Science.gov

Sample records for global transcript profiling

  1. The Influence of Microdeletions and Microduplications of 16p11.2 on Global Transcription Profiles

    PubMed Central

    Kusenda, Mary; Vacic, Vladimir; Malhotra, Dheeraj; Rodgers, Linda; Pavon, Kevin; Meth, Jennifer; Kumar, Ravinesh A.; Christian, Susan L.; Peeters, Hilde; Cho, Shawn S.; Addington, Anjene; Rapoport, Judith L.; Sebat, Jonathan

    2015-01-01

    Copy number variants (CNVs) of a 600 kb region on 16p11.2 are associated with neurodevelopmental disorders and changes in brain volume. The authors hypothesize that abnormal brain development associated with this CNV can be attributed to changes in transcriptional regulation. The authors determined the effects of 16p11.2 dosage on gene expression by transcription profiling of lymphoblast cell lines derived from 6 microdeletion carriers, 15 microduplication carriers and 15 controls. Gene dosage had a significant influence on the transcript abundance of a majority (20/34) of genes within the CNV region. In addition, a limited number of genes were dysregulated in trans. Genes most strongly correlated with patient head circumference included SULT1A, KCTD13, and TMEM242. Given the modest effect of 16p11.2 copy number on global transcriptional regulation in lymphocytes, larger studies utilizing neuronal cell types may be needed in order to elucidate the signaling pathways that influence brain development in this genetic disorder. PMID:26391891

  2. Global Transcriptional Profiling of Diapause and Climatic Adaptation in Drosophila melanogaster

    PubMed Central

    Zhao, Xiaqing; Bergland, Alan O.; Behrman, Emily L.; Gregory, Brian D.; Petrov, Dmitri A.; Schmidt, Paul S.

    2016-01-01

    Wild populations of the model organism Drosophila melanogaster experience highly heterogeneous environments over broad geographical ranges as well as over seasonal and annual timescales. Diapause is a primary adaptation to environmental heterogeneity, and in D. melanogaster the propensity to enter diapause varies predictably with latitude and season. Here we performed global transcriptomic profiling of naturally occurring variation in diapause expression elicited by short day photoperiod and moderately low temperature in two tissue types associated with neuroendocrine and endocrine signaling, heads, and ovaries. We show that diapause in D. melanogaster is an actively regulated phenotype at the transcriptional level, suggesting that diapause is not a simple physiological or reproductive quiescence. Differentially expressed genes and pathways are highly distinct in heads and ovaries, demonstrating that the diapause response is not uniform throughout the soma and suggesting that it may be comprised of functional modules associated with specific tissues. Genes downregulated in heads of diapausing flies are significantly enriched for clinally varying single nucleotide polymorphism (SNPs) and seasonally oscillating SNPs, consistent with the hypothesis that diapause is a driving phenotype of climatic adaptation. We also show that chromosome location-based coregulation of gene expression is present in the transcriptional regulation of diapause. Taken together, these results demonstrate that diapause is a complex phenotype actively regulated in multiple tissues, and support the hypothesis that natural variation in diapause propensity underlies adaptation to spatially and temporally varying selective pressures. PMID:26568616

  3. Global transcription profiling reveals comprehensive insights into hypoxic response in Arabidopsis.

    PubMed

    Liu, Fenglong; Vantoai, Tara; Moy, Linda P; Bock, Geoffrey; Linford, Lara D; Quackenbush, John

    2005-03-01

    Plants have evolved adaptation mechanisms to sense oxygen deficiency in their environments and make coordinated physiological and structural adjustments to enhance their hypoxic tolerance. To gain insight into how plants respond to low-oxygen stress, gene expression profiling using whole-genome DNA amplicon microarrays was carried out at seven time points over 24 h, in wild-type and transgenic P(SAG12):ipt Arabidopsis (Arabidopsis thaliana) plants under normoxic and hypoxic conditions. Transcript levels of genes involved in glycolysis and fermentation pathways, ethylene synthesis and perception, calcium signaling, nitrogen utilization, trehalose metabolism, and alkaloid synthesis were significantly altered in response to oxygen limitation. Analysis based on gene ontology assignments suggested a significant down-regulation of genes whose functions are associated with cell walls, nucleosome structures, water channels, and ion transporters and a significant up-regulation of genes involved in transcriptional regulation, protein kinase activity, and auxin responses under conditions of oxygen shortage. Promoter analysis on a cluster of up-regulated genes revealed a significant overrepresentation of the AtMYB2-binding motif (GT motif), a sugar response element-like motif, and a G-box-related sequence, and also identified several putative anaerobic response elements. Finally, quantitative real-time polymerase chain reactions using 29 selected genes independently verified the microarray results. This study represents one of the most comprehensive analyses conducted to date investigating hypoxia-responsive transcriptional networks in plants.

  4. Global transcriptional profiles of the copper responses in the cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Giner-Lamia, Joaquin; López-Maury, Luis; Florencio, Francisco J

    2014-01-01

    Copper is an essential element involved in fundamental processes like respiration and photosynthesis. However, it becomes toxic at high concentration, which has forced organisms to control its cellular concentration. We have recently described a copper resistance system in the cyanobacterium Synechocystis sp. PCC 6803, which is mediated by the two-component system, CopRS, a RND metal transport system, CopBAC and a protein of unknown function, CopM. Here, we report the transcriptional responses to copper additions at non-toxic (0.3 µM) and toxic concentrations (3 µM) in the wild type and in the copper sensitive copR mutant strain. While 0.3 µM copper slightly stimulated metabolism and promoted the exchange between cytochrome c6 and plastocyanin as soluble electron carriers, the addition of 3 µM copper catalyzed the formation of ROS, led to a general stress response and induced expression of Fe-S cluster biogenesis genes. According to this, a double mutant strain copRsufR, which expresses constitutively the sufBCDS operon, tolerated higher copper concentration than the copR mutant strain, suggesting that Fe-S clusters are direct targets of copper toxicity in Synechocystis. In addition we have also demonstrated that InrS, a nickel binding transcriptional repressor that belong to the CsoR family of transcriptional factor, was involved in heavy metal homeostasis, including copper, in Synechocystis. Finally, global gene expression analysis of the copR mutant strain suggested that CopRS only controls the expression of copMRS and copBAC operons in response to copper.

  5. Global Transcriptional Profiles of the Copper Responses in the Cyanobacterium Synechocystis sp. PCC 6803

    PubMed Central

    Giner-Lamia, Joaquin; López-Maury, Luis; Florencio, Francisco J.

    2014-01-01

    Copper is an essential element involved in fundamental processes like respiration and photosynthesis. However, it becomes toxic at high concentration, which has forced organisms to control its cellular concentration. We have recently described a copper resistance system in the cyanobacterium Synechocystis sp. PCC 6803, which is mediated by the two-component system, CopRS, a RND metal transport system, CopBAC and a protein of unknown function, CopM. Here, we report the transcriptional responses to copper additions at non-toxic (0.3 µM) and toxic concentrations (3 µM) in the wild type and in the copper sensitive copR mutant strain. While 0.3 µM copper slightly stimulated metabolism and promoted the exchange between cytochrome c6 and plastocyanin as soluble electron carriers, the addition of 3 µM copper catalyzed the formation of ROS, led to a general stress response and induced expression of Fe-S cluster biogenesis genes. According to this, a double mutant strain copRsufR, which expresses constitutively the sufBCDS operon, tolerated higher copper concentration than the copR mutant strain, suggesting that Fe-S clusters are direct targets of copper toxicity in Synechocystis. In addition we have also demonstrated that InrS, a nickel binding transcriptional repressor that belong to the CsoR family of transcriptional factor, was involved in heavy metal homeostasis, including copper, in Synechocystis. Finally, global gene expression analysis of the copR mutant strain suggested that CopRS only controls the expression of copMRS and copBAC operons in response to copper. PMID:25268225

  6. Global transcriptional profiling of the toxic dinoflagellate Alexandrium fundyense using Massively Parallel Signature Sequencing

    PubMed Central

    Erdner, Deana L; Anderson, Donald M

    2006-01-01

    Background Dinoflagellates are one of the most important classes of marine and freshwater algae, notable both for their functional diversity and ecological significance. They occur naturally as free-living cells, as endosymbionts of marine invertebrates and are well known for their involvement in "red tides". Dinoflagellates are also notable for their unusual genome content and structure, which suggests that the organization and regulation of dinoflagellate genes may be very different from that of most eukaryotes. To investigate the content and regulation of the dinoflagellate genome, we performed a global analysis of the transcriptome of the toxic dinoflagellate Alexandrium fundyense under nitrate- and phosphate-limited conditions using Massively Parallel Signature Sequencing (MPSS). Results Data from the two MPSS libraries showed that the number of unique signatures found in A. fundyense cells is similar to that of humans and Arabidopsis thaliana, two eukaryotes that have been extensively analyzed using this method. The general distribution, abundance and expression patterns of the A. fundyense signatures were also quite similar to other eukaryotes, and at least 10% of the A. fundyense signatures were differentially expressed between the two conditions. RACE amplification and sequencing of a subset of signatures showed that multiple signatures arose from sequence variants of a single gene. Single signatures also mapped to different sequence variants of the same gene. Conclusion The MPSS data presented here provide a quantitative view of the transcriptome and its regulation in these unusual single-celled eukaryotes. The observed signature abundance and distribution in Alexandrium is similar to that of other eukaryotes that have been analyzed using MPSS. Results of signature mapping via RACE indicate that many signatures result from sequence variants of individual genes. These data add to the growing body of evidence for widespread gene duplication in

  7. Global changes in the transcript and metabolic profiles during symbiotic nitrogen fixation in phosphorus-stressed common bean plants.

    PubMed

    Hernández, Georgina; Valdés-López, Oswaldo; Ramírez, Mario; Goffard, Nicolas; Weiller, Georg; Aparicio-Fabre, Rosaura; Fuentes, Sara Isabel; Erban, Alexander; Kopka, Joachim; Udvardi, Michael K; Vance, Carroll P

    2009-11-01

    Phosphorus (P) deficiency is widespread in regions where the common bean (Phaseolus vulgaris), the most important legume for human consumption, is produced, and it is perhaps the factor that most limits nitrogen fixation. Global gene expression and metabolome approaches were used to investigate the responses of nodules from common bean plants inoculated with Rhizobium tropici CIAT899 grown under P-deficient and P-sufficient conditions. P-deficient inoculated plants showed drastic reduction in nodulation and nitrogenase activity as determined by acetylene reduction assay. Nodule transcript profiling was performed through hybridization of nylon filter arrays spotted with cDNAs, approximately 4,000 unigene set, from the nodule and P-deficient root library. A total of 459 genes, representing different biological processes according to updated annotation using the UniProt Knowledgebase database, showed significant differential expression in response to P: 59% of these were induced in P-deficient nodules. The expression platform for transcription factor genes based in quantitative reverse transcriptase-polymerase chain reaction revealed that 37 transcription factor genes were differentially expressed in P-deficient nodules and only one gene was repressed. Data from nontargeted metabolic profiles indicated that amino acids and other nitrogen metabolites were decreased, while organic and polyhydroxy acids were accumulated, in P-deficient nodules. Bioinformatics analyses using MapMan and PathExpress software tools, customized to common bean, were utilized for the analysis of global changes in gene expression that affected overall metabolism. Glycolysis and glycerolipid metabolism, and starch and Suc metabolism, were identified among the pathways significantly induced or repressed in P-deficient nodules, respectively.

  8. Global Transcript Profiles of Fat in Monozygotic Twins Discordant for BMI: Pathways behind Acquired Obesity

    PubMed Central

    Rissanen, Aila; Saharinen, Juha; Ellonen, Pekka; Keränen, Heli; Suomalainen, Anu; Götz, Alexandra; Suortti, Tapani; Yki-Järvinen, Hannele; Orešič, Matej; Kaprio, Jaakko; Peltonen, Leena

    2008-01-01

    Background The acquired component of complex traits is difficult to dissect in humans. Obesity represents such a trait, in which the metabolic and molecular consequences emerge from complex interactions of genes and environment. With the substantial morbidity associated with obesity, a deeper understanding of the concurrent metabolic changes is of considerable importance. The goal of this study was to investigate this important acquired component and expose obesity-induced changes in biological pathways in an identical genetic background. Methods and Findings We used a special study design of “clonal controls,” rare monozygotic twins discordant for obesity identified through a national registry of 2,453 young, healthy twin pairs. A total of 14 pairs were studied (eight male, six female; white), with a mean ± standard deviation (SD) age 25.8 ± 1.4 y and a body mass index (BMI) difference 5.2 ± 1.8 kg/m2. Sequence analyses of mitochondrial DNA (mtDNA) in subcutaneous fat and peripheral leukocytes revealed no aberrant heteroplasmy between the co-twins. However, mtDNA copy number was reduced by 47% in the obese co-twin's fat. In addition, novel pathway analyses of the adipose tissue transcription profiles exposed significant down-regulation of mitochondrial branched-chain amino acid (BCAA) catabolism (p < 0.0001). In line with this finding, serum levels of insulin secretion-enhancing BCAAs were increased in obese male co-twins (9% increase, p = 0.025). Lending clinical relevance to the findings, in both sexes the observed aberrations in mitochondrial amino acid metabolism pathways in fat correlated closely with liver fat accumulation, insulin resistance, and hyperinsulinemia, early aberrations of acquired obesity in these healthy young adults. Conclusions Our findings emphasize a substantial role of mitochondrial energy- and amino acid metabolism in obesity and development of insulin resistance. PMID:18336063

  9. Time course gene expression profiling of yeast spore germination reveals a network of transcription factors orchestrating the global response.

    PubMed

    Geijer, Cecilia; Pirkov, Ivan; Vongsangnak, Wanwipa; Ericsson, Abraham; Nielsen, Jens; Krantz, Marcus; Hohmann, Stefan

    2012-10-15

    Spore germination of the yeast Saccharomyces cerevisiae is a multi-step developmental path on which dormant spores re-enter the mitotic cell cycle and resume vegetative growth. Upon addition of a fermentable carbon source and nutrients, the outer layers of the protective spore wall are locally degraded, the tightly packed spore gains volume and an elongated shape, and eventually the germinating spore re-enters the cell cycle. The regulatory pathways driving this process are still largely unknown. Here we characterize the global gene expression profiles of germinating spores and identify potential transcriptional regulators of this process with the aim to increase our understanding of the mechanisms that control the transition from cellular dormancy to proliferation. Employing detailed gene expression time course data we have analysed the reprogramming of dormant spores during the transition to proliferation stimulated by a rich growth medium or pure glucose. Exit from dormancy results in rapid and global changes consisting of different sequential gene expression subprograms. The regulated genes reflect the transition towards glucose metabolism, the resumption of growth and the release of stress, similar to cells exiting a stationary growth phase. High resolution time course analysis during the onset of germination allowed us to identify a transient up-regulation of genes involved in protein folding and transport. We also identified a network of transcription factors that may be regulating the global response. While the expression outputs following stimulation by rich glucose medium or by glucose alone are qualitatively similar, the response to rich medium is stronger. Moreover, spores sense and react to amino acid starvation within the first 30 min after germination initiation, and this response can be linked to specific transcription factors. Resumption of growth in germinating spores is characterized by a highly synchronized temporal organisation of up- and down

  10. Time course gene expression profiling of yeast spore germination reveals a network of transcription factors orchestrating the global response

    PubMed Central

    2012-01-01

    Background Spore germination of the yeast Saccharomyces cerevisiae is a multi-step developmental path on which dormant spores re-enter the mitotic cell cycle and resume vegetative growth. Upon addition of a fermentable carbon source and nutrients, the outer layers of the protective spore wall are locally degraded, the tightly packed spore gains volume and an elongated shape, and eventually the germinating spore re-enters the cell cycle. The regulatory pathways driving this process are still largely unknown. Here we characterize the global gene expression profiles of germinating spores and identify potential transcriptional regulators of this process with the aim to increase our understanding of the mechanisms that control the transition from cellular dormancy to proliferation. Results Employing detailed gene expression time course data we have analysed the reprogramming of dormant spores during the transition to proliferation stimulated by a rich growth medium or pure glucose. Exit from dormancy results in rapid and global changes consisting of different sequential gene expression subprograms. The regulated genes reflect the transition towards glucose metabolism, the resumption of growth and the release of stress, similar to cells exiting a stationary growth phase. High resolution time course analysis during the onset of germination allowed us to identify a transient up-regulation of genes involved in protein folding and transport. We also identified a network of transcription factors that may be regulating the global response. While the expression outputs following stimulation by rich glucose medium or by glucose alone are qualitatively similar, the response to rich medium is stronger. Moreover, spores sense and react to amino acid starvation within the first 30 min after germination initiation, and this response can be linked to specific transcription factors. Conclusions Resumption of growth in germinating spores is characterized by a highly synchronized

  11. Distinct transcriptional control in major immunogenetic subsets of chronic lymphocytic leukemia exhibiting subset-biased global DNA methylation profiles

    PubMed Central

    Kanduri, Meena; Marincevic, Millaray; Halldórsdóttir, Anna M.; Mansouri, Larry; Junevik, Katarina; Ntoufa, Stavroula; Kultima, Hanna Göransson; Isaksson, Anders; Juliusson, Gunnar; Andersson, Per-Ola; Ehrencrona, Hans; Stamatopoulos, Kostas; Rosenquist, Richard

    2012-01-01

    Chronic lymphocytic leukemia (CLL) can be divided into prognostic subgroups based on the IGHV gene mutational status, and is further characterized by multiple subsets of cases with quasi-identical or stereotyped B cell receptors that also share clinical and biological features. We recently reported differential DNA methylation profiles in IGHV-mutated and IGHV-unmutated CLL subgroups. For the first time, we here explore the global methylation profiles of stereotyped subsets with different prognosis, by applying high-resolution methylation arrays on CLL samples from three major stereotyped subsets: the poor-prognostic subsets #1 (n = 15) and #2 (n = 9) and the favorable-prognostic subset #4 (n = 15). Overall, the three subsets exhibited significantly different methylation profiles, which only partially overlapped with those observed in our previous study according to IGHV gene mutational status. Specifically, gene ontology analysis of the differentially methylated genes revealed a clear enrichment of genes involved in immune response, such as B cell activation (e.g., CD80, CD86 and IL10), with higher methylation levels in subset #1 than subsets #2 and #4. Accordingly, higher expression of the co-stimulatory molecules CD80 and CD86 was demonstrated in subset #4 vs. subset #1, pointing to a key role for these molecules in the crosstalk of CLL subset #4 cells with the microenvironment. In summary, investigation of three prototypic, stereotyped CLL subsets revealed distinct DNA methylation profiles for each subset, which suggests subset-biased patterns of transcriptional control and highlights a key role for epigenetics during leukemogenesis. PMID:23154584

  12. Distinct transcriptional control in major immunogenetic subsets of chronic lymphocytic leukemia exhibiting subset-biased global DNA methylation profiles.

    PubMed

    Kanduri, Meena; Marincevic, Millaray; Halldórsdóttir, Anna M; Mansouri, Larry; Junevik, Katarina; Ntoufa, Stavroula; Kultima, Hanna Göransson; Isaksson, Anders; Juliusson, Gunnar; Andersson, Per-Ola; Ehrencrona, Hans; Stamatopoulos, Kostas; Rosenquist, Richard

    2012-12-01

    Chronic lymphocytic leukemia (CLL) can be divided into prognostic subgroups based on the IGHV gene mutational status, and is further characterized by multiple subsets of cases with quasi-identical or stereotyped B cell receptors that also share clinical and biological features. We recently reported differential DNA methylation profiles in IGHV-mutated and IGHV-unmutated CLL subgroups. For the first time, we here explore the global methylation profiles of stereotyped subsets with different prognosis, by applying high-resolution methylation arrays on CLL samples from three major stereotyped subsets: the poor-prognostic subsets #1 (n = 15) and #2 (n = 9) and the favorable-prognostic subset #4 (n = 15). Overall, the three subsets exhibited significantly different methylation profiles, which only partially overlapped with those observed in our previous study according to IGHV gene mutational status. Specifically, gene ontology analysis of the differentially methylated genes revealed a clear enrichment of genes involved in immune response, such as B cell activation (e.g., CD80, CD86 and IL10), with higher methylation levels in subset #1 than subsets #2 and #4. Accordingly, higher expression of the co-stimulatory molecules CD80 and CD86 was demonstrated in subset #4 vs. subset #1, pointing to a key role for these molecules in the crosstalk of CLL subset #4 cells with the microenvironment. In summary, investigation of three prototypic, stereotyped CLL subsets revealed distinct DNA methylation profiles for each subset, which suggests subset-biased patterns of transcriptional control and highlights a key role for epigenetics during leukemogenesis.

  13. Soybean Roots Grown under Heat Stress Show Global Changes in Their Transcriptional and Proteomic Profiles.

    PubMed

    Valdés-López, Oswaldo; Batek, Josef; Gomez-Hernandez, Nicolas; Nguyen, Cuong T; Isidra-Arellano, Mariel C; Zhang, Ning; Joshi, Trupti; Xu, Dong; Hixson, Kim K; Weitz, Karl K; Aldrich, Joshua T; Paša-Tolić, Ljiljana; Stacey, Gary

    2016-01-01

    Heat stress is likely to be a key factor in the negative impact of climate change on crop production. Heat stress significantly influences the functions of roots, which provide support, water, and nutrients to other plant organs. Likewise, roots play an important role in the establishment of symbiotic associations with different microorganisms. Despite the physiological relevance of roots, few studies have examined their response to heat stress. In this study, we performed genome-wide transcriptomic and proteomic analyses on isolated root hairs, which are a single, epidermal cell type, and compared their response to stripped roots. On average, we identified 1849 and 3091 genes differentially regulated in root hairs and stripped roots, respectively, in response to heat stress. Our gene regulatory module analysis identified 10 key modules that might control the majority of the transcriptional response to heat stress. We also conducted proteomic analysis on membrane fractions isolated from root hairs and compared these responses to stripped roots. These experiments identified a variety of proteins whose expression changed within 3 h of application of heat stress. Most of these proteins were predicted to play a significant role in thermo-tolerance, as well as in chromatin remodeling and post-transcriptional regulation. The data presented represent an in-depth analysis of the heat stress response of a single cell type in soybean.

  14. Soybean Roots Grown under Heat Stress Show Global Changes in Their Transcriptional and Proteomic Profiles

    PubMed Central

    Valdés-López, Oswaldo; Batek, Josef; Gomez-Hernandez, Nicolas; Nguyen, Cuong T.; Isidra-Arellano, Mariel C.; Zhang, Ning; Joshi, Trupti; Xu, Dong; Hixson, Kim K.; Weitz, Karl K.; Aldrich, Joshua T.; Paša-Tolić, Ljiljana; Stacey, Gary

    2016-01-01

    Heat stress is likely to be a key factor in the negative impact of climate change on crop production. Heat stress significantly influences the functions of roots, which provide support, water, and nutrients to other plant organs. Likewise, roots play an important role in the establishment of symbiotic associations with different microorganisms. Despite the physiological relevance of roots, few studies have examined their response to heat stress. In this study, we performed genome-wide transcriptomic and proteomic analyses on isolated root hairs, which are a single, epidermal cell type, and compared their response to stripped roots. On average, we identified 1849 and 3091 genes differentially regulated in root hairs and stripped roots, respectively, in response to heat stress. Our gene regulatory module analysis identified 10 key modules that might control the majority of the transcriptional response to heat stress. We also conducted proteomic analysis on membrane fractions isolated from root hairs and compared these responses to stripped roots. These experiments identified a variety of proteins whose expression changed within 3 h of application of heat stress. Most of these proteins were predicted to play a significant role in thermo-tolerance, as well as in chromatin remodeling and post-transcriptional regulation. The data presented represent an in-depth analysis of the heat stress response of a single cell type in soybean. PMID:27200004

  15. Soybean Roots Grown under Heat Stress Show Global Changes in Their Transcriptional and Proteomic Profiles

    SciTech Connect

    Valdés-López, Oswaldo; Batek, Josef; Gomez-Hernandez, Nicolas; Nguyen, Cuong T.; Isidra-Arellano, Mariel C.; Zhang, Ning; Joshi, Trupti; Xu, Dong; Hixson, Kim K.; Weitz, Karl K.; Aldrich, Joshua T.; Paša-Tolić, Ljiljana; Stacey, Gary

    2016-04-25

    Heat stress is likely to be a key factor in the negative impact of climate change on crop production. Roots provide support, water and nutrients to other plant organs. Likewise, roots play an important role in the establishment of symbiotic associations with different microorganisms. Despite the physiological relevance of roots, few studies have examined the response of these plant organs to heat stress. In this study, we performed genome-wide transcriptomic and proteomic analyses on isolated root hairs, which are a single, epidermal cell type, and compared their response to whole roots. We identified 2,013 genes differentially regulated in root hairs in response to heat stress. Our gene regulatory module analysis identified ten, key modules that controlled the majority of the transcriptional response to heat stress. We also conducted proteomic analysis on membrane fractions isolated from roots and root hairs. These experiments identified a variety of proteins whose expression changed within 3 hours of application of heat stress. Most of these proteins were predicted to play a role in thermotolerance, as well as in chromatin remodeling and post-transcriptional regulation. The data presented represent an in-depth analysis of the heat stress response of a single cell type in soybean.

  16. Soybean Roots Grown under Heat Stress Show Global Changes in Their Transcriptional and Proteomic Profiles

    DOE PAGES

    Valdés-López, Oswaldo; Batek, Josef; Gomez-Hernandez, Nicolas; ...

    2016-04-25

    Heat stress is likely to be a key factor in the negative impact of climate change on crop production. Heat stress significantly influences the functions of roots, which provide support, water, and nutrients to other plant organs. Likewise, roots play an important role in the establishment of symbiotic associations with different microorganisms. Despite the physiological relevance of roots, few studies have examined their response to heat stress. Here in this study, we performed genome-wide transcriptomic and proteomic analyses on isolated root hairs, which are a single, epidermal cell type, and compared their response to stripped roots. On average, we identifiedmore » 1849 and 3091 genes differentially regulated in root hairs and stripped roots, respectively, in response to heat stress. Our gene regulatory module analysis identified 10 key modules that might control the majority of the transcriptional response to heat stress. We also conducted proteomic analysis on membrane fractions isolated from root hairs and compared these responses to stripped roots. These experiments identified a variety of proteins whose expression changed within 3 h of application of heat stress. Most of these proteins were predicted to play a significant role in thermo-tolerance, as well as in chromatin remodeling and post-transcriptional regulation. In conclusion, the data presented represent an in-depth analysis of the heat stress response of a single cell type in soybean.« less

  17. Soybean Roots Grown under Heat Stress Show Global Changes in Their Transcriptional and Proteomic Profiles

    SciTech Connect

    Valdés-López, Oswaldo; Batek, Josef; Gomez-Hernandez, Nicolas; Nguyen, Cuong T.; Isidra-Arellano, Mariel C.; Zhang, Ning; Joshi, Trupti; Xu, Dong; Hixson, Kim K.; Weitz, Karl K.; Aldrich, Joshua T.; Paša-Tolić, Ljiljana; Stacey, Gary

    2016-04-25

    Heat stress is likely to be a key factor in the negative impact of climate change on crop production. Heat stress significantly influences the functions of roots, which provide support, water, and nutrients to other plant organs. Likewise, roots play an important role in the establishment of symbiotic associations with different microorganisms. Despite the physiological relevance of roots, few studies have examined their response to heat stress. Here in this study, we performed genome-wide transcriptomic and proteomic analyses on isolated root hairs, which are a single, epidermal cell type, and compared their response to stripped roots. On average, we identified 1849 and 3091 genes differentially regulated in root hairs and stripped roots, respectively, in response to heat stress. Our gene regulatory module analysis identified 10 key modules that might control the majority of the transcriptional response to heat stress. We also conducted proteomic analysis on membrane fractions isolated from root hairs and compared these responses to stripped roots. These experiments identified a variety of proteins whose expression changed within 3 h of application of heat stress. Most of these proteins were predicted to play a significant role in thermo-tolerance, as well as in chromatin remodeling and post-transcriptional regulation. In conclusion, the data presented represent an in-depth analysis of the heat stress response of a single cell type in soybean.

  18. Global Effect of Interleukin-10 on the Transcriptional Profile Induced by Neisseria meningitidis in Human Monocytes

    PubMed Central

    Øvstebø, Reidun; Olstad, Ole Kristoffer; Brusletto, Berit; Dalsbotten Aass, Hans Christian; Kierulf, Peter; Brandtzaeg, Petter; Berg, Jens Petter

    2012-01-01

    In meningococcal septic shock, the dominant inducer of inflammation is lipopolysaccharide (LPS) in the outer membrane of Neisseria meningitidis, while interleukin-10 (IL-10) is the principal anti-inflammatory cytokine. We have used microarrays and Ingenuity Pathway Analysis to study the global effects of IL-10 on gene expression induced by N. meningitidis, after exposure of human monocytes (n = 5) for 3 h to N. meningitidis (106 cells/ml), recombinant human IL-10 (rhIL-10) (25 ng/ml), and N. meningitidis combined with rhIL-10. N. meningitidis and IL-10 differentially expressed 3,579 and 648 genes, respectively. IL-10 downregulated 125 genes which were upregulated by N. meningitidis, including NLRP3, the key molecule of the NLRP3 inflammasome. IL-10 also upregulated 270 genes which were downregulated by N. meningitidis, including members of the leukocyte immunuglobulin-like receptor (LIR) family. Fifty-three genes revealed a synergistically increased expression when N. meningitidis and IL-10 were combined. AIM2 (the principal molecule of the AIM2 inflammasome) was among these genes (fold change [FC], 18.3 versus 7.4 and 9.4 after stimulation by N. meningitidis and IL-10, respectively). We detected reduced concentrations (92% to 40%) of six cytokines (IL-1b, IL-6, IL-8, tumor necrosis factor alpha [TNF-α], macrophage inflammatory protein alpha [MIP-α], MIP-β) in the presence of IL-10, compared with concentrations with stimulation by N. meningitidis alone. Our data analysis of the effects of IL-10 on gene expression induced by N. meningitidis suggests that high plasma levels of IL-10 in meningococcal septic shock plasma may have a profound effect on a variety of functions and cellular processes in human monocytes, including cell-to-cell signaling, cellular movement, cellular development, antigen presentation, and cell death. PMID:22966040

  19. Transcriptional profiling analysis of the global regulator NorG, a GntR-like protein of Staphylococcus aureus.

    PubMed

    Truong-Bolduc, Q C; Dunman, P M; Eidem, T; Hooper, D C

    2011-11-01

    The GntR-like protein NorG has been shown to affect Staphylococcus aureus genes involved in resistance to quinolones and β-lactams, such as those encoding the NorB and AbcA transporters. To identify the target genes regulated by NorG, we carried out transcriptional-profiling assays using S. aureus RN6390 and its isogenic norG::cat mutant. Our data showed that NorG positively affected the transcription of global regulators mgrA, arlS, and sarZ. The three putative drug efflux pump genes most positively affected by NorG were the NorB efflux pump (5.1-fold), the MmpL-like protein SACOL2566 (5.2-fold), and the BcrA-like drug transporter SACOL2525 (5.7-fold) genes. The S. aureus predicted MmpL protein showed 53% homology with the MmpL lipid transporter of Mycobacterium tuberculosis, and the putative SACOL2525 protein showed 87% homology with the bacitracin drug transporter BcrA of Staphylococcus hominis. Two pump genes most negatively affected by NorG were the NorC (4-fold) and AbcA (6-fold) genes. Other categories of genes, such as those participating in amino acid, inorganic ion, or nucleotide transporters and metabolism, were also affected by NorG. Real-time reverse transcription (RT)-PCR assays for mgrA, arlS, sarZ, norB, norC, abcA, mmpL, and bcrA-like were carried out to verify microarray data and showed the same level of up- or downregulation by NorG. The norG mutant showed a 2-fold increase in resistance to norfloxacin and rhodamine, both substrates of the NorC transporter, which is consistent with the resistance phenotype conferred by overexpression of norC on a plasmid. These data indicate that NorG has broad regulatory function in S. aureus.

  20. A global view of the transcriptional profiling of adipose tissue in Chinese Qinchuan cattle using RNA sequencing

    USDA-ARS?s Scientific Manuscript database

    To better understand the molecular mechanisms of adipose tissue development, we constructed a transcriptional profiling of adipose tissue by RNA sequencing. Samples were collected from Chinese Qinchuan fetuses, as well as adult heifers, bulls, and steers. We unambiguously detected a substantial numb...

  1. Global Epitranscriptomics Profiling of RNA Post-Transcriptional Modifications as an Effective Tool for Investigating the Epitranscriptomics of Stress Response*

    PubMed Central

    Rose, Rebecca E.; Pazos, Manuel A.; Curcio, M. Joan; Fabris, Daniele

    2016-01-01

    The simultaneous detection of all the post-transcriptional modifications (PTMs) that decorate cellular RNA can provide comprehensive information on the effects of changing environmental conditions on the entire epitranscriptome. To capture this type of information, we performed the analysis of ribonucleotide mixtures produced by hydrolysis of total RNA extracts from S. cerevisiae that was grown under hyperosmotic and heat shock conditions. Their global PTM profiles clearly indicated that the cellular responses to these types of stresses involved profound changes in the production of specific PTMs. The observed changes involved not only up-/down-regulation of typical PTMs, but also the outright induction of new ones that were absent under normal conditions, or the elimination of others that were normally present. Pointing toward the broad involvement of different classes of RNAs, many of the newly observed PTMs differed from those engaged in the known tRNA-based mechanism of translational recoding, which is induced by oxidative stress. Some of the expression effects were stress-specific, whereas others were not, thus suggesting that RNA PTMs may perform multifaceted activities in stress response, which are subjected to distinctive regulatory pathways. To explore their signaling networks, we implemented a strategy based on the systematic deletion of genes that connect established response genes with PTM biogenetic enzymes in a putative interactomic map. The results clearly identified PTMs that were under direct HOG control, a well-known protein kinase pathway involved in stress response in eukaryotes. Activation of this signaling pathway has been shown to result in the stabilization of numerous mRNAs and the induction of selected lncRNAs involved in chromatin remodeling. The fact that PTMs are capable of altering the activity of the parent RNAs suggest their possible participation in feedback mechanisms aimed at modulating the regulatory functions of such RNAs. This

  2. Common bean (Phaseolus vulgaris L.) PvTIFY orchestrates global changes in transcript profile response to jasmonate and phosphorus deficiency

    PubMed Central

    2013-01-01

    Background TIFY is a large plant-specific transcription factor gene family. A subgroup of TIFY genes named JAZ (Jasmonate-ZIM domain) has been identified as repressors of jasmonate (JA)-regulated transcription in Arabidopsis and other plants. JA signaling is involved in many aspects of plant growth/development and in defense responses to biotic and abiotic stresses. Here, we identified the TIFY genes (designated PvTIFY) from the legume common bean (Phaseolus vulgaris) and functionally characterized PvTIFY10C as a transcriptional regulator. Results Nineteen genes from the PvTIFY gene family were identified through whole-genome sequence analysis. Most of these were induced upon methyl-JA elicitation. We selected PvTIFY10C as a representative JA-responsive PvTIFY gene for further functional analysis. Transcriptome analysis via microarray hybridization using the newly designed Bean Custom Array 90 K was performed on transgenic roots of composite plants with modulated (RNAi-silencing or over-expression) PvTIFY10C gene expression. Data were interpreted using Gene Ontology and MapMan adapted to common bean. Microarray differential gene expression data were validated by real-time qRT-PCR expression analysis. Comparative global gene expression analysis revealed opposite regulatory changes in processes such as RNA and protein regulation, stress responses and metabolism in PvTIFY10C silenced vs. over-expressing roots. These data point to transcript reprogramming (mainly repression) orchestrated by PvTIFY10C. In addition, we found that several PvTIFY genes, as well as genes from the JA biosynthetic pathway, responded to P-deficiency. Relevant P-responsive genes that participate in carbon metabolic pathways, cell wall synthesis, lipid metabolism, transport, DNA, RNA and protein regulation, and signaling were oppositely-regulated in control vs. PvTIFY10C-silenced roots of composite plants under P-stress. These data indicate that PvTIFY10C regulates, directly or indirectly, the

  3. Common bean (Phaseolus vulgaris L.) PvTIFY orchestrates global changes in transcript profile response to jasmonate and phosphorus deficiency.

    PubMed

    Aparicio-Fabre, Rosaura; Guillén, Gabriel; Loredo, Montserrat; Arellano, Jesús; Valdés-López, Oswaldo; Ramírez, Mario; Iñiguez, Luis P; Panzeri, Dario; Castiglioni, Bianca; Cremonesi, Paola; Strozzi, Francesco; Stella, Alessandra; Girard, Lourdes; Sparvoli, Francesca; Hernández, Georgina

    2013-02-13

    TIFY is a large plant-specific transcription factor gene family. A subgroup of TIFY genes named JAZ (Jasmonate-ZIM domain) has been identified as repressors of jasmonate (JA)-regulated transcription in Arabidopsis and other plants. JA signaling is involved in many aspects of plant growth/development and in defense responses to biotic and abiotic stresses. Here, we identified the TIFY genes (designated PvTIFY) from the legume common bean (Phaseolus vulgaris) and functionally characterized PvTIFY10C as a transcriptional regulator. Nineteen genes from the PvTIFY gene family were identified through whole-genome sequence analysis. Most of these were induced upon methyl-JA elicitation. We selected PvTIFY10C as a representative JA-responsive PvTIFY gene for further functional analysis. Transcriptome analysis via microarray hybridization using the newly designed Bean Custom Array 90 K was performed on transgenic roots of composite plants with modulated (RNAi-silencing or over-expression) PvTIFY10C gene expression. Data were interpreted using Gene Ontology and MapMan adapted to common bean. Microarray differential gene expression data were validated by real-time qRT-PCR expression analysis. Comparative global gene expression analysis revealed opposite regulatory changes in processes such as RNA and protein regulation, stress responses and metabolism in PvTIFY10C silenced vs. over-expressing roots. These data point to transcript reprogramming (mainly repression) orchestrated by PvTIFY10C. In addition, we found that several PvTIFY genes, as well as genes from the JA biosynthetic pathway, responded to P-deficiency. Relevant P-responsive genes that participate in carbon metabolic pathways, cell wall synthesis, lipid metabolism, transport, DNA, RNA and protein regulation, and signaling were oppositely-regulated in control vs. PvTIFY10C-silenced roots of composite plants under P-stress. These data indicate that PvTIFY10C regulates, directly or indirectly, the expression of some P

  4. Global transcription profiling reveals differential responses to chronic nitrogen stress and putative nitrogen regulatory components in Arabidopsis

    PubMed Central

    Bi, Yong-Mei; Wang, Rong-Lin; Zhu, Tong; Rothstein, Steven J

    2007-01-01

    Background A large quantity of nitrogen (N) fertilizer is used for crop production to achieve high yields at a significant economic and environmental cost. Efforts have been directed to understanding the molecular basis of plant responses to N and identifying N-responsive genes in order to manipulate their expression, thus enabling plants to use N more efficiently. No studies have yet delineated these responses at the transcriptional level when plants are grown under chronic N stress and the understanding of regulatory elements involved in N response is very limited. Results To further our understanding of the response of plants to varying N levels, a growth system was developed where N was the growth-limiting factor. An Arabidopsis whole genome microarray was used to evaluate global gene expression under different N conditions. Differentially expressed genes under mild or severe chronic N stress were identified. Mild N stress triggered only a small set of genes significantly different at the transcriptional level, which are largely involved in various stress responses. Plant responses were much more pronounced under severe N stress, involving a large number of genes in many different biological processes. Differentially expressed genes were also identified in response to short- and long-term N availability increases. Putative N regulatory elements were determined along with several previously known motifs involved in the responses to N and carbon availability as well as plant stress. Conclusion Differentially expressed genes identified provide additional insights into the coordination of the complex N responses of plants and the components of the N response mechanism. Putative N regulatory elements were identified to reveal possible new components of the regulatory network for plant N responses. A better understanding of the complex regulatory network for plant N responses will help lead to strategies to improve N use efficiency. PMID:17705847

  5. An efficient xylose-fermenting recombinant Saccharomyces cerevisiae strain obtained through adaptive evolution and its global transcription profile.

    PubMed

    Shen, Yu; Chen, Xiao; Peng, Bingyin; Chen, Liyuan; Hou, Jin; Bao, Xiaoming

    2012-11-01

    Factors related to ethanol production from xylose in engineered Saccharomyces cerevisiae that contain an exogenous initial metabolic pathway are still to be elucidated. In the present study, a strain that expresses the xylose isomerase gene of Piromyces sp. Pi-xylA and overexpresses XKS1, RPE1, RKI1, TAL1, and TKL1, with deleted GRE3 and COX4 genes was constructed. The xylose utilization capacity of the respiratory deficiency strain was poor but improved via adaptive evolution in xylose. The μ (max) of the evolved strain in 20 g l(-1) xylose is 0.11 ± 0.00 h(-1), and the evolved strain consumed 17.83 g l(-1) xylose within 72 h, with an ethanol yield of 0.43 g g(-1) total consumed sugars during glucose-xylose cofermentation. Global transcriptional changes and effect of several specific genes were studied. The result revealed that the increased xylose isomerase acivity, the upregulation of enzymes involved in glycolysis and glutamate synthesis, and the downregulation of trehalose and glycogen synthesis, may have contributed to the improved xylose utilization of the strain. Furthermore, the deletion of PHO13 decreased the xylose growth in the respiration deficiency strain although deleting PHO13 can improve the xylose metabolism in other strains.

