09-29</p> <p>The dorsal visual processing stream that includes V1, motion sensitive area V5 and the posterior parietal lobe, supports visually guided motor function. Two recent studies have reported associations between global motion perception, a behavioural measure of processing in V5, and motor function in pre-school and school aged children. This indicates a relationship between visual and motor development and also supports the use of global motion perception to assess overall dorsal stream function in studies of human neurodevelopment. We investigated whether associations between vision and motor function were present at 2 years of age, a substantially earlier stage of development. The Bayley III test of Infant and Toddler Development and measures of vision including visual acuity (Cardiff Acuity Cards), stereopsis (Lang stereotest) and global motion perception were attempted in 404 2-year-old children (±4 weeks). Global motion perception (quantified as a motion coherence threshold) was assessed by observing optokinetic nystagmus in response to random dot kinematograms of varying coherence. Linear regression revealed that global motion perception was modestly, but statistically significantly associated with Bayley III composite motor (r 2 =0.06, P<0.001, n=375) and gross motor scores (r 2 =0.06, p<0.001, n=375). The associations remained significant when language score was included in the regression model. In addition, when language score was included in the model, stereopsis was significantly associated with composite motor and fine motor scores, but unaided visual acuity was not statistically significantly associated with any of the motor scores. These results demonstrate that global motion perception and binocular vision are associated with motor function at an early stage of development. Global motion perception can be used as a partial measure of dorsal stream function from early childhood. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20140010770','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20140010770"><span>A Multiscale Progressive Failure Modeling Methodology for Composites that Includes Fiber Strength Stochastics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Ricks, Trenton M.; Lacy, Thomas E., Jr.; Bednarcyk, Brett A.; Arnold, Steven M.; Hutchins, John W.</p> <p>2014-01-01</p> <p>A multiscale modeling methodology was developed for continuous fiber composites that incorporates a statistical distribution of fiber strengths into coupled multiscale micromechanics/finite element (FE) analyses. A modified two-parameter Weibull cumulative distribution function, which accounts for the effect of fiber length on the probability of failure, was used to characterize the statistical distribution of fiber strengths. A parametric study using the NASA Micromechanics Analysis Code with the Generalized Method of Cells (MAC/GMC) was performed to assess the effect of variable fiber strengths on local composite failure within a repeating unit cell (RUC) and subsequent global failure. The NASA code FEAMAC and the ABAQUS finite element solver were used to analyze the progressive failure of a unidirectional SCS-6/TIMETAL 21S metal matrix composite tensile dogbone specimen at 650 degC. Multiscale progressive failure analyses were performed to quantify the effect of spatially varying fiber strengths on the RUC-averaged and global stress-strain responses and failure. The ultimate composite strengths and distribution of failure locations (predominately within the gage section) reasonably matched the experimentally observed failure behavior. The predicted composite failure behavior suggests that use of macroscale models that exploit global geometric symmetries are inappropriate for cases where the actual distribution of local fiber strengths displays no such symmetries. This issue has not received much attention in the literature. Moreover, the model discretization at a specific length scale can have a profound effect on the computational costs associated with multiscale simulations.models that yield accurate yet tractable results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29191515','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29191515"><span>Mapping the spatial distribution of Aedes aegypti and Aedes albopictus.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ding, Fangyu; Fu, Jingying; Jiang, Dong; Hao, Mengmeng; Lin, Gang</p> <p>2018-02-01</p> <p>Mosquito-borne infectious diseases, such as Rift Valley fever, Dengue, Chikungunya and Zika, have caused mass human death with the transnational expansion fueled by economic globalization. Simulating the distribution of the disease vectors is of great importance in formulating public health planning and disease control strategies. In the present study, we simulated the global distribution of Aedes aegypti and Aedes albopictus at a 5×5km spatial resolution with high-dimensional multidisciplinary datasets and machine learning methods Three relatively popular and robust machine learning models, including support vector machine (SVM), gradient boosting machine (GBM) and random forest (RF), were used. During the fine-tuning process based on training datasets of A. aegypti and A. albopictus, RF models achieved the highest performance with an area under the curve (AUC) of 0.973 and 0.974, respectively, followed by GBM (AUC of 0.971 and 0.972, respectively) and SVM (AUC of 0.963 and 0.964, respectively) models. The simulation difference between RF and GBM models was not statistically significant (p>0.05) based on the validation datasets, whereas statistically significant differences (p<0.05) were observed for RF and GBM simulations compared with SVM simulations. From the simulated maps derived from RF models, we observed that the distribution of A. albopictus was wider than that of A. aegypti along a latitudinal gradient. The discriminatory power of each factor in simulating the global distribution of the two species was also analyzed. Our results provided fundamental information for further study on disease transmission simulation and risk assessment. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1091986-hurricanes-aquaplanet-world-implications-impacts-external-forcing-model-horizontal-resolution','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1091986-hurricanes-aquaplanet-world-implications-impacts-external-forcing-model-horizontal-resolution"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Li, Fuyu; Collins, William D.; Wehner, Michael F.</p> <p></p> <p>High-resolution climate models have been shown to improve the statistics of tropical storms and hurricanes compared to low-resolution models. The impact of increasing horizontal resolution in the tropical storm simulation is investigated exclusively using a series of Atmospheric Global Climate Model (AGCM) runs with idealized aquaplanet steady-state boundary conditions and a fixed operational storm-tracking algorithm. The results show that increasing horizontal resolution helps to detect more hurricanes, simulate stronger extreme rainfall, and emulate better storm structures in the models. However, increasing model resolution does not necessarily produce stronger hurricanes in terms of maximum wind speed, minimum sea level pressure, andmore » mean precipitation, as the increased number of storms simulated by high-resolution models is mainly associated with weaker storms. The spatial scale at which the analyses are conducted appears to have more important control on these meteorological statistics compared to horizontal resolution of the model grid. When the simulations are analyzed on common low-resolution grids, the statistics of the hurricanes, particularly the hurricane counts, show reduced sensitivity to the horizontal grid resolution and signs of scale invariant.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24072732','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24072732"><span>WebGLORE: a web service for Grid LOgistic REgression.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jiang, Wenchao; Li, Pinghao; Wang, Shuang; Wu, Yuan; Xue, Meng; Ohno-Machado, Lucila; Jiang, Xiaoqian</p> <p>2013-12-15</p> <p>WebGLORE is a free web service that enables privacy-preserving construction of a global logistic regression model from distributed datasets that are sensitive. It only transfers aggregated local statistics (from participants) through Hypertext Transfer Protocol Secure to a trusted server, where the global model is synthesized. WebGLORE seamlessly integrates AJAX, JAVA Applet/Servlet and PHP technologies to provide an easy-to-use web service for biomedical researchers to break down policy barriers during information exchange. http://dbmi-engine.ucsd.edu/webglore3/. WebGLORE can be used under the terms of GNU general public license as published by the Free Software Foundation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29291750','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29291750"><span>Bayesian uncertainty analysis for complex systems biology models: emulation, global parameter searches and evaluation of gene functions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vernon, Ian; Liu, Junli; Goldstein, Michael; Rowe, James; Topping, Jen; Lindsey, Keith</p> <p>2018-01-02</p> <p>Many mathematical models have now been employed across every area of systems biology. These models increasingly involve large numbers of unknown parameters, have complex structure which can result in substantial evaluation time relative to the needs of the analysis, and need to be compared to observed data of various forms. The correct analysis of such models usually requires a global parameter search, over a high dimensional parameter space, that incorporates and respects the most important sources of uncertainty. This can be an extremely difficult task, but it is essential for any meaningful inference or prediction to be made about any biological system. It hence represents a fundamental challenge for the whole of systems biology. Bayesian statistical methodology for the uncertainty analysis of complex models is introduced, which is designed to address the high dimensional global parameter search problem. Bayesian emulators that mimic the systems biology model but which are extremely fast to evaluate are embeded within an iterative history match: an efficient method to search high dimensional spaces within a more formal statistical setting, while incorporating major sources of uncertainty. The approach is demonstrated via application to a model of hormonal crosstalk in Arabidopsis root development, which has 32 rate parameters, for which we identify the sets of rate parameter values that lead to acceptable matches between model output and observed trend data. The multiple insights into the model's structure that this analysis provides are discussed. The methodology is applied to a second related model, and the biological consequences of the resulting comparison, including the evaluation of gene functions, are described. Bayesian uncertainty analysis for complex models using both emulators and history matching is shown to be a powerful technique that can greatly aid the study of a large class of systems biology models. It both provides insight into model behaviour and identifies the sets of rate parameters of interest.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150000330','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150000330"><span>Sensitivity of Simulated Global Ocean Carbon Flux Estimates to Forcing by Reanalysis Products</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gregg, Watson W.; Casey, Nancy W.; Rousseaux, Cecile S.</p> <p>2015-01-01</p> <p>Reanalysis products from MERRA, NCEP2, NCEP1, and ECMWF were used to force an established ocean biogeochemical model to estimate air-sea carbon fluxes (FCO2) and partial pressure of carbon dioxide (pCO2) in the global oceans. Global air-sea carbon fluxes and pCO2 were relatively insensitive to the choice of forcing reanalysis. All global FCO2 estimates from the model forced by the four different reanalyses were within 20% of in situ estimates (MERRA and NCEP1 were within 7%), and all models exhibited statistically significant positive correlations with in situ estimates across the 12 major oceanographic basins. Global pCO2 estimates were within 1% of in situ estimates with ECMWF being the outlier at 0.6%. Basin correlations were similar to FCO2. There were, however, substantial departures among basin estimates from the different reanalysis forcings. The high latitudes and tropics had the largest ranges in estimated fluxes among the reanalyses. Regional pCO2 differences among the reanalysis forcings were muted relative to the FCO2 results. No individual reanalysis was uniformly better or worse in the major oceanographic basins. The results provide information on the characterization of uncertainty in ocean carbon models due to choice of reanalysis forcing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19830057515&hterms=tics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dtics','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19830057515&hterms=tics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dtics"><span>Cloud encounter statistics in the 28.5-43.5 KFT altitude region from four years of GASP observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Jasperson, W. H.; Nastrom, G. D.; Davis, R. E.; Holdeman, J. D.</p> <p>1983-01-01</p> <p>The results of an analysis of cloud encounter measurements taken at aircraft flight altitudes as part of the Global Atmospheric Sampling Program are summarized. The results can be used in estimating the probability of cloud encounter and in assessing the economic feasibility of laminar flow control aircraft along particular routes. The data presented clearly show the tropical circulation and its seasonal migration; characteristics of the mid-latitude regime, such as the large-scale traveling cyclones in the winter and increased convective activity in the summer, can be isolated in the data. The cloud encounter statistics are shown to be consistent with the mid-latitude cyclone model. A model for TIC (time-in-clouds), a cloud encounter statistic, is presented for several common airline routes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1427647-mapping-local-global-variability-plant-trait-distributions','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1427647-mapping-local-global-variability-plant-trait-distributions"><span>Mapping local and global variability in plant trait distributions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Butler, Ethan E.; Datta, Abhirup; Flores-Moreno, Habacuc</p> <p>2017-12-01</p> <p>Our ability to understand and predict the response of ecosystems to a changing environment depends on quantifying vegetation functional diversity. However, representing this diversity at the global scale is challenging. Typically, in Earth system models, characterization of plant diversity has been limited to grouping related species into plant functional types (PFTs), with all trait variation in a PFT collapsed into a single mean value that is applied globally. Using the largest global plant trait database and state of the art Bayesian modeling, we created fine-grained global maps of plant trait distributions that can be applied to Earth system models. Focusingmore » on a set of plant traits closely coupled to photosynthesis and foliar respiration—specific leaf area (SLA) and dry mass-based concentrations of leaf nitrogen (N m) and phosphorus (P m), we characterize how traits vary within and among over 50,000 ~50×50-km cells across the entire vegetated land surface. We do this in several ways—without defining the PFT of each grid cell and using 4 or 14 PFTs; each model’s predictions are evaluated against out-of-sample data. This endeavor advances prior trait mapping by generating global maps that preserve variability across scales by using modern Bayesian spatial statistical modeling in combination with a database over three times larger than that in previous analyses. Our maps further reveal that the most diverse grid cells possess trait variability close to the range of global PFT means.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170003702','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170003702"><span>Approximating Long-Term Statistics Early in the Global Precipitation Measurement Era</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Stanley, Thomas; Kirschbaum, Dalia B.; Huffman, George J.; Adler, Robert F.</p> <p>2017-01-01</p> <p>Long-term precipitation records are vital to many applications, especially the study of extreme events. The Tropical Rainfall Measuring Mission (TRMM) has served this need, but TRMMs successor mission, Global Precipitation Measurement (GPM), does not yet provide a long-term record. Quantile mapping, the conversion of values across paired empirical distributions, offers a simple, established means to approximate such long-term statistics, but only within appropriately defined domains. This method was applied to a case study in Central America, demonstrating that quantile mapping between TRMM and GPM data maintains the performance of a real-time landslide model. Use of quantile mapping could bring the benefits of the latest satellite-based precipitation dataset to existing user communities such as those for hazard assessment, crop forecasting, numerical weather prediction, and disease tracking.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMIN52A..06F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMIN52A..06F"><span>Monitoring the Earth System Grid Federation through the ESGF Dashboard</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fiore, S.; Bell, G. M.; Drach, B.; Williams, D.; Aloisio, G.</p> <p>2012-12-01</p> <p>The Climate Model Intercomparison Project, phase 5 (CMIP5) is a global effort coordinated by the World Climate Research Programme (WCRP) involving tens of modeling groups spanning 19 countries. It is expected the CMIP5 distributed data archive will total upwards of 3.5 petabytes, stored across several ESGF Nodes on four continents (North America, Europe, Asia, and Australia). The Earth System Grid Federation (ESGF) provides the IT infrastructure to support the CMIP5. In this regard, the monitoring of the distributed ESGF infrastructure represents a crucial part carried out by the ESGF Dashboard. The ESGF Dashboard is a software component of the ESGF stack, responsible for collecting key information about the status of the federation in terms of: 1) Network topology (peer-groups composition), 2) Node type (host/services mapping), 3) Registered users (including their Identity Providers), 4) System metrics (e.g., round-trip time, service availability, CPU, memory, disk, processes, etc.), 5) Download metrics (both at the Node and federation level). The last class of information is very important since it provides a strong insight of the CMIP5 experiment: the data usage statistics. In this regard, CMCC and LLNL have developed a data analytics management system for the analysis of both node-level and federation-level data usage statistics. It provides data usage statistics aggregated by project, model, experiment, variable, realm, peer node, time, ensemble, datasetname (including version), etc. The back-end of the system is able to infer the data usage information of the entire federation, by carrying out: - at node level: a 18-step reconciliation process on the peer node databases (i.e. node manager and publisher DB) which provides a 15-dimension datawarehouse with local statistics and - at global level: an aggregation process which federates the data usage statistics into a 16-dimension datawarehouse with federation-level data usage statistics. The front-end of the Dashboard system exploits a web desktop approach, which joins the pervasivity of a web application with the flexibility of a desktop one.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23251418','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23251418"><span>A model for cross-cultural reciprocal interactions through mass media.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>González-Avella, Juan Carlos; Cosenza, Mario G; San Miguel, Maxi</p> <p>2012-01-01</p> <p>We investigate the problem of cross-cultural interactions through mass media in a model where two populations of social agents, each with its own internal dynamics, get information about each other through reciprocal global interactions. As the agent dynamics, we employ Axelrod's model for social influence. The global interaction fields correspond to the statistical mode of the states of the agents and represent mass media messages on the cultural trend originating in each population. Several phases are found in the collective behavior of either population depending on parameter values: two homogeneous phases, one having the state of the global field acting on that population, and the other consisting of a state different from that reached by the applied global field; and a disordered phase. In addition, the system displays nontrivial effects: (i) the emergence of a largest minority group of appreciable size sharing a state different from that of the applied global field; (ii) the appearance of localized ordered states for some values of parameters when the entire system is observed, consisting of one population in a homogeneous state and the other in a disordered state. This last situation can be considered as a social analogue to a chimera state arising in globally coupled populations of oscillators.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24596427','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24596427"><span>Impact of climate change on global malaria distribution.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Caminade, Cyril; Kovats, Sari; Rocklov, Joacim; Tompkins, Adrian M; Morse, Andrew P; Colón-González, Felipe J; Stenlund, Hans; Martens, Pim; Lloyd, Simon J</p> <p>2014-03-04</p> <p>Malaria is an important disease that has a global distribution and significant health burden. The spatial limits of its distribution and seasonal activity are sensitive to climate factors, as well as the local capacity to control the disease. Malaria is also one of the few health outcomes that has been modeled by more than one research group and can therefore facilitate the first model intercomparison for health impacts under a future with climate change. We used bias-corrected temperature and rainfall simulations from the Coupled Model Intercomparison Project Phase 5 climate models to compare the metrics of five statistical and dynamical malaria impact models for three future time periods (2030s, 2050s, and 2080s). We evaluated three malaria outcome metrics at global and regional levels: climate suitability, additional population at risk and additional person-months at risk across the model outputs. The malaria projections were based on five different global climate models, each run under four emission scenarios (Representative Concentration Pathways, RCPs) and a single population projection. We also investigated the modeling uncertainty associated with future projections of populations at risk for malaria owing to climate change. Our findings show an overall global net increase in climate suitability and a net increase in the population at risk, but with large uncertainties. The model outputs indicate a net increase in the annual person-months at risk when comparing from RCP2.6 to RCP8.5 from the 2050s to the 2080s. The malaria outcome metrics were highly sensitive to the choice of malaria impact model, especially over the epidemic fringes of the malaria distribution.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3948226','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3948226"><span>Impact of climate change on global malaria distribution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Caminade, Cyril; Kovats, Sari; Rocklov, Joacim; Tompkins, Adrian M.; Morse, Andrew P.; Colón-González, Felipe J.; Stenlund, Hans; Martens, Pim; Lloyd, Simon J.</p> <p>2014-01-01</p> <p>Malaria is an important disease that has a global distribution and significant health burden. The spatial limits of its distribution and seasonal activity are sensitive to climate factors, as well as the local capacity to control the disease. Malaria is also one of the few health outcomes that has been modeled by more than one research group and can therefore facilitate the first model intercomparison for health impacts under a future with climate change. We used bias-corrected temperature and rainfall simulations from the Coupled Model Intercomparison Project Phase 5 climate models to compare the metrics of five statistical and dynamical malaria impact models for three future time periods (2030s, 2050s, and 2080s). We evaluated three malaria outcome metrics at global and regional levels: climate suitability, additional population at risk and additional person-months at risk across the model outputs. The malaria projections were based on five different global climate models, each run under four emission scenarios (Representative Concentration Pathways, RCPs) and a single population projection. We also investigated the modeling uncertainty associated with future projections of populations at risk for malaria owing to climate change. Our findings show an overall global net increase in climate suitability and a net increase in the population at risk, but with large uncertainties. The model outputs indicate a net increase in the annual person-months at risk when comparing from RCP2.6 to RCP8.5 from the 2050s to the 2080s. The malaria outcome metrics were highly sensitive to the choice of malaria impact model, especially over the epidemic fringes of the malaria distribution. PMID:24596427</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_10");'>10</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li class="active"><span>12</span></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_12 --> <div id="page_13" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="241"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19950047978&hterms=urban+landscape&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Durban%2Blandscape','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19950047978&hterms=urban+landscape&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3Durban%2Blandscape"><span>Estimating the urban bias of surface shelter temperatures using upper-air and satellite data. Part 1: Development of models predicting surface shelter temperatures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Epperson, David L.; Davis, Jerry M.; Bloomfield, Peter; Karl, Thomas R.; Mcnab, Alan L.; Gallo, Kevin P.</p> <p>1995-01-01</p> <p>Multiple regression techniques were used to predict surface shelter temperatures based on the time period 1986-89 using upper-air data from the European Centre for Medium-Range Weather Forecasts (ECMWF) to represent the background climate and site-specific data to represent the local landscape. Global monthly mean temperature models were developed using data from over 5000 stations available in the Global Historical Climate Network (GHCN). Monthly maximum, mean, and minimum temperature models for the United States were also developed using data from over 1000 stations available in the U.S. Cooperative (COOP) Network and comparative monthly mean temperature models were developed using over 1150 U.S. stations in the GHCN. Three-, six-, and full-variable models were developed for comparative purposes. Inferences about the variables selected for the various models were easier for the GHCN models, which displayed month-to-month consistency in which variables were selected, than for the COOP models, which were assigned a different list of variables for nearly every month. These and other results suggest that global calibration is preferred because data from the global spectrum of physical processes that control surface temperatures are incorporated in a global model. All of the models that were developed in this study validated relatively well, especially the global models. Recalibration of the models with validation data resulted in only slightly poorer regression statistics, indicating that the calibration list of variables was valid. Predictions using data from the validation dataset in the calibrated equation were better for the GHCN models, and the globally calibrated GHCN models generally provided better U.S. predictions than the U.S.-calibrated COOP models. Overall, the GHCN and COOP models explained approximately 64%-95% of the total variance of surface shelter temperatures, depending on the month and the number of model variables. In addition, root-mean-square errors (rmse's) were over 3 C for GHCN models and over 2 C for COOP models for winter months, and near 2 C for GHCN models and near 1.5 C for COOP models for summer months.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1430416','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1430416"><span>Tethys – A Python Package for Spatial and Temporal Downscaling of Global Water Withdrawals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Li, Xinya; Vernon, Chris R.; Hejazi, Mohamad I.</p> <p></p> <p>Downscaling of water withdrawals from regional/national to local scale is a fundamental step and also a common problem when integrating large scale economic and integrated assessment models with high-resolution detailed sectoral models. Tethys, an open-access software written in Python, is developed with statistical downscaling algorithms, to spatially and temporally downscale water withdrawal data to a finer scale. The spatial resolution will be downscaled from region/basin scale to grid (0.5 geographic degree) scale and the temporal resolution will be downscaled from year to month. Tethys is used to produce monthly global gridded water withdrawal products based on estimates from the Globalmore » Change Assessment Model (GCAM).« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSM32B..07W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSM32B..07W"><span>Global Evolution of Plasmaspheric Plasma: Spacecraft-Model Reconstructions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Walsh, B.; Welling, D. T.; Morley, S.</p> <p>2017-12-01</p> <p>During times of geomagnetic disturbance, material from the plasmasphere will move radially outward into the magnetosphere. Once introduced to the outer magnetosphere, this material has been shown to impact a variety of plasma populations as well as the coupling of energy from the solar wind into the magnetosphere and ionosphere. The magnitude of any of these effects is inherently linked to the density and evolution of the plasmaspheric plasma. Much of our idea of how this population behaves in the outer-magnetosphere is however based on statistical pictures and model results. Here, in-situ measurements from 10 spacecraft are used to constrain a coupled, global numerical modeling in order to identify true spatial extents, time histories, and densities of the plasmasphere and plumes in the outer magnetosphere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1430416-tethys-python-package-spatial-temporal-downscaling-global-water-withdrawals','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1430416-tethys-python-package-spatial-temporal-downscaling-global-water-withdrawals"><span>Tethys – A Python Package for Spatial and Temporal Downscaling of Global Water Withdrawals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Li, Xinya; Vernon, Chris R.; Hejazi, Mohamad I.; ...</p> <p>2018-02-09</p> <p>Downscaling of water withdrawals from regional/national to local scale is a fundamental step and also a common problem when integrating large scale economic and integrated assessment models with high-resolution detailed sectoral models. Tethys, an open-access software written in Python, is developed with statistical downscaling algorithms, to spatially and temporally downscale water withdrawal data to a finer scale. The spatial resolution will be downscaled from region/basin scale to grid (0.5 geographic degree) scale and the temporal resolution will be downscaled from year to month. Tethys is used to produce monthly global gridded water withdrawal products based on estimates from the Globalmore » Change Assessment Model (GCAM).« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.B31B0297R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.B31B0297R"><span>Improved parameterization of managed grassland in a global process-based vegetation model using Bayesian statistics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rolinski, S.; Müller, C.; Lotze-Campen, H.; Bondeau, A.</p> <p>2010-12-01</p> <p>More than a quarter of the Earth’s land surface is covered by grassland, which is also the major part (~ 70 %) of the agricultural area. Most of this area is used for livestock production in different degrees of intensity. The dynamic global vegetation model LPJmL (Sitch et al., Global Change Biology, 2003; Bondeau et al., Global Change Biology, 2007) is one of few process-based model that simulates biomass production on managed grasslands at the global scale. The implementation of managed grasslands and its evaluation has received little attention so far, as reference data on grassland productivity are scarce and the definition of grassland extent and usage are highly uncertain. However, grassland productivity is related to large areas, and strongly influences global estimates of carbon and water budgets and should thus be improved. Plants are implemented in LPJmL in an aggregated form as plant functional types assuming that processes concerning carbon and water fluxes are quite similar between species of the same type. Therefore, the parameterization of a functional type is possible with parameters in a physiologically meaningful range of values. The actual choice of the parameter values from the possible and reasonable phase space should satisfy the condition of the best fit of model results and measured data. In order to improve the parameterization of managed grass we follow a combined procedure using model output and measured data of carbon and water fluxes. By comparing carbon and water fluxes simultaneously, we expect well-balanced refinements and avoid over-tuning of the model in only one direction. The comparison of annual biomass from grassland to data from the Food and Agriculture Organization of the United Nations (FAO) per country provide an overview about the order of magnitude and the identification of deviations. The comparison of daily net primary productivity, soil respiration and water fluxes at specific sites (FluxNet Data) provides information on boundary conditions such as water and light availability or temperature sensibility. Based on the given limitation factors, a number of sensitive parameters are chosen, e.g. for the phenological development, biomass allocation, and different management regimes. These are introduced to a sensitivity analysis and Bayesian parameter evaluation using the R package FME (Soetart & Petzoldt, Journal of Statistical Software, 2010). Given the extremely different climatic conditions at the FluxNet grass sites, the premises for the global sensitivity analysis are very promising.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.B53I0631J','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.B53I0631J"><span>A statistical light use efficiency model explains 85% variations in global GPP</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Jiang, C.; Ryu, Y.</p> <p>2016-12-01</p> <p>Photosynthesis is a complicated process whose modeling requires different levels of assumptions, simplification, and parameterization. Among models, light use efficiency (LUE) model is highly compact but powerful in monitoring gross primary production (GPP) from satellite data. Most of LUE models adopt a multiplicative from of maximum LUE, absorbed photosynthetically active radiation (APAR), and temperature and water stress functions. However, maximum LUE is a fitting parameter with large spatial variations, but most studies only use several biome dependent constants. In addition, stress functions are empirical and arbitrary in literatures. Moreover, meteorological data used are usually coarse-resolution, e.g., 1°, which could cause large errors. Finally, sunlit and shade canopy have completely different light responses but little considered. Targeting these issues, we derived a new statistical LUE model from a process-based and satellite-driven model, the Breathing Earth System Simulator (BESS). We have already derived a set of global radiation (5-km resolution), carbon and water fluxes (1-km resolution) products from 2000 to 2015 from BESS. By exploring these datasets, we found strong correlation between APAR and GPP for sunlit (R2=0.84) and shade (R2=0.96) canopy, respectively. A simple model, only driven by sunlit and shade APAR, was thus built based on linear relationships. The slopes of the linear function act as effective LUE of global ecosystem, with values of 0.0232 and 0.0128 umol C/umol quanta for sunlit and shade canopy, respectively. When compared with MPI-BGC GPP products, a global proxy of FLUXNET data, BESS-LUE achieved an overall accuracy of R2 = 0.85, whereas original BESS was R2 = 0.83 and MODIS GPP product was R2 = 0.76. We investigated spatiotemporal variations of the effective LUE. Spatially, the ratio of sunlit to shade values ranged from 0.1 (wet tropic) to 4.5 (dry inland). By using maps of sunlit and shade effective LUE the accuracy of BESS-LUE further reached R2 = 0.88. Temporally, both sunlit and shade effective LUE had seasonal peak values in NH summer, and both showed significant increasing trends. Overall, BESS-LUE exhibited promising potential in global GPP mapping. We are going to evaluate it using FLUXNET2015 database and satellite solar Induced Fluorescence (SIF) data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/15899975','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/15899975"><span>Human-modified temperatures induce species changes: Joint attribution.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Root, Terry L; MacMynowski, Dena P; Mastrandrea, Michael D; Schneider, Stephen H</p> <p>2005-05-24</p> <p>Average global surface-air temperature is increasing. Contention exists over relative contributions by natural and anthropogenic forcings. Ecological studies attribute plant and animal changes to observed warming. Until now, temperature-species connections have not been statistically attributed directly to anthropogenic climatic change. Using modeled climatic variables and observed species data, which are independent of thermometer records and paleoclimatic proxies, we demonstrate statistically significant "joint attribution," a two-step linkage: human activities contribute significantly to temperature changes and human-changed temperatures are associated with discernible changes in plant and animal traits. Additionally, our analyses provide independent testing of grid-box-scale temperature projections from a general circulation model (HadCM3).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFMGC23E1184Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFMGC23E1184Z"><span>Modeling Global Urbanization Supported by Nighttime Light Remote Sensing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhou, Y.</p> <p>2015-12-01</p> <p>Urbanization, a major driver of global change, profoundly impacts our physical and social world, for example, altering carbon cycling and climate. Understanding these consequences for better scientific insights and effective decision-making unarguably requires accurate information on urban extent and its spatial distributions. In this study, we developed a cluster-based method to estimate the optimal thresholds and map urban extents from the nighttime light remote sensing data, extended this method to the global domain by developing a computational method (parameterization) to estimate the key parameters in the cluster-based method, and built a consistent 20-year global urban map series to evaluate the time-reactive nature of global urbanization (e.g. 2000 in Fig. 1). Supported by urban maps derived from nightlights remote sensing data and socio-economic drivers, we developed an integrated modeling framework to project future urban expansion by integrating a top-down macro-scale statistical model with a bottom-up urban growth model. With the models calibrated and validated using historical data, we explored urban growth at the grid level (1-km) over the next two decades under a number of socio-economic scenarios. The derived spatiotemporal information of historical and potential future urbanization will be of great value with practical implications for developing adaptation and risk management measures for urban infrastructure, transportation, energy, and water systems when considered together with other factors such as climate variability and change, and high impact weather events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/21622076','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/21622076"><span>Accurate landmarking of three-dimensional facial data in the presence of facial expressions and occlusions using a three-dimensional statistical facial feature model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhao, Xi; Dellandréa, Emmanuel; Chen, Liming; Kakadiaris, Ioannis A</p> <p>2011-10-01</p> <p>Three-dimensional face landmarking aims at automatically localizing facial landmarks and has a wide range of applications (e.g., face recognition, face tracking, and facial expression analysis). Existing methods assume neutral facial expressions and unoccluded faces. In this paper, we propose a general learning-based framework for reliable landmark localization on 3-D facial data under challenging conditions (i.e., facial expressions and occlusions). Our approach relies on a statistical model, called 3-D statistical facial feature model, which learns both the global variations in configurational relationships between landmarks and the local variations of texture and geometry around each landmark. Based on this model, we further propose an occlusion classifier and a fitting algorithm. Results from experiments on three publicly available 3-D face databases (FRGC, BU-3-DFE, and Bosphorus) demonstrate the effectiveness of our approach, in terms of landmarking accuracy and robustness, in the presence of expressions and occlusions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170004579&hterms=watson&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dwatson','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170004579&hterms=watson&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dwatson"><span>Simulating PACE Global Ocean Radiances</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gregg, Watson W.; Rousseaux, Cecile S.</p> <p>2017-01-01</p> <p>The NASA PACE mission is a hyper-spectral radiometer planned for launch in the next decade. It is intended to provide new information on ocean biogeochemical constituents by parsing the details of high resolution spectral absorption and scattering. It is the first of its kind for global applications and as such, poses challenges for design and operation. To support pre-launch mission development and assess on-orbit capabilities, the NASA Global Modeling and Assimilation Office has developed a dynamic simulation of global water-leaving radiances, using an ocean model containing multiple ocean phytoplankton groups, particulate detritus, particulate inorganic carbon (PIC), and chromophoric dissolved organic carbon (CDOC) along with optical absorption and scattering processes at 1 nm spectral resolution. The purpose here is to assess the skill of the dynamic model and derived global radiances. Global bias, uncertainty, and correlation are derived using available modern satellite radiances at moderate spectral resolution. Total chlorophyll, PIC, and the absorption coefficient of CDOC (aCDOC), are simultaneously assimilated to improve the fidelity of the optical constituent fields. A 5-year simulation showed statistically significant (P < 0.05) comparisons of chlorophyll (r = 0.869), PIC (r = 0.868), and a CDOC (r =0.890) with satellite data. Additionally, diatoms (r = 0.890), cyanobacteria (r = 0.732), and coccolithophores (r = 0.716) were significantly correlated with in situ data. Global assimilated distributions of optical constituents were coupled with a radiative transfer model (Ocean-Atmosphere Spectral Irradiance Model, OASIM) to estimate normalized water-leaving radiances at 1 nm for the spectral range 250-800 nm. These unassimilated radiances were within 0.074 mW/sq cm/micron/sr of MODIS-Aqua radiances at 412, 443, 488, 531, 547, and 667 nm. This difference represented a bias of 10.4% (model low). A mean correlation of 0.706 (P < 0.05) was found with global distributions of MODIS radiances. These results suggest skill in the global assimilated model and resulting radiances. The reported error characterization suggests that the global dynamical simulation can support some aspects of mission design and analysis. For example, the high spectral resolution of the simulation supports investigations of band selection. The global nature of the radiance representations supports investigations of satellite observing scenarios. Global radiances at bands not available in current and past missions support investigations of mission capability. PACE, ocean color, water-leaving radiances, biogeochemical model, radiative transfer model</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009dyma.book.....M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009dyma.book.....M"><span>Dynamics of Markets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>McCauley, Joseph L.</p> <p>2009-09-01</p> <p>Preface; 1. Econophysics: why and what; 2. Neo-classical economic theory; 3. Probability and stochastic processes; 4. Introduction to financial economics; 5. Introduction to portfolio selection theory; 6. Scaling, pair correlations, and conditional densities; 7. Statistical ensembles: deducing dynamics from time series; 8. Martingale option pricing; 9. FX market globalization: evolution of the dollar to worldwide reserve currency; 10. Macroeconomics and econometrics: regression models vs. empirically based modeling; 11. Complexity; Index.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5456649','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5456649"><span>Fatigue Life Prediction of Fiber-Reinforced Ceramic-Matrix Composites with Different Fiber Preforms at Room and Elevated Temperatures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Li, Longbiao</p> <p>2016-01-01</p> <p>In this paper, the fatigue life of fiber-reinforced ceramic-matrix composites (CMCs) with different fiber preforms, i.e., unidirectional, cross-ply, 2D (two dimensional), 2.5D and 3D CMCs at room and elevated temperatures in air and oxidative environments, has been predicted using the micromechanics approach. An effective coefficient of the fiber volume fraction along the loading direction (ECFL) was introduced to describe the fiber architecture of preforms. The statistical matrix multicracking model and fracture mechanics interface debonding criterion were used to determine the matrix crack spacing and interface debonded length. Under cyclic fatigue loading, the fiber broken fraction was determined by combining the interface wear model and fiber statistical failure model at room temperature, and interface/fiber oxidation model, interface wear model and fiber statistical failure model at elevated temperatures, based on the assumption that the fiber strength is subjected to two-parameter Weibull distribution and the load carried by broken and intact fibers satisfies the Global Load Sharing (GLS) criterion. When the broken fiber fraction approaches the critical value, the composites fatigue fracture. PMID:28773332</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.H13C1224G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.H13C1224G"><span>Assessing the Impact of Climate Change on Stream Temperatures in the Methow River Basin, Washington</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gangopadhyay, S.; Caldwell, R. J.; Lai, Y.; Bountry, J.</p> <p>2011-12-01</p> <p>The Methow River in Washington offers prime spawning habitat for salmon and other cold-water fishes. During the summer months, low streamflows on the Methow result in cutoff side channels that limit the habitat available to these fishes. Future climate scenarios of increasing air temperature and decreasing precipitation suggest the potential for increasing loss of habitat and fish mortality as stream temperatures rise in response to lower flows and additional heating. To assess the impacts of climate change on stream temperature in the Methow River, the US Bureau of Reclamation is developing an hourly time-step, two-dimensional hydraulic model of the confluence of the Methow and Chewuch Rivers above Winthrop. The model will be coupled with a physical stream temperature model to generate spatial representations of stream conditions conducive for fish habitat. In this study, we develop a statistical framework for generating stream temperature time series from global climate model (GCM) and hydrologic model outputs. Regional observations of stream temperature and hydrometeorological conditions are used to develop statistical models of daily mean stream temperature for the Methow River at Winthrop, WA. Temperature and precipitation projections from 10 global climate models (GCMs) are coupled with the streamflow generated using the University of Washington Variable Infiltration Capacity model. The projections serve as input to the statistical models to generate daily time series of mean daily stream temperature. Since the output from the GCM, VIC, and statistical models offer only daily data, a k-nearest neighbor (k-nn) resampling technique is employed to select appropriate proportion vectors for disaggregating the Winthrop daily flow and temperature to an upstream location on each of the rivers above the confluence. Hourly proportion vectors are then used to disaggregate the daily flow and temperature to hourly values to be used in the hydraulic model. Historical meteorological variables are also selected using the k-nn method. We present the statistical modeling framework using Generalized Linear Models (GLMs), along with diagnostics and measurements of skill. We will also provide a comparison of the stream temperature projections from the future years of 2020, 2040, and 2080 and discuss the potential implications on fish habitat in the Methow River. Future integration of the hourly climate scenarios in the hydraulic model will provide the ability to assess the spatial extent of habitat impacts and allow the USBR to evaluate the effectiveness of various river restoration projects in maintaining or improving habitat in a changing climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ISPAn44W4..393V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ISPAn44W4..393V"><span>Globally-Applicable Predictive Wildfire Model   a Temporal-Spatial GIS Based Risk Analysis Using Data Driven Fuzzy Logic Functions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van den Dool, G.</p> <p>2017-11-01</p> <p>This study (van den Dool, 2017) is a proof of concept for a global predictive wildfire model, in which the temporal-spatial characteristics of wildfires are placed in a Geographical Information System (GIS), and the risk analysis is based on data-driven fuzzy logic functions. The data sources used in this model are available as global datasets, but subdivided into three pilot areas: North America (California/Nevada), Europe (Spain), and Asia (Mongolia), and are downscaled to the highest resolution (3-arc second). The GIS is constructed around three themes: topography, fuel availability and climate. From the topographical data, six derived sub-themes are created and converted to a fuzzy membership based on the catchment area statistics. The fuel availability score is a composite of four data layers: land cover, wood loads, biomass, biovolumes. As input for the climatological sub-model reanalysed daily averaged, weather-related data is used, which is accumulated to a global weekly time-window (to account for the uncertainty within the climatological model) and forms the temporal component of the model. The final product is a wildfire risk score (from 0 to 1) by week, representing the average wildfire risk in an area. To compute the potential wildfire risk the sub-models are combined usinga Multi-Criteria Approach, and the model results are validated against the area under the Receiver Operating Characteristic curve.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC32B..01P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC32B..01P"><span>Inability of CMIP5 Climate Models to Simulate Recent Multi-decadal Climate Change in the Tropical Pacific.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Power, S.; Delage, F.; Kociuba, G.; Wang, G.; Smith, I.</p> <p>2017-12-01</p> <p>Observed 15-year surface temperature trends beginning 1998 or later have attracted a great deal of interest because of an apparent slowdown in the rate of global warming, and contrasts between climate model simulations and observations of such trends. Many studies have addressed the statistical significance of these relatively short trends, whether they indicate a possible bias in models and the implications for global warming generally. Here we analyse historical and projected changes in 38 CMIP5 climate models. All of the models simulate multi-decadal warming in the Pacific over the past half-century that exceeds observed values. This stark difference cannot be fully explained by observed, internal multi-decadal climate variability, even if allowance is made for an apparent tendency for models to underestimate internal multi-decadal variability in the Pacific. We also show that CMIP5 models are not able to simulate the magnitude of the strengthening of the Walker Circulation over the past thirty years. Some of the reasons for these major shortcomings in the ability of models to simulate multi-decadal variability in the Pacific, and the impact these findings have on our confidence in global 21st century projections, will be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017SpWea..15..131G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017SpWea..15..131G"><span>The substorm cycle as reproduced by global MHD models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gordeev, E.; Sergeev, V.; Tsyganenko, N.; Kuznetsova, M.; Rastäetter, L.; Raeder, J.; Tóth, G.; Lyon, J.; Merkin, V.; Wiltberger, M.</p> <p>2017-01-01</p> <p>Recently, Gordeev et al. (2015) suggested a method to test global MHD models against statistical empirical data. They showed that four community-available global MHD models supported by the Community Coordinated Modeling Center (CCMC) produce a reasonable agreement with reality for those key parameters (the magnetospheric size, magnetic field, and pressure) that are directly related to the large-scale equilibria in the outer magnetosphere. Based on the same set of simulation runs, here we investigate how the models reproduce the global loading-unloading cycle. We found that in terms of global magnetic flux transport, three examined CCMC models display systematically different response to idealized 2 h north then 2 h south interplanetary magnetic field (IMF) Bz variation. The LFM model shows a depressed return convection and high loading rate during the growth phase as well as enhanced return convection and high unloading rate during the expansion phase, with the amount of loaded/unloaded magnetotail flux and the growth phase duration being the closest to their observed empirical values during isolated substorms. Two other models exhibit drastically different behavior. In the BATS-R-US model the plasma sheet convection shows a smooth transition to the steady convection regime after the IMF southward turning. In the Open GGCM a weak plasma sheet convection has comparable intensities during both the growth phase and the following slow unloading phase. We also demonstrate potential technical problem in the publicly available simulations which is related to postprocessing interpolation and could affect the accuracy of magnetic field tracing and of other related procedures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170008032&hterms=cycles&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dcycles','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170008032&hterms=cycles&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3Dcycles"><span>The Substorm Cycle as Reproduced by Global MHD Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gordeev, E.; Sergee, V.; Tsyganenko, N.; Kuznetsova, M.; Rastaetter, Lutz; Raeder, J.; Toth, G.; Lyon, J.; Merkin, V.; Wiltberger, M.</p> <p>2017-01-01</p> <p>Recently, Gordeev et al. (2015) suggested a method to test global MHD models against statistical empirical data. They showed that four community-available global MHD models supported by the Community Coordinated Modeling Center (CCMC) produce a reasonable agreement with reality for those key parameters (the magnetospheric size, magnetic field, and pressure) that are directly related to the large-scale equilibria in the outer magnetosphere. Based on the same set of simulation runs, here we investigate how the models reproduce the global loading-unloading cycle. We found that in terms of global magnetic flux transport, three examined CCMC models display systematically different response to idealized2 h north then 2 h south interplanetary magnetic field (IMF) Bz variation. The LFM model shows a depressed return convection and high loading rate during the growth phase as well as enhanced return convection and high unloading rate during the expansion phase, with the amount of loaded unloaded magnetotail flux and the growth phase duration being the closest to their observed empirical values during isolated substorms. Two other models exhibit drastically different behavior. In the BATS-R-US model the plasma sheet convection shows a smooth transition to the steady convection regime after the IMF southward turning. In the Open GGCM a weak plasma sheet convection has comparable intensities during both the growth phase and the following slow unloading phase. We also demonstrate potential technical problem in the publicly available simulations which is related to post processing interpolation and could affect the accuracy of magnetic field tracing and of other related procedures.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A51K..05S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A51K..05S"><span>Will Outer Tropical Cyclone Size Change due to Anthropogenic Warming?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schenkel, B. A.; Lin, N.; Chavas, D. R.; Vecchi, G. A.; Knutson, T. R.; Oppenheimer, M.</p> <p>2017-12-01</p> <p>Prior research has shown significant interbasin and intrabasin variability in outer tropical cyclone (TC) size. Moreover, outer TC size has even been shown to vary substantially over the lifetime of the majority of TCs. However, the factors responsible for both setting initial outer TC size and determining its evolution throughout the TC lifetime remain uncertain. Given these gaps in our physical understanding, there remains uncertainty in how outer TC size will change, if at all, due to anthropogenic warming. The present study seeks to quantify whether outer TC size will change significantly in response to anthropogenic warming using data from a high-resolution global climate model and a regional hurricane model. Similar to prior work, the outer TC size metric used in this study is the radius in which the azimuthal-mean surface azimuthal wind equals 8 m/s. The initial results from the high-resolution global climate model data suggest that the distribution of outer TC size shifts significantly towards larger values in each global TC basin during future climates, as revealed by 1) statistically significant increase of the median outer TC size by 5-10% (p<0.05) according to a 1,000-sample bootstrap resampling approach with replacement and 2) statistically significant differences between distributions of outer TC size from current and future climate simulations as shown using two-sample Kolmogorov Smirnov testing (p<<0.01). Additional analysis of the high-resolution global climate model data reveals that outer TC size does not uniformly increase within each basin in future climates, but rather shows substantial locational dependence. Future work will incorporate the regional mesoscale hurricane model data to help focus on identifying the source of the spatial variability in outer TC size increases within each basin during future climates and, more importantly, why outer TC size changes in response to anthropogenic warming.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20020070562&hterms=statistics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dstatistics','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20020070562&hterms=statistics&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dstatistics"><span>Scale Dependence of Statistics of Spatially Averaged Rain Rate Seen in TOGA COARE Comparison with Predictions from a Stochastic Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kundu, Prasun K.; Bell, T. L.; Lau, William K. M. (Technical Monitor)</p> <p>2002-01-01</p> <p>A characteristic feature of rainfall statistics is that they in general depend on the space and time scales over which rain data are averaged. As a part of an earlier effort to determine the sampling error of satellite rain averages, a space-time model of rainfall statistics was developed to describe the statistics of gridded rain observed in GATE. The model allows one to compute the second moment statistics of space- and time-averaged rain rate which can be fitted to satellite or rain gauge data to determine the four model parameters appearing in the precipitation spectrum - an overall strength parameter, a characteristic length separating the long and short wavelength regimes and a characteristic relaxation time for decay of the autocorrelation of the instantaneous local rain rate and a certain 'fractal' power law exponent. For area-averaged instantaneous rain rate, this exponent governs the power law dependence of these statistics on the averaging length scale $L$ predicted by the model in the limit of small $L$. In particular, the variance of rain rate averaged over an $L \\times L$ area exhibits a power law singularity as $L \\rightarrow 0$. In the present work the model is used to investigate how the statistics of area-averaged rain rate over the tropical Western Pacific measured with ship borne radar during TOGA COARE (Tropical Ocean Global Atmosphere Coupled Ocean Atmospheric Response Experiment) and gridded on a 2 km grid depends on the size of the spatial averaging scale. Good agreement is found between the data and predictions from the model over a wide range of averaging length scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27594213','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27594213"><span>The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Hursh, Andrew; Ballantyne, Ashley; Cooper, Leila; Maneta, Marco; Kimball, John; Watts, Jennifer</p> <p>2017-05-01</p> <p>Soil respiration (Rs) is a major pathway by which fixed carbon in the biosphere is returned to the atmosphere, yet there are limits to our ability to predict respiration rates using environmental drivers at the global scale. While temperature, moisture, carbon supply, and other site characteristics are known to regulate soil respiration rates at plot scales within certain biomes, quantitative frameworks for evaluating the relative importance of these factors across different biomes and at the global scale require tests of the relationships between field estimates and global climatic data. This study evaluates the factors driving Rs at the global scale by linking global datasets of soil moisture, soil temperature, primary productivity, and soil carbon estimates with observations of annual Rs from the Global Soil Respiration Database (SRDB). We find that calibrating models with parabolic soil moisture functions can improve predictive power over similar models with asymptotic functions of mean annual precipitation. Soil temperature is comparable with previously reported air temperature observations used in predicting Rs and is the dominant driver of Rs in global models; however, within certain biomes soil moisture and soil carbon emerge as dominant predictors of Rs. We identify regions where typical temperature-driven responses are further mediated by soil moisture, precipitation, and carbon supply and regions in which environmental controls on high Rs values are difficult to ascertain due to limited field data. Because soil moisture integrates temperature and precipitation dynamics, it can more directly constrain the heterotrophic component of Rs, but global-scale models tend to smooth its spatial heterogeneity by aggregating factors that increase moisture variability within and across biomes. We compare statistical and mechanistic models that provide independent estimates of global Rs ranging from 83 to 108 Pg yr -1 , but also highlight regions of uncertainty where more observations are required or environmental controls are hard to constrain. © 2016 John Wiley & Sons Ltd.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_11");'>11</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li class="active"><span>13</span></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_13 --> <div id="page_14" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="261"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013PhDT.......572S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013PhDT.......572S"><span>Appplication of statistical mechanical methods to the modeling of social networks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Strathman, Anthony Robert</p> <p></p> <p>With the recent availability of large-scale social data sets, social networks have become open to quantitative analysis via the methods of statistical physics. We examine the statistical properties of a real large-scale social network, generated from cellular phone call-trace logs. We find this network, like many other social networks to be assortative (r = 0.31) and clustered (i.e., strongly transitive, C = 0.21). We measure fluctuation scaling to identify the presence of internal structure in the network and find that structural inhomogeneity effectively disappears at the scale of a few hundred nodes, though there is no sharp cutoff. We introduce an agent-based model of social behavior, designed to model the formation and dissolution of social ties. The model is a modified Metropolis algorithm containing agents operating under the basic sociological constraints of reciprocity, communication need and transitivity. The model introduces the concept of a social temperature. We go on to show that this simple model reproduces the global statistical network features (incl. assortativity, connected fraction, mean degree, clustering, and mean shortest path length) of the real network data and undergoes two phase transitions, one being from a "gas" to a "liquid" state and the second from a liquid to a glassy state as function of this social temperature.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70034526','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70034526"><span>A global map of rainfed cropland areas (GMRCA) at the end of last millennium using remote sensing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Biradar, C.M.; Thenkabail, P.S.; Noojipady, P.; Li, Y.; Dheeravath, V.; Turral, H.; Velpuri, M.; Gumma, M.K.; Gangalakunta, O.R.P.; Cai, X.L.; Xiao, X.; Schull, M.A.; Alankara, R.D.; Gunasinghe, S.; Mohideen, S.</p> <p>2009-01-01</p> <p>The overarching goal of this study was to produce a global map of rainfed cropland areas (GMRCA) and calculate country-by-country rainfed area statistics using remote sensing data. A suite of spatial datasets, methods and protocols for mapping GMRCA were described. These consist of: (a) data fusion and composition of multi-resolution time-series mega-file data-cube (MFDC), (b) image segmentation based on precipitation, temperature, and elevation zones, (c) spectral correlation similarity (SCS), (d) protocols for class identification and labeling through uses of SCS R2-values, bi-spectral plots, space-time spiral curves (ST-SCs), rich source of field-plot data, and zoom-in-views of Google Earth (GE), and (e) techniques for resolving mixed classes by decision tree algorithms, and spatial modeling. The outcome was a 9-class GMRCA from which country-by-country rainfed area statistics were computed for the end of the last millennium. The global rainfed cropland area estimate from the GMRCA 9-class map was 1.13 billion hectares (Bha). The total global cropland areas (rainfed plus irrigated) was 1.53 Bha which was close to national statistics compiled by FAOSTAT (1.51 Bha). The accuracies and errors of GMRCA were assessed using field-plot and Google Earth data points. The accuracy varied between 92 and 98% with kappa value of about 0.76, errors of omission of 2-8%, and the errors of commission of 19-36%. ?? 2008 Elsevier B.V.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3535745','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3535745"><span>Data Resource Profile: United Nations Children’s Fund (UNICEF)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Murray, Colleen; Newby, Holly</p> <p>2012-01-01</p> <p>The United Nations Children’s Fund (UNICEF) plays a leading role in the collection, compilation, analysis and dissemination of data to inform sound policies, legislation and programmes for promoting children’s rights and well-being, and for global monitoring of progress towards the Millennium Development Goals. UNICEF maintains a set of global databases representing nearly 200 countries and covering the areas of child mortality, child health, maternal health, nutrition, immunization, water and sanitation, HIV/AIDS, education and child protection. These databases consist of internationally comparable and statistically sound data, and are updated annually through a process that draws on a wealth of data provided by UNICEF’s wide network of >150 field offices. The databases are composed primarily of estimates from household surveys, with data from censuses, administrative records, vital registration systems and statistical models contributing to some key indicators as well. The data are assessed for quality based on a set of objective criteria to ensure that only the most reliable nationally representative information is included. For most indicators, data are available at the global, regional and national levels, plus sub-national disaggregation by sex, urban/rural residence and household wealth. The global databases are featured in UNICEF’s flagship publications, inter-agency reports, including the Secretary General’s Millennium Development Goals Report and Countdown to 2015, sector-specific reports and statistical country profiles. They are also publicly available on www.childinfo.org, together with trend data and equity analyses. PMID:23211414</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/21276983-global-characteristics-zonal-flows-due-effect-finite-bandwidth-drift-wave-turbulence','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/21276983-global-characteristics-zonal-flows-due-effect-finite-bandwidth-drift-wave-turbulence"><span>Global characteristics of zonal flows due to the effect of finite bandwidth in drift wave turbulence</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Uzawa, K.; Li Jiquan; Kishimoto, Y.</p> <p>2009-04-15</p> <p>The spectral effect of the zonal flow (ZF) on its generation is investigated based on the Charney-Hasegawa-Mima turbulence model. It is found that the effect of finite ZF bandwidth qualitatively changes the characteristics of ZF instability. A spatially localized (namely, global) nonlinear ZF state with an enhanced, unique growth rate for all spectral components is created under a given turbulent fluctuation. It is identified that such state originates from the successive cross couplings among Fourier components of the ZF and turbulence spectra through the sideband modulation. Furthermore, it is observed that the growth rate of the global ZF is determinedmore » not only by the spectral distribution and amplitudes of turbulent pumps as usual, but also statistically by the turbulence structure, namely, their probabilistic initial phase factors. A ten-wave coupling model of the ZF modulation instability involving the essential effect of the ZF spectrum is developed to clarify the basic features of the global nonlinear ZF state.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19597284','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19597284"><span>The associations between perceived distributive, procedural, and interactional organizational justice, self-rated health and burnout.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Liljegren, Mats; Ekberg, Kerstin</p> <p>2009-01-01</p> <p>The aim of the present study was to examine the cross-sectional and 2-year longitudinal associations between perceived organizational justice, self-rated health and burnout. The study used questionnaire data from 428 Swedish employment officers and the data was analyzed with Structural Equation Modeling, SEM. Two different models were tested: a global organizational justice model (with and without correlated measurement errors) and a differentiated (distributive, procedural and interactional organizational justice) justice model (with and without correlated measurement errors). The global justice model with autocorrelations had the most satisfactory goodness-of-fit indices. Global justice showed statistically significant (p < 0.01) cross-sectional (0.80 {mle 0.84) and longitudinal positive associations (0.76 mle 0.82) between organizational justice and self-rated health, and significant (p < 0.01) negative associations between organizational justice and burnout (cross-sectional: mle = -0.85, longitudinal -0.83 mle -0.84). The global justice construct showed better goodness-of-fit indices than the threefold justice construct but a differentiated organizational justice concept could give valuable information about health related risk factors: if they are structural (distributive justice), procedural (procedural justice) or inter-personal (interactional justice). The two approaches to study organizational justice should therefore be regarded as complementary rather than exclusive.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017HESS...21.6219D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017HESS...21.6219D"><span>Moment-based metrics for global sensitivity analysis of hydrological systems</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dell'Oca, Aronne; Riva, Monica; Guadagnini, Alberto</p> <p>2017-12-01</p> <p>We propose new metrics to assist global sensitivity analysis, GSA, of hydrological and Earth systems. Our approach allows assessing the impact of uncertain parameters on main features of the probability density function, pdf, of a target model output, y. These include the expected value of y, the spread around the mean and the degree of symmetry and tailedness of the pdf of y. Since reliable assessment of higher-order statistical moments can be computationally demanding, we couple our GSA approach with a surrogate model, approximating the full model response at a reduced computational cost. Here, we consider the generalized polynomial chaos expansion (gPCE), other model reduction techniques being fully compatible with our theoretical framework. We demonstrate our approach through three test cases, including an analytical benchmark, a simplified scenario mimicking pumping in a coastal aquifer and a laboratory-scale conservative transport experiment. Our results allow ascertaining which parameters can impact some moments of the model output pdf while being uninfluential to others. We also investigate the error associated with the evaluation of our sensitivity metrics by replacing the original system model through a gPCE. Our results indicate that the construction of a surrogate model with increasing level of accuracy might be required depending on the statistical moment considered in the GSA. The approach is fully compatible with (and can assist the development of) analysis techniques employed in the context of reduction of model complexity, model calibration, design of experiment, uncertainty quantification and risk assessment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19990106602&hterms=Plasma+Ring&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DPlasma%2BRing','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19990106602&hterms=Plasma+Ring&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3DPlasma%2BRing"><span>Global Core Plasma Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Gallagher, Dennis L.; Craven, Paul D.; Comfort, Richard H.</p> <p>1999-01-01</p> <p>Over 40 years of ground and spacecraft plasmaspheric measurements have resulted in many statistical descriptions of plasmaspheric properties. In some cases, these properties have been represented as analytical descriptions that are valid for specific regions or conditions. For the most part, what has not been done is to extend regional empirical descriptions or models to the plasmasphere as a whole. In contrast, many related investigations depend on the use of representative plasmaspheric conditions throughout the inner magnetosphere. Wave propagation, involving the transport of energy through the magnetosphere, is strongly affected by thermal plasma density and its composition. Ring current collisional and wave particle losses also strongly depend on these quantities. Plasmaspheric also plays a secondary role in influencing radio signals from the Global Positioning System satellites. The Global Core Plasma Model (GCPM) is an attempt to assimilate previous empirical evidence and regional models for plasmaspheric density into a continuous, smooth model of thermal plasma density in the inner magnetosphere. In that spirit, the International Reference Ionosphere is currently used to complete the low altitude description of density and composition in the model. The models and measurements on which the GCPM is currently based and its relationship to IRI will be discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23740397','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23740397"><span>Global QSAR modeling of logP values of phenethylamines acting as adrenergic alpha-1 receptor agonists.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Yadav, Mukesh; Joshi, Shobha; Nayarisseri, Anuraj; Jain, Anuja; Hussain, Aabid; Dubey, Tushar</p> <p>2013-06-01</p> <p>Global QSAR models predict biological response of molecular structures which are generic in particular class. A global QSAR dataset admits structural features derived from larger chemical space, intricate to model but more applicable in medicinal chemistry. The present work is global in either sense of structural diversity in QSAR dataset or large number of descriptor input. Forty phenethylamine structure derivatives were selected from a large pool (904) of similar phenethylamines available in Pubchem database. LogP values of selected candidates were collected from physical properties database (PHYSPROP) determined in identical set of conditions. Attempts to model logP value have produced significant QSAR models. MLR aided linear one-variable and two-variable QSAR models with their respective R(2) (0.866, 0.937), R(2)A (0.862, 0.932), F-stat (181.936, 199.812) and Standard Error (0.365, 0.255) are statistically fit and found predictive after internal validation and external validation. The descriptors chosen after improvisation and optimization reveal mechanistic part of work in terms of Verhaar model of Fish base-line toxicity from MLOGP, i.e. (BLTF96) and 3D-MoRSE -signal 15 /unweighted molecular descriptor calculated by summing atom weights viewed by a different angular scattering function (Mor15u) are crucial in regulation of logP values of phenethylamines.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.H23N1077W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.H23N1077W"><span>Quasi-decadal Oscillation in the CMIP5 and CMIP3 Climate Model Simulations: California Case</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, J.; Yin, H.; Reyes, E.; Chung, F. I.</p> <p>2014-12-01</p> <p>The ongoing three drought years in California are reminding us of two other historical long drought periods: 1987-1992 and 1928-1934. This kind of interannual variability is corresponding to the dominating 7-15 yr quasi-decadal oscillation in precipitation and streamflow in California. When using global climate model projections to assess the climate change impact on water resources planning in California, it is natural to ask if global climate models are able to reproduce the observed interannual variability like 7-15 yr quasi-decadal oscillation. Further spectral analysis to tree ring retrieved precipitation and historical precipitation record proves the existence of 7-15 yr quasi-decadal oscillation in California. But while implementing spectral analysis to all the CMIP5 and CMIP3 global climate model historical simulations using wavelet analysis approach, it was found that only two models in CMIP3 , CGCM 2.3.2a of MRI and NCAP PCM1.0, and only two models in CMIP5, MIROC5 and CESM1-WACCM, have statistically significant 7-15 yr quasi-decadal oscillations in California. More interesting, the existence of 7-15 yr quasi-decadal oscillation in the global climate model simulation is also sensitive to initial conditions. 12-13 yr quasi-decadal oscillation occurs in one ensemble run of CGCM 2.3.2a of MRI but does not exist in the other four ensemble runs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/AD1004186','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/AD1004186"><span>Statistical Validation of a New Python-based Military Workforce Simulation Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2014-12-30</p> <p>also having a straightforward syntax that is accessible to non-programmers. Furthermore, it is supported by an impressive variety of scientific... accessed by a given element of model logic or line of code. For example, in Arena, data arrays, queues and the simulation clock are part of the...global scope and are therefore accessible anywhere in the model. The disadvantage of scopes is that all names in a scope must be unique. If more than</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25554228','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25554228"><span>You are lost without a map: Navigating the sea of protein structures.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lamb, Audrey L; Kappock, T Joseph; Silvaggi, Nicholas R</p> <p>2015-04-01</p> <p>X-ray crystal structures propel biochemistry research like no other experimental method, since they answer many questions directly and inspire new hypotheses. Unfortunately, many users of crystallographic models mistake them for actual experimental data. Crystallographic models are interpretations, several steps removed from the experimental measurements, making it difficult for nonspecialists to assess the quality of the underlying data. Crystallographers mainly rely on "global" measures of data and model quality to build models. Robust validation procedures based on global measures now largely ensure that structures in the Protein Data Bank (PDB) are largely correct. However, global measures do not allow users of crystallographic models to judge the reliability of "local" features in a region of interest. Refinement of a model to fit into an electron density map requires interpretation of the data to produce a single "best" overall model. This process requires inclusion of most probable conformations in areas of poor density. Users who misunderstand this can be misled, especially in regions of the structure that are mobile, including active sites, surface residues, and especially ligands. This article aims to equip users of macromolecular models with tools to critically assess local model quality. Structure users should always check the agreement of the electron density map and the derived model in all areas of interest, even if the global statistics are good. We provide illustrated examples of interpreted electron density as a guide for those unaccustomed to viewing electron density. Copyright © 2014 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.H51N..07W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.H51N..07W"><span>FP7 GLOWASIS - A new collaborative project aimed at pre-validation of a GMES Global Water Scarcity Information Service</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Westerhoff, R.; Levizzani, V.; Pappenberger, F.; de Roo, A.; Lange, R. D.; Wagner, W.; Bierkens, M. F.; Ceran, M.; Weerts, A.; Sinclair, S.; Miguez-Macho, G.; Langius, E.; Glowasis Team</p> <p>2011-12-01</p> <p>The main objective of the project GLOWASIS is to pre-validate a GMES Global Service for Water Scarcity Information. It will be set up as a one-stop-shop portal for water scarcity information, in which focus is put on: - monitoring data from satellites and in-situ sensors; - improving forecasting models with improved monitoring data; - linking statistical water data in forecasting; - promotion of GMES Services and European satellites. In European and global pilots on the scale of river catchments it combines hydrological models with in-situ and satellite derived water cycle information, as well as government ruled statistical water demand data. By linking water demand and supply in three pilot studies with existing platforms (European Drought Observatory and PCR-GLOBWB) for medium- and long-term forecasting in Europe, Africa and worldwide, GLOWASIS' information contributes both in near-real time reporting for emerging drought events as well as in provision of climate change time series. By combining complex water cycle variables, governmental issues and economic relations with respect to water demand, GLOWASIS will aim for the needed streamlining of the wide variety of important water scarcity information. More awareness for the complexity of the water scarcity problem will be created and additional capabilities of satellite-measured water cycle parameters can be promoted. The service uses data from GMES Core Services LMCS Geoland2 and Marine Core Service MyOcean (land use, soil moisture, soil sealing, sea level), in-situ data from GEWEX' initiatives (i.e. International Soil Moisture network), agricultural and industrial water use and demand (statistical - AQUASTAT, SEEAW and modelled) and additional water-cycle information from existing global satellite services. In-depth interviews with a.o. EEA and the Australian Bureau of Meteorology are taking place. GLOWASIS will aim for an open source and open-standard information portal on water scarcity and use of modern media (forums, Twitter, etc). Infrastructure of the GLOWASIS portal is set up for dissemination and inclusion of current and future innovative and integrated multi-purpose products for research & operational applications with open standards. The project has started in January 2011 and the duration is 24 months.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.A54A2699S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.A54A2699S"><span>Towards a General Turbulence Model for Planetary Boundary Layers Based on Direct Statistical Simulation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Skitka, J.; Marston, B.; Fox-Kemper, B.</p> <p>2016-02-01</p> <p>Sub-grid turbulence models for planetary boundary layers are typically constructed additively, starting with local flow properties and including non-local (KPP) or higher order (Mellor-Yamada) parameters until a desired level of predictive capacity is achieved or a manageable threshold of complexity is surpassed. Such approaches are necessarily limited in general circumstances, like global circulation models, by their being optimized for particular flow phenomena. By building a model reductively, starting with the infinite hierarchy of turbulence statistics, truncating at a given order, and stripping degrees of freedom from the flow, we offer the prospect a turbulence model and investigative tool that is equally applicable to all flow types and able to take full advantage of the wealth of nonlocal information in any flow. Direct statistical simulation (DSS) that is based upon expansion in equal-time cumulants can be used to compute flow statistics of arbitrary order. We investigate the feasibility of a second-order closure (CE2) by performing simulations of the ocean boundary layer in a quasi-linear approximation for which CE2 is exact. As oceanographic examples, wind-driven Langmuir turbulence and thermal convection are studied by comparison of the quasi-linear and fully nonlinear statistics. We also characterize the computational advantages and physical uncertainties of CE2 defined on a reduced basis determined via proper orthogonal decomposition (POD) of the flow fields.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED571582.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED571582.pdf"><span>ECG Identification System Using Neural Network with Global and Local Features</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Tseng, Kuo-Kun; Lee, Dachao; Chen, Charles</p> <p>2016-01-01</p> <p>This paper proposes a human identification system via extracted electrocardiogram (ECG) signals. Two hierarchical classification structures based on global shape feature and local statistical feature is used to extract ECG signals. Global shape feature represents the outline information of ECG signals and local statistical feature extracts the…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JOUC...15..577Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JOUC...15..577Y"><span>Statistical downscaling of IPCC sea surface wind and wind energy predictions for U.S. east coastal ocean, Gulf of Mexico and Caribbean Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yao, Zhigang; Xue, Zuo; He, Ruoying; Bao, Xianwen; Song, Jun</p> <p>2016-08-01</p> <p>A multivariate statistical downscaling method is developed to produce regional, high-resolution, coastal surface wind fields based on the IPCC global model predictions for the U.S. east coastal ocean, the Gulf of Mexico (GOM), and the Caribbean Sea. The statistical relationship is built upon linear regressions between the empirical orthogonal function (EOF) spaces of a cross- calibrated, multi-platform, multi-instrument ocean surface wind velocity dataset (predictand) and the global NCEP wind reanalysis (predictor) over a 10 year period from 2000 to 2009. The statistical relationship is validated before applications and its effectiveness is confirmed by the good agreement between downscaled wind fields based on the NCEP reanalysis and in-situ surface wind measured at 16 National Data Buoy Center (NDBC) buoys in the U.S. east coastal ocean and the GOM during 1992-1999. The predictand-predictor relationship is applied to IPCC GFDL model output (2.0°×2.5°) of downscaled coastal wind at 0.25°×0.25° resolution. The temporal and spatial variability of future predicted wind speeds and wind energy potential over the study region are further quantified. It is shown that wind speed and power would significantly be reduced in the high CO2 climate scenario offshore of the mid-Atlantic and northeast U.S., with the speed falling to one quarter of its original value.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/501972-diffuse-fraction-daily-monthly-global-radiation-island-cyprus','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/501972-diffuse-fraction-daily-monthly-global-radiation-island-cyprus"><span>On the diffuse fraction of daily and monthly global radiation for the island of Cyprus</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Jacovides, C.P.; Hadjioannou, L.; Pashiardis, S.</p> <p>1996-06-01</p> <p>Six years of hourly global and diffuse irradiation measurements on a horizontal surface performed at Athalassa, Cyprus, are used to establish a relationship between the daily diffuse fraction and the daily clearness index. Two types of correlations - yearly and seasonal - have been developed. These correlations, of first and third order in the clearness index are compared to the various correlations established by Collares-Pereira and Rabl (1979), Newland (1989), Erbs et al. (1982), Rao et al. (1984), Page (1961), Liu and Jordan (1960) and Lalas et al. (1987). The comparison has been performed in terms of the widely usedmore » statistical indicators (MBE) and (RMSE) errors; and additional statistical indicator, the t-statistic, combining the earlier indicators, is introduced. The results indicate that the proposed yearly correlation matches the earlier correlations quite closely and all correlations examined yield results that are statistically significant. For large K{sub t} > 0.60 values, most of the earlier correlations exhibit a slight tendency to systematically overestimate the diffuse fraction. This marginal disagreement between the earlier correlations and the proposed model is probably significantly affected by the clear sky conditions that prevail over Cyprus for most of the time as well as atmospheric humidity content. It is clear that the standard correlations examined in this analysis appear to be location-independent models for diffuse irradiation predictions, at least for the Cyprus case. 13 refs., 5 figs., 4 tabs.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3842761','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3842761"><span>WebGLORE: a Web service for Grid LOgistic REgression</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Jiang, Wenchao; Li, Pinghao; Wang, Shuang; Wu, Yuan; Xue, Meng; Ohno-Machado, Lucila; Jiang, Xiaoqian</p> <p>2013-01-01</p> <p>WebGLORE is a free web service that enables privacy-preserving construction of a global logistic regression model from distributed datasets that are sensitive. It only transfers aggregated local statistics (from participants) through Hypertext Transfer Protocol Secure to a trusted server, where the global model is synthesized. WebGLORE seamlessly integrates AJAX, JAVA Applet/Servlet and PHP technologies to provide an easy-to-use web service for biomedical researchers to break down policy barriers during information exchange. Availability and implementation: http://dbmi-engine.ucsd.edu/webglore3/. WebGLORE can be used under the terms of GNU general public license as published by the Free Software Foundation. Contact: x1jiang@ucsd.edu PMID:24072732</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1166681-evaluation-convection-permitting-model-simulations-cloud-populations-associated-madden-julian-oscillation-using-data-collected-during-amie-dynamo-field-campaign','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1166681-evaluation-convection-permitting-model-simulations-cloud-populations-associated-madden-julian-oscillation-using-data-collected-during-amie-dynamo-field-campaign"><span></span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Hagos, Samson M.; Feng, Zhe; Burleyson, Casey D.</p> <p></p> <p>Regional cloud permitting model simulations of cloud populations observed during the 2011 ARM Madden Julian Oscillation Investigation Experiment/ Dynamics of Madden-Julian Experiment (AMIE/DYNAMO) field campaign are evaluated against radar and ship-based measurements. Sensitivity of model simulated surface rain rate statistics to parameters and parameterization of hydrometeor sizes in five commonly used WRF microphysics schemes are examined. It is shown that at 2 km grid spacing, the model generally overestimates rain rate from large and deep convective cores. Sensitivity runs involving variation of parameters that affect rain drop or ice particle size distribution (more aggressive break-up process etc) generally reduce themore » bias in rain-rate and boundary layer temperature statistics as the smaller particles become more vulnerable to evaporation. Furthermore significant improvement in the convective rain-rate statistics is observed when the horizontal grid-spacing is reduced to 1 km and 0.5 km, while it is worsened when run at 4 km grid spacing as increased turbulence enhances evaporation. The results suggest modulation of evaporation processes, through parameterization of turbulent mixing and break-up of hydrometeors may provide a potential avenue for correcting cloud statistics and associated boundary layer temperature biases in regional and global cloud permitting model simulations.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27663230','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27663230"><span>Patterns of crop cover under future climates.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Porfirio, Luciana L; Newth, David; Harman, Ian N; Finnigan, John J; Cai, Yiyong</p> <p>2017-04-01</p> <p>We study changes in crop cover under future climate and socio-economic projections. This study is not only organised around the global and regional adaptation or vulnerability to climate change but also includes the influence of projected changes in socio-economic, technological and biophysical drivers, especially regional gross domestic product. The climatic data are obtained from simulations of RCP4.5 and 8.5 by four global circulation models/earth system models from 2000 to 2100. We use Random Forest, an empirical statistical model, to project the future crop cover. Our results show that, at the global scale, increases and decreases in crop cover cancel each other out. Crop cover in the Northern Hemisphere is projected to be impacted more by future climate than the in Southern Hemisphere because of the disparity in the warming rate and precipitation patterns between the two Hemispheres. We found that crop cover in temperate regions is projected to decrease more than in tropical regions. We identified regions of concern and opportunities for climate change adaptation and investment.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28862992','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28862992"><span>Bayesian comparison of protein structures using partial Procrustes distance.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Ejlali, Nasim; Faghihi, Mohammad Reza; Sadeghi, Mehdi</p> <p>2017-09-26</p> <p>An important topic in bioinformatics is the protein structure alignment. Some statistical methods have been proposed for this problem, but most of them align two protein structures based on the global geometric information without considering the effect of neighbourhood in the structures. In this paper, we provide a Bayesian model to align protein structures, by considering the effect of both local and global geometric information of protein structures. Local geometric information is incorporated to the model through the partial Procrustes distance of small substructures. These substructures are composed of β-carbon atoms from the side chains. Parameters are estimated using a Markov chain Monte Carlo (MCMC) approach. We evaluate the performance of our model through some simulation studies. Furthermore, we apply our model to a real dataset and assess the accuracy and convergence rate. Results show that our model is much more efficient than previous approaches.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_12");'>12</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li class="active"><span>14</span></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_14 --> <div id="page_15" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="281"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ERL....12a5001L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ERL....12a5001L"><span>Comparing estimates of climate change impacts from process-based and statistical crop models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lobell, David B.; Asseng, Senthold</p> <p>2017-01-01</p> <p>The potential impacts of climate change on crop productivity are of widespread interest to those concerned with addressing climate change and improving global food security. Two common approaches to assess these impacts are process-based simulation models, which attempt to represent key dynamic processes affecting crop yields, and statistical models, which estimate functional relationships between historical observations of weather and yields. Examples of both approaches are increasingly found in the scientific literature, although often published in different disciplinary journals. Here we compare published sensitivities to changes in temperature, precipitation, carbon dioxide (CO2), and ozone from each approach for the subset of crops, locations, and climate scenarios for which both have been applied. Despite a common perception that statistical models are more pessimistic, we find no systematic differences between the predicted sensitivities to warming from process-based and statistical models up to +2 °C, with limited evidence at higher levels of warming. For precipitation, there are many reasons why estimates could be expected to differ, but few estimates exist to develop robust comparisons, and precipitation changes are rarely the dominant factor for predicting impacts given the prominent role of temperature, CO2, and ozone changes. A common difference between process-based and statistical studies is that the former tend to include the effects of CO2 increases that accompany warming, whereas statistical models typically do not. Major needs moving forward include incorporating CO2 effects into statistical studies, improving both approaches’ treatment of ozone, and increasing the use of both methods within the same study. At the same time, those who fund or use crop model projections should understand that in the short-term, both approaches when done well are likely to provide similar estimates of warming impacts, with statistical models generally requiring fewer resources to produce robust estimates, especially when applied to crops beyond the major grains.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012AGUFMGC23B1058Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012AGUFMGC23B1058Z"><span>Attribution of trends in global vegetation greenness from 1982 to 2011</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhu, Z.; Xu, L.; Bi, J.; Myneni, R.; Knyazikhin, Y.</p> <p>2012-12-01</p> <p>Time series of remotely sensed vegetation indices data provide evidence of changes in terrestrial vegetation activity over the past decades in the world. However, it is difficult to attribute cause-and-effect to vegetation trends because variations in vegetation productivity are driven by various factors. This study investigated changes in global vegetation productivity first, and then attributed the global natural vegetation with greening trend. Growing season integrated normalized difference vegetation index (GSI NDVI) derived from the new GIMMS NDVI3g dataset (1982-2011was analyzed. A combined time series analysis model, which was developed from simper linear trend model (SLT), autoregressive integrated moving average model (ARIMA) and Vogelsang's t-PST model shows that productivity of all vegetation types except deciduous broadleaf forest predominantly showed increasing trends through the 30-year period. The evolution of changes in productivity in the last decade was also investigated. Area of greening vegetation monotonically increased through the last decade, and both the browning and no change area monotonically decreased. To attribute the predominant increase trend of productivity of global natural vegetation, trends of eight climate time series datasets (three temperature, three precipitation and two radiation datasets) were analyzed. The attribution of trends in global vegetation greenness was summarized as relaxation of climatic constraints, fertilization and other unknown reasons. Result shows that nearly all the productivity increase of global natural vegetation was driven by relaxation of climatic constraints and fertilization, which play equally important role in driving global vegetation greenness.; Area fraction and productivity change fraction of IGBP vegetation land cover classes showing statistically significant (10% level) trend in GSI NDVIt;</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3868823','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3868823"><span>US medical specialty global health training and the global burden of disease</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kerry, Vanessa B.; Walensky, Rochelle P.; Tsai, Alexander C.; Bergmark, Regan W.; Bergmark, Brian A.; Rouse, Chaturia; Bangsberg, David R.</p> <p>2013-01-01</p> <p>Background Rapid growth in global health activity among US medical specialty education programs has lead to heterogeneity in types of activities and global health training models. The breadth and scope of this activity is not well chronicled. Methods Using a standardized search protocol, we examined the characteristics of US medical residency global health programs by number of programs, clinical specialty, nature of activity (elective, research, extended curriculum based field training), and geographic location across seven different clinical medical residency education specialties. We tabulated programmatic activity by clinical discipline, region and country. We calculated the Spearman's rank correlation coefficient to estimate the association between programmatic activity and country–level disease burden. Results Of the 1856 programs assessed between January and June 2011, there were 380 global health residency training programs (20%) working in 141 countries. 529 individual programmatic activities (elective–based rotations, research programs, extended curriculum–based field training, or other) occurred at 1337 specific sites. The majority of the activities consisted of elective–based rotations. At the country level, disease burden had a statistically significant association with programmatic activity (Spearman's ρ = 0.17) but only explained 3% of the total variation between countries. Conclusions There were a substantial number of US medical specialty global health programs, but a relative paucity of surgical and mental health programs. Elective–based programs were more common than programs that offer longitudinal experiences. Despite heterogeneity, there was a small but statistically significant association between program location and the global burden of disease. Areas for further study include the degree to which US–based programs develop partnerships with their program sites, the significance of this activity for training, and number and breadth of programs in medical specialty global health education in other countries around the world. PMID:24363924</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24489696','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24489696"><span>Cross-site comparison of land-use decision-making and its consequences across land systems with a generalized agent-based model.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Magliocca, Nicholas R; Brown, Daniel G; Ellis, Erle C</p> <p>2014-01-01</p> <p>Local changes in land use result from the decisions and actions of land-users within land systems, which are structured by local and global environmental, economic, political, and cultural contexts. Such cross-scale causation presents a major challenge for developing a general understanding of how local decision-making shapes land-use changes at the global scale. This paper implements a generalized agent-based model (ABM) as a virtual laboratory to explore how global and local processes influence the land-use and livelihood decisions of local land-users, operationalized as settlement-level agents, across the landscapes of six real-world test sites. Test sites were chosen in USA, Laos, and China to capture globally-significant variation in population density, market influence, and environmental conditions, with land systems ranging from swidden to commercial agriculture. Publicly available global data were integrated into the ABM to model cross-scale effects of economic globalization on local land-use decisions. A suite of statistics was developed to assess the accuracy of model-predicted land-use outcomes relative to observed and random (i.e. null model) landscapes. At four of six sites, where environmental and demographic forces were important constraints on land-use choices, modeled land-use outcomes were more similar to those observed across sites than the null model. At the two sites in which market forces significantly influenced land-use and livelihood decisions, the model was a poorer predictor of land-use outcomes than the null model. Model successes and failures in simulating real-world land-use patterns enabled the testing of hypotheses on land-use decision-making and yielded insights on the importance of missing mechanisms. The virtual laboratory approach provides a practical framework for systematic improvement of both theory and predictive skill in land change science based on a continual process of experimentation and model enhancement.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3906050','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3906050"><span>Cross-Site Comparison of Land-Use Decision-Making and Its Consequences across Land Systems with a Generalized Agent-Based Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Magliocca, Nicholas R.; Brown, Daniel G.; Ellis, Erle C.</p> <p>2014-01-01</p> <p>Local changes in land use result from the decisions and actions of land-users within land systems, which are structured by local and global environmental, economic, political, and cultural contexts. Such cross-scale causation presents a major challenge for developing a general understanding of how local decision-making shapes land-use changes at the global scale. This paper implements a generalized agent-based model (ABM) as a virtual laboratory to explore how global and local processes influence the land-use and livelihood decisions of local land-users, operationalized as settlement-level agents, across the landscapes of six real-world test sites. Test sites were chosen in USA, Laos, and China to capture globally-significant variation in population density, market influence, and environmental conditions, with land systems ranging from swidden to commercial agriculture. Publicly available global data were integrated into the ABM to model cross-scale effects of economic globalization on local land-use decisions. A suite of statistics was developed to assess the accuracy of model-predicted land-use outcomes relative to observed and random (i.e. null model) landscapes. At four of six sites, where environmental and demographic forces were important constraints on land-use choices, modeled land-use outcomes were more similar to those observed across sites than the null model. At the two sites in which market forces significantly influenced land-use and livelihood decisions, the model was a poorer predictor of land-use outcomes than the null model. Model successes and failures in simulating real-world land-use patterns enabled the testing of hypotheses on land-use decision-making and yielded insights on the importance of missing mechanisms. The virtual laboratory approach provides a practical framework for systematic improvement of both theory and predictive skill in land change science based on a continual process of experimentation and model enhancement. PMID:24489696</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.3631L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.3631L"><span>Statistical downscaling of mean temperature, maximum temperature, and minimum temperature on the Loess Plateau, China</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lin, Jiang; Miao, Chiyuan</p> <p>2017-04-01</p> <p>Climate change is considered to be one of the greatest environmental threats. This has urged scientific communities to focus on the hot topic. Global climate models (GCMs) are the primary tool used for studying climate change. However, GCMs are limited because of their coarse spatial resolution and inability to resolve important sub-grid scale features such as terrain and clouds. Statistical downscaling methods can be used to downscale large-scale variables to local-scale. In this study, we assess the applicability of the widely used Statistical Downscaling Model (SDSM) for the Loess Plateau, China. The observed variables included daily mean temperature (TMEAN), maximum temperature (TMAX) and minimum temperature (TMIN) from 1961 to 2005. The and the daily atmospheric data were taken from reanalysis data from 1961 to 2005, and global climate model outputs from Beijing Normal University Earth System Model (BNU-ESM) from 1961 to 2099 and from observations . The results show that SDSM performs well for these three climatic variables on the Loess Plateau. After downscaling, the root mean square errors for TMEAN, TMAX, TMIN for BNU-ESM were reduced by 70.9%, 75.1%, and 67.2%, respectively. All the rates of change in TMEAN, TMAX and TMIN during the 21st century decreased after SDSM downscaling. We also show that SDSM can effectively reduce uncertainty, compared with the raw model outputs. TMEAN uncertainty was reduced by 27.1%, 26.8%, and 16.3% for the future scenarios of RCP 2.6, RCP 4.5 and RCP 8.5, respectively. The corresponding reductions in uncertainty were 23.6%, 30.7%, and 18.7% for TMAX, ; and 37.6%, 31.8%, and 23.2% for TMIN.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29308292','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29308292"><span>Global trends in ocean phytoplankton: a new assessment using revised ocean colour data.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gregg, Watson W; Rousseaux, Cécile S; Franz, Bryan A</p> <p>2017-01-01</p> <p>A recent revision of the NASA global ocean colour record shows changes in global ocean chlorophyll trends. This new 18-year time series now includes three global satellite sensors, the Sea-viewing Wide Field of view Sensor (SeaWiFS), Moderate Resolution Imaging Spectroradiometer (MODIS-Aqua), and Visible Infrared Imaging Radiometer Suite (VIIRS). The major changes are radiometric drift correction, a new algorithm for chlorophyll, and a new sensor VIIRS. The new satellite data record shows no significant trend in global annual median chlorophyll from 1998 to 2015, in contrast to a statistically significant negative trend from 1998 to 2012 in the previous version. When revised satellite data are assimilated into a global ocean biogeochemical model, no trend is observed in global annual median chlorophyll. This is consistent with previous findings for the 1998-2012 time period using the previous processing version and only two sensors (SeaWiFS and MODIS). Detecting trends in ocean chlorophyll with satellites is sensitive to data processing options and radiometric drift correction. The assimilation of these data, however, reduces sensitivity to algorithms and radiometry, as well as the addition of a new sensor. This suggests the assimilation model has skill in detecting trends in global ocean colour. Using the assimilation model, spatial distributions of significant trends for the 18-year record (1998-2015) show recent decadal changes. Most notable are the North and Equatorial Indian Oceans basins, which exhibit a striking decline in chlorophyll. It is exemplified by declines in diatoms and chlorophytes, which in the model are large and intermediate size phytoplankton. This decline is partially compensated by significant increases in cyanobacteria, which represent very small phytoplankton. This suggests the beginning of a shift in phytoplankton composition in these tropical and subtropical Indian basins.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5747546','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5747546"><span>Simulating PACE Global Ocean Radiances</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gregg, Watson W.; Rousseaux, Cécile S.</p> <p>2017-01-01</p> <p>The NASA PACE mission is a hyper-spectral radiometer planned for launch in the next decade. It is intended to provide new information on ocean biogeochemical constituents by parsing the details of high resolution spectral absorption and scattering. It is the first of its kind for global applications and as such, poses challenges for design and operation. To support pre-launch mission development and assess on-orbit capabilities, the NASA Global Modeling and Assimilation Office has developed a dynamic simulation of global water-leaving radiances, using an ocean model containing multiple ocean phytoplankton groups, particulate detritus, particulate inorganic carbon (PIC), and chromophoric dissolved organic carbon (CDOC) along with optical absorption and scattering processes at 1 nm spectral resolution. The purpose here is to assess the skill of the dynamic model and derived global radiances. Global bias, uncertainty, and correlation are derived using available modern satellite radiances at moderate spectral resolution. Total chlorophyll, PIC, and the absorption coefficient of CDOC (aCDOC), are simultaneously assimilated to improve the fidelity of the optical constituent fields. A 5-year simulation showed statistically significant (P <0.05) comparisons of chlorophyll (r = 0.869), PIC (r = 0.868), and aCDOC (r = 0.890) with satellite data. Additionally, diatoms (r = 0.890), cyanobacteria (r = 0.732), and coccolithophores (r = 0.716) were significantly correlated with in situ data. Global assimilated distributions of optical constituents were coupled with a radiative transfer model (Ocean-Atmosphere Spectral Irradiance Model, OASIM) to estimate normalized water-leaving radiances at 1 nm for the spectral range 250–800 nm. These unassimilated radiances were within −0.074 mW cm−2 μm1 sr−1 of MODIS-Aqua radiances at 412, 443, 488, 531, 547, and 667 nm. This difference represented a bias of −10.4% (model low). A mean correlation of 0.706 (P < 0.05) was found with global distributions of MODIS radiances. These results suggest skill in the global assimilated model and resulting radiances. The reported error characterization suggests that the global dynamical simulation can support some aspects of mission design and analysis. For example, the high spectral resolution of the simulation supports investigations of band selection. The global nature of the radiance representations supports investigations of satellite observing scenarios. Global radiances at bands not available in current and past missions support investigations of mission capability. PMID:29292403</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3644394','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3644394"><span>Localized Statistics for DW-MRI Fiber Bundle Segmentation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Lankton, Shawn; Melonakos, John; Malcolm, James; Dambreville, Samuel; Tannenbaum, Allen</p> <p>2013-01-01</p> <p>We describe a method for segmenting neural fiber bundles in diffusion-weighted magnetic resonance images (DWMRI). As these bundles traverse the brain to connect regions, their local orientation of diffusion changes drastically, hence a constant global model is inaccurate. We propose a method to compute localized statistics on orientation information and use it to drive a variational active contour segmentation that accurately models the non-homogeneous orientation information present along the bundle. Initialized from a single fiber path, the proposed method proceeds to capture the entire bundle. We demonstrate results using the technique to segment the cingulum bundle and describe several extensions making the technique applicable to a wide range of tissues. PMID:23652079</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27418119','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27418119"><span>Assessment of Global Mercury Deposition through Litterfall.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wang, Xun; Bao, Zhengduo; Lin, Che-Jen; Yuan, Wei; Feng, Xinbin</p> <p>2016-08-16</p> <p>There is a large uncertainty in the estimate of global dry deposition of atmospheric mercury (Hg). Hg deposition through litterfall represents an important input to terrestrial forest ecosystems via cumulative uptake of atmospheric Hg (most Hg(0)) to foliage. In this study, we estimate the quantity of global Hg deposition through litterfall using statistical modeling (Monte Carlo simulation) of published data sets of litterfall biomass production, tree density, and Hg concentration in litter samples. On the basis of the model results, the global annual Hg deposition through litterfall is estimated to be 1180 ± 710 Mg yr(-1), more than two times greater than the estimate by GEOS-Chem. Spatial distribution of Hg deposition through litterfall suggests that deposition flux decreases spatially from tropical to temperate and boreal regions. Approximately 70% of global Hg(0) dry deposition occurs in the tropical and subtropical regions. A major source of uncertainty in this study is the heterogeneous geospatial distribution of available data. More observational data in regions (Southeast Asia, Africa, and South America) where few data sets exist will greatly improve the accuracy of the current estimate. Given that the quantity of global Hg deposition via litterfall is typically 2-6 times higher than Hg(0) evasion from forest floor, global forest ecosystems represent a strong Hg(0) sink.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1434026','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1434026"><span>Changes in tropical cyclones under stabilized 1.5 and 2.0°C global warming scenarios as simulated by the Community Atmospheric Model under the HAPPI protocols</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Wehner, Michael F.; Reed, Kevin A.; Loring, Burlen</p> <p></p> <p>The United Nations Framework Convention on Climate Change (UNFCCC) invited the scientific community to explore the impacts of a world in which anthropogenic global warming is stabilized at only 1.5°C above preindustrial average temperatures. In this paper, we present a projection of future tropical cyclone statistics for both 1.5 and 2.0°C stabilized warming scenarios with direct numerical simulation using a high-resolution global climate model. As in similar projections at higher warming levels, we find that even at these low warming levels the most intense tropical cyclones become more frequent and more intense, while simultaneously the frequency of weaker tropical stormsmore » is decreased. We also conclude that in the 1.5°C stabilization, the effect of aerosol forcing changes complicates the interpretation of greenhouse gas forcing changes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ESD.....9..187W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ESD.....9..187W"><span>Changes in tropical cyclones under stabilized 1.5 and 2.0 °C global warming scenarios as simulated by the Community Atmospheric Model under the HAPPI protocols</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wehner, Michael F.; Reed, Kevin A.; Loring, Burlen; Stone, Dáithí; Krishnan, Harinarayan</p> <p>2018-02-01</p> <p>The United Nations Framework Convention on Climate Change (UNFCCC) invited the scientific community to explore the impacts of a world in which anthropogenic global warming is stabilized at only 1.5 °C above preindustrial average temperatures. We present a projection of future tropical cyclone statistics for both 1.5 and 2.0 °C stabilized warming scenarios with direct numerical simulation using a high-resolution global climate model. As in similar projections at higher warming levels, we find that even at these low warming levels the most intense tropical cyclones become more frequent and more intense, while simultaneously the frequency of weaker tropical storms is decreased. We also conclude that in the 1.5 °C stabilization, the effect of aerosol forcing changes complicates the interpretation of greenhouse gas forcing changes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1434026-changes-tropical-cyclones-under-stabilized-global-warming-scenarios-simulated-community-atmospheric-model-under-happi-protocols','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1434026-changes-tropical-cyclones-under-stabilized-global-warming-scenarios-simulated-community-atmospheric-model-under-happi-protocols"><span>Changes in tropical cyclones under stabilized 1.5 and 2.0°C global warming scenarios as simulated by the Community Atmospheric Model under the HAPPI protocols</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Wehner, Michael F.; Reed, Kevin A.; Loring, Burlen; ...</p> <p>2018-02-28</p> <p>The United Nations Framework Convention on Climate Change (UNFCCC) invited the scientific community to explore the impacts of a world in which anthropogenic global warming is stabilized at only 1.5°C above preindustrial average temperatures. In this paper, we present a projection of future tropical cyclone statistics for both 1.5 and 2.0°C stabilized warming scenarios with direct numerical simulation using a high-resolution global climate model. As in similar projections at higher warming levels, we find that even at these low warming levels the most intense tropical cyclones become more frequent and more intense, while simultaneously the frequency of weaker tropical stormsmore » is decreased. We also conclude that in the 1.5°C stabilization, the effect of aerosol forcing changes complicates the interpretation of greenhouse gas forcing changes.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27257967','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27257967"><span>Random Forests for Global and Regional Crop Yield Predictions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Jeong, Jig Han; Resop, Jonathan P; Mueller, Nathaniel D; Fleisher, David H; Yun, Kyungdahm; Butler, Ethan E; Timlin, Dennis J; Shim, Kyo-Moon; Gerber, James S; Reddy, Vangimalla R; Kim, Soo-Hyung</p> <p>2016-01-01</p> <p>Accurate predictions of crop yield are critical for developing effective agricultural and food policies at the regional and global scales. We evaluated a machine-learning method, Random Forests (RF), for its ability to predict crop yield responses to climate and biophysical variables at global and regional scales in wheat, maize, and potato in comparison with multiple linear regressions (MLR) serving as a benchmark. We used crop yield data from various sources and regions for model training and testing: 1) gridded global wheat grain yield, 2) maize grain yield from US counties over thirty years, and 3) potato tuber and maize silage yield from the northeastern seaboard region. RF was found highly capable of predicting crop yields and outperformed MLR benchmarks in all performance statistics that were compared. For example, the root mean square errors (RMSE) ranged between 6 and 14% of the average observed yield with RF models in all test cases whereas these values ranged from 14% to 49% for MLR models. Our results show that RF is an effective and versatile machine-learning method for crop yield predictions at regional and global scales for its high accuracy and precision, ease of use, and utility in data analysis. RF may result in a loss of accuracy when predicting the extreme ends or responses beyond the boundaries of the training data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1996JCli....9..646G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1996JCli....9..646G"><span>Downwelling Longwave Fluxes at Continental Surfaces-A Comparison of Observations with GCM Simulations and Implications for the Global Land-Surface Radiation Budget.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Garratt, J. R.; Prata, A. J.</p> <p>1996-03-01</p> <p>Previous work suggests that general circulation (global climate) models have excess net radiation at land surfaces, apparently due to overestimates in downwelling shortwave flux and underestimates in upwelling long-wave flux. Part of this excess, however, may be compensated for by an underestimate in downwelling longwave flux. Long term observations of the downwelling longwave component at several land stations in Europe, the United States, Australia, and Antarctica suggest that climate models (four are used, as in previous studies) underestimate this flux component on an annual basis by up to 10 W m2, yet with low statistical significance. It is probable that the known underestimate in boundary-layer air temperature contributes to this, as would low model cloudiness and neglect of minor gases such as methane, nitrogen oxide, and the freons. The bias in downwelling longwave flux, together with those found earlier for downwelling shortwave and upwlling long-wave fluxes, are consistent with the model bias found previously for net radiation. All annually averaged fluxes and biases are deduced for global land as a whole.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29398736','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29398736"><span>Inflated Uncertainty in Multimodel-Based Regional Climate Projections.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Madsen, Marianne Sloth; Langen, Peter L; Boberg, Fredrik; Christensen, Jens Hesselbjerg</p> <p>2017-11-28</p> <p>Multimodel ensembles are widely analyzed to estimate the range of future regional climate change projections. For an ensemble of climate models, the result is often portrayed by showing maps of the geographical distribution of the multimodel mean results and associated uncertainties represented by model spread at the grid point scale. Here we use a set of CMIP5 models to show that presenting statistics this way results in an overestimation of the projected range leading to physically implausible patterns of change on global but also on regional scales. We point out that similar inconsistencies occur in impact analyses relying on multimodel information extracted using statistics at the regional scale, for example, when a subset of CMIP models is selected to represent regional model spread. Consequently, the risk of unwanted impacts may be overestimated at larger scales as climate change impacts will never be realized as the worst (or best) case everywhere.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ACPD...10.2357D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ACPD...10.2357D"><span>Probabilistic description of ice-supersaturated layers in low resolution profiles of relative humidity</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dickson, N. C.; Gierens, K. M.; Rogers, H. L.; Jones, R. L.</p> <p>2010-02-01</p> <p>The global observation, assimilation and prediction in numerical models of ice super-saturated (ISS) regions (ISSR) are crucial if the climate impact of aircraft condensations trails (contrails) is to be fully understood, and if, for example, contrail formation is to be avoided through aircraft operational measures. A robust assessment of the global distribution of ISSR will further this debate, and ISS event occurrence, frequency and spatial scales have recently attracted significant attention. The mean horizontal path length through ISSR as observed by MOZAIC aircraft is 150 km (±250 km). The average vertical thickness of ISS layers is 600-800 m (±575 m) but layers ranging from 25 m to 3000 m have been observed, with up to one third of ISS layers thought to be less than 100 m deep. Given their small scales compared to typical atmospheric model grid sizes, statistical representations of the spatial scales of ISSR are required, in both horizontal and vertical dimensions, if global occurrence of ISSR is to be adequately represented in climate models. This paper uses radiosonde launches made by the UK Meteorological Office, from the British Isles, Gibraltar, St. Helena and the Falkland Islands between January 2002 and December 2006, to investigate the probabilistic occurrence of ISSR. Specifically each radiosonde profile is divided into 50- and 100-hPa pressure layers, to emulate the coarse vertical resolution of some atmospheric models. Then the high resolution observations contained within each thick pressure layer are used to calculate an average relative humidity and an ISS fraction for each individual thick pressure layer. These relative humidity pressure layer descriptions are then linked through a probability function to produce an s-shaped curve describing the ISS fraction in any average relative humidity pressure layer. An empirical investigation has shown that this one curve is statistically valid for mid-latitude locations, irrespective of season and altitude, however, pressure layer depth is an important variable. Using this empirical understanding of the s-shaped relationship a mathematical model was developed to represent the ISS fraction within any arbitrary thick pressure layer. Here the statistical distributions of actual high resolution RHi observations in any thick pressure layer, along with an error function, are used to mathematically describe the s-shape. Two models were developed to represent both 50- and 100-hPa pressure layers with each reconstructing their respective s-shapes within 8-10% of the empirical curves. These new models can be used, to represent the small scale structures of ISS events, in modelled data where only low vertical resolution is available. This will be useful in understanding, and improving the global distribution, both observed and forecasted, of ice super-saturation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS14A..06B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS14A..06B"><span>What did the Romans ever do for us? Putting humans in global land models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bierkens, M. F.; Wada, Y.; Dermody, B.; Van Beek, L. P.</p> <p>2016-12-01</p> <p>During the late 1980s and early 1990s, awareness of the shortage of global water resources lead to the first detailed global water resources assessments using regional statistics of water use and observations of meteorological and hydrological variables. Shortly thereafter, the first macroscale hydrological models (MHM) appeared. In these models, blue water (i.e., surface water and renewable groundwater) availability was calculated by accumulating runoff over a stream network and comparing it with population densities or with estimated water demand for agriculture, industry and households. In this talk we review the evolution of human impact modelling in global land models with a focus on global water resources, touching upon developments of the last 15 years: i.e. calculating human water scarcity; estimating groundwater depletion; adding dams and reservoirs; fully integrating water use (abstraction, application, consumption, return flow) in the hydrology; simulating the effects of land use change. We identify four major challenges that hamper the further development of integrated water resources modelling and thus prohibit realistic projections of the future terrestrial water cycle in the Anthropocene. These are: 1) including the ability to model infrastructural changes and measures; 2) projecting future water demand and water use and associated measures; 3) including virtual water trade; 4) including land use change and landscape change. While all these challenges will likely benefit from hydro-economics and the newly developing field of socio-hydrology, we also show that especially for challenges 3 and 4 lessons can be drawn from the (pre)historic past. To make this point we provide two case studies: one modelling the virtual water trade in the Roman Empire and one modelling human-landscape interaction in prehistoric Calabria (Italy).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H12D..03L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H12D..03L"><span>Long term, non-anthropogenic groundwater storage changes simulated by a global land surface model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, B.; Rodell, M.; Sheffield, J.; Wood, E. F.</p> <p>2017-12-01</p> <p>Groundwater is crucial for meeting agricultural, industrial and municipal water needs, especially in arid, semi-arid and drought impacted regions. Yet, knowledge on groundwater response to climate variability is not well understood due to lack of systematic and continuous in situ measurements. In this study, we investigate global non-anthropogenic groundwater storage variations with a land surface model driven by a 67-year (1948-204) meteorological forcing data set. Model estimates were evaluated using in situ groundwater data from the central and northeastern U.S. and terrestrial water storage derived from the Gravity Recovery and Climate Experiment (GRACE) satellites and found to be reasonable. Empirical orthogonal function (EOF) analysis was employed to examine modes of variability of groundwater storage and their relationship with atmospheric effects such as precipitation and evapotranspiration. The result shows that the leading mode in global groundwater storage reflects the influence of the El Niño Southern Oscillation (ENSO). Consistent with the EOF analysis, global total groundwater storage reflected the low frequency variability of ENSO and decreased significantly over 1948-2014 while global ET and precipitation did not exhibit statistically significant trends. This study suggests that while precipitation and ET are the primary drivers of climate related groundwater variability, changes in other forcing fields than precipitation and temperature are also important because of their influence on ET. We discuss the need to improve model physics and to continuously validate model estimates and forcing data for future studies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26801083','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26801083"><span>Propensity score to detect baseline imbalance in cluster randomized trials: the role of the c-statistic.