  6. Effects of tumor necrosis factor-alpha (TNF alpha) in epidermal keratinocytes revealed using global transcriptional profiling.

    PubMed

    Banno, Tomohiro; Gazel, Alix; Blumenberg, Miroslav

    2004-07-30

    Identification of tumor necrosis factor-alpha (TNF alpha) as the key agent in inflammatory disorders, e.g. rheumatoid arthritis, Crohn's disease, and psoriasis, led to TNF alpha-targeting therapies, which, although avoiding many of the side-effects of previous drugs, nonetheless causes other side-effects, including secondary infections and cancer. By controlling gene expression, TNF alpha orchestrates the cutaneous responses to environmental damage and inflammation. To define TNF alpha action in epidermis, we compared the transcriptional profiles of normal human keratinocytes untreated and treated with TNF alpha for 1, 4, 24, and 48 h by using oligonucleotide microarrays. We found that TNF alpha regulates not only immune and inflammatory responses but also tissue remodeling, cell motility, cell cycle, and apoptosis. Specifically, TNF alpha regulates innate immunity and inflammation by inducing a characteristic large set of chemokines, including newly identified TNF alpha targets, that attract neutrophils, macrophages, and skin-specific memory T-cells. This implicates TNF alpha in the pathogenesis of psoriasis, fixed drug eruption, atopic and allergic contact dermatitis. TNF alpha promotes tissue repair by inducing basement membrane components and collagen-degrading proteases. Unexpectedly, TNF alpha induces actin cytoskeleton regulators and integrins, enhancing keratinocyte motility and attachment, effects not previously associated with TNF alpha. Also unanticipated was the influence of TNF alpha upon keratinocyte cell fate by regulating cell-cycle and apoptosis-associated genes. Therefore, TNF alpha initiates not only the initiation of inflammation and responses to injury, but also the subsequent epidermal repair. The results provide new insights into the harmful and beneficial TNF alpha effects and define the mechanisms and genes that achieve these outcomes, both of which are important for TNF alpha-targeted therapies.

  7. Natural blood feeding and temperature shift modulate the global transcriptional profile of Rickettsia rickettsii infecting its tick vector.

    PubMed

    Galletti, Maria Fernanda B M; Fujita, André; Nishiyama, Milton Y; Malossi, Camila D; Pinter, Adriano; Soares, João F; Daffre, Sirlei; Labruna, Marcelo B; Fogaça, Andréa C

    2013-01-01

    Rickettsia rickettsii is an obligate intracellular tick-borne bacterium that causes Rocky Mountain Spotted Fever (RMSF), the most lethal spotted fever rickettsiosis. When an infected starving tick begins blood feeding from a vertebrate host, R. rickettsii is exposed to a temperature elevation and to components in the blood meal. These two environmental stimuli have been previously associated with the reactivation of rickettsial virulence in ticks, but the factors responsible for this phenotype conversion have not been completely elucidated. Using customized oligonucleotide microarrays and high-throughput microfluidic qRT-PCR, we analyzed the effects of a 10°C temperature elevation and of a blood meal on the transcriptional profile of R. rickettsii infecting the tick Amblyomma aureolatum. This is the first study of the transcriptome of a bacterium in the genus Rickettsia infecting a natural tick vector. Although both stimuli significantly increased bacterial load, blood feeding had a greater effect, modulating five-fold more genes than the temperature upshift. Certain components of the Type IV Secretion System (T4SS) were up-regulated by blood feeding. This suggests that this important bacterial transport system may be utilized to secrete effectors during the tick vector's blood meal. Blood feeding also up-regulated the expression of antioxidant enzymes, which might correspond to an attempt by R. rickettsii to protect itself against the deleterious effects of free radicals produced by fed ticks. The modulated genes identified in this study, including those encoding hypothetical proteins, require further functional analysis and may have potential as future targets for vaccine development.

  8. Global gene expression profiling of brown to white adipose tissue transformation in sheep reveals novel transcriptional components linked to adipose remodeling.

    PubMed

    Basse, Astrid L; Dixen, Karen; Yadav, Rachita; Tygesen, Malin P; Qvortrup, Klaus; Kristiansen, Karsten; Quistorff, Bjørn; Gupta, Ramneek; Wang, Jun; Hansen, Jacob B

    2015-03-19

    Large mammals are capable of thermoregulation shortly after birth due to the presence of brown adipose tissue (BAT). The majority of BAT disappears after birth and is replaced by white adipose tissue (WAT). We analyzed the postnatal transformation of adipose in sheep with a time course study of the perirenal adipose depot. We observed changes in tissue morphology, gene expression and metabolism within the first two weeks of postnatal life consistent with the expected transition from BAT to WAT. The transformation was characterized by massively decreased mitochondrial abundance and down-regulation of gene expression related to mitochondrial function and oxidative phosphorylation. Global gene expression profiling demonstrated that the time points grouped into three phases: a brown adipose phase, a transition phase and a white adipose phase. Between the brown adipose and the transition phase 170 genes were differentially expressed, and 717 genes were differentially expressed between the transition and the white adipose phase. Thirty-eight genes were shared among the two sets of differentially expressed genes. We identified a number of regulated transcription factors, including NR1H3, MYC, KLF4, ESR1, RELA and BCL6, which were linked to the overall changes in gene expression during the adipose tissue remodeling. Finally, the perirenal adipose tissue expressed both brown and brite/beige adipocyte marker genes at birth, the expression of which changed substantially over time. Using global gene expression profiling of the postnatal BAT to WAT transformation in sheep, we provide novel insight into adipose tissue plasticity in a large mammal, including identification of novel transcriptional components linked to adipose tissue remodeling. Moreover, our data set provides a useful resource for further studies in adipose tissue plasticity.

  9. Gene transcription profiles, global DNA methylation and potential transgenerational epigenetic effects related to Zn exposure history in Daphnia magna.

    PubMed

    Vandegehuchte, Michiel B; De Coninck, Dieter; Vandenbrouck, Tine; De Coen, Wim M; Janssen, Colin R

    2010-10-01

    A reduced level of DNA methylation has recently been described in both Zn-exposed and non-exposed offspring of Daphnia magna exposed to Zn. The hypothesis examined in this study is that DNA hypomethylation has an effect on gene transcription. A second hypothesis is that accumulative epigenetic effects can affect gene transcription in non-exposed offspring from parents with an exposure history of more than one generation. Transcriptional gene regulation was studied with a cDNA microarray. In the exposed and non-exposed hypomethylated daphnids, a large proportion of common genes were similarly up- or down-regulated, indicating a possible effect of the DNA hypomethylation. Two of these genes can be mechanistically involved in DNA methylation reduction. The similar transcriptional regulation of two and three genes in the F0 and F1 exposed daphnids on one hand and their non-exposed offspring on the other hand, could be the result of a one-generation temporary transgenerational epigenetic effect, which was not accumulative. Copyright (c) 2010 Elsevier Ltd. All rights reserved.

  10. Global changes in the transcript and metabolic profiles during symbiotic nitrogen fixation in phosphorus-stressed common bean plants

    USDA-ARS?s Scientific Manuscript database

    Phosphorus (P) deficiency is widespread in regions where the common bean (Phaseolus vulgaris L.), the most important legume for human consumption, is produced and is perhaps the factor that most limits nitrogen (N) fixation. Global gene expression and metabolome approaches were used to investigate t...

  11. In silico analyses and global transcriptional profiling reveal novel putative targets for Pea3 transcription factor related to its function in neurons

    PubMed Central

    Kandemir, Başak; Dag, Ugur; Bakir Gungor, Burcu; Durasi, İlknur Melis; Erdogan, Burcu; Sahin, Eray; Sezerman, Ugur

    2017-01-01

    Pea3 transcription factor belongs to the PEA3 subfamily within the ETS domain transcription factor superfamily, and has been largely studied in relation to its role in breast cancer metastasis. Nonetheless, Pea3 plays a role not only in breast tumor, but also in other tissues with branching morphogenesis, including kidneys, blood vasculature, bronchi and the developing nervous system. Identification of Pea3 target promoters in these systems are important for a thorough understanding of how Pea3 functions. Present study particularly focuses on the identification of novel neuronal targets of Pea3 in a combinatorial approach, through curation, computational analysis and microarray studies in a neuronal model system, SH-SY5Y neuroblastoma cells. We not only show that quite a number of genes in cancer, immune system and cell cycle pathways, among many others, are either up- or down-regulated by Pea3, but also identify novel targets including ephrins and ephrin receptors, semaphorins, cell adhesion molecules, as well as metalloproteases such as kallikreins, to be among potential target promoters in neuronal systems. Our overall results indicate that rather than early stages of neurite extension and axonal guidance, Pea3 is more involved in target identification and synaptic maturation. PMID:28158215

  12. Analysis of Transcriptional Profiles and Functional Clustering of Global Cerebellar Gene Expression in PCD3J Mice

    PubMed Central

    Ford, Gregory D.; Ford, Byron D.; Steele, Ernest C.; Gates, Alicia; Hood, Darryl; Matthews, Mika A.B.; Mirza, Sophia; MacLeish, Peter R.

    2008-01-01

    The Purkinje cell degeneration (PCD) mutant mouse is characterized by a degeneration of cerebellar Purkinje cells and progressive ataxia. To identify the molecular mechanisms that lead to the death of Purkinje neurons in PCD mice, we used Affymetrix microarray technology to compare cerebellar gene expression profiles in pcd3J mutant mice 14 days of age (prior to Purkinje cell loss) to unaffected littermates. Microarray analysis, Ingenuity Pathway Analysis (IPA) and Expression Analysis Systematic Explorer (EASE) software were used to identify biological and molecular pathways implicated in the progression of Purkinje cell degeneration. IPA analysis indicated that mutant pcd3J mice showed dysregulation of specific processes that may lead to Purkinje cell death, including several molecules known to control neuronal apoptosis such as Bad, CDK5 and PTEN. These findings demonstrate the usefulness of these powerful microarray analysis tools and have important implications for understanding the mechanisms of selective neuronal death and for developing therapeutic strategies to treat neurodegenerative disorders. PMID:18930027

  13. Global Rsh-dependent transcription profile of Brucella suis during stringent response unravels adaptation to nutrient starvation and cross-talk with other stress responses

    PubMed Central

    2013-01-01

    Background In the intracellular pathogen Brucella spp., the activation of the stringent response, a global regulatory network providing rapid adaptation to growth-affecting stress conditions such as nutrient deficiency, is essential for replication in the host. A single, bi-functional enzyme Rsh catalyzes synthesis and hydrolysis of the alarmone (p)ppGpp, responsible for differential gene expression under stringent conditions. Results cDNA microarray analysis allowed characterization of the transcriptional profiles of the B. suis 1330 wild-type and Δrsh mutant in a minimal medium, partially mimicking the nutrient-poor intramacrophagic environment. A total of 379 genes (11.6% of the genome) were differentially expressed in a rsh-dependent manner, of which 198 were up-, and 181 were down-regulated. The pleiotropic character of the response was confirmed, as the genes encoded an important number of transcriptional regulators, cell envelope proteins, stress factors, transport systems, and energy metabolism proteins. Virulence genes such as narG and sodC, respectively encoding respiratory nitrate reductase and superoxide dismutase, were under the positive control of (p)ppGpp, as well as expression of the cbb3-type cytochrome c oxidase, essential for chronic murine infection. Methionine was the only amino acid whose biosynthesis was absolutely dependent on stringent response in B. suis. Conclusions The study illustrated the complexity of the processes involved in adaptation to nutrient starvation, and contributed to a better understanding of the correlation between stringent response and Brucella virulence. Most interestingly, it clearly indicated (p)ppGpp-dependent cross-talk between at least three stress responses playing a central role in Brucella adaptation to the host: nutrient, oxidative, and low-oxygen stress. PMID:23834488

  14. Global Transcriptional Profiling of Shewanella oneidensis MR-1 during Cr(VI) and U(VI) Reduction†

    PubMed Central

    Bencheikh-Latmani, Rizlan; Williams, Sarah Middleton; Haucke, Lisa; Criddle, Craig S.; Wu, Liyou; Zhou, Jizhong; Tebo, Bradley M.

    2005-01-01

    Whole-genome DNA microarrays were used to examine the gene expression profile of Shewanella oneidensis MR-1 during U(VI) and Cr(VI) reduction. The same control, cells pregrown with nitrate and incubated with no electron acceptor, was used for the two time points considered and for both metals. U(VI)-reducing conditions resulted in the upregulation (≥3-fold) of 121 genes, while 83 genes were upregulated under Cr(VI)-reducing conditions. A large fraction of the genes upregulated [34% for U(VI) and 29% for Cr(VI)] encode hypothetical proteins of unknown function. Genes encoding proteins known to reduce alternative electron acceptors [fumarate, dimethyl sulfoxide, Mn(IV), or soluble Fe(III)] were upregulated under both U(VI)- and Cr(VI)-reducing conditions. The involvement of these upregulated genes in the reduction of U(VI) and Cr(VI) was tested using mutants lacking one or several of the gene products. Mutant testing confirmed the involvement of several genes in the reduction of both metals: mtrA, mtrB, mtrC, and menC, all of which are involved in Fe(III) citrate reduction by MR-1. Genes encoding efflux pumps were upregulated under Cr(VI)- but not under U(VI)-reducing conditions. Genes encoding proteins associated with general (e.g., groL and dnaJ) and membrane (e.g., pspBC) stress were also upregulated, particularly under U(VI)-reducing conditions, pointing to membrane damage by the solid-phase reduced U(IV) and Cr(III) and/or the direct effect of the oxidized forms of the metals. This study sheds light on the multifaceted response of MR-1 to U(VI) and Cr(VI) under anaerobic conditions and suggests that the same electron transport pathway can be used for more than one electron acceptor. PMID:16269787

  15. INSIGHTS FROM GENOMIC PROFILING OF TRANSCRIPTION FACTORS

    PubMed Central

    Farnham, Peggy

    2010-01-01

    A crucial question in the field of gene regulation is whether the location at which a transcription factor binds influences its effectiveness or the mechanism by which it regulates transcription. Comprehensive transcription factor binding maps are needed to address these issues, and genome-wide mapping is now possible thanks to the technological advances of ChIP-chip and ChIP-Seq. This review discusses how recent genomic profiling of transcription factors gives insight into how binding specificity is achieved and what features of chromatin influence the ability of transcription factors to interact with the genome, and also suggests future experiments to further our understanding of the causes and consequences of transcription factor-genome interactions. PMID:19668247

  16. Transcriptional profiling of epidermal differentiation.

    PubMed

    Radoja, Nada; Gazel, Alix; Banno, Tomohiro; Yano, Shoichiro; Blumenberg, Miroslav

    2006-10-03

    In epidermal differentiation basal keratinocytes detach from the basement membrane, stop proliferating, and express a new set of structural proteins and enzymes, which results in an impermeable protein/lipid barrier that protects us. To define the transcriptional changes essential for this process, we purified large quantities of basal and suprabasal cells from human epidermis, using the expression of beta4 integrin as the discriminating factor. The expected expression differences in cytoskeletal, cell cycle, and adhesion genes confirmed the effective separation of the cell populations. Using DNA microarray chips, we comprehensively identify the differences in genes expressed in basal and differentiating layers of the epidermis, including the ECM components produced by the basal cells, the proteases in both the basal and suprabasal cells, and the lipid and steroid metabolism enzymes in suprabasal cells responsible for the permeability barrier. We identified the signaling pathways specific for the two populations and found two previously unknown paracrine and one juxtacrine signaling pathway operating between the basal and suprabasal cells. Furthermore, using specific expression signatures, we identified a new set of late differentiation markers and mapped their chromosomal loci, as well as a new set of melanocyte-specific markers. The data represent a quantum jump in understanding the mechanisms of epidermal differentiation.

  17. Transcriptional profiling: is it worth the money?

    PubMed

    Hoheisel, J D; Vingron, M

    2000-03-01

    Transcriptional profiling on DNA arrays has become a synonym for the type of analyses that aim to understand cellular functioning in a comprehensive manner. In this review, the status of the technology is briefly discussed, with emphasis on some inherent weaknesses and problems.

  18. Transcription profiling of sparkling wine second fermentation.

    PubMed

    Penacho, Vanessa; Valero, Eva; Gonzalez, Ramon

    2012-02-01

    There is a specific set of stress factors that yeast cells must overcome under second fermentation conditions, during the production of sparkling wines by the traditional (Champenoise) method. Some of them are the same as those of the primary fermentation of still wines, although perhaps with a different intensity (high ethanol concentration, low pH, nitrogen starvation) while others are more specific to second fermentation (low temperature, CO(2) overpressure). The transcription profile of Saccharomyces cerevisiae during primary wine fermentation has been studied by several research groups, but this is the first report on yeast transcriptome under second fermentation conditions. Our results indicate that the main pathways affected by these particular conditions are related to aerobic respiration, but genes related to vacuolar and peroxisomal functions were also highlighted in this study. A parallelism between the transcription profile of wine yeast during primary and second fermentation is appreciated, with ethanol appearing as the main factor driving gene transcription during second fermentation. Low temperature seems to also influence yeast transcription profile under these particular winemaking conditions.

  19. TRANSFAC: transcriptional regulation, from patterns to profiles.

    PubMed

    Matys, V; Fricke, E; Geffers, R; Gössling, E; Haubrock, M; Hehl, R; Hornischer, K; Karas, D; Kel, A E; Kel-Margoulis, O V; Kloos, D-U; Land, S; Lewicki-Potapov, B; Michael, H; Münch, R; Reuter, I; Rotert, S; Saxel, H; Scheer, M; Thiele, S; Wingender, E

    2003-01-01

    The TRANSFAC database on eukaryotic transcriptional regulation, comprising data on transcription factors, their target genes and regulatory binding sites, has been extended and further developed, both in number of entries and in the scope and structure of the collected data. Structured fields for expression patterns have been introduced for transcription factors from human and mouse, using the CYTOMER database on anatomical structures and developmental stages. The functionality of Match, a tool for matrix-based search of transcription factor binding sites, has been enhanced. For instance, the program now comes along with a number of tissue-(or state-)specific profiles and new profiles can be created and modified with Match Profiler. The GENE table was extended and gained in importance, containing amongst others links to LocusLink, RefSeq and OMIM now. Further, (direct) links between factor and target gene on one hand and between gene and encoded factor on the other hand were introduced. The TRANSFAC public release is available at http://www.gene-regulation.com. For yeast an additional release including the latest data was made available separately as TRANSFAC Saccharomyces Module (TSM) at http://transfac.gbf.de. For CYTOMER free download versions are available at http://www.biobase.de:8080/index.html.

  20. Large-scale integration of small molecule-induced genome-wide transcriptional responses, Kinome-wide binding affinities and cell-growth inhibition profiles reveal global trends characterizing systems-level drug action.

    PubMed

    Vidović, Dušica; Koleti, Amar; Schürer, Stephan C

    2014-01-01

    The Library of Integrated Network-based Cellular Signatures (LINCS) project is a large-scale coordinated effort to build a comprehensive systems biology reference resource. The goals of the program include the generation of a very large multidimensional data matrix and informatics and computational tools to integrate, analyze, and make the data readily accessible. LINCS data include genome-wide transcriptional signatures, biochemical protein binding profiles, cellular phenotypic response profiles and various other datasets for a wide range of cell model systems and molecular and genetic perturbations. Here we present a partial survey of this data facilitated by data standards and in particular a robust compound standardization workflow; we integrated several types of LINCS signatures and analyzed the results with a focus on mechanism of action (MoA) and chemical compounds. We illustrate how kinase targets can be related to disease models and relevant drugs. We identified some fundamental trends that appear to link Kinome binding profiles and transcriptional signatures to chemical information and biochemical binding profiles to transcriptional responses independent of chemical similarity. To fill gaps in the datasets we developed and applied predictive models. The results can be interpreted at the systems level as demonstrated based on a large number of signaling pathways. We can identify clear global relationships, suggesting robustness of cellular responses to chemical perturbation. Overall, the results suggest that chemical similarity is a useful measure at the systems level, which would support phenotypic drug optimization efforts. With this study we demonstrate the potential of such integrated analysis approaches and suggest prioritizing further experiments to fill the gaps in the current data.

  1. Transcriptional Profiling of Foam Cells Reveals Induction of Guanylate-Binding Proteins Following Western Diet Acceleration of Atherosclerosis in the Absence of Global Changes in Inflammation.

    PubMed

    Goo, Young-Hwa; Son, Se-Hee; Yechoor, Vijay K; Paul, Antoni

    2016-04-18

    Foam cells are central to two major pathogenic processes in atherogenesis: cholesterol buildup in arteries and inflammation. The main underlying cause of cholesterol deposition in arteries is hypercholesterolemia. This study aimed to assess, in vivo, whether elevated plasma cholesterol also alters the inflammatory balance of foam cells. Apolipoprotein E-deficient mice were fed regular mouse chow through the study or were switched to a Western-type diet (WD) 2 or 14 weeks before death. Consecutive sections of the aortic sinus were used for lesion quantification or to isolate RNA from foam cells by laser-capture microdissection (LCM) for microarray and quantitative polymerase chain reaction analyses. WD feeding for 2 or 14 weeks significantly increased plasma cholesterol, but the size of atherosclerotic lesions increased only in the 14-week WD group. Expression of more genes was affected in foam cells of mice under prolonged hypercholesterolemia than in mice fed WD for 2 weeks. However, most transcripts coding for inflammatory mediators remained unchanged in both WD groups. Among the main players in inflammatory or immune responses, chemokine (C-X-C motif) ligand 13 was induced in foam cells of mice under WD for 2 weeks. The interferon-inducible GTPases, guanylate-binding proteins (GBP)3 and GBP6, were induced in the 14-week WD group, and other GBP family members were moderately increased. Our results indicate that acceleration of atherosclerosis by hypercholesterolemia is not linked to global changes in the inflammatory balance of foam cells. However, induction of GBPs uncovers a novel family of immune modulators with a potential role in atherogenesis. © 2016 The Authors. Published on behalf of the American Heart Association, Inc., by Wiley Blackwell.

  2. Assessment of hepatotoxic liabilities by transcript profiling

    SciTech Connect

    Ruepp, Stefan . E-mail: stefan.ruepp@roche.com; Boess, Franziska; Suter, Laura; Vera, Maria Cristina de; Steiner, Guido; Steele, Thomas; Weiser, Thomas; Albertini, Silvio

    2005-09-01

    Male Wistar rats were treated with various model compounds or the appropriate vehicle controls in order to create a reference database for toxicogenomics assessment of novel compounds. Hepatotoxic compounds in the database were either known hepatotoxicants or showed hepatotoxicity during preclinical testing. Histopathology and clinical chemistry data were used to anchor the transcript profiles to an established endpoint (steatosis, cholestasis, direct acting, peroxisomal proliferation or nontoxic/control). These reference data were analyzed using a supervised learning method (support vector machines, SVM) to generate classification rules. This predictive model was subsequently used to assess compounds with regard to a potential hepatotoxic liability. A steatotic and a non-hepatotoxic 5HT{sub 6} receptor antagonist compound from the same series were successfully discriminated by this toxicogenomics model. Additionally, an example is shown where a hepatotoxic liability was correctly recognized in the absence of pathological findings. In vitro experiments and a dog study confirmed the correctness of the toxicogenomics alert. Another interesting observation was that transcript profiles indicate toxicologically relevant changes at an earlier timepoint than routinely used methods. Together, these results support the useful application of toxicogenomics in raising alerts for adverse effects and generating mechanistic hypotheses that can be followed up by confirmatory experiments.

  3. Transcriptional profiling of Entamoeba histolytica trophozoites.

    PubMed

    MacFarlane, Ryan C; Shah, Preetam H; Singh, Upinder

    2005-04-30

    We have developed an Entamoeba histolytica genomic DNA microarray and used it to develop a transcriptional profile of 1,971 E. histolytica (HM-1:IMSS) genes. The arrays accurately detected message abundance and 31-47% of amebic genes were expressed under standard tissue culture conditions (levels detectable by Northern blot analysis or RT-PCR respectively). Genes expressed at high levels ( approximately 2% of total) included actin (8.m00351), and ribosomal genes (20.m00312). Moderately expressed genes ( approximately 14% of total) included cysteine proteinase (191.m00117), profilin (156.m00098), and an Argonaute family member (11.m00378). Genes with low-level expression ( approximately 15% of total) included Ariel1 (160.m00087). Genes with very low expression ( approximately 16% of total) and those not expressed ( approximately 52% of total) included encystation-specific genes such as Jacob cyst wall glycoprotein (33.m00261), chitin synthase (3.m00544), and chitinase (22.m00311). Transcriptional modulation could be detected using the arrays with 17% of genes upregulated at least two-fold in response to heat shock. These included heat shock proteins (119.m00119 and 279.m00091), cyst wall glycoprotein Jacob (33.m00261), and ubiquitin-associated proteins (16.m00343; 195.m00092). Using Caco-2 cells to model the host-parasite interaction, we verified that host cell killing was dependent on live ameba. However, surprisingly these events did not appear to induce major transcriptional changes in the parasites.

  4. Molecular classification of human endometrial cycle stages by transcriptional profiling.

    PubMed

    Ponnampalam, Anna P; Weston, Gareth C; Trajstman, Albert C; Susil, Beatrice; Rogers, Peter A W

    2004-12-01

    Endometrium is a dynamic tissue that undergoes cyclic changes each month, under the overall control of estrogen and progesterone. The aims of this study were to investigate the changing global gene expression profile of human endometrium during the menstrual cycle using microarray technology and to determine the correlation between histopathological evaluation and molecular profile of the samples. Standard two-colour cDNA microarrays were performed on the 43 samples against a common reference, using a 10.5 K cDNA glass slide microarray. The results were validated using real-time PCR. Analysis of expression data was carried out using parametric analysis of variance with Benjamini-Hochberg correction. Hierarchical clustering reveals a strong relationship between histopathology and transcriptional profile of the samples. The study identified 1452 genes that showed significant changes in expression (P< or =0.05) across the menstrual cycle, with 425 genes having changes that are at least 2-fold. The data were also independently analysed by a CSIRO algorithm called GeneRaVE that identified a small subset of genes whose expression profiles could be used to classify nearly all the biopsies into their correct cycle stage. We also identified and validated three genes [(natural cytotoxicity triggering receptor (NCR)3, fucosyl transferase (FUT)4 and Fyn-binding protein (FYB)] that had not been shown to have significant cyclic changes in the human endometrium, previously. We have shown for the first time that endometrial cycle stage prediction is possible based on global gene expression profile.

  5. Assessment of Histone Tail Modifications and Transcriptional Profiling During Colon Cancer Progression Reveals a Global Decrease in H3K4me3 Activity.

    PubMed

    Triff, Karen; McLean, Mathew W; Konganti, Kranti; Pang, Jiahui; Callaway, Evelyn; Zhou, Beiyan; Ivanov, Ivan; Chapkin, Robert S

    2017-03-15

    During colon cancer, epigenetic alterations contribute to the dysregulation of major cellular functions and signaling pathways. Modifications in chromatin signatures such as H3K4me3 and H3K9ac, which are associated with transcriptionally active genes, can lead to genomic instability and perturb the expression of gene sets associated with oncogenic processes. In order to further elucidate early pre-tumorigenic epigenetic molecular events driving CRC, we integrated diverse, genome-wide, epigenetic inputs (by high throughput sequencing of RNA, H3K4me3, and H3K9ac) and compared differentially expressed transcripts (DE) and enriched regions (DER) in an in-vivo rat colon cancer progression model. Carcinogen (AOM) effects were detected genome-wide at the RNA (116 DE genes), K9ac (49 DERs including 24 genes) and K4me3 (7678 DERs including 3792 genes) level. RNA-seq differential expression and pathway analysis indicated that interferon-associated innate immune responses were impacted by AOM exposure. Despite extensive associations between K4me3 DERs and colon tumorigenesis (1210 genes were linked to colorectal carcinoma) including FOXO3, GNAI2, H2AFX, MSH2, NR3C1, PDCD4 and VEGFA, these changes were not reflected at the RNA gene expression level during early cancer progression. Collectively, our results indicate that carcinogen-induced changes in gene K4me3 DERs are harbingers of future transcriptional events, which drive malignant transformation of the colon.

  6. Genomics, Transcriptional Profiling and Heart Failure

    PubMed Central

    Margulies, Kenneth B.; Bednarik, Daniel P.; Dries, Daniel L.

    2009-01-01

    Associated with technological progress in DNA and mRNA profiling, advances in basic biology have led to a more complete and sophisticated understanding of interactions between genes, environment and affected tissues in the setting of complex and heterogeneous conditions like heart failure (HF). Ongoing identification of mutations causing hereditary hypertrophic and dilated cardiomyopathies has provided both pathophysiological insights and clinically applicable diagnostics for these relatively rare conditions. Genotyping clinical trial participants and genome wide association studies (GWAS) have accelerated the identification of much more common disease-modifying and treatment modifying genes that explain patient-to-patient differences that have long been recognized by practicing clinicians. At the same time, increasingly detailed characterization of gene expression within diseased tissues and circulating cells from animal models and patients are providing new insights into pathophysiology of HF that permit identification of novel diagnostic and therapeutic targets. In this rapidly evolving field, there is already ample support for the concept that genetic and expression profiling can enhance diagnostic sensitivity and specificity while providing a rational basis for prioritizing alternative therapeutic options in patients with cardiomyopathies and HF. Though the extensive characterizations provided by genomic and transcriptional profiling will increasingly challenge clinicians’ abilities to utilize complex and diverse information, advances in clinical information technology and user interfaces will permit greater individualization of prevention and treatment strategies to address the HF epidemic. PMID:19422981

  7. Global Scale Transcriptional Profiling of Two Contrasting Barley Genotypes Exposed to Moderate Drought Conditions: Contribution of Leaves and Crowns to Water Shortage Coping Strategies

    PubMed Central

    Svoboda, Pavel; Janská, Anna; Spiwok, Vojtěch; Prášil, Ilja T.; Kosová, Klára; Vítámvás, Pavel; Ovesná, Jaroslava

    2016-01-01

    Drought is a serious threat for sustainable agriculture. Barley represents a species well adapted to environmental stresses including drought. To elucidate the adaptive mechanism of barley on transcriptional level we evaluated transcriptomic changes of two contrasting barley cultivars upon drought using the microarray technique on the level of leaves and crowns. Using bioinformatic tools, differentially expressed genes in treated vs. non-treated plants were identified. Both genotypes revealed tissue dehydration under drought conditions as shown at water saturation deficit and osmotic potential data; however, dehydration was more severe in Amulet than in drought-resistant Tadmor under the same ambient conditions. Performed analysis showed that Amulet enhanced expression of genes related to active plant growth and development, while Tadmor regarding the stimulated genes revealed conservative, water saving strategy. Common reactions of both genotypes and tissues included an induction of genes encoding several stress-responsive signaling proteins, transcription factors as well as effector genes encoding proteins directly involved in stress acclimation. In leaf, tolerant cultivar effectively stimulated mainly the expression of genes encoding proteins and enzymes involved in protein folding, sulfur metabolism, ROS detoxification or lipid biosynthesis and transport. The crown specific reaction of tolerant cultivar was an enhanced expression of genes encoding proteins and enzymes involved in cell wall lignification, ABRE-dependent abscisic acid (ABA) signaling, nucleosome remodeling, along with genes for numerous jasmonate induced proteins. PMID:28083001

  8. Global Scale Transcriptional Profiling of Two Contrasting Barley Genotypes Exposed to Moderate Drought Conditions: Contribution of Leaves and Crowns to Water Shortage Coping Strategies.

    PubMed

    Svoboda, Pavel; Janská, Anna; Spiwok, Vojtěch; Prášil, Ilja T; Kosová, Klára; Vítámvás, Pavel; Ovesná, Jaroslava

    2016-01-01

    Drought is a serious threat for sustainable agriculture. Barley represents a species well adapted to environmental stresses including drought. To elucidate the adaptive mechanism of barley on transcriptional level we evaluated transcriptomic changes of two contrasting barley cultivars upon drought using the microarray technique on the level of leaves and crowns. Using bioinformatic tools, differentially expressed genes in treated vs. non-treated plants were identified. Both genotypes revealed tissue dehydration under drought conditions as shown at water saturation deficit and osmotic potential data; however, dehydration was more severe in Amulet than in drought-resistant Tadmor under the same ambient conditions. Performed analysis showed that Amulet enhanced expression of genes related to active plant growth and development, while Tadmor regarding the stimulated genes revealed conservative, water saving strategy. Common reactions of both genotypes and tissues included an induction of genes encoding several stress-responsive signaling proteins, transcription factors as well as effector genes encoding proteins directly involved in stress acclimation. In leaf, tolerant cultivar effectively stimulated mainly the expression of genes encoding proteins and enzymes involved in protein folding, sulfur metabolism, ROS detoxification or lipid biosynthesis and transport. The crown specific reaction of tolerant cultivar was an enhanced expression of genes encoding proteins and enzymes involved in cell wall lignification, ABRE-dependent abscisic acid (ABA) signaling, nucleosome remodeling, along with genes for numerous jasmonate induced proteins.

  9. Global Population Profile: 2002. International Population Reports

    ERIC Educational Resources Information Center

    Christenson, Matthew; McDevitt, Thomas; Stanecki, Karen

    2004-01-01

    Global Population Profile: 2002 summarizes the most important trends in global population at the dawn of the 21st century. The presentation is organized around four themes: (1) Global Population; (2) Growth, Global Population; (3) Composition, Contraceptive Prevalence in the Developing World; and (4) the AIDS Pandemic in the 21st Century. This…

  10. Transcriptional profiles of Haloferax mediterranei based on nitrogen availability.

    PubMed

    Esclapez, J; Pire, C; Camacho, M; Bautista, V; Martínez-Espinosa, R M; Zafrilla, B; Vegara, A; Alcaraz, L A; Bonete, M J

    2015-01-10

    The haloarchaeon Haloferax mediterranei is able to grow in the presence of different inorganic and organic nitrogen sources by means of the assimilatory pathway under aerobic conditions. In order to identify genes of potential importance in nitrogen metabolism and its regulation in the halophilic microorganism, we have analysed its global gene expression in three culture media with different nitrogen sources: (a) cells were grown stationary and exponentially in ammonium, (b) cells were grown exponentially in nitrate, and (c) cells were shifted to nitrogen starvation conditions. The main differences in the transcriptional profiles have been identified between the cultures with ammonium as nitrogen source and the cultures with nitrate or nitrogen starvation, supporting previous results which indicate the absence of ammonium as the factor responsible for the expression of genes involved in nitrate assimilation pathway. The results have also permitted the identification of transcriptional regulators and changes in metabolic pathways related to the catabolism and anabolism of amino acids or nucleotides. The microarray data was validated by real-time quantitative PCR on 4 selected genes involved in nitrogen metabolism. This work represents the first transcriptional profiles study related to nitrogen assimilation metabolism in extreme halophilic microorganisms using microarray technology. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. Transcript profiling of early lateral root initiation.

    PubMed

    Himanen, Kristiina; Vuylsteke, Marnik; Vanneste, Steffen; Vercruysse, Steven; Boucheron, Elodie; Alard, Philippe; Chriqui, Dominique; Van Montagu, Marc; Inzé, Dirk; Beeckman, Tom

    2004-04-06

    At the onset of lateral root initiation in Arabidopsis thaliana, the phytohormone auxin activates xylem pole pericycle cells for asymmetric cell division. However, the molecular events leading from auxin to lateral root initiation are poorly understood, in part because the few responsive cells in the process are embedded in the root and are thus difficult to access. A lateral root induction system, in which most xylem pole pericycle cells were synchronously activated by auxin transport inhibition followed by auxin application, was used for microarray transcript profiling. Of 4,600 genes analyzed, 906 significantly differentially regulated genes were identified that could be grouped into six major clusters. Basically, three major patterns were discerned representing induced, repressed, and transiently expressed genes. Analysis of the coregulated genes, which were specific for each time point, provided new insight into the molecular regulation and signal transduction preceding lateral root initiation in Arabidopsis. The reproducible expression profiles during a time course allowed us to define four stages that precede the cell division in the pericycle. These early stages were characterized by G1 cell cycle block, auxin perception, and signal transduction, followed by progression over G1/S transition and G2/M transition. All these processes took place within 6 h after transfer from N-1-naphthylphthalamic acid to 1-naphthalene acetic acid. These results indicate that this lateral root induction system represents a unique synchronized system that allows the systematic study of the developmental program upstream of the cell cycle activation during lateral root initiation.

  12. Haemophilus influenzae strains possess variations in the global transcriptional profile in response to oxygen levels and this influences sensitivity to environmental stresses.

    PubMed

    Jiang, Donald; Tikhomirova, Alexandra; Kidd, Stephen P

    2016-01-01

    An alcohol dehydrogenase, AdhC, is required for Haemophilus influenzae Rd KW20 growth with high oxygen. AdhC protects against both exogenous and metabolically generated, endogenous reactive aldehydes. However, adhC in the strain 86-028NP is a pseudogene. Unlike the Rd KW20 adhC mutant, 86-028NP does grow with high oxygen. This suggests the differences between Rd KW20 and 86-028NP include broader pathways, such as for the maintenance of redox and metabolism that avoids the toxicity related to oxygen. We hypothesized that these differences affect their resistance to relevant toxic chemicals, including reactive aldehydes. Across a range of oxygen concentrations, despite the growth profiles of Rd KW20 and 86-028NP being similar, there was a significant variation in their sensitivity to reactive aldehydes. 86-028NP is more sensitive to methylglyoxal, formaldehyde and glycolaldehyde under high oxygen than low oxygen as well as compared to Rd KW20. Also, as oxygen levels changed the whole genome gene expression profiles of Rd KW20 and 86-028NP revealed distinctions in their transcriptomes (the iron, FNR and ArcAB regulons). These were indicative of a difference in their intracellular redox properties and we show it is this that underpins their survival against reactive aldehydes.

  13. Global analysis of photosynthesis transcriptional regulatory networks.

    PubMed

    Imam, Saheed; Noguera, Daniel R; Donohue, Timothy J

    2014-12-01

    Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888), which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis.

  14. Global transcriptome analysis reveals extensive gene remodeling, alternative splicing and differential transcription profiles in non-seed vascular plant Selaginella moellendorffii.

    PubMed

    Zhu, Yan; Chen, Longxian; Zhang, Chengjun; Hao, Pei; Jing, Xinyun; Li, Xuan

    2017-01-25

    seven transcription factor families related to vascular development, which was observed among four representative species of seed and non-seed vascular plants, and nonvascular land and aquatic plants. The deep RNA-seq study of S. moellendorffii discovered extensive new gene contents, including novel coding genes, lncRNAs, AS events, and refined gene models. Compared to flowering vascular plants, S. moellendorffii displayed a less complexity in both gene structure, alternative splicing, and regulatory elements of vascular development. The study offered important insight into the evolution of vascular plants, and the regulation mechanism of vascular development in a non-seed plant.

  15. Global effects of the CSR-1 RNA interference pathway on the transcriptional landscape.

    PubMed

    Cecere, Germano; Hoersch, Sebastian; O'Keeffe, Sean; Sachidanandam, Ravi; Grishok, Alla

    2014-04-01

    Argonaute proteins and their small RNA cofactors short interfering RNAs are known to inhibit gene expression at the transcriptional and post-transcriptional levels. In Caenorhabditis elegans, the Argonaute CSR-1 binds thousands of endogenous siRNAs (endo-siRNAs) that are antisense to germline transcripts. However, its role in gene expression regulation remains controversial. Here we used genome-wide profiling of nascent RNA transcripts and found that the CSR-1 RNA interference pathway promoted sense-oriented RNA polymerase II transcription. Moreover, a loss of CSR-1 function resulted in global increase in antisense transcription and ectopic transcription of silent chromatin domains, which led to reduced chromatin incorporation of centromere-specific histone H3. On the basis of these findings, we propose that the CSR-1 pathway helps maintain the directionality of active transcription, thereby propagating the distinction between transcriptionally active and silent genomic regions.

  16. Transcription profile of Escherichia coli: genomic SELEX search for regulatory targets of transcription factors.

    PubMed

    Ishihama, Akira; Shimada, Tomohiro; Yamazaki, Yukiko

    2016-03-18

    Bacterial genomes are transcribed by DNA-dependent RNA polymerase (RNAP), which achieves gene selectivity through interaction with sigma factors that recognize promoters, and transcription factors (TFs) that control the activity and specificity of RNAP holoenzyme. To understand the molecular mechanisms of transcriptional regulation, the identification of regulatory targets is needed for all these factors. We then performed genomic SELEX screenings of targets under the control of each sigma factor and each TF. Here we describe the assembly of 156 SELEX patterns of a total of 116 TFs performed in the presence and absence of effector ligands. The results reveal several novel concepts: (i) each TF regulates more targets than hitherto recognized; (ii) each promoter is regulated by more TFs than hitherto recognized; and (iii) the binding sites of some TFs are located within operons and even inside open reading frames. The binding sites of a set of global regulators, including cAMP receptor protein, LeuO and Lrp, overlap with those of the silencer H-NS, suggesting that certain global regulators play an anti-silencing role. To facilitate sharing of these accumulated SELEX datasets with the research community, we compiled a database, 'Transcription Profile of Escherichia coli' (www.shigen.nig.ac.jp/ecoli/tec/). © The Author(s) 2016. Published by Oxford University Press on behalf of Nucleic Acids Research.