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Leyrat, Clémence; Caille, Agnès; Foucher, Yohann; Giraudeau, Bruno</p> <p>2016-01-22</p> <p>Despite randomization, baseline imbalance and confounding bias may occur in cluster randomized trials (CRTs). Covariate imbalance may jeopardize the validity of statistical inferences if they occur on prognostic factors. Thus, the diagnosis of a such imbalance is essential to adjust statistical analysis if required. We developed a tool based on the c-statistic of the propensity score (PS) model to detect global baseline covariate imbalance in CRTs and assess the risk of confounding bias. We performed a simulation study to assess the performance of the proposed tool and applied this method to analyze the data from 2 published CRTs. The proposed method had good performance for large sample sizes (n =500 per arm) and when the number of unbalanced covariates was not too small as compared with the total number of baseline covariates (≥40% of unbalanced covariates). We also provide a strategy for pre selection of the covariates needed to be included in the PS model to enhance imbalance detection. The proposed tool could be useful in deciding whether covariate adjustment is required before performing statistical analyses of CRTs.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_13");'>13</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li class="active"><span>15</span></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_15 --> <div id="page_16" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="301"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/17354895','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/17354895"><span>A statistical parts-based appearance model of inter-subject variability.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Toews, Matthew; Collins, D Louis; Arbel, Tal</p> <p>2006-01-01</p> <p>In this article, we present a general statistical parts-based model for representing the appearance of an image set, applied to the problem of inter-subject MR brain image matching. In contrast with global image representations such as active appearance models, the parts-based model consists of a collection of localized image parts whose appearance, geometry and occurrence frequency are quantified statistically. The parts-based approach explicitly addresses the case where one-to-one correspondence does not exist between subjects due to anatomical differences, as parts are not expected to occur in all subjects. The model can be learned automatically, discovering structures that appear with statistical regularity in a large set of subject images, and can be robustly fit to new images, all in the presence of significant inter-subject variability. As parts are derived from generic scale-invariant features, the framework can be applied in a wide variety of image contexts, in order to study the commonality of anatomical parts or to group subjects according to the parts they share. Experimentation shows that a parts-based model can be learned from a large set of MR brain images, and used to determine parts that are common within the group of subjects. Preliminary results indicate that the model can be used to automatically identify distinctive features for inter-subject image registration despite large changes in appearance.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=298984','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=298984"><span>Quantitative analysis of Porcine Reproductive and Respiratory Syndrome (PRRS) viremia profiles from experimental infection: a statistical modelling approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>Porcine reproductive and respiratory syndrome (PRRS) is the most economically significant viral disease facing the global swine industry. Viremia profiles of PRRS virus challenged pigs reflect the severity and progression of the infection within the host and provide crucial information for subsequen...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://files.eric.ed.gov/fulltext/ED516588.pdf','ERIC'); return false;" href="http://files.eric.ed.gov/fulltext/ED516588.pdf"><span>Factor Scores, Structure and Communality Coefficients: A Primer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Odum, Mary</p> <p>2011-01-01</p> <p>(Purpose) The purpose of this paper is to present an easy-to-understand primer on three important concepts of factor analysis: Factor scores, structure coefficients, and communality coefficients. Given that statistical analyses are a part of a global general linear model (GLM), and utilize weights as an integral part of analyses (Thompson, 2006;…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.emc.ncep.noaa.gov/gmb/ens/NAEFS/NAEFS-eval.html','SCIGOVWS'); return false;" href="http://www.emc.ncep.noaa.gov/gmb/ens/NAEFS/NAEFS-eval.html"><span>EMC Global Climate And Weather Modeling Branch Personnel</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.science.gov/aboutsearch.html">Science.gov Websites</a></p> <p></p> <p></p> <p>Comparison Statistics which includes: NCEP <em>Raw</em> and Bias-Corrected Ensemble Domain Averaged Bias NCEP <em>Raw</em> and Bias-Corrected Ensemble Domain Averaged Bias Reduction (Percents) CMC <em>Raw</em> and Bias-Corrected Control Forecast Domain Averaged Bias CMC <em>Raw</em> and Bias-Corrected Control Forecast Domain Averaged Bias Reduction</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.ars.usda.gov/research/publications/publication/?seqNo115=307754','TEKTRAN'); return false;" href="http://www.ars.usda.gov/research/publications/publication/?seqNo115=307754"><span>Validation of non-stationary precipitation series for site-specific impact assessment: Comparison of two statistical downscaling techniques</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ars.usda.gov/research/publications/find-a-publication/">USDA-ARS?s Scientific Manuscript database</a></p> <p></p> <p></p> <p>The generation of realistic future precipitation scenarios is crucial for assessing their impacts on a range of environmental and socio-economic impact sectors. A scale mismatch exists, however, between the coarse spatial resolution at which global climate models (GCMs) output future climate scenari...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014EGUGA..16.6681V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014EGUGA..16.6681V"><span>A global estimate of the Earth's magnetic crustal thickness</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vervelidou, Foteini; Thébault, Erwan</p> <p>2014-05-01</p> <p>The Earth's lithosphere is considered to be magnetic only down to the Curie isotherm. Therefore the Curie isotherm can, in principle, be estimated by analysis of magnetic data. Here, we propose such an analysis in the spectral domain by means of a newly introduced regional spatial power spectrum. This spectrum is based on the Revised Spherical Cap Harmonic Analysis (R-SCHA) formalism (Thébault et al., 2006). We briefly discuss its properties and its relationship with the Spherical Harmonic spatial power spectrum. This relationship allows us to adapt any theoretical expression of the lithospheric field power spectrum expressed in Spherical Harmonic degrees to the regional formulation. We compared previously published statistical expressions (Jackson, 1994 ; Voorhies et al., 2002) to the recent lithospheric field models derived from the CHAMP and airborne measurements and we finally developed a new statistical form for the power spectrum of the Earth's magnetic lithosphere that we think provides more consistent results. This expression depends on the mean magnetization, the mean crustal thickness and a power law value that describes the amount of spatial correlation of the sources. In this study, we make a combine use of the R-SCHA surface power spectrum and this statistical form. We conduct a series of regional spectral analyses for the entire Earth. For each region, we estimate the R-SCHA surface power spectrum of the NGDC-720 Spherical Harmonic model (Maus, 2010). We then fit each of these observational spectra to the statistical expression of the power spectrum of the Earth's lithosphere. By doing so, we estimate the large wavelengths of the magnetic crustal thickness on a global scale that are not accessible directly from the magnetic measurements due to the masking core field. We then discuss these results and compare them to the results we obtained by conducting a similar spectral analysis, but this time in the cartesian coordinates, by means of a published statistical expression (Maus et al., 1997). We also compare our results to crustal thickness global maps derived by means of additional geophysical data (Purucker et al., 2002).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20150000202','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20150000202"><span>Impact of Satellite Viewing-Swath Width on Global and Regional Aerosol Optical Thickness Statistics and Trends</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Colarco, P. R.; Kahn, R. A.; Remer, L. A.; Levy, R. C.</p> <p>2014-01-01</p> <p>We use the Moderate Resolution Imaging Spectroradiometer (MODIS) satellite aerosol optical thickness (AOT) product to assess the impact of reduced swath width on global and regional AOT statistics and trends. Alongtrack and across-track sampling strategies are employed, in which the full MODIS data set is sub-sampled with various narrow-swath (approximately 400-800 km) and single pixel width (approximately 10 km) configurations. Although view-angle artifacts in the MODIS AOT retrieval confound direct comparisons between averages derived from different sub-samples, careful analysis shows that with many portions of the Earth essentially unobserved, spatial sampling introduces uncertainty in the derived seasonal-regional mean AOT. These AOT spatial sampling artifacts comprise up to 60%of the full-swath AOT value under moderate aerosol loading, and can be as large as 0.1 in some regions under high aerosol loading. Compared to full-swath observations, narrower swath and single pixel width sampling exhibits a reduced ability to detect AOT trends with statistical significance. On the other hand, estimates of the global, annual mean AOT do not vary significantly from the full-swath values as spatial sampling is reduced. Aggregation of the MODIS data at coarse grid scales (10 deg) shows consistency in the aerosol trends across sampling strategies, with increased statistical confidence, but quantitative errors in the derived trends are found even for the full-swath data when compared to high spatial resolution (0.5 deg) aggregations. Using results of a model-derived aerosol reanalysis, we find consistency in our conclusions about a seasonal-regional spatial sampling artifact in AOT Furthermore, the model shows that reduced spatial sampling can amount to uncertainty in computed shortwave top-ofatmosphere aerosol radiative forcing of 2-3 W m(sup-2). These artifacts are lower bounds, as possibly other unconsidered sampling strategies would perform less well. These results suggest that future aerosol satellite missions having significantly less than full-swath viewing are unlikely to sample the true AOT distribution well enough to obtain the statistics needed to reduce uncertainty in aerosol direct forcing of climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2741516','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2741516"><span>Use of the Global Test Statistic as a Performance Measurement in a Reananlysis of Environmental Health Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Dymova, Natalya; Hanumara, R. Choudary; Gagnon, Ronald N.</p> <p>2009-01-01</p> <p>Performance measurement is increasingly viewed as an essential component of environmental and public health protection programs. In characterizing program performance over time, investigators often observe multiple changes resulting from a single intervention across a range of categories. Although a variety of statistical tools allow evaluation of data one variable at a time, the global test statistic is uniquely suited for analyses of categories or groups of interrelated variables. Here we demonstrate how the global test statistic can be applied to environmental and occupational health data for the purpose of making overall statements on the success of targeted intervention strategies. PMID:19696393</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19696393','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19696393"><span>Use of the global test statistic as a performance measurement in a reanalysis of environmental health data.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Dymova, Natalya; Hanumara, R Choudary; Enander, Richard T; Gagnon, Ronald N</p> <p>2009-10-01</p> <p>Performance measurement is increasingly viewed as an essential component of environmental and public health protection programs. In characterizing program performance over time, investigators often observe multiple changes resulting from a single intervention across a range of categories. Although a variety of statistical tools allow evaluation of data one variable at a time, the global test statistic is uniquely suited for analyses of categories or groups of interrelated variables. Here we demonstrate how the global test statistic can be applied to environmental and occupational health data for the purpose of making overall statements on the success of targeted intervention strategies.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27300852','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27300852"><span>Exact extreme-value statistics at mixed-order transitions.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Bar, Amir; Majumdar, Satya N; Schehr, Grégory; Mukamel, David</p> <p>2016-05-01</p> <p>We study extreme-value statistics for spatially extended models exhibiting mixed-order phase transitions (MOT). These are phase transitions that exhibit features common to both first-order (discontinuity of the order parameter) and second-order (diverging correlation length) transitions. We consider here the truncated inverse distance squared Ising model, which is a prototypical model exhibiting MOT, and study analytically the extreme-value statistics of the domain lengths The lengths of the domains are identically distributed random variables except for the global constraint that their sum equals the total system size L. In addition, the number of such domains is also a fluctuating variable, and not fixed. In the paramagnetic phase, we show that the distribution of the largest domain length l_{max} converges, in the large L limit, to a Gumbel distribution. However, at the critical point (for a certain range of parameters) and in the ferromagnetic phase, we show that the fluctuations of l_{max} are governed by novel distributions, which we compute exactly. Our main analytical results are verified by numerical simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC13K0882L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC13K0882L"><span>Gridded Calibration of Ensemble Wind Vector Forecasts Using Ensemble Model Output Statistics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lazarus, S. M.; Holman, B. P.; Splitt, M. E.</p> <p>2017-12-01</p> <p>A computationally efficient method is developed that performs gridded post processing of ensemble wind vector forecasts. An expansive set of idealized WRF model simulations are generated to provide physically consistent high resolution winds over a coastal domain characterized by an intricate land / water mask. Ensemble model output statistics (EMOS) is used to calibrate the ensemble wind vector forecasts at observation locations. The local EMOS predictive parameters (mean and variance) are then spread throughout the grid utilizing flow-dependent statistical relationships extracted from the downscaled WRF winds. Using data withdrawal and 28 east central Florida stations, the method is applied to one year of 24 h wind forecasts from the Global Ensemble Forecast System (GEFS). Compared to the raw GEFS, the approach improves both the deterministic and probabilistic forecast skill. Analysis of multivariate rank histograms indicate the post processed forecasts are calibrated. Two downscaling case studies are presented, a quiescent easterly flow event and a frontal passage. Strengths and weaknesses of the approach are presented and discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFM.A33E0289O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFM.A33E0289O"><span>Regional downscaling of temporal resolution in near-surface wind from statistically downscaled Global Climate Models (GCMs) for use in San Francisco Bay coastal flood modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>O'Neill, A.; Erikson, L. H.; Barnard, P.</p> <p>2013-12-01</p> <p>While Global Climate Models (GCMs) provide useful projections of near-surface wind vectors into the 21st century, resolution is not sufficient enough for use in regional wave modeling. Statistically downscaled GCM projections from Multivariate Adaptive Constructed Analogues (MACA) provide daily near-surface winds at an appropriate spatial resolution for wave modeling within San Francisco Bay. Using 30 years (1975-2004) of climatological data from four representative stations around San Francisco Bay, a library of example daily wind conditions for four corresponding over-water sub-regions is constructed. Empirical cumulative distribution functions (ECDFs) of station conditions are compared to MACA GFDL hindcasts to create correction factors, which are then applied to 21st century MACA wind projections. For each projection day, a best match example is identified via least squares error among all stations from the library. The best match's daily variation in velocity components (u/v) is used as an analogue of representative wind variation and is applied at 3-hour increments about the corresponding sub-region's projected u/v values. High temporal resolution reconstructions using this methodology on hindcast MACA fields from 1975-2004 accurately recreate extreme wind values within the San Francisco Bay, and because these extremes in wind forcing are of key importance in wave and subsequent coastal flood modeling, this represents a valuable method of generating near-surface wind vectors for use in coastal flood modeling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014IJMPB..2882003N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014IJMPB..2882003N"><span>Comment on "Cosmic-ray-driven reaction and greenhouse effect of halogenated molecules: Culprits for atmospheric ozone depletion and global climate change"</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nuccitelli, Dana; Cowtan, Kevin; Jacobs, Peter; Richardson, Mark; Way, Robert G.; Blackburn, Anne-Marie; Stolpe, Martin B.; Cook, John</p> <p>2014-04-01</p> <p>Lu (2013) (L13) argued that solar effects and anthropogenic halogenated gases can explain most of the observed warming of global mean surface air temperatures since 1850, with virtually no contribution from atmospheric carbon dioxide (CO2) concentrations. Here we show that this conclusion is based on assumptions about the saturation of the CO2-induced greenhouse effect that have been experimentally falsified. L13 also confuses equilibrium and transient response, and relies on data sources that have been superseeded due to known inaccuracies. Furthermore, the statistical approach of sequential linear regression artificially shifts variance onto the first predictor. L13's artificial choice of regression order and neglect of other relevant data is the fundamental cause of the incorrect main conclusion. Consideration of more modern data and a more parsimonious multiple regression model leads to contradiction with L13's statistical results. Finally, the correlation arguments in L13 are falsified by considering either the more appropriate metric of global heat accumulation, or data on longer timescales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27317125','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27317125"><span>Global, regional and national levels and trends of preterm birth rates for 1990 to 2014: protocol for development of World Health Organization estimates.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Vogel, Joshua P; Chawanpaiboon, Saifon; Watananirun, Kanokwaroon; Lumbiganon, Pisake; Petzold, Max; Moller, Ann-Beth; Thinkhamrop, Jadsada; Laopaiboon, Malinee; Seuc, Armando H; Hogan, Daniel; Tunçalp, Ozge; Allanson, Emma; Betrán, Ana Pilar; Bonet, Mercedes; Oladapo, Olufemi T; Gülmezoglu, A Metin</p> <p>2016-06-17</p> <p>The official WHO estimates of preterm birth are an essential global resource for assessing the burden of preterm birth and developing public health programmes and policies. This protocol describes the methods that will be used to identify, critically appraise and analyse all eligible preterm birth data, in order to develop global, regional and national level estimates of levels and trends in preterm birth rates for the period 1990 - 2014. We will conduct a systematic review of civil registration and vital statistics (CRVS) data on preterm birth for all WHO Member States, via national Ministries of Health and Statistics Offices. For Member States with absent, limited or lower-quality CRVS data, a systematic review of surveys and/or research studies will be conducted. Modelling will be used to develop country, regional and global rates for 2014, with time trends for Member States where sufficient data are available. Member States will be invited to review the methodology and provide additional eligible data via a country consultation before final estimates are developed and disseminated. This research will be used to generate estimates on the burden of preterm birth globally for 1990 to 2014. We invite feedback on the methodology described, and call on the public health community to submit pertinent data for consideration. Registered at PROSPERO CRD42015027439 CONTACT: pretermbirth@who.int.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012IJMES..43.1013O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012IJMES..43.1013O"><span>Addressing economic development goals through innovative teaching of university statistics: a case study of statistical modelling in Nigeria</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Oseloka Ezepue, Patrick; Ojo, Adegbola</p> <p>2012-12-01</p> <p>A challenging problem in some developing countries such as Nigeria is inadequate training of students in effective problem solving using the core concepts of their disciplines. Related to this is a disconnection between their learning and socio-economic development agenda of a country. These problems are more vivid in statistical education which is dominated by textbook examples and unbalanced assessment 'for' and 'of' learning within traditional curricula. The problems impede the achievement of socio-economic development objectives such as those stated in the Nigerian Vision 2020 blueprint and United Nations Millennium Development Goals. They also impoverish the ability of (statistics) graduates to creatively use their knowledge in relevant business and industry sectors, thereby exacerbating mass graduate unemployment in Nigeria and similar developing countries. This article uses a case study in statistical modelling to discuss the nature of innovations in statistics education vital to producing new kinds of graduates who can link their learning to national economic development goals, create wealth and alleviate poverty through (self) employment. Wider implications of the innovations for repositioning mathematical sciences education globally are explored in this article.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFMED33A0549M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFMED33A0549M"><span>QR-STEM: Energy and Environment as a Context for Improving QR and STEM Understandings of 6-12 Grade Teachers II. The Quantitative Reasoning</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mayes, R.; Lyford, M. E.; Myers, J. D.</p> <p>2009-12-01</p> <p>The Quantitative Reasoning in STEM (QR STEM) project is a state level Mathematics and Science Partnership Project (MSP) with a focus on the mathematics and statistics that underlies the understanding of complex global scientific issues. This session is a companion session to the QR STEM: The Science presentation. The focus of this session is the quantitative reasoning aspects of the project. As students move from understandings that range from local to global in perspective on issues of energy and environment, there is a significant increase in the need for mathematical and statistical conceptual understanding. These understandings must be accessible to the students within the scientific context, requiring the special understandings that are endemic within quantitative reasoning. The QR STEM project brings together interdisciplinary teams of higher education faculty and middle/high school teachers to explore complex problems in energy and environment. The disciplines include life sciences, physics, chemistry, earth science, statistics, and mathematics. These interdisciplinary teams develop open ended performance tasks to implement in the classroom, based on scientific concepts that underpin energy and environment. Quantitative reasoning is broken down into three components: Quantitative Literacy, Quantitative Interpretation, and Quantitative Modeling. Quantitative Literacy is composed of arithmetic concepts such as proportional reasoning, numeracy, and descriptive statistics. Quantitative Interpretation includes algebraic and geometric concepts that underlie the ability to interpret a model of natural phenomena which is provided for the student. This model may be a table, graph, or equation from which the student is to make predictions or identify trends, or from which they would use statistics to explore correlations or patterns in data. Quantitative modeling is the ability to develop the model from data, including the ability to test hypothesis using statistical procedures. We use the term model very broadly, so it includes visual models such as box models, as well as best fit equation models and hypothesis testing. One of the powerful outcomes of the project is the conversation which takes place between science teachers and mathematics teachers. First they realize that though they are teaching concepts that cross their disciplines, the barrier of scientific language within their subjects restricts students from applying the concepts across subjects. Second the mathematics teachers discover the context of science as a means of providing real world situations that engage students in the utility of mathematics as a tool for solving problems. Third the science teachers discover the barrier to understanding science that is presented by poor quantitative reasoning ability. Finally the students are engaged in exploring energy and environment in a manner which exposes the importance of seeing a problem from multiple interdisciplinary perspectives. The outcome is a democratic citizen capable of making informed decisions, and perhaps a future scientist.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4717406','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4717406"><span>Does transport time help explain the high trauma mortality rates in rural areas? New and traditional predictors assessed by new and traditional statistical methods</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Røislien, Jo; Lossius, Hans Morten; Kristiansen, Thomas</p> <p>2015-01-01</p> <p>Background Trauma is a leading global cause of death. Trauma mortality rates are higher in rural areas, constituting a challenge for quality and equality in trauma care. The aim of the study was to explore population density and transport time to hospital care as possible predictors of geographical differences in mortality rates, and to what extent choice of statistical method might affect the analytical results and accompanying clinical conclusions. Methods Using data from the Norwegian Cause of Death registry, deaths from external causes 1998–2007 were analysed. Norway consists of 434 municipalities, and municipality population density and travel time to hospital care were entered as predictors of municipality mortality rates in univariate and multiple regression models of increasing model complexity. We fitted linear regression models with continuous and categorised predictors, as well as piecewise linear and generalised additive models (GAMs). Models were compared using Akaike's information criterion (AIC). Results Population density was an independent predictor of trauma mortality rates, while the contribution of transport time to hospital care was highly dependent on choice of statistical model. A multiple GAM or piecewise linear model was superior, and similar, in terms of AIC. However, while transport time was statistically significant in multiple models with piecewise linear or categorised predictors, it was not in GAM or standard linear regression. Conclusions Population density is an independent predictor of trauma mortality rates. The added explanatory value of transport time to hospital care is marginal and model-dependent, highlighting the importance of exploring several statistical models when studying complex associations in observational data. PMID:25972600</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23920827','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23920827"><span>Statistical text classifier to detect specific type of medical incidents.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wong, Zoie Shui-Yee; Akiyama, Masanori</p> <p>2013-01-01</p> <p>WHO Patient Safety has put focus to increase the coherence and expressiveness of patient safety classification with the foundation of International Classification for Patient Safety (ICPS). Text classification and statistical approaches has showed to be successful to identifysafety problems in the Aviation industryusing incident text information. It has been challenging to comprehend the taxonomy of medical incidents in a structured manner. Independent reporting mechanisms for patient safety incidents have been established in the UK, Canada, Australia, Japan, Hong Kong etc. This research demonstrates the potential to construct statistical text classifiers to detect specific type of medical incidents using incident text data. An illustrative example for classifying look-alike sound-alike (LASA) medication incidents using structured text from 227 advisories related to medication errors from Global Patient Safety Alerts (GPSA) is shown in this poster presentation. The classifier was built using logistic regression model. ROC curve and the AUC value indicated that this is a satisfactory good model.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMOS43B2030N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMOS43B2030N"><span>How Well Has Global Ocean Heat Content Variability Been Measured?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nelson, A.; Weiss, J.; Fox-Kemper, B.; Fabienne, G.</p> <p>2016-12-01</p> <p>We introduce a new strategy that uses synthetic observations of an ensemble of model simulations to test the fidelity of an observational strategy, quantifying how well it captures the statistics of variability. We apply this test to the 0-700m global ocean heat content anomaly (OHCA) as observed with in-situ measurements by the Coriolis Dataset for Reanalysis (CORA), using the Community Climate System Model (CCSM) version 3.5. One-year running mean OHCAs for the years 2005 onward are found to faithfully capture the variability. During these years, synthetic observations of the model are strongly correlated at 0.94±0.06 with the actual state of the model. Overall, sub-annual variability and data before 2005 are significantly affected by the variability of the observing system. In contrast, the sometimes-used weighted integral of observations is not a good indicator of OHCA as variability in the observing system contaminates dynamical variability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19880045212&hterms=GLOBAL+WARNING&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DGLOBAL%2BWARNING','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19880045212&hterms=GLOBAL+WARNING&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D20%26Ntt%3DGLOBAL%2BWARNING"><span>The GISS global climate-middle atmosphere model. II - Model variability due to interactions between planetary waves, the mean circulation and gravity wave drag</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Rind, D.; Suozzo, R.; Balachandran, N. K.</p> <p>1988-01-01</p> <p>The variability which arises in the GISS Global Climate-Middle Atmosphere Model on two time scales is reviewed: interannual standard deviations, derived from the five-year control run, and intraseasonal variability as exemplified by statospheric warnings. The model's extratropical variability for both mean fields and eddy statistics appears reasonable when compared with observations, while the tropical wind variability near the stratopause may be excessive possibly, due to inertial oscillations. Both wave 1 and wave 2 warmings develop, with connections to tropospheric forcing. Variability on both time scales results from a complex set of interactions among planetary waves, the mean circulation, and gravity wave drag. Specific examples of these interactions are presented, which imply that variability in gravity wave forcing and drag may be an important component of the variability of the middle atmosphere.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_14");'>14</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li class="active"><span>16</span></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_16 --> <div id="page_17" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="321"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H43D1670D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H43D1670D"><span>Improve projections of changes in southern African summer rainfall through comprehensive multi-timescale empirical statistical downscaling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dieppois, B.; Pohl, B.; Eden, J.; Crétat, J.; Rouault, M.; Keenlyside, N.; New, M. G.</p> <p>2017-12-01</p> <p>The water management community has hitherto neglected or underestimated many of the uncertainties in climate impact scenarios, in particular, uncertainties associated with decadal climate variability. Uncertainty in the state-of-the-art global climate models (GCMs) is time-scale-dependant, e.g. stronger at decadal than at interannual timescales, in response to the different parameterizations and to internal climate variability. In addition, non-stationarity in statistical downscaling is widely recognized as a key problem, in which time-scale dependency of predictors plays an important role. As with global climate modelling, therefore, the selection of downscaling methods must proceed with caution to avoid unintended consequences of over-correcting the noise in GCMs (e.g. interpreting internal climate variability as a model bias). GCM outputs from the Coupled Model Intercomparison Project 5 (CMIP5) have therefore first been selected based on their ability to reproduce southern African summer rainfall variability and their teleconnections with Pacific sea-surface temperature across the dominant timescales. In observations, southern African summer rainfall has recently been shown to exhibit significant periodicities at the interannual timescale (2-8 years), quasi-decadal (8-13 years) and inter-decadal (15-28 years) timescales, which can be interpret as the signature of ENSO, the IPO, and the PDO over the region. Most of CMIP5 GCMs underestimate southern African summer rainfall variability and their teleconnections with Pacific SSTs at these three timescales. In addition, according to a more in-depth analysis of historical and pi-control runs, this bias is might result from internal climate variability in some of the CMIP5 GCMs, suggesting potential for bias-corrected prediction based empirical statistical downscaling. A multi-timescale regression based downscaling procedure, which determines the predictors across the different timescales, has thus been used to simulate southern African summer rainfall. This multi-timescale procedure shows much better skills in simulating decadal timescales of variability compared to commonly used statistical downscaling approaches.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19930032597&hterms=947&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3D%2526%2523947','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19930032597&hterms=947&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D90%26Ntt%3D%2526%2523947"><span>Deriving inertial wave characteristics from surface drifter velocities - Frequency variability in the tropical Pacific</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Poulain, Pierre-Marie; Luther, Douglas S.; Patzert, William C.</p> <p>1992-01-01</p> <p>Two techniques were developed for estimating statistics of inertial oscillations from satellite-tracked drifters that overcome the difficulties inherent in estimating such statistics from data dependent upon space coordinates that are a function of time. Application of these techniques to tropical surface drifter data collected during the NORPAX, EPOCS, and TOGA programs reveals a latitude-dependent, statistically significant 'blue shift' of inertial wave frequency. The latitudinal dependence of the blue shift is similar to predictions based on 'global' internal-wave spectral models, with a superposition of frequency shifting due to modification of the effective local inertial frequency by the presence of strongly sheared zonal mean currents within 12 deg of the equator.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PApGe.175.1197M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PApGe.175.1197M"><span>Short-Range Prediction of Monsoon Precipitation by NCMRWF Regional Unified Model with Explicit Convection</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mamgain, Ashu; Rajagopal, E. N.; Mitra, A. K.; Webster, S.</p> <p>2018-03-01</p> <p>There are increasing efforts towards the prediction of high-impact weather systems and understanding of related dynamical and physical processes. High-resolution numerical model simulations can be used directly to model the impact at fine-scale details. Improvement in forecast accuracy can help in disaster management planning and execution. National Centre for Medium Range Weather Forecasting (NCMRWF) has implemented high-resolution regional unified modeling system with explicit convection embedded within coarser resolution global model with parameterized convection. The models configurations are based on UK Met Office unified seamless modeling system. Recent land use/land cover data (2012-2013) obtained from Indian Space Research Organisation (ISRO) are also used in model simulations. Results based on short-range forecast of both the global and regional models over India for a month indicate that convection-permitting simulations by the high-resolution regional model is able to reduce the dry bias over southern parts of West Coast and monsoon trough zone with more intense rainfall mainly towards northern parts of monsoon trough zone. Regional model with explicit convection has significantly improved the phase of the diurnal cycle of rainfall as compared to the global model. Results from two monsoon depression cases during study period show substantial improvement in details of rainfall pattern. Many categories in rainfall defined for operational forecast purposes by Indian forecasters are also well represented in case of convection-permitting high-resolution simulations. For the statistics of number of days within a range of rain categories between `No-Rain' and `Heavy Rain', the regional model is outperforming the global model in all the ranges. In the very heavy and extremely heavy categories, the regional simulations show overestimation of rainfall days. Global model with parameterized convection have tendency to overestimate the light rainfall days and underestimate the heavy rain days compared to the observation data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013AGUFMGC41D..02M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013AGUFMGC41D..02M"><span>Spatial Modeling of Agricultural Land-Use Change at Global Scale</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Meiyappan, Prasanth; Dalton, Michael; O'Neill, Brian C.; Jain, Atul K.</p> <p>2013-12-01</p> <p>Land use is both a source and consequence of climate change. Long-term modeling of land use is central in global scale assessments using Integrated Assessment Models (IAMs) to explore policy alternatives; especially because adaptation and mitigation of climate change requires long-term commitment. We present a land-use change modeling framework that can reproduce the past 100 years of evolution of global cropland and pastureland patterns to a reasonable accuracy. The novelty of our approach underlies in integrating knowledge from both the observed behavior and economic rationale behind land-use decisions, thereby making up for the intrinsic deficits in both the disciplines. The underlying economic rationale is profit maximization of individual landowners that implicitly reflects local-level decisions-making process at a larger scale. Observed behavior based on examining the relationships between contemporary land-use patterns and its socioeconomic and biophysical drivers, enters as an explicit factor into the economic framework. The land-use allocation is modified by autonomous developments and competition between land-use types. The framework accounts for spatial heterogeneity in the nature of driving factors across geographic regions. The model is currently configured to downscale continental-scale aggregate land-use information to region specific changes in land-use patterns (0.5-deg spatial resolution). The temporal resolution is one year. The historical validation experiment is facilitated by synthesizing gridded maps of a wide range of potential biophysical and socioeconomic driving factors for the 20th century. To our knowledge, this is the first retrospective analysis that has been successful in reproducing the historical experience at a global scale. We apply the method to gain useful insights on two questions: (1) what are the dominant socioeconomic and biophysical driving factors of contemporary cropland and pastureland patterns, across geographic regions, and (2) the impacts of various driving factors on shaping the cropland and pastureland patterns over the 20th century. Specifically, we focus on the causes of changes in land-use patterns in certain key regions of the world, such as the abandonment of cropland in the eastern US and a subsequent expansion to the mid-west US. This presentation will focus on the scientific basis behind the developed framework and motivations behind selecting specific statistical techniques to implement the scientific theory. Specifically, we will highlight the application of recently developed statistical techniques that are highly efficient in dealing with problems such as spatial autocorrelation and multicollinearity that are common in land-change studies. However, these statistical techniques have largely been confined to medical literature. We will present the validation results and an example application of the developed framework within an IAM. The presented framework provides a benchmark for long-term spatial modeling of land use that will benefit the IAM, land use and the Earth system modeling communities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1268175','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1268175"><span>The GEWEX LandFlux project: Evaluation of model evaporation using tower-based and globally gridded forcing data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>McCabe, M. F.; Ershadi, A.; Jimenez, C.</p> <p></p> <p>Determining the spatial distribution and temporal development of evaporation at regional and global scales is required to improve our understanding of the coupled water and energy cycles and to better monitor any changes in observed trends and variability of linked hydrological processes. With recent international efforts guiding the development of long-term and globally distributed flux estimates, continued product assessments are required to inform upon the selection of suitable model structures and also to establish the appropriateness of these multi-model simulations for global application. In support of the objectives of the Global Energy and Water Cycle Exchanges (GEWEX) LandFlux project, fourmore » commonly used evaporation models are evaluated against data from tower-based eddy-covariance observations, distributed across a range of biomes and climate zones. The selected schemes include the Surface Energy Balance System (SEBS) approach, the Priestley–Taylor Jet Propulsion Laboratory (PT-JPL) model, the Penman–Monteith-based Mu model (PM-Mu) and the Global Land Evaporation Amsterdam Model (GLEAM). Here we seek to examine the fidelity of global evaporation simulations by examining the multi-model response to varying sources of forcing data. To do this, we perform parallel and collocated model simulations using tower-based data together with a global-scale grid-based forcing product. Through quantifying the multi-model response to high-quality tower data, a better understanding of the subsequent model response to the coarse-scale globally gridded data that underlies the LandFlux product can be obtained, while also providing a relative evaluation and assessment of model performance. Using surface flux observations from 45 globally distributed eddy-covariance stations as independent metrics of performance, the tower-based analysis indicated that PT-JPL provided the highest overall statistical performance (0.72; 61 W m –2; 0.65), followed closely by GLEAM (0.68; 64 W m –2; 0.62), with values in parentheses representing the R 2, RMSD and Nash–Sutcliffe efficiency (NSE), respectively. PM-Mu (0.51; 78 W m –2; 0.45) tended to underestimate fluxes, while SEBS (0.72; 101 W m –2; 0.24) overestimated values relative to observations. A focused analysis across specific biome types and climate zones showed considerable variability in the performance of all models, with no single model consistently able to outperform any other. Results also indicated that the global gridded data tended to reduce the performance for all of the studied models when compared to the tower data, likely a response to scale mismatch and issues related to forcing quality. Rather than relying on any single model simulation, the spatial and temporal variability at both the tower- and grid-scale highlighted the potential benefits of developing an ensemble or blended evaporation product for global-scale LandFlux applications. Hence, challenges related to the robust assessment of the LandFlux product are also discussed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1268175-gewex-landflux-project-evaluation-model-evaporation-using-tower-based-globally-gridded-forcing-data','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1268175-gewex-landflux-project-evaluation-model-evaporation-using-tower-based-globally-gridded-forcing-data"><span>The GEWEX LandFlux project: Evaluation of model evaporation using tower-based and globally gridded forcing data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>McCabe, M. F.; Ershadi, A.; Jimenez, C.; ...</p> <p>2016-01-26</p> <p>Determining the spatial distribution and temporal development of evaporation at regional and global scales is required to improve our understanding of the coupled water and energy cycles and to better monitor any changes in observed trends and variability of linked hydrological processes. With recent international efforts guiding the development of long-term and globally distributed flux estimates, continued product assessments are required to inform upon the selection of suitable model structures and also to establish the appropriateness of these multi-model simulations for global application. In support of the objectives of the Global Energy and Water Cycle Exchanges (GEWEX) LandFlux project, fourmore » commonly used evaporation models are evaluated against data from tower-based eddy-covariance observations, distributed across a range of biomes and climate zones. The selected schemes include the Surface Energy Balance System (SEBS) approach, the Priestley–Taylor Jet Propulsion Laboratory (PT-JPL) model, the Penman–Monteith-based Mu model (PM-Mu) and the Global Land Evaporation Amsterdam Model (GLEAM). Here we seek to examine the fidelity of global evaporation simulations by examining the multi-model response to varying sources of forcing data. To do this, we perform parallel and collocated model simulations using tower-based data together with a global-scale grid-based forcing product. Through quantifying the multi-model response to high-quality tower data, a better understanding of the subsequent model response to the coarse-scale globally gridded data that underlies the LandFlux product can be obtained, while also providing a relative evaluation and assessment of model performance. Using surface flux observations from 45 globally distributed eddy-covariance stations as independent metrics of performance, the tower-based analysis indicated that PT-JPL provided the highest overall statistical performance (0.72; 61 W m –2; 0.65), followed closely by GLEAM (0.68; 64 W m –2; 0.62), with values in parentheses representing the R 2, RMSD and Nash–Sutcliffe efficiency (NSE), respectively. PM-Mu (0.51; 78 W m –2; 0.45) tended to underestimate fluxes, while SEBS (0.72; 101 W m –2; 0.24) overestimated values relative to observations. A focused analysis across specific biome types and climate zones showed considerable variability in the performance of all models, with no single model consistently able to outperform any other. Results also indicated that the global gridded data tended to reduce the performance for all of the studied models when compared to the tower data, likely a response to scale mismatch and issues related to forcing quality. Rather than relying on any single model simulation, the spatial and temporal variability at both the tower- and grid-scale highlighted the potential benefits of developing an ensemble or blended evaporation product for global-scale LandFlux applications. Hence, challenges related to the robust assessment of the LandFlux product are also discussed.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018IJMPC..2950005Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018IJMPC..2950005Z"><span>Impact analysis of two kinds of failure strategies in Beijing road transportation network</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, Zundong; Xu, Xiaoyang; Zhang, Zhaoran; Zhou, Huijuan</p> <p></p> <p>The Beijing road transportation network (BRTN), as a large-scale technological network, exhibits very complex and complicate features during daily periods. And it has been widely highlighted that how statistical characteristics (i.e. average path length and global network efficiency) change while the network evolves. In this paper, by using different modeling concepts, three kinds of network models of BRTN namely the abstract network model, the static network model with road mileage as weights and the dynamic network model with travel time as weights — are constructed, respectively, according to the topological data and the real detected flow data. The degree distribution of the three kinds of network models are analyzed, which proves that the urban road infrastructure network and the dynamic network behavior like scale-free networks. By analyzing and comparing the important statistical characteristics of three models under random attacks and intentional attacks, it shows that the urban road infrastructure network and the dynamic network of BRTN are both robust and vulnerable.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhRvF...1d0501S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhRvF...1d0501S"><span>Linear control of oscillator and amplifier flows*</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schmid, Peter J.; Sipp, Denis</p> <p>2016-08-01</p> <p>Linear control applied to fluid systems near an equilibrium point has important applications for many flows of industrial or fundamental interest. In this article we give an exposition of tools and approaches for the design of control strategies for globally stable or unstable flows. For unstable oscillator flows a feedback configuration and a model-based approach is proposed, while for stable noise-amplifier flows a feedforward setup and an approach based on system identification is advocated. Model reduction and robustness issues are addressed for the oscillator case; statistical learning techniques are emphasized for the amplifier case. Effective suppression of global and convective instabilities could be demonstrated for either case, even though the system-identification approach results in a superior robustness to off-design conditions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26986337','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26986337"><span>Granger-causality maps of diffusion processes.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wahl, Benjamin; Feudel, Ulrike; Hlinka, Jaroslav; Wächter, Matthias; Peinke, Joachim; Freund, Jan A</p> <p>2016-02-01</p> <p>Granger causality is a statistical concept devised to reconstruct and quantify predictive information flow between stochastic processes. Although the general concept can be formulated model-free it is often considered in the framework of linear stochastic processes. Here we show how local linear model descriptions can be employed to extend Granger causality into the realm of nonlinear systems. This novel treatment results in maps that resolve Granger causality in regions of state space. Through examples we provide a proof of concept and illustrate the utility of these maps. Moreover, by integration we convert the local Granger causality into a global measure that yields a consistent picture for a global Ornstein-Uhlenbeck process. Finally, we recover invariance transformations known from the theory of autoregressive processes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..1714661F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..1714661F"><span>A comparative study of two statistical approaches for the analysis of real seismicity sequences and synthetic seismicity generated by a stick-slip experimental model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Flores-Marquez, Leticia Elsa; Ramirez Rojaz, Alejandro; Telesca, Luciano</p> <p>2015-04-01</p> <p>The study of two statistical approaches is analyzed for two different types of data sets, one is the seismicity generated by the subduction processes occurred at south Pacific coast of Mexico between 2005 and 2012, and the other corresponds to the synthetic seismic data generated by a stick-slip experimental model. The statistical methods used for the present study are the visibility graph in order to investigate the time dynamics of the series and the scaled probability density function in the natural time domain to investigate the critical order of the system. This comparison has the purpose to show the similarities between the dynamical behaviors of both types of data sets, from the point of view of critical systems. The observed behaviors allow us to conclude that the experimental set up globally reproduces the behavior observed in the statistical approaches used to analyses the seismicity of the subduction zone. The present study was supported by the Bilateral Project Italy-Mexico Experimental Stick-slip models of tectonic faults: innovative statistical approaches applied to synthetic seismic sequences, jointly funded by MAECI (Italy) and AMEXCID (Mexico) in the framework of the Bilateral Agreement for Scientific and Technological Cooperation PE 2014-2016.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A11B1880V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A11B1880V"><span>Global statistics of microphysical properties of cloud-top ice crystals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van Diedenhoven, B.; Fridlind, A. M.; Cairns, B.; Ackerman, A. S.; Riedi, J.</p> <p>2017-12-01</p> <p>Ice crystals in clouds are highly complex. Their sizes, macroscale shape (i.e., habit), mesoscale shape (i.e., aspect ratio of components) and microscale shape (i.e., surface roughness) determine optical properties and affect physical properties such as fall speeds, growth rates and aggregation efficiency. Our current understanding on the formation and evolution of ice crystals under various conditions can be considered poor. Commonly, ice crystal size and shape are related to ambient temperature and humidity, but global observational statistics on the variation of ice crystal size and particularly shape have not been available. Here we show results of a project aiming to infer ice crystal size, shape and scattering properties from a combination of MODIS measurements and POLDER-PARASOL multi-angle polarimetry. The shape retrieval procedure infers the mean aspect ratios of components of ice crystals and the mean microscale surface roughness levels, which are quantifiable parameters that mostly affect the scattering properties, in contrast to "habit". We present global statistics on the variation of ice effective radius, component aspect ratio, microscale surface roughness and scattering asymmetry parameter as a function of cloud top temperature, latitude, location, cloud type, season, etc. Generally, with increasing height, sizes decrease, roughness increases, asymmetry parameters decrease and aspect ratios increase towards unity. Some systematic differences are observed for clouds warmer and colder than the homogeneous freezing level. Uncertainties in the retrievals will be discussed. These statistics can be used as observational targets for modeling efforts and to better constrain other satellite remote sensing applications and their uncertainties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20180000641','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20180000641"><span>Global Statistics of Microphysical Properties of Cloud-Top Ice Crystals</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Van Diedenhoven, Bastiaan; Fridlind, Ann; Cairns, Brian; Ackerman, Andrew; Riedl, Jerome</p> <p>2017-01-01</p> <p>Ice crystals in clouds are highly complex. Their sizes, macroscale shape (i.e., habit), mesoscale shape (i.e., aspect ratio of components) and microscale shape (i.e., surface roughness) determine optical properties and affect physical properties such as fall speeds, growth rates and aggregation efficiency. Our current understanding on the formation and evolution of ice crystals under various conditions can be considered poor. Commonly, ice crystal size and shape are related to ambient temperature and humidity, but global observational statistics on the variation of ice crystal size and particularly shape have not been available. Here we show results of a project aiming to infer ice crystal size, shape and scattering properties from a combination of MODIS measurements and POLDER-PARASOL multi-angle polarimetry. The shape retrieval procedure infers the mean aspect ratios of components of ice crystals and the mean microscale surface roughness levels, which are quantifiable parameters that mostly affect the scattering properties, in contrast to a habit. We present global statistics on the variation of ice effective radius, component aspect ratio, microscale surface roughness and scattering asymmetry parameter as a function of cloud top temperature, latitude, location, cloud type, season, etc. Generally, with increasing height, sizes decrease, roughness increases, asymmetry parameters decrease and aspect ratios increase towards unity. Some systematic differences are observed for clouds warmer and colder than the homogeneous freezing level. Uncertainties in the retrievals will be discussed. These statistics can be used as observational targets for modeling efforts and to better constrain other satellite remote sensing applications and their uncertainties.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016ThApC.125...53S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016ThApC.125...53S"><span>A hybrid SVM-FFA method for prediction of monthly mean global solar radiation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Shamshirband, Shahaboddin; Mohammadi, Kasra; Tong, Chong Wen; Zamani, Mazdak; Motamedi, Shervin; Ch, Sudheer</p> <p>2016-07-01</p> <p>In this study, a hybrid support vector machine-firefly optimization algorithm (SVM-FFA) model is proposed to estimate monthly mean horizontal global solar radiation (HGSR). The merit of SVM-FFA is assessed statistically by comparing its performance with three previously used approaches. Using each approach and long-term measured HGSR, three models are calibrated by considering different sets of meteorological parameters measured for Bandar Abbass situated in Iran. It is found that the model (3) utilizing the combination of relative sunshine duration, difference between maximum and minimum temperatures, relative humidity, water vapor pressure, average temperature, and extraterrestrial solar radiation shows superior performance based upon all approaches. Moreover, the extraterrestrial radiation is introduced as a significant parameter to accurately estimate the global solar radiation. The survey results reveal that the developed SVM-FFA approach is greatly capable to provide favorable predictions with significantly higher precision than other examined techniques. For the SVM-FFA (3), the statistical indicators of mean absolute percentage error (MAPE), root mean square error (RMSE), relative root mean square error (RRMSE), and coefficient of determination ( R 2) are 3.3252 %, 0.1859 kWh/m2, 3.7350 %, and 0.9737, respectively which according to the RRMSE has an excellent performance. As a more evaluation of SVM-FFA (3), the ratio of estimated to measured values is computed and found that 47 out of 48 months considered as testing data fall between 0.90 and 1.10. Also, by performing a further verification, it is concluded that SVM-FFA (3) offers absolute superiority over the empirical models using relatively similar input parameters. In a nutshell, the hybrid SVM-FFA approach would be considered highly efficient to estimate the HGSR.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018PhRvX...8a1054C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018PhRvX...8a1054C"><span>Loop Braiding Statistics and Interacting Fermionic Symmetry-Protected Topological Phases in Three Dimensions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cheng, Meng; Tantivasadakarn, Nathanan; Wang, Chenjie</p> <p>2018-01-01</p> <p>We study Abelian braiding statistics of loop excitations in three-dimensional gauge theories with fermionic particles and the closely related problem of classifying 3D fermionic symmetry-protected topological (FSPT) phases with unitary symmetries. It is known that the two problems are related by turning FSPT phases into gauge theories through gauging the global symmetry of the former. We show that there exist certain types of Abelian loop braiding statistics that are allowed only in the presence of fermionic particles, which correspond to 3D "intrinsic" FSPT phases, i.e., those that do not stem from bosonic SPT phases. While such intrinsic FSPT phases are ubiquitous in 2D systems and in 3D systems with antiunitary symmetries, their existence in 3D systems with unitary symmetries was not confirmed previously due to the fact that strong interaction is necessary to realize them. We show that the simplest unitary symmetry to support 3D intrinsic FSPT phases is Z2×Z4. To establish the results, we first derive a complete set of physical constraints on Abelian loop braiding statistics. Solving the constraints, we obtain all possible Abelian loop braiding statistics in 3D gauge theories, including those that correspond to intrinsic FSPT phases. Then, we construct exactly soluble state-sum models to realize the loop braiding statistics. These state-sum models generalize the well-known Crane-Yetter and Dijkgraaf-Witten models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/5446538-geodetic-point-positioning-gps-global-positioning-system-carrier-beat-phase-data-from-casa-central-south-america-uno-experiment','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/5446538-geodetic-point-positioning-gps-global-positioning-system-carrier-beat-phase-data-from-casa-central-south-america-uno-experiment"><span>Geodetic point positioning with GPS (Global Positioning System) carrier beat phase data from the CASA (Central and South America) Uno experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Malys, S.; Jensen, P.A.</p> <p>1990-04-01</p> <p>The Global Positioning System (GPS) carrier beat phase data collected by the TI4100 GPS receiver has been successfully utilized by the US Defense Mapping Agency in an algorithm which is designed to estimate individual absolute geodetic point positions from data collected over a few hours. The algorithm uses differenced data from one station and two to four GPS satellites at a series of epochs separated by 30 second intervals. The precise GPS ephemerides and satellite clock states, held fixed in the estimation process, are those estimated by the Naval Surface Warfare Center (NSWC). Broadcast ephemerides and clock states are alsomore » utilized for comparative purposes. An outline of the data corrections applied, the mathematical model and the estimation algorithm are presented. Point positioning results and statistics are presented for a globally-distributed set of stations which contributed to the CASA Uno experiment. Statistical assessment of 114 GPS point positions at 11 CASA Uno stations indicates that the overall standard deviation of a point position component, estimated from a few hours of data, is 73 centimeters. Solution of the long line geodetic inverse problem using repeated point positions such as these can potentially offer a new tool for those studying geodynamics on a global scale.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012PEPI..210...21C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012PEPI..210...21C"><span>On the likelihood of post-perovskite near the core-mantle boundary: A statistical interpretation of seismic observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Cobden, Laura; Mosca, Ilaria; Trampert, Jeannot; Ritsema, Jeroen</p> <p>2012-11-01</p> <p>Recent experimental studies indicate that perovskite, the dominant lower mantle mineral, undergoes a phase change to post-perovskite at high pressures. However, it has been unclear whether this transition occurs within the Earth's mantle, due to uncertainties in both the thermochemical state of the lowermost mantle and the pressure-temperature conditions of the phase boundary. In this study we compare the relative fit to global seismic data of mantle models which do and do not contain post-perovskite, following a statistical approach. Our data comprise more than 10,000 Pdiff and Sdiff travel-times, global in coverage, from which we extract the global distributions of dln VS and dln VP near the core-mantle boundary (CMB). These distributions are sensitive to the underlying lateral variations in mineralogy and temperature even after seismic uncertainties are taken into account, and are ideally suited for investigating the likelihood of the presence of post-perovskite. A post-perovskite-bearing CMB region provides a significantly closer fit to the seismic data than a post-perovskite-free CMB region on both a global and regional scale. These results complement previous local seismic reflection studies, which have shown a consistency between seismic observations and the physical properties of post-perovskite inside the deep Earth.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013NatGe...6.1050E','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013NatGe...6.1050E"><span>Statistically derived contributions of diverse human influences to twentieth-century temperature changes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Estrada, Francisco; Perron, Pierre; Martínez-López, Benjamín</p> <p>2013-12-01</p> <p>The warming of the climate system is unequivocal as evidenced by an increase in global temperatures by 0.8°C over the past century. However, the attribution of the observed warming to human activities remains less clear, particularly because of the apparent slow-down in warming since the late 1990s. Here we analyse radiative forcing and temperature time series with state-of-the-art statistical methods to address this question without climate model simulations. We show that long-term trends in total radiative forcing and temperatures have largely been determined by atmospheric greenhouse gas concentrations, and modulated by other radiative factors. We identify a pronounced increase in the growth rates of both temperatures and radiative forcing around 1960, which marks the onset of sustained global warming. Our analyses also reveal a contribution of human interventions to two periods when global warming slowed down. Our statistical analysis suggests that the reduction in the emissions of ozone-depleting substances under the Montreal Protocol, as well as a reduction in methane emissions, contributed to the lower rate of warming since the 1990s. Furthermore, we identify a contribution from the two world wars and the Great Depression to the documented cooling in the mid-twentieth century, through lower carbon dioxide emissions. We conclude that reductions in greenhouse gas emissions are effective in slowing the rate of warming in the short term.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.A32B..01F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.A32B..01F"><span>High Predictive Skill of Global Surface Temperature a Year Ahead</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Folland, C. K.; Colman, A.; Kennedy, J. J.; Knight, J.; Parker, D. E.; Stott, P.; Smith, D. M.; Boucher, O.</p> <p>2011-12-01</p> <p>We discuss the high skill of real-time forecasts of global surface temperature a year ahead issued by the UK Met Office, and their scientific background. Although this is a forecasting and not a formal attribution study, we show that the main instrumental global annual surface temperature data sets since 1891 are structured consistently with a set of five physical forcing factors except during and just after the second World War. Reconstructions use a multiple application of cross validated linear regression to minimise artificial skill allowing time-varying uncertainties in the contribution of each forcing factor to global temperature to be assessed. Mean cross validated reconstructions for the data sets have total correlations in the range 0.93-0.95,interannual correlations in the range 0.72-0.75 and root mean squared errors near 0.06oC, consistent with observational uncertainties.Three transient runs of the HadCM3 coupled model for 1888-2002 demonstrate quite similar reconstruction skill from similar forcing factors defined appropriately for the model, showing that skilful use of our technique is not confined to observations. The observed reconstructions show that the Atlantic Multidecadal Oscillation (AMO) likely contributed to the re-commencement of global warming between 1976 and 2010 and to global cooling observed immediately beforehand in 1965-1976. The slowing of global warming in the last decade is likely to be largely due to a phase-delayed response to the downturn in the solar cycle since 2001-2, with no net ENSO contribution. The much reduced trend in 2001-10 is similar in size to other weak decadal temperature trends observed since global warming resumed in the 1970s. The causes of variations in decadal trends can be mostly explained by variations in the strength of the forcing factors. Eleven real-time forecasts of global mean surface temperature for the year ahead for 2000-2010, based on broadly similar methods, provide an independent test of the ideas of this study. They had the high correlation and root mean square error skill levels compared to observations of 0.74 and 0.07oC respectively. Pseudo-forecasts for the same period reconstructed from somewhat improved forcing data used for this study had the slightly better correlation of 0.80 and root mean squared error of 0.05oC. Finally we compare the statistical forecasts with dynamical hindcasts and forecasts of global surface temperature a year ahead made by the Met Office DePreSys coupled model. The statistical and dynamical forecasts of global surface temperature for 2011 will be compared with preliminary verification data.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017JGRA..122.8642W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017JGRA..122.8642W"><span>Modeling radiation belt dynamics using a 3-D layer method code</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wang, C.; Ma, Q.; Tao, X.; Zhang, Y.; Teng, S.; Albert, J. M.; Chan, A. A.; Li, W.; Ni, B.; Lu, Q.; Wang, S.</p> <p>2017-08-01</p> <p>A new 3-D diffusion code using a recently published layer method has been developed to analyze radiation belt electron dynamics. The code guarantees the positivity of the solution even when mixed diffusion terms are included. Unlike most of the previous codes, our 3-D code is developed directly in equatorial pitch angle (α0), momentum (p), and L shell coordinates; this eliminates the need to transform back and forth between (α0,p) coordinates and adiabatic invariant coordinates. Using (α0,p,L) is also convenient for direct comparison with satellite data. The new code has been validated by various numerical tests, and we apply the 3-D code to model the rapid electron flux enhancement following the geomagnetic storm on 17 March 2013, which is one of the Geospace Environment Modeling Focus Group challenge events. An event-specific global chorus wave model, an AL-dependent statistical plasmaspheric hiss wave model, and a recently published radial diffusion coefficient formula from Time History of Events and Macroscale Interactions during Substorms (THEMIS) statistics are used. The simulation results show good agreement with satellite observations, in general, supporting the scenario that the rapid enhancement of radiation belt electron flux for this event results from an increased level of the seed population by radial diffusion, with subsequent acceleration by chorus waves. Our results prove that the layer method can be readily used to model global radiation belt dynamics in three dimensions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ClDy...48..367R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ClDy...48..367R"><span>A new statistical approach to climate change detection and attribution</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ribes, Aurélien; Zwiers, Francis W.; Azaïs, Jean-Marc; Naveau, Philippe</p> <p>2017-01-01</p> <p>We propose here a new statistical approach to climate change detection and attribution that is based on additive decomposition and simple hypothesis testing. Most current statistical methods for detection and attribution rely on linear regression models where the observations are regressed onto expected response patterns to different external forcings. These methods do not use physical information provided by climate models regarding the expected response magnitudes to constrain the estimated responses to the forcings. Climate modelling uncertainty is difficult to take into account with regression based methods and is almost never treated explicitly. As an alternative to this approach, our statistical model is only based on the additivity assumption; the proposed method does not regress observations onto expected response patterns. We introduce estimation and testing procedures based on likelihood maximization, and show that climate modelling uncertainty can easily be accounted for. Some discussion is provided on how to practically estimate the climate modelling uncertainty based on an ensemble of opportunity. Our approach is based on the " models are statistically indistinguishable from the truth" paradigm, where the difference between any given model and the truth has the same distribution as the difference between any pair of models, but other choices might also be considered. The properties of this approach are illustrated and discussed based on synthetic data. Lastly, the method is applied to the linear trend in global mean temperature over the period 1951-2010. Consistent with the last IPCC assessment report, we find that most of the observed warming over this period (+0.65 K) is attributable to anthropogenic forcings (+0.67 ± 0.12 K, 90 % confidence range), with a very limited contribution from natural forcings (-0.01± 0.02 K).</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_15");'>15</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li class="active"><span>17</span></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_17 --> <div id="page_18" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="341"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017APS..MARK20011O','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017APS..MARK20011O"><span>A bilayer Double Semion Model with Symmetry-Enriched Topological Order</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ortiz, Laura; Martin-Delgado, Miguel Angel</p> <p></p> <p>We construct a new model of two-dimensional quantum spin systems that combines intrinsic topological orders and a global symmetry called flavour symmetry. It is referred as the bilayer Doubled Semion model (bDS) and is an instance of symmetry-enriched topological order. A honeycomb bilayer lattice is introduced to combine a Double Semion Topolgical Order with a global spin-flavour symmetry to get the fractionalization of its quasiparticles. The bDS model exhibits non-trival braiding self-statistics of excitations and its dual model constitutes a Symmetry-Protected Topological Order with novel edge states. This dual model gives rise to a bilayer Non-Trivial Paramagnet that is invariant under the flavour symmetry and the well-known spin flip symmetry. We acknowledge financial support from the Spanish MINECO Grants FIS2012-33152, FIS2015-67411, and the CAM research consortium QUITEMAD+, Grant No. S2013/ICE-2801. The research of M.A.M.-D. has been supported in part by the U.S. Army Research Office throu.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015ERL....10l4006V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015ERL....10l4006V"><span>A global inventory of small floating plastic debris</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van Sebille, Erik; Wilcox, Chris; Lebreton, Laurent; Maximenko, Nikolai; Hardesty, Britta Denise; van Franeker, Jan A.; Eriksen, Marcus; Siegel, David; Galgani, Francois; Lavender Law, Kara</p> <p>2015-12-01</p> <p>Microplastic debris floating at the ocean surface can harm marine life. Understanding the severity of this harm requires knowledge of plastic abundance and distributions. Dozens of expeditions measuring microplastics have been carried out since the 1970s, but they have primarily focused on the North Atlantic and North Pacific accumulation zones, with much sparser coverage elsewhere. Here, we use the largest dataset of microplastic measurements assembled to date to assess the confidence we can have in global estimates of microplastic abundance and mass. We use a rigorous statistical framework to standardize a global dataset of plastic marine debris measured using surface-trawling plankton nets and coupled this with three different ocean circulation models to spatially interpolate the observations. Our estimates show that the accumulated number of microplastic particles in 2014 ranges from 15 to 51 trillion particles, weighing between 93 and 236 thousand metric tons, which is only approximately 1% of global plastic waste estimated to enter the ocean in the year 2010. These estimates are larger than previous global estimates, but vary widely because the scarcity of data in most of the world ocean, differences in model formulations, and fundamental knowledge gaps in the sources, transformations and fates of microplastics in the ocean.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.6685I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.6685I"><span>Development of a global river-coastal coupling model and its application to flood simulation in Asian mega-delta regions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ikeuchi, Hiroaki; Hirabayashi, Yukiko; Yamazaki, Dai; Muis, Sanne; Ward, Philip; Verlaan, Martin; Winsemius, Hessel; Kanae, Shinjiro</p> <p>2017-04-01</p> <p>The world's mega-delta regions and estuaries are susceptible to various water-related disasters, such as river flooding and storm surge. Moreover, simultaneous occurrence of them would be more devastating than a situation where they occur in isolation. Therefore, it is important to provide information about compound risks of fluvial and coastal floods at a large scale, both their statistical dependency as well as their combined resulting flooding in delta regions. Here we report on a first attempt to address this issue globally by developing a method to couple a global river model (CaMa-Flood) and a global tide and surge reanalysis (GTSR) dataset. A state-of-the-art global river routing model, CaMa-Flood, was modified to represent varying sea levels due to tides and storm surges as downstream boundary condition, and the GTSR dataset was post-processed to serve as inputs to the CaMa-Flood river routing simulation and a long-term simulation was performed to incorporate the temporal dependency between coastal tide and surge on the one hand, and discharge on the other. The coupled model was validated against observations, showing better simulation results of water levels in deltaic regions than simulation without GTSR. For example in the Ganges Delta, correlation coefficients were increased by 0.06, and root mean square errors were reduced by 0.22 m. Global coupling simulations revealed that storm surges affected river water levels in coastal regions worldwide, especially in low-lying flat areas with increases in water level larger than 0.5 m. By employing enhanced storm surge simulation with tropical storm tracks, we also applied the model to examine impacts of past hurricane and cyclone storm events on river flood inundation.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170003334&hterms=information&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dinformation','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170003334&hterms=information&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3Dinformation"><span>Combining Livestock Production Information in a Process-Based Vegetation Model to Reconstruct the History of Grassland Management</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Chang, Jinfeng; Ciais, Philippe; Herrero, Mario; Havlik, Petr; Campioli, Matteo; Zhang, Xianzhou; Bai, Yongfei; Viovy, Nicolas; Joiner, Joanna; Wang, Xuhui; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20170003334'); toggleEditAbsImage('author_20170003334_show'); toggleEditAbsImage('author_20170003334_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20170003334_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20170003334_hide"></p> <p>2016-01-01</p> <p>Grassland management type (grazed or mown) and intensity (intensive or extensive) play a crucial role in the greenhouse gas balance and surface energy budget of this biome, both at field scale and at large spatial scale. However, global gridded historical information on grassland management intensity is not available. Combining modelled grass-biomass productivity with statistics of the grass-biomass demand by livestock, we reconstruct gridded maps of grassland management intensity from 1901 to 2012. These maps include the minimum area of managed vs. maximum area of unmanaged grasslands and the fraction of mown vs. grazed area at a resolution of 0.5deg by 0.5deg. The grass-biomass demand is derived from a livestock dataset for 2000, extended to cover the period 19012012. The grass-biomass supply (i.e. forage grass from mown grassland and biomass grazed) is simulated by the process-based model ORCHIDEE-GM driven by historical climate change, risingCO2 concentration, and changes in nitrogen fertilization. The global area of managed grassland obtained in this study increases from 6.1 x 10(exp 6) km(exp 2) in 1901 to 12.3 x 10(exp 6) kmI(exp 2) in 2000, although the expansion pathway varies between different regions. ORCHIDEE-GM also simulated augmentation in global mean productivity and herbage-use efficiency over managed grassland during the 20th century, indicating a general intensification of grassland management at global scale but with regional differences. The gridded grassland management intensity maps are model dependent because they depend on modelled productivity. Thus specific attention was given to the evaluation of modelled productivity against a series of observations from site-level net primary productivity (NPP) measurements to two global satellite products of gross primary productivity (GPP) (MODIS-GPP and SIF data). Generally, ORCHIDEE-GM captures the spatial pattern, seasonal cycle, and inter-annual variability of grassland productivity at global scale well and thus is appropriate for global applications presented here.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008HESS...12.1027H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008HESS...12.1027H"><span>An integrated model for the assessment of global water resources Part 2: Applications and assessments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hanasaki, N.; Kanae, S.; Oki, T.; Masuda, K.; Motoya, K.; Shirakawa, N.; Shen, Y.; Tanaka, K.</p> <p>2008-07-01</p> <p>To assess global water resources from the perspective of subannual variation in water availability and water use, an integrated water resources model was developed. In a companion report, we presented the global meteorological forcing input used to drive the model and six modules, namely, the land surface hydrology module, the river routing module, the crop growth module, the reservoir operation module, the environmental flow requirement module, and the anthropogenic withdrawal module. Here, we present the results of the model application and global water resources assessments. First, the timing and volume of simulated agriculture water use were examined because agricultural use composes approximately 85% of total consumptive water withdrawal in the world. The estimated crop calendar showed good agreement with earlier reports for wheat, maize, and rice in major countries of production. In major countries, the error in the planting date was ±1 mo, but there were some exceptional cases. The estimated irrigation water withdrawal also showed fair agreement with country statistics, but tended to be underestimated in countries in the Asian monsoon region. The results indicate the validity of the model and the input meteorological forcing because site-specific parameter tuning was not used in the series of simulations. Finally, global water resources were assessed on a subannual basis using a newly devised index. This index located water-stressed regions that were undetected in earlier studies. These regions, which are indicated by a gap in the subannual distribution of water availability and water use, include the Sahel, the Asian monsoon region, and southern Africa. The simulation results show that the reservoir operations of major reservoirs (>1 km3) and the allocation of environmental flow requirements can alter the population under high water stress by approximately -11% to +5% globally. The integrated model is applicable to assessments of various global environmental projections such as climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20170002672','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20170002672"><span>Incorporating Yearly Derived Winter Wheat Maps Into Winter Wheat Yield Forecasting Model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Skakun, S.; Franch, B.; Roger, J.-C.; Vermote, E.; Becker-Reshef, I.; Justice, C.; Santamaría-Artigas, A.</p> <p>2016-01-01</p> <p>Wheat is one of the most important cereal crops in the world. Timely and accurate forecast of wheat yield and production at global scale is vital in implementing food security policy. Becker-Reshef et al. (2010) developed a generalized empirical model for forecasting winter wheat production using remote sensing data and official statistics. This model was implemented using static wheat maps. In this paper, we analyze the impact of incorporating yearly wheat masks into the forecasting model. We propose a new approach of producing in season winter wheat maps exploiting satellite data and official statistics on crop area only. Validation on independent data showed that the proposed approach reached 6% to 23% of omission error and 10% to 16% of commission error when mapping winter wheat 2-3 months before harvest. In general, we found a limited impact of using yearly winter wheat masks over a static mask for the study regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1023858-learning-scene-categories-from-high-resolution-satellite-image-aerial-video-analysis','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1023858-learning-scene-categories-from-high-resolution-satellite-image-aerial-video-analysis"><span>Learning Scene Categories from High Resolution Satellite Image for Aerial Video Analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Cheriyadat, Anil M</p> <p>2011-01-01</p> <p>Automatic scene categorization can benefit various aerial video processing applications. This paper addresses the problem of predicting the scene category from aerial video frames using a prior model learned from satellite imagery. We show that local and global features in the form of line statistics and 2-D power spectrum parameters respectively can characterize the aerial scene well. The line feature statistics and spatial frequency parameters are useful cues to distinguish between different urban scene categories. We learn the scene prediction model from highresolution satellite imagery to test the model on the Columbus Surrogate Unmanned Aerial Vehicle (CSUAV) dataset ollected bymore » high-altitude wide area UAV sensor platform. e compare the proposed features with the popular Scale nvariant Feature Transform (SIFT) features. Our experimental results show that proposed approach outperforms te SIFT model when the training and testing are conducted n disparate data sources.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://eric.ed.gov/?q=H%26M&pg=4&id=EJ685085','ERIC'); return false;" href="https://eric.ed.gov/?q=H%26M&pg=4&id=EJ685085"><span>Global, Local, and Graphical Person-Fit Analysis Using Person-Response Functions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.eric.ed.gov/ERICWebPortal/search/extended.jsp?_pageLabel=advanced">ERIC Educational Resources Information Center</a></p> <p>Emons, Wilco H. M.; Sijtsma, Klaas; Meijer, Rob R.</p> <p>2005-01-01</p> <p>Person-fit statistics test whether the likelihood of a respondent's complete vector of item scores on a test is low given the hypothesized item response theory model. This binary information may be insufficient for diagnosing the cause of a misfitting item-score vector. The authors propose a comprehensive methodology for person-fit analysis in the…</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.fs.usda.gov/treesearch/pubs/39227','TREESEARCH'); return false;" href="https://www.fs.usda.gov/treesearch/pubs/39227"><span>Components of spatial information management in wildlife ecology: Software for statistical and modeling analysis [Chapter 14</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.fs.usda.gov/treesearch/">Treesearch</a></p> <p>Hawthorne L. Beyer; Jeff Jenness; Samuel A. Cushman</p> <p>2010-01-01</p> <p>Spatial information systems (SIS) is a term that describes a wide diversity of concepts, techniques, and technologies related to the capture, management, display and analysis of spatial information. It encompasses technologies such as geographic information systems (GIS), global positioning systems (GPS), remote sensing, and relational database management systems (...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.dtic.mil/docs/citations/ADA589817','DTIC-ST'); return false;" href="http://www.dtic.mil/docs/citations/ADA589817"><span>Cyberspace Math Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.dtic.mil/">DTIC Science & Technology</a></p> <p></p> <p>2013-06-01</p> <p>or indicators are used as long range memory measurements. Hurst and Holder exponents are the most important and popular parameters. Traditionally...the relation between two important parameters, the Hurst exponent (measurement of global long range memory) and the Entropy (measurement of...empirical results and future study. II. BACKGROUND We recall briey the mathematical and statistical definitions and properties of the Hurst exponents</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19970040529','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19970040529"><span>Rain Rate Statistics in Southern New Mexico</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Paulic, Frank J., Jr.; Horan, Stephen</p> <p>1997-01-01</p> <p>The methodology used in determining empirical rain-rate distributions for Southern New Mexico in the vicinity of White Sands APT site is discussed. The hardware and the software developed to extract rain rate from the rain accumulation data collected at White Sands APT site are described. The accuracy of Crane's Global Model for rain rate predictions is analyzed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4726167','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4726167"><span>Global effects of local food-production crises: a virtual water perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Tamea, Stefania; Laio, Francesco; Ridolfi, Luca</p> <p>2016-01-01</p> <p>By importing food and agricultural goods, countries cope with the heterogeneous global water distribution and often rely on water resources available abroad. The virtual displacement of the water used to produce such goods (known as virtual water) connects together, in a global water system, all countries participating to the international trade network. Local food-production crises, having social, economic or environmental origin, propagate in this network, modifying the virtual water trade and perturbing local and global food availability, quantified in terms of virtual water. We analyze here the possible effects of local crises by developing a new propagation model, parsimonious but grounded on data-based and statistically-verified assumptions, whose effectiveness is proved on the Argentinean crisis in 2008–09. The model serves as the basis to propose indicators of crisis impact and country vulnerability to external food-production crises, which highlight that countries with largest water resources have the highest impact on the international trade, and that not only water-scarce but also wealthy and globalized countries are among the most vulnerable to external crises. The temporal analysis reveals that global average vulnerability has increased over time and that stronger effects of crises are now found in countries with low food (and water) availability. PMID:26804492</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26804492','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26804492"><span>Global effects of local food-production crises: a virtual water perspective.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Tamea, Stefania; Laio, Francesco; Ridolfi, Luca</p> <p>2016-01-25</p> <p>By importing food and agricultural goods, countries cope with the heterogeneous global water distribution and often rely on water resources available abroad. The virtual displacement of the water used to produce such goods (known as virtual water) connects together, in a global water system, all countries participating to the international trade network. Local food-production crises, having social, economic or environmental origin, propagate in this network, modifying the virtual water trade and perturbing local and global food availability, quantified in terms of virtual water. We analyze here the possible effects of local crises by developing a new propagation model, parsimonious but grounded on data-based and statistically-verified assumptions, whose effectiveness is proved on the Argentinean crisis in 2008-09. The model serves as the basis to propose indicators of crisis impact and country vulnerability to external food-production crises, which highlight that countries with largest water resources have the highest impact on the international trade, and that not only water-scarce but also wealthy and globalized countries are among the most vulnerable to external crises. The temporal analysis reveals that global average vulnerability has increased over time and that stronger effects of crises are now found in countries with low food (and water) availability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016NatSR...618803T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016NatSR...618803T"><span>Global effects of local food-production crises: a virtual water perspective</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tamea, Stefania; Laio, Francesco; Ridolfi, Luca</p> <p>2016-01-01</p> <p>By importing food and agricultural goods, countries cope with the heterogeneous global water distribution and often rely on water resources available abroad. The virtual displacement of the water used to produce such goods (known as virtual water) connects together, in a global water system, all countries participating to the international trade network. Local food-production crises, having social, economic or environmental origin, propagate in this network, modifying the virtual water trade and perturbing local and global food availability, quantified in terms of virtual water. We analyze here the possible effects of local crises by developing a new propagation model, parsimonious but grounded on data-based and statistically-verified assumptions, whose effectiveness is proved on the Argentinean crisis in 2008-09. The model serves as the basis to propose indicators of crisis impact and country vulnerability to external food-production crises, which highlight that countries with largest water resources have the highest impact on the international trade, and that not only water-scarce but also wealthy and globalized countries are among the most vulnerable to external crises. The temporal analysis reveals that global average vulnerability has increased over time and that stronger effects of crises are now found in countries with low food (and water) availability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25833698','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25833698"><span>Downscaled projections of Caribbean coral bleaching that can inform conservation planning.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>van Hooidonk, Ruben; Maynard, Jeffrey Allen; Liu, Yanyun; Lee, Sang-Ki</p> <p>2015-09-01</p> <p>Projections of climate change impacts on coral reefs produced at the coarse resolution (~1°) of Global Climate Models (GCMs) have informed debate but have not helped target local management actions. Here, projections of the onset of annual coral bleaching conditions in the Caribbean under Representative Concentration Pathway (RCP) 8.5 are produced using an ensemble of 33 Coupled Model Intercomparison Project phase-5 models and via dynamical and statistical downscaling. A high-resolution (~11 km) regional ocean model (MOM4.1) is used for the dynamical downscaling. For statistical downscaling, sea surface temperature (SST) means and annual cycles in all the GCMs are replaced with observed data from the ~4-km NOAA Pathfinder SST dataset. Spatial patterns in all three projections are broadly similar; the average year for the onset of annual severe bleaching is 2040-2043 for all projections. However, downscaled projections show many locations where the onset of annual severe bleaching (ASB) varies 10 or more years within a single GCM grid cell. Managers in locations where this applies (e.g., Florida, Turks and Caicos, Puerto Rico, and the Dominican Republic, among others) can identify locations that represent relative albeit temporary refugia. Both downscaled projections are different for the Bahamas compared to the GCM projections. The dynamically downscaled projections suggest an earlier onset of ASB linked to projected changes in regional currents, a feature not resolved in GCMs. This result demonstrates the value of dynamical downscaling for this application and means statistically downscaled projections have to be interpreted with caution. However, aside from west of Andros Island, the projections for the two types of downscaling are mostly aligned; projected onset of ASB is within ±10 years for 72% of the reef locations. © 2015 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.B41B0371D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.B41B0371D"><span>Developing a global crop model for maize, wheat, and soybean production</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Deryng, D.; Ramankutty, N.; Sacks, W. J.</p> <p>2008-12-01</p> <p>Recently, the world food supply has faced a crisis due to increasing food prices driven by rising food demand, increasing fuel prices, poor harvests due to climate factors, and the use of crops such as maize and soybean to produce biofuel. In order to assess the future of global food availability, there is a need for understanding the factors underlying food production. Farmer management practices along with climatic conditions are the main elements directly influencing crop yield. As a consequence, estimations of future world food production require the use of a global crop model that simulates reasonably the effect of both climate and management practices on yield. Only a few global crop models have been developed to date, and currently none of them represent management factors adequately, principally due to the lack of spatially explicit datasets at the global scale. In this study, we present a global crop model designed for maize, wheat, and soybean production that incorporates planting and harvest decisions, along with irrigation options based on newly available data. The crop model is built on a simple water-balance algorithm based on the Penman- Monteith equation combined with a light use efficiency approach that calculates biomass production under non-nutrient-limiting conditions. We used a world crop calendar dataset to develop statistical relationships between climate variables and planting dates for different regions of the world. Development stages are defined based on total growing degree days required to reach the beginning of each phase. Irrigation options are considered in regions where water stress occurs and irrigation infrastructures exist. We use a global dataset on irrigated areas for each crop type. The quantity of water applied is then calculated in order to avoid water stress but with an upper threshold derived from total irrigation withdrawal quantity estimated by the global water use model WaterGAP 2. Our analysis will present the model sensitivity to different scenarios of management practices, e.g. planting date and water supply, under non-nutrient limited conditions. With this study, we hope to clarify the importance of planting date and irrigation versus climate for crop yield.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1918455D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1918455D"><span>Synchronized Trajectories in a Climate "Supermodel"</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Duane, Gregory; Schevenhoven, Francine; Selten, Frank</p> <p>2017-04-01</p> <p>Differences in climate projections among state-of-the-art models can be resolved by connecting the models in run-time, either through inter-model nudging or by directly combining the tendencies for corresponding variables. Since it is clearly established that averaging model outputs typically results in improvement as compared to any individual model output, averaged re-initializations at typical analysis time intervals also seems appropriate. The resulting "supermodel" is more like a single model than it is like an ensemble, because the constituent models tend to synchronize even with limited inter-model coupling. Thus one can examine the properties of specific trajectories, rather than averaging the statistical properties of the separate models. We apply this strategy to a study of the index cycle in a supermodel constructed from several imperfect copies of the SPEEDO model (a global primitive-equation atmosphere-ocean-land climate model). As with blocking frequency, typical weather statistics of interest like probabilities of heat waves or extreme precipitation events, are improved as compared to the standard multi-model ensemble approach. In contrast to the standard approach, the supermodel approach provides detailed descriptions of typical actual events.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015SpWea..13..868G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015SpWea..13..868G"><span>Assessing the performance of community-available global MHD models using key system parameters and empirical relationships</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gordeev, E.; Sergeev, V.; Honkonen, I.; Kuznetsova, M.; Rastätter, L.; Palmroth, M.; Janhunen, P.; Tóth, G.; Lyon, J.; Wiltberger, M.</p> <p>2015-12-01</p> <p>Global magnetohydrodynamic (MHD) modeling is a powerful tool in space weather research and predictions. There are several advanced and still developing global MHD (GMHD) models that are publicly available via Community Coordinated Modeling Center's (CCMC) Run on Request system, which allows the users to simulate the magnetospheric response to different solar wind conditions including extraordinary events, like geomagnetic storms. Systematic validation of GMHD models against observations still continues to be a challenge, as well as comparative benchmarking of different models against each other. In this paper we describe and test a new approach in which (i) a set of critical large-scale system parameters is explored/tested, which are produced by (ii) specially designed set of computer runs to simulate realistic statistical distributions of critical solar wind parameters and are compared to (iii) observation-based empirical relationships for these parameters. Being tested in approximately similar conditions (similar inputs, comparable grid resolution, etc.), the four models publicly available at the CCMC predict rather well the absolute values and variations of those key parameters (magnetospheric size, magnetic field, and pressure) which are directly related to the large-scale magnetospheric equilibrium in the outer magnetosphere, for which the MHD is supposed to be a valid approach. At the same time, the models have systematic differences in other parameters, being especially different in predicting the global convection rate, total field-aligned current, and magnetic flux loading into the magnetotail after the north-south interplanetary magnetic field turning. According to validation results, none of the models emerges as an absolute leader. The new approach suggested for the evaluation of the models performance against reality may be used by model users while planning their investigations, as well as by model developers and those interesting to quantitatively evaluate progress in magnetospheric modeling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017NatSR...745129L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017NatSR...745129L"><span>A global reference model of Curie-point depths based on EMAG2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Li, Chun-Feng; Lu, Yu; Wang, Jian</p> <p>2017-03-01</p> <p>In this paper, we use a robust inversion algorithm, which we have tested in many regional studies, to obtain the first global model of Curie-point depth (GCDM) from magnetic anomaly inversion based on fractal magnetization. Statistically, the oceanic Curie depth mean is smaller than the continental one, but continental Curie depths are almost bimodal, showing shallow Curie points in some old cratons. Oceanic Curie depths show modifications by hydrothermal circulations in young oceanic lithosphere and thermal perturbations in old oceanic lithosphere. Oceanic Curie depths also show strong dependence on the spreading rate along active spreading centers. Curie depths and heat flow are correlated, following optimal theoretical curves of average thermal conductivities K = ~2.0 W(m°C)-1 for the ocean and K = ~2.5 W(m°C)-1 for the continent. The calculated heat flow from Curie depths and large-interval gridding of measured heat flow all indicate that the global heat flow average is about 70.0 mW/m2, leading to a global heat loss ranging from ~34.6 to 36.6 TW.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28322332','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28322332"><span>A global reference model of Curie-point depths based on EMAG2.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Li, Chun-Feng; Lu, Yu; Wang, Jian</p> <p>2017-03-21</p> <p>In this paper, we use a robust inversion algorithm, which we have tested in many regional studies, to obtain the first global model of Curie-point depth (GCDM) from magnetic anomaly inversion based on fractal magnetization. Statistically, the oceanic Curie depth mean is smaller than the continental one, but continental Curie depths are almost bimodal, showing shallow Curie points in some old cratons. Oceanic Curie depths show modifications by hydrothermal circulations in young oceanic lithosphere and thermal perturbations in old oceanic lithosphere. Oceanic Curie depths also show strong dependence on the spreading rate along active spreading centers. Curie depths and heat flow are correlated, following optimal theoretical curves of average thermal conductivities K = ~2.0 W(m°C) -1 for the ocean and K = ~2.5 W(m°C) -1 for the continent. The calculated heat flow from Curie depths and large-interval gridding of measured heat flow all indicate that the global heat flow average is about 70.0 mW/m 2 , leading to a global heat loss ranging from ~34.6 to 36.6 TW.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_16");'>16</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li class="active"><span>18</span></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_18 --> <div id="page_19" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="361"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMSA51C2402T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMSA51C2402T"><span>Statistical Patterns of Ionospheric Convection Derived From Mid-Latitude, High-Latitude, and Polar SuperDARN HF Radar Observations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thomas, E. G.; Shepherd, S. G.</p> <p>2017-12-01</p> <p>Global patterns of ionospheric convection have been widely studied in terms of the interplanetary magnetic field (IMF) magnitude and orientation in both the Northern and Southern Hemispheres using observations from the Super Dual Auroral Radar Network (SuperDARN). The dynamic range of driving conditions under which existing SuperDARN statistical models are valid is currently limited to periods when the high-latitude convection pattern remains above about 60° geomagnetic latitude. Cousins and Shepherd [2010] found this to correspond to intervals when the solar wind electric field Esw < 4.1 mV/m and IMF Bz is negative. Conversely, under northward IMF conditions (Bz > 0) the high-latitude radars often experience difficulties in measuring convection above about 85° geomagnetic latitude. In this presentation, we introduce a new statistical model of ionospheric convection which is valid for much more dominant IMF Bz conditions than was previously possible by including velocity measurements from the newly constructed tiers of radars in the Northern Hemisphere at midlatitudes and in the polar cap. This new model (TS17) is compared to previous statistical models derived from high-latitude SuperDARN observations (RG96, PSR10, CS10) and its impact on instantaneous Map Potential solutions is examined.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015AGUFM.A23E0362S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015AGUFM.A23E0362S"><span>Inevitable end-of-21st-century trends toward earlier surface runoff timing in California's Sierra Nevada Mountains</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schwartz, M. A.; Hall, A. D.; Sun, F.; Walton, D.; Berg, N.</p> <p>2015-12-01</p> <p>Hybrid dynamical-statistical downscaling is used to produce surface runoff timing projections for California's Sierra Nevada, a high-elevation mountain range with significant seasonal snow cover. First, future climate change projections (RCP8.5 forcing scenario, 2081-2100 period) from five CMIP5 global climate models (GCMs) are dynamically downscaled. These projections reveal that future warming leads to a shift toward earlier snowmelt and surface runoff timing throughout the Sierra Nevada region. Relationships between warming and surface runoff timing from the dynamical simulations are used to build a simple statistical model that mimics the dynamical model's projected surface runoff timing changes given GCM input or other statistically-downscaled input. This statistical model can be used to produce surface runoff timing projections for other GCMs, periods, and forcing scenarios to quantify ensemble-mean changes, uncertainty due to intermodel variability and consequences stemming from choice of forcing scenario. For all CMIP5 GCMs and forcing scenarios, significant trends toward earlier surface runoff timing occur at elevations below 2500m. Thus, we conclude that trends toward earlier surface runoff timing by the end-of-the-21st century are inevitable. The changes to surface runoff timing diagnosed in this study have implications for many dimensions of climate change, including impacts on surface hydrology, water resources, and ecosystems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26232983','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26232983"><span>The joint space-time statistics of macroweather precipitation, space-time statistical factorization and macroweather models.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lovejoy, S; de Lima, M I P</p> <p>2015-07-01</p> <p>Over the range of time scales from about 10 days to 30-100 years, in addition to the familiar weather and climate regimes, there is an intermediate "macroweather" regime characterized by negative temporal fluctuation exponents: implying that fluctuations tend to cancel each other out so that averages tend to converge. We show theoretically and numerically that macroweather precipitation can be modeled by a stochastic weather-climate model (the Climate Extended Fractionally Integrated Flux, model, CEFIF) first proposed for macroweather temperatures and we show numerically that a four parameter space-time CEFIF model can approximately reproduce eight or so empirical space-time exponents. In spite of this success, CEFIF is theoretically and numerically difficult to manage. We therefore propose a simplified stochastic model in which the temporal behavior is modeled as a fractional Gaussian noise but the spatial behaviour as a multifractal (climate) cascade: a spatial extension of the recently introduced ScaLIng Macroweather Model, SLIMM. Both the CEFIF and this spatial SLIMM model have a property often implicitly assumed by climatologists that climate statistics can be "homogenized" by normalizing them with the standard deviation of the anomalies. Physically, it means that the spatial macroweather variability corresponds to different climate zones that multiplicatively modulate the local, temporal statistics. This simplified macroweather model provides a framework for macroweather forecasting that exploits the system's long range memory and spatial correlations; for it, the forecasting problem has been solved. We test this factorization property and the model with the help of three centennial, global scale precipitation products that we analyze jointly in space and in time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H33F1759N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H33F1759N"><span>Extracting Hydrologic Understanding from the Unique Space-time Sampling of the Surface Water and Ocean Topography (SWOT) Mission</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nickles, C.; Zhao, Y.; Beighley, E.; Durand, M. T.; David, C. H.; Lee, H.</p> <p>2017-12-01</p> <p>The Surface Water and Ocean Topography (SWOT) satellite mission is jointly developed by NASA, the French space agency (CNES), with participation from the Canadian and UK space agencies to serve both the hydrology and oceanography communities. The SWOT mission will sample global surface water extents and elevations (lakes/reservoirs, rivers, estuaries, oceans, sea and land ice) at a finer spatial resolution than is currently possible enabling hydrologic discovery, model advancements and new applications that are not currently possible or likely even conceivable. Although the mission will provide global cover, analysis and interpolation of the data generated from the irregular space/time sampling represents a significant challenge. In this study, we explore the applicability of the unique space/time sampling for understanding river discharge dynamics throughout the Ohio River Basin. River network topology, SWOT sampling (i.e., orbit and identified SWOT river reaches) and spatial interpolation concepts are used to quantify the fraction of effective sampling of river reaches each day of the three-year mission. Streamflow statistics for SWOT generated river discharge time series are compared to continuous daily river discharge series. Relationships are presented to transform SWOT generated streamflow statistics to equivalent continuous daily discharge time series statistics intended to support hydrologic applications using low-flow and annual flow duration statistics.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1414538','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1414538"><span>Evaluation of integrated assessment model hindcast experiments: a case study of the GCAM 3.0 land use module</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Snyder, Abigail C.; Link, Robert P.; Calvin, Katherine V.</p> <p></p> <p>Hindcasting experiments (conducting a model forecast for a time period in which observational data are available) are being undertaken increasingly often by the integrated assessment model (IAM) community, across many scales of models. When they are undertaken, the results are often evaluated using global aggregates or otherwise highly aggregated skill scores that mask deficiencies. We select a set of deviation-based measures that can be applied on different spatial scales (regional versus global) to make evaluating the large number of variable–region combinations in IAMs more tractable. We also identify performance benchmarks for these measures, based on the statistics of the observationalmore » dataset, that allow a model to be evaluated in absolute terms rather than relative to the performance of other models at similar tasks. An ideal evaluation method for hindcast experiments in IAMs would feature both absolute measures for evaluation of a single experiment for a single model and relative measures to compare the results of multiple experiments for a single model or the same experiment repeated across multiple models, such as in community intercomparison studies. The performance benchmarks highlight the use of this scheme for model evaluation in absolute terms, providing information about the reasons a model may perform poorly on a given measure and therefore identifying opportunities for improvement. To demonstrate the use of and types of results possible with the evaluation method, the measures are applied to the results of a past hindcast experiment focusing on land allocation in the Global Change Assessment Model (GCAM) version 3.0. The question of how to more holistically evaluate models as complex as IAMs is an area for future research. We find quantitative evidence that global aggregates alone are not sufficient for evaluating IAMs that require global supply to equal global demand at each time period, such as GCAM. The results of this work indicate it is unlikely that a single evaluation measure for all variables in an IAM exists, and therefore sector-by-sector evaluation may be necessary.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1414538-evaluation-integrated-assessment-model-hindcast-experiments-case-study-gcam-nbsp-land-use-module','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1414538-evaluation-integrated-assessment-model-hindcast-experiments-case-study-gcam-nbsp-land-use-module"><span>Evaluation of integrated assessment model hindcast experiments: a case study of the GCAM 3.0 land use module</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Snyder, Abigail C.; Link, Robert P.; Calvin, Katherine V.</p> <p>2017-11-29</p> <p>Hindcasting experiments (conducting a model forecast for a time period in which observational data are available) are being undertaken increasingly often by the integrated assessment model (IAM) community, across many scales of models. When they are undertaken, the results are often evaluated using global aggregates or otherwise highly aggregated skill scores that mask deficiencies. We select a set of deviation-based measures that can be applied on different spatial scales (regional versus global) to make evaluating the large number of variable–region combinations in IAMs more tractable. We also identify performance benchmarks for these measures, based on the statistics of the observationalmore » dataset, that allow a model to be evaluated in absolute terms rather than relative to the performance of other models at similar tasks. An ideal evaluation method for hindcast experiments in IAMs would feature both absolute measures for evaluation of a single experiment for a single model and relative measures to compare the results of multiple experiments for a single model or the same experiment repeated across multiple models, such as in community intercomparison studies. The performance benchmarks highlight the use of this scheme for model evaluation in absolute terms, providing information about the reasons a model may perform poorly on a given measure and therefore identifying opportunities for improvement. To demonstrate the use of and types of results possible with the evaluation method, the measures are applied to the results of a past hindcast experiment focusing on land allocation in the Global Change Assessment Model (GCAM) version 3.0. The question of how to more holistically evaluate models as complex as IAMs is an area for future research. We find quantitative evidence that global aggregates alone are not sufficient for evaluating IAMs that require global supply to equal global demand at each time period, such as GCAM. The results of this work indicate it is unlikely that a single evaluation measure for all variables in an IAM exists, and therefore sector-by-sector evaluation may be necessary.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GMD....10.4307S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GMD....10.4307S"><span>Evaluation of integrated assessment model hindcast experiments: a case study of the GCAM 3.0 land use module</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Snyder, Abigail C.; Link, Robert P.; Calvin, Katherine V.</p> <p>2017-11-01</p> <p>Hindcasting experiments (conducting a model forecast for a time period in which observational data are available) are being undertaken increasingly often by the integrated assessment model (IAM) community, across many scales of models. When they are undertaken, the results are often evaluated using global aggregates or otherwise highly aggregated skill scores that mask deficiencies. We select a set of deviation-based measures that can be applied on different spatial scales (regional versus global) to make evaluating the large number of variable-region combinations in IAMs more tractable. We also identify performance benchmarks for these measures, based on the statistics of the observational dataset, that allow a model to be evaluated in absolute terms rather than relative to the performance of other models at similar tasks. An ideal evaluation method for hindcast experiments in IAMs would feature both absolute measures for evaluation of a single experiment for a single model and relative measures to compare the results of multiple experiments for a single model or the same experiment repeated across multiple models, such as in community intercomparison studies. The performance benchmarks highlight the use of this scheme for model evaluation in absolute terms, providing information about the reasons a model may perform poorly on a given measure and therefore identifying opportunities for improvement. To demonstrate the use of and types of results possible with the evaluation method, the measures are applied to the results of a past hindcast experiment focusing on land allocation in the Global Change Assessment Model (GCAM) version 3.0. The question of how to more holistically evaluate models as complex as IAMs is an area for future research. We find quantitative evidence that global aggregates alone are not sufficient for evaluating IAMs that require global supply to equal global demand at each time period, such as GCAM. The results of this work indicate it is unlikely that a single evaluation measure for all variables in an IAM exists, and therefore sector-by-sector evaluation may be necessary.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19790017523','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19790017523"><span>Studies of oceanic tectonics based on GEOS-3 satellite altimetry</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Poehls, K. A.; Kaula, W. M.; Schubert, G.; Sandwell, D.</p> <p>1979-01-01</p> <p>Using statistical analysis, geoidal admittance (the relationship between the ocean geoid and seafloor topography) obtained from GEOS-3 altimetry was compared to various model admittances. Analysis of several altimetry tracks in the Pacific Ocean demonstrated a low coherence between altimetry and seafloor topography except where the track crosses active or recent tectonic features. However, global statistical studies using the much larger data base of all available gravimetry showed a positive correlation of oceanic gravity with topography. The oceanic lithosphere was modeled by simultaneously inverting surface wave dispersion, topography, and gravity data. Efforts to incorporate geoid data into the inversion showed that the base of the subchannel can be better resolved with geoid rather than gravity data. Thermomechanical models of seafloor spreading taking into account differing plate velocities, heat source distributions, and rock rheologies were discussed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ThApC.tmp..490M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ThApC.tmp..490M"><span>Statistical downscaling of precipitation using long short-term memory recurrent neural networks</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Misra, Saptarshi; Sarkar, Sudeshna; Mitra, Pabitra</p> <p>2017-11-01</p> <p>Hydrological impacts of global climate change on regional scale are generally assessed by downscaling large-scale climatic variables, simulated by General Circulation Models (GCMs), to regional, small-scale hydrometeorological variables like precipitation, temperature, etc. In this study, we propose a new statistical downscaling model based on Recurrent Neural Network with Long Short-Term Memory which captures the spatio-temporal dependencies in local rainfall. The previous studies have used several other methods such as linear regression, quantile regression, kernel regression, beta regression, and artificial neural networks. Deep neural networks and recurrent neural networks have been shown to be highly promising in modeling complex and highly non-linear relationships between input and output variables in different domains and hence we investigated their performance in the task of statistical downscaling. We have tested this model on two datasets—one on precipitation in Mahanadi basin in India and the second on precipitation in Campbell River basin in Canada. Our autoencoder coupled long short-term memory recurrent neural network model performs the best compared to other existing methods on both the datasets with respect to temporal cross-correlation, mean squared error, and capturing the extremes.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2013WRR....49.6671P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2013WRR....49.6671P"><span>The value of model averaging and dynamical climate model predictions for improving statistical seasonal streamflow forecasts over Australia</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Pokhrel, Prafulla; Wang, Q. J.; Robertson, David E.</p> <p>2013-10-01</p> <p>Seasonal streamflow forecasts are valuable for planning and allocation of water resources. In Australia, the Bureau of Meteorology employs a statistical method to forecast seasonal streamflows. The method uses predictors that are related to catchment wetness at the start of a forecast period and to climate during the forecast period. For the latter, a predictor is selected among a number of lagged climate indices as candidates to give the "best" model in terms of model performance in cross validation. This study investigates two strategies for further improvement in seasonal streamflow forecasts. The first is to combine, through Bayesian model averaging, multiple candidate models with different lagged climate indices as predictors, to take advantage of different predictive strengths of the multiple models. The second strategy is to introduce additional candidate models, using rainfall and sea surface temperature predictions from a global climate model as predictors. This is to take advantage of the direct simulations of various dynamic processes. The results show that combining forecasts from multiple statistical models generally yields more skillful forecasts than using only the best model and appears to moderate the worst forecast errors. The use of rainfall predictions from the dynamical climate model marginally improves the streamflow forecasts when viewed over all the study catchments and seasons, but the use of sea surface temperature predictions provide little additional benefit.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/29870696','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/29870696"><span>Predicting structural classes of proteins by incorporating their global and local physicochemical and conformational properties into general Chou's PseAAC.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Contreras-Torres, Ernesto</p> <p>2018-06-02</p> <p>In this study, I introduce novel global and local 0D-protein descriptors based on a statistical quantity named Total Sum of Squares (TSS). This quantity represents the sum of the squares differences of amino acid properties from the arithmetic mean property. As an extension, the amino acid-types and amino acid-groups formalisms are used for describing zones of interest in proteins. To assess the effectiveness of the proposed descriptors, a Nearest Neighbor model for predicting the major four protein structural classes was built. This model has a success rate of 98.53% on the jackknife cross-validation test; this performance being superior to other reported methods despite the simplicity of the predictor. Additionally, this predictor has an average success rate of 98.35% in different cross-validation tests performed. A value of 0.98 for the Kappa statistic clearly discriminates this model from a random predictor. The results obtained by the Nearest Neighbor model demonstrated the ability of the proposed descriptors not only to reflect relevant biochemical information related to the structural classes of proteins but also to allow appropriate interpretability. It can thus be expected that the current method may play a supplementary role to other existing approaches for protein structural class prediction and other protein attributes. Copyright © 2018 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008AGUFM.H33I..05B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008AGUFM.H33I..05B"><span>Evaluation of a Soil Moisture Data Assimilation System Over the Conterminous United States</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bolten, J. D.; Crow, W. T.; Zhan, X.; Reynolds, C. A.; Jackson, T. J.</p> <p>2008-12-01</p> <p>A data assimilation system has been designed to integrate surface soil moisture estimates from the EOS Advanced Microwave Scanning Radiometer (AMSR-E) with an online soil moisture model used by the USDA Foreign Agriculture Service for global crop estimation. USDA's International Production Assessment Division (IPAD) of the Office of Global Analysis (OGA) ingests global soil moisture within a Crop Assessment Data Retrieval and Evaluation (CADRE) Decision Support System (DSS) to provide nowcasts of crop conditions and agricultural-drought. This information is primarily used to derive mid-season crop yield estimates for the improvement of foreign market access for U.S. agricultural products. The CADRE is forced by daily meteorological observations (precipitation and temperature) provided by the Air Force Weather Agency (AFWA) and World Meteorological Organization (WMO). The integration of AMSR-E observations into the two-layer soil moisture model employed by IPAD can potentially enhance the reliability of the CADRE soil moisture estimates due to AMSR-E's improved repeat time and greater spatial coverage. Assimilation of the AMSR-E soil moisture estimates is accomplished using a 1-D Ensemble Kalman filter (EnKF) at daily time steps. A diagnostic calibration of the filter is performed using innovation statistics by accurately weighting the filter observation and modeling errors for three ranges of vegetation biomass density estimated using historical data from the Advanced Very High Resolution Radiometer (AVHRR). Assessment of the AMSR-E assimilation has been completed for a five year duration over the conterminous United States. To evaluate the ability of the filter to compensate for incorrect precipitation forcing into the model, a data denial approach is employed by comparing soil moisture results obtained from separate model simulations forced with precipitation products of varying uncertainty. An analysis of surface and root-zone anomalies is presented for each model simulation over the conterminous United States, as well as statistical assessments for each simulation over various land cover types.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28219833','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28219833"><span>Statistical appearance models based on probabilistic correspondences.