  17. Transcription profile of Escherichia coli: genomic SELEX search for regulatory targets of transcription factors

    PubMed Central

    Ishihama, Akira; Shimada, Tomohiro; Yamazaki, Yukiko

    2016-01-01

    Bacterial genomes are transcribed by DNA-dependent RNA polymerase (RNAP), which achieves gene selectivity through interaction with sigma factors that recognize promoters, and transcription factors (TFs) that control the activity and specificity of RNAP holoenzyme. To understand the molecular mechanisms of transcriptional regulation, the identification of regulatory targets is needed for all these factors. We then performed genomic SELEX screenings of targets under the control of each sigma factor and each TF. Here we describe the assembly of 156 SELEX patterns of a total of 116 TFs performed in the presence and absence of effector ligands. The results reveal several novel concepts: (i) each TF regulates more targets than hitherto recognized; (ii) each promoter is regulated by more TFs than hitherto recognized; and (iii) the binding sites of some TFs are located within operons and even inside open reading frames. The binding sites of a set of global regulators, including cAMP receptor protein, LeuO and Lrp, overlap with those of the silencer H-NS, suggesting that certain global regulators play an anti-silencing role. To facilitate sharing of these accumulated SELEX datasets with the research community, we compiled a database, ‘Transcription Profile of Escherichia coli’ (www.shigen.nig.ac.jp/ecoli/tec/). PMID:26843427

  18. Global Analysis of Photosynthesis Transcriptional Regulatory Networks

    PubMed Central

    Imam, Saheed; Noguera, Daniel R.; Donohue, Timothy J.

    2014-01-01

    Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888), which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis. PMID:25503406

  19. Global Transcriptional Changes Following Statin Treatment in Breast Cancer.

    PubMed

    Bjarnadottir, Olöf; Kimbung, Siker; Johansson, Ida; Veerla, Srinivas; Jönsson, Mats; Bendahl, Pär-Ola; Grabau, Dorthe; Hedenfalk, Ingrid; Borgquist, Signe

    2015-08-01

    Statins purportedly exert antitumoral effects, but the underlying mechanisms are currently not fully elucidated. The aim of this study was to explore potential statin-induced effects on global gene expression profiles in primary breast cancer. This window-of-opportunity phase II trial enrolled 50 newly diagnosed breast cancer patients prescribed atorvastatin (80 mg/day) for 2 weeks presurgically. Pre- and posttreatment tumor samples were analyzed using Significance Analysis of Microarrays (SAM) to identify differentially expressed genes. Similarly, SAM and gene ontology analyses were applied to gene expression data derived from atorvastatin-treated breast cancer cell lines (MCF7, BT474, SKBR3, and MDAMB231) comparing treated and untreated cells. The Systematic Motif Analysis Retrieval Tool (SMART) was used to identify enriched transcription factor-binding sites. Literature Vector Analysis (LitVAn) identified gene module functionality, and pathway analysis was performed using GeneGo Pathways Software (MetaCore; https://portal.genego.com/). Comparative analysis of gene expression profiles in paired clinical samples revealed 407 significantly differentially expressed genes (FDR = 0); 32 upregulated and 375 downregulated genes. Restricted filtration (fold change ≥1.49) resulted in 21 upregulated and 46 downregulated genes. Significantly upregulated genes included DUSP1, RHOB1, GADD45B, and RGS1. Pooled results from gene ontology, LitVAn and SMART analyses identified statin-induced effects on the apoptotic and MAPK pathways among others. Comparative analyses of gene expression profiles in breast cancer cell lines showed significant upregulation of the mevalonate and proapoptotic pathways following atorvastatin treatment. We report potential statin-induced changes in global tumor gene expression profiles, indicating MAPK pathway inhibition and proapoptotic events. ©2015 American Association for Cancer Research.

  20. Transcriptional profiling of Saccharomyces cerevisiae exposed to propolis

    PubMed Central

    2012-01-01

    Background Propolis is a natural product of plant resins collected by honeybees (Apis mellifera) from various plant sources. Our previous studies indicated that propolis sensitivity is dependent on the mitochondrial function and that vacuolar acidification and autophagy are important for yeast cell death caused by propolis. Here, we extended our understanding of propolis-mediated cell death in the yeast Saccharomyces cerevisiae by applying systems biology tools to analyze the transcriptional profiling of cells exposed to propolis. Methods We have used transcriptional profiling of S. cerevisiae exposed to propolis. We validated our findings by using real-time PCR of selected genes. Systems biology tools (physical protein-protein interaction [PPPI] network) were applied to analyse the propolis-induced transcriptional bevavior, aiming to identify which pathways are modulated by propolis in S. cerevisiae and potentially influencing cell death. Results We were able to observe 1,339 genes modulated in at least one time point when compared to the reference time (propolis untreated samples) (t-test, p-value 0.01). Enrichment analysis performed by Gene Ontology (GO) Term finder tool showed enrichment for several biological categories among the genes up-regulated in the microarray hybridization such as transport and transmembrane transport and response to stress. Real-time RT-PCR analysis of selected genes showed by our microarray hybridization approach was capable of providing information about S. cerevisiae gene expression modulation with a considerably high level of confidence. Finally, a physical protein-protein (PPPI) network design and global topological analysis stressed the importance of these pathways in response of S. cerevisiae to propolis and were correlated with the transcriptional data obtained thorough the microarray analysis. Conclusions In summary, our data indicate that propolis is largely affecting several pathways in the eukaryotic cell. However, the most

  1. Generalisation of a procedure for computing transcription factor profiles.

    PubMed

    Huang, Z; Chu, Y; Cunha, B; Hahn, J

    2010-03-01

    The limited amount of quantitative experimental data generated from life-science experiments poses a major challenge in systems biology. The reason for this is that many systems approaches, such as parameter estimation, simulation and sensitivity analysis make use of models or analyse quantitative data. However, these techniques are only of limited use if only qualitative or semi-quantitative information is available about a system. Therefore procedures that generate quantitative data from experiments in the life sciences can greatly expand the use of systems approaches to biological problems. This study addresses this issue as it introduces a procedure that computes quantitative transcription factor profiles from fluorescent microscopy data collected from green fluorescent protein (GFP) reporter cells. This technique forms a generalisation of a method that has recently been introduced for monitoring NF-B profiles. The contribution made in this work is that the assumption that the transcription factor profile exhibits damped oscillations is relaxed, as transcription factors, other than the previously investigated NF-B, may exhibit different profiles. This is achieved by investigating a variety of potential profiles and solving the inverse problem for the model describing transcription, translation and activation of GFP for each one. The transcription factor profile that results in the best fit among the potential candidates, for the measured fluorescent intensity data, is then chosen as the most likely concentration profile. The technique is illustrated in two detailed case studies, where one case study involves simulation data whereas the other one uses experimentally derived fluorescent intensity data.

  2. Transcriptional profiling of fetal hypothalamic TRH neurons

    PubMed Central

    2011-01-01

    Background During murine hypothalamic development, different neuroendocrine cell phenotypes are generated in overlapping periods; this suggests that cell-type specific developmental programs operate to achieve complete maturation. A balance between programs that include cell proliferation, cell cycle withdrawal as well as epigenetic regulation of gene expression characterizes neurogenesis. Thyrotropin releasing hormone (TRH) is a peptide that regulates energy homeostasis and autonomic responses. To better understand the molecular mechanisms underlying TRH neuron development, we performed a genome wide study of its transcriptome during fetal hypothalamic development. Results In primary cultures, TRH cells constitute 2% of the total fetal hypothalamic cell population. To purify these cells, we took advantage of the fact that the segment spanning -774 to +84 bp of the Trh gene regulatory region confers specific expression of the green fluorescent protein (GFP) in the TRH cells. Transfected TRH cells were purified by fluorescence activated cell sorting, various cell preparations pooled, and their transcriptome compared to that of GFP- hypothalamic cells. TRH cells undergoing the terminal phase of differentiation, expressed genes implicated in protein biosynthesis, intracellular signaling and transcriptional control. Among the transcription-associated transcripts, we identified the transcription factors Klf4, Klf10 and Atf3, which were previously uncharacterized within the hypothalamus. Conclusion To our knowledge, this is one of the first reports identifying transcripts with a potentially important role during the development of a specific hypothalamic neuronal phenotype. This genome-scale study forms a rational foundation for identifying genes that might participate in the development and function of hypothalamic TRH neurons. PMID:21569245

  3. Transcript profiling of developing peanut seeds

    USDA-ARS?s Scientific Manuscript database

    To investigate regulatory processes and mechanisms underlying the development of peanut seeds, 8 x 15k microarrays were used to monitor changes in the transcriptome of a runner peanut genotype. Developing peanut pods from six development stages corresponding R2 through R8 stages were profiled. Sever...

  4. Prediction of ribosome footprint profile shapes from transcript sequences

    PubMed Central

    Liu, Tzu-Yu; Song, Yun S.

    2016-01-01

    Motivation: Ribosome profiling is a useful technique for studying translational dynamics and quantifying protein synthesis. Applications of this technique have shown that ribosomes are not uniformly distributed along mRNA transcripts. Understanding how each transcript-specific distribution arises is important for unraveling the translation mechanism. Results: Here, we apply kernel smoothing to construct predictive features and build a sparse model to predict the shape of ribosome footprint profiles from transcript sequences alone. Our results on Saccharomyces cerevisiae data show that the marginal ribosome densities can be predicted with high accuracy. The proposed novel method has a wide range of applications, including inferring isoform-specific ribosome footprints, designing transcripts with fast translation speeds and discovering unknown modulation during translation. Availability and implementation: A software package called riboShape is freely available at https://sourceforge.net/projects/riboshape Contact: yss@berkeley.edu PMID:27307616

  5. Matrix formulation of a universal microbial transcript profiling system

    SciTech Connect

    Fitch, J P; Ng, J; Sokhansanj, B A

    2000-11-01

    DNA chips and microarrays are used to profile gene transcription. Unfortunately, the initial fabrication cost for a chip and the reagent costs to amplify thousands of open reading frames for a microarray are over $100K for a typical 4 Mbase bacterial genome. To avoid these expensive steps, a matrix formulation of a universal hybrid chip-microarray approach to transcript profiling is demonstrated for synthetic data. Initial considerations for application to the 4.3 Mbase bacterium Yersinia pestis are also presented. This approach can be applied to arbitrary bacteria by recalculating a matrix and pseudoinverse. This approach avoids the large upfront expenses associated with DNA chips and microarrays.

  6. A compendium of nucleosome and transcript profiles reveals determinants of chromatin architecture and transcription.

    PubMed

    van Bakel, Harm; Tsui, Kyle; Gebbia, Marinella; Mnaimneh, Sanie; Hughes, Timothy R; Nislow, Corey

    2013-05-01

    Nucleosomes in all eukaryotes examined to date adopt a characteristic architecture within genes and play fundamental roles in regulating transcription, yet the identity and precise roles of many of the trans-acting factors responsible for the establishment and maintenance of this organization remain to be identified. We profiled a compendium of 50 yeast strains carrying conditional alleles or complete deletions of genes involved in transcriptional regulation, histone biology, and chromatin remodeling, as well as compounds that target transcription and histone deacetylases, to assess their respective roles in nucleosome positioning and transcription. We find that nucleosome patterning in genes is affected by many factors, including the CAF-1 complex, Spt10, and Spt21, in addition to previously reported remodeler ATPases and histone chaperones. Disruption of these factors or reductions in histone levels led genic nucleosomes to assume positions more consistent with their intrinsic sequence preferences, with pronounced and specific shifts of the +1 nucleosome relative to the transcription start site. These shifts of +1 nucleosomes appear to have functional consequences, as several affected genes in Ino80 mutants exhibited altered expression responses. Our parallel expression profiling compendium revealed extensive transcription changes in intergenic and antisense regions, most of which occur in regions with altered nucleosome occupancy and positioning. We show that the nucleosome-excluding transcription factors Reb1, Abf1, Tbf1, and Rsc3 suppress cryptic transcripts at their target promoters, while a combined analysis of nucleosome and expression profiles identified 36 novel transcripts that are normally repressed by Tup1/Cyc8. Our data confirm and extend the roles of chromatin remodelers and chaperones as major determinants of genic nucleosome positioning, and these data provide a valuable resource for future studies.

  7. A Compendium of Nucleosome and Transcript Profiles Reveals Determinants of Chromatin Architecture and Transcription

    PubMed Central

    van Bakel, Harm; Tsui, Kyle; Gebbia, Marinella; Mnaimneh, Sanie; Hughes, Timothy R.; Nislow, Corey

    2013-01-01

    Nucleosomes in all eukaryotes examined to date adopt a characteristic architecture within genes and play fundamental roles in regulating transcription, yet the identity and precise roles of many of the trans-acting factors responsible for the establishment and maintenance of this organization remain to be identified. We profiled a compendium of 50 yeast strains carrying conditional alleles or complete deletions of genes involved in transcriptional regulation, histone biology, and chromatin remodeling, as well as compounds that target transcription and histone deacetylases, to assess their respective roles in nucleosome positioning and transcription. We find that nucleosome patterning in genes is affected by many factors, including the CAF-1 complex, Spt10, and Spt21, in addition to previously reported remodeler ATPases and histone chaperones. Disruption of these factors or reductions in histone levels led genic nucleosomes to assume positions more consistent with their intrinsic sequence preferences, with pronounced and specific shifts of the +1 nucleosome relative to the transcription start site. These shifts of +1 nucleosomes appear to have functional consequences, as several affected genes in Ino80 mutants exhibited altered expression responses. Our parallel expression profiling compendium revealed extensive transcription changes in intergenic and antisense regions, most of which occur in regions with altered nucleosome occupancy and positioning. We show that the nucleosome-excluding transcription factors Reb1, Abf1, Tbf1, and Rsc3 suppress cryptic transcripts at their target promoters, while a combined analysis of nucleosome and expression profiles identified 36 novel transcripts that are normally repressed by Tup1/Cyc8. Our data confirm and extend the roles of chromatin remodelers and chaperones as major determinants of genic nucleosome positioning, and these data provide a valuable resource for future studies. PMID:23658529

  8. Transcriptional profiling of lymphoblast lines from subjects with panic disorder.

    PubMed

    Philibert, Robert A; Crowe, Raymond; Ryu, Gi-Yung; Yoon, Jae-Geun; Secrest, Dianna; Sandhu, Harinder; Madan, Anup

    2007-07-05

    In attempts to isolate genetic vulnerability factors for panic disorder (PD), a number of investigators have used genome-wide linkage or association analyses. But these attempts have been only modestly successful which suggests that alternative approaches may be needed to define the biology of PD. Therefore, using recently developed genome-wide gene expression profiling, we explored whether transcriptional signatures associated with PD are present in lymphoblast cell line. The expression of 2,469 transcripts in lymphoblast cell lines from 16 subjects was arithmetically increased in every line and significantly increased overall and 354 transcripts was arithmetically decreased in every cell line and significantly decreased overall as compared to those lymphoblast lines from 17 subjects without a history of behavioral illness. Further sex specific analyses showed that in those 10 lines derived from female probands, the expression of a further 67 transcripts was arithmetically increased in every line and significantly increased overall and a further 332 transcripts was arithmetically decreased in every cell line and significantly decreased. Conversely, in cell lines from the six male probands, the expression of an additional 212 was arithmetically increased in every line and significantly increased overall and a further 332 transcripts was arithmetically decreased in every cell line. We conclude that lymphoblast cell lines derived from subjects with PD have significant, partially sex dependent changes in gene transcription. Further studies are necessary to correlate these changes in these hemopoetically derived cells with those changes postulated to occur in the CNS in association with PD.

  9. Simultaneous Profiling of 194 Distinct Receptor Transcripts in Human Cells

    PubMed Central

    Kang, Byong H.; Jensen, Karin J.; Hatch, Jaime A.; Janes, Kevin A.

    2013-01-01

    Many signal transduction cascades are initiated by transmembrane receptors with the presence or absence and abundance of receptors dictating cellular responsiveness. Here, we provide a validated array of quantitative reverse-transcription polymerase chain reaction (qRT-PCR) reagents for high-throughput profiling of the presence and relative abundance of transcripts for 194 transmembrane receptors in the human genome. We found that the qRT-PCR array had greater sensitivity and specificity for the detected receptor transcript profiles compared to conventional oligonucleotide microarrays or exon microarrays. The qRT-PCR array also distinguished functional receptor presence versus absence more accurately than deep sequencing of adenylated RNA species, RNA-seq. By applying qRT-PCR-based receptor transcript profiling to 40 human cell lines representing four main tissues (pancreas, skin, breast, and colon), we identified clusters of cell lines with enhanced signaling capabilities and revealed a role for receptor silencing in defining tissue lineage. Ectopic expression of the interleukin 10 (IL-10) receptor encoding gene IL10RA in melanoma cells engaged an IL-10 autocrine loop not otherwise present in this cell type, which altered signaling, gene expression, and cellular responses to proinflammatory stimuli. Our array provides a rapid, inexpensive, and convenient means for assigning a receptor signature to any human cell or tissue type. PMID:23921087

  10. Revealing the bovine embryo transcript profiles during early in vivo embryonic development.

    PubMed

    Vallée, Maud; Dufort, Isabelle; Desrosiers, Stéphanie; Labbe, Aurélie; Gravel, Catherine; Gilbert, Isabelle; Robert, Claude; Sirard, Marc-André

    2009-07-01

    Gene expression profiling is proving to be a powerful approach for the identification of molecular mechanisms underlying complex cellular functions such as the dynamic early embryonic development. The objective of this study was to perform a transcript abundance profiling analysis of bovine early embryonic development in vivo using a bovine developmental array. The molecular description of the first week of life at the mRNA level is particularly challenging when considering the important fluctuations in RNA content that occur between developmental stages. Accounting for the different intrinsic RNA content between developmental stages was achieved by restricting the reaction time during the global amplification steps and by using spiked controls and reference samples. Analysis based on intensity values revealed that most of the transcripts on the array were present at some point during in vivo bovine early embryonic development, while the varying number of genes detected in each developmental stage confirmed the dynamic profile of gene expression occurring during embryonic development. Pair-wise comparison of gene expression showed a marked difference between oocytes and blastocysts profiles, and principal component analysis revealed that the majority of the transcripts could be regrouped into three main clusters representing distinct RNA abundance profiles. Overall, these data provide a detailed temporal profile of the abundance of mRNAs revealing the richness of signaling processes in early mammalian development. Results presented here provide better knowledge of bovine in vivo embryonic development and contribute to the progression of our current knowledge regarding the first week of life in mammals.

  11. Temporal and spatial transcriptional profiles of aging in Drosophila melanogaster

    PubMed Central

    Zhan, Ming; Yamaza, Haruyoshi; Sun, Yu; Sinclair, Jason; Li, Huai; Zou, Sige

    2007-01-01

    Temporal and tissue-specific alterations in gene expression have profound effects on aging of multicellular organisms. However, much remains unknown about the patterns of molecular changes in different tissues and how different tissues interact with each other during aging. Previous genomic studies on invertebrate aging mostly utilized the whole body or body parts and limited age-points, and failed to address tissue-specific aging. Here we measured genome-wide expression profiles of aging in Drosophila melanogaster for seven tissues representing nervous, muscular, digestive, renal, reproductive, and storage systems at six adult ages. In each tissue, we identified hundreds of age-related genes exhibiting significant changes of transcript levels with age. The age-related genes showed clear tissue-specific patterns: <10% of them in each tissue were in common with any other tissue; <20% of the biological processes enriched with the age-related genes were in common between any two tissues. A significant portion of the age-related genes were those involved in physiological functions regulated by the corresponding tissue. Nevertheless, we identified some overlaps of the age-related functional groups among tissues, suggesting certain common molecular mechanisms that regulate aging in different tissues. This study is one of the first that defined global, temporal, and spatial changes associated with aging from multiple tissues at multiple ages, showing that different tissues age in different patterns in an organism. The spatial and temporal transcriptome data presented in this study provide a basis and a valuable resource for further genetic and genomic investigation of tissue-specific regulation of aging. PMID:17623811

  12. Binding motifs in bacterial gene promoters modulate transcriptional effects of global regulators CRP and ArcA

    SciTech Connect

    Leuze, Mike; Karpinets, Tatiana V.; Syed, Mustafa H.; Beliaev, Alex S.; Uberbacher, Edward

    2012-05-30

    Bacterial gene regulation involves transcription factors (TF) that bind to DNA recognition sequences in operon promoters. These recognition sequences, many of which are palindromic, are known as regulatory elements or transcription factor binding sites (TFBS). Some TFs are global regulators that can modulate the expression of hundreds of genes. In this study we examine global regulator half-sites, where a half-site, which we shall call a binding motif (BM), is one half of a palindromic TFBS. We explore the hypothesis that the number of BMs plays an important role in transcriptional regulation, examining empirical data from transcriptional profiling of the CRP and ArcA regulons. We compare the power of BM counts and of full TFBS characteristics to predict induced transcriptional activity. We find that CRP BM counts have a nonlinear effect on CRP-dependent transcriptional activity and predict this activity better than full TFBS quality or location.

  13. Identifying global regulators in transcriptional regulatory networks in bacteria.

    PubMed

    Martínez-Antonio, Agustino; Collado-Vides, Julio

    2003-10-01

    The machinery for cells to take decisions, when environmental conditions change, includes protein-DNA interactions defined by transcriptional factors and their targets around promoters. Properties of global regulators are revised attempting to reach diagnostic explicit criteria for their definition and eventual future computational identification. These include among others, the number of regulated genes, the number and type of co-regulators, the different sigma-classes of promoters and the number of transcriptional factors they regulate, the size of the evolutionary family they belong to, and the variety of conditions where they exert their control. As a consequence, global versus local regulation can be identified, as shown for Escherichia coli and eventually in other genomes.

  14. Porphyromonas gingivalis infection-induced tissue and bone transcriptional profiles.

    PubMed

    Meka, A; Bakthavatchalu, V; Sathishkumar, S; Lopez, M C; Verma, R K; Wallet, S M; Bhattacharyya, I; Boyce, B F; Handfield, M; Lamont, R J; Baker, H V; Ebersole, J L; Kesavalu, L

    2010-02-01

    Porphyromonas gingivalis has been associated with subgingival biofilms in adult periodontitis. However, the molecular mechanisms of its contribution to chronic gingival inflammation and loss of periodontal structural integrity remain unclear. This investigation aimed to examine changes in the host transcriptional profiles during a P. gingivalis infection using a murine calvarial model of inflammation and bone resorption. P. gingivalis FDC 381 was injected into the subcutaneous soft tissue over the calvaria of BALB/c mice for 3 days, after which the soft tissues and calvarial bones were excised. RNA was isolated from infected soft tissues and calvarial bones and was analysed for transcript profiles using Murine GeneChip((R)) arrays to provide a molecular profile of the events that occur following infection of these tissues. After P. gingivalis infection, 6452 and 2341 probe sets in the infected soft tissues and calvarial bone, respectively, were differentially expressed (P transcription of a broad array of host genes, the profiles of which differed between inflamed soft tissues and calvarial bone.

  15. A transcriptional profile of the decidua in preeclampsia

    PubMed Central

    LØSET, Mari; MUNDAL, Siv B.; JOHNSON, Matthew P.; FENSTAD, Mona H.; FREED, Katherine A.; LIAN, Ingrid A.; EIDE, Irina P.; BJØRGE, Line; BLANGERO, John; MOSES, Eric K.; AUSTGULEN, Rigmor

    2010-01-01

    OBJECTIVE To obtain insight into possible mechanisms underlying preeclampsia using genome-wide transcriptional profiling in decidua basalis. STUDY DESIGN Genome-wide transcriptional profiling was performed on decidua basalis tissue from preeclamptic (n = 37) and normal pregnancies (n = 58). Differentially expressed genes were identified and merged into canonical pathways and networks. RESULTS Of the 26,504 expressed transcripts detected, 455 were differentially expressed (P <0.05, FDR P <0.1). Both novel (ARL5B, SLITRK4) and previously reported preeclampsia-associated genes (PLA2G7, HMOX1) were identified. Pathway analysis revealed that ‘tryptophan metabolism’, ‘endoplasmic reticulum stress’, ‘linoleic acid metabolism’, ‘notch signaling’, ‘fatty acid metabolism’, ‘arachidonic acid metabolism’ and ‘NRF2-mediated oxidative stress response’ were overrepresented canonical pathways. CONCLUSION In the present study single genes, canonical pathways and gene-gene networks that are likely to play an important role in the pathogenesis of preeclampsia, have been identified. Future functional studies are needed to accomplish a greater understanding of the mechanisms involved. PMID:20934677

  16. Transcriptional profile of a myotube starvation model of atrophy

    NASA Technical Reports Server (NTRS)

    Stevenson, Eric J.; Koncarevic, Alan; Giresi, Paul G.; Jackman, Robert W.; Kandarian, Susan C.

    2005-01-01

    Skeletal muscle wasting is a pervasive phenomenon that can result from a wide range of pathological conditions as well as from habitual muscular inactivity. The present work describes a cell-culture condition that induces significant atrophy in skeletal muscle C2C12 myotubes. The failure to replenish differentiation media in mature myotubes leads to rapid atrophy (53% in diameter), which is referred to here as starvation. Affymetrix microarrays were used to develop a transcriptional profile of control (fed) vs. atrophied (nonfed) myotubes. Myotube starvation was characterized by an upregulation of genes involved in translational inhibition, amino acid biosynthesis and transport, and cell cycle arrest/apoptosis, among others. Downregulated genes included several structural and regulatory elements of the extracellular matrix as well as several elements of Wnt/frizzled and TGF-beta signaling pathways. Interestingly, the characteristic transcriptional upregulation of the ubiquitin-proteasome system, calpains, and cathepsins known to occur in multiple in vivo models of atrophy were not seen during myotube starvation. With the exception of the downregulation of extracellular matrix genes, serine protease inhibitor genes, and the upregulation of the translation initiation factor PHAS-I, this model of atrophy in cell culture has a transcriptional profile quite distinct from any study published to date with atrophy in whole muscle. These data show that, although the gross morphology of atrophied muscle fibers may be similar in whole muscle vs. myotube culture, the processes by which this phenotype is achieved differ markedly.

  17. RNAseq Transcriptional Profiling following Whip Development in Sugarcane Smut Disease

    PubMed Central

    Taniguti, Lucas M.; Peters, Leila P.; Creste, Silvana; Aitken, Karen S.; Van Sluys, Marie-Anne; Kitajima, João P.; Vieira, Maria L. C.; Monteiro-Vitorello, Claudia B.

    2016-01-01

    Sugarcane smut disease is caused by the biotrophic fungus Sporisorium scitamineum. The disease is characterized by the development of a whip-like structure from the primary meristems, where billions of teliospores are produced. Sugarcane smut also causes tillering and low sucrose and high fiber contents, reducing cane productivity. We investigated the biological events contributing to disease symptoms in a smut intermediate-resistant sugarcane genotype by examining the transcriptional profiles (RNAseq) shortly after inoculating the plants and immediately after whip emission. The overall picture of disease progression suggests that premature transcriptional reprogramming of the shoot meristem functions continues until the emergence of the whip. The guidance of this altered pattern is potentially primarily related to auxin mobilization in addition to the involvement of other hormonal imbalances. The consequences associated with whip emission are the modulation of typical meristematic functions toward reproductive organ differentiation, requiring strong changes in carbon partitioning and energy production. These changes include the overexpression of genes coding for invertases and trehalose-6P synthase, as well as other enzymes from key metabolic pathways, such as from lignin biosynthesis. This is the first report describing changes in the transcriptional profiles following whip development, providing a hypothetical model and candidate genes to further study sugarcane smut disease progression. PMID:27583836

  18. Transcriptional profile of a myotube starvation model of atrophy

    NASA Technical Reports Server (NTRS)

    Stevenson, Eric J.; Koncarevic, Alan; Giresi, Paul G.; Jackman, Robert W.; Kandarian, Susan C.

    2005-01-01

    Skeletal muscle wasting is a pervasive phenomenon that can result from a wide range of pathological conditions as well as from habitual muscular inactivity. The present work describes a cell-culture condition that induces significant atrophy in skeletal muscle C2C12 myotubes. The failure to replenish differentiation media in mature myotubes leads to rapid atrophy (53% in diameter), which is referred to here as starvation. Affymetrix microarrays were used to develop a transcriptional profile of control (fed) vs. atrophied (nonfed) myotubes. Myotube starvation was characterized by an upregulation of genes involved in translational inhibition, amino acid biosynthesis and transport, and cell cycle arrest/apoptosis, among others. Downregulated genes included several structural and regulatory elements of the extracellular matrix as well as several elements of Wnt/frizzled and TGF-beta signaling pathways. Interestingly, the characteristic transcriptional upregulation of the ubiquitin-proteasome system, calpains, and cathepsins known to occur in multiple in vivo models of atrophy were not seen during myotube starvation. With the exception of the downregulation of extracellular matrix genes, serine protease inhibitor genes, and the upregulation of the translation initiation factor PHAS-I, this model of atrophy in cell culture has a transcriptional profile quite distinct from any study published to date with atrophy in whole muscle. These data show that, although the gross morphology of atrophied muscle fibers may be similar in whole muscle vs. myotube culture, the processes by which this phenotype is achieved differ markedly.

  19. RNAseq Transcriptional Profiling following Whip Development in Sugarcane Smut Disease.

    PubMed

    Schaker, Patricia D C; Palhares, Alessandra C; Taniguti, Lucas M; Peters, Leila P; Creste, Silvana; Aitken, Karen S; Van Sluys, Marie-Anne; Kitajima, João P; Vieira, Maria L C; Monteiro-Vitorello, Claudia B

    2016-01-01

    Sugarcane smut disease is caused by the biotrophic fungus Sporisorium scitamineum. The disease is characterized by the development of a whip-like structure from the primary meristems, where billions of teliospores are produced. Sugarcane smut also causes tillering and low sucrose and high fiber contents, reducing cane productivity. We investigated the biological events contributing to disease symptoms in a smut intermediate-resistant sugarcane genotype by examining the transcriptional profiles (RNAseq) shortly after inoculating the plants and immediately after whip emission. The overall picture of disease progression suggests that premature transcriptional reprogramming of the shoot meristem functions continues until the emergence of the whip. The guidance of this altered pattern is potentially primarily related to auxin mobilization in addition to the involvement of other hormonal imbalances. The consequences associated with whip emission are the modulation of typical meristematic functions toward reproductive organ differentiation, requiring strong changes in carbon partitioning and energy production. These changes include the overexpression of genes coding for invertases and trehalose-6P synthase, as well as other enzymes from key metabolic pathways, such as from lignin biosynthesis. This is the first report describing changes in the transcriptional profiles following whip development, providing a hypothetical model and candidate genes to further study sugarcane smut disease progression.

  20. Global transcriptome profiles of Camellia sinensis during cold acclimation.

    PubMed

    Wang, Xin-Chao; Zhao, Qiong-Yi; Ma, Chun-Lei; Zhang, Zong-Hong; Cao, Hong-Li; Kong, Yi-Meng; Yue, Chuan; Hao, Xin-Yuan; Chen, Liang; Ma, Jian-Qiang; Jin, Ji-Qiang; Li, Xuan; Yang, Ya-Jun

    2013-06-22

    Tea is the most popular non-alcoholic health beverage in the world. The tea plant (Camellia sinensis (L.) O. Kuntze) needs to undergo a cold acclimation process to enhance its freezing tolerance in winter. Changes that occur at the molecular level in response to low temperatures are poorly understood in tea plants. To elucidate the molecular mechanisms of cold acclimation, we employed RNA-Seq and digital gene expression (DGE) technologies to the study of genome-wide expression profiles during cold acclimation in tea plants. Using the Illumina sequencing platform, we obtained approximately 57.35 million RNA-Seq reads. These reads were assembled into 216,831 transcripts, with an average length of 356 bp and an N50 of 529 bp. In total, 1,770 differentially expressed transcripts were identified, of which 1,168 were up-regulated and 602 down-regulated. These include a group of cold sensor or signal transduction genes, cold-responsive transcription factor genes, plasma membrane stabilization related genes, osmosensing-responsive genes, and detoxification enzyme genes. DGE and quantitative RT-PCR analysis further confirmed the results from RNA-Seq analysis. Pathway analysis indicated that the "carbohydrate metabolism pathway" and the "calcium signaling pathway" might play a vital role in tea plants' responses to cold stress. Our study presents a global survey of transcriptome profiles of tea plants in response to low, non-freezing temperatures and yields insights into the molecular mechanisms of tea plants during the cold acclimation process. It could also serve as a valuable resource for relevant research on cold-tolerance and help to explore the cold-related genes in improving the understanding of low-temperature tolerance and plant-environment interactions.

  1. Binding motifs in bacterial gene promoters modulate transcriptional effect of global regulators

    SciTech Connect

    Leuze, Michael Rex; Karpinets, Tatiana V; Syed, Mustafa H; Beliaev, Alexander S; Uberbacher, Edward C

    2012-01-01

    Bacterial gene regulation involves transcription factors (TFs) that influence the expression of many genes. Global regulators, including CRP (cAMP Receptor Protein), ArcA, and FNR, can modulate the transcriptional activity of multiple operons. The similarity of a regulatory element s sequence to a TF s consensus binding site (BS) and the position of the regulatory element in an operon promoter are considered the most important determinants of this TF s regulatory influence. In this study we explore the hypothesis that the number of TFBS half-sites (where a half-site is one half of the palindromic BS consensus sequence, which we shall refer to as a binding motif or a BM) of a global regulator in an operon s promoter plays an important role in the operon s transcriptional regulation. We examine empirical data from transcriptional profiling of the CRP regulon in Shewanella oneidenses MR 1 and Escherichia coli, and of the ArcA regulon in S. oneidenses MR 1. We compare the power of CRP BM counts and of full, symmetrical CRP TFBS characteristics, namely similarity to consensus and location, to predict CRP-induced transcriptional activity. We find that CRP BM counts have a nonlinear effect on CRP-dependent transcriptional activity and predict this activity better than full-length TFBS quality or location. Regression analysis indicates that IHF (Integration Host Factor) and ArcA have synergistic effects on CRP-induced gene transcription, positive and negative, respectively. Based on these results, we propose that the fine-tuning of bacterial transcriptional activity by CRP may involves not only the bending of the operon promoter, facilitated by CRP in cooperation with the histone-like protein IHF, but also the cumulative binding affinity of multiple weak BMs.

  2. SVD identifies transcript length distribution functions from DNA microarray data and reveals evolutionary forces globally affecting GBM metabolism.

    PubMed

    Bertagnolli, Nicolas M; Drake, Justin A; Tennessen, Jason M; Alter, Orly

    2013-01-01

    To search for evolutionary forces that might act upon transcript length, we use the singular value decomposition (SVD) to identify the length distribution functions of sets and subsets of human and yeast transcripts from profiles of mRNA abundance levels across gel electrophoresis migration distances that were previously measured by DNA microarrays. We show that the SVD identifies the transcript length distribution functions as "asymmetric generalized coherent states" from the DNA microarray data and with no a-priori assumptions. Comparing subsets of human and yeast transcripts of the same gene ontology annotations, we find that in both disparate eukaryotes, transcripts involved in protein synthesis or mitochondrial metabolism are significantly shorter than typical, and in particular, significantly shorter than those involved in glucose metabolism. Comparing the subsets of human transcripts that are overexpressed in glioblastoma multiforme (GBM) or normal brain tissue samples from The Cancer Genome Atlas, we find that GBM maintains normal brain overexpression of significantly short transcripts, enriched in transcripts that are involved in protein synthesis or mitochondrial metabolism, but suppresses normal overexpression of significantly longer transcripts, enriched in transcripts that are involved in glucose metabolism and brain activity. These global relations among transcript length, cellular metabolism and tumor development suggest a previously unrecognized physical mode for tumor and normal cells to differentially regulate metabolism in a transcript length-dependent manner. The identified distribution functions support a previous hypothesis from mathematical modeling of evolutionary forces that act upon transcript length in the manner of the restoring force of the harmonic oscillator.

  3. Olive phenolic compounds: metabolic and transcriptional profiling during fruit development

    PubMed Central

    2012-01-01

    Background Olive (Olea europaea L.) fruits contain numerous secondary metabolites, primarily phenolics, terpenes and sterols, some of which are particularly interesting for their nutraceutical properties. This study will attempt to provide further insight into the profile of olive phenolic compounds during fruit development and to identify the major genetic determinants of phenolic metabolism. Results The concentration of the major phenolic compounds, such as oleuropein, demethyloleuropein, 3–4 DHPEA-EDA, ligstroside, tyrosol, hydroxytyrosol, verbascoside and lignans, were measured in the developing fruits of 12 olive cultivars. The content of these compounds varied significantly among the cultivars and decreased during fruit development and maturation, with some compounds showing specificity for certain cultivars. Thirty-five olive transcripts homologous to genes involved in the pathways of the main secondary metabolites were identified from the massive sequencing data of the olive fruit transcriptome or from cDNA-AFLP analysis. Their mRNA levels were determined using RT-qPCR analysis on fruits of high- and low-phenolic varieties (Coratina and Dolce d’Andria, respectively) during three different fruit developmental stages. A strong correlation was observed between phenolic compound concentrations and transcripts putatively involved in their biosynthesis, suggesting a transcriptional regulation of the corresponding pathways. OeDXS, OeGES, OeGE10H and OeADH, encoding putative 1-deoxy-D-xylulose-5-P synthase, geraniol synthase, geraniol 10-hydroxylase and arogenate dehydrogenase, respectively, were almost exclusively present at 45 days after flowering (DAF), suggesting that these compounds might play a key role in regulating secoiridoid accumulation during fruit development. Conclusions Metabolic and transcriptional profiling led to the identification of some major players putatively involved in biosynthesis of secondary compounds in the olive tree. Our data

  4. Transcriptional Profiling of Mycobacterium Tuberculosis During Infection: Lessons Learned

    PubMed Central

    Ward, Sarah K.; Abomoelak, Bassam; Marcus, Sarah A.; Talaat, Adel M.

    2010-01-01

    Infection with Mycobacterium tuberculosis, the causative agent of tuberculosis, is considered one of the biggest infectious disease killers worldwide. A significant amount of attention has been directed toward revealing genes involved in the virulence and pathogenesis of this air-born pathogen. With the advances in technologies for transcriptional profiling, several groups, including ours, took advantage of DNA microarrays to identify transcriptional units differentially regulated by M. tuberculosis within a host. The main idea behind this approach is that pathogens tend to regulate their gene expression levels depending on the host microenvironment, and preferentially express those needed for survival. Identifying this class of genes will improve our understanding of pathogenesis. In our case, we identified an in vivo expressed genomic island that was preferentially active in murine lungs during early infection, as well as groups of genes active during chronic tuberculosis. Other studies have identified additional gene groups that are active during macrophage infection and even in human lungs. Despite all of these findings, one of the lingering questions remaining was whether in vivo expressed transcripts are relevant to the virulence, pathogenesis, and persistence of the organism. The work of our group and others addressed this question by examining the contribution of in vivo expressed genes using a strategy based on gene deletions followed by animal infections. Overall, the analysis of most of the in vivo expressed genes supported a role of these genes in M. tuberculosis pathogenesis. Further, these data suggest that in vivo transcriptional profiling is a valid approach to identify genes required for bacterial pathogenesis. PMID:21738523

  5. Transcriptional Profiling of Egg Allergy and Relationship to Disease Phenotype

    PubMed Central

    Kosoy, Roman; Agashe, Charuta; Grishin, Alexander; Leung, Donald Y.; Wood, Robert A.; Sicherer, Scott H.; Jones, Stacie M.; Burks, A. Wesley; Davidson, Wendy F.; Lindblad, Robert W.; Dawson, Peter; Merad, Miriam; Kidd, Brian A.; Dudley, Joel T.; Sampson, Hugh A.