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Krüger, Julia; Ehrhardt, Jan; Handels, Heinz</p> <p>2017-04-01</p> <p>Model-based image analysis is indispensable in medical image processing. One key aspect of building statistical shape and appearance models is the determination of one-to-one correspondences in the training data set. At the same time, the identification of these correspondences is the most challenging part of such methods. In our earlier work, we developed an alternative method using correspondence probabilities instead of exact one-to-one correspondences for a statistical shape model (Hufnagel et al., 2008). In this work, a new approach for statistical appearance models without one-to-one correspondences is proposed. A sparse image representation is used to build a model that combines point position and appearance information at the same time. Probabilistic correspondences between the derived multi-dimensional feature vectors are used to omit the need for extensive preprocessing of finding landmarks and correspondences as well as to reduce the dependence of the generated model on the landmark positions. Model generation and model fitting can now be expressed by optimizing a single global criterion derived from a maximum a-posteriori (MAP) approach with respect to model parameters that directly affect both shape and appearance of the considered objects inside the images. The proposed approach describes statistical appearance modeling in a concise and flexible mathematical framework. Besides eliminating the demand for costly correspondence determination, the method allows for additional constraints as topological regularity in the modeling process. In the evaluation the model was applied for segmentation and landmark identification in hand X-ray images. The results demonstrate the feasibility of the model to detect hand contours as well as the positions of the joints between finger bones for unseen test images. Further, we evaluated the model on brain data of stroke patients to show the ability of the proposed model to handle partially corrupted data and to demonstrate a possible employment of the correspondence probabilities to indicate these corrupted/pathological areas. Copyright © 2017 Elsevier B.V. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1171388','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1171388"><span>Pacific Decadal Variability and Central Pacific Warming El Niño in a Changing Climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Di Lorenzo, Emanuele</p> <p></p> <p>This research aimed at understanding the dynamics controlling decadal variability in the Pacific Ocean and its interactions with global-scale climate change. The first goal was to assess how the dynamics and statistics of the El Niño Southern Oscillation and the modes of Pacific decadal variability are represented in global climate models used in the IPCC. The second goal was to quantify how decadal dynamics are projected to change under continued greenhouse forcing, and determine their significance in the context of paleo-proxy reconstruction of long-term climate.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://bellwether.metapress.com/content/p2530n272827681p/fulltext.pdf','USGSPUBS'); return false;" href="http://bellwether.metapress.com/content/p2530n272827681p/fulltext.pdf"><span>Accuracy evaluation of an ASTER-Derived Global Digital Elevation Model (GDEM) Version 1 and Version 2 for two sites in western Africa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Chirico, Peter G.; Malpeli, Katherine C.; Trimble, Sarah M.</p> <p>2012-01-01</p> <p>This study compares the ASTER Global DEM version 1 (GDEMv1) and version 2 (GDEMv2) for two study sites with distinct terrain and land cover characteristics in western Africa. The effects of land cover, slope, relief, and stack number are evaluated through both absolute and relative DEM statistical comparisons. While GDEMv2 at times performed better than GDEMv1, this improvement was not consistent, revealing the complex nature and interaction of terrain and land cover characteristics, which influences the accuracy of GDEM tiles on local and regional scales.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19810008165','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19810008165"><span>Energy-balance climate models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>North, G. R.; Cahalan, R. F.; Coakley, J. A., Jr.</p> <p>1980-01-01</p> <p>An introductory survey of the global energy balance climate models is presented with an emphasis on analytical results. A sequence of increasingly complicated models involving ice cap and radiative feedback processes are solved and the solutions and parameter sensitivities are studied. The model parameterizations are examined critically in light of many current uncertainties. A simple seasonal model is used to study the effects of changes in orbital elements on the temperature field. A linear stability theorem and a complete nonlinear stability analysis for the models are developed. Analytical solutions are also obtained for the linearized models driven by stochastic forcing elements. In this context the relation between natural fluctuation statistics and climate sensitivity is stressed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=19820032405&hterms=introductory+statistics&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dintroductory%2Bstatistics','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=19820032405&hterms=introductory+statistics&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dintroductory%2Bstatistics"><span>Energy balance climate models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>North, G. R.; Cahalan, R. F.; Coakley, J. A., Jr.</p> <p>1981-01-01</p> <p>An introductory survey of the global energy balance climate models is presented with an emphasis on analytical results. A sequence of increasingly complicated models involving ice cap and radiative feedback processes are solved, and the solutions and parameter sensitivities are studied. The model parameterizations are examined critically in light of many current uncertainties. A simple seasonal model is used to study the effects of changes in orbital elements on the temperature field. A linear stability theorem and a complete nonlinear stability analysis for the models are developed. Analytical solutions are also obtained for the linearized models driven by stochastic forcing elements. In this context the relation between natural fluctuation statistics and climate sensitivity is stressed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70188048','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70188048"><span>Spatio-temporal patterns and climate variables controlling of biomass carbon stock of global grassland ecosystems from 1982 to 2006</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Xia, Jiangzhou; Liu, Shuguang; Liang, Shunlin; Chen, Yang; Xu, Wenfang; Yuan, Wenping</p> <p>2014-01-01</p> <p>Grassland ecosystems play an important role in subsistence agriculture and the global carbon cycle. However, the global spatio-temporal patterns and environmental controls of grassland biomass are not well quantified and understood. The goal of this study was to estimate the spatial and temporal patterns of the global grassland biomass and analyze their driving forces using field measurements, Normalized Difference Vegetation Index (NDVI) time series from satellite data, climate reanalysis data, and a satellite-based statistical model. Results showed that the NDVI-based biomass carbon model developed from this study explained 60% of the variance across 38 sites globally. The global carbon stock in grassland aboveground live biomass was 1.05 Pg·C, averaged from 1982 to 2006, and increased at a rate of 2.43 Tg·C·y−1 during this period. Temporal change of the global biomass was significantly and positively correlated with temperature and precipitation. The distribution of biomass carbon density followed the precipitation gradient. The dynamics of regional grassland biomass showed various trends largely determined by regional climate variability, disturbances, and management practices (such as grazing for meat production). The methods and results from this study can be used to monitor the dynamics of grassland aboveground biomass and evaluate grassland susceptibility to climate variability and change, disturbances, and management.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.B51C1804D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.B51C1804D"><span>The Joint Experiment for Crop Assessment and Monitoring (JECAM): Synthetic Aperture Radar (SAR) Inter-Comparison Experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dingle Robertson, L.; Hosseini, M.; Davidson, A. M.; McNairn, H.</p> <p>2017-12-01</p> <p>The Joint Experiment for Crop Assessment and Monitoring (JECAM) is the research and development branch of GEOGLAM (Group on Earth Observations Global Agricultural Monitoring), a G20 initiative to improve the global monitoring of agriculture through the use of Earth Observation (EO) data and remote sensing. JECAM partners represent a diverse network of researchers collaborating towards a set of best practices and recommendations for global agricultural analysis using EO data, with well monitored test sites covering a wide range of agriculture types, cropping systems and climate regimes. Synthetic Aperture Radar (SAR) for crop inventory and condition monitoring offers many advantages particularly the ability to collect data under cloudy conditions. The JECAM SAR Inter-Comparison Experiment is a multi-year, multi-partner project that aims to compare global methods for (1) operational SAR & optical; multi-frequency SAR; and compact polarimetry methods for crop monitoring and inventory, and (2) the retrieval of Leaf Area Index (LAI) and biomass estimations using models such as the Water Cloud Model (WCM) employing single frequency SAR; multi-frequency SAR; and compact polarimetry. The results from these activities will be discussed along with an examination of the requirements of a global experiment including best-date determination for SAR data acquisition, pre-processing techniques, in situ data sharing, model development and statistical inter-comparison of the results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/19189755','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/19189755"><span>Forecasting daily source air quality using multivariate statistical analysis and radial basis function networks.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Sun, Gang; Hoff, Steven J; Zelle, Brian C; Nelson, Minda A</p> <p>2008-12-01</p> <p>It is vital to forecast gas and particle matter concentrations and emission rates (GPCER) from livestock production facilities to assess the impact of airborne pollutants on human health, ecological environment, and global warming. Modeling source air quality is a complex process because of abundant nonlinear interactions between GPCER and other factors. The objective of this study was to introduce statistical methods and radial basis function (RBF) neural network to predict daily source air quality in Iowa swine deep-pit finishing buildings. The results show that four variables (outdoor and indoor temperature, animal units, and ventilation rates) were identified as relative important model inputs using statistical methods. It can be further demonstrated that only two factors, the environment factor and the animal factor, were capable of explaining more than 94% of the total variability after performing principal component analysis. The introduction of fewer uncorrelated variables to the neural network would result in the reduction of the model structure complexity, minimize computation cost, and eliminate model overfitting problems. The obtained results of RBF network prediction were in good agreement with the actual measurements, with values of the correlation coefficient between 0.741 and 0.995 and very low values of systemic performance indexes for all the models. The good results indicated the RBF network could be trained to model these highly nonlinear relationships. Thus, the RBF neural network technology combined with multivariate statistical methods is a promising tool for air pollutant emissions modeling.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_17");'>17</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li class="active"><span>19</span></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_19 --> <div id="page_20" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="381"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1378892-data-driven-fuel-consumption-estimation-multivariate-adaptive-regression-spline-approach','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1378892-data-driven-fuel-consumption-estimation-multivariate-adaptive-regression-spline-approach"><span>Data-driven fuel consumption estimation: A multivariate adaptive regression spline approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Chen, Yuche; Zhu, Lei; Gonder, Jeffrey</p> <p></p> <p>Providing guidance and information to drivers to help them make fuel-efficient route choices remains an important and effective strategy in the near term to reduce fuel consumption from the transportation sector. One key component in implementing this strategy is a fuel-consumption estimation model. In this paper, we developed a mesoscopic fuel consumption estimation model that can be implemented into an eco-routing system. Our proposed model presents a framework that utilizes large-scale, real-world driving data, clusters road links by free-flow speed and fits one statistical model for each of cluster. This model includes predicting variables that were rarely or never consideredmore » before, such as free-flow speed and number of lanes. We applied the model to a real-world driving data set based on a global positioning system travel survey in the Philadelphia-Camden-Trenton metropolitan area. Results from the statistical analyses indicate that the independent variables we chose influence the fuel consumption rates of vehicles. But the magnitude and direction of the influences are dependent on the type of road links, specifically free-flow speeds of links. Here, a statistical diagnostic is conducted to ensure the validity of the models and results. Although the real-world driving data we used to develop statistical relationships are specific to one region, the framework we developed can be easily adjusted and used to explore the fuel consumption relationship in other regions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1378892-data-driven-fuel-consumption-estimation-multivariate-adaptive-regression-spline-approach','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1378892-data-driven-fuel-consumption-estimation-multivariate-adaptive-regression-spline-approach"><span>Data-driven fuel consumption estimation: A multivariate adaptive regression spline approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Chen, Yuche; Zhu, Lei; Gonder, Jeffrey; ...</p> <p>2017-08-12</p> <p>Providing guidance and information to drivers to help them make fuel-efficient route choices remains an important and effective strategy in the near term to reduce fuel consumption from the transportation sector. One key component in implementing this strategy is a fuel-consumption estimation model. In this paper, we developed a mesoscopic fuel consumption estimation model that can be implemented into an eco-routing system. Our proposed model presents a framework that utilizes large-scale, real-world driving data, clusters road links by free-flow speed and fits one statistical model for each of cluster. This model includes predicting variables that were rarely or never consideredmore » before, such as free-flow speed and number of lanes. We applied the model to a real-world driving data set based on a global positioning system travel survey in the Philadelphia-Camden-Trenton metropolitan area. Results from the statistical analyses indicate that the independent variables we chose influence the fuel consumption rates of vehicles. But the magnitude and direction of the influences are dependent on the type of road links, specifically free-flow speeds of links. Here, a statistical diagnostic is conducted to ensure the validity of the models and results. Although the real-world driving data we used to develop statistical relationships are specific to one region, the framework we developed can be easily adjusted and used to explore the fuel consumption relationship in other regions.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2008PhDT.......140S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2008PhDT.......140S"><span>Understanding and predicting climate variations in the Middle East for sustainable water resource management and development</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Samuels, Rana</p> <p></p> <p>Water issues are a source of tension between Israelis and Palestinians. In the and region of the Middle East, water supply is not just scarce but also uncertain: It is not uncommon for annual rainfall to be as little as 60% or as much as 125% of the multiannual average. This combination of scarcity and uncertainty exacerbates the already strained economy and the already tensed political situation. The uncertainty could be alleviated if it were possible to better forecast water availability. Such forecasting is key not only for water planning and management, but also for economic policy and for political decision making. Water forecasts at multiple time scales are necessary for crop choice, aquifer operation and investments in desalination infrastructure. The unequivocal warming of the climate system adds another level of uncertainty as global and regional water cycles change. This makes the prediction of water availability an even greater challenge. Understanding the impact of climate change on precipitation can provide the information necessary for appropriate risk assessment and water planning. Unfortunately, current global circulation models (GCMs) are only able to predict long term climatic evolution at large scales but not local rainfall. The statistics of local precipitation are traditionally predicted using historical rainfall data. Obviously these data cannot anticipate changes that result from climate change. It is therefore clear that integration of the global information about climate evolution and local historical data is needed to provide the much needed predictions of regional water availability. Currently, there is no theoretical or computational framework that enables such integration for this region. In this dissertation both a conceptual framework and a computational platform for such integration are introduced. In particular, suite of models that link forecasts of climatic evolution under different CO2 emissions scenarios to observed rainfall data from local stations are developed. These are used to develop scenarios for local rainfall statistics such as average annual amounts, dry spells, wet spells and drought persistence. This suite of models can provide information that is not attainable from existing tools in terms of its spatial and temporal resolution. Specifically, the goal is to project the impact of established global climate change scenarios in this region and, how much of the change might be mitigated by proposed CO2 reduction strategies. A major problem in this enterprise is to find the best way to integrate global climatic information with local rainfall data. From the climatologic perspective the problem is to find the right teleconnections. That is, non local or global measurable phenomena that influence local rainfall in a way that could be characterized and quantified statistically. From the computational perspective the challenge is to model these subtle, nonlinear relationships and to downscale the global effects into local predictions. Climate simulations to the year 2100 under selected climate change scenarios are used. Overall, the suite of models developed and presented can be applied to answer most questions from the different water users and planners. Farmers and the irrigation community can ask "What is the probability of rain over the next week?" Policy makers can ask "How much desalination capacity will I need to meet demand 90% of the time in the climate change scenario over the next 20 years?" Aquifer managers can ask "What is the expected recharge rate of the aquifers over the next decade?" The use of climate driven answers to these questions will help the region better prepare and adapt to future shifts in water resources and availability.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016CNSNS..38..117V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016CNSNS..38..117V"><span>Earthquake nucleation in a stochastic fault model of globally coupled units with interaction delays</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Vasović, Nebojša; Kostić, Srđan; Franović, Igor; Todorović, Kristina</p> <p>2016-09-01</p> <p>In present paper we analyze dynamics of fault motion by considering delayed interaction of 100 all-to-all coupled blocks with rate-dependent friction law in presence of random seismic noise. Such a model sufficiently well describes a real fault motion, whose prevailing stochastic nature is implied by surrogate data analysis of available GPS measurements of active fault movement. Interaction of blocks in an analyzed model is studied as a function of time delay, observed both for dynamics of individual faults and phenomenological models. Analyzed model is examined as a system of all-to-all coupled blocks according to typical assumption of compound faults as complex of globally coupled segments. We apply numerical methods to show that there are local bifurcations from equilibrium state to periodic oscillations, with an occurrence of irregular aperiodic behavior when initial conditions are set away from the equilibrium point. Such a behavior indicates a possible existence of a bi-stable dynamical regime, due to effect of the introduced seismic noise or the existence of global attractor. The latter assumption is additionally confirmed by analyzing the corresponding mean-field approximated model. In this bi-stable regime, distribution of event magnitudes follows Gutenberg-Richter power law with satisfying statistical accuracy, including the b-value within the real observed range.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26903659','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26903659"><span>Temperature-driven global sea-level variability in the Common Era.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kopp, Robert E; Kemp, Andrew C; Bittermann, Klaus; Horton, Benjamin P; Donnelly, Jeffrey P; Gehrels, W Roland; Hay, Carling C; Mitrovica, Jerry X; Morrow, Eric D; Rahmstorf, Stefan</p> <p>2016-03-15</p> <p>We assess the relationship between temperature and global sea-level (GSL) variability over the Common Era through a statistical metaanalysis of proxy relative sea-level reconstructions and tide-gauge data. GSL rose at 0.1 ± 0.1 mm/y (2σ) over 0-700 CE. A GSL fall of 0.2 ± 0.2 mm/y over 1000-1400 CE is associated with ∼ 0.2 °C global mean cooling. A significant GSL acceleration began in the 19th century and yielded a 20th century rise that is extremely likely (probability [Formula: see text]) faster than during any of the previous 27 centuries. A semiempirical model calibrated against the GSL reconstruction indicates that, in the absence of anthropogenic climate change, it is extremely likely ([Formula: see text]) that 20th century GSL would have risen by less than 51% of the observed [Formula: see text] cm. The new semiempirical model largely reconciles previous differences between semiempirical 21st century GSL projections and the process model-based projections summarized in the Intergovernmental Panel on Climate Change's Fifth Assessment Report.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4801270','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4801270"><span>Temperature-driven global sea-level variability in the Common Era</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Kopp, Robert E.; Kemp, Andrew C.; Bittermann, Klaus; Horton, Benjamin P.; Donnelly, Jeffrey P.; Gehrels, W. Roland; Hay, Carling C.; Mitrovica, Jerry X.; Morrow, Eric D.; Rahmstorf, Stefan</p> <p>2016-01-01</p> <p>We assess the relationship between temperature and global sea-level (GSL) variability over the Common Era through a statistical metaanalysis of proxy relative sea-level reconstructions and tide-gauge data. GSL rose at 0.1 ± 0.1 mm/y (2σ) over 0–700 CE. A GSL fall of 0.2 ± 0.2 mm/y over 1000–1400 CE is associated with ∼0.2 °C global mean cooling. A significant GSL acceleration began in the 19th century and yielded a 20th century rise that is extremely likely (probability P≥0.95) faster than during any of the previous 27 centuries. A semiempirical model calibrated against the GSL reconstruction indicates that, in the absence of anthropogenic climate change, it is extremely likely (P=0.95) that 20th century GSL would have risen by less than 51% of the observed 13.8±1.5 cm. The new semiempirical model largely reconciles previous differences between semiempirical 21st century GSL projections and the process model-based projections summarized in the Intergovernmental Panel on Climate Change’s Fifth Assessment Report. PMID:26903659</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23966235','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23966235"><span>Protein structure modeling for CASP10 by multiple layers of global optimization.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Joo, Keehyoung; Lee, Juyong; Sim, Sangjin; Lee, Sun Young; Lee, Kiho; Heo, Seungryong; Lee, In-Ho; Lee, Sung Jong; Lee, Jooyoung</p> <p>2014-02-01</p> <p>In the template-based modeling (TBM) category of CASP10 experiment, we introduced a new protocol called protein modeling system (PMS) to generate accurate protein structures in terms of side-chains as well as backbone trace. In the new protocol, a global optimization algorithm, called conformational space annealing (CSA), is applied to the three layers of TBM procedure: multiple sequence-structure alignment, 3D chain building, and side-chain re-modeling. For 3D chain building, we developed a new energy function which includes new distance restraint terms of Lorentzian type (derived from multiple templates), and new energy terms that combine (physical) energy terms such as dynamic fragment assembly (DFA) energy, DFIRE statistical potential energy, hydrogen bonding term, etc. These physical energy terms are expected to guide the structure modeling especially for loop regions where no template structures are available. In addition, we developed a new quality assessment method based on random forest machine learning algorithm to screen templates, multiple alignments, and final models. For TBM targets of CASP10, we find that, due to the combination of three stages of CSA global optimizations and quality assessment, the modeling accuracy of PMS improves at each additional stage of the protocol. It is especially noteworthy that the side-chains of the final PMS models are far more accurate than the models in the intermediate steps. Copyright © 2013 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AIPC.1905e0031N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AIPC.1905e0031N"><span>An application of seasonal ARIMA models on group commodities to forecast Philippine merchandise exports performance</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Natividad, Gina May R.; Cawiding, Olive R.; Addawe, Rizavel C.</p> <p>2017-11-01</p> <p>The increase in the merchandise exports of the country offers information about the Philippines' trading role within the global economy. Merchandise exports statistics are used to monitor the country's overall production that is consumed overseas. This paper investigates the comparison between two models obtained by a) clustering the commodity groups into two based on its proportional contribution to the total exports, and b) treating only the total exports. Different seasonal autoregressive integrated moving average (SARIMA) models were then developed for the clustered commodities and for the total exports based on the monthly merchandise exports of the Philippines from 2011 to 2016. The data set used in this study was retrieved from the Philippine Statistics Authority (PSA) which is the central statistical authority in the country responsible for primary data collection. A test for significance of the difference between means at 0.05 level of significance was then performed on the forecasts produced. The result indicates that there is a significant difference between the mean of the forecasts of the two models. Moreover, upon a comparison of the root mean square error (RMSE) and mean absolute error (MAE) of the models, it was found that the models used for the clustered groups outperform the model for the total exports.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ESSD....9..149N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ESSD....9..149N"><span>Reconstruction of spatially detailed global map of NH4+ and NO3- application in synthetic nitrogen fertilizer</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nishina, Kazuya; Ito, Akihiko; Hanasaki, Naota; Hayashi, Seiji</p> <p>2017-02-01</p> <p>Currently, available historical global N fertilizer map as an input data to global biogeochemical model is still limited and existing maps were not considered NH4+ and NO3- in the fertilizer application rates. This paper provides a method for constructing a new historical global nitrogen fertilizer application map (0.5° × 0.5° resolution) for the period 1961-2010 based on country-specific information from Food and Agriculture Organization statistics (FAOSTAT) and various global datasets. This new map incorporates the fraction of NH4+ (and NO3-) in N fertilizer inputs by utilizing fertilizer species information in FAOSTAT, in which species can be categorized as NH4+- and/or NO3--forming N fertilizers. During data processing, we applied a statistical data imputation method for the missing data (19 % of national N fertilizer consumption) in FAOSTAT. The multiple imputation method enabled us to fill gaps in the time-series data using plausible values using covariates information (year, population, GDP, and crop area). After the imputation, we downscaled the national consumption data to a gridded cropland map. Also, we applied the multiple imputation method to the available chemical fertilizer species consumption, allowing for the estimation of the NH4+ / NO3- ratio in national fertilizer consumption. In this study, the synthetic N fertilizer inputs in 2000 showed a general consistency with the existing N fertilizer map (Potter et al., 2010) in relation to the ranges of N fertilizer inputs. Globally, the estimated N fertilizer inputs based on the sum of filled data increased from 15 to 110 Tg-N during 1961-2010. On the other hand, the global NO3- input started to decline after the late 1980s and the fraction of NO3- in global N fertilizer decreased consistently from 35 to 13 % over a 50-year period. NH4+-forming fertilizers are dominant in most countries; however, the NH4+ / NO3- ratio in N fertilizer inputs shows clear differences temporally and geographically. This new map can be utilized as input data to global model studies and bring new insights for the assessment of historical terrestrial N cycling changes. Datasets available at <a href="http://dx.doi.org/10.1594/PANGAEA.861203" target="_blank">doi:10.1594/PANGAEA.861203</a>.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1912230C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1912230C"><span>Application of global datasets for hydrological modelling of a remote, snowmelt driven catchment in the Canadian Sub-Arctic</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Casson, David; Werner, Micha; Weerts, Albrecht; Schellekens, Jaap; Solomatine, Dimitri</p> <p>2017-04-01</p> <p>Hydrological modelling in the Canadian Sub-Arctic is hindered by the limited spatial and temporal coverage of local meteorological data. Local watershed modelling often relies on data from a sparse network of meteorological stations with a rough density of 3 active stations per 100,000 km2. Global datasets hold great promise for application due to more comprehensive spatial and extended temporal coverage. A key objective of this study is to demonstrate the application of global datasets and data assimilation techniques for hydrological modelling of a data sparse, Sub-Arctic watershed. Application of available datasets and modelling techniques is currently limited in practice due to a lack of local capacity and understanding of available tools. Due to the importance of snow processes in the region, this study also aims to evaluate the performance of global SWE products for snowpack modelling. The Snare Watershed is a 13,300 km2 snowmelt driven sub-basin of the Mackenzie River Basin, Northwest Territories, Canada. The Snare watershed is data sparse in terms of meteorological data, but is well gauged with consistent discharge records since the late 1970s. End of winter snowpack surveys have been conducted every year from 1978-present. The application of global re-analysis datasets from the EU FP7 eartH2Observe project are investigated in this study. Precipitation data are taken from Multi-Source Weighted-Ensemble Precipitation (MSWEP) and temperature data from Watch Forcing Data applied to European Reanalysis (ERA)-Interim data (WFDEI). GlobSnow-2 is a global Snow Water Equivalent (SWE) measurement product funded by the European Space Agency (ESA) and is also evaluated over the local watershed. Downscaled precipitation, temperature and potential evaporation datasets are used as forcing data in a distributed version of the HBV model implemented in the WFLOW framework. Results demonstrate the successful application of global datasets in local watershed modelling, but that validation of actual frozen precipitation and snowpack conditions is very difficult. The distributed hydrological model shows good streamflow simulation performance based on statistical model evaluation techniques. Results are also promising for inter-annual variability, spring snowmelt onset and time to peak flows. It is expected that data assimilation of stream flow using an Ensemble Kalman Filter will further improve model performance. This study shows that global re-analysis datasets hold great potential for understanding the hydrology and snowpack dynamics of the expansive and data sparse sub-Arctic. However, global SWE products will require further validation and algorithm improvements, particularly over boreal forest and lake-rich regions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.9940D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.9940D"><span>The Stochastic predictability limits of GCM internal variability and the Stochastic Seasonal to Interannual Prediction System (StocSIPS)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Del Rio Amador, Lenin; Lovejoy, Shaun</p> <p>2017-04-01</p> <p>Over the past ten years, a key advance in our understanding of atmospheric variability is the discovery that between the weather and climate regime lies an intermediate "macroweather" regime, spanning the range of scales from ≈10 days to ≈30 years. Macroweather statistics are characterized by two fundamental symmetries: scaling and the factorization of the joint space-time statistics. In the time domain, the scaling has low intermittency with the additional property that successive fluctuations tend to cancel. In space, on the contrary the scaling has high (multifractal) intermittency corresponding to the existence of different climate zones. These properties have fundamental implications for macroweather forecasting: a) the temporal scaling implies that the system has a long range memory that can be exploited for forecasting; b) the low temporal intermittency implies that mathematically well-established (Gaussian) forecasting techniques can be used; and c), the statistical factorization property implies that although spatial correlations (including teleconnections) may be large, if long enough time series are available, they are not necessarily useful in improving forecasts. Theoretically, these conditions imply the existence of stochastic predictability limits in our talk, we show that these limits apply to GCM's. Based on these statistical implications, we developed the Stochastic Seasonal and Interannual Prediction System (StocSIPS) for the prediction of temperature from regional to global scales and from one month to many years horizons. One of the main components of StocSIPS is the separation and prediction of both the internal and externally forced variabilities. In order to test the theoretical assumptions and consequences for predictability and predictions, we use 41 different CMIP5 model outputs from preindustrial control runs that have fixed external forcings: whose variability is purely internally generated. We first show that these statistical assumptions hold with relatively good accuracy and then we performed hindcasts at global and regional scales from monthly to annual time resolutions using StocSIPS. We obtained excellent agreement between the hindcast Mean Square Skill Score (MSSS) and the theoretical stochastic limits. We also show the application of StocSIPS to the prediction of average global temperature and compare our results with those obtained using multi-model ensemble approaches. StocSIPS has numerous advantages including a) higher MSSS for large time horizons, b) the from convergence to the real - not model - climate, c) much higher computational speed, d) no need for data assimilation, e) no ad hoc post processing and f) no need for downscaling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70161750','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70161750"><span>Development of a globally applicable model for near real-time prediction of seismically induced landslides</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Nowicki, M. Anna; Wald, David J.; Hamburger, Michael W.; Hearne, Mike; Thompson, Eric M.</p> <p>2014-01-01</p> <p>Substantial effort has been invested to understand where seismically induced landslides may occur in the future, as they are a costly and frequently fatal threat in mountainous regions. The goal of this work is to develop a statistical model for estimating the spatial distribution of landslides in near real-time around the globe for use in conjunction with the U.S. Geological Survey (USGS) Prompt Assessment of Global Earthquakes for Response (PAGER) system. This model uses standardized outputs of ground shaking from the USGS ShakeMap Atlas 2.0 to develop an empirical landslide probability model, combining shaking estimates with broadly available landslide susceptibility proxies, i.e., topographic slope, surface geology, and climate parameters. We focus on four earthquakes for which digitally mapped landslide inventories and well-constrainedShakeMaps are available. The resulting database is used to build a predictive model of the probability of landslide occurrence. The landslide database includes the Guatemala (1976), Northridge (1994), Chi-Chi (1999), and Wenchuan (2008) earthquakes. Performance of the regression model is assessed using statistical goodness-of-fit metrics and a qualitative review to determine which combination of the proxies provides both the optimum prediction of landslide-affected areas and minimizes the false alarms in non-landslide zones. Combined with near real-time ShakeMaps, these models can be used to make generalized predictions of whether or not landslides are likely to occur (and if so, where) for earthquakes around the globe, and eventually to inform loss estimates within the framework of the PAGER system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24113342','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24113342"><span>Investigating the cross-cultural validity of DSM-5 autism spectrum disorder: evidence from Finnish and UK samples.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mandy, William; Charman, Tony; Puura, Kaija; Skuse, David</p> <p>2014-01-01</p> <p>The recent Diagnostic and Statistical Manual of Mental Disorders-Fifth Edition (DSM-5) reformulation of autism spectrum disorder has received empirical support from North American and UK samples. Autism spectrum disorder is an increasingly global diagnosis, and research is needed to discover how well it generalises beyond North America and the United Kingdom. We tested the applicability of the DSM-5 model to a sample of Finnish young people with autism spectrum disorder (n = 130) or the broader autism phenotype (n = 110). Confirmatory factor analysis tested the DSM-5 model in Finland and compared the fit of this model between Finnish and UK participants (autism spectrum disorder, n = 488; broader autism phenotype, n = 220). In both countries, autistic symptoms were measured using the Developmental, Diagnostic and Dimensional Interview. Replicating findings from English-speaking samples, the DSM-5 model fitted well in Finnish autism spectrum disorder participants, outperforming a Diagnostic and Statistical Manual of Mental Disorders-Fourth Edition (DSM-IV) model. The DSM-5 model fitted equally well in Finnish and UK autism spectrum disorder samples. Among broader autism phenotype participants, this model fitted well in the United Kingdom but poorly in Finland, suggesting that cross-cultural variability may be greatest for milder autistic characteristics. We encourage researchers with data from other cultures to emulate our methodological approach, to map any cultural variability in the manifestation of autism spectrum disorder and the broader autism phenotype. This would be especially valuable given the ongoing revision of the International Classification of Diseases-11th Edition, the most global of the diagnostic manuals.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014ESD.....5...15W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014ESD.....5...15W"><span>Global modeling of withdrawal, allocation and consumptive use of surface water and groundwater resources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wada, Y.; Wisser, D.; Bierkens, M. F. P.</p> <p>2014-01-01</p> <p>To sustain growing food demand and increasing standard of living, global water withdrawal and consumptive water use have been increasing rapidly. To analyze the human perturbation on water resources consistently over large scales, a number of macro-scale hydrological models (MHMs) have been developed in recent decades. However, few models consider the interaction between terrestrial water fluxes, and human activities and associated water use, and even fewer models distinguish water use from surface water and groundwater resources. Here, we couple a global water demand model with a global hydrological model and dynamically simulate daily water withdrawal and consumptive water use over the period 1979-2010, using two re-analysis products: ERA-Interim and MERRA. We explicitly take into account the mutual feedback between supply and demand, and implement a newly developed water allocation scheme to distinguish surface water and groundwater use. Moreover, we include a new irrigation scheme, which works dynamically with a daily surface and soil water balance, and incorporate the newly available extensive Global Reservoir and Dams data set (GRanD). Simulated surface water and groundwater withdrawals generally show good agreement with reported national and subnational statistics. The results show a consistent increase in both surface water and groundwater use worldwide, with a more rapid increase in groundwater use since the 1990s. Human impacts on terrestrial water storage (TWS) signals are evident, altering the seasonal and interannual variability. This alteration is particularly large over heavily regulated basins such as the Colorado and the Columbia, and over the major irrigated basins such as the Mississippi, the Indus, and the Ganges. Including human water use and associated reservoir operations generally improves the correlation of simulated TWS anomalies with those of the GRACE observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.H32E..01W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.H32E..01W"><span>Global Modeling of Withdrawal, Allocation and Consumptive Use of Surface Water and Groundwater Resources</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wada, Y.; Wisser, D.; Bierkens, M. F.</p> <p>2014-12-01</p> <p>To sustain growing food demand and increasing standard of living, global water withdrawal and consumptive water use have been increasing rapidly. To analyze the human perturbation on water resources consistently over large scales, a number of macro-scale hydrological models (MHMs) have been developed in recent decades. However, few models consider the interaction between terrestrial water fluxes, and human activities and associated water use, and even fewer models distinguish water use from surface water and groundwater resources. Here, we couple a global water demand model with a global hydrological model and dynamically simulate daily water withdrawal and consumptive water use over the period 1979-2010, using two re-analysis products: ERA-Interim and MERRA. We explicitly take into account the mutual feedback between supply and demand, and implement a newly developed water allocation scheme to distinguish surface water and groundwater use. Moreover, we include a new irrigation scheme, which works dynamically with a daily surface and soil water balance, and incorporate the newly available extensive global reservoir data set (GRanD). Simulated surface water and groundwater withdrawals generally show good agreement with reported national and sub-national statistics. The results show a consistent increase in both surface water and groundwater use worldwide, with a more rapid increase in groundwater use since the 1990s. Human impacts on terrestrial water storage (TWS) signals are evident, altering the seasonal and inter-annual variability. This alteration is particularly large over heavily regulated basins such as the Colorado and the Columbia, and over the major irrigated basins such as the Mississippi, the Indus, and the Ganges. Including human water use and associated reservoir operations generally improves the correlation of simulated TWS anomalies with those of the GRACE observations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A43I2598Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A43I2598Z"><span>Multi-decadal evolution characteristics of global surface temperature anomaly data shown by observation and CMIP5 models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhu, X.</p> <p>2017-12-01</p> <p>Based on methods of statistical analysis, the time series of global surface air temperature(SAT) anomalies from 1860-2014 has been defined by three types of phase changes that occur through the division of temperature changes into different stages. The characteristics of the three types of phase changes simulated by CMIP5 models were evaluated. The conclusion is as follows: the SAT from 1860-2014 can be divided into six stages according to trend differences, and this subdivision is proved to be statistically significant. Based on trend analysis and the distribution of slopes between any two points (two points' slope) in every stage, the six stages can be summarized as three phase changes of warming, cooling, and hiatus. Between 1860 and 2014, the world experienced three heating phases (1860-1878, 1909-1942,1975-2004), one cooling phase (1878-1909), and two hiatus phases (1942-1975, 2004-2014).Using the definition method, whether the next year belongs to the previous phase can be estimated. Furthermore, the temperature in 2015 was used as an example to validate the feasibility of this method. The simulations of the heating period by CMIP5 models are well; however the characteristics shown by SAT during the cooling and hiatus period cannot be represented by CMIP5 models. As such, the projections of future heating phases using the CMIP5 models are credible, but for cooling and hiatus events they are unreliable.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..1816089P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..1816089P"><span>3D-Digital soil property mapping by geoadditive models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Papritz, Andreas</p> <p>2016-04-01</p> <p>In many digital soil mapping (DSM) applications, soil properties must be predicted not only for a single but for multiple soil depth intervals. In the GlobalSoilMap project, as an example, predictions are computed for the 0-5 cm, 5-15 cm, 15-30 cm, 30-60 cm, 60-100 cm, 100-200 cm depth intervals (Arrouays et al., 2014). Legacy soil data are often used for DSM. It is common for such datasets that soil properties were measured for soil horizons or for layers at varying soil depth and with non-constant thickness (support). This poses problems for DSM: One strategy is to harmonize the soil data to common depth prior to the analyses (e.g. Bishop et al., 1999) and conduct the statistical analyses for each depth interval independently. The disadvantage of this approach is that the predictions for different depths are computed independently from each other so that the predicted depth profiles may be unrealistic. Furthermore, the error induced by the harmonization to common depth is ignored in this approach (Orton et al. 2016). A better strategy is therefore to process all soil data jointly without prior harmonization by a 3D-analysis that takes soil depth and geographical position explicitly into account. Usually, the non-constant support of the data is then ignored, but Orton et al. (2016) presented recently a geostatistical approach that accounts for non-constant support of soil data and relies on restricted maximum likelihood estimation (REML) of a linear geostatistical model with a separable, heteroscedastic, zonal anisotropic auto-covariance function and area-to-point kriging (Kyriakidis, 2004.) Although this model is theoretically coherent and elegant, estimating its many parameters by REML and selecting covariates for the spatial mean function is a formidable task. A simpler approach might be to use geoadditive models (Kammann and Wand, 2003; Wand, 2003) for 3D-analyses of soil data. geoAM extend the scope of the linear model with spatially correlated errors to account for nonlinear effects of covariates by fitting componentwise smooth, nonlinear functions to the covariates (additive terms). REML estimation of model parameters and computing best linear unbiased predictions (BLUP) builds in the geoAM framework on the fact that both geostatistical and additive models can be parametrized as linear mixed models Wand, 2003. For 3D-DSM analysis of soil data, it is natural to model depth profiles of soil properties by additive terms of soil depth. Including interactions between these additive terms and covariates of the spatial mean function allows to model spatially varying depth profiles. Furthermore, with suitable choice of the basis functions of the additive term (e.g. polynomial regression splines), non-constant support of the soil data can be taken into account. Finally, boosting (Bühlmann and Hothorn, 2007) can be used for selecting covariates for the spatial mean function. The presentation will detail the geoAM approach and present an example of geoAM for 3D-analysis of legacy soil data. Arrouays, D., McBratney, A. B., Minasny, B., Hempel, J. W., Heuvelink, G. B. M., MacMillan, R. A., Hartemink, A. E., Lagacherie, P., and McKenzie, N. J. (2014). The GlobalSoilMap project specifications. In GlobalSoilMap Basis of the global spatial soil information system, pages 9-12. CRC Press. Bishop, T., McBratney, A., and Laslett, G. (1999). Modelling soil attribute depth functions with equal-area quadratic smoothing splines. Geoderma, 91(1-2), 27-45. Bühlmann, P. and Hothorn, T. (2007). Boosting algorithms: Regularization, prediction and model fitting. Statistical Science, 22(4), 477-505. Kammann, E. E. and Wand, M. P. (2003). Geoadditive models. Journal of the Royal Statistical Society. Series C: Applied Statistics, 52(1), 1-18. Kyriakidis, P. (2004). A geostatistical framework for area-to-point spatial interpolation. Geographical Analysis, 36(3), 259-289. Orton, T., Pringle, M., and Bishop, T. (2016). A one-step approach for modelling and mapping soil properties based on profile data sampled over varying depth intervals. Geoderma, 262, 174-186. Wand, M. P. (2003). Smoothing and mixed models. Computational Statistics, 18(2), 223-249.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFMGC23C0933T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFMGC23C0933T"><span>Integrating a Detailed Agricultural Model in a Global Economic Framework: New methods for assessment of climate mitigation and adaptation opportunities</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Thomson, A. M.; Izaurralde, R. C.; Calvin, K.; Zhang, X.; Wise, M.; West, T. O.</p> <p>2010-12-01</p> <p>Climate change and food security are global issues increasingly linked through human decision making that takes place across all scales from on-farm management actions to international climate negotiations. Understanding how agricultural systems can respond to climate change, through mitigation or adaptation, while still supplying sufficient food to feed a growing global population, thus requires a multi-sector tool in a global economic framework. Integrated assessment models are one such tool, however they are typically driven by historical aggregate statistics of production in combination with exogenous assumptions of future trends in agricultural productivity; they are not yet capable of exploring agricultural management practices as climate adaptation or mitigation strategies. Yet there are agricultural models capable of detailed biophysical modeling of farm management and climate impacts on crop yield, soil erosion and C and greenhouse gas emissions, although these are typically applied at point scales that are incompatible with coarse resolution integrated assessment modeling. To combine the relative strengths of these modeling systems, we are using the agricultural model EPIC (Environmental Policy Integrated Climate), applied in a geographic data framework for regional analyses, to provide input to the global economic model GCAM (Global Change Assessment Model). The initial phase of our approach focuses on a pilot region of the Midwest United States, a highly productive agricultural area. We apply EPIC, a point based biophysical process model, at 60 m spatial resolution within this domain and aggregate the results to GCAM agriculture and land use subregions for the United States. GCAM is then initialized with multiple management options for key food and bioenergy crops. Using EPIC to distinguish these management options based on grain yield, residue yield, soil C change and cost differences, GCAM then simulates the optimum distribution of the available management options to meet demands for food and energy over the next century. The coupled models provide a new platform for evaluating future changes in agricultural management based on food demand, bioenergy demand, and changes in crop yield and soil C under a changing climate. This framework can be applied to evaluate the economically and biophysically optimal distribution of management under future climates.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1992JGR....9717947P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1992JGR....9717947P"><span>Deriving inertial wave characteristics from surface drifter velocities: Frequency variability in the Tropical Pacific</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Poulain, Pierre-Marie; Luther, Douglas S.; Patzert, William C.</p> <p>1992-11-01</p> <p>Two techniques have been developed for estimating statistics of inertial oscillations from satellite-tracked drifters. These techniques overcome the difficulties inherent in estimating such statistics from data dependent upon space coordinates that are a function of time. Application of these techniques to tropical surface drifter data collected during the NORPAX, EPOCS, and TOGA programs reveals a latitude-dependent, statistically significant "blue shift" of inertial wave frequency. The latitudinal dependence of the blue shift is similar to predictions based on "global" internal wave spectral models, with a superposition of frequency shifting due to modification of the effective local inertial frequency by the presence of strongly sheared zonal mean currents within 12° of the equator.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009AGUFM.A42A..06D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009AGUFM.A42A..06D"><span>Probabilistic description of ice-supersaturated layers in low resolution profiles of relative humidity N. C. Dickson, K. Gierens, H. L. Rogers, R. L. Jones</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Dickson, N.</p> <p>2009-12-01</p> <p>The global observation, assimilation and prediction in numerical models of ice super-saturated (ISS) regions (ISSR) are crucial if the climate impact of aircraft condensations trails (contrails) is to be fully understood, and if, for example, contrail formation is to be avoided through aircraft operational measures. A robust assessment of the global distribution of ISSR will further this debate, and ISS event occurrence, frequency and spatial scales have recently attracted significant attention. The mean horizontal size of ISSR is 150 km (±250km) although 12-14% of ISS events occur on horizontal scales of less than 5km. The average vertical thickness of ISS layers is 600-800m (±575m) but layers ranging from 25m to 3000m have been observed, with up to one third of ISS layers thought to be less than 100m deep. Given their small scales compared to typical atmospheric model grid sizes, statistical representations of the spatial scales of ISSR are required, in both horizontal and vertical dimensions, if global occurrence of ISSR is to be adequately represented in climate models. This paper uses radiosonde launches made by the UK Meteorological Office, from the British Isles, Gibraltar, St. Helena and the Falkland Islands between January 2002 and December 2006, to investigate the probabilistic occurrence of ISSR. Specifically each radiosonde profile is divided into 50 and 100 hPa pressure layers, to emulate the coarse vertical resolution of some atmospheric models. Then the high resolution observations contained within each thick pressure layer are used to calculate an average relative humidity and an ISS fraction for each individual thick pressure layer. These relative humidity pressure layer descriptions are then linked through a probability function to produce an s-shaped curve describing the ISS fraction in any average relative humidity pressure layer. An empirical investigation has shown that this one curve is statistically valid for mid-latitude locations, irrespective of season and altitude, however, pressure layer depth is an important variable. Using this empirical understanding of the s-shaped relationship a mathematical model was developed to represent the ISS fraction within any arbitrary thick pressure layer. Here the statistical distributions of actual high resolution RHi observations in any thick pressure layer, along with an error function, are used to mathematically describe the s-shape. Two models were developed to represent both 50 and 100 hPa pressure layers with each reconstructing their respective s-shapes within 8-10% of the empirical curves. These new models can be used, to represent the small scale structures of ISS events, in modelled data where only low vertical resolution is available. This will be useful in understanding, and improving the global distribution, both observed and forecasted, of ice super-saturation.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_18");'>18</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li class="active"><span>20</span></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_20 --> <div id="page_21" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="401"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/12880039','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/12880039"><span>Mammalian spontaneous otoacoustic emissions are amplitude-stabilized cochlear standing waves.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Shera, Christopher A</p> <p>2003-07-01</p> <p>Mammalian spontaneous otoacoustic emissions (SOAEs) have been suggested to arise by three different mechanisms. The local-oscillator model, dating back to the work of Thomas Gold, supposes that SOAEs arise through the local, autonomous oscillation of some cellular constituent of the organ of Corti (e.g., the "active process" underlying the cochlear amplifier). Two other models, by contrast, both suppose that SOAEs are a global collective phenomenon--cochlear standing waves created by multiple internal reflection--but differ on the nature of the proposed power source: Whereas the "passive" standing-wave model supposes that SOAEs are biological noise, passively amplified by cochlear standing-wave resonances acting as narrow-band nonlinear filters, the "active" standing-wave model supposes that standing-wave amplitudes are actively maintained by coherent wave amplification within the cochlea. Quantitative tests of key predictions that distinguish the local-oscillator and global standing-wave models are presented and shown to support the global standing-wave model. In addition to predicting the existence of multiple emissions with a characteristic minimum frequency spacing, the global standing-wave model accurately predicts the mean value of this spacing, its standard deviation, and its power-law dependence on SOAE frequency. Furthermore, the global standing-wave model accounts for the magnitude, sign, and frequency dependence of changes in SOAE frequency that result from modulations in middle-ear stiffness. Although some of these SOAE characteristics may be replicable through artful ad hoc adjustment of local-oscillator models, they all arise quite naturally in the standing-wave framework. Finally, the statistics of SOAE time waveforms demonstrate that SOAEs are coherent, amplitude-stabilized signals, as predicted by the active standing-wave model. Taken together, the results imply that SOAEs are amplitude-stabilized standing waves produced by the cochlea acting as a biological, hydromechanical analog of a laser oscillator. Contrary to recent claims, spontaneous emission of sound from the ear does not require the autonomous mechanical oscillation of its cellular constituents.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFM.A11L0160W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFM.A11L0160W"><span>The Impact of US SO2 Emissions on Clouds and the Hydrological Cycle at Global and Regional Scales in Three Coupled Chemistry-Climate Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Westervelt, D. M.</p> <p>2016-12-01</p> <p>It is widely expected that global and regional emissions of atmospheric aerosols and their precursors will decrease strongly throughout the remainder of the 21st century, due to emission reduction policies enacted to protect human health. Although there is some evidence that these aerosol reductions may lead to significant regional and global climate impacts, we currently lack a full understanding of the magnitude, spatial and temporal pattern, and statistical significance of these influences, especially for clouds and precipitation. Further, we often lack robust understanding of the processes by which regional aerosols influence local and remote climate. Here, we aim to quantify systematically the cloud and hydrological cycle response to regional changes in aerosols through model simulations using three fully coupled chemistry-climate models: NOAA Geophysical Fluid Dynamics Laboratory Coupled Model 3 (GFDL-CM3), NCAR Community Earth System Model (NCAR-CESM1), and NASA Goddard Institute for Space Studies ModelE2 (GISS-E2). The central approach we use is to contrast a long control experiment (400 years) with a collection of long individual perturbation experiments ( 200 years). We perturb emissions of sulfur dioxide (SO2; precursor to sulfate aerosol) in the United States and determine which responses are significant relative to internal variability and robust across the three models. Initial results show robust, statistically significant decreases in cloud droplet number and liquid water path in the source region across the three models due to decreases in sulfate aerosols. Setting SO2 emissions to zero over the U.S. causes both local and remote impacts in precipitation, with notable significant increases in Sahel and Arctic precipitation. In 13 of the 15 regions we analyze, the precipitation response to zero U.S. SO2 emissions agrees in sign, with agreement in magnitude to within one standard deviation in many of those regions. U.S. sulfate also impacts the timing of the arrival of the Sahel rainy season. Our approach enables us to develop a basis for understanding the response of regional emissions of aerosols and their precursors, and will be expanded to other regions and aerosol species in future work.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/20805456','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/20805456"><span>Prognostic factors in patients with advanced cancer: use of the patient-generated subjective global assessment in survival prediction.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Martin, Lisa; Watanabe, Sharon; Fainsinger, Robin; Lau, Francis; Ghosh, Sunita; Quan, Hue; Atkins, Marlis; Fassbender, Konrad; Downing, G Michael; Baracos, Vickie</p> <p>2010-10-01</p> <p>To determine whether elements of a standard nutritional screening assessment are independently prognostic of survival in patients with advanced cancer. A prospective nested cohort of patients with metastatic cancer were accrued from different units of a Regional Palliative Care Program. Patients completed a nutritional screen on admission. Data included age, sex, cancer site, height, weight history, dietary intake, 13 nutrition impact symptoms, and patient- and physician-reported performance status (PS). Univariate and multivariate survival analyses were conducted. Concordance statistics (c-statistics) were used to test the predictive accuracy of models based on training and validation sets; a c-statistic of 0.5 indicates the model predicts the outcome as well as chance; perfect prediction has a c-statistic of 1.0. A training set of patients in palliative home care (n = 1,164) was used to identify prognostic variables. Primary disease site, PS, short-term weight change (either gain or loss), dietary intake, and dysphagia predicted survival in multivariate analysis (P < .05). A model including only patients separated by disease site and PS with high c-statistics between predicted and observed responses for survival in the training set (0.90) and validation set (0.88; n = 603). The addition of weight change, dietary intake, and dysphagia did not further improve the c-statistic of the model. The c-statistic was also not altered by substituting physician-rated palliative PS for patient-reported PS. We demonstrate a high probability of concordance between predicted and observed survival for patients in distinct palliative care settings (home care, tertiary inpatient, ambulatory outpatient) based on patient-reported information.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170003692&hterms=systematic+reviews&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dsystematic%2Breviews','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170003692&hterms=systematic+reviews&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dsystematic%2Breviews"><span>North American Extreme Temperature Events and Related Large Scale Meteorological Patterns: A Review of Statistical Methods, Dynamics, Modeling, and Trends</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Grotjahn, Richard; Black, Robert; Leung, Ruby; Wehner, Michael F.; Barlow, Mathew; Bosilovich, Michael G.; Gershunov, Alexander; Gutowski, William J., Jr.; Gyakum, John R.; Katz, Richard W.; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20170003692'); toggleEditAbsImage('author_20170003692_show'); toggleEditAbsImage('author_20170003692_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20170003692_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20170003692_hide"></p> <p>2015-01-01</p> <p>The objective of this paper is to review statistical methods, dynamics, modeling efforts, and trends related to temperature extremes, with a focus upon extreme events of short duration that affect parts of North America. These events are associated with large scale meteorological patterns (LSMPs). The statistics, dynamics, and modeling sections of this paper are written to be autonomous and so can be read separately. Methods to define extreme events statistics and to identify and connect LSMPs to extreme temperature events are presented. Recent advances in statistical techniques connect LSMPs to extreme temperatures through appropriately defined covariates that supplement more straightforward analyses. Various LSMPs, ranging from synoptic to planetary scale structures, are associated with extreme temperature events. Current knowledge about the synoptics and the dynamical mechanisms leading to the associated LSMPs is incomplete. Systematic studies of: the physics of LSMP life cycles, comprehensive model assessment of LSMP-extreme temperature event linkages, and LSMP properties are needed. Generally, climate models capture observed properties of heat waves and cold air outbreaks with some fidelity. However they overestimate warm wave frequency and underestimate cold air outbreak frequency, and underestimate the collective influence of low-frequency modes on temperature extremes. Modeling studies have identified the impact of large-scale circulation anomalies and landatmosphere interactions on changes in extreme temperatures. However, few studies have examined changes in LSMPs to more specifically understand the role of LSMPs on past and future extreme temperature changes. Even though LSMPs are resolvable by global and regional climate models, they are not necessarily well simulated. The paper concludes with unresolved issues and research questions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19760014751','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19760014751"><span>Monthly mean forecast experiments with the GISS model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Spar, J.; Atlas, R. M.; Kuo, E.