    2016-01-01

    Background Egg allergy is one of the most common food allergies of childhood. There is a lack of information on the immunologic basis of egg allergy beyond the role of IgE. Objective To use transcriptional profiling as a novel approach to uncover immunologic processes associated with different phenotypes of egg allergy. Methods Peripheral blood mononuclear cells (PBMCs) were obtained from egg-allergic children who were defined as reactive (BER) or tolerant (BET) to baked egg, and from food allergic controls (AC) who were egg non-allergic. PBMCs were stimulated with egg white protein. Gene transcription was measured by microarray after 24 h, and cytokine secretion by multiplex assay after 5 days. Results The transcriptional response of PBMCs to egg protein differed between BER and BET versus AC subjects. Compared to the AC group, the BER group displayed increased expression of genes associated with allergic inflammation as well as corresponding increased secretion of IL-5, IL-9 and TNF-α. A similar pattern was observed for the BET group. Further similarities in gene expression patterns between BER and BET groups, as well as some important differences, were revealed using a novel Immune Annotation resource developed for this project. This approach identified several novel processes not previously associated with egg allergy, including positive associations with TLR4-stimulated myeloid cells and activated NK cells, and negative associations with an induced Treg signature. Further pathway analysis of differentially expressed genes comparing BER to BET subjects showed significant enrichment of IFN-α and IFN-γ response genes, as well as genes associated with virally-infected DCs. Conclusions Transcriptional profiling identified several novel pathways and processes that differed when comparing the response to egg allergen in BET, BER, and AC groups. We conclude that this approach is a useful hypothesis-generating mechanism to identify novel immune processes associated

  6. Transcriptional profiling of Actinobacillus pleuropneumoniae under iron-restricted conditions

    PubMed Central

    Deslandes, Vincent; Nash, John HE; Harel, Josée; Coulton, James W; Jacques, Mario

    2007-01-01

    Background To better understand effects of iron restriction on Actinobacillus pleuropneumoniae and to identify new potential vaccine targets, we conducted transcript profiling studies using a DNA microarray containing all 2025 ORFs of the genome of A. pleuropneumoniae serotype 5b strain L20. This is the first study involving the use of microarray technology to monitor the transcriptome of A. pleuropneumoniae grown under iron restriction. Results Upon comparing growth of this pathogen in iron-sufficient versus iron-depleted medium, 210 genes were identified as being differentially expressed. Some genes (92) were identified as being up-regulated; many have confirmed or putative roles in iron acquisition, such as the genes coding for two TonB energy-transducing proteins and the hemoglobin receptor HgbA. Transcript profiling also led to identification of some new iron acquisition systems of A. pleuropneumoniae. Genes coding for a possible Yfe system (yfeABCD), implicated in the acquisition of chelated iron, were detected, as well as genes coding for a putative enterobactin-type siderophore receptor system. ORFs for homologs of the HmbR system of Neisseria meningitidis involved in iron acquisition from hemoglobin were significantly up-regulated. Down-regulated genes included many that encode proteins containing Fe-S clusters or that use heme as a cofactor. Supplementation of the culture medium with exogenous iron re-established the expression level of these genes. Conclusion We have used transcriptional profiling to generate a list of genes showing differential expression during iron restriction. This strategy enabled us to gain a better understanding of the metabolic changes occurring in response to this stress. Many new potential iron acquisition systems were identified, and further studies will have to be conducted to establish their role during iron restriction. PMID:17355629

  7. Porphyromonas gingivalis infection-induced tissue and bone transcriptional profiles

    PubMed Central

    Meka, Archana; Bakthavatchalu, Vasudevan; Sathishkumar, Sabapathi; Lopez, M. Cecilia; Verma, Raj K.; Wallet, Shannon M.; Bhattacharyya, Indraneel; Boyce, Brendan F.; Handfield, Martin; Lamont, Richard J.; Baker, Henry V.; Ebersole, Jeffrey L.; Lakshmyya, Kesavalu N.

    2010-01-01

    Introduction Porphyromonas gingivalis has been associated with subgingival biofilms in adult periodontitis. However, the molecular mechanisms of its contribution to chronic gingival inflammation and loss of periodontal structural integrity remain unclear. The objectives of this investigation were to examine changes in the host transcriptional profiles during a P. gingivalis infection using a murine calvarial model of inflammation and bone resorption. Methods P. gingivalis FDC 381 was injected into the subcutaneous soft tissue over the calvaria of BALB/c mice for 3 days, after which the soft tissues and calvarial bones were excised. RNA was isolated from infected soft tissues and calvarial bones and analyzed for transcript profiles using Murine GeneChip® arrays to provide a molecular profile of the events that occur following infection of these tissues. Results After P. gingivalis infection, 5517 and 1900 probe sets in the infected soft tissues and calvarial bone, respectively, were differentially expressed (P ≤ 0.05) and up-regulated. Biological pathways significantly impacted by P. gingivalis infection in tissues and calvarial bone included cell adhesion (immune system) molecules, Toll-like receptors, B cell receptor signaling, TGF-β cytokine family receptor signaling, and MHC class II antigen processing pathways resulting in proinflammatory, chemotactic effects, T cell stimulation, and down regulation of antiviral and T cell chemotactic effects. P. gingivalis-induced inflammation activated osteoclasts, leading to local bone resorption. Conclusion This is the first in vivo evidence that localized P. gingivalis infection differentially induces transcription of a broad array of host genes that differed between inflamed soft tissues and calvarial bone. PMID:20331794

  8. Global expression analysis of the fibroblast transcriptional response to TGFbeta.

    PubMed

    Gardner, H; Strehlow, D; Bradley, L; Widom, R; Farina, A; de Fougerolles, A; Peyman, J; Koteliansky, V; Korn, J H

    2004-01-01

    Transforming Growth Factor-beta (TGFbeta) is the predominant cytokine in all forms of fibrotic reactions. As well as being secreted by immune modulators of fibrosis such as macrophages, it is involved in an autocrine feedback loop of fibroblast stimulation whose regulation is still poorly understood. We wished to gain some insight into the mechanisms of the fibroblast response to TGFbeta. We undertook an exhaustive transcript profiling experiment using a widely validated restriction enzyme based method for identifying differentially expressed genes (GeneCalling). Transcriptional responses throughout a 24-hour time course were examined at multiple time points and classified. By 24 hours of TGF treatment over 1000 bands, representing a large number of transcripts, were down- or upregulated greater than 2-fold. All of the known genes responsive to TGFbeta, such as collagen and connective tissue growth factor, were upregulated. This encyclopedic method revealed many unknown transcriptional responses to TGFbeta including the upregulation of a variety of less expected cytoskeletal and matrix components, as well as interactions between the TGFbeta and tumor necrosis factor (TNF) pathways and alterations in cell death-related pathways. These may in part explain the idiosyncratic responses of mesenchymal cells to TGFbeta.

  9. Novel transcriptional profile in wrist muscles from cerebral palsy patients.

    PubMed

    Smith, Lucas R; Pontén, Eva; Hedström, Yvette; Ward, Samuel R; Chambers, Henry G; Subramaniam, Shankar; Lieber, Richard L

    2009-07-14

    Cerebral palsy (CP) is an upper motor neuron disease that results in a progressive movement disorder. Secondary to the neurological insult, muscles from CP patients often become spastic. Spastic muscle is characterized by an increased resistance to stretch, but often develops the further complication of contracture which represents a prominent disability in children with CP. This study's purpose is to characterize alterations of spastic muscle on the transcriptional level. Increased knowledge of spastic muscle may lead to novel therapies to improve the quality of life for children with CP. The transcriptional profile of spastic muscles were defined in children with cerebral palsy and compared to control patients using Affymetrix U133A chips. Expression data were verified using quantitative-PCR (QPCR) and validated with SDS-PAGE for select genes. Significant genes were determined using a 2 x 2 ANOVA and results required congruence between 3 preprocessing algorithms. CP patients clustered independently and 205 genes were significantly altered, covering a range of cellular processes. Placing gene expression in the context of physiological pathways, the results demonstrated that spastic muscle in CP adapts transcriptionally by altering extracellular matrix, fiber type, and myogenic potential. Extracellular matrix adaptations occur primarily in the basal lamina although there is increase in fibrillar collagen components. Fiber type is predominately fast compared to normal muscle as evidenced by contractile gene isoforms and decrease in oxidative metabolic gene transcription, despite a paradoxical increased transcription of slow fiber pathway genes. We also found competing pathways of fiber hypertrophy with an increase in the anabolic IGF1 gene in parallel with a paradoxical increase in myostatin, a gene responsible for stopping muscle growth. We found evidence that excitation-contraction coupling genes are altered in muscles from patients with CP and may be a

  10. A Transcriptional Profile of Aging in the Human Kidney

    PubMed Central

    Rodwell, Graham E. J; Sonu, Rebecca; Zahn, Jacob M; Lund, James; Wilhelmy, Julie; Wang, Lingli; Xiao, Wenzhong; Mindrinos, Michael; Crane, Emily; Segal, Eran; Myers, Bryan D; Brooks, James D; Davis, Ronald W; Higgins, John; Owen, Art B

    2004-01-01

    In this study, we found 985 genes that change expression in the cortex and the medulla of the kidney with age. Some of the genes whose transcripts increase in abundance with age are known to be specifically expressed in immune cells, suggesting that immune surveillance or inflammation increases with age. The age-regulated genes show a similar aging profile in the cortex and the medulla, suggesting a common underlying mechanism for aging. Expression profiles of these age-regulated genes mark not only age, but also the relative health and physiology of the kidney in older individuals. Finally, the set of aging-regulated kidney genes suggests specific mechanisms and pathways that may play a role in kidney degeneration with age. PMID:15562319

  11. Global Entrainment of Transcriptional Systems to Periodic Inputs

    PubMed Central

    Russo, Giovanni; di Bernardo, Mario; Sontag, Eduardo D.

    2010-01-01

    This paper addresses the problem of providing mathematical conditions that allow one to ensure that biological networks, such as transcriptional systems, can be globally entrained to external periodic inputs. Despite appearing obvious at first, this is by no means a generic property of nonlinear dynamical systems. Through the use of contraction theory, a powerful tool from dynamical systems theory, it is shown that certain systems driven by external periodic signals have the property that all their solutions converge to a fixed limit cycle. General results are proved, and the properties are verified in the specific cases of models of transcriptional systems as well as constructs of interest in synthetic biology. A self-contained exposition of all needed results is given in the paper. PMID:20418962

  12. Comprehensive single-cell transcriptional profiling of a multicellular organism.

    PubMed

    Cao, Junyue; Packer, Jonathan S; Ramani, Vijay; Cusanovich, Darren A; Huynh, Chau; Daza, Riza; Qiu, Xiaojie; Lee, Choli; Furlan, Scott N; Steemers, Frank J; Adey, Andrew; Waterston, Robert H; Trapnell, Cole; Shendure, Jay

    2017-08-18

    To resolve cellular heterogeneity, we developed a combinatorial indexing strategy to profile the transcriptomes of single cells or nuclei, termed sci-RNA-seq (single-cell combinatorial indexing RNA sequencing). We applied sci-RNA-seq to profile nearly 50,000 cells from the nematode Caenorhabditis elegans at the L2 larval stage, which provided >50-fold "shotgun" cellular coverage of its somatic cell composition. From these data, we defined consensus expression profiles for 27 cell types and recovered rare neuronal cell types corresponding to as few as one or two cells in the L2 worm. We integrated these profiles with whole-animal chromatin immunoprecipitation sequencing data to deconvolve the cell type-specific effects of transcription factors. The data generated by sci-RNA-seq constitute a powerful resource for nematode biology and foreshadow similar atlases for other organisms. Copyright © 2017 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  13. Distinct transcriptional profiles characterize oral epithelium-microbiota interactions.

    PubMed

    Handfield, Martin; Mans, Jeffrey J; Zheng, Gaolin; Lopez, M Cecilia; Mao, Song; Progulske-Fox, Ann; Narasimhan, Giri; Baker, Henry V; Lamont, Richard J

    2005-06-01

    Transcriptional profiling, bioinformatics, statistical and ontology tools were used to uncover and dissect genes and pathways of human gingival epithelial cells that are modulated upon interaction with the periodontal pathogens Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis. Consistent with their biological and clinical differences, the common core transcriptional response of epithelial cells to both organisms was very limited, and organism-specific responses predominated. A large number of differentially regulated genes linked to the P53 apoptotic network were found with both organisms, which was consistent with the pro-apoptotic phenotype observed with A. actinomycetemcomitans and anti-apoptotic phenotype of P. gingivalis. Furthermore, with A. actinomycetemcomitans, the induction of apoptosis did not appear to be Fas- or TNF(alpha)-mediated. Linkage of specific bacterial components to host pathways and networks provided additional insight into the pathogenic process. Comparison of the transcriptional responses of epithelial cells challenged with parental P. gingivalis or with a mutant of P. gingivalis deficient in production of major fimbriae, which are required for optimal invasion, showed major expression differences that reverberated throughout the host cell transcriptome. In contrast, gene ORF859 in A. actinomycetemcomitans, which may play a role in intracellular homeostasis, had a more subtle effect on the transcriptome. These studies help unravel the complex and dynamic interactions between host epithelial cells and endogenous bacteria that can cause opportunistic infections.

  14. Transcript profiling of common bean nodules subjected to oxidative stress.

    PubMed

    Ramírez, Mario; Guillén, Gabriel; Fuentes, Sara I; Iñiguez, Luis P; Aparicio-Fabre, Rosaura; Zamorano-Sánchez, David; Encarnación-Guevara, Sergio; Panzeri, Dario; Castiglioni, Bianca; Cremonesi, Paola; Strozzi, Francesco; Stella, Alessandra; Girard, Lourdes; Sparvoli, Francesca; Hernández, Georgina

    2013-11-01

    Several environmental stresses generate high amounts of reactive oxygen species (ROS) in plant cells, resulting in oxidative stress. Symbiotic nitrogen fixation (SNF) in the legume-rhizobia symbiosis is sensitive to damage from oxidative stress. Active nodules of the common bean (Phaseolus vulgaris) exposed to the herbicide paraquat (1,1'-dimethyl-4,4'-bipyridinium dichloride hydrate), which stimulates ROS accumulation, exhibited reduced nitrogenase activity and ureide content. We analyzed the global gene response of nodules subjected to oxidative stress using the Bean Custom Array 90K, which includes probes from 30,000 expressed sequence tags (ESTs). A total of 4280 ESTs were differentially expressed in stressed bean nodules; of these, 2218 were repressed. Based on Gene Ontology analysis, these genes were grouped into 42 different biological process categories. Analysis with the PathExpress bioinformatic tool, adapted for bean, identified five significantly repressed metabolic pathways related to carbon/nitrogen metabolism, which is crucial for nodule function. Quantitative reverse transcription (qRT)-PCR analysis of transcription factor (TF) gene expression showed that 67 TF genes were differentially expressed in nodules exposed to oxidative stress. Putative cis-elements recognized by highly responsive TF were detected in promoter regions of oxidative stress regulated genes. The expression of oxidative stress responsive genes and of genes important for SNF in bacteroids analyzed in stressed nodules revealed that these conditions elicited a transcriptional response. © 2013 Scandinavian Plant Physiology Society.

  15. Global Transcriptional Analysis of Streptococcus mutans Sugar Transporters Using Microarrays▿ †

    PubMed Central

    Ajdić, Dragana; Pham, Vi T. T.

    2007-01-01

    The transport of carbohydrates by Streptococcus mutans is accomplished by the phosphoenolpyruvate-phosphotransferase system (PTS) and ATP-binding cassette (ABC) transporters. To undertake a global transcriptional analysis of all S. mutans sugar transporters simultaneously, we used a whole-genome expression microarray. Global transcription profiles of S. mutans UA159 were determined for several monosaccharides (glucose, fructose, galactose, and mannose), disaccharides (sucrose, lactose, maltose, and trehalose), a β-glucoside (cellobiose), oligosaccharides (raffinose, stachyose, and maltotriose), and a sugar alcohol (mannitol). The results revealed that PTSs were responsible for transport of monosaccharides, disaccharides, β-glucosides, and sugar alcohol. Six PTSs were transcribed only if a specific sugar was present in the growth medium; thus, they were regulated at the transcriptional level. These included transporters for fructose, lactose, cellobiose, and trehalose and two transporters for mannitol. Three PTSs were repressed under all conditions tested. Interestingly, five PTSs were always highly expressed regardless of the sugar source used, presumably suggesting their availability for immediate uptake of most common dietary sugars (glucose, fructose, maltose, and sucrose). The ABC transporters were found to be specific for oligosaccharides, raffinose, stachyose, and isomaltosaccharides. Compared to the PTSs, the ABC transporters showed higher transcription under several tested conditions, suggesting that they might be transporting multiple substrates. PMID:17496079

  16. Transcriptional profiles of Treponema denticola in response to environmental conditions.

    PubMed

    McHardy, Ian; Keegan, Caroline; Sim, Jee-Hyun; Shi, Wenyuan; Lux, Renate

    2010-10-27

    The periodontal pathogen T. denticola resides in a stressful environment rife with challenges, the human oral cavity. Knowledge of the stress response capabilities of this invasive spirochete is currently very limited. Whole genome expression profiles in response to different suspected stresses including heat shock, osmotic downshift, oxygen and blood exposure were examined. Most of the genes predicted to encode conserved heat shock proteins (HSPs) were found to be induced under heat and oxygen stress. Several of these HSPs also seem to be important for survival in hypotonic solutions and blood. In addition to HSPs, differential regulation of many genes encoding metabolic proteins, hypothetical proteins, transcriptional regulators and transporters was observed in patterns that could betoken functional associations. In summary, stress responses in T. denticola exhibit many similarities to the corresponding stress responses in other organisms but also employ unique components including the induction of hypothetical proteins.

  17. Progressive lung cancer determined by expression profiling and transcriptional regulation.

    PubMed

    Han, Namshik; Dol, Zulkifli; Vasieva, Olga; Hyde, Russell; Liloglou, Triantafillos; Raji, Olaide; Brambilla, Elisabeth; Brambilla, Christian; Martinet, Yves; Sozzi, Gabriella; Risch, Angela; Montuenga, Luis M; Brass, Andy; Field, John K

    2012-07-01

    Clinically, our ability to predict disease outcome for patients with early stage lung cancer is currently poor. To address this issue, tumour specimens were collected at surgery from non-small cell lung cancer (NSCLC) patients as part of the European Early Lung Cancer (EUELC) consortium. The patients were followed-up for three years post-surgery and patients who suffered progressive disease (PD, tumour recurrence, metastasis or a second primary) or remained disease-free (DF) during follow-up were identified. RNA from both tumour and adjacent-normal lung tissue was extracted from patients and subjected to microarray expression profiling. These samples included 36 adenocarcinomas and 23 squamous cell carcinomas from both PD and DF patients. The microarray data was subject to a series of systematic bioinformatics analyses at gene, network and transcription factor levels. The focus of these analyses was 2-fold: firstly to determine whether there were specific biomarkers capable of differentiating between PD and DF patients, and secondly, to identify molecular networks which may contribute to the progressive tumour phenotype. The experimental design and analyses performed permitted the clear differentiation between PD and DF patients using a set of biomarkers implicated in neuroendocrine signalling and allowed the inference of a set of transcription factors whose activity may differ according to disease outcome. Potential links between the biomarkers, the transcription factors and the genes p21/CDKN1A and Myc, which have previously been implicated in NSCLC development, were revealed by a combination of pathway analysis and microarray meta-analysis. These findings suggest that neuroendocrine-related genes, potentially driven through p21/CDKN1A and Myc, are closely linked to whether or not a NSCLC patient will have poor clinical outcome.

  18. Transcript profiling of Eucalyptus xylem genes during tension wood formation.

    PubMed

    Paux, Etienne; Carocha, Víctor; Marques, Cristina; Mendes de Sousa, António; Borralho, Nuno; Sivadon, Pierre; Grima-Pettenati, Jacqueline

    2005-07-01

    Tension wood formed in response to gravitational force is a striking example of the plasticity of angiosperm wood. In this study our goal was to characterize the early changes in gene expression during tension wood formation in Eucalyptus. Using cDNA array technology, transcript profiling of 231 genes preferentially expressed in differentiating Eucalyptus xylem was followed from 6 h to 1 wk of a tension time course of artificially bent Eucalyptus trees. 196 genes were differentially regulated between control and bent trees, some exhibiting distinctive expression patterns related to changes in secondary cell wall structure and composition. For instance, expression of a cellulose synthase gene was well correlated with the appearance of the G-layers. Cluster correlation analysis revealed differential regulation of lignin biosynthetic genes and may also be used to help infer the function of unknown gene products. Eucalyptus wood transcriptome analysis during tension wood formation not only provided new clues into the transcriptional regulatory network of genes preferentially expressed in xylem, but also highlighted candidate genes responsible for the genetic and environmentally induced variation of wood quality traits.

  19. Transcriptional profiling of nitrogen fixation in Azotobacter vinelandii.

    PubMed

    Hamilton, Trinity L; Ludwig, Marcus; Dixon, Ray; Boyd, Eric S; Dos Santos, Patricia C; Setubal, João C; Bryant, Donald A; Dean, Dennis R; Peters, John W

    2011-09-01

    Most biological nitrogen (N(2)) fixation results from the activity of a molybdenum-dependent nitrogenase, a complex iron-sulfur enzyme found associated with a diversity of bacteria and some methanogenic archaea. Azotobacter vinelandii, an obligate aerobe, fixes nitrogen via the oxygen-sensitive Mo nitrogenase but is also able to fix nitrogen through the activities of genetically distinct alternative forms of nitrogenase designated the Vnf and Anf systems when Mo is limiting. The Vnf system appears to replace Mo with V, and the Anf system is thought to contain Fe as the only transition metal within the respective active site metallocofactors. Prior genetic analyses suggest that a number of nif-encoded components are involved in the Vnf and Anf systems. Genome-wide transcription profiling of A. vinelandii cultured under nitrogen-fixing conditions under various metal amendments (e.g., Mo or V) revealed the discrete complement of genes associated with each nitrogenase system and the extent of cross talk between the systems. In addition, changes in transcript levels of genes not directly involved in N(2) fixation provided insight into the integration of central metabolic processes and the oxygen-sensitive process of N(2) fixation in this obligate aerobe. The results underscored significant differences between Mo-dependent and Mo-independent diazotrophic growth that highlight the significant advantages of diazotrophic growth in the presence of Mo.

  20. Transcript profiling of a novel plant meristem, the monocot cambium.

    PubMed

    Zinkgraf, Matthew; Gerttula, Suzanne; Groover, Andrew

    2017-06-01

    While monocots lack the ability to produce a vascular cambium or woody growth, some monocot lineages evolved a novel lateral meristem, the monocot cambium, which supports secondary radial growth of stems. In contrast to the vascular cambium found in woody angiosperm and gymnosperm species, the monocot cambium produces secondary vascular bundles, which have an amphivasal organization of tracheids encircling a central strand of phloem. Currently there is no information concerning the molecular genetic basis of the development or evolution of the monocot cambium. Here we report high-quality transcriptomes for monocot cambium and early derivative tissues in two monocot genera, Yucca and Cordyline. Monocot cambium transcript profiles were compared to those of vascular cambia and secondary xylem tissues of two forest tree species, Populus trichocarpa and Eucalyptus grandis. Monocot cambium transcript levels showed that there are extensive overlaps between the regulation of monocot cambia and vascular cambia. Candidate regulatory genes that vary between the monocot and vascular cambia were also identified, and included members of the KANADI and CLE families involved in polarity and cell-cell signaling, respectively. We suggest that the monocot cambium may have evolved in part through reactivation of genetic mechanisms involved in vascular cambium regulation. Published 2017. This article is a U.S. Government work and is in the public domain in the USA.

  1. Transcriptional Profiling of Nitrogen Fixation in Azotobacter vinelandii▿†

    PubMed Central

    Hamilton, Trinity L.; Ludwig, Marcus; Dixon, Ray; Boyd, Eric S.; Dos Santos, Patricia C.; Setubal, João C.; Bryant, Donald A.; Dean, Dennis R.; Peters, John W.

    2011-01-01

    Most biological nitrogen (N2) fixation results from the activity of a molybdenum-dependent nitrogenase, a complex iron-sulfur enzyme found associated with a diversity of bacteria and some methanogenic archaea. Azotobacter vinelandii, an obligate aerobe, fixes nitrogen via the oxygen-sensitive Mo nitrogenase but is also able to fix nitrogen through the activities of genetically distinct alternative forms of nitrogenase designated the Vnf and Anf systems when Mo is limiting. The Vnf system appears to replace Mo with V, and the Anf system is thought to contain Fe as the only transition metal within the respective active site metallocofactors. Prior genetic analyses suggest that a number of nif-encoded components are involved in the Vnf and Anf systems. Genome-wide transcription profiling of A. vinelandiicultured under nitrogen-fixing conditions under various metal amendments (e.g., Mo or V) revealed the discrete complement of genes associated with each nitrogenase system and the extent of cross talk between the systems. In addition, changes in transcript levels of genes not directly involved in N2fixation provided insight into the integration of central metabolic processes and the oxygen-sensitive process of N2fixation in this obligate aerobe. The results underscored significant differences between Mo-dependent and Mo-independent diazotrophic growth that highlight the significant advantages of diazotrophic growth in the presence of Mo. PMID:21724999

  2. Transcriptional profile of hippocampal dentate granule cells in four rat epilepsy models.

    PubMed

    Dingledine, Raymond; Coulter, Douglas A; Fritsch, Brita; Gorter, Jan A; Lelutiu, Nadia; McNamara, James; Nadler, J Victor; Pitkänen, Asla; Rogawski, Michael A; Skene, Pate; Sloviter, Robert S; Wang, Yu; Wadman, Wytse J; Wasterlain, Claude; Roopra, Avtar

    2017-05-09

    Global expression profiling of neurologic or psychiatric disorders has been confounded by variability among laboratories, animal models, tissues sampled, and experimental platforms, with the result being that few genes demonstrate consistent expression changes. We attempted to minimize these confounds by pooling dentate granule cell transcriptional profiles from 164 rats in seven laboratories, using three status epilepticus (SE) epilepsy models (pilocarpine, kainate, self-sustained SE), plus amygdala kindling. In each epilepsy model, RNA was harvested from laser-captured dentate granule cells from six rats at four time points early in the process of developing epilepsy, and data were collected from two independent laboratories in each rodent model except SSSE. Hierarchical clustering of differentially-expressed transcripts in the three SE models revealed complete separation between controls and SE rats isolated 1 day after SE. However, concordance of gene expression changes in the SE models was only 26-38% between laboratories, and 4.5% among models, validating the consortium approach. Transcripts with unusually highly variable control expression across laboratories provide a 'red herring' list for low-powered studies.

  3. Timing of Transcriptional Quiescence during Gametogenesis Is Controlled by Global Histone H3K4 Demethylation

    PubMed Central

    Xu, Mengshu; Soloveychik, Maria; Ranger, Mathieu; Schertzberg, Michael; Shah, Zarna; Raisner, Ryan; Venkatasubrahmanyan, Shivkumar; Tsui, Kyle; Gebbia, Marinella; Hughes, Tim; van Bakel, Harm; Nislow, Corey; Madhani, Hiten D.; Meneghini, Marc D.

    2013-01-01

    SUMMARY Gametes are among the most highly specialized cells produced during development. Although gametogenesis culminates in transcriptional quiescence in plants and animals, regulatory mechanisms controlling this are unknown. Here, we confirm that gamete differentiation in the single-celled yeast Saccharomyces cerevisiae is accompanied by global transcriptional shutoff following the completion of meiosis. We show that Jhd2, a highly conserved JARID1-family histone H3K4 demethylase, activates protein-coding gene transcription in opposition to this programmed transcriptional shutoff, sustaining the period of productive transcription during spore differentiation. Moreover, using genome-wide nucleosome, H3K4me, and transcript mapping experiments, we demonstrate that JHD2 globally represses intergenic noncoding transcription during this period. The widespread transcriptional defects of JHD2 mutants are associated with precocious differentiation and the production of stress-sensitive spores, demonstrating that Jhd2 regulation of the global postmeiotic transcriptional program is critical for the production of healthy meiotic progeny. PMID:23123093

  4. Timing of transcriptional quiescence during gametogenesis is controlled by global histone H3K4 demethylation.

    PubMed

    Xu, Mengshu; Soloveychik, Maria; Ranger, Mathieu; Schertzberg, Michael; Shah, Zarna; Raisner, Ryan; Venkatasubrahmanyan, Shivkumar; Tsui, Kyle; Gebbia, Marinella; Hughes, Tim; van Bakel, Harm; Nislow, Corey; Madhani, Hiten D; Meneghini, Marc D

    2012-11-13

    Gametes are among the most highly specialized cells produced during development. Although gametogenesis culminates in transcriptional quiescence in plants and animals, regulatory mechanisms controlling this are unknown. Here, we confirm that gamete differentiation in the single-celled yeast Saccharomyces cerevisiae is accompanied by global transcriptional shutoff following the completion of meiosis. We show that Jhd2, a highly conserved JARID1-family histone H3K4 demethylase, activates protein-coding gene transcription in opposition to this programmed transcriptional shutoff, sustaining the period of productive transcription during spore differentiation. Moreover, using genome-wide nucleosome, H3K4me, and transcript mapping experiments, we demonstrate that JHD2 globally represses intergenic noncoding transcription during this period. The widespread transcriptional defects of JHD2 mutants are associated with precocious differentiation and the production of stress-sensitive spores, demonstrating that Jhd2 regulation of the global postmeiotic transcriptional program is critical for the production of healthy meiotic progeny.

  5. Digital expression profiling of novel diatom transcripts provides insight into their biological functions.

    PubMed

    Maheswari, Uma; Jabbari, Kamel; Petit, Jean-Louis; Porcel, Betina M; Allen, Andrew E; Cadoret, Jean-Paul; De Martino, Alessandra; Heijde, Marc; Kaas, Raymond; La Roche, Julie; Lopez, Pascal J; Martin-Jézéquel, Véronique; Meichenin, Agnès; Mock, Thomas; Schnitzler Parker, Micaela; Vardi, Assaf; Armbrust, E Virginia; Weissenbach, Jean; Katinka, Michaël; Bowler, Chris

    2010-01-01

    Diatoms represent the predominant group of eukaryotic phytoplankton in the oceans and are responsible for around 20% of global photosynthesis. Two whole genome sequences are now available. Notwithstanding, our knowledge of diatom biology remains limited because only around half of their genes can be ascribed a function based onhomology-based methods. High throughput tools are needed, therefore, to associate functions with diatom-specific genes. We have performed a systematic analysis of 130,000 ESTs derived from Phaeodactylum tricornutum cells grown in 16 different conditions. These include different sources of nitrogen, different concentrations of carbon dioxide, silicate and iron, and abiotic stresses such as low temperature and low salinity. Based on unbiased statistical methods, we have catalogued transcripts with similar expression profiles and identified transcripts differentially expressed in response to specific treatments. Functional annotation of these transcripts provides insights into expression patterns of genes involved in various metabolic and regulatory pathways and into the roles of novel genes with unknown functions. Specific growth conditions could be associated with enhanced gene diversity, known gene product functions, and over-representation of novel transcripts. Comparative analysis of data from the other sequenced diatom, Thalassiosira pseudonana, helped identify several unique diatom genes that are specifically regulated under particular conditions, thus facilitating studies of gene function, genome annotation and the molecular basis of species diversity. The digital gene expression database represents a new resource for identifying candidate diatom-specific genes involved in processes of major ecological relevance.

  6. Digital expression profiling of novel diatom transcripts provides insight into their biological functions

    PubMed Central

    2010-01-01

    Background Diatoms represent the predominant group of eukaryotic phytoplankton in the oceans and are responsible for around 20% of global photosynthesis. Two whole genome sequences are now available. Notwithstanding, our knowledge of diatom biology remains limited because only around half of their genes can be ascribed a function based onhomology-based methods. High throughput tools are needed, therefore, to associate functions with diatom-specific genes. Results We have performed a systematic analysis of 130,000 ESTs derived from Phaeodactylum tricornutum cells grown in 16 different conditions. These include different sources of nitrogen, different concentrations of carbon dioxide, silicate and iron, and abiotic stresses such as low temperature and low salinity. Based on unbiased statistical methods, we have catalogued transcripts with similar expression profiles and identified transcripts differentially expressed in response to specific treatments. Functional annotation of these transcripts provides insights into expression patterns of genes involved in various metabolic and regulatory pathways and into the roles of novel genes with unknown functions. Specific growth conditions could be associated with enhanced gene diversity, known gene product functions, and over-representation of novel transcripts. Comparative analysis of data from the other sequenced diatom, Thalassiosira pseudonana, helped identify several unique diatom genes that are specifically regulated under particular conditions, thus facilitating studies of gene function, genome annotation and the molecular basis of species diversity. Conclusions The digital gene expression database represents a new resource for identifying candidate diatom-specific genes involved in processes of major ecological relevance. PMID:20738856

  7. Global analysis of p53-regulated transcription identifies its direct targets and unexpected regulatory mechanisms

    PubMed Central

    Allen, Mary Ann; Andrysik, Zdenek; Dengler, Veronica L; Mellert, Hestia S; Guarnieri, Anna; Freeman, Justin A; Sullivan, Kelly D; Galbraith, Matthew D; Luo, Xin; Kraus, W Lee; Dowell, Robin D; Espinosa, Joaquin M

    2014-01-01

    The p53 transcription factor is a potent suppressor of tumor growth. We report here an analysis of its direct transcriptional program using Global Run-On sequencing (GRO-seq). Shortly after MDM2 inhibition by Nutlin-3, low levels of p53 rapidly activate ∼200 genes, most of them not previously established as direct targets. This immediate response involves all canonical p53 effector pathways, including apoptosis. Comparative global analysis of RNA synthesis vs steady state levels revealed that microarray profiling fails to identify low abundance transcripts directly activated by p53. Interestingly, p53 represses a subset of its activation targets before MDM2 inhibition. GRO-seq uncovered a plethora of gene-specific regulatory features affecting key survival and apoptotic genes within the p53 network. p53 regulates hundreds of enhancer-derived RNAs. Strikingly, direct p53 targets harbor pre-activated enhancers highly transcribed in p53 null cells. Altogether, these results enable the study of many uncharacterized p53 target genes and unexpected regulatory mechanisms. DOI: http://dx.doi.org/10.7554/eLife.02200.001 PMID:24867637

  8. Pregnancy Complicated by Obesity Induces Global Transcript Expression Alterations in Visceral and Subcutaneous Fat

    PubMed Central

    Bashiri, Asher; Heo, Hye J.; Ben-Avraham, Danny; Mazor, Moshe; Budagov, Temuri; Einstein, Francine H.; Atzmon, Gil

    2014-01-01

    Maternal obesity is a significant risk factor for development of both maternal and fetal metabolic complications. Increase in visceral fat and insulin resistance is a metabolic hallmark of pregnancy, yet little is known how obesity alters adipose cellular function and how this may contribute to pregnancy morbidities. We sought to identify alterations in genome-wide transcription expression in both visceral (omental) and abdominal subcutaneous fat deposits in pregnancy complicated by obesity. Visceral and abdominal subcutaneous fat deposits were collected from normal weight and obese pregnant women (n=4/group) at time of scheduled uncomplicated cesarean section. A genome-wide expression array (Affymetrix Human Exon 1.0 st platform), validated by quantitative real-time PCR, was utilized to establish the gene transcript expression profile in both visceral and abdominal subcutaneous fat in normal weight and obese pregnant women. Global alteration in gene expression was identified in pregnancy complicated by obesity. These regions of variations lead to identification of indolethylamine N-methyltransferase (INMT), tissue factor pathway inhibitor-2 (TFPI-2), and ephrin type-B receptor 6 (EPHB6), not previously associated with fat metabolism during pregnancy. In addition, subcutaneous fat of obese pregnant women demonstrated increased coding protein transcripts associated with apoptosis compared to lean counterparts. Global alteration of gene expression in adipose tissue may contribute to adverse pregnancy outcomes associated with obesity. PMID:24696292

  9. The epithelial-mesenchymal transition induced by keratinocyte growth conditions is overcome by E6 and E7 from HPV16, but not HPV8 and HPV38: Characterization of global transcription profiles

    SciTech Connect

    Azzimonti, Barbara; Dell'Oste, Valentina; Borgogna, Cinzia; Mondini, Michele; Gugliesi, Francesca; De Andrea, Marco; Chiorino, Giovanna; Scatolini, Maria; Ghimenti, Chiara; Landolfo, Santo; Gariglio, Marisa

    2009-06-05

    The aim of this study was to evaluate the growth properties of primary human keratinocytes expressing E6 and E7 proteins, which are from either the beta- or alpha-genotypes, under different culture conditions. We demonstrated that keratinocytes expressing E6 and E7, from both HPV8 and 38, irreversibly underwent the epithelial-mesenchymal transition (EMT) when grown on plastic with FAD medium (F12/DMEM/5%FBS). Expression of E6/E7 from HPV16 was capable of fully overcoming the FAD-induced EMT. Immortalization was only observed in HPV16-transduced cell lines, while the more proliferating phenotype of both KerHPV8 and 38 was mainly related to FAD-induced EMT. Microarray analysis of exponentially growing cells identified 146 cellular genes that were differentially regulated in HPV16 compared to HPV8- and 38-transduced cells. A large accumulation of transcripts associated with epidermal development and differentiation was observed in HPV16-transduced cells, whereas transcripts of genes involved in the extracellular matrix, multicellular organismal processes, and inflammatory response were affected in HPV8 and 38-transduced cells.

  10. A microfluidic approach to parallelized transcriptional profiling of single cells.

    PubMed

    Sun, Hao; Olsen, Timothy; Zhu, Jing; Tao, Jianguo; Ponnaiya, Brian; Amundson, Sally A; Brenner, David J; Lin, Qiao

    2015-12-01

    The ability to correlate single-cell genetic information with cellular phenotypes is of great importance to biology and medicine, as it holds the potential to gain insight into disease pathways that is unavailable from ensemble measurements. We present a microfluidic approach to parallelized, rapid, quantitative analysis of messenger RNA from single cells via RT-qPCR. The approach leverages an array of single-cell RT-qPCR analysis units formed by a set of parallel microchannels concurrently controlled by elastomeric pneumatic valves, thereby enabling parallelized handling and processing of single cells in a drastically simplified operation procedure using a relatively small number of microvalves. All steps for single-cell RT-qPCR, including cell isolation and immobilization, cell lysis, mRNA purification, reverse transcription and qPCR, are integrated on a single chip, eliminating the need for off-chip manual cell and reagent transfer and qPCR amplification as commonly used in existing approaches. Additionally, the approach incorporates optically transparent microfluidic components to allow monitoring of single-cell trapping without the need for molecular labeling that can potentially alter the targeted gene expression and utilizes a polycarbonate film as a barrier against evaporation to minimize the loss of reagents at elevated temperatures during the analysis. We demonstrate the utility of the approach by the transcriptional profiling for the induction of the cyclin-dependent kinase inhibitor 1a and the glyceraldehyde 3-phosphate dehydrogenase in single cells from the MCF-7 breast cancer cell line. Furthermore, the methyl methanesulfonate is employed to allow measurement of the expression of the genes in individual cells responding to a genotoxic stress.

  11. Transcriptional profile of maize roots under acid soil growth

    PubMed Central

    2010-01-01

    Background Aluminum (Al) toxicity is one of the most important yield-limiting factors of many crops worldwide. The primary symptom of Al toxicity syndrome is the inhibition of root growth leading to poor water and nutrient absorption. Al tolerance has been extensively studied using hydroponic experiments. However, unlike soil conditions, this method does not address all of the components that are necessary for proper root growth and development. In the present study, we grew two maize genotypes with contrasting tolerance to Al in soil containing toxic levels of Al and then compared their transcriptomic responses. Results When grown in acid soil containing toxic levels of Al, the Al-sensitive genotype (S1587-17) showed greater root growth inhibition, more Al accumulation and more callose deposition in root tips than did the tolerant genotype (Cat100-6). Transcriptome profiling showed a higher number of genes differentially expressed in S1587-17 grown in acid soil, probably due to secondary effects of Al toxicity. Genes involved in the biosynthesis of organic acids, which are frequently associated with an Al tolerance response, were not differentially regulated in both genotypes after acid soil exposure. However, genes related to the biosynthesis of auxin, ethylene and lignin were up-regulated in the Al-sensitive genotype, indicating that these pathways might be associated with root growth inhibition. By comparing the two maize lines, we were able to discover genes up-regulated only in the Al-tolerant line that also presented higher absolute levels than those observed in the Al-sensitive line. These genes encoded a lipase hydrolase, a retinol dehydrogenase, a glycine-rich protein, a member of the WRKY transcriptional family and two unknown proteins. Conclusions This work provides the first characterization of the physiological and transcriptional responses of maize roots when grown in acid soil containing toxic levels of Al. The transcriptome profiles highlighted

  12. Transcription Profiling Analysis of Mango–Fusarium mangiferae Interaction

    PubMed Central

    Liu, Feng; Wu, Jing-bo; Zhan, Ru-lin; Ou, Xiong-chang

    2016-01-01

    Malformation caused by Fusarium mangiferae is one of the most destructive mango diseases affecting the canopy and floral development, leading to dramatic reduction in fruit yield. To further understand the mechanism of interaction between mango and F. mangiferae, we monitored the transcriptome profiles of buds from susceptible mango plants, which were challenged with F. mangiferae. More than 99 million reads were deduced by RNA-sequencing and were assembled into 121,267 unigenes. Based on the sequence similarity searches, 61,706 unigenes were identified, of which 21,273 and 50,410 were assigned to gene ontology categories and clusters of orthologous groups, respectively, and 33,243 were mapped to 119 KEGG pathways. The differentially expressed genes of mango were detected, having 15,830, 26,061, and 20,146 DEGs respectively, after infection for 45, 75, and 120 days. The analysis of the comparative transcriptome suggests that basic defense mechanisms play important roles in disease resistance. The data also show the transcriptional responses of interactions between mango and the pathogen and more drastic changes in the host transcriptome in response to the pathogen. These results could be used to develop new methods to broaden the resistance of mango to malformation, including the over-expression of key mango genes. PMID:27683574

  13. Comparative transcriptional profiling of three super-hybrid rice combinations.

    PubMed

    Peng, Yonggang; Wei, Gang; Zhang, Lei; Liu, Guozhen; Wei, Xiaoli; Zhu, Zhen

    2014-03-03

    Utilization of heterosis has significantly increased rice yields. However, its mechanism remains unclear. In this study, comparative transcriptional profiles of three super-hybrid rice combinations, LY2163, LY2186 and LYP9, at the flowering and filling stages, were created using rice whole-genome oligonucleotide microarray. The LY2163, LY2186 and LYP9 hybrids yielded 1193, 1630 and 1046 differentially expressed genes (DGs), accounting for 3.2%, 4.4% and 2.8% of the total number of genes (36,926), respectively, after using the z-test (p < 0.01). Functional category analysis showed that the DGs in each hybrid combination were mainly classified into the carbohydrate metabolism and energy metabolism categories. Further analysis of the metabolic pathways showed that DGs were significantly enriched in the carbon fixation pathway (p < 0.01) for all three combinations. Over 80% of the DGs were located in rice quantitative trait loci (QTLs) of the Gramene database, of which more than 90% were located in the yield related QTLs in all three combinations, which suggested that there was a correlation between DGs and rice heterosis. Pathway Studio analysis showed the presence of DGs in the circadian regulatory network of all three hybrid combinations, which suggested that the circadian clock had a role in rice heterosis. Our results provide information that can help to elucidate the molecular mechanism underlying rice heterosis.