</p> <p>1976-01-01</p> <p>The GISS general circulation model was used to compute global monthly mean forecasts for January 1973, 1974, and 1975 from initial conditions on the first day of each month and constant sea surface temperatures. Forecasts were evaluated in terms of global and hemispheric energetics, zonally averaged meridional and vertical profiles, forecast error statistics, and monthly mean synoptic fields. Although it generated a realistic mean meridional structure, the model did not adequately reproduce the observed interannual variations in the large scale monthly mean energetics and zonally averaged circulation. The monthly mean sea level pressure field was not predicted satisfactorily, but annual changes in the Icelandic low were simulated. The impact of temporal sea surface temperature variations on the forecasts was investigated by comparing two parallel forecasts for January 1974, one using climatological ocean temperatures and the other observed daily ocean temperatures. The use of daily updated sea surface temperatures produced no discernible beneficial effect.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017GeoRL..4412396S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017GeoRL..4412396S"><span>Earth System Modeling 2.0: A Blueprint for Models That Learn From Observations and Targeted High-Resolution Simulations</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Schneider, Tapio; Lan, Shiwei; Stuart, Andrew; Teixeira, João.</p> <p>2017-12-01</p> <p>Climate projections continue to be marred by large uncertainties, which originate in processes that need to be parameterized, such as clouds, convection, and ecosystems. But rapid progress is now within reach. New computational tools and methods from data assimilation and machine learning make it possible to integrate global observations and local high-resolution simulations in an Earth system model (ESM) that systematically learns from both and quantifies uncertainties. Here we propose a blueprint for such an ESM. We outline how parameterization schemes can learn from global observations and targeted high-resolution simulations, for example, of clouds and convection, through matching low-order statistics between ESMs, observations, and high-resolution simulations. We illustrate learning algorithms for ESMs with a simple dynamical system that shares characteristics of the climate system; and we discuss the opportunities the proposed framework presents and the challenges that remain to realize it.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830026244','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830026244"><span>Impact of satellite data on large-scale circulation statistics as determined from GLAS analyses during FGGE-SOP-1</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Salstein, D. A.; Rosen, R. D.</p> <p>1982-01-01</p> <p>A study using the analyses produced from the assimilation cycle of parallel model runs that both include and withhold satellite data was undertaken. The analyzed state of the atmosphere is performed using data from a certain test period during the first Special Observing Period (SOP) of the Global Weather Experiment (FGGE).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016JPhCS.772a2060N','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016JPhCS.772a2060N"><span>Methods for estimating comparable prevalence rates of food insecurity experienced by adults in 147 countries and areas</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Nord, Mark; Cafiero, Carlo; Viviani, Sara</p> <p>2016-11-01</p> <p>Statistical methods based on item response theory are applied to experiential food insecurity survey data from 147 countries, areas, and territories to assess data quality and develop methods to estimate national prevalence rates of moderate and severe food insecurity at equal levels of severity across countries. Data were collected from nationally representative samples of 1,000 adults in each country. A Rasch-model-based scale was estimated for each country, and data were assessed for consistency with model assumptions. A global reference scale was calculated based on item parameters from all countries. Each country's scale was adjusted to the global standard, allowing for up to 3 of the 8 scale items to be considered unique in that country if their deviance from the global standard exceeded a set tolerance. With very few exceptions, data from all countries were sufficiently consistent with model assumptions to constitute reasonably reliable measures of food insecurity and were adjustable to the global standard with fair confidence. National prevalence rates of moderate-or-severe food insecurity assessed over a 12-month recall period ranged from 3 percent to 92 percent. The correlations of national prevalence rates with national income, health, and well-being indicators provide external validation of the food security measure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..14.4880C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..14.4880C"><span>Global long-term ozone trends derived from different observed and modelled data sets</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Coldewey-Egbers, M.; Loyola, D.; Zimmer, W.; van Roozendael, M.; Lerot, C.; Dameris, M.; Garny, H.; Braesicke, P.; Koukouli, M.; Balis, D.</p> <p>2012-04-01</p> <p>The long-term behaviour of stratospheric ozone amounts during the past three decades is investigated on a global scale using different observed and modelled data sets. Three European satellite sensors GOME/ERS-2, SCIAMACHY/ENVISAT, and GOME-2/METOP are combined and a merged global monthly mean total ozone product has been prepared using an inter-satellite calibration approach. The data set covers the 16-years period from June 1995 to June 2011 and it exhibits an excellent long-term stability, which is required for such trend studies. A multiple linear least-squares regression algorithm using different explanatory variables is applied to the time series and statistically significant positive trends are detected in the northern mid latitudes and subtropics. Global trends are also estimated using a second satellite-based Merged Ozone Data set (MOD) provided by NASA. For few selected geographical regions ozone trends are additionally calculated using well-maintained measurements of individual Dobson/Brewer ground-based instruments. A reasonable agreement in the spatial patterns of the trends is found amongst the European satellite, the NASA satellite, and the ground-based observations. Furthermore, two long-term simulations obtained with the Chemistry-Climate Models E39C-A provided by German Aerospace Center and UMUKCA-UCAM provided by University of Cambridge are analysed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.6602R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.6602R"><span>Analysis of data on large explosive eruptions of stratovolcanoes to constrain under-recording and eruption rates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Rougier, Jonty; Cashman, Kathy; Sparks, Stephen</p> <p>2016-04-01</p> <p>We have analysed the Large Magnitude Explosive Volcanic Eruptions database (LaMEVE) for volcanoes that classify as stratovolcanoes. A non-parametric statistical approach is used to assess the global recording rate for large (M4+). The approach imposes minimal structure on the shape of the recording rate through time. We find that the recording rates have declined rapidly, going backwards in time. Prior to 1600 they are below 50%, and prior to 1100 they are below 20%. Even in the recent past, e.g. the 1800s, they are likely to be appreciably less than 100%.The assessment for very large (M5+) eruptions is more uncertain, due to the scarcity of events. Having taken under-recording into account the large-eruption rates of stratovolcanoes are modelled exchangeably, in order to derive an informative prior distribution as an input into a subsequent volcano-by-volcano hazard assessment. The statistical model implies that volcano-by-volcano predictions can be grouped by the number of recorded large eruptions. Further, it is possible to combine all volcanoes together into a global large eruption prediction, with an M4+ rate computed from the LaMEVE database of 0.57/yr.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26505685','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26505685"><span>The role of shape complexity in the detection of closed contours.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wilder, John; Feldman, Jacob; Singh, Manish</p> <p>2016-09-01</p> <p>The detection of contours in noise has been extensively studied, but the detection of closed contours, such as the boundaries of whole objects, has received relatively little attention. Closed contours pose substantial challenges not present in the simple (open) case, because they form the outlines of whole shapes and thus take on a range of potentially important configural properties. In this paper we consider the detection of closed contours in noise as a probabilistic decision problem. Previous work on open contours suggests that contour complexity, quantified as the negative log probability (Description Length, DL) of the contour under a suitably chosen statistical model, impairs contour detectability; more complex (statistically surprising) contours are harder to detect. In this study we extended this result to closed contours, developing a suitable probabilistic model of whole shapes that gives rise to several distinct though interrelated measures of shape complexity. We asked subjects to detect either natural shapes (Exp. 1) or experimentally manipulated shapes (Exp. 2) embedded in noise fields. We found systematic effects of global shape complexity on detection performance, demonstrating how aspects of global shape and form influence the basic process of object detection. Copyright © 2015 Elsevier Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19830010916','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19830010916"><span>A statistical examination of Nimbus 7 SMMR data and remote sensing of sea surface temperature, liquid water content in the atmosphere and surfaces wind speed</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Prabhakara, C.; Wang, I.; Chang, A. T. C.; Gloersen, P.</p> <p>1982-01-01</p> <p>Nimbus 7 Scanning Multichannel Microwave Radiometer (SMMR) brightness temperature measurements over the global oceans have been examined with the help of statistical and empirical techniques. Such analyses show that zonal averages of brightness temperature measured by SMMR, over the oceans, on a large scale are primarily influenced by the water vapor in the atmosphere. Liquid water in the clouds and rain, which has a much smaller spatial and temporal scale, contributes substantially to the variability of the SMMR measurements within the latitudinal zones. The surface wind not only increases the surface emissivity but through its interactions with the atmosphere produces correlations, in the SMMR brightness temperature data, that have significant meteorological implications. It is found that a simple meteorological model can explain the general characteristics of the SMMR data. With the help of this model methods to infer over the global oceans, the surface temperature, liquid water content in the atmosphere, and surface wind speed are developed. Monthly mean estimates of the sea surface temperature and surface winds are compared with the ship measurements. Estimates of liquid water content in the atmosphere are consistent with earlier satellite measurements.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010JGRC..11510048H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010JGRC..11510048H"><span>The color of sea level: Importance of spatial variations in spectral shape for assessing the significance of trends</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hughes, Chris W.; Williams, Simon D. P.</p> <p>2010-10-01</p> <p>We investigate spatial variations in the shape of the spectrum of sea level variability based on a homogeneously sampled 12 year gridded altimeter data set. We present a method of plotting spectral information as color, focusing on periods between 2 and 24 weeks, which shows that significant spatial variations in the spectral shape exist and contain useful dynamical information. Using the Bayesian Information Criterion, we determine that, typically, a fifth-order autoregressive model is needed to capture the structure in the spectrum. Using this model, we show that statistical errors in fitted local trends range between less than 1 and more than 5 times of what would be calculated assuming "white" noise and that the time needed to detect a 1 mm/yr trend ranges between about 5 years and many decades. For global mean sea level, the statistical error reduces to 0.1 mm/yr over 12 years, with only 2 years needed to detect a 1 mm/yr trend. We find significant regional differences in trend from the global mean. The patterns of these regional differences are indicative of a sea level trend dominated by dynamical ocean processes over this period.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018GeoRL..45.2487W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018GeoRL..45.2487W"><span>Disentangling Global Warming, Multidecadal Variability, and El Niño in Pacific Temperatures</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wills, Robert C.; Schneider, Tapio; Wallace, John M.; Battisti, David S.; Hartmann, Dennis L.</p> <p>2018-03-01</p> <p>A key challenge in climate science is to separate observed temperature changes into components due to internal variability and responses to external forcing. Extended integrations of forced and unforced climate models are often used for this purpose. Here we demonstrate a novel method to separate modes of internal variability from global warming based on differences in time scale and spatial pattern, without relying on climate models. We identify uncorrelated components of Pacific sea surface temperature variability due to global warming, the Pacific Decadal Oscillation (PDO), and the El Niño-Southern Oscillation (ENSO). Our results give statistical representations of PDO and ENSO that are consistent with their being separate processes, operating on different time scales, but are otherwise consistent with canonical definitions. We isolate the multidecadal variability of the PDO and find that it is confined to midlatitudes; tropical sea surface temperatures and their teleconnections mix in higher-frequency variability. This implies that midlatitude PDO anomalies are more persistent than previously thought.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ACP....17..595G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ACP....17..595G"><span>The G4Foam Experiment: global climate impacts of regional ocean albedo modification</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Gabriel, Corey J.; Robock, Alan; Xia, Lili; Zambri, Brian; Kravitz, Ben</p> <p>2017-01-01</p> <p>Reducing insolation has been proposed as a geoengineering response to global warming. Here we present the results of climate model simulations of a unique Geoengineering Model Intercomparison Project Testbed experiment to investigate the benefits and risks of a scheme that would brighten certain oceanic regions. The National Center for Atmospheric Research CESM CAM4-Chem global climate model was modified to simulate a scheme in which the albedo of the ocean surface is increased over the subtropical ocean gyres in the Southern Hemisphere. In theory, this could be accomplished using a stable, nondispersive foam, comprised of tiny, highly reflective microbubbles. Such a foam has been developed under idealized conditions, although deployment at a large scale is presently infeasible. We conducted three ensemble members of a simulation (G4Foam) from 2020 through to 2069 in which the albedo of the ocean surface is set to 0.15 (an increase of 150 %) over the three subtropical ocean gyres in the Southern Hemisphere, against a background of the RCP6.0 (representative concentration pathway resulting in +6 W m-2 radiative forcing by 2100) scenario. After 2069, geoengineering is ceased, and the simulation is run for an additional 20 years. Global mean surface temperature in G4Foam is 0.6 K lower than RCP6.0, with statistically significant cooling relative to RCP6.0 south of 30° N. There is an increase in rainfall over land, most pronouncedly in the tropics during the June-July-August season, relative to both G4SSA (specified stratospheric aerosols) and RCP6.0. Heavily populated and highly cultivated regions throughout the tropics, including the Sahel, southern Asia, the Maritime Continent, Central America, and much of the Amazon experience a statistically significant increase in precipitation minus evaporation. The temperature response to the relatively modest global average forcing of -1.5 W m-2 is amplified through a series of positive cloud feedbacks, in which more shortwave radiation is reflected. The precipitation response is primarily the result of the intensification of the southern Hadley cell, as its mean position migrates northward and away from the Equator in response to the asymmetric cooling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20050131686&hterms=missing+data&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dmissing%2Bdata','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20050131686&hterms=missing+data&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D50%26Ntt%3Dmissing%2Bdata"><span>Spatially Complete Global Surface Albedos Derived from Terra/MODIS Data</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>King, Michael D.; Moody, Eric G.; Platnick, Steven; Schaaf, Crystal B.</p> <p>2004-01-01</p> <p>Spectral land surface albedo is an important parameter for describing the radiative properties of the Earth. Accordingly it reflects the consequences of natural and human interactions, such as anthropogenic, meteorological, and phenological effects, on global and local climatological trends. Consequently, albedos are integral parts in a variety of research areas, such as general circulation models (GCMs), energy balance studies, modeling of land use and land use change, and biophysical, oceanographic, and meteorological studies. Recent production of land surface anisotropy, diffuse bihemispherical (white-sky) albedo and direct beam directional hemispherical (black-sky) albedo from observations acquired by the MODIS instruments aboard NASA s Terra and Aqua satellite platforms have provided researchers with unprecedented spatial, spectral, and temporal information on the land surface's radiative characteristics. Cloud cover, which cutails retrievals, and the presence of ephemeral and seasonal snow limit the snow-free data to approximately half the global land surfaces on an annual equal-angle basis. This precludes the MOD43B3 albedo products from being used in some remote sensing and ground-based applications, climate models, and global change research projects. An ecosystem-dependent temporal interpolation technique is described that has been developed to fill missing or seasonally snow-covered data in the official MOD43B3 albedo product. The method imposes pixel-level and local regional ecosystem-dependent phenological behavior onto retrieved pixel temporal data in such a way as to maintain pixel-level spatial and spectral detail and integrity. The phenological curves are derived from statistics based on the MODIS MOD12Q1 IGBP land cover classification product geolocated with the MOD43B3 data. The resulting snow-free value-added products provide the scientific community with spatially and temporally complete global white- and black-sky surface albedo maps and statistics. These products are stored on 1'(approximately 10 km) and coarser resolution equal-angle grids, and are computed for the first seven MODIS wavelengths, ranging from 0.47 through 2.1 microns, and for three broadband wavelengths, 0.3-0.7,0.3-5.0 and 0.7-5.0 microns.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2002JGRD..107.4415K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2002JGRD..107.4415K"><span>On nonstationarity and antipersistency in global temperature series</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>KäRner, O.</p> <p>2002-10-01</p> <p>Statistical analysis is carried out for satellite-based global daily tropospheric and stratospheric temperature anomaly and solar irradiance data sets. Behavior of the series appears to be nonstationary with stationary daily increments. Estimating long-range dependence between the increments reveals a remarkable difference between the two temperature series. Global average tropospheric temperature anomaly behaves similarly to the solar irradiance anomaly. Their daily increments show antipersistency for scales longer than 2 months. The property points at a cumulative negative feedback in the Earth climate system governing the tropospheric variability during the last 22 years. The result emphasizes a dominating role of the solar irradiance variability in variations of the tropospheric temperature and gives no support to the theory of anthropogenic climate change. The global average stratospheric temperature anomaly proceeds like a 1-dim random walk at least up to 11 years, allowing good presentation by means of the autoregressive integrated moving average (ARIMA) models for monthly series.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFM.A33P..01W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFM.A33P..01W"><span>Detection and Attribution of Temperature Trends in the Presence of Natural Variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wallace, J. M.</p> <p>2014-12-01</p> <p>The fingerprint of human-induced global warming stands out clearly above the noise In the time series of global-mean temperature, but not local temperature. At extratropical latitudes over land the standard error of 50-year linear temperature trends at a fixed point is as large as the cumulative rise in global-mean temperature over the past century. Much of the samping variability in local temperature trends is "dynamically-induced", i.e., attributable to the fact that the seasonally-varying mean circulation varies substantially from one year to the next and anomalous circulation patterns are generally accompanied by anomalous temperature patterns. In the presence of such large sampling variability it is virtually impossible to identify the spatial signature of greenhouse warming based on observational data or to partition observed local temperature trends into natural and human-induced components. It follows that previous IPCC assessments, which have focused on the deterministic signature of human-induced climate change, are inherently limited as to what they can tell us about the attribution of the past record of local temperature change or about how much the temperature at a particular place is likely to rise in the next few decades in response to global warming. To obtain more informative assessments of regional and local climate variability and change it will be necessary to take a probabilistic approach. Just as the use of the ensembles has contributed to more informative extended range weather predictions, large ensembles of climate model simulations can provide a statistical context for interpreting observed climate change and for framing projections of future climate. For some purposes, statistics relating to the interannual variability in the historical record can serve as a surrogate for statistics relating to the diversity of climate change scenarios in large ensembles.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AGUFMEP51E3579M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AGUFMEP51E3579M"><span>A low-order model for long-range infrasound propagation in random atmospheric waveguides</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Millet, C.; Lott, F.</p> <p>2014-12-01</p> <p>In numerical modeling of long-range infrasound propagation in the atmosphere, the wind and temperature profiles are usually obtained as a result of matching atmospheric models to empirical data. The atmospheric models are classically obtained from operational numerical weather prediction centers (NOAA Global Forecast System or ECMWF Integrated Forecast system) as well as atmospheric climate reanalysis activities and thus, do not explicitly resolve atmospheric gravity waves (GWs). The GWs are generally too small to be represented in Global Circulation Models, and their effects on the resolved scales need to be parameterized in order to account for fine-scale atmospheric inhomogeneities (for length scales less than 100 km). In the present approach, the sound speed profiles are considered as random functions, obtained by superimposing a stochastic GW field on the ECMWF reanalysis ERA-Interim. The spectral domain is binned by a large number of monochromatic GWs, and the breaking of each GW is treated independently from the others. The wave equation is solved using a reduced-order model, starting from the classical normal mode technique. We focus on the asymptotic behavior of the transmitted waves in the weakly heterogeneous regime (for which the coupling between the wave and the medium is weak), with a fixed number of propagating modes that can be obtained by rearranging the eigenvalues by decreasing Sobol indices. The most important feature of the stochastic approach lies in the fact that the model order (i.e. the number of relevant eigenvalues) can be computed to satisfy a given statistical accuracy whatever the frequency. As the low-order model preserves the overall structure of waveforms under sufficiently small perturbations of the profile, it can be applied to sensitivity analysis and uncertainty quantification. The gain in CPU cost provided by the low-order model is essential for extracting statistical information from simulations. The statistics of a transmitted broadband pulse are computed by decomposing the original pulse into a sum of modal pulses that propagate with different phase speeds and can be described by a front pulse stabilization theory. The method is illustrated on two large-scale infrasound calibration experiments, that were conducted at the Sayarim Military Range, Israel, in 2009 and 2011.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19990107329','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19990107329"><span>The NASA/MSFC Global Reference Atmospheric Model: 1999 Version (GRAM-99)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Justus, C. G.; Johnson, D. L.</p> <p>1999-01-01</p> <p>The latest version of Global Reference Atmospheric Model (GRAM-99) is presented and discussed. GRAM-99 uses either (binary) Global Upper Air Climatic Atlas (GUACA) or (ASCII) Global Gridded Upper Air Statistics (GGUAS) CD-ROM data sets, for 0-27 km altitudes. As with earlier versions, GRAM-99 provides complete geographical and altitude coverage for each month of the year. GRAM-99 uses a specially-developed data set, based on Middle Atmosphere Program (MAP) data, for 20-120 km altitudes, and NASA's 1999 version Marshall Engineering Thermosphere (MET-99) model for heights above 90 km. Fairing techniques assure smooth transition in overlap height ranges (20-27 km and 90-120 km). GRAM-99 includes water vapor and 11 other atmospheric constituents (O3, N2O, CO, CH4, CO2, N2, O2, O, A, He and H). A variable-scale perturbation model provides both large-scale (wave) and small-scale (stochastic) deviations from mean values for thermodynamic variables and horizontal and vertical wind components. The small-scale perturbation model includes improvements in representing intermittency ("patchiness"). A major new feature is an option to substitute Range Reference Atmosphere (RRA) data for conventional GRAM climatology when a trajectory passes sufficiently near any RRA site. A complete user's guide for running the program, plus sample input and output, is provided. An example is provided for how to incorporate GRAM-99 as subroutines in other programs (e.g., trajectory codes).</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_19");'>19</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li class="active"><span>21</span></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_21 --> <div id="page_22" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="421"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010AGUFM.H11E0857H','USGSPUBS'); return false;" href="http://adsabs.harvard.edu/abs/2010AGUFM.H11E0857H"><span>Local sensitivity analysis for inverse problems solved by singular value decomposition</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Hill, M.C.; Nolan, B.T.</p> <p>2010-01-01</p> <p>Local sensitivity analysis provides computationally frugal ways to evaluate models commonly used for resource management, risk assessment, and so on. This includes diagnosing inverse model convergence problems caused by parameter insensitivity and(or) parameter interdependence (correlation), understanding what aspects of the model and data contribute to measures of uncertainty, and identifying new data likely to reduce model uncertainty. Here, we consider sensitivity statistics relevant to models in which the process model parameters are transformed using singular value decomposition (SVD) to create SVD parameters for model calibration. The statistics considered include the PEST identifiability statistic, and combined use of the process-model parameter statistics composite scaled sensitivities and parameter correlation coefficients (CSS and PCC). The statistics are complimentary in that the identifiability statistic integrates the effects of parameter sensitivity and interdependence, while CSS and PCC provide individual measures of sensitivity and interdependence. PCC quantifies correlations between pairs or larger sets of parameters; when a set of parameters is intercorrelated, the absolute value of PCC is close to 1.00 for all pairs in the set. The number of singular vectors to include in the calculation of the identifiability statistic is somewhat subjective and influences the statistic. To demonstrate the statistics, we use the USDA’s Root Zone Water Quality Model to simulate nitrogen fate and transport in the unsaturated zone of the Merced River Basin, CA. There are 16 log-transformed process-model parameters, including water content at field capacity (WFC) and bulk density (BD) for each of five soil layers. Calibration data consisted of 1,670 observations comprising soil moisture, soil water tension, aqueous nitrate and bromide concentrations, soil nitrate concentration, and organic matter content. All 16 of the SVD parameters could be estimated by regression based on the range of singular values. Identifiability statistic results varied based on the number of SVD parameters included. Identifiability statistics calculated for four SVD parameters indicate the same three most important process-model parameters as CSS/PCC (WFC1, WFC2, and BD2), but the order differed. Additionally, the identifiability statistic showed that BD1 was almost as dominant as WFC1. The CSS/PCC analysis showed that this results from its high correlation with WCF1 (-0.94), and not its individual sensitivity. Such distinctions, combined with analysis of how high correlations and(or) sensitivities result from the constructed model, can produce important insights into, for example, the use of sensitivity analysis to design monitoring networks. In conclusion, the statistics considered identified similar important parameters. They differ because (1) with CSS/PCC can be more awkward because sensitivity and interdependence are considered separately and (2) identifiability requires consideration of how many SVD parameters to include. A continuing challenge is to understand how these computationally efficient methods compare with computationally demanding global methods like Markov-Chain Monte Carlo given common nonlinear processes and the often even more nonlinear models.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1212247-projections-future-summertime-ozone-over','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1212247-projections-future-summertime-ozone-over"><span>Projections of Future Summertime Ozone over the U.S.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Pfister, G. G.; Walters, Stacy; Lamarque, J. F.</p> <p></p> <p>This study uses a regional fully coupled chemistry-transport model to assess changes in surface ozone over the summertime U.S. between present and a 2050 future time period at high spatial resolution (12 km grid spacing) under the SRES A2 climate and RCP8.5 anthropogenic pre-cursor emission scenario. The impact of predicted changes in climate and global background ozone is estimated to increase surface ozone over most of the U.S; the 5th - 95th percentile range for daily 8-hour maximum surface ozone increases from 31-79 ppbV to 30-87 ppbV between the present and future time periods. The analysis of a set ofmore » meteorological drivers suggests that these mostly will add to increasing ozone, but the set of simulations conducted does not allow to separate this effect from that through enhanced global background ozone. Statistically the most robust positive feedbacks are through increased temperature, biogenic emissions and solar radiation. Stringent emission controls can counteract these feedbacks and if considered, we estimate large reductions in surface ozone with the 5th-95th percentile reduced to 27-55 ppbV. A comparison of the high-resolution projections to global model projections shows that even though the global model is biased high in surface ozone compared to the regional model and compared to observations, both the global and the regional model predict similar changes in ozone between the present and future time periods. However, on smaller spatial scales, the regional predictions show more pronounced changes between urban and rural regimes that cannot be resolved at the coarse resolution of global model. In addition, the sign of the changes in overall ozone mixing ratios can be different between the global and the regional predictions in certain regions, such as the Western U.S. This study confirms the key role of emission control strategies in future air quality predictions and demonstrates the need for considering degradation of air quality with future climate change in emission policy making. It also illustrates the need for high resolution modeling when the objective is to address regional and local air quality or establish links to human health and society.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2007HESSD...4.3583H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2007HESSD...4.3583H"><span>An integrated model for the assessment of global water resources - Part 2: Anthropogenic activities modules and assessments</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hanasaki, N.; Kanae, S.; Oki, T.; Shirakawa, N.</p> <p>2007-10-01</p> <p>To assess global water resources from the perspective of subannual variation in water resources and water use, an integrated water resources model was developed. In a companion report, we presented the global meteorological forcing input used to drive the model and two natural hydrological cycle modules, namely, the land surface hydrology module and the river routing module. Here, we present the remaining four modules, which represent anthropogenic activities: a crop growth module, a reservoir operation module, an environmental flow requirement module, and an anthropogenic withdrawal module. In addition, we discuss the results of a global water resources assessment using the integrated model. The crop growth module is a relatively simple model based on heat unit theory and potential biomass and harvest index concepts. The performance of the crop growth module was examined extensively because agricultural water comprises approximately 70% of total water withdrawal in the world. The estimated crop calendar showed good agreement with earlier reports for wheat, maize, and rice in major countries of production. The estimated irrigation water withdrawal also showed fair agreement with country statistics, but tended to underestimate countries in the Asian monsoon region. In the reservoir operation module, 452 major reservoirs with more than 1 km³ each of storage capacity store and release water according to their own rules of operation. Operating rules were determined for each reservoir using an algorithm that used currently available global data such as reservoir storage capacity, intended purposes, simulated inflow, and water demand in the lower reaches. The environmental flow requirement module was newly developed based on case studies from around the world. The integrated model closes both energy and water balances on land surfaces. Global water resources were assessed on a subannual basis using a newly devised index that locates water-stressed regions that were undetected in earlier studies. These regions, which are indicated by a gap in the subannual distribution of water resources and water use, include the Sahel, the Asian monsoon region, and southern Africa. The integrated model is applicable to assess various global environmental projections such as climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20070022475&hterms=kaufman&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dkaufman','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20070022475&hterms=kaufman&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D70%26Ntt%3Dkaufman"><span>Satellite-based Assessment of Global Warm Cloud Properties Associated with Aerosols, Atmospheric Stability, and Diurnal Cycle</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Matsui, Toshihisa; Masunaga, Hirohiko; Kreidenweis, Sonia M.; Pielke, Roger A., Sr.; Tao, Wei-Kuo; Chin, Mian; Kaufman, Yoram J.</p> <p>2006-01-01</p> <p>This study examines variability in marine low cloud properties derived from semi-global observations by the Tropical Rainfall Measuring Mission (TRMM) satellite, as linked to the aerosol index (AI) and lower-tropospheric stability (LTS). AI is derived from the Moderate Resolution Imaging Spectroradiometer (Terra MODIS) sensor and the Goddard Chemistry Aerosol Radiation and Transportation (GOCART) model, and is used to represent column-integrated aerosol concentrations. LTS is derived from the NCEP/NCAR reanalysis, and represents the background thermodynamic environment in which the clouds form. Global statistics reveal that cloud droplet size tends to be smallest in polluted (high-AI) and strong inversion (high-LTS) environments. Statistical quantification shows that cloud droplet size is better correlated with AI than it is with LTS. Simultaneously, the cloud liquid water path (CLWP) tends to decrease as AI increases. This correlation does not support the hypothesis or assumption that constant or increased CLWP is associated with high aerosol concentrations. Global variability in corrected cloud albedo (CCA), the product of cloud optical depth and cloud fraction, is very well explained by LTS, while both AI and LTS are needed to explain local variability in CCA. Most of the local correlations between AI and cloud properties are similar to the results from the global statistics, while weak anomalous aerosol-cloud correlations appear locally in the regions where simultaneous high (low) AI and low (high) LTS compensate each other. Daytime diurnal cycles explain additional variability in cloud properties. CCA has the largest diurnal cycle in high-LTS regions. Cloud droplet size and CLWP have weak diurnal cycles that differ between clean and polluted environments. The combined results suggest that investigations of marine low cloud radiative forcing and its relationship to hypothesized aerosol indirect effects must consider the combined effects of aerosols, thermodynamics, and the diurnal cycle.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ThApC.132..239I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ThApC.132..239I"><span>Field significance of performance measures in the context of regional climate model evaluation. Part 2: precipitation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Ivanov, Martin; Warrach-Sagi, Kirsten; Wulfmeyer, Volker</p> <p>2018-04-01</p> <p>A new approach for rigorous spatial analysis of the downscaling performance of regional climate model (RCM) simulations is introduced. It is based on a multiple comparison of the local tests at the grid cells and is also known as `field' or `global' significance. The block length for the local resampling tests is precisely determined to adequately account for the time series structure. New performance measures for estimating the added value of downscaled data relative to the large-scale forcing fields are developed. The methodology is exemplarily applied to a standard EURO-CORDEX hindcast simulation with the Weather Research and Forecasting (WRF) model coupled with the land surface model NOAH at 0.11 ∘ grid resolution. Daily precipitation climatology for the 1990-2009 period is analysed for Germany for winter and summer in comparison with high-resolution gridded observations from the German Weather Service. The field significance test controls the proportion of falsely rejected local tests in a meaningful way and is robust to spatial dependence. Hence, the spatial patterns of the statistically significant local tests are also meaningful. We interpret them from a process-oriented perspective. While the downscaled precipitation distributions are statistically indistinguishable from the observed ones in most regions in summer, the biases of some distribution characteristics are significant over large areas in winter. WRF-NOAH generates appropriate stationary fine-scale climate features in the daily precipitation field over regions of complex topography in both seasons and appropriate transient fine-scale features almost everywhere in summer. As the added value of global climate model (GCM)-driven simulations cannot be smaller than this perfect-boundary estimate, this work demonstrates in a rigorous manner the clear additional value of dynamical downscaling over global climate simulations. The evaluation methodology has a broad spectrum of applicability as it is distribution-free, robust to spatial dependence, and accounts for time series structure.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018E%26ES..140a2037T','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018E%26ES..140a2037T"><span>Statistical downscaling of rainfall under transitional climate in Limbang River Basin by using SDSM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Tahir, T.; Hashim, A. M.; Yusof, K. W.</p> <p>2018-04-01</p> <p>Climate change is a global phenomenon that has affected hundreds of people around the globe. In transitional climatic patterns, it is essential to compute the severity of rainfall in the regions prone to hydro-meteorological disasters. Therefore, the main aim of this study is to assess the severity of rainfall under three Representative Concentration Pathways (RCPs) from Global Climate Model data of CanESM2 in Limbang River basin. Furthermore, the objective is to check the capability of Statistical Downscaling Model (SDSM) in the tropical region. The historical data of nine weather stations were used for the period of 30 years (1976 - 2005) and Global Climate Model data of CanESM2 under RCPs of RCP2.6, RCP4.5 and RCP8.5 for the period of 2071-2100. The model was calibrated for the period of 1976-1995 and validated for the period of 1996-2005. After successful calibration and validation of SDSM, the future rainfall was simulated separately for all the three scenarios of RCPs. The obtained results have shown the values of R2 and RMSE for the model calibration and validation ranged between 0.58 – 0.86 and between 1.49 and 4.7, respectively for all stations. The obtained future rainfall data from 2071 – 2100 was then compared with the base period rainfall from 1976 - 2005. It was shown that under RCP2.6 scenario there will be an increase of 8.13%, while 14.7% rise in the RCP4.5 scenario during the period of 2071- 2100. An abrupt increase of about 40.6% was observed under the robust scenario of RCP8.5. Therefore, it is concluded that future pattern of rainfall in Limbang River basin under all the scenarios is constantly increasing due to the climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2010ascl.soft11010D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2010ascl.soft11010D"><span>Global Sky Model (GSM): A Model of Diffuse Galactic Radio Emission from 10 MHz to 100 GHz</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>de Oliveira-Costa, Angelica; Tegmark, Max; Gaensler, B. M.; Jonas, Justin; Landecker, T. L.; Reich, Patricia</p> <p>2010-11-01</p> <p>Understanding diffuse Galactic radio emission is interesting both in its own right and for minimizing foreground contamination of cosmological measurements. Cosmic Microwave Background experiments have focused on frequencies > 10 GHz, whereas 21 cm tomography of the high redshift universe will mainly focus on < 0.2 GHz, for which less is currently known about Galactic emission. Motivated by this, we present a global sky model derived from all publicly available total power large-area radio surveys, digitized with optical character recognition when necessary and compiled into a uniform format, as well as the new Villa Elisa data extending the 1.4 GHz map to the entire sky. We quantify statistical and systematic uncertainties in these surveys by comparing them with various global multi-frequency model fits. We find that a principal component based model with only three components can fit the 11 most accurate data sets (at 10, 22, 45 & 408 MHz and 1.4, 2.3, 23, 33, 41, 61, 94 GHz) to an accuracy around 1%-10% depending on frequency and sky region. The data compilation and software returning a predicted all-sky map at any frequency from 10 MHz to 100 GHz are publicly available at the link below.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/1034677-enhanced-engineering-perspective-global-climate-systems-statistical-formulation-terrestrial-co2-exchanges','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/1034677-enhanced-engineering-perspective-global-climate-systems-statistical-formulation-terrestrial-co2-exchanges"><span>An Enhanced Engineering Perspective of Global Climate Systems and Statistical Formulation of Terrestrial CO2 Exchanges</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Dai, Yuanshun; Baek, Seung H.; Garcia-Diza, Alberto</p> <p>2012-01-01</p> <p>This paper designs a comprehensive approach based on the engineering machine/system concept, to model, analyze, and assess the level of CO2 exchange between the atmosphere and terrestrial ecosystems, which is an important factor in understanding changes in global climate. The focus of this article is on spatial patterns and on the correlation between levels of CO2 fluxes and a variety of influencing factors in eco-environments. The engineering/machine concept used is a system protocol that includes the sequential activities of design, test, observe, and model. This concept is applied to explicitly include various influencing factors and interactions associated with CO2 fluxes.more » To formulate effective models of a large and complex climate system, this article introduces a modeling technique that will be referred to as Stochastic Filtering Analysis of Variance (SFANOVA). The CO2 flux data observed from some sites of AmeriFlux are used to illustrate and validate the analysis, prediction and globalization capabilities of the proposed engineering approach and the SF-ANOVA technology. The SF-ANOVA modeling approach was compared to stepwise regression, ridge regression, and neural networks. The comparison indicated that the proposed approach is a valid and effective tool with similar accuracy and less complexity than the other procedures.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ERL....13a5006H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ERL....13a5006H"><span>Sources of uncertainty in hydrological climate impact assessment: a cross-scale study</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hattermann, F. F.; Vetter, T.; Breuer, L.; Su, Buda; Daggupati, P.; Donnelly, C.; Fekete, B.; Flörke, F.; Gosling, S. N.; Hoffmann, P.; Liersch, S.; Masaki, Y.; Motovilov, Y.; Müller, C.; Samaniego, L.; Stacke, T.; Wada, Y.; Yang, T.; Krysnaova, V.</p> <p>2018-01-01</p> <p>Climate change impacts on water availability and hydrological extremes are major concerns as regards the Sustainable Development Goals. Impacts on hydrology are normally investigated as part of a modelling chain, in which climate projections from multiple climate models are used as inputs to multiple impact models, under different greenhouse gas emissions scenarios, which result in different amounts of global temperature rise. While the goal is generally to investigate the relevance of changes in climate for the water cycle, water resources or hydrological extremes, it is often the case that variations in other components of the model chain obscure the effect of climate scenario variation. This is particularly important when assessing the impacts of relatively lower magnitudes of global warming, such as those associated with the aspirational goals of the Paris Agreement. In our study, we use ANOVA (analyses of variance) to allocate and quantify the main sources of uncertainty in the hydrological impact modelling chain. In turn we determine the statistical significance of different sources of uncertainty. We achieve this by using a set of five climate models and up to 13 hydrological models, for nine large scale river basins across the globe, under four emissions scenarios. The impact variable we consider in our analysis is daily river discharge. We analyze overall water availability and flow regime, including seasonality, high flows and low flows. Scaling effects are investigated by separately looking at discharge generated by global and regional hydrological models respectively. Finally, we compare our results with other recently published studies. We find that small differences in global temperature rise associated with some emissions scenarios have mostly significant impacts on river discharge—however, climate model related uncertainty is so large that it obscures the sensitivity of the hydrological system.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016PhRvE..93a2150C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016PhRvE..93a2150C"><span>Experimental study of stable imbibition displacements in a model open fracture. II. Scale-dependent avalanche dynamics</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Clotet, Xavier; Santucci, Stéphane; Ortín, Jordi</p> <p>2016-01-01</p> <p>We report the results of an experimental investigation of the spatiotemporal dynamics of stable imbibition fronts in a disordered medium, in the regime of capillary disorder, for a wide range of experimental conditions. We have used silicone oils of various viscosities μ and nearly identical oil-air surface tension, and forced them to slowly invade a model open fracture at very different flow rates v . In this second part of the study we have carried out a scale-dependent statistical analysis of the front dynamics. We have specifically analyzed the influence of μ and v on the statistical properties of the velocity Vℓ, the spatial average of the local front velocities over a window of lateral size ℓ . We have varied ℓ from the local scale defined by our spatial resolution up to the lateral system size L . Even though the imposed flow rate is constant, the signals Vℓ(t ) present very strong fluctuations which evolve systematically with the parameters μ , v , and ℓ . We have verified that the non-Gaussian fluctuations of the global velocity Vℓ(t ) are very well described by a generalized Gumbel statistics. The asymmetric shape and the exponential tail of those distributions are controlled by the number of effective degrees of freedom of the imbibition fronts, given by Neff=ℓ /ℓc (the ratio of the lateral size of the measuring window ℓ to the correlation length ℓc˜1 /√{μ v } ). The large correlated excursions of Vℓ(t ) correspond to global avalanches, which reflect extra displacements of the imbibition fronts. We show that global avalanches are power-law distributed, both in sizes and durations, with robustly defined exponents—independent of μ , v , and ℓ . Nevertheless, the exponential upper cutoffs of the distributions evolve systematically with those parameters. We have found, moreover, that maximum sizes ξS and maximum durations ξT of global avalanches are not controlled by the same mechanism. While ξS are also determined by ℓ /ℓc , like the amplitude fluctuations of Vℓ(t ) , ξT and the temporal correlations of Vℓ(t ) evolve much more strongly with imposed flow rate v than with fluid viscosity μ .</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018AtmEn.176...40Y','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018AtmEn.176...40Y"><span>Evaluation of nitrous oxide as a substitute for sulfur hexafluoride to reduce global warming impacts of ANSI/HPS N13.1 gaseous uniformity testing</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Yu, Xiao-Ying; Barnett, J. Matthew; Amidan, Brett G.; Recknagle, Kurtis P.; Flaherty, Julia E.; Antonio, Ernest J.; Glissmeyer, John A.</p> <p>2018-03-01</p> <p>The ANSI/HPS N13.1-2011 standard requires gaseous tracer uniformity testing for sampling associated with stacks used in radioactive air emissions. Sulfur hexafluoride (SF6), a greenhouse gas with a high global warming potential, has long been the gas tracer used in such testing. To reduce the impact of gas tracer tests on the environment, nitrous oxide (N2O) was evaluated as a potential replacement to SF6. The physical evaluation included the development of a test plan to record percent coefficient of variance and the percent maximum deviation between the two gases while considering variables such as fan configuration, injection position, and flow rate. Statistical power was calculated to determine how many sample sets were needed, and computational fluid dynamic modeling was utilized to estimate overall mixing in stacks. Results show there are no significant differences between the behaviors of the two gases, and SF6 modeling corroborated N2O test results. Although, in principle, all tracer gases should behave in an identical manner for measuring mixing within a stack, the series of physical tests guided by statistics was performed to demonstrate the equivalence of N2O testing to SF6 testing in the context of stack qualification tests. The results demonstrate that N2O is a viable choice leading to a four times reduction in global warming impacts for future similar compliance driven testing.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC23D1092Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC23D1092Z"><span>Long-term Trends and Variability of Eddy Activities in the South China Sea</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zhang, M.; von Storch, H.</p> <p>2017-12-01</p> <p>For constructing empirical downscaling models and projecting possible future states of eddy activities in the South China Sea (SCS), long-term statistical characteristics of the SCS eddy are needed. We use a daily global eddy-resolving model product named STORM covering the period of 1950-2010. This simulation has employed the MPI-OM model with a mean horizontal resolution of 10km and been driven by the NCEP reanalysis-1 data set. An eddy detection and tracking algorithm operating on the gridded sea surface height anomaly (SSHA) fields was developed. A set of parameters for the criteria in the SCS are determined through sensitivity tests. Our method detected more than 6000 eddy tracks in the South China Sea. For all of them, eddy diameters, track length, eddy intensity, eddy lifetime and eddy frequency were determined. The long-term trends and variability of those properties also has been derived. Most of the eddies propagate westward. Nearly 100 eddies travel longer than 1000km, and over 800 eddies have a lifespan of more than 2 months. Furthermore, for building the statistical empirical model, the relationship between the SCS eddy statistics and the large-scale atmospheric and oceanic phenomena has been investigated.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.5293K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.5293K"><span>Analysing the teleconnection systems affecting the climate of the Carpathian Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kristóf, Erzsébet; Bartholy, Judit; Pongrácz, Rita</p> <p>2017-04-01</p> <p>Nowadays, the increase of the global average near-surface air temperature is unequivocal. Atmospheric low-frequency variabilities have substantial impacts on climate variables such as air temperature and precipitation. Therefore, assessing their effects is essential to improve global and regional climate model simulations for the 21st century. The North Atlantic Oscillation (NAO) is one of the best-known atmospheric teleconnection patterns affecting the Carpathian Basin in Central Europe. Besides NAO, we aim to analyse other interannual-to-decadal teleconnection patterns, which might have significant impacts on the Carpathian Basin, namely, the East Atlantic/West Russia pattern, the Scandinavian pattern, the Mediterranean Oscillation, and the North-Sea Caspian Pattern. For this purpose primarily the European Centre for Medium-Range Weather Forecasts' (ECMWF) ERA-20C atmospheric reanalysis dataset and multivariate statistical methods are used. The indices of each teleconnection pattern and their correlations with temperature and precipitation will be calculated for the period of 1961-1990. On the basis of these data first the long range (i. e. seasonal and/or annual scale) forecast ability is evaluated. Then, we aim to calculate the same indices of the relevant teleconnection patterns for the historical and future simulations of Coupled Model Intercomparison Project Phase 5 (CMIP5) models and compare them against each other using statistical methods. Our ultimate goal is to examine all available CMIP5 models and evaluate their abilities to reproduce the selected teleconnection systems. Thus, climate predictions for the 21st century for the Carpathian Basin may be improved using the best-performing models among all CMIP5 model simulations.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/23810082','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/23810082"><span>Statistical shape analysis of clavicular cortical bone with applications to the development of mean and boundary shape models.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Lu, Yuan-Chiao; Untaroiu, Costin D</p> <p>2013-09-01</p> <p>During car collisions, the shoulder belt exposes the occupant's clavicle to large loading conditions which often leads to a bone fracture. To better understand the geometric variability of clavicular cortical bone which may influence its injury tolerance, twenty human clavicles were evaluated using statistical shape analysis. The interior and exterior clavicular cortical bone surfaces were reconstructed from CT-scan images. Registration between one selected template and the remaining 19 clavicle models was conducted to remove translation and rotation differences. The correspondences of landmarks between the models were then established using coordinates and surface normals. Three registration methods were compared: the LM-ICP method; the global method; and the SHREC method. The LM-ICP registration method showed better performance than the global and SHREC registration methods, in terms of compactness, generalization, and specificity. The first four principal components obtained by using the LM-ICP registration method account for 61% and 67% of the overall anatomical variation for the exterior and interior cortical bone shapes, respectively. The length was found to be the most significant variation mode of the human clavicle. The mean and two boundary shape models were created using the four most significant principal components to investigate the size and shape variation of clavicular cortical bone. In the future, boundary shape models could be used to develop probabilistic finite element models which may help to better understand the variability in biomechanical responses and injuries to the clavicle. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMIN11A0027F','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMIN11A0027F"><span>Towards a Statistical Model of Tropical Cyclone Genesis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Fernandez, A.; Kashinath, K.; McAuliffe, J.; Prabhat, M.; Stark, P. B.; Wehner, M. F.</p> <p>2017-12-01</p> <p>Tropical Cyclones (TCs) are important extreme weather phenomena that have a strong impact on humans. TC forecasts are largely based on global numerical models that produce TC-like features. Aspects of Tropical Cyclones such as their formation/genesis, evolution, intensification and dissipation over land are important and challenging problems in climate science. This study investigates the environmental conditions associated with Tropical Cyclone Genesis (TCG) by testing how accurately a statistical model can predict TCG in the CAM5.1 climate model. TCG events are defined using TECA software @inproceedings{Prabhat2015teca, title={TECA: Petascale Pattern Recognition for Climate Science}, author={Prabhat and Byna, Surendra and Vishwanath, Venkatram and Dart, Eli and Wehner, Michael and Collins, William D}, booktitle={Computer Analysis of Images and Patterns}, pages={426-436}, year={2015}, organization={Springer}} to extract TC trajectories from CAM5.1. L1-regularized logistic regression (L1LR) is applied to the CAM5.1 output. The predictions have nearly perfect accuracy for data not associated with TC tracks and high accuracy differentiating between high vorticity and low vorticity systems. The model's active variables largely correspond to current hypotheses about important factors for TCG, such as wind field patterns and local pressure minima, and suggests new routes for investigation. Furthermore, our model's predictions of TC activity are competitive with the output of an instantaneous version of Emanuel and Nolan's Genesis Potential Index (GPI) @inproceedings{eman04, title = "Tropical cyclone activity and the global climate system", author = "Kerry Emanuel and Nolan, {David S.}", year = "2004", pages = "240-241", booktitle = "26th Conference on Hurricanes and Tropical Meteorology"}.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20170008493&hterms=1091&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3D%2526%25231091','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20170008493&hterms=1091&qs=Ntx%3Dmode%2Bmatchall%26Ntk%3DAll%26N%3D0%26No%3D40%26Ntt%3D%2526%25231091"><span>Temperature Increase Reduces Global Yields of Major Crops in Four Independent Estimates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Zhao, Chuang; Liu, Bing; Piao, Shilong; Wang, Xuhui; Lobell, David B.; Huang, Yao; Huang, Mengtian; Yao, Yitong; Bassu, Simona; Ciais, Philippe; <a style="text-decoration: none; " href="javascript:void(0); " onClick="displayelement('author_20170008493'); toggleEditAbsImage('author_20170008493_show'); toggleEditAbsImage('author_20170008493_hide'); "> <img style="display:inline; width:12px; height:12px; " src="images/arrow-up.gif" width="12" height="12" border="0" alt="hide" id="author_20170008493_show"> <img style="width:12px; height:12px; display:none; " src="images/arrow-down.gif" width="12" height="12" border="0" alt="hide" id="author_20170008493_hide"></p> <p>2017-01-01</p> <p>Wheat, rice, maize, and soybean provide two-thirds of human caloric intake. Assessing the impact of global temperature increase on production of these crops is therefore critical to maintaining global food supply, but different studies have yielded different results. Here, we investigated the impacts of temperature on yields of the four crops by compiling extensive published results from four analytical methods: global grid-based and local point-based models, statistical regressions, and field-warming experiments. Results from the different methods consistently showed negative temperature impacts on crop yield at the global scale, generally underpinned by similar impacts at country and site scales. Without CO2 fertilization, effective adaptation, and genetic improvement, each degree-Celsius increase in global mean temperature would, on average, reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean by 3.1%. Results are highly heterogeneous across crops and geographical areas, with some positive impact estimates. Multi-method analyses improved the confidence in assessments of future climate impacts on global major crops and suggest crop- and region-specific adaptation strategies to ensure food security for an increasing world population.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5584412','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5584412"><span>Temperature increase reduces global yields of major crops in four independent estimates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhao, Chuang; Piao, Shilong; Wang, Xuhui; Lobell, David B.; Huang, Yao; Huang, Mengtian; Yao, Yitong; Bassu, Simona; Ciais, Philippe; Durand, Jean-Louis; Elliott, Joshua; Ewert, Frank; Janssens, Ivan A.; Li, Tao; Lin, Erda; Liu, Qiang; Martre, Pierre; Peng, Shushi; Wallach, Daniel; Wang, Tao; Wu, Donghai; Liu, Zhuo; Zhu, Yan; Zhu, Zaichun; Asseng, Senthold</p> <p>2017-01-01</p> <p>Wheat, rice, maize, and soybean provide two-thirds of human caloric intake. Assessing the impact of global temperature increase on production of these crops is therefore critical to maintaining global food supply, but different studies have yielded different results. Here, we investigated the impacts of temperature on yields of the four crops by compiling extensive published results from four analytical methods: global grid-based and local point-based models, statistical regressions, and field-warming experiments. Results from the different methods consistently showed negative temperature impacts on crop yield at the global scale, generally underpinned by similar impacts at country and site scales. Without CO2 fertilization, effective adaptation, and genetic improvement, each degree-Celsius increase in global mean temperature would, on average, reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean by 3.1%. Results are highly heterogeneous across crops and geographical areas, with some positive impact estimates. Multimethod analyses improved the confidence in assessments of future climate impacts on global major crops and suggest crop- and region-specific adaptation strategies to ensure food security for an increasing world population. PMID:28811375</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/28811375','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/28811375"><span>Temperature increase reduces global yields of major crops in four independent estimates.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Zhao, Chuang; Liu, Bing; Piao, Shilong; Wang, Xuhui; Lobell, David B; Huang, Yao; Huang, Mengtian; Yao, Yitong; Bassu, Simona; Ciais, Philippe; Durand, Jean-Louis; Elliott, Joshua; Ewert, Frank; Janssens, Ivan A; Li, Tao; Lin, Erda; Liu, Qiang; Martre, Pierre; Müller, Christoph; Peng, Shushi; Peñuelas, Josep; Ruane, Alex C; Wallach, Daniel; Wang, Tao; Wu, Donghai; Liu, Zhuo; Zhu, Yan; Zhu, Zaichun; Asseng, Senthold</p> <p>2017-08-29</p> <p>Wheat, rice, maize, and soybean provide two-thirds of human caloric intake. Assessing the impact of global temperature increase on production of these crops is therefore critical to maintaining global food supply, but different studies have yielded different results. Here, we investigated the impacts of temperature on yields of the four crops by compiling extensive published results from four analytical methods: global grid-based and local point-based models, statistical regressions, and field-warming experiments. Results from the different methods consistently showed negative temperature impacts on crop yield at the global scale, generally underpinned by similar impacts at country and site scales. Without CO 2 fertilization, effective adaptation, and genetic improvement, each degree-Celsius increase in global mean temperature would, on average, reduce global yields of wheat by 6.0%, rice by 3.2%, maize by 7.4%, and soybean by 3.1%. Results are highly heterogeneous across crops and geographical areas, with some positive impact estimates. Multimethod analyses improved the confidence in assessments of future climate impacts on global major crops and suggest crop- and region-specific adaptation strategies to ensure food security for an increasing world population.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26410464','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26410464"><span>Computer aided weld defect delineation using statistical parametric active contours in radiographic inspection.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Goumeidane, Aicha Baya; Nacereddine, Nafaa; Khamadja, Mohammed</p> <p>2015-01-01</p> <p>A perfect knowledge of a defect shape is determinant for the analysis step in automatic radiographic inspection. Image segmentation is carried out on radiographic images and extract defects indications. This paper deals with weld defect delineation in radiographic images. The proposed method is based on a new statistics-based explicit active contour. An association of local and global modeling of the image pixels intensities is used to push the model to the desired boundaries. Furthermore, other strategies are proposed to accelerate its evolution and make the convergence speed depending only on the defect size as selecting a band around the active contour curve. The experimental results are very promising, since experiments on synthetic and radiographic images show the ability of the proposed model to extract a piece-wise homogenous object from very inhomogeneous background, even in a bad quality image.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4288015','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4288015"><span>Generalized Linear Models of Home Activity for Automatic Detection of Mild Cognitive Impairment in Older Adults*</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Akl, Ahmad; Snoek, Jasper; Mihailidis, Alex</p> <p>2015-01-01</p> <p>With a globally aging population, the burden of care of cognitively impaired older adults is becoming increasingly concerning. Instances of Alzheimer’s disease and other forms of dementia are becoming ever more frequent. Earlier detection of cognitive impairment offers significant benefits, but remains difficult to do in practice. In this paper, we develop statistical models of the behavior of older adults within their homes using sensor data in order to detect the early onset of cognitive decline. Specifically, we use inhomogenous Poisson processes to model the presence of subjects within different rooms throughout the day in the home using unobtrusive sensing technologies. We compare the distributions learned from cognitively intact and impaired subjects using information theoretic tools and observe statistical differences between the two populations which we believe can be used to help detect the onset of cognitive decline. PMID:25570050</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_20");'>20</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li class="active"><span>22</span></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_22 --> <div id="page_23" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="441"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25570050','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25570050"><span>Generalized Linear Models of home activity for automatic detection of mild cognitive impairment in older adults.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Akl, Ahmad; Snoek, Jasper; Mihailidis, Alex</p> <p>2014-01-01</p> <p>With a globally aging population, the burden of care of cognitively impaired older adults is becoming increasingly concerning. Instances of Alzheimer's disease and other forms of dementia are becoming ever more frequent. Earlier detection of cognitive impairment offers significant benefits, but remains difficult to do in practice. In this paper, we develop statistical models of the behavior of older adults within their homes using sensor data in order to detect the early onset of cognitive decline. Specifically, we use inhomogenous Poisson processes to model the presence of subjects within different rooms throughout the day in the home using unobtrusive sensing technologies. We compare the distributions learned from cognitively intact and impaired subjects using information theoretic tools and observe statistical differences between the two populations which we believe can be used to help detect the onset of cognitive decline.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/27754496','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/27754496"><span>Disjunctive Normal Shape and Appearance Priors with Applications to Image Segmentation.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mesadi, Fitsum; Cetin, Mujdat; Tasdizen, Tolga</p> <p>2015-10-01</p> <p>The use of appearance and shape priors in image segmentation is known to improve accuracy; however, existing techniques have several drawbacks. Active shape and appearance models require landmark points and assume unimodal shape and appearance distributions. Level set based shape priors are limited to global shape similarity. In this paper, we present a novel shape and appearance priors for image segmentation based on an implicit parametric shape representation called disjunctive normal shape model (DNSM). DNSM is formed by disjunction of conjunctions of half-spaces defined by discriminants. We learn shape and appearance statistics at varying spatial scales using nonparametric density estimation. Our method can generate a rich set of shape variations by locally combining training shapes. Additionally, by studying the intensity and texture statistics around each discriminant of our shape model, we construct a local appearance probability map. Experiments carried out on both medical and natural image datasets show the potential of the proposed method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012NatSR...2E.532D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012NatSR...2E.532D"><span>Statistical Agent Based Modelization of the Phenomenon of Drug Abuse</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>di Clemente, Riccardo; Pietronero, Luciano</p> <p>2012-07-01</p> <p>We introduce a statistical agent based model to describe the phenomenon of drug abuse and its dynamical evolution at the individual and global level. The agents are heterogeneous with respect to their intrinsic inclination to drugs, to their budget attitude and social environment. The various levels of drug use were inspired by the professional description of the phenomenon and this permits a direct comparison with all available data. We show that certain elements have a great importance to start the use of drugs, for example the rare events in the personal experiences which permit to overcame the barrier of drug use occasionally. The analysis of how the system reacts to perturbations is very important to understand its key elements and it provides strategies for effective policy making. The present model represents the first step of a realistic description of this phenomenon and can be easily generalized in various directions.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011AGUFM.A33A0165H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011AGUFM.A33A0165H"><span>Testing a Coupled Global-limited-area Data Assimilation System using Observations from the 2004 Pacific Typhoon Season</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Holt, C. R.; Szunyogh, I.; Gyarmati, G.; Hoffman, R. N.; Leidner, M.</p> <p>2011-12-01</p> <p>Tropical cyclone (TC) track and intensity forecasts have improved in recent years due to increased model resolution, improved data assimilation, and the rapid increase in the number of routinely assimilated observations over oceans. The data assimilation approach that has received the most attention in recent years is Ensemble Kalman Filtering (EnKF). The most attractive feature of the EnKF is that it uses a fully flow-dependent estimate of the error statistics, which can have important benefits for the analysis of rapidly developing TCs. We implement the Local Ensemble Transform Kalman Filter algorithm, a vari- ation of the EnKF, on a reduced-resolution version of the National Centers for Environmental Prediction (NCEP) Global Forecast System (GFS) model and the NCEP Regional Spectral Model (RSM) to build a coupled global-limited area anal- ysis/forecast system. This is the first time, to our knowledge, that such a system is used for the analysis and forecast of tropical cyclones. We use data from summer 2004 to study eight tropical cyclones in the Northwest Pacific. The benchmark data sets that we use to assess the performance of our system are the NCEP Reanalysis and the NCEP Operational GFS analyses from 2004. These benchmark analyses were both obtained by the Statistical Spectral Interpolation, which was the operational data assimilation system of NCEP in 2004. The GFS Operational analysis assimilated a large number of satellite radiance observations in addition to the observations assimilated in our system. All analyses are verified against the Joint Typhoon Warning Center Best Track data set. The errors are calculated for the position and intensity of the TCs. The global component of the ensemble-based system shows improvement in po- sition analysis over the NCEP Reanalysis, but shows no significant difference from the NCEP operational analysis for most of the storm tracks. The regional com- ponent of our system improves position analysis over all the global analyses. The intensity analyses, measured by the minimum sea level pressure, are of similar quality in all of the analyses. Regional deterministic forecasts started from our analyses are generally not significantly different from those started from the GFS operational analysis. On average, the regional experiments performed better for longer than 48 h sea level pressure forecasts, while the global forecast performed better in predicting the position for longer than 48 h.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1917352H','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1917352H"><span>The surface drifter program for real time and off-line validation of ocean forecasts and reanalyses</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Hernandez, Fabrice; Regnier, Charly; Drévillon, Marie</p> <p>2017-04-01</p> <p>As part of the Global Ocean Observing System, the Global Drifter Program (GDP) is comprised of an array of about 1250 drifting buoys spread over the global ocean, that provide operational, near-real time surface velocity, sea surface temperature (SST) and sea level pressure observations. This information is used mainly used for numerical weather forecasting, research, and in-situ calibration/verification of satellite observations. Since 2013 the drifting buoy SST measurements are used for near real time assessment of global forecasting systems from Canada, France, UK, USA, Australia in the frame of the GODAE OceanView Intercomparison and Validation Task. For most of these operational systems, these data are not used for assimilation, and offer an independent observation assessment. This approach mimics the validation performed for SST satellite products. More recently, validation procedures have been proposed in order to assess the surface dynamics of Mercator Océan global and regional forecast and reanalyses. Velocities deduced from drifter trajectories are used in two ways. First, the Eulerian approach where buoy and ocean model velocity values are compared at the position of drifters. Then, from discrepancies, statistics are computed and provide an evaluation of the ocean model's surface dynamics reliability. Second, the Lagrangian approach, where drifting trajectories are simulated at each location of the real drifter trajectory using the ocean model velocity fields. Then, on daily basis, real and simulated drifter trajectories are compared by analyzing the spread after one day, two days etc…. The cumulated statistics on specific geographical boxes are evaluated in term of dispersion properties of the "real ocean" as captured by drifters, and those properties in the ocean model. This approach allows to better evaluate forecasting score for surface dispersion applications, like Search and Rescue, oil spill forecast, drift of other objects or contaminant, larvae dispersion etc… These Eulerian and Lagrangian validation approach can be applied for real time or offline assessment of ocean velocity products. In real time, the main limitation is our capability to detect drifter drogue's loss, causing erroneous assessment. Several methods, by comparison to wind entrainment effect or other velocity estimates like from satellite altimetry, are used. These Eulerian and Lagrangian surface velocity validation methods are planned to be adopted by the GODAE OceanView operational community in order to offer independent verification of surface current forecast.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/biblio/22482309-joint-space-time-statistics-macroweather-precipitation-space-time-statistical-factorization-macroweather-models','SCIGOV-STC'); return false;" href="https://www.osti.gov/biblio/22482309-joint-space-time-statistics-macroweather-precipitation-space-time-statistical-factorization-macroweather-models"><span>The joint space-time statistics of macroweather precipitation, space-time statistical factorization and macroweather models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Lovejoy, S., E-mail: lovejoy@physics.mcgill.ca; Lima, M. I. P. de; Department of Civil Engineering, University of Coimbra, 3030-788 Coimbra</p> <p>2015-07-15</p> <p>Over the range of time scales from about 10 days to 30–100 years, in addition to the familiar weather and climate regimes, there is an intermediate “macroweather” regime characterized by negative temporal fluctuation exponents: implying that fluctuations tend to cancel each other out so that averages tend to converge. We show theoretically and numerically that macroweather precipitation can be modeled by a stochastic weather-climate model (the Climate Extended Fractionally Integrated Flux, model, CEFIF) first proposed for macroweather temperatures and we show numerically that a four parameter space-time CEFIF model can approximately reproduce eight or so empirical space-time exponents. In spitemore » of this success, CEFIF is theoretically and numerically difficult to manage. We therefore propose a simplified stochastic model in which the temporal behavior is modeled as a fractional Gaussian noise but the spatial behaviour as a multifractal (climate) cascade: a spatial extension of the recently introduced ScaLIng Macroweather Model, SLIMM. Both the CEFIF and this spatial SLIMM model have a property often implicitly assumed by climatologists that climate statistics can be “homogenized” by normalizing them with the standard deviation of the anomalies. Physically, it means that the spatial macroweather variability corresponds to different climate zones that multiplicatively modulate the local, temporal statistics. This simplified macroweather model provides a framework for macroweather forecasting that exploits the system's long range memory and spatial correlations; for it, the forecasting problem has been solved. We test this factorization property and the model with the help of three centennial, global scale precipitation products that we analyze jointly in space and in time.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1915449C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1915449C"><span>Generation of future potential scenarios in an Alpine Catchment by applying bias-correction techniques, delta-change approaches and stochastic Weather Generators at different spatial scale. Analysis of their influence on basic and drought statistics.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Collados-Lara, Antonio-Juan; Pulido-Velazquez, David; Pardo-Iguzquiza, Eulogio</p> <p>2017-04-01</p> <p>Assessing impacts of potential future climate change scenarios in precipitation and temperature is essential to design adaptive strategies in water resources systems. The objective of this work is to analyze the possibilities of different statistical downscaling methods to generate future potential scenarios in an Alpine Catchment from historical data and the available climate models simulations performed in the frame of the CORDEX EU project. The initial information employed to define these downscaling approaches are the historical climatic data (taken from the Spain02 project for the period 1971-2000 with a spatial resolution of 12.5 Km) and the future series provided by climatic models in the horizon period 2071-2100 . We have used information coming from nine climate model simulations (obtained from five different Regional climate models (RCM) nested to four different Global Climate Models (GCM)) from the European CORDEX project. In our application we have focused on the Representative Concentration Pathways (RCP) 8.5 emissions scenario, which is the most unfavorable scenario considered in the fifth Assessment Report (AR5) by the Intergovernmental Panel on Climate Change (IPCC). For each RCM we have generated future climate series for the period 2071-2100 by applying two different approaches, bias correction and delta change, and five different transformation techniques (first moment correction, first and second moment correction, regression functions, quantile mapping using distribution derived transformation and quantile mapping using empirical quantiles) for both of them. Ensembles of the obtained series were proposed to obtain more representative potential future climate scenarios to be employed to study potential impacts. In this work we propose a non-equifeaseble combination of the future series giving more weight to those coming from models (delta change approaches) or combination of models and techniques that provides better approximation to the basic and drought statistic of the historical data. A multi-objective analysis using basic statistics (mean, standard deviation and asymmetry coefficient) and droughts statistics (duration, magnitude and intensity) has been performed to identify which models are better in terms of goodness of fit to reproduce the historical series. The drought statistics have been obtained from the Standard Precipitation index (SPI) series using the Theory of Runs. This analysis allows discriminate the best RCM and the best combination of model and correction technique in the bias-correction method. We have also analyzed the possibilities of using different Stochastic Weather Generators to approximate the basic and droughts statistics of the historical series. These analyses have been performed in our case study in a lumped and in a distributed way in order to assess its sensibility to the spatial scale. The statistic of the future temperature series obtained with different ensemble options are quite homogeneous, but the precipitation shows a higher sensibility to the adopted method and spatial scale. The global increment in the mean temperature values are 31.79 %, 31.79 %, 31.03 % and 31.74 % for the distributed bias-correction, distributed delta-change, lumped bias-correction and lumped delta-change ensembles respectively and in the precipitation they are -25.48 %, -28.49 %, -26.42 % and -27.35% respectively. Acknowledgments: This research work has been partially supported by the GESINHIMPADAPT project (CGL2013-48424-C2-2-R) with Spanish MINECO funds. We would also like to thank Spain02 and CORDEX projects for the data provided for this study and the R package qmap.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMGC13I..01L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMGC13I..01L"><span>Conservation status of polar bears (Ursus maritimus) in relation to projected sea-ice declines</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Laidre, K. L.; Regehr, E. V.; Akcakaya, H. R.; Amstrup, S. C.; Atwood, T.; Lunn, N.; Obbard, M.; Stern, H. L., III; Thiemann, G.; Wiig, O.</p> <p>2016-12-01</p> <p>Loss of Arctic sea ice due to climate change is the most serious threat to polar bears (Ursus maritimus) throughout their circumpolar range. We performed a data-based sensitivity analysis with respect to this threat by evaluating the potential response of the global polar bear population to projected sea-ice conditions. We conducted 1) an assessment of generation length for polar bears, 2) developed of a standardized sea-ice metric representing important habitat characteristics for the species; and 3) performed population projections over three generations, using computer simulation and statistical models representing alternative relationships between sea ice and polar bear abundance. Using three separate approaches, the median percent change in mean global population size for polar bears between 2015 and 2050 ranged from -4% (95% CI = -62%, 50%) to -43% (95% CI = -76%, -20%). Results highlight the potential for large reductions in the global population if sea-ice loss continues. They also highlight the large amount of uncertainty in statistical projections of polar bear abundance and the sensitivity of projections to plausible alternative assumptions. The median probability of a reduction in the mean global population size of polar bears greater than 30% over three generations was approximately 0.71 (range 0.20-0.95. The median probability of a reduction greater than 50% was approximately 0.07 (range 0-0.35), and the probability of a reduction greater than 80% was negligible.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A41H2386X','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A41H2386X"><span>Tracing the source of numerical climate model uncertainties in precipitation simulations using a feature-oriented statistical model</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Xu, Y.; Jones, A. D.; Rhoades, A.</p> <p>2017-12-01</p> <p>Precipitation is a key component in hydrologic cycles, and changing precipitation regimes contribute to more intense and frequent drought and flood events around the world. Numerical climate modeling is a powerful tool to study climatology and to predict future changes. Despite the continuous improvement in numerical models, long-term precipitation prediction remains a challenge especially at regional scales. To improve numerical simulations of precipitation, it is important to find out where the uncertainty in precipitation simulations comes from. There are two types of uncertainty in numerical model predictions. One is related to uncertainty in the input data, such as model's boundary and initial conditions. These uncertainties would propagate to the final model outcomes even if the numerical model has exactly replicated the true world. But a numerical model cannot exactly replicate the true world. Therefore, the other type of model uncertainty is related the errors in the model physics, such as the parameterization of sub-grid scale processes, i.e., given precise input conditions, how much error could be generated by the in-precise model. Here, we build two statistical models based on a neural network algorithm to predict long-term variation of precipitation over California: one uses "true world" information derived from observations, and the other uses "modeled world" information using model inputs and outputs from the North America Coordinated Regional Downscaling Project (NA CORDEX). We derive multiple climate feature metrics as the predictors for the statistical model to represent the impact of global climate on local hydrology, and include topography as a predictor to represent the local control. We first compare the predictors between the true world and the modeled world to determine the errors contained in the input data. By perturbing the predictors in the statistical model, we estimate how much uncertainty in the model's final outcomes is accounted for by each predictor. By comparing the statistical model derived from true world information and modeled world information, we assess the errors lying in the physics of the numerical models. This work provides a unique insight to assess the performance of numerical climate models, and can be used to guide improvement of precipitation prediction.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/16295919','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/16295919"><span>Relationship between urban eco-environment and competitiveness with the background of globalization: statistical explanation based on industry type newly classified with environment demand and environment pressure.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kang, Xiao-guang; Ma, Qing-Bin</p> <p>2005-01-01</p> <p>Within the global urban system, the statistical relationship between urban eco-environment (UE) and urban competitiveness (UC) (RUEC) is researched. Data showed that there is a statistically inverted-U relationship between UE and UC. Eco-environmental factor is put into the classification of industries, and gets six industrial types by two indexes viz. industries' eco-environmental demand and pressure. The statistical results showed that there is a strong relationship, for new industrial classification, between the changes of industrial structure and evolvement of UE. The drive mechanism of the evolvement of urban eco-environment, with human demand and global work division was analyzed. The conclusion is that the development stratege, industrial policies of cities, and environmental policies fo cities must be fit with their ranks among the global urban system. At the era of globalization, so far as the environmental policies, their rationality could not be assessed with the level of strictness, but it can enhance cities' competitiveness when they are fit with cities' capabilities to attract and control some sections of the industry's value-chain. None but these kinds of environmental policies can probably enhance the UC.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1304704-role-atlantic-multi-decadal-oscillation-global-mean-temperature-variability','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1304704-role-atlantic-multi-decadal-oscillation-global-mean-temperature-variability"><span>The role of Atlantic Multi-decadal Oscillation in the global mean temperature variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Chylek, Petr; Klett, James D.; Dubey, Manvendra K.; ...</p> <p>2016-11-01</p> <p>We simulated the global mean 1900–2015 warming by 42 Coupled Models Inter-comparison Project, phase 5 (CMIP5) climate models varies between 0.58 and 1.70 °C. The observed warming according to the NASA GISS temperature analysis is 0.95 °C with a 1200 km smoothing radius, or 0.86 °C with a 250 km smoothing radius. The projection of the future 2015–2100 global warming under a moderate increase of anthropogenic radiative forcing (RCP4.5 scenario) by individual models is between 0.7 and 2.3 °C. The CMIP5 climate models agree that the future climate will be warmer; however, there is little consensus as to how largemore » the warming will be (reflected by an uncertainty of over a factor of three). Moreover, a parsimonious statistical regression model with just three explanatory variables [anthropogenic radiative forcing due to greenhouse gases and aerosols (GHGA), solar variability, and the Atlantic Multi-decadal Oscillation (AMO) index] accounts for over 95 % of the observed 1900–2015 temperature variance. This statistical regression model reproduces very accurately the past warming (0.96 °C compared to the observed 0.95 °C) and projects the future 2015–2100 warming to be around 0.95 °C (with the IPCC 2013 suggested RCP4.5 radiative forcing and an assumed cyclic AMO behavior). The AMO contribution to the 1970–2005 warming was between 0.13 and 0.20 °C (depending on which AMO index is used) compared to the GHGA contribution of 0.49–0.58 °C. During the twenty-first century AMO cycle the AMO contribution is projected to remain the same (0.13–0.20 °C), while the GHGA contribution is expected to decrease to 0.21–0.25 °C due to the levelling off of the GHGA radiative forcing that is assumed according to the RCP4.5 scenario. Therefore, the anthropogenic contribution and natural variability are expected to contribute about equally to the anticipated global warming during the second half of the twenty-first century for the RCP4.5 trajectory.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/servlets/purl/1304704','SCIGOV-STC'); return false;" href="https://www.osti.gov/servlets/purl/1304704"><span>The role of Atlantic Multi-decadal Oscillation in the global mean temperature variability</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/search">DOE Office of Scientific and Technical Information (OSTI.GOV)</a></p> <p>Chylek, Petr; Klett, James D.; Dubey, Manvendra K.</p> <p></p> <p>We simulated the global mean 1900–2015 warming by 42 Coupled Models Inter-comparison Project, phase 5 (CMIP5) climate models varies between 0.58 and 1.70 °C. The observed warming according to the NASA GISS temperature analysis is 0.95 °C with a 1200 km smoothing radius, or 0.86 °C with a 250 km smoothing radius. The projection of the future 2015–2100 global warming under a moderate increase of anthropogenic radiative forcing (RCP4.5 scenario) by individual models is between 0.7 and 2.3 °C. The CMIP5 climate models agree that the future climate will be warmer; however, there is little consensus as to how largemore » the warming will be (reflected by an uncertainty of over a factor of three). Moreover, a parsimonious statistical regression model with just three explanatory variables [anthropogenic radiative forcing due to greenhouse gases and aerosols (GHGA), solar variability, and the Atlantic Multi-decadal Oscillation (AMO) index] accounts for over 95 % of the observed 1900–2015 temperature variance. This statistical regression model reproduces very accurately the past warming (0.96 °C compared to the observed 0.95 °C) and projects the future 2015–2100 warming to be around 0.95 °C (with the IPCC 2013 suggested RCP4.5 radiative forcing and an assumed cyclic AMO behavior). The AMO contribution to the 1970–2005 warming was between 0.13 and 0.20 °C (depending on which AMO index is used) compared to the GHGA contribution of 0.49–0.58 °C. During the twenty-first century AMO cycle the AMO contribution is projected to remain the same (0.13–0.20 °C), while the GHGA contribution is expected to decrease to 0.21–0.25 °C due to the levelling off of the GHGA radiative forcing that is assumed according to the RCP4.5 scenario. Therefore, the anthropogenic contribution and natural variability are expected to contribute about equally to the anticipated global warming during the second half of the twenty-first century for the RCP4.5 trajectory.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3206729','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3206729"><span>The VSGB 2.0 Model: A Next Generation Energy Model for High Resolution Protein Structure Modeling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Li, Jianing; Abel, Robert; Zhu, Kai; Cao, Yixiang; Zhao, Suwen; Friesner, Richard A.</p> <p>2011-01-01</p> <p>A novel energy model (VSGB 2.0) for high resolution protein structure modeling is described, which features an optimized implicit solvent model as well as physics-based corrections for hydrogen bonding, π-π interactions, self-contact interactions and hydrophobic interactions. Parameters of the VSGB 2.0 model were fit to a crystallographic database of 2239 single side chain and 100 11–13 residue loop predictions. Combined with an advanced method of sampling and a robust algorithm for protonation state assignment, the VSGB 2.0 model was validated by predicting 115 super long loops up to 20 residues. Despite the dramatically increasing difficulty in reconstructing longer loops, a high accuracy was achieved: all of the lowest energy conformations have global backbone RMSDs better than 2.0 Å from the native conformations. Average global backbone RMSDs of the predictions are 0.51, 0.63, 0.70, 0.62, 0.80, 1.41, and 1.59 Å for 14, 15, 16, 17, 18, 19, and 20 residue loop predictions, respectively. When these results are corrected for possible statistical bias as explained in the text, the average global backbone RMSDs are 0.61, 0.71, 0.86, 0.62, 1.06, 1.67, and 1.59 Å. Given the precision and robustness of the calculations, we believe that the VSGB 2.0 model is suitable to tackle “real” problems, such as biological function modeling and structure-based drug discovery. PMID:21905107</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/1993JCli....6.1161V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/1993JCli....6.1161V"><span>Downscaling of Global Climate Change Estimates to Regional Scales: An Application to Iberian Rainfall in Wintertime.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>von Storch, Hans; Zorita, Eduardo; Cubasch, Ulrich</p> <p>1993-06-01</p> <p>A statistical strategy to deduct regional-scale features from climate general circulation model (GCM) simulations has been designed and tested. The main idea is to interrelate the characteristic patterns of observed simultaneous variations of regional climate parameters and of large-scale atmospheric flow using the canonical correlation technique.The large-scale North Atlantic sea level pressure (SLP) is related to the regional, variable, winter (DJF) mean Iberian Peninsula rainfall. The skill of the resulting statistical model is shown by reproducing, to a good approximation, the winter mean Iberian rainfall from 1900 to present from the observed North Atlantic mean SLP distributions. It is shown that this observed relationship between these two variables is not well reproduced in the output of a general circulation model (GCM).The implications for Iberian rainfall changes as the response to increasing atmospheric greenhouse-gas concentrations simulated by two GCM experiments are examined with the proposed statistical model. In an instantaneous `2 C02' doubling experiment, using the simulated change of the mean North Atlantic SLP field to predict Iberian rainfall yields, there is an insignificant increase of area-averaged rainfall of 1 mm/month, with maximum values of 4 mm/month in the northwest of the peninsula. In contrast, for the four GCM grid points representing the Iberian Peninsula, the change is 10 mm/month, with a minimum of 19 mm/month in the southwest. In the second experiment, with the IPCC scenario A ("business as usual") increase Of C02, the statistical-model results partially differ from the directly simulated rainfall changes: in the experimental range of 100 years, the area-averaged rainfall decreases by 7 mm/month (statistical model), and by 9 mm/month (GCM); at the same time the amplitude of the interdecadal variability is quite different.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016EGUGA..18.4156A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016EGUGA..18.4156A"><span>Global trends in significant wave height and marine wind speed from the ERA-20CM</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aarnes, Ole Johan; Breivik, Øyvind</p> <p>2016-04-01</p> <p>The ERA-20CM is one of the latest additions to the ERA-series produced at the European Center for Medium-Range Weather Forecasts (ECMWF). This 10 member ensemble is generated with a version of the Integrated Forecast System (IFS), a coupled atmosphere-wave model. The model integration is run as a AMIP (Atmospheric Model Intercomparison Project) constrained by CMIP5 recommended radiative forcing and different realizations of sea-surface temperature (SST) and sea-ice cover (SIC) prescribed by the HadISST2 (Met Office Hadley Center). While the ERA-20CM is unable to reproduce the actual synoptic conditions, it is designed to offer a realistic statistical representation of the past climate, spanning the period 1899-2010. In this study we investigate global trends in significant wave height and marine wind speed based on ERA-20CM, using monthly mean data, upper percentiles and monthly/annual maxima. The aim of the study is to assess the quality of the trends and how these estimates are affected by different SST and SIC. Global trends are compared against corresponding estimates obtained with ERA-Interim (1979-2009), but also crosschecked against ERA-20C - an ECMWF pilot reanalysis of the 20th-century, known to most trustworthy in the Northern Hemisphere extratropics. Over the period 1900-2009, the 10 member ensemble yields trends mainly within +/- 5% per century. However, significant trends of opposite signs are found locally. Certain areas, like the eastern equatorial Pacific, highly affected by the El Niño Southern Oscillation, show stronger trends. In general, trends based on statistical quantities further into the tail of the distribution are found less reliable.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012WRR....48.9530B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012WRR....48.9530B"><span>A physically based model of global freshwater surface temperature</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Beek, Ludovicus P. H.; Eikelboom, Tessa; Vliet, Michelle T. H.; Bierkens, Marc F. P.</p> <p>2012-09-01</p> <p>Temperature determines a range of physical properties of water and exerts a strong control on surface water biogeochemistry. Thus, in freshwater ecosystems the thermal regime directly affects the geographical distribution of aquatic species through their growth and metabolism and indirectly through their tolerance to parasites and diseases. Models used to predict surface water temperature range between physically based deterministic models and statistical approaches. Here we present the initial results of a physically based deterministic model of global freshwater surface temperature. The model adds a surface water energy balance to river discharge modeled by the global hydrological model PCR-GLOBWB. In addition to advection of energy from direct precipitation, runoff, and lateral exchange along the drainage network, energy is exchanged between the water body and the atmosphere by shortwave and longwave radiation and sensible and latent heat fluxes. Also included are ice formation and its effect on heat storage and river hydraulics. We use the coupled surface water and energy balance model to simulate global freshwater surface temperature at daily time steps with a spatial resolution of 0.5° on a regular grid for the period 1976-2000. We opt to parameterize the model with globally available data and apply it without calibration in order to preserve its physical basis with the outlook of evaluating the effects of atmospheric warming on freshwater surface temperature. We validate our simulation results with daily temperature data from rivers and lakes (U.S. Geological Survey (USGS), limited to the USA) and compare mean monthly temperatures with those recorded in the Global Environment Monitoring System (GEMS) data set. Results show that the model is able to capture the mean monthly surface temperature for the majority of the GEMS stations, while the interannual variability as derived from the USGS and NOAA data was captured reasonably well. Results are poorest for the Arctic rivers because the timing of ice breakup is predicted too late in the year due to the lack of including a mechanical breakup mechanism. Moreover, surface water temperatures for tropical rivers were overestimated, most likely due to an overestimation of rainfall temperature and incoming shortwave radiation. The spatiotemporal variation of water temperature reveals large temperature differences between water and atmosphere for the higher latitudes, while considerable lateral transport of heat can be observed for rivers crossing hydroclimatic zones, such as the Nile, the Mississippi, and the large rivers flowing to the Arctic. Overall, our model results show promise for future projection of global surface freshwater temperature under global change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUFMNH51B1949M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUFMNH51B1949M"><span>Towards a full representation of tropical cyclones in a global reanalysis of extreme sea levels</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Muis, S.; Verlaan, M.; Lin, N.; Winsemius, H.; Vatvani, D.; Ward, P.; Aerts, J.</p> <p>2016-12-01</p> <p>Tropical cyclones (TCs), including hurricanes and typhoons, are characterised by high wind speeds and low pressure, and cause dangerous storm surges in coastal areas. Recent disasters like the flooding of New Orleans in 2005 due to Hurricane Katrina and of New York in 2012 due to Hurricane Sandy exemplify the significant TC risk in the United States. In this contribution, we present a new framework to model TC storm surges and probabilities at the Atlantic basin- and, ultimately, global scales. This works builds on the work of Muis et al. (2016), which presented the first dynamically-derived reanalysis dataset of storm surges that covers the entire world's coastline (GTSR dataset). Surge levels for the period 1979-2014 were simulated by forcing the Global Surge and Tide Model (GTSM) with wind speed and atmospheric pressure from the ERA-Interim reanalysis. There is generally a good agreement between simulated and observed sea level extremes in extra-tropical regions; however for areas prone to TCs there is a severe underestimation of extremes. For example, the maximum surge levels during Hurricane Katrina in New Orleans exceeded 8 m, whilst the GTSM surge levels in that area do not exceed 2-3 m. Hence, due to the coarse grid resolution, the strong intensities of TCs are not fully captured in ERA-Interim. Furthermore, the length of ERA-Interim data set, like other reanalysis datasets, is too short to estimate the probabilities of extreme TC events in a reliable way. For accurate risk assessments it is essential to improve the representation of TCs in these global reanalysis of extreme sea levels. First, we need a higher resolution of meteorological forcing, which can be modelled with input from the observed best track data. Second, we need to statistically extend the observed record to many thousands of years. We will present the first results of these steps for the east coast of the United States. We will validate the GTSM model forced with best track data using recent extreme events like Katrina and Sandy. We will investigate how the statistics of the extreme sea level will change due to improved representation of TCs.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2011PCE....36..727G','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2011PCE....36..727G"><span>Using multiple climate projections for assessing hydrological response to climate change in the Thukela River Basin, South Africa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Graham, L. Phil; Andersson, Lotta; Horan, Mark; Kunz, Richard; Lumsden, Trevor; Schulze, Roland; Warburton, Michele; Wilk, Julie; Yang, Wei</p> <p></p> <p>This study used climate change projections from different regional approaches to assess hydrological effects on the Thukela River Basin in KwaZulu-Natal, South Africa. Projecting impacts of future climate change onto hydrological systems can be undertaken in different ways and a variety of effects can be expected. Although simulation results from global climate models (GCMs) are typically used to project future climate, different outcomes from these projections may be obtained depending on the GCMs themselves and how they are applied, including different ways of downscaling from global to regional scales. Projections of climate change from different downscaling methods, different global climate models and different future emissions scenarios were used as input to simulations in a hydrological model to assess climate change impacts on hydrology. A total of 10 hydrological change simulations were made, resulting in a matrix of hydrological response results. This matrix included results from dynamically downscaled climate change projections from the same regional climate model (RCM) using an ensemble of three GCMs and three global emissions scenarios, and from statistically downscaled projections using results from five GCMs with the same emissions scenario. Although the matrix of results does not provide complete and consistent coverage of potential uncertainties from the different methods, some robust results were identified. In some regards, the results were in agreement and consistent for the different simulations. For others, particularly rainfall, the simulations showed divergence. For example, all of the statistically downscaled simulations showed an annual increase in precipitation and corresponding increase in river runoff, while the RCM downscaled simulations showed both increases and decreases in runoff. According to the two projections that best represent runoff for the observed climate, increased runoff would generally be expected for this basin in the future. Dealing with such variability in results is not atypical for assessing climate change impacts in Africa and practitioners are faced with how to interpret them. This work highlights the need for additional, well-coordinated regional climate downscaling for the region to further define the range of uncertainties involved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOSHI41A..05V','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOSHI41A..05V"><span>Modelling the global distribution and risk of small floating plastic debris</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>van Sebille, E.; Wilcox, C.; Lebreton, L.; Maximenko, N. A.; Sherman, P.; Hardesty, B. D.; van Franeker, J. A.; Eriksen, M.; Siegel, D.; Galgani, F.; Lavender Law, K. L.</p> <p>2016-02-01</p> <p>Microplastic debris floating at the ocean surface can harm marine life. Understanding the severity of this harm requires knowledge of plastic abundance and distributions. Dozens of expeditions measuring microplastics have been carried out since the 1970s, but they have primarily focused on the North Pacific and North Atlantic accumulation zones, with much sparser coverage elsewhere. Here, we use the largest dataset of microplastic measurements collated to date to assess the confidence we can have in global estimates of microplastic abundance and mass. We use a rigorous statistical framework to standardize a global dataset of plastic marine debris measured using surface-trawling plankton nets and coupled this with three different ocean circulation models to spatially interpolate the observations. Our estimates show that the accumulated number of microplastic particles in 2014 ranges from 15 to 51 trillion particles, weighing between 93 and 236 thousand metric tons, which is only approximately 1% of global plastic waste available to enter the ocean in the year 2010. These estimates are larger than previous global estimates, but vary widely because the scarcity of data in most of the world ocean, differences in model formulations, and fundamental knowledge gaps in the sources, transformations and fates of microplastics in the ocean. We then use this global distribution of small floating plastic debris to (i) map out where in the ocean the risk to marine life (seabirds, plankton growth) is greatest and to (ii) show that mitigation of the plastic problem can most aptly be done near coastlines, particularly in Asia, rather than in the centres of the gyres.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/19880010441','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/19880010441"><span>Comparison of simulation modeling and satellite techniques for monitoring ecological processes</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Box, Elgene O.</p> <p>1988-01-01</p> <p>In 1985 improvements were made in the world climatic data base for modeling and predictive mapping; in individual process models and the overall carbon-balance models; and in the interface software for mapping the simulation results. Statistical analysis of the data base was begun. In 1986 mapping was shifted to NASA-Goddard. The initial approach involving pattern comparisons was modified to a more statistical approach. A major accomplishment was the expansion and improvement of a global data base of measurements of biomass and primary production, to complement the simulation data. The main accomplishments during 1987 included: production of a master tape with all environmental and satellite data and model results for the 1600 sites; development of a complete mapping system used for the initial color maps comparing annual and monthly patterns of Normalized Difference Vegetation Index (NDVI), actual evapotranspiration, net primary productivity, gross primary productivity, and net ecosystem production; collection of more biosphere measurements for eventual improvement of the biological models; and development of some initial monthly models for primary productivity, based on satellite data.</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li class="active"><span>23</span></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_23 --> <div id="page_24" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="461"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1917121S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1917121S"><span>Prospective Evaluation of the Global Earthquake Activity Rate Model (GEAR1) Earthquake Forecast: Preliminary Results</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Strader, Anne; Schorlemmer, Danijel; Beutin, Thomas</p> <p>2017-04-01</p> <p>The Global Earthquake Activity Rate Model (GEAR1) is a hybrid seismicity model, constructed from a loglinear combination of smoothed seismicity from the Global Centroid Moment Tensor (CMT) earthquake catalog and geodetic strain rates (Global Strain Rate Map, version 2.1). For the 2005-2012 retrospective evaluation period, GEAR1 outperformed both parent strain rate and smoothed seismicity forecasts. Since 1. October 2015, GEAR1 has been prospectively evaluated by the Collaboratory for the Study of Earthquake Predictability (CSEP) testing center. Here, we present initial one-year test results of the GEAR1, GSRM and GSRM2.1, as well as localized evaluation of GEAR1 performance. The models were evaluated on the consistency in number (N-test), spatial (S-test) and magnitude (M-test) distribution of forecasted and observed earthquakes, as well as overall data consistency (CL-, L-tests). Performance at target earthquake locations was compared between models using the classical paired T-test and its non-parametric equivalent, the W-test, to determine if one model could be rejected in favor of another at the 0.05 significance level. For the evaluation period from 1. October 2015 to 1. October 2016, the GEAR1, GSRM and GSRM2.1 forecasts pass all CSEP likelihood tests. Comparative test results show statistically significant improvement of GEAR1 performance over both strain rate-based forecasts, both of which can be rejected in favor of GEAR1. Using point process residual analysis, we investigate the spatial distribution of differences in GEAR1, GSRM and GSRM2 model performance, to identify regions where the GEAR1 model should be adjusted, that could not be inferred from CSEP test results. Furthermore, we investigate whether the optimal combination of smoothed seismicity and strain rates remains stable over space and time.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFMGC21E0986W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFMGC21E0986W"><span>Examining the Stationarity Assumption for Statistically Downscaled Climate Projections of Precipitation</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wootten, A.; Dixon, K. W.; Lanzante, J. R.; Mcpherson, R. A.</p> <p>2017-12-01</p> <p>Empirical statistical downscaling (ESD) approaches attempt to refine global climate model (GCM) information via statistical relationships between observations and GCM simulations. The aim of such downscaling efforts is to create added-value climate projections by adding finer spatial detail and reducing biases. The results of statistical downscaling exercises are often used in impact assessments under the assumption that past performance provides an indicator of future results. Given prior research describing the danger of this assumption with regards to temperature, this study expands the perfect model experimental design from previous case studies to test the stationarity assumption with respect to precipitation. Assuming stationarity implies the performance of ESD methods are similar between the future projections and historical training. Case study results from four quantile-mapping based ESD methods demonstrate violations of the stationarity assumption for both central tendency and extremes of precipitation. These violations vary geographically and seasonally. For the four ESD methods tested the greatest challenges for downscaling of daily total precipitation projections occur in regions with limited precipitation and for extremes of precipitation along Southeast coastal regions. We conclude with a discussion of future expansion of the perfect model experimental design and the implications for improving ESD methods and providing guidance on the use of ESD techniques for impact assessments and decision-support.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018WRR....54..916L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018WRR....54..916L"><span>Attribution of Large-Scale Climate Patterns to Seasonal Peak-Flow and Prospects for Prediction Globally</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lee, Donghoon; Ward, Philip; Block, Paul</p> <p>2018-02-01</p> <p>Flood-related fatalities and impacts on society surpass those from all other natural disasters globally. While the inclusion of large-scale climate drivers in streamflow (or high-flow) prediction has been widely studied, an explicit link to global-scale long-lead prediction is lacking, which can lead to an improved understanding of potential flood propensity. Here we attribute seasonal peak-flow to large-scale climate patterns, including the El Niño Southern Oscillation (ENSO), Pacific Decadal Oscillation (PDO), North Atlantic Oscillation (NAO), and Atlantic Multidecadal Oscillation (AMO), using streamflow station observations and simulations from PCR-GLOBWB, a global-scale hydrologic model. Statistically significantly correlated climate patterns and streamflow autocorrelation are subsequently applied as predictors to build a global-scale season-ahead prediction model, with prediction performance evaluated by the mean squared error skill score (MSESS) and the categorical Gerrity skill score (GSS). Globally, fair-to-good prediction skill (20% ≤ MSESS and 0.2 ≤ GSS) is evident for a number of locations (28% of stations and 29% of land area), most notably in data-poor regions (e.g., West and Central Africa). The persistence of such relevant climate patterns can improve understanding of the propensity for floods at the seasonal scale. The prediction approach developed here lays the groundwork for further improving local-scale seasonal peak-flow prediction by identifying relevant global-scale climate patterns. This is especially attractive for regions with limited observations and or little capacity to develop flood early warning systems.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://hdl.handle.net/2060/20160000360','NASA-TRS'); return false;" href="http://hdl.handle.net/2060/20160000360"><span>Do Responses to Different Anthropogenic Forcings Add Linearly in Climate Models?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Marvel, Kate; Schmidt, Gavin A.; Shindell, Drew; Bonfils, Celine; LeGrande, Allegra N.; Nazarenko, Larissa; Tsigaridis, Kostas</p> <p>2015-01-01</p> <p>Many detection and attribution and pattern scaling studies assume that the global climate response to multiple forcings is additive: that the response over the historical period is statistically indistinguishable from the sum of the responses to individual forcings. Here, we use the NASA Goddard Institute for Space Studies (GISS) and National Center for Atmospheric Research Community Climate System Model (CCSM) simulations from the CMIP5 archive to test this assumption for multi-year trends in global-average, annual-average temperature and precipitation at multiple timescales. We find that responses in models forced by pre-computed aerosol and ozone concentrations are generally additive across forcings; however, we demonstrate that there are significant nonlinearities in precipitation responses to di?erent forcings in a configuration of the GISS model that interactively computes these concentrations from precursor emissions. We attribute these to di?erences in ozone forcing arising from interactions between forcing agents. Our results suggest that attribution to specific forcings may be complicated in a model with fully interactive chemistry and may provide motivation for other modeling groups to conduct further single-forcing experiments.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3967939','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=3967939"><span>Global Quantitative Modeling of Chromatin Factor Interactions</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Zhou, Jian; Troyanskaya, Olga G.</p> <p>2014-01-01</p> <p>Chromatin is the driver of gene regulation, yet understanding the molecular interactions underlying chromatin factor combinatorial patterns (or the “chromatin codes”) remains a fundamental challenge in chromatin biology. Here we developed a global modeling framework that leverages chromatin profiling data to produce a systems-level view of the macromolecular complex of chromatin. Our model ultilizes maximum entropy modeling with regularization-based structure learning to statistically dissect dependencies between chromatin factors and produce an accurate probability distribution of chromatin code. Our unsupervised quantitative model, trained on genome-wide chromatin profiles of 73 histone marks and chromatin proteins from modENCODE, enabled making various data-driven inferences about chromatin profiles and interactions. We provided a highly accurate predictor of chromatin factor pairwise interactions validated by known experimental evidence, and for the first time enabled higher-order interaction prediction. Our predictions can thus help guide future experimental studies. The model can also serve as an inference engine for predicting unknown chromatin profiles — we demonstrated that with this approach we can leverage data from well-characterized cell types to help understand less-studied cell type or conditions. PMID:24675896</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1332476-do-responses-different-anthropogenic-forcings-add-linearly-climate-models','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1332476-do-responses-different-anthropogenic-forcings-add-linearly-climate-models"><span>Do responses to different anthropogenic forcings add linearly in climate models?</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Marvel, Kate; Schmidt, Gavin A.; Shindell, Drew; ...</p> <p>2015-10-14</p> <p>Many detection and attribution and pattern scaling studies assume that the global climate response to multiple forcings is additive: that the response over the historical period is statistically indistinguishable from the sum of the responses to individual forcings. Here, we use the NASA Goddard Institute for Space Studies (GISS) and National Center for Atmospheric Research Community Climate System Model (CCSM4) simulations from the CMIP5 archive to test this assumption for multi-year trends in global-average, annual-average temperature and precipitation at multiple timescales. We find that responses in models forced by pre-computed aerosol and ozone concentrations are generally additive across forcings. However,more » we demonstrate that there are significant nonlinearities in precipitation responses to different forcings in a configuration of the GISS model that interactively computes these concentrations from precursor emissions. We attribute these to differences in ozone forcing arising from interactions between forcing agents. Lastly, our results suggest that attribution to specific forcings may be complicated in a model with fully interactive chemistry and may provide motivation for other modeling groups to conduct further single-forcing experiments.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.osti.gov/pages/biblio/1390020-impact-transport-model-errors-global-regional-methane-emissions-estimated-inverse-modelling','SCIGOV-DOEP'); return false;" href="https://www.osti.gov/pages/biblio/1390020-impact-transport-model-errors-global-regional-methane-emissions-estimated-inverse-modelling"><span>Impact of transport model errors on the global and regional methane emissions estimated by inverse modelling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.osti.gov/pages">DOE PAGES</a></p> <p>Locatelli, R.; Bousquet, P.; Chevallier, F.; ...</p> <p>2013-10-08</p> <p>A modelling experiment has been conceived to assess the impact of transport model errors on methane emissions estimated in an atmospheric inversion system. Synthetic methane observations, obtained from 10 different model outputs from the international TransCom-CH4 model inter-comparison exercise, are combined with a prior scenario of methane emissions and sinks, and integrated into the three-component PYVAR-LMDZ-SACS (PYthon VARiational-Laboratoire de Météorologie Dynamique model with Zooming capability-Simplified Atmospheric Chemistry System) inversion system to produce 10 different methane emission estimates at the global scale for the year 2005. The same methane sinks, emissions and initial conditions have been applied to produce the 10more » synthetic observation datasets. The same inversion set-up (statistical errors, prior emissions, inverse procedure) is then applied to derive flux estimates by inverse modelling. Consequently, only differences in the modelling of atmospheric transport may cause differences in the estimated fluxes. Here in our framework, we show that transport model errors lead to a discrepancy of 27 Tg yr -1 at the global scale, representing 5% of total methane emissions. At continental and annual scales, transport model errors are proportionally larger than at the global scale, with errors ranging from 36 Tg yr -1 in North America to 7 Tg yr -1 in Boreal Eurasia (from 23 to 48%, respectively). At the model grid-scale, the spread of inverse estimates can reach 150% of the prior flux. Therefore, transport model errors contribute significantly to overall uncertainties in emission estimates by inverse modelling, especially when small spatial scales are examined. Sensitivity tests have been carried out to estimate the impact of the measurement network and the advantage of higher horizontal resolution in transport models. The large differences found between methane flux estimates inferred in these different configurations highly question the consistency of transport model errors in current inverse systems.« less</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17.7513L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17.7513L"><span>Rainfall Downscaling Conditional on Upper-air Atmospheric Predictors: Improved Assessment of Rainfall Statistics in a Changing Climate</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Langousis, Andreas; Mamalakis, Antonis; Deidda, Roberto; Marrocu, Marino</p> <p>2015-04-01</p> <p>To improve the level skill of Global Climate Models (GCMs) and Regional Climate Models (RCMs) in reproducing the statistics of rainfall at a basin level and at hydrologically relevant temporal scales (e.g. daily), two types of statistical approaches have been suggested. One is the statistical correction of climate model rainfall outputs using historical series of precipitation. The other is the use of stochastic models of rainfall to conditionally simulate precipitation series, based on large-scale atmospheric predictors produced by climate models (e.g. geopotential height, relative vorticity, divergence, mean sea level pressure). The latter approach, usually referred to as statistical rainfall downscaling, aims at reproducing the statistical character of rainfall, while accounting for the effects of large-scale atmospheric circulation (and, therefore, climate forcing) on rainfall statistics. While promising, statistical rainfall downscaling has not attracted much attention in recent years, since the suggested approaches involved complex (i.e. subjective or computationally intense) identification procedures of the local weather, in addition to demonstrating limited success in reproducing several statistical features of rainfall, such as seasonal variations, the distributions of dry and wet spell lengths, the distribution of the mean rainfall intensity inside wet periods, and the distribution of rainfall extremes. In an effort to remedy those shortcomings, Langousis and Kaleris (2014) developed a statistical framework for simulation of daily rainfall intensities conditional on upper air variables, which accurately reproduces the statistical character of rainfall at multiple time-scales. Here, we study the relative performance of: a) quantile-quantile (Q-Q) correction of climate model rainfall products, and b) the statistical downscaling scheme of Langousis and Kaleris (2014), in reproducing the statistical structure of rainfall, as well as rainfall extremes, at a regional level. This is done for an intermediate-sized catchment in Italy, i.e. the Flumendosa catchment, using climate model rainfall and atmospheric data from the ENSEMBLES project (http://ensembleseu.metoffice.com). In doing so, we split the historical rainfall record of mean areal precipitation (MAP) in 15-year calibration and 45-year validation periods, and compare the historical rainfall statistics to those obtained from: a) Q-Q corrected climate model rainfall products, and b) synthetic rainfall series generated by the suggested downscaling scheme. To our knowledge, this is the first time that climate model rainfall and statistically downscaled precipitation are compared to catchment-averaged MAP at a daily resolution. The obtained results are promising, since the proposed downscaling scheme is more accurate and robust in reproducing a number of historical rainfall statistics, independent of the climate model used and the length of the calibration period. This is particularly the case for the yearly rainfall maxima, where direct statistical correction of climate model rainfall outputs shows increased sensitivity to the length of the calibration period and the climate model used. The robustness of the suggested downscaling scheme in modeling rainfall extremes at a daily resolution, is a notable feature that can effectively be used to assess hydrologic risk at a regional level under changing climatic conditions. Acknowledgments The research project is implemented within the framework of the Action «Supporting Postdoctoral Researchers» of the Operational Program "Education and Lifelong Learning" (Action's Beneficiary: General Secretariat for Research and Technology), and is co-financed by the European Social Fund (ESF) and the Greek State. CRS4 highly acknowledges the contribution of the Sardinian regional authorities.