  14. Engineering global transcription factor cyclic AMP receptor protein of Escherichia coli for improved 1-butanol tolerance.

    PubMed

    Zhang, Hongfang; Chong, Huiqing; Ching, Chi Bun; Song, Hao; Jiang, Rongrong

    2012-05-01

    One major challenge in biofuel production, including biobutanol production, is the low tolerance of the microbial host towards increasing biofuel concentration during fermentation. Here, we have demonstrated that Escherichia coli 1-butanol tolerance can be greatly enhanced through random mutagenesis of global transcription factor cyclic AMP receptor protein (CRP). Four mutants (MT1-MT4) with elevated 1-butanol tolerance were isolated from error-prone PCR libraries through an enrichment screening. A DNA shuffling library was then constructed using MT1-MT4 as templates and one mutant (MT5) that exhibited the best tolerance ability among all variants was selected. In the presence of 0.8 % (v/v, 6.5 g/l) 1-butanol, the growth rate of MT5 was found to be 0.28 h(-1) while that of wild type was 0.20 h(-1). When 1-butanol concentration increased to 1.2 % (9.7 g/l), the growth rate of MT5 (0.18 h(-1)) became twice that of the wild type (0.09 h(-1)). Microbial adhesion to hydrocarbon test showed that cell surface of MT5 was less hydrophobic and its cell length became significantly longer in the presence of 1-butanol, as observed by scanning electron microscopy. Quantitative real-time reverse transcription PCR analysis revealed that several CRP regulated, 1-butanol stress response related genes (rpoH, ompF, sodA, manX, male, and marA) demonstrated differential expression in MT5 in the presence or absence of 1-butanol. In conclusion, direct manipulation of the transcript profile through engineering global transcription factor CRP can provide a useful tool in strain engineering.

  15. Global distribution of seamounts from Seasat profiles

    NASA Technical Reports Server (NTRS)

    Craig, Claire H.; Sandwell, David T.

    1988-01-01

    A new measurement techique based on a model of a Gaussian seamount loading a thin elastic lithosphere was developed to analyze seamounts that, until then, were not surveyed or seamounts with poor bathymetric coverage. The model predicts that the seamount diameter is equal to the peak-to-trough distance along the vertical deflection profile and that the flexural diameter of a seamount is related to the age of the lithosphere when the seamount formed. This model also suggests that these two measurements are relatively insensitive to the cross-track location from the seamount. These model predictions were confirmed using Seasat altimeter profiles crossing 14 surveyed seamounts in the Pacific. The analysis of the seamount distribution indicated considerable variations in population density and type across the oceans. Most notable among them are the absence of seamounts in the Atlantic, variations in population density across large fracture zones in the Pacific, and the prevalence of small signatures in the Indian Ocean.

  16. Circulating Human Eosinophils Share a Similar Transcriptional Profile in Asthma and Other Hypereosinophilic Disorders.

    PubMed

    Barnig, Cindy; Alsaleh, Ghada; Jung, Nicolas; Dembélé, Doulaye; Paul, Nicodème; Poirot, Anh; Uring-Lambert, Béatrice; Georgel, Philippe; de Blay, Fréderic; Bahram, Seiamak

    2015-01-01

    Eosinophils are leukocytes that are released into the peripheral blood in a phenotypically mature state and are capable of being recruited into tissues in response to appropriate stimuli. Eosinophils, traditionally considered cytotoxic effector cells, are leukocytes recruited into the airways of asthma patients where they are believed to contribute to the development of many features of the disease. This perception, however, has been challenged by recent findings suggesting that eosinophils have also immunomodulatory functions and may be involved in tissue homeostasis and wound healing. Here we describe a transcriptome-based approach-in a limited number of patients and controls-to investigate the activation state of circulating human eosinophils isolated by flow cytometry. We provide an overview of the global expression pattern in eosinophils in various relevant conditions, e.g., eosinophilic asthma, hypereosinophilic dermatological diseases, parasitosis and pulmonary aspergillosis. Compared to healthy subjects, circulating eosinophils isolated from asthma patients differed in their gene expression profile which is marked by downregulation of transcripts involved in antigen presentation, pathogen recognition and mucosal innate immunity, whereas up-regulated genes were involved in response to non-specific stimulation, wounding and maintenance of homeostasis. Eosinophils from other hypereosinophilic disorders displayed a very similar transcriptional profile. Taken together, these observations seem to indicate that eosinophils exhibit non-specific immunomodulatory functions important for tissue repair and homeostasis and suggest new roles for these cells in asthma immunobiology.

  17. Identification of the CRP regulon using in vitro and in vivo transcriptional profiling.

    PubMed

    Zheng, Dongling; Constantinidou, Chrystala; Hobman, Jon L; Minchin, Stephen D

    2004-01-01

    The Escherichia coli cyclic AMP receptor protein (CRP) is a global regulator that controls transcription initiation from more than 100 promoters by binding to a specific DNA sequence within cognate promoters. Many genes in the CRP regulon have been predicted simply based on the presence of DNA-binding sites within gene promoters. In this study, we have exploited a newly developed technique, run-off transcription/microarray analysis (ROMA) to define CRP-regulated promoters. Using ROMA, we identified 176 operons that were activated by CRP in vitro and 16 operons that were repressed. Using positive control mutants in different regions of CRP, we were able to classify the different promoters into class I or class II/III. A total of 104 operons were predicted to contain Class II CRP-binding sites. Sequence analysis of the operons that were repressed by CRP revealed different mechanisms for CRP inhibition. In contrast, the in vivo transcriptional profiles failed to identify most CRP-dependent regulation because of the complexity of the regulatory network. Analysis of these operons supports the hypothesis that CRP is not only a regulator of genes required for catabolism of sugars other than glucose, but also regulates the expression of a large number of other genes in E.coli. ROMA has revealed 152 hitherto unknown CRP regulons.

  18. Global transcriptional response of Nitrosomonas europaea to chloroform and chloromethane.

    PubMed

    Gvakharia, Barbara O; Permina, Elizabeth A; Gelfand, Mikhail S; Bottomley, Peter J; Sayavedra-Soto, Luis A; Arp, Daniel J

    2007-05-01

    Upon exposure of Nitrosomonas europaea to chloroform (7 microM, 1 h), transcripts for 175 of 2,460 genes were found at higher levels in treated cells than in untreated cells and transcripts for 501 genes were found at lower levels. With chloromethane (3.2 mM, 1 h), transcripts for 67 genes were at higher levels and transcripts for 148 genes were at lower levels. Transcripts for 37 genes were at higher levels following both treatments and included genes for heat shock proteins, sigma-factors of the extracytoplasmic function subfamily, and toxin-antitoxin loci. N. europaea has higher levels of transcripts for a variety of defense genes when exposed to chloroform or chloromethane.

  19. Indistinguishable transcriptional profiles between in vitro- and in vivo-produced bovine fetuses.

    PubMed

    Jiang, Le; Marjani, Sadie L; Bertolini, Marcelo; Anderson, Gary B; Yang, Xiangzhong; Tian, X Cindy

    2011-09-01

    During the past several decades, in vitro fertilization (IVF) has been increasingly used both in animal production and human infertility treatment. Animals derived from in vitro manipulation are occasionally associated with abnormal offspring syndrome (AOS) and other developmental abnormalities. By studying gene expression of in vitro-produced (IVP) embryos/animals, we gain an indicator of how well this procedure mimics the in vivo environment. Most previous studies of this nature have focused on only a few genes at a time or have been limited to studying the pre-implantation stage; a global view of how gene transcription may be influenced by in vitro procedures during fetal development has yet to be ascertained. To this end, we collected liver and placental tissue samples from IVP and in vivo control bovine fetuses at days 90 and 180 of gestation. We used a bovine 13K oligonucleotide microarray to investigate the transcriptional profiles in both tissues from IVP fetuses, and compared them with those of their age-matched in vivo counterparts. Surprisingly, in both liver and placental tissues, the transcriptional profiles between IVP and control fetuses, at either 90 or 180 days of gestation, were indistinguishable. A total of 879 genes were found to be significantly regulated during liver development from 90 to 180 days of gestation, but there were no gene expression changes in the placental tissue during this developmental period. Quantitative real-time RT-PCR on 11 selected genes confirmed these results. Our results have certain implications for IVF technologies, both in agriculture and in human medicine.

  20. Functional Characterization of Crp/Fnr-Type Global Transcriptional Regulators in Desulfovibrio vulgaris Hildenborough

    PubMed Central

    Zhou, Aifen; Chen, Yunyu I.; Zane, Grant M.; He, Zhili; Hemme, Christopher L.; Joachimiak, Marcin P.; Baumohl, Jason K.; He, Qiang; Fields, Matthew W.; Arkin, Adam P.; Wall, Judy D.; Hazen, Terry C.

    2012-01-01

    Crp/Fnr-type global transcriptional regulators regulate various metabolic pathways in bacteria and typically function in response to environmental changes. However, little is known about the function of four annotated Crp/Fnr homologs (DVU0379, DVU2097, DVU2547, and DVU3111) in Desulfovibrio vulgaris Hildenborough. A systematic study using bioinformatic, transcriptomic, genetic, and physiological approaches was conducted to characterize their roles in stress responses. Similar growth phenotypes were observed for the crp/fnr deletion mutants under multiple stress conditions. Nevertheless, the idea of distinct functions of Crp/Fnr-type regulators in stress responses was supported by phylogeny, gene transcription changes, fitness changes, and physiological differences. The four D. vulgaris Crp/Fnr homologs are localized in three subfamilies (HcpR, CooA, and cc). The crp/fnr knockout mutants were well separated by transcriptional profiling using detrended correspondence analysis (DCA), and more genes significantly changed in expression in a ΔDVU3111 mutant (JW9013) than in the other three paralogs. In fitness studies, strain JW9013 showed the lowest fitness under standard growth conditions (i.e., sulfate reduction) and the highest fitness under NaCl or chromate stress conditions; better fitness was observed for a ΔDVU2547 mutant (JW9011) under nitrite stress conditions and a ΔDVU2097 mutant (JW9009) under air stress conditions. A higher Cr(VI) reduction rate was observed for strain JW9013 in experiments with washed cells. These results suggested that the four Crp/Fnr-type global regulators play distinct roles in stress responses of D. vulgaris. DVU3111 is implicated in responses to NaCl and chromate stresses, DVU2547 in nitrite stress responses, and DVU2097 in air stress responses. PMID:22156435

  1. Functional characterization of Crp/Fnr-type global transcriptional regulators in Desulfovibrio vulgaris Hildenborough.

    PubMed

    Zhou, Aifen; Chen, Yunyu I; Zane, Grant M; He, Zhili; Hemme, Christopher L; Joachimiak, Marcin P; Baumohl, Jason K; He, Qiang; Fields, Matthew W; Arkin, Adam P; Wall, Judy D; Hazen, Terry C; Zhou, Jizhong

    2012-02-01

    Crp/Fnr-type global transcriptional regulators regulate various metabolic pathways in bacteria and typically function in response to environmental changes. However, little is known about the function of four annotated Crp/Fnr homologs (DVU0379, DVU2097, DVU2547, and DVU3111) in Desulfovibrio vulgaris Hildenborough. A systematic study using bioinformatic, transcriptomic, genetic, and physiological approaches was conducted to characterize their roles in stress responses. Similar growth phenotypes were observed for the crp/fnr deletion mutants under multiple stress conditions. Nevertheless, the idea of distinct functions of Crp/Fnr-type regulators in stress responses was supported by phylogeny, gene transcription changes, fitness changes, and physiological differences. The four D. vulgaris Crp/Fnr homologs are localized in three subfamilies (HcpR, CooA, and cc). The crp/fnr knockout mutants were well separated by transcriptional profiling using detrended correspondence analysis (DCA), and more genes significantly changed in expression in a ΔDVU3111 mutant (JW9013) than in the other three paralogs. In fitness studies, strain JW9013 showed the lowest fitness under standard growth conditions (i.e., sulfate reduction) and the highest fitness under NaCl or chromate stress conditions; better fitness was observed for a ΔDVU2547 mutant (JW9011) under nitrite stress conditions and a ΔDVU2097 mutant (JW9009) under air stress conditions. A higher Cr(VI) reduction rate was observed for strain JW9013 in experiments with washed cells. These results suggested that the four Crp/Fnr-type global regulators play distinct roles in stress responses of D. vulgaris. DVU3111 is implicated in responses to NaCl and chromate stresses, DVU2547 in nitrite stress responses, and DVU2097 in air stress responses.

  2. Global nucleosome distribution and the regulation of transcription in yeast

    PubMed Central

    Ercan, Sevinc; Carrozza, Michael J; Workman, Jerry L

    2004-01-01

    Recent studies show that active regulatory regions of the yeast genome have a lower density of nucleosomes than other regions, and that there is an inverse correlation between nucleosome density and the transcription rate of a gene. This may be the result of transcription factors displacing nucleosomes. PMID:15461807

  3. PPARα-independent transcriptional targets of perfluoroalkyl acids revealed by transcript profiling.

    PubMed

    Rosen, Mitchell B; Das, Kaberi P; Rooney, John; Abbott, Barbara; Lau, Christopher; Corton, J Christopher

    2017-07-15

    Perfluoroalkyl acids (PFAAs) are ubiquitous and persistent environmental contaminants. Compounds such as perfluoroocanoic acid (PFOA), perfluorooctane sulfonate (PFOS), perfluorononanoic acid (PFNA), and perfluorohexane sulfonate (PFHxS) are readily found in the tissues of humans and wildlife. While PFOA and PFOS have been the subject of numerous studies since they were first described over a decade ago, less is known about the biological activity of PFHxS and PFNA. Most PFAAs are activators of peroxisome proliferator-activated receptor α (PPARα), although the biological effects of these compounds are likely mediated by other factors in addition to PPARα. To evaluate the effects of PFHxS and PFNA, male wild-type and Pparα-null mice were dosed by oral gavage with PFHxS (3 or 10mg/kg/day), PFNA (1 or 3mg/kg/day), or vehicle for 7days, and liver gene expression was evaluated by full-genome microarrays. Gene expression patterns were then compared to historical in-house data for PFOA and PFOS in addition to the experimental hypolipidemic agent, WY-14,643. While WY-14,643 altered most genes in a PPARα-dependent manner, approximately 11-24% of regulated genes in PFAA-treated mice were independent of PPARα. The possibility that PFAAs regulate gene expression through other molecular pathways was evaluated. Using data available through a microarray database, PFAA gene expression profiles were found to exhibit significant similarity to profiles from mouse tissues exposed to agonists of the constitutive activated receptor (CAR), estrogen receptor α (ERα), and PPARγ. Human PPARγ and ERα were activated by all four PFAAs in trans-activation assays from the ToxCast screening program. Predictive gene expression biomarkers showed that PFAAs activate CAR in both genotypes and cause feminization of the liver transcriptome through suppression of signal transducer and activator of transcription 5B (STAT5B). These results indicate that, in addition to activating PPARα as a

  4. Leveraging transcript quantification for fast computation of alternative splicing profiles

    PubMed Central

    Alamancos, Gael P.; Pagès, Amadís; Trincado, Juan L.; Bellora, Nicolás; Eyras, Eduardo

    2015-01-01

    Alternative splicing plays an essential role in many cellular processes and bears major relevance in the understanding of multiple diseases, including cancer. High-throughput RNA sequencing allows genome-wide analyses of splicing across multiple conditions. However, the increasing number of available data sets represents a major challenge in terms of computation time and storage requirements. We describe SUPPA, a computational tool to calculate relative inclusion values of alternative splicing events, exploiting fast transcript quantification. SUPPA accuracy is comparable and sometimes superior to standard methods using simulated as well as real RNA-sequencing data compared with experimentally validated events. We assess the variability in terms of the choice of annotation and provide evidence that using complete transcripts rather than more transcripts per gene provides better estimates. Moreover, SUPPA coupled with de novo transcript reconstruction methods does not achieve accuracies as high as using quantification of known transcripts, but remains comparable to existing methods. Finally, we show that SUPPA is more than 1000 times faster than standard methods. Coupled with fast transcript quantification, SUPPA provides inclusion values at a much higher speed than existing methods without compromising accuracy, thereby facilitating the systematic splicing analysis of large data sets with limited computational resources. The software is implemented in Python 2.7 and is available under the MIT license at https://bitbucket.org/regulatorygenomicsupf/suppa. PMID:26179515

  5. Functional Profiling of Transcription Factor Genes in Neurospora crassa.

    PubMed

    Carrillo, Alexander J; Schacht, Patrick; Cabrera, Ilva E; Blahut, Johnathon; Prudhomme, Loren; Dietrich, Sarah; Bekman, Thomas; Mei, Jennifer; Carrera, Cristian; Chen, Vivian; Clark, Isaiah; Fierro, Gerardo; Ganzen, Logan; Orellana, Jose; Wise, Shelby; Yang, Kevin; Zhong, Hui; Borkovich, Katherine A

    2017-09-07

    Regulation of gene expression by DNA-binding transcription factors is essential for proper control of growth and development in all organisms. In this study, we annotate and characterize growth and developmental phenotypes for transcription factor genes in the model filamentous fungus Neurospora crassa We identified 312 transcription factor genes, corresponding to 3.2% of the protein coding genes in the genome. The largest class was the fungal-specific Zn2Cys6 (C6) binuclear cluster, with 135 members, followed by the highly conserved C2H2 zinc finger group, with 61 genes. Viable knockout mutants were produced for 273 genes, and complete growth and developmental phenotypic data are available for 242 strains, with 64% possessing at least one defect. The most prominent defect observed was in growth of basal hyphae (43% of mutants analyzed), followed by asexual sporulation (38%), and the various stages of sexual development (19%). Two growth or developmental defects were observed for 21% of the mutants, while 8% were defective in all three major phenotypes tested. Analysis of available mRNA expression data for a time course of sexual development revealed mutants with sexual phenotypes that correlate with transcription factor transcript abundance in wild type. Inspection of this data also implicated cryptic roles in sexual development for several cotranscribed transcription factor genes that do not produce a phenotype when mutated. Copyright © 2017 Carrillo et al.

  6. Local and global regulation of transcription initiation in bacteria.

    PubMed

    Browning, Douglas F; Busby, Stephen J W

    2016-10-01

    Gene expression in bacteria relies on promoter recognition by the DNA-dependent RNA polymerase and subsequent transcription initiation. Bacterial cells are able to tune their transcriptional programmes to changing environments, through numerous mechanisms that regulate the activity of RNA polymerase, or change the set of promoters to which the RNA polymerase can bind. In this Review, we outline our current understanding of the different factors that direct the regulation of transcription initiation in bacteria, whether by interacting with promoters, with RNA polymerase or with both, and we discuss the diverse molecular mechanisms that are used by these factors to regulate gene expression.

  7. EXPRESSION PROFILING OF FIVE RAT STRAINS REVEAL TRANSCRIPTIONAL MODES IN THE ANTIGEN PROCESSING PATHWAY

    EPA Science Inventory

    Comparative gene expression profiling of rat strains with genetic predisposition to diverse cardiovascular diseases can help decode the transcriptional program that governs cellular behavior. We hypothesized that co-transcribed, intra-pathway, functionally coherent genes can be r...

  8. EXPRESSION PROFILING OF FIVE RAT STRAINS REVEAL TRANSCRIPTIONAL MODES IN THE ANTIGEN PROCESSING PATHWAY

    EPA Science Inventory

    Comparative gene expression profiling of rat strains with genetic predisposition to diverse cardiovascular diseases can help decode the transcriptional program that governs cellular behavior. We hypothesized that co-transcribed, intra-pathway, functionally coherent genes can be r...

  9. Sputum is a surrogate for bronchoalveolar lavage for monitoring Mycobacterium tuberculosis transcriptional profiles in TB patients.

    PubMed

    Garcia, Benjamin J; Loxton, Andre G; Dolganov, Gregory M; Van, Tran T; Davis, J Lucian; de Jong, Bouke C; Voskuil, Martin I; Leach, Sonia M; Schoolnik, Gary K; Walzl, Gerhard; Strong, Michael; Walter, Nicholas D

    2016-09-01

    Pathogen-targeted transcriptional profiling in human sputum may elucidate the physiologic state of Mycobacterium tuberculosis (M. tuberculosis) during infection and treatment. However, whether M. tuberculosis transcription in sputum recapitulates transcription in the lung is uncertain. We therefore compared M. tuberculosis transcription in human sputum and bronchoalveolar lavage (BAL) samples from 11 HIV-negative South African patients with pulmonary tuberculosis. We additionally compared these clinical samples with in vitro log phase aerobic growth and hypoxic non-replicating persistence (NRP-2). Of 2179 M. tuberculosis transcripts assayed in sputum and BAL via multiplex RT-PCR, 194 (8.9%) had a p-value <0.05, but none were significant after correction for multiple testing. Categorical enrichment analysis indicated that expression of the hypoxia-responsive DosR regulon was higher in BAL than in sputum. M. tuberculosis transcription in BAL and sputum was distinct from both aerobic growth and NRP-2, with a range of 396-1020 transcripts significantly differentially expressed after multiple testing correction. Collectively, our results indicate that M. tuberculosis transcription in sputum approximates M. tuberculosis transcription in the lung. Minor differences between M. tuberculosis transcription in BAL and sputum suggested lower oxygen concentrations or higher nitric oxide concentrations in BAL. M. tuberculosis-targeted transcriptional profiling of sputa may be a powerful tool for understanding M. tuberculosis pathogenesis and monitoring treatment responses in vivo.

  10. Global analysis of gene transcription regulation in prokaryotes.

    PubMed

    Zhou, D; Yang, R

    2006-10-01

    Prokaryotes have complex mechanisms to regulate their gene transcription, through the action of transcription factors (TFs). This review deals with current strategies, approaches and challenges in the understanding of i) how to map the repertoires of TF and operon on a genome, ii) how to identify the specific cis-acting DNA elements and their DNA-binding TFs that are required for expression of a given gene, iii) how to define the regulon members of a given TF, iv) how a given TF interacts with its target promoters, v) how these TF-promoter DNA interactions constitute regulatory networks, and vi) how transcriptional regulatory networks can be reconstructed by the reverse-engineering methods. Our goal is to depict the power of newly developed genomic techniques and computational tools, alone or in combination, to dissect the genetic circuitry of transcription regulation, and how this has the tremendous potential to model the regulatory networks in the prokaryotic cells.

  11. Oligo-dT selected spermatozoal transcript profiles differ among higher and lower fertility dairy sires.

    PubMed

    Card, C J; Krieger, K E; Kaproth, M; Sartini, B L

    2017-02-01

    Spermatozoal messenger RNA (mRNA) has the potential as a molecular marker for sire fertility because this population can reflect gene expression that occurred during spermatogenesis and may have a functional role in early embryonic development. The goal of this study was to compare the oligo-dT selected spermatozoal transcript profiles of higher fertility (Conception Rate (CR) 1.8-3.5) and lower fertility (CR -2.9 to -0.4) sires using Ribonucleic Acid Sequencing (RNA-Seq). A total of 3227 transcripts and 5366 transcripts were identified in the higher and lower fertility populations, respectively. While common transcripts between the two populations were identified (2422 transcripts), several transcripts were also unique to the fertility populations including 805 transcripts that were unique to the higher fertility population and 2944 transcripts that were unique to the lower fertility population. From gene ontological analysis, the transcripts unique to each fertility population differed in Biological Processes (BP), including enrichment of regulatory transcripts for growth and protein kinase activity in the higher fertility bulls. Biological variation in transcript presence among individual sires was also found. Of the candidate fertility spermatozoal transcripts chosen from the RNA-Seq population analysis reported here and previous publications, COX7C was negatively correlated with sire fertility. Using high-throughput sequencing, candidate spermatozoal transcripts were identified for further study as potential markers for sire fertility. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Transcriptional profiling of Medicago truncatula during Erysiphe pisi infection

    PubMed Central

    Curto, Miguel; Krajinski, Franziska; Schlereth, Armin; Rubiales, Diego

    2015-01-01

    Resistance to powdery mildew has been studied in a number of plant species, yet the molecular mechanisms remain largely unknown. Transcription factors (TFs) play a critical role in the plant defense response by regulating the transcriptional machinery which coordinates the expression of a large group of genes involved in plant defense. Using high-throughput quantitative real-time PCR (qPCR) technology more than 1000 Medicago truncatula TFs were screened in a pair of susceptible and resistant genotypes of M. truncatula after 4 h of Erysiphe pisi infection. Seventy nine TF genes, belonging to 33 families showed a significant transcriptional change in response to E. pisi infection. Forty eight TF genes were differentially expressed in the resistant genotypes compared to the susceptible one in response to E. pisi infection, including pathogenesis-related transcriptional factors, AP2/EREBP (APETALA2/ETHYLENE-RESPONSIVE ELEMENT BINDING FACTORS), WRKY (highly conserved WRKYGQK amino-acid sequence), MYB (Myeloblastoma), homeodomain (HD) and zinc finger C2C2 (CYS2-CYS2), C2H2, (CYS2-HIS2), LIM (Lin-11, Isl-1, Mec-3) gene families, which are involved in known defense responses. Our results suggest that these TF genes are among the E. pisi responsive genes in resistant M. truncatula that may constitute a regulatory network which controls the transcriptional changes in defense genes involved in resistance to E. pisi. PMID:26217367

  13. Analysis of global transcriptional responses of chicken following primary and secondary Eimeria acervulina infections

    USDA-ARS?s Scientific Manuscript database

    Characterization of host transcriptional responses during coccidia infections can provide new clues for the development of alternative disease control strategies against these complex protozoan pathogens. In the current study, we compared chicken duodenal transcriptome profiles following primary and...

  14. Transcriptional Profiling of Intrinsic PNS Factors in the Postnatal Mouse

    PubMed Central

    Smith, Robin P.; Lerch-Haner, Jessica K.; Pardinas, Jose R.; Buchser, William J.; Bixby, John L.; Lemmon, Vance P.

    2010-01-01

    Neurons in the peripheral nervous system (PNS) display a higher capacity to regenerate after injury than those in the central nervous system, suggesting cell specific transcriptional modules underlying axon growth and inhibition. We report a systems biology based search for PNS specific transcription factors (TFs). Messenger RNAs enriched in dorsal root ganglion (DRG) neurons compared to cerebellar granule neurons (CGNs) were identified using subtractive hybridization and DNA microarray approaches. Network and transcription factor binding site enrichment analyses were used to further identify TFs that may be differentially active. Combining these techniques, we identified 32 TFs likely to be enriched and/or active in the PNS. Twenty-five of these TFs were then tested for an ability to promote CNS neurite outgrowth in an overexpression screen. Real-time PCR and immunohistochemical studies confirmed that one representative TF, STAT3, is intrinsic to PNS neurons, and that constitutively active STAT3 is sufficient to promote CGN neurite outgrowth. PMID:20696251

  15. Transcriptional profiling of intrinsic PNS factors in the postnatal mouse.

    PubMed

    Smith, Robin P; Lerch-Haner, Jessica K; Pardinas, Jose R; Buchser, William J; Bixby, John L; Lemmon, Vance P

    2011-01-01

    Neurons in the peripheral nervous system (PNS) display a higher capacity to regenerate after injury than those in the central nervous system, suggesting cell specific transcriptional modules underlying axon growth and inhibition. We report a systems biology based search for PNS specific transcription factors (TFs). Messenger RNAs enriched in dorsal root ganglion (DRG) neurons compared to cerebellar granule neurons (CGNs) were identified using subtractive hybridization and DNA microarray approaches. Network and transcription factor binding site enrichment analyses were used to further identify TFs that may be differentially active. Combining these techniques, we identified 32 TFs likely to be enriched and/or active in the PNS. Twenty-five of these TFs were then tested for an ability to promote CNS neurite outgrowth in an overexpression screen. Real-time PCR and immunohistochemical studies confirmed that one representative TF, STAT3, is intrinsic to PNS neurons, and that constitutively active STAT3 is sufficient to promote CGN neurite outgrowth.

  16. Transcriptional Profiling of Mycobacterium tuberculosis Exposed to In Vitro Lysosomal Stress

    PubMed Central

    Lin, Wenwei; de Sessions, Paola Florez; Teoh, Garrett Hor Keong; Mohamed, Ahmad Naim Nazri; Zhu, Yuan O.; Koh, Vanessa Hui Qi; Ang, Michelle Lay Teng; Dedon, Peter C.; Hibberd, Martin Lloyd

    2016-01-01

    Increasing experimental evidence supports the idea that Mycobacterium tuberculosis has evolved strategies to survive within lysosomes of activated macrophages. To further our knowledge of M. tuberculosis response to the hostile lysosomal environment, we profiled the global transcriptional activity of M. tuberculosis when exposed to the lysosomal soluble fraction (SF) prepared from activated macrophages. Transcriptome sequencing (RNA-seq) analysis was performed using various incubation conditions, ranging from noninhibitory to cidal based on the mycobacterial replication or killing profile. Under inhibitory conditions that led to the absence of apparent mycobacterial replication, M. tuberculosis expressed a unique transcriptome with modulation of genes involved in general stress response, metabolic reprogramming, respiration, oxidative stress, dormancy response, and virulence. The transcription pattern also indicates characteristic cell wall remodeling with the possible outcomes of increased infectivity, intrinsic resistance to antibiotics, and subversion of the host immune system. Among the lysosome-specific responses, we identified the glgE-mediated 1,4 α-glucan synthesis pathway and a defined group of VapBC toxin/anti-toxin systems, both of which represent toxicity mechanisms that potentially can be exploited for killing intracellular mycobacteria. A meta-analysis including previously reported transcriptomic studies in macrophage infection and in vitro stress models was conducted to identify overlapping and nonoverlapping pathways. Finally, the Tap efflux pump-encoding gene Rv1258c was selected for validation. An M. tuberculosis ΔRv1258c mutant was constructed and displayed increased susceptibility to killing by lysosomal SF and the antimicrobial peptide LL-37, as well as attenuated survival in primary murine macrophages and human macrophage cell line THP-1. PMID:27324481

  17. Dynamic Transcript Profiling of Candida albicans Infection in Zebrafish: A Pathogen-Host Interaction Study

    PubMed Central

    Liu, Fu-Chen; Hsu, Po-Chen; Chen, Hsueh-Fen; Peng, Shih-Chi; Chuang, Yung-Jen; Lan, Chung-Yu; Hsieh, Wen-Ping; Wong, David Shan Hill

    2013-01-01

    Candida albicans is responsible for a number of life-threatening infections and causes considerable morbidity and mortality in immunocompromised patients. Previous studies of C. albicans pathogenesis have suggested several steps must occur before virulent infection, including early adhesion, invasion, and late tissue damage. However, the mechanism that triggers C. albicans transformation from yeast to hyphae form during infection has yet to be fully elucidated. This study used a systems biology approach to investigate C. albicans infection in zebrafish. The surviving fish were sampled at different post-infection time points to obtain time-lapsed, genome-wide transcriptomic data from both organisms, which were accompanied with in sync histological analyses. Principal component analysis (PCA) was used to analyze the dynamic gene expression profiles of significant variations in both C. albicans and zebrafish. The results categorized C. albicans infection into three progressing phases: adhesion, invasion, and damage. Such findings were highly supported by the corresponding histological analysis. Furthermore, the dynamic interspecies transcript profiling revealed that C. albicans activated its filamentous formation during invasion and the iron scavenging functions during the damage phases, whereas zebrafish ceased its iron homeostasis function following massive hemorrhage during the later stages of infection. Most of the immune related genes were expressed as the infection progressed from invasion to the damage phase. Such global, inter-species evidence of virulence-immune and iron competition dynamics during C. albicans infection could be crucial in understanding control fungal pathogenesis. PMID:24019870

  18. Transcriptional profiling of mechanically and genetically sink-limited soybeans

    USDA-ARS?s Scientific Manuscript database

    The absence of a reproductive sink causes physiological and morphological changes in soybean plants. These include increased accumulation of nitrogen and starch in the leaves and delayed leaf senescence. To identify transcriptional changes that occur in leaves of these sink-limited plants, we used R...

  19. Chemical Manipulation of Meristem Dormancy Alters Transcript Profiles in Potato

    USDA-ARS?s Scientific Manuscript database

    The dormancy status of potato tuber meristems can be manipulated by a variety of chemical treatments. The application of bromoethane (BE) results in dormancy cessation, while chlorpropham (CIPC), and 1,4-dimethyl naphthalene (DMN) are used commercially to prolong the dormant state. Transcript analys...

  20. ONTOGENY OF TRANSCRIPTION PROFILES DURING MOUSE EARLY CRANIOFACIAL DEVELOPMENT

    EPA Science Inventory

    Using the CD-1 mouse conceptus, we investigated gene expression changes found in vivo from gestational day (GD)8 through GD9 at 6h intervals, and then at 24h intervals through GD11. Data sets were analyzed for patterns in transcriptional expression over a time course as well as t...

  1. Chromatin profiling of Drosophila CNS subpopulations identifies active transcriptional enhancers.

    PubMed

    Pearson, Joseph C; McKay, Daniel J; Lieb, Jason D; Crews, Stephen T

    2016-10-15

    One of the key issues in studying transcriptional regulation during development is how to employ genome-wide assays that reveals sites of open chromatin and transcription factor binding to efficiently identify biologically relevant genes and enhancers. Analysis of Drosophila CNS midline cell development provides a useful system for studying transcriptional regulation at the genomic level due to a large, well-characterized set of midline-expressed genes and in vivo validated enhancers. In this study, FAIRE-seq on FACS-purified midline cells was performed and the midline FAIRE data were compared with whole-embryo FAIRE data. We find that regions of the genome with a strong midline FAIRE peak and weak whole-embryo FAIRE peak overlap with known midline enhancers and provide a useful predictive tool for enhancer identification. In a complementary analysis, we compared a large dataset of fragments that drive midline expression in vivo with the FAIRE data. Midline enhancer fragments with a midline FAIRE peak tend to be near midline-expressed genes, whereas midline enhancers without a midline FAIRE peak were often distant from midline-expressed genes and unlikely to drive midline transcription in vivo.

  2. Photoperiod-dependent changes in the phase of core clock transcripts and global transcriptional outputs at dawn and dusk in Arabidopsis.

    PubMed

    Flis, Anna; Sulpice, Ronan; Seaton, Daniel D; Ivakov, Alexander A; Liput, Magda; Abel, Christin; Millar, Andrew J; Stitt, Mark

    2016-09-01

    Plants use the circadian clock to sense photoperiod length. Seasonal responses like flowering are triggered at a critical photoperiod when a light-sensitive clock output coincides with light or darkness. However, many metabolic processes, like starch turnover, and growth respond progressively to photoperiod duration. We first tested the photoperiod response of 10 core clock genes and two output genes. qRT-PCR analyses of transcript abundance under 6, 8, 12 and 18 h photoperiods revealed 1-4 h earlier peak times under short photoperiods and detailed changes like rising PRR7 expression before dawn. Clock models recapitulated most of these changes. We explored the consequences for global gene expression by performing transcript profiling in 4, 6, 8, 12 and 18 h photoperiods. There were major changes in transcript abundance at dawn, which were as large as those between dawn and dusk in a given photoperiod. Contributing factors included altered timing of the clock relative to dawn, light signalling and changes in carbon availability at night as a result of clock-dependent regulation of starch degradation. Their interaction facilitates coordinated transcriptional regulation of key processes like starch turnover, anthocyanin, flavonoid and glucosinolate biosynthesis and protein synthesis and underpins the response of metabolism and growth to photoperiod. © 2016 John Wiley & Sons Ltd.

  3. Distinct histone methylation and transcription profiles are established during the development of cellular quiescence in yeast.

    PubMed

    Young, Conor P; Hillyer, Cory; Hokamp, Karsten; Fitzpatrick, Darren J; Konstantinov, Nikifor K; Welty, Jacqueline S; Ness, Scott A; Werner-Washburne, Margaret; Fleming, Alastair B; Osley, Mary Ann

    2017-01-26

    Quiescent cells have a low level of gene activity compared to growing cells. Using a yeast model for cellular quiescence, we defined the genome-wide profiles of three species of histone methylation associated with active transcription between growing and quiescent cells, and correlated these profiles with the presence of RNA polymerase II and transcripts. Quiescent cells retained histone methylations normally associated with transcriptionally active chromatin and had many transcripts in common with growing cells. Quiescent cells also contained significant levels of RNA polymerase II, but only low levels of the canonical initiating and elongating forms of the polymerase. The RNA polymerase II associated with genes in quiescent cells displayed a distinct occupancy profile compared to its pattern of occupancy across genes in actively growing cells. Although transcription is generally repressed in quiescent cells, analysis of individual genes identified a period of active transcription during the development of quiescence. The data suggest that the transcript profile and histone methylation marks in quiescent cells were established both in growing cells and during the development of quiescence and then retained in these cells. Together, this might ensure that quiescent cells can rapidly adapt to a changing environment to resume growth.

  4. Global gene expression profiling of individual human oocytes and embryos demonstrates heterogeneity in early development.

    PubMed

    Shaw, Lisa; Sneddon, Sharon F; Zeef, Leo; Kimber, Susan J; Brison, Daniel R

    2013-01-01

    Early development in humans is characterised by low and variable embryonic viability, reflected in low fecundity and high rates of miscarriage, relative to other mammals. Data from assisted reproduction programmes provides additional evidence that this is largely mediated at the level of embryonic competence and is highly heterogeneous among embryos. Understanding the basis of this heterogeneity has important implications in a number of areas including: the regulation of early human development, disorders of pregnancy, assisted reproduction programmes, the long term health of children which may be programmed in early development, and the molecular basis of pluripotency in human stem cell populations. We have therefore investigated global gene expression profiles using polyAPCR amplification and microarray technology applied to individual human oocytes and 4-cell and blastocyst stage embryos. In order to explore the basis of any variability in detail, each developmental stage is replicated in triplicate. Our data show that although transcript profiles are highly stage-specific, within each stage they are relatively variable. We describe expression of a number of gene families and pathways including apoptosis, cell cycle and amino acid metabolism, which are variably expressed and may be reflective of embryonic developmental competence. Overall, our data suggest that heterogeneity in human embryo developmental competence is reflected in global transcript profiles, and that the vast majority of existing human embryo gene expression data based on pooled oocytes and embryos need to be reinterpreted.

  5. A global insight into a cancer transcriptional space using pancreatic data: importance, findings and flaws

    PubMed Central

    Gadaleta, Emanuela; Cutts, Rosalind J.; Kelly, Gavin P.; Crnogorac-Jurcevic, Tatjana; Kocher, Hemant M.; Lemoine, Nicholas R.; Chelala, Claude

    2011-01-01

    Despite the increasing wealth of available data, the structure of cancer transcriptional space remains largely unknown. Analysis of this space would provide novel insights into the complexity of cancer, assess relative implications in complex biological processes and responses, evaluate the effectiveness of cancer models and help uncover vital facets of cancer biology not apparent from current small-scale studies. We conducted a comprehensive analysis of pancreatic cancer-expression space by integrating data from otherwise disparate studies. We found (i) a clear separation of profiles based on experimental type, with patient tissue samples, cell lines and xenograft models forming distinct groups; (ii) three subgroups within the normal samples adjacent to cancer showing disruptions to biofunctions previously linked to cancer; and (iii) that ectopic subcutaneous xenografts and cell line models do not effectively represent changes occurring in pancreatic cancer. All findings are available from our online resource for independent interrogation. Currently, the most comprehensive analysis of pancreatic cancer to date, our study primarily serves to highlight limitations inherent with a lack of raw data availability, insufficient clinical/histopathological information and ambiguous data processing. It stresses the importance of a global-systems approach to assess and maximise findings from expression profiling of malignant and non-malignant diseases. PMID:21724610

  6. A global insight into a cancer transcriptional space using pancreatic data: importance, findings and flaws.

    PubMed

    Gadaleta, Emanuela; Cutts, Rosalind J; Kelly, Gavin P; Crnogorac-Jurcevic, Tatjana; Kocher, Hemant M; Lemoine, Nicholas R; Chelala, Claude

    2011-10-01

    Despite the increasing wealth of available data, the structure of cancer transcriptional space remains largely unknown. Analysis of this space would provide novel insights into the complexity of cancer, assess relative implications in complex biological processes and responses, evaluate the effectiveness of cancer models and help uncover vital facets of cancer biology not apparent from current small-scale studies. We conducted a comprehensive analysis of pancreatic cancer-expression space by integrating data from otherwise disparate studies. We found (i) a clear separation of profiles based on experimental type, with patient tissue samples, cell lines and xenograft models forming distinct groups; (ii) three subgroups within the normal samples adjacent to cancer showing disruptions to biofunctions previously linked to cancer; and (iii) that ectopic subcutaneous xenografts and cell line models do not effectively represent changes occurring in pancreatic cancer. All findings are available from our online resource for independent interrogation. Currently, the most comprehensive analysis of pancreatic cancer to date, our study primarily serves to highlight limitations inherent with a lack of raw data availability, insufficient clinical/histopathological information and ambiguous data processing. It stresses the importance of a global-systems approach to assess and maximise findings from expression profiling of malignant and non-malignant diseases.

  7. Global transcriptional, physiological, and metabolite analyses of the responses of Desulfovibrio vulgaris hildenborough to salt adaptation.

    PubMed

    He, Zhili; Zhou, Aifen; Baidoo, Edward; He, Qiang; Joachimiak, Marcin P; Benke, Peter; Phan, Richard; Mukhopadhyay, Aindrila; Hemme, Christopher L; Huang, Katherine; Alm, Eric J; Fields, Matthew W; Wall, Judy; Stahl, David; Hazen, Terry C; Keasling, Jay D; Arkin, Adam P; Zhou, Jizhong

    2010-03-01

    The response of Desulfovibrio vulgaris Hildenborough to salt adaptation (long-term NaCl exposure) was examined by performing physiological, global transcriptional, and metabolite analyses. Salt adaptation was reflected by increased expression of genes involved in amino acid biosynthesis and transport, electron transfer, hydrogen oxidation, and general stress responses (e.g., heat shock proteins, phage shock proteins, and oxidative stress response proteins). The expression of genes involved in carbon metabolism, cell growth, and phage structures was decreased. Transcriptome profiles of D. vulgaris responses to salt adaptation were compared with transcriptome profiles of D. vulgaris responses to salt shock (short-term NaCl exposure). Metabolite assays showed that glutamate and alanine accumulated under salt adaptation conditions, suggesting that these amino acids may be used as osmoprotectants in D. vulgaris. Addition of amino acids (glutamate, alanine, and tryptophan) or yeast extract to the growth medium relieved salt-related growth inhibition. A conceptual model that links the observed results to currently available knowledge is proposed to increase our understanding of the mechanisms of D. vulgaris adaptation to elevated NaCl levels.

  8. Global analysis of transcriptionally engaged yeast RNA polymerase III reveals extended tRNA transcripts

    PubMed Central

    Turowski, Tomasz W.; Leśniewska, Ewa; Delan-Forino, Clementine; Sayou, Camille; Boguta, Magdalena; Tollervey, David

    2016-01-01

    RNA polymerase III (RNAPIII) synthesizes a range of highly abundant small stable RNAs, principally pre-tRNAs. Here we report the genome-wide analysis of nascent transcripts attached to RNAPIII under permissive and restrictive growth conditions. This revealed strikingly uneven polymerase distributions across transcription units, generally with a predominant 5′ peak. This peak was higher for more heavily transcribed genes, suggesting that initiation site clearance is rate-limiting during RNAPIII transcription. Down-regulation of RNAPIII transcription under stress conditions was found to be uneven; a subset of tRNA genes showed low response to nutrient shift or loss of the major transcription regulator Maf1, suggesting potential “housekeeping” roles. Many tRNA genes were found to generate long, 3′-extended forms due to read-through of the canonical poly(U) terminators. The degree of read-through was anti-correlated with the density of U-residues in the nascent tRNA, and multiple, functional terminators can be located far downstream. The steady-state levels of 3′-extended pre-tRNA transcripts are low, apparently due to targeting by the nuclear surveillance machinery, especially the RNA binding protein Nab2, cofactors for the nuclear exosome, and the 5′-exonuclease Rat1. PMID:27206856

  9. Chromatin-dependent transcription factor accessibility rather than nucleosome remodeling predominates during global transcriptional restructuring in Saccharomyces cerevisiae.

    PubMed

    Zawadzki, Karl A; Morozov, Alexandre V; Broach, James R

    2009-08-01

    Several well-studied promoters in yeast lose nucleosomes upon transcriptional activation and gain them upon repression, an observation that has prompted the model that transcriptional activation and repression requires nucleosome remodeling of regulated promoters. We have examined global nucleosome positioning before and after glucose-induced transcriptional reprogramming, a condition under which more than half of all yeast genes significantly change expression. The majority of induced and repressed genes exhibit no change in promoter nucleosome arrangement, although promoters that do undergo nucleosome remodeling tend to contain a TATA box. Rather, we found multiple examples where the pre-existing accessibility of putative transcription factor binding sites before glucose addition determined whether the corresponding gene would change expression in response to glucose addition. These results suggest that selection of appropriate transcription factor binding sites may be dictated to a large extent by nucleosome prepositioning but that regulation of expression through these sites is dictated not by nucleosome repositioning but by changes in transcription factor activity.

  10. Transcript expression profiling for adventitious roots of Panax ginseng Meyer.

    PubMed

    Subramaniyam, Sathiyamoorthy; Mathiyalagan, Ramya; Natarajan, Sathishkumar; Kim, Yu-Jin; Jang, Moon-Gi; Park, Jun-Hyung; Yang, Deok Chun

    2014-08-01

    Panax ginseng Meyer is one of the major medicinal plants in oriental countries belonging to the Araliaceae family which are the primary source for ginsenosides. However, very few genes were characterized for ginsenoside pathway, due to the limited genome information. Through this study, we obtained a comprehensive transcriptome from adventitious roots, which were treated with methyl jasmonic acids for different time points (control, 2h, 6h, 12h, and 24h) and sequenced by RNA 454 pyrosequencing technology. Reference transcriptome 39,304,529 (0.04GB) was obtained from 5,724,987,880 bases (5.7GB) of 22 libraries by de novo assembly and 35,266 (58.5%) transcripts were annotated with biological schemas (GO and KEGG). The digital gene expression patterns were obtained from in vitro grown adventitious root sequences which mapped to reference, from that, 3813 (6.3%) unique transcripts were involved in ≥2 fold up and downregulations. Finally, candidates for ginsenoside pathway genes were predicted from observed expression patterns. Among them, 30 transcription factors, 20 cytochromes, and 11 glycosyl transferases were predicted as ginsenoside candidates. These data can remarkably expand the existing transcriptome resources of Panax, especially to predict existence of gene networks in P. ginseng. The entity of the data provides a valuable platform to reveal more on secondary metabolism and abiotic stresses from P. ginseng in vitro grown adventitious roots.

  11. SINCERITIES: Inferring gene regulatory networks from time-stamped single cell transcriptional expression profiles.

    PubMed

    Papili Gao, Nan; Ud-Dean, S M Minhaz; Gandrillon, Olivier; Gunawan, Rudiyanto

    2017-09-14

    Single cell transcriptional profiling opens up a new avenue in studying the functional role of cell-to-cell variability in physiological processes. The analysis of single cell expression profiles creates new challenges due to the distributive nature of the data and the stochastic dynamics of gene transcription process. The reconstruction of gene regulatory networks (GRNs) using single cell transcriptional profiles is particularly challenging, especially when directed gene-gene relationships are desired. We developed SINCERITIES (SINgle CEll Regularized Inference using TIme-stamped Expression profileS) for the inference of GRNs from single cell transcriptional profiles. We focused on time-stamped cross-sectional expression data, commonly generated from transcriptional profiling of single cells collected at multiple time points after cell stimulation. SINCERITIES recovers directed regulatory relationships among genes by employing regularized linear regression (ridge regression), using temporal changes in the distributions of gene expressions. Meanwhile, the modes of the gene regulations (activation and repression) come from partial correlation analyses between pairs of genes. We demonstrated the efficacy of SINCERITIES in inferring GRNs using in silico time-stamped single cell expression data and single cell transcriptional profiles of THP-1 monocytic human leukemia cells. The case studies showed that SINCERITIES could provide accurate GRN predictions, significantly better than other GRN inference algorithms such as TSNI, GENIE3 and JUMP3. Moreover, SINCERITIES has a low computational complexity and is amenable to problems of extremely large dimensionality. Finally, an application of SINCERITIES to single cell expression data of T2EC chicken erythrocytes pointed to BATF as a candidate novel regulator of erythroid development. The MATLAB and R version of SINCERITIES is freely available from the following websites: http://www.cabsel.ethz.ch/tools/sincerities.html and

  12. Fractional dynamics of globally slow transcription and its impact on deterministic genetic oscillation.

    PubMed

    Wei, Kun; Gao, Shilong; Zhong, Suchuan; Ma, Hong

    2012-01-01

    In dynamical systems theory, a system which can be described by differential equations is called a continuous dynamical system. In studies on genetic oscillation, most deterministic models at early stage are usually built on ordinary differential equations (ODE). Therefore, gene transcription which is a vital part in genetic oscillation is presupposed to be a continuous dynamical system by default. However, recent studies argued that discontinuous transcription might be more common than continuous transcription. In this paper, by appending the inserted silent interval lying between two neighboring transcriptional events to the end of the preceding event, we established that the running time for an intact transcriptional event increases and gene transcription thus shows slow dynamics. By globally replacing the original time increment for each state increment by a larger one, we introduced fractional differential equations (FDE) to describe such globally slow transcription. The impact of fractionization on genetic oscillation was then studied in two early stage models--the Goodwin oscillator and the Rössler oscillator. By constructing a "dual memory" oscillator--the fractional delay Goodwin oscillator, we suggested that four general requirements for generating genetic oscillation should be revised to be negative feedback, sufficient nonlinearity, sufficient memory and proper balancing of timescale. The numerical study of the fractional Rössler oscillator implied that the globally slow transcription tends to lower the chance of a coupled or more complex nonlinear genetic oscillatory system behaving chaotically.

  13. Fractional Dynamics of Globally Slow Transcription and Its Impact on Deterministic Genetic Oscillation

    PubMed Central

    Wei, Kun; Gao, Shilong; Zhong, Suchuan; Ma, Hong

    2012-01-01

    In dynamical systems theory, a system which can be described by differential equations is called a continuous dynamical system. In studies on genetic oscillation, most deterministic models at early stage are usually built on ordinary differential equations (ODE). Therefore, gene transcription which is a vital part in genetic oscillation is presupposed to be a continuous dynamical system by default. However, recent studies argued that discontinuous transcription might be more common than continuous transcription. In this paper, by appending the inserted silent interval lying between two neighboring transcriptional events to the end of the preceding event, we established that the running time for an intact transcriptional event increases and gene transcription thus shows slow dynamics. By globally replacing the original time increment for each state increment by a larger one, we introduced fractional differential equations (FDE) to describe such globally slow transcription. The impact of fractionization on genetic oscillation was then studied in two early stage models – the Goodwin oscillator and the Rössler oscillator. By constructing a “dual memory” oscillator – the fractional delay Goodwin oscillator, we suggested that four general requirements for generating genetic oscillation should be revised to be negative feedback, sufficient nonlinearity, sufficient memory and proper balancing of timescale. The numerical study of the fractional Rössler oscillator implied that the globally slow transcription tends to lower the chance of a coupled or more complex nonlinear genetic oscillatory system behaving chaotically. PMID:22679500

  14. Global Daily Atmospheric State Profiles from the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Aumann, Hartmut H.; Fetzer, Eric J.; Lambrigtsen, Bjorn H.; Chahine, Moustafa T.

    2008-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral infrared instrument on the EOS Aqua Spacecraft, launched on May 4, 2002. AIRS has 2378 infrared channels ranging from 3.7 (micro)m to 15.4 (micro)m and a 13.5 km footprint. AIRS, in conjunction with the Advanced Microwave Sounding Unit (AMSU), produces temperature profiles with 1K/km accuracy on a global scale, as well as water vapor profiles, clouds, dust and trace gas amounts for CO2, CO, SO2, O3 and CH4.[1] AIRS data are used for weather forecasting and studies of global climate change. The AIRS is a 'facility' instrument developed by NASA as an experimental demonstration of advanced technology for remote sensing and the benefits of high resolution infrared spectra to science investigations.

  15. Ozone Profiles and Tropospheric Ozone from Global Ozone Monitoring Experiment

    NASA Technical Reports Server (NTRS)

    Liu, X.; Chance, K.; Sioris, C. E.; Sparr, R. J. D.; Kuregm, T. P.; Martin, R. V.; Newchurch, M. J.; Bhartia, P. K.

    2003-01-01

    Ozone profiles are derived from backscattered radiances in the ultraviolet spectra (290-340 nm) measured by the nadir-viewing Global Ozone Monitoring Experiment using optimal estimation. Tropospheric O3 is directly retrieved with the tropopause as one of the retrieval levels. To optimize the retrieval and improve the fitting precision needed for tropospheric O3, we perform extensive wavelength and radiometric calibrations and improve forward model inputs. Retrieved O3 profiles and tropospheric O3 agree well with coincident ozonesonde measurements, and the integrated total O3 agrees very well with Earth Probe TOMS and Dobson/Brewer total O3. The global distribution of tropospheric O3 clearly shows the influences of biomass burning, convection, and air pollution, and is generally consistent with our current understanding.

  16. Global transcription of CRISPR loci in the human oral cavity.

    PubMed

    Lum, Andrew G; Ly, Melissa; Santiago-Rodriguez, Tasha M; Naidu, Mayuri; Boehm, Tobias K; Pride, David T

    2015-05-21

    Clustered Regularly Interspaced Short Palindromic Repeats (CRISPRs) are active in acquired resistance against bacteriophage and plasmids in a number of environments. In the human mouth, CRISPR loci evolve to counteract oral phage, but the expression of these CRISPR loci has not previously been investigated. We sequenced cDNA from CRISPR loci found in numerous different oral bacteria and compared with oral phage communities to determine whether the transcription of CRISPR loci is specifically targeted towards highly abundant phage present in the oral environment. We found that of the 529,027 CRISPR spacer groups studied, 88 % could be identified in transcripts, indicating that the vast majority of CRISPR loci in the oral cavity were transcribed. There were no strong associations between CRISPR spacer repertoires and oral health status or nucleic acid type. We also compared CRISPR repertoires with oral bacteriophage communities, and found that there was no significant association between CRISPR transcripts and oral phage, regardless of the CRISPR type being evaluated. We characterized highly expressed CRISPR spacers and found that they were no more likely than other spacers to match oral phage. By reassembling the CRISPR-bearing reads into longer CRISPR loci, we found that the majority of the loci did not have spacers matching viruses found in the oral cavities of the subjects studied. For some CRISPR types, loci containing spacers matching oral phage were significantly more likely to have multiple spacers rather than a single spacer matching oral phage. These data suggest that the transcription of oral CRISPR loci is relatively ubiquitous and that highly expressed CRISPR spacers do not necessarily target the most abundant oral phage.

  17. Global RNA association with the transcriptionally active chromosome of chloroplasts.

    PubMed

    Lehniger, Marie-Kristin; Finster, Sabrina; Melonek, Joanna; Oetke, Svenja; Krupinska, Karin; Schmitz-Linneweber, Christian

    2017-09-08

    Processed chloroplast RNAs are co-enriched with preparations of the chloroplast transcriptionally active chromosome. Chloroplast genomes are organized as a polyploid DNA-protein structure called the nucleoid. Transcriptionally active chloroplast DNA together with tightly bound protein factors can be purified by gel filtration as a functional entity called the transcriptionally active chromosome (TAC). Previous proteomics analyses of nucleoids and of TACs demonstrated a considerable overlap in protein composition including RNA binding proteins. Therefore the RNA content of TAC preparations from Nicotiana tabacum was determined using whole genome tiling arrays. A large number of chloroplast RNAs was found to be associated with the TAC. The pattern of RNAs attached to the TAC consists of RNAs produced by different chloroplast RNA polymerases and differs from the pattern of RNA found in input controls. An analysis of RNA splicing and RNA editing of selected RNA species demonstrated that TAC-associated RNAs are processed to a similar extent as the RNA in input controls. Thus, TAC fractions contain a specific subset of the processed chloroplast transcriptome.

  18. Transcriptional profiling of Giardia intestinalis in response to oxidative stress.

    PubMed

    Ma'ayeh, Showgy Y; Knörr, Livia; Svärd, Staffan G

    2015-12-01

    Giardia intestinalis is a microaerophilic parasite that infects the human upper small intestine, an environment that is fairly aerobic with reactive oxygen species being produced to fight off the parasite. It is quite perplexing how Giardia, lacking conventional eukaryotic antioxidant machinery (e.g. catalase, superoxide dismutase and glutathione peroxidase), can cope with the oxidative stress in this environment. We used transcriptomics (RNA sequencing and quantitative PCR) to study giardial gene expression changes in response to oxygen (O2; 1h) and hydrogen peroxide (H2O2; 150 μM, 500 μM and 1mM for 1h). The results showed phenotypic and transcriptional differences between Giardia isolates of different genotypes (WB, assemblage A and GS, assemblage B), with GS being more tolerant to H2O2 and exhibiting higher basic transcript levels of antioxidant genes (e.g. NADH oxidase lateral transfer candidate, peroxiredoxin 1 (Prx1) and thioredoxin (Trx)-like proteins). Cysteine is a major antioxidant in Giardia and its role in oxidative defense could be highlighted here by the up-regulation of gene transcripts encoding the cysteine-rich variable surface proteins (VSPs) and high cysteine membrane proteins (HCMPs). Genes in the thioredoxin system (Prx1, Trx and Trx reductase) occupied a central role in the gene expression response to oxidative stress, together with genes encoding metabolic (NADPH-producing enzymes, glutathione and glycerol biosynthetic enzymes) and O2-consuming nitric oxide detoxification enzymes (e.g. nitroreductase, flavohemoprotein and a flavodiiron protein). This study reveals the intricate network of genes associated with the oxidative stress response in Giardia, and provides a stepping-stone towards future studies at the protein level.

  19. Transcriptional Profiling of Murine Organ Genes in Response to Infection with Bacillus anthracis Ames Spores

    PubMed Central

    Moen, Scott T.; Yeager, Linsey A.; Lawrence, William S.; Ponce, Cindy; Galindo, Cristi L.; Garner, Harold R.; Baze, Wallace B.; Suarez, Giovanni; Peterson, Johnny W.; Chopra, Ashok K.

    2008-01-01

    Bacillus anthracis is the gram positive, spore-forming etiological agent of anthrax, an affliction studied because of its importance as a potential bioweapon. Although in vitro transcriptional responses of macrophages to either spore or anthrax toxins have been previously reported, little is known regarding the impact of infection on gene expression in host tissues. We infected Swiss-Webster mice intranasally with 5 LD50 of B. anthracis virulent Ames spores and observed the global transcriptional profiles of various tissues over a 48 hr time period. RNA was extracted from spleen, lung, and heart tissues of infected and control mice and examined by Affymetrix GeneChip analysis. Approximately 580 host genes were significantly over or under expressed among the lung, spleen, and heart tissues at 8 hr and 48 hr time points. Expression of genes encoding for surfactant and major histocompatibility complex (MHC) presentation was diminished during the early phase of infection in lungs. By 48 hr, a significant number of genes were modulated in the heart, including up-regulation of calcium-binding related gene expression, and down-regulation of multiple genes related to cell adhesion, formation of the extracellular matrix, and the cell cytoskeleton. Interestingly, the spleen 8 hr post-infection showed striking increases in the expression of genes that encode hydrolytic enzymes, and these levels remained elevated throughout infection. Further, genes involving antigen presentation and interferon responses were down-regulated in the spleen at 8 hr. In late stages of infection, splenic genes related to the inflammatory response were up-regulated. This study is the first to describe the in vivo global transcriptional response of multiple organs during inhalational anthrax. Although numerous genes related to the host immunological response and certain protection mechanisms were up-regulated in these organs, a vast list of genes important for fully developing and maintaining this

  20. Water and salinity stress in grapevines: early and late changes in transcript and metabolite profiles.

    PubMed

    Cramer, Grant R; Ergül, Ali; Grimplet, Jerome; Tillett, Richard L; Tattersall, Elizabeth A R; Bohlman, Marlene C; Vincent, Delphine; Sonderegger, Justin; Evans, Jason; Osborne, Craig; Quilici, David; Schlauch, Karen A; Schooley, David A; Cushman, John C

    2007-04-01

    Grapes are grown in semiarid environments, where drought and salinity are common problems. Microarray transcript profiling, quantitative reverse transcription-PCR, and metabolite profiling were used to define genes and metabolic pathways in Vitis vinifera cv. Cabernet Sauvignon with shared and divergent responses to a gradually applied and long-term (16 days) water-deficit stress and equivalent salinity stress. In this first-of-a-kind study, distinct differences between water deficit and salinity were revealed. Water deficit caused more rapid and greater inhibition of shoot growth than did salinity at equivalent stem water potentials. One of the earliest responses to water deficit was an increase in the transcript abundance of RuBisCo activase (day 4), but this increase occurred much later in salt-stressed plants (day 12). As water deficit progressed, a greater number of affected transcripts were involved in metabolism, transport, and the biogenesis of cellular components than did salinity. Salinity affected a higher percentage of transcripts involved in transcription, protein synthesis, and protein fate than did water deficit. Metabolite profiling revealed that there were higher concentrations of glucose, malate, and proline in water-deficit-treated plants as compared to salinized plants. The metabolite differences were linked to differences in transcript abundance of many genes involved in energy metabolism and nitrogen assimilation, particularly photosynthesis, gluconeogenesis, and photorespiration. Water-deficit-treated plants appear to have a higher demand than salinized plants to adjust osmotically, detoxify free radicals (reactive oxygen species), and cope with photoinhibition.

  1. Identification of a novel reference gene for apple transcriptional profiling under postharvest conditions.

    PubMed

    Storch, Tatiane Timm; Pegoraro, Camila; Finatto, Taciane; Quecini, Vera; Rombaldi, Cesar Valmor; Girardi, César Luis

    2015-01-01

    Reverse Transcription quantitative PCR (RT-qPCR) is one of the most important techniques for gene expression profiling due to its high sensibility and reproducibility. However, the reliability of the results is highly dependent on data normalization, performed by comparisons between the expression profiles of the genes of interest against those of constitutively expressed, reference genes. Although the technique is widely used in fruit postharvest experiments, the transcription stability of reference genes has not been thoroughly investigated under these experimental conditions. Thus, we have determined the transcriptional profile, under these conditions, of three genes commonly used as reference--ACTIN (MdACT), PROTEIN DISULPHIDE ISOMERASE (MdPDI) and UBIQUITIN-CONJUGATING ENZYME E2 (MdUBC)--along with two novel candidates--HISTONE 1 (MdH1) and NUCLEOSSOME ASSEMBLY 1 PROTEIN (MdNAP1). The expression profile of the genes was investigated throughout five experiments, with three of them encompassing the postharvest period and the other two, consisting of developmental and spatial phases. The transcriptional stability was comparatively investigated using four distinct software packages: BestKeeper, NormFinder, geNorm and DataAssist. Gene ranking results for transcriptional stability were similar for the investigated software packages, with the exception of BestKeeper. The classic reference gene MdUBC ranked among the most stably transcribed in all investigated experimental conditions. Transcript accumulation profiles for the novel reference candidate gene MdH1 were stable throughout the tested conditions, especially in experiments encompassing the postharvest period. Thus, our results present a novel reference gene for postharvest experiments in apple and reinforce the importance of checking the transcription profile of reference genes under the experimental conditions of interest.

  2. Systematic functional profiling of transcription factor networks in Cryptococcus neoformans

    PubMed Central

    Jung, Kwang-Woo; Yang, Dong-Hoon; Maeng, Shinae; Lee, Kyung-Tae; So, Yee-Seul; Hong, Joohyeon; Choi, Jaeyoung; Byun, Hyo-Jeong; Kim, Hyelim; Bang, Soohyun; Song, Min-Hee; Lee, Jang-Won; Kim, Min Su; Kim, Seo-Young; Ji, Je-Hyun; Park, Goun; Kwon, Hyojeong; Cha, Suyeon; Meyers, Gena Lee; Wang, Li Li; Jang, Jooyoung; Janbon, Guilhem; Adedoyin, Gloria; Kim, Taeyup; Averette, Anna K.; Heitman, Joseph; Cheong, Eunji; Lee, Yong-Hwan; Lee, Yin-Won; Bahn, Yong-Sun

    2015-01-01

    Cryptococcus neoformans causes life-threatening meningoencephalitis in humans, but its overall biological and pathogenic regulatory circuits remain elusive, particularly due to the presence of an evolutionarily divergent set of transcription factors (TFs). Here, we report the construction of a high-quality library of 322 signature-tagged gene-deletion strains for 155 putative TF genes previously predicted using the DNA-binding domain TF database, and examine their in vitro and in vivo phenotypic traits under 32 distinct growth conditions. At least one phenotypic trait is exhibited by 145 out of 155 TF mutants (93%) and ∼85% of them (132/155) are functionally characterized for the first time in this study. The genotypic and phenotypic data for each TF are available in the C. neoformans TF phenome database (http://tf.cryptococcus.org). In conclusion, our phenome-based functional analysis of the C. neoformans TF mutant library provides key insights into transcriptional networks of basidiomycetous fungi and human fungal pathogens. PMID:25849373

  3. Expression Profiling of Cell Lines Expressing Regulated NP2 Transcripts

    DTIC Science & Technology

    2004-09-01

    EGF in the presence or absence of exogenous HRS . The results will provide a framework fo r the interpretation of future gene expression studies in...e studies require further verification. Small sam- ple size, tissue heterogeneity, and inter-indivi- dual variations among human patients may result ... studies we proposed using gene expression profiling to determine change s in gene expression as a function of expression of the neurofibromatosis-2 (NF2

  4. Transcriptional profiling of Bacillus anthracis during infection of host macrophages.

    PubMed

    Bergman, Nicholas H; Anderson, Erica C; Swenson, Ellen E; Janes, Brian K; Fisher, Nathan; Niemeyer, Matthew M; Miyoshi, Amy D; Hanna, Philip C

    2007-07-01

    The interaction between Bacillus anthracis and the mammalian phagocyte is one of the central stages in the progression of inhalational anthrax, and it is commonly believed that the host cell plays a key role in facilitating germination and dissemination of inhaled B. anthracis spores. Given this, a detailed definition of the survival strategies used by B. anthracis within the phagocyte is critical for our understanding of anthrax. In this study, we report the first genome-wide analysis of B. anthracis gene expression during infection of host phagocytes. We developed a technique for specific isolation of bacterial RNA from within infected murine macrophages, and we used custom B. anthracis microarrays to characterize the expression patterns occurring within intracellular bacteria throughout infection of the host phagocyte. We found that B. anthracis adapts very quickly to the intracellular environment, and our analyses identified metabolic pathways that appear to be important to the bacterium during intracellular growth, as well as individual genes that show significant induction in vivo. We used quantitative reverse transcription-PCR to verify that the expression trends that we observed by microarray analysis were valid, and we chose one gene (GBAA1941, encoding a putative transcriptional regulator) for further characterization. A deletion strain missing this gene showed no phenotype in vitro but was significantly attenuated in a mouse model of inhalational anthrax, suggesting that the microarray data described here provide not only the first comprehensive view of how B. anthracis survives within the host cell but also a number of promising leads for further research in anthrax.

  5. Transcriptional profile of immediate response to ionizing radiation exposure.

    PubMed

    Rouchka, Eric C; Flight, Robert M; Fasciotto, Brigitte H; Estrada, Rosendo; Eaton, John W; Patibandla, Phani K; Waigel, Sabine J; Li, Dazhuo; Kirtley, John K; Sethu, Palaniappan; Keynton, Robert S

    2016-03-01

    Astronauts participating in long duration space missions are likely to be exposed to ionizing radiation associated with highly energetic and charged heavy particles. Previously proposed gene biomarkers for radiation exposure include phosphorylated H2A Histone Family, Member X (γH2AX), Tumor Protein 53 (TP53), and Cyclin-Dependent Kinase Inhibitor 1A (CDKN1A). However, transcripts of these genes may not be the most suitable biomarkers for radiation exposure due to a lack of sensitivity or specificity. As part of a larger effort to develop lab-on-a-chip methods for detecting radiation exposure events using blood samples, we designed a dose-course microarray study in order to determine coding and non-coding RNA transcripts undergoing differential expression immediately following radiation exposure. The main goal was to elicit a small set of sensitive and specific radiation exposure biomarkers at low, medium, and high levels of ionizing radiation exposure. Four separate levels of radiation were considered: 0 Gray (Gy) control; 0.3 Gy; 1.5 Gy; and 3.0 Gy with four replicates at each radiation level. This report includes raw gene expression data files from the resulting microarray experiments from all three radiation levels ranging from a lower, typical exposure than an astronaut might see (0.3 Gy) to high, potentially lethal, levels of radiation (3.0 Gy). The data described here is available in NCBI's Gene Expression Omnibus (GEO), accession GSE64375.

  6. The transcriptional landscape and mutational profile of lung adenocarcinoma

    PubMed Central

    Seo, Jeong-Sun; Ju, Young Seok; Lee, Won-Chul; Shin, Jong-Yeon; Lee, June Koo; Bleazard, Thomas; Lee, Junho; Jung, Yoo Jin; Kim, Jung-Oh; Shin, Jung-Young; Yu, Saet-Byeol; Kim, Jihye; Lee, Eung-Ryoung; Kang, Chang-Hyun; Park, In-Kyu; Rhee, Hwanseok; Lee, Se-Hoon; Kim, Jong-Il; Kang, Jin-Hyoung; Kim, Young Tae

    2012-01-01

    All cancers harbor molecular alterations in their genomes. The transcriptional consequences of these somatic mutations have not yet been comprehensively explored in lung cancer. Here we present the first large scale RNA sequencing study of lung adenocarcinoma, demonstrating its power to identify somatic point mutations as well as transcriptional variants such as gene fusions, alternative splicing events, and expression outliers. Our results reveal the genetic basis of 200 lung adenocarcinomas in Koreans including deep characterization of 87 surgical specimens by transcriptome sequencing. We identified driver somatic mutations in cancer genes including EGFR, KRAS, NRAS, BRAF, PIK3CA, MET, and CTNNB1. Candidates for novel driver mutations were also identified in genes newly implicated in lung adenocarcinoma such as LMTK2, ARID1A, NOTCH2, and SMARCA4. We found 45 fusion genes, eight of which were chimeric tyrosine kinases involving ALK, RET, ROS1, FGFR2, AXL, and PDGFRA. Among 17 recurrent alternative splicing events, we identified exon 14 skipping in the proto-oncogene MET as highly likely to be a cancer driver. The number of somatic mutations and expression outliers varied markedly between individual cancers and was strongly correlated with smoking history of patients. We identified genomic blocks within which gene expression levels were consistently increased or decreased that could be explained by copy number alterations in samples. We also found an association between lymph node metastasis and somatic mutations in TP53. These findings broaden our understanding of lung adenocarcinoma and may also lead to new diagnostic and therapeutic approaches. PMID:22975805

  7. Global transcriptional analysis of Mycoplasma hyopneumoniae following exposure to norepinephrine.

    PubMed

    Oneal, Michael J; Schafer, Erin R; Madsen, Melissa L; Minion, F Chris

    2008-09-01

    Mycoplasma hyopneumoniae, a component of the porcine respiratory disease complex, colonizes the respiratory tract of swine by binding to the cilia of the bronchial epithelial cells. Mechanisms of pathogenesis are poorly understood for M. hyopneumoniae, but previous work has indicated that it responds to the environmental stressors heat shock, iron deprivation and oxidative compounds. For successful infection, M. hyopneumoniae must effectively resist host responses to the colonization of the respiratory tract. Among these are changes in hormonal levels in the mucosal secretions. Recent work in the stress responses of other bacteria has included the response to the catecholamine norepinephrine. The idea that M. hyopneumoniae can respond to a host hormone, however, is novel and has not previously been demonstrated. To test this, organisms in the early exponential phase of growth were exposed to 100 muM norepinephrine for 4 h, and RNA samples from these cultures were collected and compared to RNA samples from control cultures using two-colour PCR-based M. hyopneumoniae microarrays. The M. hyopneumoniae response included slowed growth and changes in mRNA transcript levels of 84 genes, 53 of which were upregulated in response to norepinephrine. A larger proportion of the genes upregulated than those downregulated were involved with transcription and translation. The downregulated genes were mostly involved with metabolism, which correlated with the reduction in growth of the mycoplasma. Approximately 51 % of the genes were hypothetical with no known function. Thus, in response to norepinephrine, M. hyopneumoniae appears to upregulate protein expression while downregulating general metabolism.

  8. Isolation, classification and transcription profiles of the AP2/ERF transcription factor superfamily in citrus.

    PubMed

    Xie, Xiu-lan; Shen, Shu-ling; Yin, Xue-ren; Xu, Qian; Sun, Chong-de; Grierson, Donald; Ferguson, Ian; Chen, Kun-song

    2014-07-01

    The AP2/ERF gene family encodes plant-specific transcription factors. In model plants, AP2/ERF genes have been shown to be expressed in response to developmental and environmental stimuli, and many function downstream of the ethylene, biotic, and abiotic stress signaling pathways. In citrus, ethylene is effective in regulation citrus fruit quality, such as degreening and aroma. However, information about the citrus AP2/ERF family is limited, and would enhance our understanding of fruit responses to environmental stress, fruit development and quality. CitAP2/ERF genes were isolated using the citrus genome database, and their expression patterns analyzed by real-time PCR using various orange organs and samples from a fruit developmental series. 126 sequences with homologies to AP2/ERF proteins were identified from the citrus genome, and, on the basis of their structure and sequence, assigned to the ERF family (102), AP2 family (18), RAV family (4) and Soloist (2). MEME motif analysis predicted the defining AP2/ERF domain and EAR repressor domains. Analysis of transcript accumulation in Citrus sinensis cv. 'Newhall' indicated that CitAP2/ERF genes show organ-specific and temporal expression, and provided a framework for understanding the transcriptional regulatory roles of AP2/ERF gene family members in citrus. Hierarchical cluster analysis and t tests identified regulators that potentially function during orange fruit growth and development.

  9. Double mutants of Saccharomyces cerevisiae with alterations in global genome and transcription-coupled repair.

    PubMed Central

    Verhage, R A; van Gool, A J; de Groot, N; Hoeijmakers, J H; van de Putte, P; Brouwer, J

    1996-01-01

    The nucleotide excision repair (NER) pathway is thought to consist of two subpathways: transcription-coupled repair, limited to the transcribed strand of active genes, and global genome repair for nontranscribed DNA strands. Recently we cloned the RAD26 gene, the Saccharomyces cerevisiae homolog of human CSB/ERCC6, a gene involved in transcription-coupled repair and the disorder Cockayne syndrome. This paper describes the analysis of yeast double mutants selectively affected in each NER subpathway. Although rad26 disruption mutants are defective in transcription-coupled repair, they are not UV sensitive. However, double mutants of RAD26 with the global genome repair determinants RAD7 and RAD16 appeared more UV sensitive than the single rad7 or rad16 mutants but not as sensitive as completely NER-deficient mutants. These findings unmask a role of RAD26 and transcription-coupled repair in UV survival, indicate that transcription-coupled repair and global genome repair are partially overlapping, and provide evidence for a residual NER modality in the double mutants. Analysis of dimer removal from the active RPB2 gene in the rad7/16 rad26 double mutants revealed (i) a contribution of the global genome repair factors Rad7p and Rad16p to repair of the transcribed strand, confirming the partial overlap between both NER subpathways, and (ii) residual repair specifically of the transcribed strand. To investigate the transcription dependence of this repair activity, strand-specific repair of the inducible GAL7 gene was investigated. The template strand of this gene was repaired only under induced conditions, pointing to a role for transcription in the residual repair in the double mutants and suggesting that transcription-coupled repair can to some extent operate independently from Rad26p. Our findings also indicate locus heterogeneity for the dependence of transcription-coupled repair on RAD26. PMID:8552076

  10. Hippocampal CA1 transcriptional profile of sleep deprivation: relation to aging and stress.

    PubMed

    Porter, Nada M; Bohannon, Julia H; Curran-Rauhut, Meredith; Buechel, Heather M; Dowling, Amy L S; Brewer, Lawrence D; Popovic, Jelena; Thibault, Veronique; Kraner, Susan D; Chen, Kuey Chu; Blalock, Eric M

    2012-01-01

    Many aging changes seem similar to those elicited by sleep-deprivation and psychosocial stress. Further, sleep architecture changes with age suggest an age-related loss of sleep. Here, we hypothesized that sleep deprivation in young subjects would elicit both stress and aging-like transcriptional responses. F344 rats were divided into control and sleep deprivation groups. Body weight, adrenal weight, corticosterone level and hippocampal CA1 transcriptional profiles were measured. A second group of animals was exposed to novel environment stress (NES), and their hippocampal transcriptional profiles measured. A third cohort exposed to control or SD was used to validate transcriptional results with Western blots. Microarray results were statistically contrasted with prior transcriptional studies. Microarray results pointed to sleep pressure signaling and macromolecular synthesis disruptions in the hippocampal CA1 region. Animals exposed to NES recapitulated nearly one third of the SD transcriptional profile. However, the SD-aging relationship was more complex. Compared to aging, SD profiles influenced a significant subset of genes. mRNA associated with neurogenesis and energy pathways showed agreement between aging and SD, while immune, glial, and macromolecular synthesis pathways showed SD profiles that opposed those seen in aging. We conclude that although NES and SD exert similar transcriptional changes, selective presynaptic release machinery and Homer1 expression changes are seen in SD. Among other changes, the marked decrease in Homer1 expression with age may represent an important divergence between young and aged brain response to SD. Based on this, it seems reasonable to conclude that therapeutic strategies designed to promote sleep in young subjects may have off-target effects in the aged. Finally, this work identifies presynaptic vesicular release and intercellular adhesion molecular signatures as novel therapeutic targets to counter effects of SD in young

  11. Transcript profiling reveals complex auxin signalling pathway and transcription regulation involved in dedifferentiation and redifferentiation during somatic embryogenesis in cotton

    PubMed Central

    2012-01-01

    Background Somatic embryogenesis (SE), by which somatic cells of higher plants can dedifferentiate and reorganize into new plants, is a notable illustration of cell totipotency. However, the precise molecular mechanisms regulating SE remain unclear. To characterize the molecular events of this unique process, transcriptome analysis, in combination with biochemical and histological approaches, were conducted in cotton, a typical plant species in SE. Genome-wide profiling of gene expression allowed the identification of novel molecular markers characteristic of this developmental process. Results RNA-Seq was used to identify 5,076 differentially expressed genes during cotton SE. Expression profile and functional assignments of these genes indicated significant transcriptional complexity during this process, associated with morphological, histological changes and endogenous indole-3-acetic acid (IAA) alteration. Bioinformatics analysis showed that the genes were enriched for basic processes such as metabolic pathways and biosynthesis of secondary metabolites. Unigenes were abundant for the functions of protein binding and hydrolase activity. Transcription factor–encoding genes were found to be differentially regulated during SE. The complex pathways of auxin abundance, transport and response with differentially regulated genes revealed that the auxin-related transcripts belonged to IAA biosynthesis, indole-3-butyric acid (IBA) metabolism, IAA conjugate metabolism, auxin transport, auxin-responsive protein/indoleacetic acid-induced protein (Aux/IAA), auxin response factor (ARF), small auxin-up RNA (SAUR), Aux/IAA degradation, and other auxin-related proteins, which allow an intricate system of auxin utilization to achieve multiple purposes in SE. Quantitative real-time PCR (qRT-PCR) was performed on selected genes with different expression patterns and functional assignments were made to demonstrate the utility of RNA-Seq for gene expression profiles during cotton SE

  12. Transcriptional Profiling of the Immune Response to Marburg Virus Infection

    PubMed Central

    Yen, Judy; Caballero, Ignacio S.; Garamszegi, Sara; Malhotra, Shikha; Lin, Kenny; Hensley, Lisa; Goff, Arthur J.

    2015-01-01

    ABSTRACT Marburg virus is a genetically simple RNA virus that causes a severe hemorrhagic fever in humans and nonhuman primates. The mechanism of pathogenesis of the infection is not well understood, but it is well accepted that pathogenesis is appreciably driven by a hyperactive immune response. To better understand the overall response to Marburg virus challenge, we undertook a transcriptomic analysis of immune cells circulating in the blood following aerosol exposure of rhesus macaques to a lethal dose of Marburg virus. Using two-color microarrays, we analyzed the transcriptomes of peripheral blood mononuclear cells that were collected throughout the course of infection from 1 to 9 days postexposure, representing the full course of the infection. The response followed a 3-stage induction (early infection, 1 to 3 days postexposure; midinfection, 5 days postexposure; late infection, 7 to 9 days postexposure) that was led by a robust innate immune response. The host response to aerosolized Marburg virus was evident at 1 day postexposure. Analysis of cytokine transcripts that were overexpressed during infection indicated that previously unanalyzed cytokines are likely induced in response to exposure to Marburg virus and further suggested that the early immune response is skewed toward a Th2 response that would hamper the development of an effective antiviral immune response early in disease. Late infection events included the upregulation of coagulation-associated factors. These findings demonstrate very early host responses to Marburg virus infection and provide a rich data set for identification of factors expressed throughout the course of infection that can be investigated as markers of infection and targets for therapy. IMPORTANCE Marburg virus causes a severe infection that is associated with high mortality and hemorrhage. The disease is associated with an immune response that contributes to the lethality of the disease. In this study, we investigated how the

  13. Altered hippocampal transcript profile accompanies an age-related spatial memory deficit in mice.

    PubMed

    Verbitsky, Miguel; Yonan, Amanda L; Malleret, Gaël; Kandel, Eric R; Gilliam, T Conrad; Pavlidis, Paul

    2004-01-01

    We have carried out a global survey of age-related changes in mRNA levels in the C57BL/6NIA mouse hippocampus and found a difference in the hippocampal gene expression profile between 2-month-old young mice and 15-month-old middle-aged mice correlated with an age-related cognitive deficit in hippocampal-based explicit memory formation. Middle-aged mice displayed a mild but specific deficit in spatial memory in the Morris water maze. By using Affymetrix GeneChip microarrays, we found a distinct pattern of age-related change, consisting mostly of gene overexpression in the middle-aged mice, suggesting that the induction of negative regulators in the middle-aged hippocampus could be involved in impairment of learning. Interestingly, we report changes in transcript levels for genes that could affect synaptic plasticity. Those changes could be involved in the memory deficits we observed in the 15-month-old mice. In agreement with previous reports, we also found altered expression in genes related to inflammation, protein processing, and oxidative stress.