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4367399','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4367399"><span>Extracting Association Patterns in Network Communications</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Portela, Javier; Villalba, Luis Javier García; Trujillo, Alejandra Guadalupe Silva; Orozco, Ana Lucila Sandoval; Kim, Tai-hoon</p> <p>2015-01-01</p> <p>In network communications, mixes provide protection against observers hiding the appearance of messages, patterns, length and links between senders and receivers. Statistical disclosure attacks aim to reveal the identity of senders and receivers in a communication network setting when it is protected by standard techniques based on mixes. This work aims to develop a global statistical disclosure attack to detect relationships between users. The only information used by the attacker is the number of messages sent and received by each user for each round, the batch of messages grouped by the anonymity system. A new modeling framework based on contingency tables is used. The assumptions are more flexible than those used in the literature, allowing to apply the method to multiple situations automatically, such as email data or social networks data. A classification scheme based on combinatoric solutions of the space of rounds retrieved is developed. Solutions about relationships between users are provided for all pairs of users simultaneously, since the dependence of the data retrieved needs to be addressed in a global sense. PMID:25679311</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25679311','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25679311"><span>Extracting association patterns in network communications.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Portela, Javier; Villalba, Luis Javier García; Trujillo, Alejandra Guadalupe Silva; Orozco, Ana Lucila Sandoval; Kim, Tai-hoon</p> <p>2015-02-11</p> <p>In network communications, mixes provide protection against observers hiding the appearance of messages, patterns, length and links between senders and receivers. Statistical disclosure attacks aim to reveal the identity of senders and receivers in a communication network setting when it is protected by standard techniques based on mixes. This work aims to develop a global statistical disclosure attack to detect relationships between users. The only information used by the attacker is the number of messages sent and received by each user for each round, the batch of messages grouped by the anonymity system. A new modeling framework based on contingency tables is used. The assumptions are more flexible than those used in the literature, allowing to apply the method to multiple situations automatically, such as email data or social networks data. A classification scheme based on combinatoric solutions of the space of rounds retrieved is developed. Solutions about relationships between users are provided for all pairs of users simultaneously, since the dependence of the data retrieved needs to be addressed in a global sense.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/24302974','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/24302974"><span>Level set segmentation of medical images based on local region statistics and maximum a posteriori probability.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Cui, Wenchao; Wang, Yi; Lei, Tao; Fan, Yangyu; Feng, Yan</p> <p>2013-01-01</p> <p>This paper presents a variational level set method for simultaneous segmentation and bias field estimation of medical images with intensity inhomogeneity. In our model, the statistics of image intensities belonging to each different tissue in local regions are characterized by Gaussian distributions with different means and variances. According to maximum a posteriori probability (MAP) and Bayes' rule, we first derive a local objective function for image intensities in a neighborhood around each pixel. Then this local objective function is integrated with respect to the neighborhood center over the entire image domain to give a global criterion. In level set framework, this global criterion defines an energy in terms of the level set functions that represent a partition of the image domain and a bias field that accounts for the intensity inhomogeneity of the image. Therefore, image segmentation and bias field estimation are simultaneously achieved via a level set evolution process. Experimental results for synthetic and real images show desirable performances of our method.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2015EGUGA..17..224C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2015EGUGA..17..224C"><span>Comparing physically-based and statistical landslide susceptibility model outputs - a case study from Lower Austria</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Canli, Ekrem; Thiebes, Benni; Petschko, Helene; Glade, Thomas</p> <p>2015-04-01</p> <p>By now there is a broad consensus that due to human-induced global change the frequency and magnitude of heavy precipitation events is expected to increase in certain parts of the world. Given the fact, that rainfall serves as the most common triggering agent for landslide initiation, also an increased landside activity can be expected there. Landslide occurrence is a globally spread phenomenon that clearly needs to be handled. The present and well known problems in modelling landslide susceptibility and hazard give uncertain results in the prediction. This includes the lack of a universal applicable modelling solution for adequately assessing landslide susceptibility (which can be seen as the relative indication of the spatial probability of landslide initiation). Generally speaking, there are three major approaches for performing landslide susceptibility analysis: heuristic, statistical and deterministic models, all with different assumptions, its distinctive data requirements and differently interpretable outcomes. Still, detailed comparison of resulting landslide susceptibility maps are rare. In this presentation, the susceptibility modelling outputs of a deterministic model (Stability INdex MAPping - SINMAP) and a statistical modelling approach (generalized additive model - GAM) are compared. SINMAP is an infinite slope stability model which requires parameterization of soil mechanical parameters. Modelling with the generalized additive model, which represents a non-linear extension of a generalized linear model, requires a high quality landslide inventory that serves as the dependent variable in the statistical approach. Both methods rely on topographical data derived from the DTM. The comparison has been carried out in a study area located in the district of Waidhofen/Ybbs in Lower Austria. For the whole district (ca. 132 km²), 1063 landslides have been mapped and partially used within the analysis and the validation of the model outputs. The respective susceptibility maps have been reclassified to contain three susceptibility classes each. The comparison of the susceptibility maps was performed on a grid cell basis. A match of the maps was observed for grid cells located in the same susceptibility class. In contrast, a mismatch or deviation was observed for locations with different assigned susceptibility classes (up to two classes' difference). Although the modelling approaches differ significantly, more than 70% of the pixels reveal a match in the same susceptibility class. A mismatch by two classes' difference occurred in less than 2% of all pixels. Although the result looks promising and strengthens the confidence in the susceptibility zonation for this area, some of the general drawbacks related to the respective approaches still have to be addressed in further detail. Future work is heading towards an integration of probabilistic aspects into deterministic modelling.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/26385050','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/26385050"><span>Ventilation tube insertion simulation: a literature review and validity assessment of five training models.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Mahalingam, S; Awad, Z; Tolley, N S; Khemani, S</p> <p>2016-08-01</p> <p>The objective of this study was to identify and investigate the face and content validity of ventilation tube insertion (VTI) training models described in the literature. A review of literature was carried out to identify articles describing VTI simulators. Feasible models were replicated and assessed by a group of experts. Postgraduate simulation centre. Experts were defined as surgeons who had performed at least 100 VTI on patients. Seventeen experts were participated ensuring sufficient statistical power for analysis. A standardised 18-item Likert-scale questionnaire was used. This addressed face validity (realism), global and task-specific content (suitability of the model for teaching) and curriculum recommendation. The search revealed eleven models, of which only five had associated validity data. Five models were found to be feasible to replicate. None of the tested models achieved face or global content validity. Only one model achieved task-specific validity, and hence, there was no agreement on curriculum recommendation. The quality of simulation models is moderate and there is room for improvement. There is a need for new models to be developed or existing ones to be refined in order to construct a more realistic training platform for VTI simulation. © 2015 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4211968','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=4211968"><span>Globalization and eating disorder risk: Peer influence, perceived social norms, and adolescent disordered eating in Fiji</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Gerbasi, Margaret E.; Richards, Lauren K.; Thomas, Jennifer J.; Agnew-Blais, Jessica C.; Thompson-Brenner, Heather; Gilman, Stephen E.; Becker, Anne E.</p> <p>2014-01-01</p> <p>Objective The increasing global health burden imposed by eating disorders warrants close examination of social exposures associated with globalization that potentially elevate risk during the critical developmental period of adolescence in low- and middle-income countries (LMICs). The study aim was to investigate the association of peer influence and perceived social norms with adolescent eating pathology in Fiji, a LMIC undergoing rapid social change. Method We measured peer influence on eating concerns (with the Inventory of Peer Influence on Eating Concerns; IPIEC), perceived peer norms associated with disordered eating and body concerns, perceived community cultural norms, and individual cultural orientations in a representative sample of school-going ethnic Fijian adolescent girls (n=523). We then developed a multivariable linear regression model to examine their relation to eating pathology (measured by the Eating Disorder Examination-Questionnaire; EDE-Q). Results We found independent and statistically significant associations between both IPIEC scores and our proxy for perceived social norms specific to disordered eating (both p <.001) and EDE-Q global scores in a fully adjusted linear regression model. Discussion Study findings support the possibility that peer influence as well as perceived social norms relevant to disordered eating may elevate risk for disordered eating in Fiji, during the critical developmental period of adolescence. Replication and extension of these research findings in other populations undergoing rapid social transition—and where globalization is also influencing local social norms—may enrich etiologic models and inform strategies to mitigate risk. PMID:25139374</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25139374','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25139374"><span>Globalization and eating disorder risk: peer influence, perceived social norms, and adolescent disordered eating in Fiji.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Gerbasi, Margaret E; Richards, Lauren K; Thomas, Jennifer J; Agnew-Blais, Jessica C; Thompson-Brenner, Heather; Gilman, Stephen E; Becker, Anne E</p> <p>2014-11-01</p> <p>The increasing global health burden imposed by eating disorders warrants close examination of social exposures associated with globalization that potentially elevate risk during the critical developmental period of adolescence in low- and middle-income countries (LMICs). The study aim was to investigate the association of peer influence and perceived social norms with adolescent eating pathology in Fiji, a LMIC undergoing rapid social change. We measured peer influence on eating concerns (with the Inventory of Peer Influence on Eating Concerns; IPIEC), perceived peer norms associated with disordered eating and body concerns, perceived community cultural norms, and individual cultural orientations in a representative sample of school-going ethnic Fijian adolescent girls (n = 523). We then developed a multivariable linear regression model to examine their relation to eating pathology (measured by the Eating Disorder Examination-Questionnaire; EDE-Q). We found independent and statistically significant associations between both IPIEC scores and our proxy for perceived social norms specific to disordered eating (both p < .001) and EDE-Q global scores in a fully adjusted linear regression model. Study findings support the possibility that peer influence as well as perceived social norms relevant to disordered eating may elevate risk for disordered eating in Fiji, during the critical developmental period of adolescence. Replication and extension of these research findings in other populations undergoing rapid social transition--and where globalization is also influencing local social norms--may enrich etiologic models and inform strategies to mitigate risk. © 2014 Wiley Periodicals, Inc.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..1912255R','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..1912255R"><span>Comparative study of sea ice dynamics simulations with a Maxwell elasto-brittle rheology and the elastic-viscous-plastic rheology in NEMO-LIM3</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Raulier, Jonathan; Dansereau, Véronique; Fichefet, Thierry; Legat, Vincent; Weiss, Jérôme</p> <p>2017-04-01</p> <p>Sea ice is a highly dynamical environment characterized by a dense mesh of fractures or leads, constantly opening and closing over short time scales. This characteristic geomorphology is linked to the existence of linear kinematic features, which consist of quasi-linear patterns emerging from the observed strain rate field of sea ice. Standard rheologies used in most state-of-the-art sea ice models, like the well-known elastic-viscous-plastic rheology, are thought to misrepresent those linear kinematic features and the observed statistical distribution of deformation rates. Dedicated rheologies built to catch the processes known to be at the origin of the formation of leads are developed but still need evaluations on the global scale. One of them, based on a Maxwell elasto-brittle formulation, is being integrated in the NEMO-LIM3 global ocean-sea ice model (www.nemo-ocean.eu; www.elic.ucl.ac.be/lim). In the present study, we compare the results of the sea ice model LIM3 obtained with two different rheologies: the elastic-viscous-plastic rheology commonly used in LIM3 and a Maxwell elasto-brittle rheology. This comparison is focused on the statistical characteristics of the simulated deformation rate and on the ability of the model to reproduce the existence of leads within the ice pack. The impact of the lead representation on fluxes between ice, atmosphere and ocean is also assessed.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2009cfdd.confE.196S','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2009cfdd.confE.196S"><span>Optimization Methods in Sherpa</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Siemiginowska, Aneta; Nguyen, Dan T.; Doe, Stephen M.; Refsdal, Brian L.</p> <p>2009-09-01</p> <p>Forward fitting is a standard technique used to model X-ray data. A statistic, usually assumed weighted chi^2 or Poisson likelihood (e.g. Cash), is minimized in the fitting process to obtain a set of the best model parameters. Astronomical models often have complex forms with many parameters that can be correlated (e.g. an absorbed power law). Minimization is not trivial in such setting, as the statistical parameter space becomes multimodal and finding the global minimum is hard. Standard minimization algorithms can be found in many libraries of scientific functions, but they are usually focused on specific functions. However, Sherpa designed as general fitting and modeling application requires very robust optimization methods that can be applied to variety of astronomical data (X-ray spectra, images, timing, optical data etc.). We developed several optimization algorithms in Sherpa targeting a wide range of minimization problems. Two local minimization methods were built: Levenberg-Marquardt algorithm was obtained from MINPACK subroutine LMDIF and modified to achieve the required robustness; and Nelder-Mead simplex method has been implemented in-house based on variations of the algorithm described in the literature. A global search Monte-Carlo method has been implemented following a differential evolution algorithm presented by Storn and Price (1997). We will present the methods in Sherpa and discuss their usage cases. We will focus on the application to Chandra data showing both 1D and 2D examples. This work is supported by NASA contract NAS8-03060 (CXC).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70036788','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70036788"><span>Mapping permeability over the surface of the Earth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gleeson, T.; Smith, L.; Moosdorf, N.; Hartmann, J.; Durr, H.H.; Manning, A.H.; Van Beek, L. P. H.; Jellinek, A. Mark</p> <p>2011-01-01</p> <p>Permeability, the ease of fluid flow through porous rocks and soils, is a fundamental but often poorly quantified component in the analysis of regional-scale water fluxes. Permeability is difficult to quantify because it varies over more than 13 orders of magnitude and is heterogeneous and dependent on flow direction. Indeed, at the regional scale, maps of permeability only exist for soil to depths of 1-2 m. Here we use an extensive compilation of results from hydrogeologic models to show that regional-scale (>5 km) permeability of consolidated and unconsolidated geologic units below soil horizons (hydrolithologies) can be characterized in a statistically meaningful way. The representative permeabilities of these hydrolithologies are used to map the distribution of near-surface (on the order of 100 m depth) permeability globally and over North America. The distribution of each hydrolithology is generally scale independent. The near-surface mean permeability is of the order of ???5 ?? 10-14 m2. The results provide the first global picture of near-surface permeability and will be of particular value for evaluating global water resources and modeling the influence of climate-surface-subsurface interactions on global climate change. Copyright ?? 2011 by the American Geophysical Union.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.agu.org/pubs/crossref/2011/2010GL045565.shtml','USGSPUBS'); return false;" href="http://www.agu.org/pubs/crossref/2011/2010GL045565.shtml"><span>Mapping permeability over the surface of the Earth</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Gleeson, Tom; Smith, Leslie; Moosdorf, Nils; Hartmann, Jens; Durr, Hans H.; Manning, Andrew H.; van Beek, Ludovicus P. H.; Jellinek, A. Mark</p> <p>2011-01-01</p> <p>Permeability, the ease of fluid flow through porous rocks and soils, is a fundamental but often poorly quantified component in the analysis of regional-scale water fluxes. Permeability is difficult to quantify because it varies over more than 13 orders of magnitude and is heterogeneous and dependent on flow direction. Indeed, at the regional scale, maps of permeability only exist for soil to depths of 1-2 m. Here we use an extensive compilation of results from hydrogeologic models to show that regional-scale (>5 km) permeability of consolidated and unconsolidated geologic units below soil horizons (hydrolithologies) can be characterized in a statistically meaningful way. The representative permeabilities of these hydrolithologies are used to map the distribution of near-surface (on the order of 100 m depth) permeability globally and over North America. The distribution of each hydrolithology is generally scale independent. The near-surface mean permeability is of the order of -5 x 10-14 m2. The results provide the first global picture of near-surface permeability and will be of particular value for evaluating global water resources and modeling the influence of climate-surface-subsurface interactions on global climate change.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5359667','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=5359667"><span>A global reference model of Curie-point depths based on EMAG2</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Li, Chun-Feng; Lu, Yu; Wang, Jian</p> <p>2017-01-01</p> <p>In this paper, we use a robust inversion algorithm, which we have tested in many regional studies, to obtain the first global model of Curie-point depth (GCDM) from magnetic anomaly inversion based on fractal magnetization. Statistically, the oceanic Curie depth mean is smaller than the continental one, but continental Curie depths are almost bimodal, showing shallow Curie points in some old cratons. Oceanic Curie depths show modifications by hydrothermal circulations in young oceanic lithosphere and thermal perturbations in old oceanic lithosphere. Oceanic Curie depths also show strong dependence on the spreading rate along active spreading centers. Curie depths and heat flow are correlated, following optimal theoretical curves of average thermal conductivities K = ~2.0 W(m°C)−1 for the ocean and K = ~2.5 W(m°C)−1 for the continent. The calculated heat flow from Curie depths and large-interval gridding of measured heat flow all indicate that the global heat flow average is about 70.0 mW/m2, leading to a global heat loss ranging from ~34.6 to 36.6 TW. PMID:28322332</p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li class="active"><span>24</span></li> <li><a href="#" onclick='return showDiv("page_25");'>25</a></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_24 --> <div id="page_25" class="hiddenDiv"> <div class="row"> <div class="col-sm-12"> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div> </div> <div class="row"> <div class="col-sm-12"> <ol class="result-class" start="481"> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2005yCat..34411195A','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2005yCat..34411195A"><span>VizieR Online Data Catalog: Brussels nuclear reaction rate library (Aikawa+, 2005)</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Aikawa, M.; Arnould, M.; Goriely, S.; Jorissen, A.; Takahashi, K.</p> <p>2005-07-01</p> <p>The present data is part of the Brussels nuclear reaction rate library (BRUSLIB) for astrophysics applications and concerns nuclear reaction rate predictions calculated within the statistical Hauser-Feshbach approximation and making use of global and coherent microscopic nuclear models for the quantities (nuclear masses, nuclear structure properties, nuclear level densities, gamma-ray strength functions, optical potentials) entering the rate calculations. (4 data files).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.5306P','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.5306P"><span>Revealing the underlying drivers of disaster risk: a global analysis</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Peduzzi, Pascal</p> <p>2017-04-01</p> <p>Disasters events are perfect examples of compound events. Disaster risk lies at the intersection of several independent components such as hazard, exposure and vulnerability. Understanding the weight of each component requires extensive standardisation. Here, I show how footprints of past disastrous events were generated using GIS modelling techniques and used for extracting population and economic exposures based on distribution models. Using past event losses, it was possible to identify and quantify a wide range of socio-politico-economic drivers associated with human vulnerability. The analysis was applied to about nine thousand individual past disastrous events covering earthquakes, floods and tropical cyclones. Using a multiple regression analysis on these individual events it was possible to quantify each risk component and assess how vulnerability is influenced by various hazard intensities. The results show that hazard intensity, exposure, poverty, governance as well as other underlying factors (e.g. remoteness) can explain the magnitude of past disasters. Analysis was also performed to highlight the role of future trends in population and climate change and how this may impacts exposure to tropical cyclones in the future. GIS models combined with statistical multiple regression analysis provided a powerful methodology to identify, quantify and model disaster risk taking into account its various components. The same methodology can be applied to various types of risk at local to global scale. This method was applied and developed for the Global Risk Analysis of the Global Assessment Report on Disaster Risk Reduction (GAR). It was first applied on mortality risk in GAR 2009 and GAR 2011. New models ranging from global assets exposure and global flood hazard models were also recently developed to improve the resolution of the risk analysis and applied through CAPRA software to provide probabilistic economic risk assessments such as Average Annual Losses (AAL) and Probable Maximum Losses (PML) in GAR 2013 and GAR 2015. In parallel similar methodologies were developed to highlitght the role of ecosystems for Climate Change Adaptation (CCA) and Disaster Risk Reduction (DRR). New developments may include slow hazards (such as e.g. soil degradation and droughts), natech hazards (by intersecting with georeferenced critical infrastructures) The various global hazard, exposure and risk models can be visualized and download through the PREVIEW Global Risk Data Platform.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017EGUGA..19.7713Z','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017EGUGA..19.7713Z"><span>Estimating irrigated areas from satellite and model soil moisture data over the contiguous US</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Zaussinger, Felix; Dorigo, Wouter; Gruber, Alexander</p> <p>2017-04-01</p> <p>Information about irrigation is crucial for a number of applications such as drought- and yield management and contributes to a better understanding of the water-cycle, land-atmosphere interactions as well as climate projections. Currently, irrigation is mainly quantified by national agricultural statistics, which do not include spatial information. The digital Global Map of Irrigated Areas (GMIA) has been the first effort to quantify irrigation at the global scale by merging these statistics with remote sensing data. Also, the MODIS-Irrigated Agriculture Dataset (MirAD-US) was created by merging annual peak MODIS-NDVI with US county level irrigation statistics. In this study we aim to map irrigated areas by confronting time series of various satellite soil moisture products with soil moisture from the ERA-Interim/Land reanalysis product. We follow the assumption that irrigation signals are not modelled in the reanalysis product, nor contributing to its forcing data, but affecting the spatially continuous remote sensing observations. Based on this assumption, spatial patterns of irrigation are derived from differences between the temporal slopes of the modelled and remotely sensed time series during the irrigation season. Results show that a combination of ASCAT and ERA-Interim/Land show spatial patterns which are in good agreement with the MIrAD-US, particularly within the Mississippi Delta, Texas and eastern Nebraska. In contrast, AMSRE shows weak agreements, plausibly due to a higher vegetation dependency of the soil moisture signal. There is no significant agreement to the MIrAD-US in California, which is possibly related to higher crop-diversity and lower field sizes. Also, a strong signal in the region of the Great Corn Belt is observed, which is generally not outlined as an irrigated area. It is not yet clear to what extent the signal obtained in the Mississippi Delta is related to re-reflection effects caused by standing water due to flood or furrow irrigation practices. Consequently, future research should focus on the specific effects of different irrigation practices and crop types. This study is supported by the European Union's FP7 EartH2Observe "Global Earth Observation for Integrated Water Resource Assessment" project (grant agreement number 331 603608).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20120013308&hterms=kalman+filter+TEMPERATURE&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dkalman%2Bfilter%2BTEMPERATURE','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20120013308&hterms=kalman+filter+TEMPERATURE&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dkalman%2Bfilter%2BTEMPERATURE"><span>Assessment of Mars Atmospheric Temperature Retrievals from the Thermal Emission Spectrometer Radiances</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Hoffman, Matthew J.; Eluszkiewicz, Janusz; Weisenstein, Deborah; Uymin, Gennady; Moncet, Jean-Luc</p> <p>2012-01-01</p> <p>Motivated by the needs of Mars data assimilation. particularly quantification of measurement errors and generation of averaging kernels. we have evaluated atmospheric temperature retrievals from Mars Global Surveyor (MGS) Thermal Emission Spectrometer (TES) radiances. Multiple sets of retrievals have been considered in this study; (1) retrievals available from the Planetary Data System (PDS), (2) retrievals based on variants of the retrieval algorithm used to generate the PDS retrievals, and (3) retrievals produced using the Mars 1-Dimensional Retrieval (M1R) algorithm based on the Optimal Spectral Sampling (OSS ) forward model. The retrieved temperature profiles are compared to the MGS Radio Science (RS) temperature profiles. For the samples tested, the M1R temperature profiles can be made to agree within 2 K with the RS temperature profiles, but only after tuning the prior and error statistics. Use of a global prior that does not take into account the seasonal dependence leads errors of up 6 K. In polar samples. errors relative to the RS temperature profiles are even larger. In these samples, the PDS temperature profiles also exhibit a poor fit with RS temperatures. This fit is worse than reported in previous studies, indicating that the lack of fit is due to a bias correction to TES radiances implemented after 2004. To explain the differences between the PDS and Ml R temperatures, the algorithms are compared directly, with the OSS forward model inserted into the PDS algorithm. Factors such as the filtering parameter, the use of linear versus nonlinear constrained inversion, and the choice of the forward model, are found to contribute heavily to the differences in the temperature profiles retrieved in the polar regions, resulting in uncertainties of up to 6 K. Even outside the poles, changes in the a priori statistics result in different profile shapes which all fit the radiances within the specified error. The importance of the a priori statistics prevents reliable global retrievals based a single a priori and strongly implies that a robust science analysis must instead rely on retrievals employing localized a priori information, for example from an ensemble based data assimilation system such as the Local Ensemble Transform Kalman Filter (LETKF).</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017ERL....12f5008M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017ERL....12f5008M"><span>Economic impacts of climate change on agriculture: a comparison of process-based and statistical yield models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Moore, Frances C.; Baldos, Uris Lantz C.; Hertel, Thomas</p> <p>2017-06-01</p> <p>A large number of studies have been published examining the implications of climate change for agricultural productivity that, broadly speaking, can be divided into process-based modeling and statistical approaches. Despite a general perception that results from these methods differ substantially, there have been few direct comparisons. Here we use a data-base of yield impact studies compiled for the IPCC Fifth Assessment Report (Porter et al 2014) to systematically compare results from process-based and empirical studies. Controlling for differences in representation of CO2 fertilization between the two methods, we find little evidence for differences in the yield response to warming. The magnitude of CO2 fertilization is instead a much larger source of uncertainty. Based on this set of impact results, we find a very limited potential for on-farm adaptation to reduce yield impacts. We use the Global Trade Analysis Project (GTAP) global economic model to estimate welfare consequences of yield changes and find negligible welfare changes for warming of 1 °C-2 °C if CO2 fertilization is included and large negative effects on welfare without CO2. Uncertainty bounds on welfare changes are highly asymmetric, showing substantial probability of large declines in welfare for warming of 2 °C-3 °C even including the CO2 fertilization effect.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.G12A..01B','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.G12A..01B"><span>Evaluation of 14 global GIA forward models using a novel GPS dataset and GRACE</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Bamber, J. L.; Schumacher, M.; Sha, Z.; Rougier, J.; King, M. A.; Khan, S. A.; Shum, C. K.; Luthcke, S. B.</p> <p>2017-12-01</p> <p>Observed mass movement from GRACE and vertical land motion from a global network of permanent GPS stations are used in a data driven approach to estimate GIA signals without introducing any assumptions about Earth structure nor ice loading history. Satellite data and in-situ observations are combined using a multivariate spatiotemporal model within a Bayesian Hierarchical Modelling (BHM) framework. In this study, the GPS data set of the Nevada Geodetic Laboratory (NGL) is used as the starting point for providing an observational estimate of global GIA uplift rates. A novel fully automatic post-processing strategy is developed to correct for non-GIA artifacts, including: (i) outlier detection (e.g. due to icing of Choke Ring Antennas or the antenna being buried in snow); (ii) automatic removal of reported and unreported jumps due to geophysical and hardware issues (a refinement of the jump database provided by NGL); and (iii) filtering for GPS stations that observe primarily the GIA signal rather than unwanted local effects (e.g., unmodelled loading effects from land hydrology, atmosphere, or tides). In order to accurately account for the elastic response of the Earth's crust over Antarctica and Greenland, uplift rates in these regions were corrected for the contemporary ice mass loading impact on elastic deformation using high-resolution ice mass balance time series. The novel global GPS data set shows a clean GIA signal at all post-processed stations and is therefore suitable to investigate the behavior of global GIA forward models. In addition, NASA's GSFC GRACE global mascon solutions are employed. The equal area 1x1 degree gridded mascons are spatially aggregated for larger regions to account for their spatial error correlations. Both the GPS and GRACE datasets are combined with prior information about spatial wavelengths of GIA signals obtained from the ICE-6G model within the BHM framework to solve for GIA. The results are compared with 14 global GIA forward model solutions to identify statistically significant deviations between the forward and inverse solutions, which may be due to either uncertain mantle rheology and/or ice loading history/magnitude.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016AGUOS.A54B2719M','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016AGUOS.A54B2719M"><span>Analysis of the interannual variability of tropical cyclones striking the California coast based on statistical downscaling</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Mendez, F. J.; Rueda, A.; Barnard, P.; Mori, N.; Nakajo, S.; Espejo, A.; del Jesus, M.; Diez Sierra, J.; Cofino, A. S.; Camus, P.</p> <p>2016-02-01</p> <p>Hurricanes hitting California have a very low ocurrence probability due to typically cool ocean temperature and westward tracks. However, damages associated to these improbable events would be dramatic in Southern California and understanding the oceanographic and atmospheric drivers is of paramount importance for coastal risk management for present and future climates. A statistical analysis of the historical events is very difficult due to the limited resolution of atmospheric and oceanographic forcing data available. In this work, we propose a combination of: (a) statistical downscaling methods (Espejo et al, 2015); and (b) a synthetic stochastic tropical cyclone (TC) model (Nakajo et al, 2014). To build the statistical downscaling model, Y=f(X), we apply a combination of principal component analysis and the k-means classification algorithm to find representative patterns from a potential TC index derived from large-scale SST fields in Eastern Central Pacific (predictor X) and the associated tropical cyclone ocurrence (predictand Y). SST data comes from NOAA Extended Reconstructed SST V3b providing information from 1854 to 2013 on a 2.0 degree x 2.0 degree global grid. As data for the historical occurrence and paths of tropical cycloneas are scarce, we apply a stochastic TC model which is based on a Monte Carlo simulation of the joint distribution of track, minimum sea level pressure and translation speed of the historical events in the Eastern Central Pacific Ocean. Results will show the ability of the approach to explain seasonal-to-interannual variability of the predictor X, which is clearly related to El Niño Southern Oscillation. References Espejo, A., Méndez, F.J., Diez, J., Medina, R., Al-Yahyai, S. (2015) Seasonal probabilistic forecasting of tropical cyclone activity in the North Indian Ocean, Journal of Flood Risk Management, DOI: 10.1111/jfr3.12197 Nakajo, S., N. Mori, T. Yasuda, and H. Mase (2014) Global Stochastic Tropical Cyclone Model Based on Principal Component Analysis and Cluster Analysis, Journal of Applied Meteorology and Climatology, DOI: 10.1175/JAMC-D-13-08.1</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2014AMTD....711927K','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2014AMTD....711927K"><span>Implementation of a GPS-RO data processing system for the KIAPS-LETKF data assimilation system</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Kwon, H.; Kang, J.-S.; Jo, Y.; Kang, J. H.</p> <p>2014-11-01</p> <p>The Korea Institute of Atmospheric Prediction Systems (KIAPS) has been developing a new global numerical weather prediction model and an advanced data assimilation system. As part of the KIAPS Package for Observation Processing (KPOP) system for data assimilation, preprocessing and quality control modules for bending angle measurements of global positioning system radio occultation (GPS-RO) data have been implemented and examined. GPS-RO data processing system is composed of several steps for checking observation locations, missing values, physical values for Earth radius of curvature, and geoid undulation. An observation-minus-background check is implemented by use of a one-dimensional observational bending angle operator and tangent point drift is also considered in the quality control process. We have tested GPS-RO observations utilized by the Korean Meteorological Administration (KMA) within KPOP, based on both the KMA global model and the National Center for Atmospheric Research (NCAR) Community Atmosphere Model-Spectral Element (CAM-SE) as a model background. Background fields from the CAM-SE model are incorporated for the preparation of assimilation experiments with the KIAPS-LETKF data assimilation system, which has been successfully implemented to a cubed-sphere model with fully unstructured quadrilateral meshes. As a result of data processing, the bending angle departure statistics between observation and background shows significant improvement. Also, the first experiment in assimilating GPS-RO bending angle resulting from KPOP within KIAPS-LETKF shows encouraging results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2003AGUFM.A52C0808L','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2003AGUFM.A52C0808L"><span>A Comparison of the Forecast Skills among Three Numerical Models</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Lu, D.; Reddy, S. R.; White, L. J.</p> <p>2003-12-01</p> <p>Three numerical weather forecast models, MM5, COAMPS and WRF, operating with a joint effort of NOAA HU-NCAS and Jackson State University (JSU) during summer 2003 have been chosen to study their forecast skills against observations. The models forecast over the same region with the same initialization, boundary condition, forecast length and spatial resolution. AVN global dataset have been ingested as initial conditions. Grib resolution of 27 km is chosen to represent the current mesoscale model. The forecasts with the length of 36h are performed to output the result with 12h interval. The key parameters used to evaluate the forecast skill include 12h accumulated precipitation, sea level pressure, wind, surface temperature and dew point. Precipitation is evaluated statistically using conventional skill scores, Threat Score (TS) and Bias Score (BS), for different threshold values based on 12h rainfall observations whereas other statistical methods such as Mean Error (ME), Mean Absolute Error(MAE) and Root Mean Square Error (RMSE) are applied to other forecast parameters.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/22212352','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/22212352"><span>ConvAn: a convergence analyzing tool for optimization of biochemical networks.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Kostromins, Andrejs; Mozga, Ivars; Stalidzans, Egils</p> <p>2012-01-01</p> <p>Dynamic models of biochemical networks usually are described as a system of nonlinear differential equations. In case of optimization of models for purpose of parameter estimation or design of new properties mainly numerical methods are used. That causes problems of optimization predictability as most of numerical optimization methods have stochastic properties and the convergence of the objective function to the global optimum is hardly predictable. Determination of suitable optimization method and necessary duration of optimization becomes critical in case of evaluation of high number of combinations of adjustable parameters or in case of large dynamic models. This task is complex due to variety of optimization methods, software tools and nonlinearity features of models in different parameter spaces. A software tool ConvAn is developed to analyze statistical properties of convergence dynamics for optimization runs with particular optimization method, model, software tool, set of optimization method parameters and number of adjustable parameters of the model. The convergence curves can be normalized automatically to enable comparison of different methods and models in the same scale. By the help of the biochemistry adapted graphical user interface of ConvAn it is possible to compare different optimization methods in terms of ability to find the global optima or values close to that as well as the necessary computational time to reach them. It is possible to estimate the optimization performance for different number of adjustable parameters. The functionality of ConvAn enables statistical assessment of necessary optimization time depending on the necessary optimization accuracy. Optimization methods, which are not suitable for a particular optimization task, can be rejected if they have poor repeatability or convergence properties. The software ConvAn is freely available on www.biosystems.lv/convan. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://www.who.int/tb/publications/global_report/en/','NIH-MEDLINEPLUS'); return false;" href="http://www.who.int/tb/publications/global_report/en/"><span>Global Tuberculosis Report 2016</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://medlineplus.gov/">MedlinePlus</a></p> <p></p> <p></p> <p>... Alt+0 Navigation Alt+1 Content Alt+2 Tuberculosis (TB) Menu Tuberculosis Data and statistics Regional Framework Resources Meetings and events Global tuberculosis report 2017 WHO has published a global TB ...</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2760564','PMC'); return false;" href="https://www.pubmedcentral.nih.gov/articlerender.fcgi?tool=pmcentrez&artid=2760564"><span>A heteroskedastic error covariance matrix estimator using a first-order conditional autoregressive Markov simulation for deriving asympotical efficient estimates from ecological sampled Anopheles arabiensis aquatic habitat covariates</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pmc">PubMed Central</a></p> <p>Jacob, Benjamin G; Griffith, Daniel A; Muturi, Ephantus J; Caamano, Erick X; Githure, John I; Novak, Robert J</p> <p>2009-01-01</p> <p>Background Autoregressive regression coefficients for Anopheles arabiensis aquatic habitat models are usually assessed using global error techniques and are reported as error covariance matrices. A global statistic, however, will summarize error estimates from multiple habitat locations. This makes it difficult to identify where there are clusters of An. arabiensis aquatic habitats of acceptable prediction. It is therefore useful to conduct some form of spatial error analysis to detect clusters of An. arabiensis aquatic habitats based on uncertainty residuals from individual sampled habitats. In this research, a method of error estimation for spatial simulation models was demonstrated using autocorrelation indices and eigenfunction spatial filters to distinguish among the effects of parameter uncertainty on a stochastic simulation of ecological sampled Anopheles aquatic habitat covariates. A test for diagnostic checking error residuals in an An. arabiensis aquatic habitat model may enable intervention efforts targeting productive habitats clusters, based on larval/pupal productivity, by using the asymptotic distribution of parameter estimates from a residual autocovariance matrix. The models considered in this research extends a normal regression analysis previously considered in the literature. Methods Field and remote-sampled data were collected during July 2006 to December 2007 in Karima rice-village complex in Mwea, Kenya. SAS 9.1.4® was used to explore univariate statistics, correlations, distributions, and to generate global autocorrelation statistics from the ecological sampled datasets. A local autocorrelation index was also generated using spatial covariance parameters (i.e., Moran's Indices) in a SAS/GIS® database. The Moran's statistic was decomposed into orthogonal and uncorrelated synthetic map pattern components using a Poisson model with a gamma-distributed mean (i.e. negative binomial regression). The eigenfunction values from the spatial configuration matrices were then used to define expectations for prior distributions using a Markov chain Monte Carlo (MCMC) algorithm. A set of posterior means were defined in WinBUGS 1.4.3®. After the model had converged, samples from the conditional distributions were used to summarize the posterior distribution of the parameters. Thereafter, a spatial residual trend analyses was used to evaluate variance uncertainty propagation in the model using an autocovariance error matrix. Results By specifying coefficient estimates in a Bayesian framework, the covariate number of tillers was found to be a significant predictor, positively associated with An. arabiensis aquatic habitats. The spatial filter models accounted for approximately 19% redundant locational information in the ecological sampled An. arabiensis aquatic habitat data. In the residual error estimation model there was significant positive autocorrelation (i.e., clustering of habitats in geographic space) based on log-transformed larval/pupal data and the sampled covariate depth of habitat. Conclusion An autocorrelation error covariance matrix and a spatial filter analyses can prioritize mosquito control strategies by providing a computationally attractive and feasible description of variance uncertainty estimates for correctly identifying clusters of prolific An. arabiensis aquatic habitats based on larval/pupal productivity. PMID:19772590</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://www.ncbi.nlm.nih.gov/pubmed/25858027','PUBMED'); return false;" href="https://www.ncbi.nlm.nih.gov/pubmed/25858027"><span>Time-lag effects of global vegetation responses to climate change.</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="https://www.ncbi.nlm.nih.gov/entrez/query.fcgi?DB=pubmed">PubMed</a></p> <p>Wu, Donghai; Zhao, Xiang; Liang, Shunlin; Zhou, Tao; Huang, Kaicheng; Tang, Bijian; Zhao, Wenqian</p> <p>2015-09-01</p> <p>Climate conditions significantly affect vegetation growth in terrestrial ecosystems. Due to the spatial heterogeneity of ecosystems, the vegetation responses to climate vary considerably with the diverse spatial patterns and the time-lag effects, which are the most important mechanism of climate-vegetation interactive effects. Extensive studies focused on large-scale vegetation-climate interactions use the simultaneous meteorological and vegetation indicators to develop models; however, the time-lag effects are less considered, which tends to increase uncertainty. In this study, we aim to quantitatively determine the time-lag effects of global vegetation responses to different climatic factors using the GIMMS3g NDVI time series and the CRU temperature, precipitation, and solar radiation datasets. First, this study analyzed the time-lag effects of global vegetation responses to different climatic factors. Then, a multiple linear regression model and partial correlation model were established to statistically analyze the roles of different climatic factors on vegetation responses, from which the primary climate-driving factors for different vegetation types were determined. The results showed that (i) both the time-lag effects of the vegetation responses and the major climate-driving factors that significantly affect vegetation growth varied significantly at the global scale, which was related to the diverse vegetation and climate characteristics; (ii) regarding the time-lag effects, the climatic factors explained 64% variation of the global vegetation growth, which was 11% relatively higher than the model ignoring the time-lag effects; (iii) for the area with a significant change trend (for the period 1982-2008) in the global GIMMS3g NDVI (P < 0.05), the primary driving factor was temperature; and (iv) at the regional scale, the variation in vegetation growth was also related to human activities and natural disturbances. Considering the time-lag effects is quite important for better predicting and evaluating the vegetation dynamics under the background of global climate change. © 2015 John Wiley & Sons Ltd.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2016SPIE.9781E..11C','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2016SPIE.9781E..11C"><span>Rapid recipe formulation for plasma etching of new materials</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Chopra, Meghali; Zhang, Zizhuo; Ekerdt, John; Bonnecaze, Roger T.</p> <p>2016-03-01</p> <p>A fast and inexpensive scheme for etch rate prediction using flexible continuum models and Bayesian statistics is demonstrated. Bulk etch rates of MgO are predicted using a steady-state model with volume-averaged plasma parameters and classical Langmuir surface kinetics. Plasma particle and surface kinetics are modeled within a global plasma framework using single component Metropolis Hastings methods and limited data. The accuracy of these predictions is evaluated with synthetic and experimental etch rate data for magnesium oxide in an ICP-RIE system. This approach is compared and superior to factorial models generated from JMP, a software package frequently employed for recipe creation and optimization.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://ntrs.nasa.gov/search.jsp?R=20030093556&hterms=chemical+pollution+boundary&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dchemical%2Bpollution%2Bboundary','NASA-TRS'); return false;" href="https://ntrs.nasa.gov/search.jsp?R=20030093556&hterms=chemical+pollution+boundary&qs=N%3D0%26Ntk%3DAll%26Ntx%3Dmode%2Bmatchall%26Ntt%3Dchemical%2Bpollution%2Bboundary"><span>An Intercomparison and Evaluation of Aircraft-Derived and Simulated CO from Seven Chemical Transport Models During the TRACE-P Experiment</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://ntrs.nasa.gov/search.jsp">NASA Technical Reports Server (NTRS)</a></p> <p>Kiley, C. M.; Fuelberg, Henry E.; Palmer, P. I.; Allen, D. J.; Carmichael, G. R.; Jacob, D. J.; Mari, C.; Pierce, R. B.; Pickering, K. E.; Tang, Y.</p> <p>2002-01-01</p> <p>Four global scale and three regional scale chemical transport models are intercompared and evaluated during NASA's TRACE-P experiment. Model simulated and measured CO are statistically analyzed along aircraft flight tracks. Results for the combination of eleven flights show an overall negative bias in simulated CO. Biases are most pronounced during large CO events. Statistical agreements vary greatly among the individual flights. Those flights with the greatest range of CO values tend to be the worst simulated. However, for each given flight, the models generally provide similar relative results. The models exhibit difficulties simulating intense CO plumes. CO error is found to be greatest in the lower troposphere. Convective mass flux is shown to be very important, particularly near emissions source regions. Occasionally meteorological lift associated with excessive model-calculated mass fluxes leads to an overestimation of mid- and upper- tropospheric mixing ratios. Planetary Boundary Layer (PBL) depth is found to play an important role in simulating intense CO plumes. PBL depth is shown to cap plumes, confining heavy pollution to the very lowest levels.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2012EGUGA..1413531W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2012EGUGA..1413531W"><span>Modelling climate impact on floods under future emission scenarios using an ensemble of climate model projections</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Wetterhall, F.; Cloke, H. L.; He, Y.; Freer, J.; Pappenberger, F.</p> <p>2012-04-01</p> <p>Evidence provided by modelled assessments of climate change impact on flooding is fundamental to water resource and flood risk decision making. Impact models usually rely on climate projections from Global and Regional Climate Models, and there is no doubt that these provide a useful assessment of future climate change. However, cascading ensembles of climate projections into impact models is not straightforward because of problems of coarse resolution in Global and Regional Climate Models (GCM/RCM) and the deficiencies in modelling high-intensity precipitation events. Thus decisions must be made on how to appropriately pre-process the meteorological variables from GCM/RCMs, such as selection of downscaling methods and application of Model Output Statistics (MOS). In this paper a grand ensemble of projections from several GCM/RCM are used to drive a hydrological model and analyse the resulting future flood projections for the Upper Severn, UK. The impact and implications of applying MOS techniques to precipitation as well as hydrological model parameter uncertainty is taken into account. The resultant grand ensemble of future river discharge projections from the RCM/GCM-hydrological model chain is evaluated against a response surface technique combined with a perturbed physics experiment creating a probabilisic ensemble climate model outputs. The ensemble distribution of results show that future risk of flooding in the Upper Severn increases compared to present conditions, however, the study highlights that the uncertainties are large and that strong assumptions were made in using Model Output Statistics to produce the estimates of future discharge. The importance of analysing on a seasonal basis rather than just annual is highlighted. The inability of the RCMs (and GCMs) to produce realistic precipitation patterns, even in present conditions, is a major caveat of local climate impact studies on flooding, and this should be a focus for future development.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.H31B1515I','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.H31B1515I"><span>Accounting for model error in Bayesian solutions to hydrogeophysical inverse problems using a local basis approach</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>Irving, J.; Koepke, C.; Elsheikh, A. H.</p> <p>2017-12-01</p> <p>Bayesian solutions to geophysical and hydrological inverse problems are dependent upon a forward process model linking subsurface parameters to measured data, which is typically assumed to be known perfectly in the inversion procedure. However, in order to make the stochastic solution of the inverse problem computationally tractable using, for example, Markov-chain-Monte-Carlo (MCMC) methods, fast approximations of the forward model are commonly employed. This introduces model error into the problem, which has the potential to significantly bias posterior statistics and hamper data integration efforts if not properly accounted for. Here, we present a new methodology for addressing the issue of model error in Bayesian solutions to hydrogeophysical inverse problems that is geared towards the common case where these errors cannot be effectively characterized globally through some parametric statistical distribution or locally based on interpolation between a small number of computed realizations. Rather than focusing on the construction of a global or local error model, we instead work towards identification of the model-error component of the residual through a projection-based approach. In this regard, pairs of approximate and detailed model runs are stored in a dictionary that grows at a specified rate during the MCMC inversion procedure. At each iteration, a local model-error basis is constructed for the current test set of model parameters using the K-nearest neighbour entries in the dictionary, which is then used to separate the model error from the other error sources before computing the likelihood of the proposed set of model parameters. We demonstrate the performance of our technique on the inversion of synthetic crosshole ground-penetrating radar traveltime data for three different subsurface parameterizations of varying complexity. The synthetic data are generated using the eikonal equation, whereas a straight-ray forward model is assumed in the inversion procedure. In each case, the developed model-error approach enables to remove posterior bias and obtain a more realistic characterization of uncertainty.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2018ClDy..tmp..107D','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2018ClDy..tmp..107D"><span>Climate downscaling over South America for 1971-2000: application in SMAP rainfall-runoff model for Grande River Basin</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>da Silva, Felipe das Neves Roque; Alves, José Luis Drummond; Cataldi, Marcio</p> <p>2018-03-01</p> <p>This paper aims to validate inflow simulations concerning the present-day climate at Água Vermelha Hydroelectric Plant (AVHP—located on the Grande River Basin) based on the Soil Moisture Accounting Procedure (SMAP) hydrological model. In order to provide rainfall data to the SMAP model, the RegCM regional climate model was also used working with boundary conditions from the MIROC model. Initially, present-day climate simulation performed by RegCM model was analyzed. It was found that, in terms of rainfall, the model was able to simulate the main patterns observed over South America. A bias correction technique was also used and it was essential to reduce mistakes related to rainfall simulation. Comparison between rainfall simulations from RegCM and MIROC showed improvements when the dynamical downscaling was performed. Then, SMAP, a rainfall-runoff hydrological model, was used to simulate inflows at Água Vermelha Hydroelectric Plant. After calibration with observed rainfall, SMAP simulations were evaluated in two different periods from the one used in calibration. During calibration, SMAP captures the inflow variability observed at AVHP. During validation periods, the hydrological model obtained better results and statistics with observed rainfall. However, in spite of some discrepancies, the use of simulated rainfall without bias correction captured the interannual flow variability. However, the use of bias removal in the simulated rainfall performed by RegCM brought significant improvements to the simulation of natural inflows performed by SMAP. Not only the curve of simulated inflow became more similar to the observed inflow, but also the statistics improved their values. Improvements were also noticed in the inflow simulation when the rainfall was provided by the regional climate model compared to the global model. In general, results obtained so far prove that there was an added value in rainfall when regional climate model was compared to global climate model and that data from regional models must be bias-corrected so as to improve their results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('http://adsabs.harvard.edu/abs/2017AGUFM.A54E..01W','NASAADS'); return false;" href="http://adsabs.harvard.edu/abs/2017AGUFM.A54E..01W"><span>Understanding global tropospheric ozone and its impacts on human health</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://adsabs.harvard.edu/abstract_service.html">NASA Astrophysics Data System (ADS)</a></p> <p>West, J. J.</p> <p>2017-12-01</p> <p>Ozone is an important air pollutant for human health, one that has proven difficult to manage locally, nationally, and globally. Here I will present research on global ozone and its impacts on human health, highlighting several studies from my lab over the past decade. I will discuss the drivers of global tropospheric ozone, and the importance of the equatorward shift of emissions over recent decades. I will review estimates of the global burden of ozone on premature mortality, the contributions of different emission sectors to that burden, estimates of how the ozone health burden will change in the future under the Representative Concentration Pathway scenarios, and estimates of the contribution of projected climate change to ozone-related deaths. I will also discuss the importance of the intercontinental transport of ozone, and of methane as a driver of global ozone, from the human health perspective. I will present estimates of trends in the ozone mortality burden in the United States since 1990. Finally, I will discuss our project currently underway to estimate global ozone concentrations at the surface based on data gathered by the Tropospheric Ozone Assessment Report, combined statistically with atmospheric modeling results.</p> </li> <li> <p><a target="_blank" rel="noopener noreferrer" onclick="trackOutboundLink('https://pubs.er.usgs.gov/publication/70190140','USGSPUBS'); return false;" href="https://pubs.er.usgs.gov/publication/70190140"><span>Integrating landslide and liquefaction hazard and loss estimates with existing USGS real-time earthquake information products</span></a></p> <p><a target="_blank" rel="noopener noreferrer" href="http://pubs.er.usgs.gov/pubs/index.jsp?view=adv">USGS Publications Warehouse</a></p> <p>Allstadt, Kate E.; Thompson, Eric M.; Hearne, Mike; Nowicki Jessee, M. Anna; Zhu, J.; Wald, David J.; Tanyas, Hakan</p> <p>2017-01-01</p> <p>The U.S. Geological Survey (USGS) has made significant progress toward the rapid estimation of shaking and shakingrelated losses through their Did You Feel It? (DYFI), ShakeMap, ShakeCast, and PAGER products. However, quantitative estimates of the extent and severity of secondary hazards (e.g., landsliding, liquefaction) are not currently included in scenarios and real-time post-earthquake products despite their significant contributions to hazard and losses for many events worldwide. We are currently running parallel global statistical models for landslides and liquefaction developed with our collaborators in testing mode, but much work remains in order to operationalize these systems. We are expanding our efforts in this area by not only improving the existing statistical models, but also by (1) exploring more sophisticated, physics-based models where feasible; (2) incorporating uncertainties; and (3) identifying and undertaking research and product development to provide useful landslide and liquefaction estimates and their uncertainties. Although our existing models use standard predictor variables that are accessible globally or regionally, including peak ground motions, topographic slope, and distance to water bodies, we continue to explore readily available proxies for rock and soil strength as well as other susceptibility terms. This work is based on the foundation of an expanding, openly available, case-history database we are compiling along with historical ShakeMaps for each event. The expected outcome of our efforts is a robust set of real-time secondary hazards products that meet the needs of a wide variety of earthquake information users. We describe the available datasets and models, developments currently underway, and anticipated products. </p> </li> </ol> <div class="pull-right"> <ul class="pagination"> <li><a href="#" onclick='return showDiv("page_1");'>«</a></li> <li><a href="#" onclick='return showDiv("page_21");'>21</a></li> <li><a href="#" onclick='return showDiv("page_22");'>22</a></li> <li><a href="#" onclick='return showDiv("page_23");'>23</a></li> <li><a href="#" onclick='return showDiv("page_24");'>24</a></li> <li class="active"><span>25</span></li> <li><a href="#" onclick='return showDiv("page_25");'>»</a></li> </ul> </div> </div><!-- col-sm-12 --> </div><!-- row --> </div><!-- page_25 --> <div class="footer-extlink text-muted" style="margin-bottom:1rem; text-align:center;">Some links on this page may take you to non-federal websites. Their policies may differ from this site.</div> </div><!-- container --> <a id="backToTop" href="#top"> Top </a> <footer> <nav> <ul class="links"> <li><a href="/sitemap.html">Site Map</a></li> <li><a href="/website-policies.html">Website Policies</a></li> <li><a href="https://www.energy.gov/vulnerability-disclosure-policy" target="_blank">Vulnerability Disclosure Program</a></li> <li><a href="/contact.html">Contact Us</a></li> </ul> </nav> </footer> <script type="text/javascript"><!-- // var lastDiv = ""; function showDiv(divName) { // hide last div if (lastDiv) { document.getElementById(lastDiv).className = "hiddenDiv"; } //if value of the box is not nothing and an object with that name exists, then change the class if (divName && document.getElementById(divName)) { document.getElementById(divName).className = "visibleDiv"; lastDiv = divName; } } //--> </script> <script> /** * Function that tracks a click on an outbound link in Google Analytics. * This function takes a valid URL string as an argument, and uses that URL string * as the event label. */ var trackOutboundLink = function(url,collectionCode) { try { h = window.open(url); setTimeout(function() { ga('send', 'event', 'topic-page-click-through', collectionCode, url); }, 1000); } catch(err){} }; </script> <!-- Google Analytics --> <script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','//www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-1122789-34', 'auto'); ga('send', 'pageview'); </script> <!-- End Google Analytics --> <script> showDiv('page_1') </script> </body> </html>