  14. Generation and gene expression profiling of 48 transcription-factor-inducible mouse embryonic stem cell lines

    PubMed Central

    Yamamizu, Kohei; Sharov, Alexei A.; Piao, Yulan; Amano, Misa; Yu, Hong; Nishiyama, Akira; Dudekula, Dawood B.; Schlessinger, David; Ko, Minoru S. H.

    2016-01-01

    Mouse embryonic stem cells (ESCs) can differentiate into a wide range – and possibly all cell types in vitro, and thus provide an ideal platform to study systematically the action of transcription factors (TFs) in cell differentiation. Previously, we have generated and analyzed 137 TF-inducible mouse ESC lines. As an extension of this “NIA Mouse ESC Bank,” we generated and characterized 48 additional mouse ESC lines, in which single TFs in each line could be induced in a doxycycline-controllable manner. Together, with the previous ESC lines, the bank now comprises 185 TF-manipulable ESC lines (>10% of all mouse TFs). Global gene expression (transcriptome) profiling revealed that the induction of individual TFs in mouse ESCs for 48 hours shifts their transcriptomes toward specific differentiation fates (e.g., neural lineages by Myt1 Isl1, and St18; mesodermal lineages by Pitx1, Pitx2, Barhl2, and Lmx1a; white blood cells by Myb, Etv2, and Tbx6, and ovary by Pitx1, Pitx2, and Dmrtc2). These data also provide and lists of inferred target genes of each TF and possible functions of these TFs. The results demonstrate the utility of mouse ESC lines and their transcriptome data for understanding the mechanism of cell differentiation and the function of TFs. PMID:27150017

  15. Transcriptional profiling of foam cells in response to hypercholesterolemia.

    PubMed

    Goo, Young-Hwa; Yechoor, Vijay K; Paul, Antoni

    2016-09-01

    Hypercholesterolemia is a main risk factor for atherosclerosis development. Arterial macrophages, or foam cells, take-up and process lipoprotein particles deposited in arteries, and store much of the cholesterol carried by these particles in their cytoplasm. However, the effects of exposure to different cholesterol levels on foam cells remain poorly understood. Given the remarkable plasticity of macrophages in response to environmental variables, studies on macrophage biology should ideally be performed in the environment where they exert their physiological functions, namely atherosclerotic lesions in the case of foam cells. We used a mouse model of atherosclerosis, the apolipoprotein E-deficient mouse, to study in vivo the transcriptional response of foam cells to short- and long-term elevations in plasma cholesterol, induced by feeding mice a western type diet. The microarray data sets from this study have been deposited in NCBI's Gene Expression Omnibus under the accession number GSE70619. Here we provide detailed information on the experimental set-up, on the isolation of RNA by laser capture microdissection, and on the methodology used for RNA amplification and analysis by microarray and quantitative real-time PCR.

  16. Transcriptional and proteomic profiling of flatfish (Solea senegalensis) spermatogenesis.

    PubMed

    Forné, Ignasi; Castellana, Bárbara; Marín-Juez, Rubén; Cerdà, Joan; Abián, Joaquín; Planas, Josep V

    2011-06-01

    The Senegalese sole (Solea senegalensis) is a marine flatfish of high economic value and a target species for aquaculture. The efforts to reproduce this species in captivity have been hampered by the fact that farmed males (F1) often show lower sperm production and fertilization capacity than wild-type males (F0). Our knowledge on spermatogenesis is however limited to a few studies. In a previous work, we identified by 2-D DIGE several potential protein markers in testis for the poor reproductive performance of F1 males. Therefore, the objectives of the present study were, first, to investigate changes in genes and proteins expressed in the testis throughout spermatogenesis in F0 males by using a combination of transcriptomic and proteomic approaches and, second, to further compare the testis proteome between late spermatogenic stages of F0 and F1 fish to identify potential indicators of hampered reproductive performance in F1 fish. We identified approximately 400 genes and 49 proteins that are differentially expressed during the progression of spermatogenesis and that participate in processes such as transcriptional activation, the ubiquitin-proteasome system, sperm maturation and motility or cytoskeletal remodeling. Interestingly, a number of these proteins differed in abundance between F0 and F1 fish, pointing toward alterations in cytoskeleton, sperm motility, the ubiquitin-proteasome system and the redox state during spermiogenesis as possible causes for the decreased fertility of F1 fish.

  17. Transcriptional Profiling of Mycoplasma hyopneumoniae during Heat Shock Using Microarrays†

    PubMed Central

    Madsen, Melissa L.; Nettleton, Dan; Thacker, Eileen L.; Edwards, Robert; Minion, F. Chris

    2006-01-01

    Bacterial pathogens undergo stress during host colonization and disease processes. These stresses result in changes in gene expression to compensate for potentially lethal environments developed in the host during disease. Mycoplasma hyopneumoniae colonizes the swine epithelium and causes a pneumonia that predisposes the host to enhanced disease from other pathogens. How M. hyopneumoniae responds to changing environments in the respiratory tract during disease progression is not known. In fact, little is known concerning the capabilities of mycoplasmas to respond to changing growth environments. With limited genes, mycoplasmas are thought to possess only a few mechanisms for gene regulation. A microarray consisting of 632 of the 698 open reading frames of M. hyopneumoniae was constructed and used to study gene expression differences during a temperature shift from 37°C to 42°C, a temperature swing that might be encountered during disease. To enhance sensitivity, a unique hexamer primer set was employed for generating cDNA from only mRNA species. Our analysis identified 91 genes that had significant transcriptional differences in response to heat shock conditions (P < 0.01) with an estimated false-discovery rate of 4 percent. Thirty-three genes had a change threshold of 1.5-fold or greater. Many of the heat shock proteins previously characterized in other bacteria were identified as significant in this study as well. A proportion of the identified genes (54 of 91) currently have no assigned function. PMID:16368969

  18. Gene Transcript Abundance Profiles Distinguish Kawasaki Disease from Adenovirus Infection

    PubMed Central

    Popper, Stephen J.; Watson, Virginia E.; Shimizu, Chisato; Kanegaye, John T.; Burns, Jane C.; Relman, David A.

    2010-01-01

    Background Acute Kawasaki disease (KD) is difficult to distinguish from other illnesses that involve acute rash or fever, in part because the etiologic agent(s) and pathophysiology remain poorly characterized. As a result, diagnosis and critical therapies may be delayed. Methods We used DNA microarrays to identify possible diagnostic features of KD. We compared gene expression patterns in the blood of 23 children with acute KD and 18 age-matched febrile children with 3 illnesses that resemble KD. Results Genes associated with platelet and neutrophil activation were expressed at higher levels in patients with KD than in patients with acute adenovirus infections or systemic adverse drug reactions, but levels in patients with KD were not higher than those in patients with scarlet fever. Genes associated with B cell activation were also expressed at higher levels in patients with KD than in control subjects. A striking absence of interferon-stimulated gene expression in patients with KD was confirmed in an independent cohort of patients with KD. Using a set of 38 gene transcripts, we successfully predicted the diagnosis for 21 of 23 patients with KD and 7 of 8 patients with adenovirus infection. Conclusions These findings provide insight into the molecular features that distinguish KD from other febrile illnesses and support the feasibility of developing novel diagnostic reagents for KD based on the host response. PMID:19583510

  19. An overview of fecal sample preparation for global metabolic profiling.

    PubMed

    Deda, Olga; Gika, Helen G; Wilson, Ian D; Theodoridis, Georgios A

    2015-09-10

    The global metabolic profiling of feces represents a challenge for both analytical chemistry and biochemistry standpoints. As a specimen, feces is complex, not homogenous and rich in macromolecules and particulate, non-digested, matter that can present problems for analytical systems. Further to this, the composition of feces is highly dependent on short-term dietary factors whilst also representing the primary specimen where co-metabolism of the host organism and the gut-microbiota is expressed. Thus the presence and the content of metabolites can be a result of host metabolism, gut microbiota metabolism or co-metabolism. Successful sample preparation and metabolite analysis require that the methodology applied for sample preparation is adequate to compensate for the highly variable nature of the sample in order to generate useful data and provide insight to ongoing biochemical processes, thereby generating hypotheses. The current practices for processing fecal samples for global metabolic profiling are described with emphasis on critical aspects in sample preparation: e.g., homogenization, filtration, centrifugation, solvent extraction and so forth and also conditions/parameter selection are discussed. The different methods applied for feces processing prior to metabolite analysis are summarized and illustrated using selected examples to highlight the effect of sample preparation on the metabolic profile obtained. Copyright © 2015 Elsevier B.V. All rights reserved.

  20. Transcription Profile of Aging and Cognition-Related Genes in the Medial Prefrontal Cortex

    PubMed Central

    Ianov, Lara; Rani, Asha; Beas, Blanca S.; Kumar, Ashok; Foster, Thomas C.

    2016-01-01

    Cognitive function depends on transcription; however, there is little information linking altered gene expression to impaired prefrontal cortex function during aging. Young and aged F344 rats were characterized on attentional set shift and spatial memory tasks. Transcriptional differences associated with age and cognition were examined using RNA sequencing to construct transcriptomic profiles for the medial prefrontal cortex (mPFC), white matter, and region CA1 of the hippocampus. The results indicate regional differences in vulnerability to aging. Age-related gene expression in the mPFC was similar to, though less robust than, changes in the dorsolateral PFC of aging humans suggesting that aging processes may be similar. Importantly, the pattern of transcription associated with aging did not predict cognitive decline. Rather, increased mPFC expression of genes involved in regulation of transcription, including transcription factors that regulate the strength of excitatory and inhibitory inputs, and neural activity-related immediate-early genes was observed in aged animals that exhibit delayed set shift behavior. The specificity of impairment on a mPFC-dependent task, associated with a particular mPFC transcriptional profile indicates that impaired executive function involves altered transcriptional regulation and neural activity/plasticity processes that are distinct from that described for impaired hippocampal function. PMID:27242522

  1. Dense transcript profiling in single cells by image correlation decoding

    PubMed Central

    Coskun, Ahmet F.; Cai, Long

    2016-01-01

    Recent work in sequential fluorescent in-situ hybridization (FISH) has demonstrated the ability to uniquely encode a large number of molecular species in single cells. However, the multiplexing capacity is practically limited by the density of the barcoded objects in the cell. Here, we present a general method using image correlation to resolve the temporal barcodes in sequential hybridization experiments, allowing high density objects to be decoded. Using this correlation FISH (corrFISH) approach, we profiled the gene expression of ribosomal proteins in single cells in cell cultures and in mouse thymus tissue sections. In tissues, corrFISH revealed cell type specific gene expression of ribosomal proteins. The combination of sequential barcoding FISH and correlation analyses provides a general strategy for multiplexing a large number of RNA molecules and potentially other high copy number molecules in single cells. PMID:27271198

  2. Massively parallel digital transcriptional profiling of single cells.

    PubMed

    Zheng, Grace X Y; Terry, Jessica M; Belgrader, Phillip; Ryvkin, Paul; Bent, Zachary W; Wilson, Ryan; Ziraldo, Solongo B; Wheeler, Tobias D; McDermott, Geoff P; Zhu, Junjie; Gregory, Mark T; Shuga, Joe; Montesclaros, Luz; Underwood, Jason G; Masquelier, Donald A; Nishimura, Stefanie Y; Schnall-Levin, Michael; Wyatt, Paul W; Hindson, Christopher M; Bharadwaj, Rajiv; Wong, Alexander; Ness, Kevin D; Beppu, Lan W; Deeg, H Joachim; McFarland, Christopher; Loeb, Keith R; Valente, William J; Ericson, Nolan G; Stevens, Emily A; Radich, Jerald P; Mikkelsen, Tarjei S; Hindson, Benjamin J; Bielas, Jason H

    2017-01-16

    Characterizing the transcriptome of individual cells is fundamental to understanding complex biological systems. We describe a droplet-based system that enables 3' mRNA counting of tens of thousands of single cells per sample. Cell encapsulation, of up to 8 samples at a time, takes place in ∼6 min, with ∼50% cell capture efficiency. To demonstrate the system's technical performance, we collected transcriptome data from ∼250k single cells across 29 samples. We validated the sensitivity of the system and its ability to detect rare populations using cell lines and synthetic RNAs. We profiled 68k peripheral blood mononuclear cells to demonstrate the system's ability to characterize large immune populations. Finally, we used sequence variation in the transcriptome data to determine host and donor chimerism at single-cell resolution from bone marrow mononuclear cells isolated from transplant patients.

  3. Massively parallel digital transcriptional profiling of single cells

    PubMed Central

    Zheng, Grace X. Y.; Terry, Jessica M.; Belgrader, Phillip; Ryvkin, Paul; Bent, Zachary W.; Wilson, Ryan; Ziraldo, Solongo B.; Wheeler, Tobias D.; McDermott, Geoff P.; Zhu, Junjie; Gregory, Mark T.; Shuga, Joe; Montesclaros, Luz; Underwood, Jason G.; Masquelier, Donald A.; Nishimura, Stefanie Y.; Schnall-Levin, Michael; Wyatt, Paul W.; Hindson, Christopher M.; Bharadwaj, Rajiv; Wong, Alexander; Ness, Kevin D.; Beppu, Lan W.; Deeg, H. Joachim; McFarland, Christopher; Loeb, Keith R.; Valente, William J.; Ericson, Nolan G.; Stevens, Emily A.; Radich, Jerald P.; Mikkelsen, Tarjei S.; Hindson, Benjamin J.; Bielas, Jason H.

    2017-01-01

    Characterizing the transcriptome of individual cells is fundamental to understanding complex biological systems. We describe a droplet-based system that enables 3′ mRNA counting of tens of thousands of single cells per sample. Cell encapsulation, of up to 8 samples at a time, takes place in ∼6 min, with ∼50% cell capture efficiency. To demonstrate the system's technical performance, we collected transcriptome data from ∼250k single cells across 29 samples. We validated the sensitivity of the system and its ability to detect rare populations using cell lines and synthetic RNAs. We profiled 68k peripheral blood mononuclear cells to demonstrate the system's ability to characterize large immune populations. Finally, we used sequence variation in the transcriptome data to determine host and donor chimerism at single-cell resolution from bone marrow mononuclear cells isolated from transplant patients. PMID:28091601

  4. Transcriptional Profiling of Human Endogenous Retrovirus Group HERV-K(HML-2) Loci in Melanoma

    PubMed Central

    Schmitt, Katja; Reichrath, Jörg; Roesch, Alexander; Meese, Eckart; Mayer, Jens

    2013-01-01

    Recent studies suggested a role for the human endogenous retrovirus (HERV) group HERV-K(HML-2) in melanoma because of upregulated transcription and expression of HERV-K(HML-2)-encoded proteins. Very little is known about which HML-2 loci are transcribed in melanoma. We assigned >1,400 HML-2 cDNA sequences generated from various melanoma and related samples to genomic HML-2 loci, identifying a total of 23 loci as transcribed. Transcription profiles of loci differed significantly between samples. One locus was found transcribed only in melanoma-derived samples but not in melanocytes and might represent a marker for melanoma. Several of the transcribed loci harbor ORFs for retroviral Gag and/or Env proteins. Env-encoding loci were transcribed only in melanoma. Specific investigation of rec and np9 transcripts indicated transcription of protein encoding loci in melanoma and melanocytes hinting at the relevance of Rec and Np9 in melanoma. UVB irradiation changed transcription profiles of loci and overall transcript levels decreased in melanoma and melanocytes. We further identified transcribed HML-2 loci formed by reverse transcription of spliced HML-2 transcripts by L1 machinery or in a retroviral fashion, with loci potentially encoding HML-2-like proteins. We reveal complex, sample-specific transcription of HML-2 loci in melanoma and related samples. Identified HML-2 loci and proteins encoded by those loci are particularly relevant for further studying the role of HML-2 in melanoma. Transcription of HERVs appears as a complex mechanism requiring specific studies to elucidate which HERV loci are transcribed and how transcribed HERVs may be involved in disease. PMID:23338945

  5. NF1 mutation rather than individual genetic variability is the main determinant of the NF1-transcriptional profile of mutations affecting splicing.

    PubMed

    Pros, Eva; Larriba, Sara; López, Eva; Ravella, Anna; Gili, M Lluïsa; Kruyer, Helena; Valls, Joan; Serra, Eduard; Lázaro, Conxi

    2006-11-01

    A significant number of neurofibromatosis type 1 (NF1) mutations result in exon skipping. The majority of these mutations do not occur in the canonical splice sites and can produce different aberrant transcripts whose proportions have not been well studied. It has been hypothesized that differences in the mutation-determined NF1-transcriptional profile could partially explain disease variability among patients bearing the same NF1 splice defect. In order to gain insight into these aspects, we analyzed the proportion of the different transcripts generated by nine NF1-splicing mutations in 30 patients. We assessed the influence of the mutation in the NF1-related transcriptional profiles and investigated the existence of individual differences in a global manner. We analyzed potential differences in tissue-specific transcriptional profiles and evaluated the influence of sample processing and mRNA nonsense-mediated decay (NMD). Small transcriptional differences were found in neurofibromas and neurofibroma-derived Schwann cells (SC) compared to blood. We also detected a higher cell culture-dependent NMD. We observed that mutation per se explains 93.5% of the profile variability among mutations studied. However, despite the importance of mutation in determining the proportion of NF1 transcripts generated, we found certain variability among patients with the same mutation. From our results, it seems that genetic factors influencing RNA processing play a minor role in determining the NF1-transcriptional profile. Nevertheless neurofibromin studies would clarify whether these small differences translate into significant functional changes that could explain the great clinical expressivity observed in the disease or any of the disease-related traits.

  6. Transcriptional Profiling of the Bladder in Urogenital Schistosomiasis Reveals Pathways of Inflammatory Fibrosis and Urothelial Compromise

    PubMed Central

    Ray, Debalina; Nelson, Tyrrell A.; Fu, Chi-Ling; Patel, Shailja; Gong, Diana N.; Odegaard, Justin I.; Hsieh, Michael H.

    2012-01-01

    Urogenital schistosomiasis, chronic infection by Schistosoma haematobium, affects 112 million people worldwide. S. haematobium worm oviposition in the bladder wall leads to granulomatous inflammation, fibrosis, and egg expulsion into the urine. Despite the global impact of urogenital schistosomiasis, basic understanding of the associated pathologic mechanisms has been incomplete due to the lack of suitable animal models. We leveraged our recently developed mouse model of urogenital schistosomiasis to perform the first-ever profiling of the early molecular events that occur in the bladder in response to the introduction of S. haematobium eggs. Microarray analysis of bladders revealed rapid, differential transcription of large numbers of genes, peaking three weeks post-egg administration. Many differentially transcribed genes were related to the canonical Type 2 anti-schistosomal immune response, as reflected by the development of egg-based bladder granulomata. Numerous collagen and metalloproteinase genes were differentially transcribed over time, revealing complex remodeling and fibrosis of the bladder that was confirmed by Masson's Trichrome staining. Multiple genes implicated in carcinogenesis pathways, including vascular endothelial growth factor-, oncogene-, and mammary tumor-related genes, were differentially transcribed in egg-injected bladders. Surprisingly, junctional adhesion molecule, claudin and uroplakin genes, key components for maintaining the urothelial barrier, were globally suppressed after bladder exposure to eggs. This occurred in the setting of urothelial hyperplasia and egg shedding in urine. Thus, S. haematobium egg expulsion is associated with intricate modulation of the urothelial barrier on the cellular and molecular level. Taken together, our findings have important implications for understanding host-parasite interactions and carcinogenesis in urogenital schistosomiasis, and may provide clues for novel therapeutic strategies. PMID

  7. Energetic Consequences of nitrite stress in Desulfovibrio vulgarisHildenborough, inferred from global transcriptional analysis

    SciTech Connect

    He, Qiang; Huang, Katherine H.; He, Zhili; Alm, Eric J.; Fields,Matthew W.; Hazen, Terry C.; Arkin, Adam P.; Wall, Judy D.; Zhou, Jizhong

    2005-11-03

    Many of the proteins that are candidates for bioenergetic pathways involved with sulfate respiration in Desulfovibrio spp. have been studied, but complete pathways and overall cell physiology remain to be resolved for many environmentally relevant conditions. In order to understand the metabolism of these microorganisms under adverse environmental conditions for improved bioremediation efforts, Desulfovibrio vulgaris Hildenborough was used as a model organism to study stress response to nitrite, an important intermediate in the nitrogen cycle. Previous physiological studies demonstrated that growth was inhibited by nitrite and that nitrite reduction was observed to be the primary mechanism of detoxification. Global transcriptional profiling with whole-genome microarrays revealed coordinated cascades of responses to nitrite in pathways of energy metabolism, nitrogen metabolism, oxidative stress response, and iron homeostasis. In agreement with previous observations, nitrite-stressed cells showed a decrease in the expression of genes encoding sulfate reduction functions in addition to respiratory oxidative phosphorylation and ATP synthase activity. Consequently, the stressed cells had decreased expression of the genes encoding ATP-dependent amino acid transporters and proteins involved in translation. Other genes up-regulated in response to nitrite include the genes in the Fur regulon, which is suggested to be involved in iron homeostasis, and genes in the Per regulon, which is predicted to be responsible for oxidative stress response.

  8. Global transcriptional, physiological and metabolite analyses of Desulfovibrio vulgaris Hildenborough responses to salt adaptation

    SciTech Connect

    He, Z.; Zhou, A.; Baidoo, E.; He, Q.; Joachimiak, M. P.; Benke, P.; Phan, R.; Mukhopadhyay, A.; Hemme, C.L.; Huang, K.; Alm, E.J.; Fields, M.W.; Wall, J.; Stahl, D.; Hazen, T.C.; Keasling, J.D.; Arkin, A.P.; Zhou, J.

    2009-12-01

    The response of Desulfovibrio vulgaris Hildenborough to salt adaptation (long-term NaCl exposure) was examined by physiological, global transcriptional, and metabolite analyses. The growth of D. vulgaris was inhibited by high levels of NaCl, and the growth inhibition could be relieved by the addition of exogenous amino acids (e.g., glutamate, alanine, tryptophan) or yeast extract. Salt adaptation induced the expression of genes involved in amino acid biosynthesis and transport, electron transfer, hydrogen oxidation, and general stress responses (e.g., heat shock proteins, phage shock proteins, and oxidative stress response proteins). Genes involved in carbon metabolism, cell motility, and phage structures were repressed. Comparison of transcriptomic profiles of D. vulgaris responses to salt adaptation with those of salt shock (short-term NaCl exposure) showed some similarity as well as a significant difference. Metabolite assays showed that glutamate and alanine were accumulated under salt adaptation, suggesting that they may be used as osmoprotectants in D. vulgaris. A conceptual model is proposed to link the observed results to currently available knowledge for further understanding the mechanisms of D. vulgaris adaptation to elevated NaCl.

  9. Energetic consequences of nitrite stress in Desulfovibrio vulgaris Hildenborough, inferred from global transcriptional analysis.

    PubMed

    He, Qiang; Huang, Katherine H; He, Zhili; Alm, Eric J; Fields, Matthew W; Hazen, Terry C; Arkin, Adam P; Wall, Judy D; Zhou, Jizhong

    2006-06-01

    Many of the proteins that are candidates for bioenergetic pathways involved with sulfate respiration in Desulfovibrio spp. have been studied, but complete pathways and overall cell physiology remain to be resolved for many environmentally relevant conditions. In order to understand the metabolism of these microorganisms under adverse environmental conditions for improved bioremediation efforts, Desulfovibrio vulgaris Hildenborough was used as a model organism to study stress response to nitrite, an important intermediate in the nitrogen cycle. Previous physiological studies demonstrated that growth was inhibited by nitrite and that nitrite reduction was observed to be the primary mechanism of detoxification. Global transcriptional profiling with whole-genome microarrays revealed coordinated cascades of responses to nitrite in pathways of energy metabolism, nitrogen metabolism, oxidative stress response, and iron homeostasis. In agreement with previous observations, nitrite-stressed cells showed a decrease in the expression of genes encoding sulfate reduction functions in addition to respiratory oxidative phosphorylation and ATP synthase activity. Consequently, the stressed cells had decreased expression of the genes encoding ATP-dependent amino acid transporters and proteins involved in translation. Other genes up-regulated in response to nitrite include the genes in the Fur regulon, which is suggested to be involved in iron homeostasis, and genes in the Per regulon, which is predicted to be responsible for oxidative stress response.

  10. Energetic Consequences of Nitrite Stress in Desulfovibrio vulgaris Hildenborough, Inferred from Global Transcriptional Analysis†

    PubMed Central

    He, Qiang; Huang, Katherine H.; He, Zhili; Alm, Eric J.; Fields, Matthew W.; Hazen, Terry C.; Arkin, Adam P.; Wall, Judy D.; Zhou, Jizhong

    2006-01-01

    Many of the proteins that are candidates for bioenergetic pathways involved with sulfate respiration in Desulfovibrio spp. have been studied, but complete pathways and overall cell physiology remain to be resolved for many environmentally relevant conditions. In order to understand the metabolism of these microorganisms under adverse environmental conditions for improved bioremediation efforts, Desulfovibrio vulgaris Hildenborough was used as a model organism to study stress response to nitrite, an important intermediate in the nitrogen cycle. Previous physiological studies demonstrated that growth was inhibited by nitrite and that nitrite reduction was observed to be the primary mechanism of detoxification. Global transcriptional profiling with whole-genome microarrays revealed coordinated cascades of responses to nitrite in pathways of energy metabolism, nitrogen metabolism, oxidative stress response, and iron homeostasis. In agreement with previous observations, nitrite-stressed cells showed a decrease in the expression of genes encoding sulfate reduction functions in addition to respiratory oxidative phosphorylation and ATP synthase activity. Consequently, the stressed cells had decreased expression of the genes encoding ATP-dependent amino acid transporters and proteins involved in translation. Other genes up-regulated in response to nitrite include the genes in the Fur regulon, which is suggested to be involved in iron homeostasis, and genes in the Per regulon, which is predicted to be responsible for oxidative stress response. PMID:16751553

  11. The Global Regulatory Architecture of Transcription during the Caulobacter Cell Cycle

    PubMed Central

    Zhou, Bo; Schrader, Jared M.; Kalogeraki, Virginia S.; Abeliuk, Eduardo; Dinh, Cong B.; Pham, James Q.; Cui, Zhongying Z.; Dill, David L.; McAdams, Harley H.; Shapiro, Lucy

    2015-01-01

    Each Caulobacter cell cycle involves differentiation and an asymmetric cell division driven by a cyclical regulatory circuit comprised of four transcription factors (TFs) and a DNA methyltransferase. Using a modified global 5′ RACE protocol, we globally mapped transcription start sites (TSSs) at base-pair resolution, measured their transcription levels at multiple times in the cell cycle, and identified their transcription factor binding sites. Out of 2726 TSSs, 586 were shown to be cell cycle-regulated and we identified 529 binding sites for the cell cycle master regulators. Twenty-three percent of the cell cycle-regulated promoters were found to be under the combinatorial control of two or more of the global regulators. Previously unknown features of the core cell cycle circuit were identified, including 107 antisense TSSs which exhibit cell cycle-control, and 241 genes with multiple TSSs whose transcription levels often exhibited different cell cycle timing. Cumulatively, this study uncovered novel new layers of transcriptional regulation mediating the bacterial cell cycle. PMID:25569173

  12. Sequence mining and transcript profiling to explore cyst nematode parasitism

    PubMed Central

    Elling, Axel A; Mitreva, Makedonka; Gai, Xiaowu; Martin, John; Recknor, Justin; Davis, Eric L; Hussey, Richard S; Nettleton, Dan; McCarter, James P; Baum, Thomas J

    2009-01-01

    Background Cyst nematodes are devastating plant parasites that become sedentary within plant roots and induce the transformation of normal plant cells into elaborate feeding cells with the help of secreted effectors, the parasitism proteins. These proteins are the translation products of parasitism genes and are secreted molecular tools that allow cyst nematodes to infect plants. Results We present here the expression patterns of all previously described parasitism genes of the soybean cyst nematode, Heterodera glycines, in all major life stages except the adult male. These insights were gained by analyzing our gene expression dataset from experiments using the Affymetrix Soybean Genome Array GeneChip, which contains probeset sequences for 6,860 genes derived from preparasitic and parasitic H. glycines life stages. Targeting the identification of additional H. glycines parasitism-associated genes, we isolated 633 genes encoding secretory proteins using algorithms to predict secretory signal peptides. Furthermore, because some of the known H. glycines parasitism proteins have strongest similarity to proteins of plants and microbes, we searched for predicted protein sequences that showed their highest similarities to plant or microbial proteins and identified 156 H. glycines genes, some of which also contained a signal peptide. Analyses of the expression profiles of these genes allowed the formulation of hypotheses about potential roles in parasitism. This is the first study combining sequence analyses of a substantial EST dataset with microarray expression data of all major life stages (except adult males) for the identification and characterization of putative parasitism-associated proteins in any parasitic nematode. Conclusion We have established an expression atlas for all known H. glycines parasitism genes. Furthermore, in an effort to identify additional H. glycines genes with putative functions in parasitism, we have reduced the currently known 6,860 H

  13. Global transcriptional response of Lactobacillus reuteri to the sourdough environment.

    PubMed

    Hüfner, Eric; Britton, Robert A; Roos, Stefan; Jonsson, Hans; Hertel, Christian

    2008-10-01

    Lactobacillus reuteri is a lactic acid bacterium that is highly adapted to the sourdough environment. It is a dominant member of industrial type II sourdoughs, and is also able to colonize the intestinal tract of mammals, including humans, and birds. In this study, the transcriptional response of L. reuteri ATCC 55730 was investigated during sourdough fermentation by using whole-genome microarrays. Significant changes of mRNA levels were found for 101 genes involved in diverse cellular processes, such as carbohydrate and energy metabolism, cell envelope biosynthesis, exopolysaccharide production, stress responses, signal transduction and cobalamin biosynthesis. The results showed extensive changes of the organism's gene expression during growth in sourdough as compared with growth in chemically defined medium, and, thus, revealed pathways involved in the adaptation of L. reuteri to the ecological niche of sourdough. The utilization of starch and non-starch carbohydrates, the remodelling of the cell wall, characterized by reduced D-alanylation, and increased amounts of cell wall-associated polysaccharides, as well as the regulatory function of two component systems for cell wall biogenesis and metabolism were suggested by the gene expression data as being important for growth in sourdough. The impact of several L. reuteri genes for effective growth in sourdough was shown by implementation of mutant strains in sourdough fermentation. This study contributes to the understanding of the molecular fundamentals of L. reuteri's ecological competitiveness, and provides a basis for further exploration of genetic traits involved in adaptation to the food environment.

  14. Global reprogramming of transcription and metabolism in Medicago truncatula during progressive drought and after rewatering

    PubMed Central

    Zhang, Ji-Yi; Cruz de Carvalho, Maria H; Torres-Jerez, Ivone; Kang, Yun; Allen, Stacy N; Huhman, David V; Tang, Yuhong; Murray, Jeremy; Sumner, Lloyd W; Udvardi, Michael K

    2014-01-01

    Medicago truncatula is a model legume forage crop native to the arid and semi-arid environments of the Mediterranean. Given its drought-adapted nature, it is an ideal candidate to study the molecular and biochemical mechanisms conferring drought resistance in plants. Medicago plants were subjected to a progressive drought stress over 14 d of water withholding followed by rewatering under controlled environmental conditions. Based on physiological measurements of plant water status and changes in morphology, plants experienced mild, moderate and severe water stress before rehydration. Transcriptome analysis of roots and shoots from control, mildly, moderately and severely stressed, and rewatered plants, identified many thousands of genes that were altered in expression in response to drought. Many genes with expression tightly coupled to the plant water potential (i.e. drought intensity) were identified suggesting an involvement in Medicago drought adaptation responses. Metabolite profiling of drought-stressed plants revealed the presence of 135 polar and 165 non-polar compounds in roots and shoots. Combining Medicago metabolomic data with transcriptomic data yielded insight into the regulation of metabolic pathways operating under drought stress. Among the metabolites detected in drought-stressed Medicago plants, myo-inositol and proline had striking regulatory profiles indicating involvement in Medicago drought tolerance. Global transcriptional and metabolic responses to drought and rewatering were investigated in Medicago truncatula, a naturally drought-adapted model legume species. Integration of metabolomic and transcriptomic data yielded insights into the regulation of metabolic pathways underlying drought-stress adaptation. Many genes and metabolites with expression tightly coupled to drought intensity were identified, suggesting active involvement in Medicago drought resistance. These could prove useful targets for future translational approaches to improve

  15. Transcriptional Profiling of Small Samples in the Central Nervous System

    PubMed Central

    Ginsberg, Stephen D.

    2009-01-01

    RNA amplification is a series of molecular manipulations designed to amplify genetic signals from small quantities of starting materials (including single cells and homogeneous populations of individual cell types) for microarray analysis and other downstream genetic methodologies. A novel methodology named terminal continuation (TC) RNA amplification has been developed in this laboratory to amplify RNA from minute amounts of starting material. Briefly, an RNA synthesis promoter is attached to the 3′ and/or 5′ region of cDNA utilizing the TC mechanism. The orientation of amplified RNAs is “antisense” or a novel “sense” orientation. TC RNA amplification is utilized for many downstream applications, including gene expression profiling, microarray analysis, and cDNA library/subtraction library construction. Input sources of RNA can originate from a myriad of in vivo and in vitro tissue sources. Moreover, a variety of fixations can be employed, and tissues can be processed for histochemistry or immunocytochemistry prior to microdissection for TC RNA amplification, allowing for tremendous cell type and tissue specificity of downstream genetic applications. PMID:18370101

  16. Comparing global soil models to soil carbon profile databases

    NASA Astrophysics Data System (ADS)

    Koven, C. D.; Harden, J. W.; He, Y.; Lawrence, D. M.; Nave, L. E.; O'Donnell, J. A.; Treat, C.; Sulman, B. N.; Kane, E. S.

    2015-12-01

    As global soil models begin to consider the dynamics of carbon below the surface layers, it is crucial to assess the realism of these models. We focus on the vertical profiles of soil C predicted across multiple biomes form the Community Land Model (CLM4.5), using different values for a parameter that controls the rate of decomposition at depth versus at the surface, and compare these to observationally-derived diagnostics derived from the International Soil Carbon Database (ISCN) to assess the realism of model predictions of carbon depthattenuation, and the ability of observations to provide a constraint on rates of decomposition at depth.

  17. Global Profiling Strategies for Mapping Dysregulated Metabolic Pathways in Cancer

    PubMed Central

    Benjamin, Daniel I.; Cravatt, Benjamin F.; Nomura, Daniel K.

    2012-01-01

    Cancer cells possess fundamentally altered metabolism that provides a foundation to support tumorigenicity and malignancy. Our understanding of the biochemical underpinnings of cancer has benefited from the integrated utilization of large-scale profiling platforms (e.g. genomics, proteomics, and metabolomics), which, together, can provide a global assessment of how enzymes and their parent metabolic networks become altered in cancer to fuel tumor growth. This review presents several examples of how these integrated platforms have yielded fundamental insights into dysregulated metabolism in cancer. We will also discuss questions and challenges that must be addressed to more completely describe, and eventually control, the diverse metabolic pathways that support tumorigenesis. PMID:23063552

  18. Transcriptional profiling in facioscapulohumeral muscular dystrophy to identify candidate biomarkers

    PubMed Central

    Rahimov, Fedik; King, Oliver D.; Leung, Doris G.; Bibat, Genila M.; Emerson, Charles P.; Kunkel, Louis M.; Wagner, Kathryn R.

    2012-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) is a progressive neuromuscular disorder caused by contractions of repetitive elements within the macrosatellite D4Z4 on chromosome 4q35. The pathophysiology of FSHD is unknown and, as a result, there is currently no effective treatment available for this disease. To better understand the pathophysiology of FSHD and develop mRNA-based biomarkers of affected muscles, we compared global analysis of gene expression in two distinct muscles obtained from a large number of FSHD subjects and their unaffected first-degree relatives. Gene expression in two muscle types was analyzed using GeneChip Gene 1.0 ST arrays: biceps, which typically shows an early and severe disease involvement; and deltoid, which is relatively uninvolved. For both muscle types, the expression differences were mild: using relaxed cutoffs for differential expression (fold change ≥1.2; nominal P value <0.01), we identified 191 and 110 genes differentially expressed between affected and control samples of biceps and deltoid muscle tissues, respectively, with 29 genes in common. Controlling for a false-discovery rate of <0.25 reduced the number of differentially expressed genes in biceps to 188 and in deltoid to 7. Expression levels of 15 genes altered in this study were used as a “molecular signature” in a validation study of an additional 26 subjects and predicted them as FSHD or control with 90% accuracy based on biceps and 80% accuracy based on deltoids. PMID:22988124

  19. Transcriptional profiling and biochemical analysis of mechanically induced cartilaginous tissues

    PubMed Central

    Salisbury Palomares, Kristy T.; Gerstenfeld, Louis C.; Wigner, Nathan A.; Lenburg, Marc E.; Einhorn, Thomas A.; Morgan, Elise F.

    2010-01-01

    Objective In order to characterize patterns of molecular expression that lead to cartilage formation in vivo in a post-natal setting, mRNA expression profiling was carried out across the timecourse of mechanically induced chondrogenesis. Methods Retired breeder Sprague-Dawley rats underwent production of a non-critical-size, transverse femoral osteotomy. Experimental animals (n=45) were subjected to bending stimulation (60° cyclic motion in the sagittal plane for 15 minutes/day) of the osteotomy gap beginning on post-operative day (POD) 10. Control animals (n=32) experienced continuous rigid fixation. mRNA isolated on POD 10, 17, 24, and 38 was analyzed using a microarray containing 608 genes involved in skeletal development, tissue differentiation, fracture healing, and mechanotransduction. The glycosaminoglycan (GAG) content of the stimulated tissues was compared to native articular cartilage as a means of assessing the progression of chondrogenic development of the tissues. Results The majority of the 100 genes that were differentially expressed were upregulated in response to mechanical stimulation. Many of these genes are associated with articular cartilage development and maintenance, diarthroidal joint development, cell adhesion, extracellular matrix synthesis, signal transduction, and skeletal development. Quantitative real-time PCR results were consistent with the microarray findings. The GAG content of the stimulated tissues increased over time and was no different from that of articular cartilage at POD 38. Conclusions The mechanical stimulation caused upregulation of genes principally involved in joint cavity morphogenesis and critical to articular cartilage function. Further study of this type of stimulation may identify key signaling events required for post-natal, hyaline cartilage formation. PMID:20131271

  20. Global Cytokine Profiles and Association With Clinical Characteristics in Patients With Irritable Bowel Syndrome.

    PubMed

    Bennet, Sean M P; Polster, Annikka; Törnblom, Hans; Isaksson, Stefan; Capronnier, Sandrine; Tessier, Aurore; Le Nevé, Boris; Simrén, Magnus; Öhman, Lena

    2016-08-01

    Evidence suggests that patients with irritable bowel syndrome (IBS) have an altered cytokine profile, although it is unclear whether cytokines are linked with symptom severity. We aimed to determine whether global serum and mucosal cytokine profiles differ between IBS patients and healthy subjects and whether cytokines are associated with IBS symptoms. Serum from 144 IBS patients and 42 healthy subjects was analyzed for cytokine levels of interleukin (IL)-5, IL-6, IL-8, IL-10, IL-12p70, IL-13, IL-17A, interferon (IFN)-γ, and tumor necrosis factor (TNF) by MSD MULTI-ARRAY. In total, 109 IBS and 36 healthy sigmoid colon biopsies were analyzed for mRNA expression of IL-8, IL-10, TNF, and FOXP3 by quantitative reverse transcription PCR. Multivariate discrimination analysis evaluated global cytokine profiles. Rectal sensitivity, oroanal transit time, and psychological and gastrointestinal symptom severity were also assessed. Global cytokine profiles of IBS patients and healthy subjects overlapped, but cytokine levels varied more in IBS patients. Serum levels of IL-6 and IL-8 tended to be increased and levels of IFN-γ tended to be decreased in IBS patients. Mucosal mRNA expression of IL-10 and FOXP3 tended to be decreased in IBS patients. Within both the full study cohort and IBS patients alone, serum level of TNF was associated with looser stool pattern, while subjects with more widespread somatic symptoms had increased serum levels of IL-6. Although neither IBS bowel habit subgroups nor patients with possible post-infectious IBS were associated with distinct cytokine profiles, a small cluster of IBS patients with comparatively elevated immune markers was identified. Global cytokine profiles did not discriminate IBS patients from healthy subjects, but cytokine profiles were more varied among IBS patients than among healthy subjects, and a small subgroup of patients with enhanced immune activity was identified. Also, association of inflammatory cytokines with some

  1. Tannerella forsythia infection-induced calvarial bone and soft tissue transcriptional profiles.

    PubMed

    Bakthavatchalu, V; Meka, A; Sathishkumar, S; Lopez, M C; Bhattacharyya, I; Boyce, B F; Mans, J J; Lamont, R J; Baker, H V; Ebersole, J L; Kesavalu, L

    2010-10-01

    Tannerella forsythia is associated with subgingival biofilms in adult periodontitis, although the molecular mechanisms contributing to chronic inflammation and loss of periodontal bone remain unclear. We examined changes in the host transcriptional profiles during a T. forsythia infection using a murine calvarial model of inflammation and bone resorption. Tannerella forsythia was injected into the subcutaneous soft tissue over calvariae of BALB/c mice for 3 days, after which the soft tissues and calvarial bones were excised. RNA was isolated and Murine GeneChip (Affymetrix, Santa Clara, CA) array analysis of transcript profiles showed that 3226 genes were differentially expressed in the infected soft tissues (P < 0.05) and 2586 genes were differentially transcribed in calvarial bones after infection. Quantitative real-time reverse transcription-polymerase chain reaction analysis of transcription levels of selected genes corresponded well with the microarray results. Biological pathways significantly impacted by T. forsythia infection in calvarial bone and soft tissue included leukocyte transendothelial migration, cell adhesion molecules (immune system), extracellular matrix-receptor interaction, adherens junction, and antigen processing and presentation. Histologic examination revealed intense inflammation and increased osteoclasts in calvariae compared with controls. In conclusion, localized T. forsythia infection differentially induces transcription of a broad array of host genes, and the profiles differ between inflamed soft tissues and calvarial bone.

  2. Genome-wide transcription profile of endothelial cells after cardiac transplantation in the rat.

    PubMed

    Mikalsen, B; Fosby, B; Wang, J; Hammarström, C; Bjaerke, H; Lundström, M; Kasprzycka, M; Scott, H; Line, P-D; Haraldsen, G

    2010-07-01

    Transcriptome analyses of organ transplants have until now usually focused on whole tissue samples containing activation profiles from different cell populations. Here, we enriched endothelial cells from rat cardiac allografts and isografts, establishing their activation profile at baseline and on days 2, 3 and 4 after transplantation. Modulated transcripts were assigned to three categories based on their regulation profile in allografts and isografts. Categories A and B contained the majority of transcripts and showed similar regulation in both graft types, appearing to represent responses to surgical trauma. By contrast, category C contained transcripts that were partly allograft-specific and to a large extent associated with interferon-gamma-responsiveness. Several transcripts were verified by immunohistochemical analysis of graft lesions, among them the matricellular protein periostin, which was one of the most highly upregulated transcripts but has not been associated with transplantation previously. In conclusion, the majority of the differentially expressed genes in graft endothelial cells are affected by the transplantation procedure whereas relatively few are associated with allograft rejection.

  3. Root-specific transcript profiling of contrasting rice genotypes in response to salinity stress

    USDA-ARS?s Scientific Manuscript database

    Elevated salinity imposes osmotic and ion toxicity stresses on living cells and requires a multitude of responses in order to enable plant survival. Building on earlier work profiling transcript levels in rice (Oryza sativa) shoots of FL478, a salt-tolerant indica recombinant inbred line, and IR29, ...

  4. Transcriptional profiling of candidate genes induced by Marek's disease virus during cytolytic and latency infections

    USDA-ARS?s Scientific Manuscript database

    The role of cytokines and other related proteins in Marek’s disease pathogenesis and immunity is poorly understood. The aim of this study was to examine the transcriptional profiling of a panel of cytokines and other immune-related genes in the spleen tissues of chickens infected with rMd5, rMd5-de...

  5. Description and analysis of the Bovine Gene Atlas - An extensive compendium of bovine transcript profiles

    USDA-ARS?s Scientific Manuscript database

    The Bovine Gene Atlas (BGA) is a compendium of over 7.2 million unique 20-base transcript tags profiled from 81 tissues acquired from the cow “L1 Dominette 01449” (L1D), her male fetus, her 255-day-old heifer calf, and her father. The BGA tags were generated on a next-generation massively parallel ...

  6. Target identification for CNS diseases by transcriptional profiling.

    PubMed

    Altar, C Anthony; Vawter, Marquis P; Ginsberg, Stephen D

    2009-01-01

    Gene expression changes in neuropsychiatric and neurodegenerative disorders, and gene responses to therapeutic drugs, provide new ways to identify central nervous system (CNS) targets for drug discovery. This review summarizes gene and pathway targets replicated in expression profiling of human postmortem brain, animal models, and cell culture studies. Analysis of isolated human neurons implicates targets for Alzheimer's disease and the cognitive decline associated with normal aging and mild cognitive impairment. In addition to tau, amyloid-beta precursor protein, and amyloid-beta peptides (Abeta), these targets include all three high-affinity neurotrophin receptors and the fibroblast growth factor (FGF) system, synapse markers, glutamate receptors (GluRs) and transporters, and dopamine (DA) receptors, particularly the D2 subtype. Gene-based candidates for Parkinson's disease (PD) include the ubiquitin-proteosome system, scavengers of reactive oxygen species, brain-derived neurotrophic factor (BDNF), its receptor, TrkB, and downstream target early growth response 1, Nurr-1, and signaling through protein kinase C and RAS pathways. Increasing variability and decreases in brain mRNA production from middle age to old age suggest that cognitive impairments during normal aging may be addressed by drugs that restore antioxidant, DNA repair, and synaptic functions including those of DA to levels of younger adults. Studies in schizophrenia identify robust decreases in genes for GABA function, including glutamic acid decarboxylase, HINT1, glutamate transport and GluRs, BDNF and TrkB, numerous 14-3-3 protein family members, and decreases in genes for CNS synaptic and metabolic functions, particularly glycolysis and ATP generation. Many of these metabolic genes are increased by insulin and muscarinic agonism, both of which are therapeutic in psychosis. Differential genomic signals are relatively sparse in bipolar disorder, but include deficiencies in the expression of 14

  7. Target Identification for CNS Diseases by Transcriptional Profiling

    PubMed Central

    Altar, C Anthony; Vawter, Marquis P; Ginsberg, Stephen D

    2008-01-01

    Gene expression changes in neuropsychiatric and neurodegenerative disorders, and gene responses to therapeutic drugs, provide new ways to identify central nervous system (CNS) targets for drug discovery. This review summarizes gene and pathway targets replicated in expression profiling of human postmortem brain, animal models, and cell culture studies. Analysis of isolated human neurons implicates targets for Alzheimer’s disease and the cognitive decline associated with normal aging and mild cognitive impairment. In addition to τ, amyloid-β precursor protein, and amyloid-β peptides (Aβ), these targets include all three high-affinity neurotrophin receptors and the fibroblast growth factor (FGF) system, synapse markers, glutamate receptors (GluRs) and transporters, and dopamine (DA) receptors, particularly the D2 subtype. Gene-based candidates for Parkinson’s disease (PD) include the ubiquitin–proteosome system, scavengers of reactive oxygen species, brain-derived neurotrophic factor (BDNF), its receptor, TrkB, and downstream target early growth response 1, Nurr-1, and signaling through protein kinase C and RAS pathways. Increasing variability and decreases in brain mRNA production from middle age to old age suggest that cognitive impairments during normal aging may be addressed by drugs that restore antioxidant, DNA repair, and synaptic functions including those of DA to levels of younger adults. Studies in schizophrenia identify robust decreases in genes for GABA function, including glutamic acid decarboxylase, HINT1, glutamate transport and GluRs, BDNF and TrkB, numerous 14-3-3 protein family members, and decreases in genes for CNS synaptic and metabolic functions, particularly glycolysis and ATP generation. Many of these metabolic genes are increased by insulin and muscarinic agonism, both of which are therapeutic in psychosis. Differential genomic signals are relatively sparse in bipolar disorder, but include deficiencies in the expression of 14

  8. Transcriptional profiling of bovine milk using RNA sequencing

    PubMed Central

    2012-01-01

    Background Cow milk is a complex bioactive fluid consumed by humans beyond infancy. Even though the chemical and physical properties of cow milk are well characterized, very limited research has been done on characterizing the milk transcriptome. This study performs a comprehensive expression profiling of genes expressed in milk somatic cells of transition (day 15), peak (day 90) and late (day 250) lactation Holstein cows by RNA sequencing. Milk samples were collected from Holstein cows at 15, 90 and 250 days of lactation, and RNA was extracted from the pelleted milk cells. Gene expression analysis was conducted by Illumina RNA sequencing. Sequence reads were assembled and analyzed in CLC Genomics Workbench. Gene Ontology (GO) and pathway analysis were performed using the Blast2GO program and GeneGo application of MetaCore program. Results A total of 16,892 genes were expressed in transition lactation, 19,094 genes were expressed in peak lactation and 18,070 genes were expressed in late lactation. Regardless of the lactation stage approximately 9,000 genes showed ubiquitous expression. Genes encoding caseins, whey proteins and enzymes in lactose synthesis pathway showed higher expression in early lactation. The majority of genes in the fat metabolism pathway had high expression in transition and peak lactation milk. Most of the genes encoding for endogenous proteases and enzymes in ubiquitin-proteasome pathway showed higher expression along the course of lactation. Conclusions This is the first study to describe the comprehensive bovine milk transcriptome in Holstein cows. The results revealed that 69% of NCBI Btau 4.0 annotated genes are expressed in bovine milk somatic cells. Most of the genes were ubiquitously expressed in all three stages of lactation. However, a fraction of the milk transcriptome has genes devoted to specific functions unique to the lactation stage. This indicates the ability of milk somatic cells to adapt to different molecular functions

  9. The presence of Epstein-Barr virus significantly impacts the transcriptional profile in immunodeficiency-associated Burkitt lymphoma

    PubMed Central

    Navari, Mohsen; Etebari, Maryam; De Falco, Giulia; Ambrosio, Maria R.; Gibellini, Davide; Leoncini, Lorenzo; Piccaluga, Pier Paolo

    2015-01-01

    Burkitt lymphoma (BL) is an aggressive neoplasm derived from mature, antigen-experienced B-lymphocytes. Three clinical/epidemiological variants have been recognized, named sporadic, endemic and immunodeficiency-associated BL (ID-BL). Although they are listed within a unique entity in the current WHO Classification, recent evidence indicated genetic and transcriptional differences among the three sub-groups. Further, the presence of latently persisting Epstein-Barr virus (EBV) has been associated with specific features in endemic and sporadic cases. In this study, we explored for the first time whether EBV infection could be related with a specific molecular profile in immunodeficiency-associated cases. We studied 30 BL cases, including nine occurring in HIV-positive patients (5 EBV-positive and 4 EBV-negative) by gene and microRNA (miRNA) expression profiling. We found that ID-BL presented with different profiles based on EBV presence. Specifically, 252 genes were differentially expressed, some of them being involved in intracellular signaling and apoptosis regulation. Furthermore, 28 miRNAs including both EBV-encoded (N = 18) and cellular (N = 10) ones were differentially regulated. Of note, genes previously demonstrated to be targeted by such miRNA were consistently found among differentially expressed genes, indicating the relevant contribution of miRNA to the molecular profile of the examined cases. Grippingly, 17 out of the 252 differentially expressed genes turned out to be potentially targeted by both cellular and EBV-encoded miRNA, suggesting a complex interaction and not excluding a potential synergism. In conclusion, we documented transcriptional differences based on the presence of EBV in ID-BL, and suggested a complex interaction between cellular and viral molecules in the determination of the global molecular profile of the tumor. PMID:26113842

  10. Comparison of Global Transcriptional Responses of Chicken Following Primary and Secondary Eimeria acervulina Infections

    USDA-ARS?s Scientific Manuscript database

    In the current study, we compared chicken gene transcriptional profiles following primary and secondary infections with Eimeria acervulina using a 9.6K avian intestinal intraepithelial lymphocyte cDNA microarray (AVIELA). Gene Ontology analysis showed that primary infection significantly modulated ...

  11. Circuit-wide transcriptional profiling reveals brain region-specific gene networks regulating depression susceptibility

    PubMed Central

    Bagot, Rosemary C.; Cates, Hannah M.; Purushothaman, Immanuel; Lorsch, Zachary S.; Walker, Deena M.; Wang, Junshi; Huang, Xiaojie; Schlüter, Oliver M.; Maze, Ian; Peña, Catherine J.; Heller, Elizabeth A.; Issler, Orna; Wang, Minghui; Song, Won-min; Stein, Jason. L.; Liu, Xiaochuan; Doyle, Marie A.; Scobie, Kimberly N.; Sun, Hao Sheng; Neve, Rachael L.; Geschwind, Daniel; Dong, Yan; Shen, Li; Zhang, Bin; Nestler, Eric J.

    2016-01-01

    Summary Depression is a complex, heterogeneous disorder and a leading contributor to the global burden of disease. Most previous research has focused on individual brain regions and genes contributing to depression. However, emerging evidence in humans and animal models suggests that dysregulated circuit function and gene expression across multiple brain regions drive depressive phenotypes. Here we performed RNA-sequencing on 4 brain regions from control animals and those susceptible or resilient to chronic social defeat stress at multiple time points. We employed an integrative network biology approach to identify transcriptional networks and key driver genes that regulate susceptibility to depressive-like symptoms. Further, we validated in vivo several key drivers and their associated transcriptional networks that regulate depression susceptibility and confirmed their functional significance at the levels of gene transcription, synaptic regulation and behavior. Our study reveals novel transcriptional networks that control stress susceptibility and offers fundamentally new leads for antidepressant drug discovery. PMID:27181059

  12. DNA methylation profiling of transcription factor genes in normal lymphocyte development and lymphomas.

    PubMed

    Ivascu, Claudia; Wasserkort, Reinhold; Lesche, Ralf; Dong, Jun; Stein, Harald; Thiel, Andreas; Eckhardt, Florian

    2007-01-01

    Transcription factors play a crucial role during hematopoiesis by orchestrating lineage commitment and determining cellular fate. Although tight regulation of transcription factor expression appears to be essential, little is known about the epigenetic mechanisms involved in transcription factor gene regulation. We have analyzed DNA methylation profiles of 13 key transcription factor genes in primary cells of the hematopoietic cascade, lymphoma cell lines and lymph node biopsies of diffuse large B-cell- and T-cell-non-Hodgkin lymphoma patients. Several of the transcription factor genes (SPI1, GATA3, TCF-7, Etv5, c-maf and TBX21) are differentially methylated in specific cell lineages and stages of the hematopoietic cascade. For some genes, such as SPI1, Etv5 and Eomes, we found an inverse correlation between the methylation of the 5' untranslated region and expression of the associated gene suggesting that these genes are regulated by DNA methylation. Differential methylation is not limited to cells of the healthy hematopoietic cascade, as we observed aberrant methylation of c-maf, TCF7, Eomes and SPI1 in diffuse large B-cell lymphomas. Our results suggest that epigenetic remodelling of transcription factor genes is a frequent mechanism during hematopoietic development. Aberrant methylation of transcription factor genes is frequently observed in diffuse large B-cell lymphomas and might have a functional role during tumorigenesis.

  13. Global mapping transcriptional start sites revealed both transcriptional and post-transcriptional regulation of cold adaptation in the methanogenic archaeon Methanolobus psychrophilus.

    PubMed

    Li, Jie; Qi, Lei; Guo, Yang; Yue, Lei; Li, Yanping; Ge, Weizhen; Wu, Jun; Shi, Wenyuan; Dong, Xiuzhu

    2015-03-18

    Psychrophilic methanogenic Archaea contribute significantly to global methane emissions, but archaeal cold adaptation mechanisms remain poorly understood. Hinted by that mRNA architecture determined secondary structure respond to cold more promptly than proteins, differential RNA-seq was used in this work to examine the genome-wide transcription start sites (TSSs) of the psychrophilic methanogen Methanolobus psychrophilus R15 and its response to cold. Unlike most prokaryotic mRNAs with short 5' untranslated regions (5' UTR, median lengths of 20-40 nt), 51% mRNAs of this methanogen have large 5' UTR (>50 nt). For 24% of the mRNAs, the 5' UTR is >150 nt. This implies that post-transcriptional regulation may be significance in the psychrophile. Remarkably, 219 (14%) genes possessed multiple gene TSSs (gTSSs), and 84 genes exhibited temperature-regulated gTSS selection to express alternative 5' UTR. Primer extension studies confirmed the temperature-dependent TSS selection and a stem-loop masking of ribosome binding sites was predicted from the longer 5' UTRs, suggesting alternative 5' UTRs-mediated translation regulation in the cold adaptation as well. In addition, 195 small RNAs (sRNAs) were detected, and Northern blots confirmed that many sRNAs were induced by cold. Thus, this study revealed an integrated transcriptional and post-transcriptional regulation for cold adaptation in a psychrophilic methanogen.

  14. Global gene expression profiles induced by phytoestrogens in human breast cancer cells.

    PubMed

    Dip, Ramiro; Lenz, Sarah; Antignac, Jean-Philippe; Le Bizec, Bruno; Gmuender, Hans; Naegeli, Hanspeter

    2008-03-01

    The nutritional intake of phytoestrogens seems to reduce the risk of breast cancer or other neoplastic diseases. However, these epidemiological findings remain controversial because low doses of phytoestrogens, achievable through soy-rich diets, stimulate the proliferation of estrogen-sensitive tumor cells. The question of whether such phytochemicals prevent cancer or rather pose additional health hazards prompted us to examine global gene expression programs induced by a typical soy product. After extraction from soymilk, phytoestrogens were deconjugated and processed through reverse- and normal-phase cartridges. The resulting mixture was used to treat human target cells that represent a common model system for mammary tumorigenesis. Analysis of mRNA on high-density microarrays revealed that soy phytoestrogens induce a genomic fingerprint that is indistinguishable from the transcriptional effects of the endogenous hormone 17beta-estradiol. Highly congruent responses were also observed by comparing the physiologic estradiol with daidzein, coumestrol, enterolactone, or resveratrol, each representing distinct phytoestrogen structures. More diverging transcriptional profiles were generated when an inducible promoter was used to reconstitute the expression of estrogen receptor beta (ERbeta). Therefore, phytoestrogens appear to mitigate estrogenic signaling in the presence of both ER subtypes but, in late-stage cancer cells lacking ERbeta, these phytochemicals contribute to a tumor-promoting transcriptional signature.

  15. Global transcriptional start site mapping in Geobacter sulfurreducens during growth with two different electron acceptors.

    PubMed

    González, Getzabeth; Labastida, Aurora; Jímenez-Jacinto, Verónica; Vega-Alvarado, Leticia; Olvera, Maricela; Morett, Enrique; Juárez, Katy

    2016-09-01

    Geobacter sulfurreducens is an anaerobic soil bacterium that is involved in biogeochemical cycles of elements such as Fe and Mn. Although significant progress has been made in the understanding of the electron transfer processes in G. sulfurreducens, little is known about the regulatory mechanisms involved in their control. To expand the study of gene regulation in G. sulfurreducens, we carried out a genome-wide identification of transcription start sites (TSS) by 5'RACE and by deep RNA sequencing of primary mRNAs in two growth conditions. TSSs were identified along G. sulfurreducens genome and over 50% of them were located in the upstream region of the associated gene, and in some cases we detected genes with more than one TSS. Our global mapping of TSSs contributes with valuable information, which is needed for the study of transcript structure and transcription regulation signals and can ultimately contribute to the understanding of transcription initiation phenomena in G. sulfurreducens.

  16. Intraspecific variation in herbivore community composition and transcriptional profiles in field-grown Brassica oleracea cultivars

    PubMed Central

    Broekgaarden, Colette; Poelman, Erik H.; Voorrips, Roeland E.; Dicke, Marcel; Vosman, Ben

    2010-01-01

    Intraspecific differences in plant defence traits are often correlated with variation in transcriptional profiles and can affect the composition of herbivore communities on field-grown plants. However, most studies on transcriptional profiling of plant–herbivore interactions have been carried out under controlled conditions in the laboratory or greenhouse and only a few examine intraspecific transcriptional variation. Here, intraspecific variation in herbivore community composition and transcriptional profiles between two Brassica oleracea cultivars grown in the field is addressed. Early in the season, no differences in community composition were found for naturally occurring herbivores, whereas cultivars differed greatly in abundance, species richness, and herbivore community later in the season. Genome-wide transcriptomic analysis using an Arabidopsis thaliana oligonucleotide microarray showed clear differences for the expression levels of 26 genes between the two cultivars later in the season. Several defence-related genes showed higher levels of expression in the cultivar that harboured the lowest numbers of herbivores. Our study shows that herbivore community composition develops differentially throughout the season on the two B. oleracea cultivars grown in the field. The correlation between the differences in herbivore communities and differential expression of particular defence-related genes is discussed. PMID:19934173

  17. Research resource: the dynamic transcriptional profile of sertoli cells during the progression of spermatogenesis.

    PubMed

    Zimmermann, Céline; Stévant, Isabelle; Borel, Christelle; Conne, Béatrice; Pitetti, Jean-Luc; Calvel, Pierre; Kaessmann, Henrik; Jégou, Bernard; Chalmel, Frédéric; Nef, Serge

    2015-04-01

    Sertoli cells (SCs), the only somatic cells within seminiferous tubules, associate intimately with developing germ cells. They not only provide physical and nutritional support but also secrete factors essential to the complex developmental processes of germ cell proliferation and differentiation. The SC transcriptome must therefore adapt rapidly during the different stages of spermatogenesis. We report comprehensive genome-wide expression profiles of pure populations of SCs isolated at 5 distinct stages of the first wave of mouse spermatogenesis, using RNA sequencing technology. We were able to reconstruct about 13 901 high-confidence, nonredundant coding and noncoding transcripts, characterized by complex alternative splicing patterns with more than 45% comprising novel isoforms of known genes. Interestingly, roughly one-fifth (2939) of these genes exhibited a dynamic expression profile reflecting the evolving role of SCs during the progression of spermatogenesis, with stage-specific expression of genes involved in biological processes such as cell cycle regulation, metabolism and energy production, retinoic acid synthesis, and blood-testis barrier biogenesis. Finally, regulatory network analysis identified the transcription factors endothelial PAS domain-containing protein 1 (EPAS1/Hif2α), aryl hydrocarbon receptor nuclear translocator (ARNT/Hif1β), and signal transducer and activator of transcription 1 (STAT1) as potential master regulators driving the SC transcriptional program. Our results highlight the plastic transcriptional landscape of SCs during the progression of spermatogenesis and provide valuable resources to better understand SC function and spermatogenesis and its related disorders, such as male infertility.

  18. Blood Transcriptional Profiling Reveals Immunological Signatures of Distinct States of Infection of Humans with Leishmania infantum

    PubMed Central

    Gardinassi, Luiz Gustavo; Garcia, Gustavo Rocha; Costa, Carlos Henrique Nery; Costa Silva, Vladimir; de Miranda Santos, Isabel Kinney Ferreira

    2016-01-01

    Visceral leishmaniasis (VL) can be lethal if untreated; however, the majority of human infections with the etiological agents are asymptomatic. Using Illumina Bead Chip microarray technology, we investigated the patterns of gene expression in blood of active VL patients, asymptomatic infected individuals, patients under remission of VL and controls. Computational analyses based on differential gene expression, gene set enrichment, weighted gene co-expression networks and cell deconvolution generated data demonstrating discriminative transcriptional signatures. VL patients exhibited transcriptional profiles associated with pathways and gene modules reflecting activation of T lymphocytes via MHC class I and type I interferon signaling, as well as an overall down regulation of pathways and gene modules related to myeloid cells, mainly due to differences in the relative proportions of monocytes and neutrophils. Patients under remission of VL presented heterogeneous transcriptional profiles associated with activation of T lymphocytes via MHC class I, type I interferon signaling and cell cycle and, importantly, transcriptional activity correlated with activation of Notch signaling pathway and gene modules that reflected increased proportions of B cells after treatment of disease. Asymptomatic and uninfected individuals presented similar gene expression profiles, nevertheless, asymptomatic individuals exhibited particularities which suggest an efficient regulation of lymphocyte activation and a strong association with a type I interferon response. Of note, we validated a set of target genes by RT-qPCR and demonstrate the robustness of expression data acquired by microarray analysis. In conclusion, this study profiles the immune response during distinct states of infection of humans with Leishmania infantum with a novel strategy that indicates the molecular pathways that contribute to the progression of the disease, while also providing insights into transcriptional

  19. Ketamine and Imipramine Reverse Transcriptional Signatures of Susceptibility and Induce Resilience-Specific Gene Expression Profiles.

    PubMed

    Bagot, Rosemary C; Cates, Hannah M; Purushothaman, Immanuel; Vialou, Vincent; Heller, Elizabeth A; Yieh, Lynn; LaBonté, Benoit; Peña, Catherine J; Shen, Li; Wittenberg, Gayle M; Nestler, Eric J

    2017-02-15

    Examining transcriptional regulation by antidepressants in key neural circuits implicated in depression and understanding the relation to transcriptional mechanisms of susceptibility and natural resilience may help in the search for new therapeutic agents. Given the heterogeneity of treatment response in human populations, examining both treatment response and nonresponse is critical. We compared the effects of a conventional monoamine-based tricyclic antidepressant, imipramine, and a rapidly acting, non-monoamine-based antidepressant, ketamine, in mice subjected to chronic social defeat stress, a validated depression model, and used RNA sequencing to analyze transcriptional profiles associated with susceptibility, resilience, and antidepressant response and nonresponse in the prefrontal cortex (PFC), nucleus accumbens, hippocampus, and amygdala. We identified similar numbers of responders and nonresponders after ketamine or imipramine treatment. Ketamine induced more expression changes in the hippocampus; imipramine induced more expression changes in the nucleus accumbens and amygdala. Transcriptional profiles in treatment responders were most similar in the PFC. Nonresponse reflected both the lack of response-associated gene expression changes and unique gene regulation. In responders, both drugs reversed susceptibility-associated transcriptional changes and induced resilience-associated transcription in the PFC. We generated a uniquely large resource of gene expression data in four interconnected limbic brain regions implicated in depression and its treatment with imipramine or ketamine. Our analyses highlight the PFC as a key site of common transcriptional regulation by antidepressant drugs and in both reversing susceptibility- and inducing resilience-associated molecular adaptations. In addition, we found region-specific effects of each drug, suggesting both common and unique effects of imipramine versus ketamine. Copyright © 2016 Society of Biological

  20. Berry Flesh and Skin Ripening Features in Vitis vinifera as Assessed by Transcriptional Profiling

    PubMed Central

    Grimplet, Jérôme; Bravo, Gema; Flores, Pilar; Fenoll, José; Hellín, Pilar; Oliveros, Juan Carlos; Martínez-Zapater, José M.

    2012-01-01

    Background Ripening of fleshy fruit is a complex developmental process involving the differentiation of tissues with separate functions. During grapevine berry ripening important processes contributing to table and wine grape quality take place, some of them flesh- or skin-specific. In this study, transcriptional profiles throughout flesh and skin ripening were followed during two different seasons in a table grape cultivar ‘Muscat Hamburg’ to determine tissue-specific as well as common developmental programs. Methodology/Principal Findings Using an updated GrapeGen Affymetrix GeneChip® annotation based on grapevine 12×v1 gene predictions, 2188 differentially accumulated transcripts between flesh and skin and 2839 transcripts differentially accumulated throughout ripening in the same manner in both tissues were identified. Transcriptional profiles were dominated by changes at the beginning of veraison which affect both pericarp tissues, although frequently delayed or with lower intensity in the skin than in the flesh. Functional enrichment analysis identified the decay on biosynthetic processes, photosynthesis and transport as a major part of the program delayed in the skin. In addition, a higher number of functional categories, including several related to macromolecule transport and phenylpropanoid and lipid biosynthesis, were over-represented in transcripts accumulated to higher levels in the skin. Functional enrichment also indicated auxin, gibberellins and bHLH transcription factors to take part in the regulation of pre-veraison processes in the pericarp, whereas WRKY and C2H2 family transcription factors seems to more specifically participate in the regulation of skin and flesh ripening, respectively. Conclusions/Significance A transcriptomic analysis indicates that a large part of the ripening program is shared by both pericarp tissues despite some components are delayed in the skin. In addition, important tissue differences are present from early

  1. Transcriptional network inference from functional similarity and expression data: a global supervised approach.

    PubMed

    Ambroise, Jérôme; Robert, Annie; Macq, Benoit; Gala, Jean-Luc

    2012-01-06

    An important challenge in system biology is the inference of biological networks from postgenomic data. Among these biological networks, a gene transcriptional regulatory network focuses on interactions existing between transcription factors (TFs) and and their corresponding target genes. A large number of reverse engineering algorithms were proposed to infer such networks from gene expression profiles, but most current methods have relatively low predictive performances. In this paper, we introduce the novel TNIFSED method (Transcriptional Network Inference from Functional Similarity and Expression Data), that infers a transcriptional network from the integration of correlations and partial correlations of gene expression profiles and gene functional similarities through a supervised classifier. In the current work, TNIFSED was applied to predict the transcriptional network in Escherichia coli and in Saccharomyces cerevisiae, using datasets of 445 and 170 affymetrix arrays, respectively. Using the area under the curve of the receiver operating characteristics and the F-measure as indicators, we showed the predictive performance of TNIFSED to be better than unsupervised state-of-the-art methods. TNIFSED performed slightly worse than the supervised SIRENE algorithm for the target genes identification of the TF having a wide range of yet identified target genes but better for TF having only few identified target genes. Our results indicate that TNIFSED is complementary to the SIRENE algorithm, and particularly suitable to discover target genes of "orphan" TFs.

  2. Transcriptional Profiling of Canker-Resistant Transgenic Sweet Orange (Citrus sinensis Osbeck) Constitutively Overexpressing a Spermidine Synthase Gene

    PubMed Central

    Fu, Xing-Zheng; Liu, Ji-Hong

    2013-01-01

    Citrus canker disease caused by Xanthomonas citri subsp. citri (Xcc) is one of the most devastating diseases affecting the citrus industry worldwide. In our previous study, the canker-resistant transgenic sweet orange (Citrus sinensis Osbeck) plants were produced via constitutively overexpressing a spermidine synthase. To unravel the molecular mechanisms underlying Xcc resistance of the transgenic plants, in the present study global transcriptional profiling was compared between untransformed line (WT) and the transgenic line (TG9) by hybridizing with Affymetrix Citrus GeneChip. In total, 666 differentially expressed genes (DEGs) were identified, 448 upregulated, and 218 downregulated. The DEGs were classified into 33 categories after Gene ontology (GO) annotation, in which 68 genes are in response to stimulus and involved in immune system process, 12 genes are related to cell wall, and 13 genes belong to transcription factors. These genes and those related to starch and sucrose metabolism, glutathione metabolism, biosynthesis of phenylpropanoids, and plant hormones were hypothesized to play major roles in the canker resistance of TG9. Semiquantitative RT-PCR analysis showed that the transcript levels of several candidate genes in TG9 were significantly higher than in WT both before and after Xcc inoculation, indicating their potential association with canker disease. PMID:23509803

  3. Fire blight disease reactome: RNA-seq transcriptional profile of apple host plant defense responses to Erwinia amylovora pathogen infection

    PubMed Central

    Kamber, Tim; Buchmann, Jan P.; Pothier, Joël F.; Smits, Theo H. M.; Wicker, Thomas; Duffy, Brion

    2016-01-01

    The molecular basis of resistance and susceptibility of host plants to fire blight, a major disease threat to pome fruit production globally, is largely unknown. RNA-sequencing data from challenged and mock-inoculated flowers were analyzed to assess the susceptible response of apple to the fire blight pathogen Erwinia amylovora. In presence of the pathogen 1,080 transcripts were differentially expressed at 48 h post inoculation. These included putative disease resistance, stress, pathogen related, general metabolic, and phytohormone related genes. Reads, mapped to regions on the apple genome where no genes were assigned, were used to identify potential novel genes and open reading frames. To identify transcripts specifically expressed in response to E. amylovora, RT-PCRs were conducted and compared to the expression patterns of the fire blight biocontrol agent Pantoea vagans strain C9-1, another apple pathogen Pseudomonas syringae pv. papulans, and mock inoculated apple flowers. This led to the identification of a peroxidase superfamily gene that was lower expressed in response to E. amylovora suggesting a potential role in the susceptibility response. Overall, this study provides the first transcriptional profile by RNA-seq of the host plant during fire blight disease and insights into the response of susceptible apple plants to E. amylovora. PMID:26883568

  4. Transcriptional profiling of canker-resistant transgenic sweet orange (Citrus sinensis Osbeck) constitutively overexpressing a spermidine synthase gene.

    PubMed

    Fu, Xing-Zheng; Liu, Ji-Hong

    2013-01-01

    Citrus canker disease caused by Xanthomonas citri subsp. citri (Xcc) is one of the most devastating diseases affecting the citrus industry worldwide. In our previous study, the canker-resistant transgenic sweet orange (Citrus sinensis Osbeck) plants were produced via constitutively overexpressing a spermidine synthase. To unravel the molecular mechanisms underlying Xcc resistance of the transgenic plants, in the present study global transcriptional profiling was compared between untransformed line (WT) and the transgenic line (TG9) by hybridizing with Affymetrix Citrus GeneChip. In total, 666 differentially expressed genes (DEGs) were identified, 448 upregulated, and 218 downregulated. The DEGs were classified into 33 categories after Gene ontology (GO) annotation, in which 68 genes are in response to stimulus and involved in immune system process, 12 genes are related to cell wall, and 13 genes belong to transcription factors. These genes and those related to starch and sucrose metabolism, glutathione metabolism, biosynthesis of phenylpropanoids, and plant hormones were hypothesized to play major roles in the canker resistance of TG9. Semiquantitative RT-PCR analysis showed that the transcript levels of several candidate genes in TG9 were significantly higher than in WT both before and after Xcc inoculation, indicating their potential association with canker disease.

  5. Fire blight disease reactome: RNA-seq transcriptional profile of apple host plant defense responses to Erwinia amylovora pathogen infection.

    PubMed

    Kamber, Tim; Buchmann, Jan P; Pothier, Joël F; Smits, Theo H M; Wicker, Thomas; Duffy, Brion

    2016-02-17

    The molecular basis of resistance and susceptibility of host plants to fire blight, a major disease threat to pome fruit production globally, is largely unknown. RNA-sequencing data from challenged and mock-inoculated flowers were analyzed to assess the susceptible response of apple to the fire blight pathogen Erwinia amylovora. In presence of the pathogen 1,080 transcripts were differentially expressed at 48 h post inoculation. These included putative disease resistance, stress, pathogen related, general metabolic, and phytohormone related genes. Reads, mapped to regions on the apple genome where no genes were assigned, were used to identify potential novel genes and open reading frames. To identify transcripts specifically expressed in response to E. amylovora, RT-PCRs were conducted and compared to the expression patterns of the fire blight biocontrol agent Pantoea vagans strain C9-1, another apple pathogen Pseudomonas syringae pv. papulans, and mock inoculated apple flowers. This led to the identification of a peroxidase superfamily gene that was lower expressed in response to E. amylovora suggesting a potential role in the susceptibility response. Overall, this study provides the first transcriptional profile by RNA-seq of the host plant during fire blight disease and insights into the response of susceptible apple plants to E. amylovora.

  6. Transcriptional Orchestration of the Global Cellular Response of a Model Pennate Diatom to Diel Light Cycling under Iron Limitation

    PubMed Central

    McCrow, John P.; Badger, Jonathan H.; Zheng, Hong; New, Ashley M.; Dupont, Chris L.; Obata, Toshihiro; Fernie, Alisdair R.; Allen, Andrew E.

    2016-01-01

    Environmental fluctuations affect distribution, growth and abundance of diatoms in nature, with iron (Fe) availability playing a central role. Studies on the response of diatoms to low Fe have either utilized continuous (24 hr) illumination or sampled a single time of day, missing any temporal dynamics. We profiled the physiology, metabolite composition, and global transcripts of the pennate diatom Phaeodactylum tricornutum during steady-state growth at low, intermediate, and high levels of dissolved Fe over light:dark cycles, to better understand fundamental aspects of genetic control of physiological acclimation to growth under Fe-limitation. We greatly expand the catalog of genes involved in the low Fe response, highlighting the importance of intracellular trafficking in Fe-limited diatoms. P. tricornutum exhibited transcriptomic hallmarks of slowed growth leading to prolonged periods of cell division/silica deposition, which could impact biogeochemical carbon sequestration in Fe-limited regions. Light harvesting and ribosome biogenesis transcripts were generally reduced under low Fe while transcript levels for genes putatively involved in the acquisition and recycling of Fe were increased. We also noted shifts in expression towards increased synthesis and catabolism of branched chain amino acids in P. tricornutum grown at low Fe whereas expression of genes involved in central core metabolism were relatively unaffected, indicating that essential cellular function is protected. Beyond the response of P. tricornutum to low Fe, we observed major coordinated shifts in transcript control of primary and intermediate metabolism over light:dark cycles which contribute to a new view of the significance of distinctive diatom pathways, such as mitochondrial glycolysis and the ornithine-urea cycle. This study provides new insight into transcriptional modulation of diatom physiology and metabolism across light:dark cycles in response to Fe availability, providing mechanistic

  7. Global screening of potential Candida albicans biofilm-related transcription factors via network comparison

    PubMed Central

    2010-01-01

    Background Candida albicans is a commonly encountered fungal pathogen in humans. The formation of biofilm is a major virulence factor in C. albicans pathogenesis and is related to antidrug resistance of this organism. Although many factors affecting biofilm have been analyzed, molecular mechanisms that regulate biofilm formation still await to be elucidated. Results In this study, from the gene regulatory network perspective, we developed an efficient computational framework, which integrates different kinds of data from genome-scale analysis, for global screening of potential transcription factors (TFs) controlling C. albicans biofilm formation. S. cerevisiae information and ortholog data were used to infer the possible TF-gene regulatory associations in C. albicans. Based on TF-gene regulatory associations and gene expression profiles, a stochastic dynamic model was employed to reconstruct the gene regulatory networks of C. albicans biofilm and planktonic cells. The two networks were then compared and a score of relevance value (RV) was proposed to determine and assign the quantity of correlation of each potential TF with biofilm formation. A total of twenty-three TFs are identified to be related to the biofilm formation; ten of them are previously reported by literature evidences. Conclusions The results indicate that the proposed screening method can successfully identify most known biofilm-related TFs and also identify many others that have not been previously reported. Together, this method can be employed as a pre-experiment screening approach that reveals new target genes for further characterization to understand the regulatory mechanisms in biofilm formation, which can serve as the starting point for therapeutic intervention of C. albicans infections. PMID:20102611

  8. Elucidation of ethanol tolerance mechanisms in Saccharomyces cerevisiae by global metabolite profiling.

    PubMed

    Kim, Sooah; Kim, Jungyeon; Song, Ju Hwan; Jung, Young Hoon; Choi, Il-Sup; Choi, Wonja; Park, Yong-Cheol; Seo, Jin-Ho; Kim, Kyoung Heon

    2016-09-01

    Ethanol, the major fermentation product of yeast, is a stress factor in yeast. We previously constructed an ethanol-tolerant mutant yeast iETS3 by using the global transcriptional machinery engineering. However, the ethanol-tolerance mechanism has not been systematically investigated. In this study, global metabolite profiling was carried out, mainly by gas chromatography/time-of-flight mass spectrometry (GC/TOF MS), to investigate the mechanisms of ethanol tolerance in iETS3. A total of 108 intracellular metabolites were identified by GC/TOF MS and high performance liquid chromatography, and these metabolites were mostly intermediates of the central carbon metabolism. The metabolite profiles of iETS3 and BY4741, cultured with or without ethanol, were significantly different based on principal component and hierarchical clustering analyses. Our metabolomic analyses identified the compositional changes in cell membranes and the activation of glutamate metabolism and the trehalose synthetic pathway as the possible mechanisms for the ethanol tolerance. These metabolic traits can be considered possible targets for further improvement of ethanol tolerance in the mutant. For example, the KGD1 deletion mutant, with up-regulated glutamate metabolism, showed increased tolerance to ethanol. This study has demonstrated that metabolomics can be a useful tool for strain improvement and phenotypic analysis of microorganisms under stress. Copyright © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Global gene expression profile progression in Gaucher disease mouse models

    PubMed Central

    2011-01-01

    Background Gaucher disease is caused by defective glucocerebrosidase activity and the consequent accumulation of glucosylceramide. The pathogenic pathways resulting from lipid laden macrophages (Gaucher cells) in visceral organs and their abnormal functions are obscure. Results To elucidate this pathogenic pathway, developmental global gene expression analyses were conducted in distinct Gba1 point-mutated mice (V394L/V394L and D409 V/null). About 0.9 to 3% of genes had altered expression patterns (≥ ± 1.8 fold change), representing several categories, but particularly macrophage activation and immune response genes. Time course analyses (12 to 28 wk) of INFγ-regulated pro-inflammatory (13) and IL-4-regulated anti-inflammatory (11) cytokine/mediator networks showed tissue differential profiles in the lung and liver of the Gba1 mutant mice, implying that the lipid-storage macrophages were not functionally inert. The time course alterations of the INFγ and IL-4 pathways were similar, but varied in degree in these tissues and with the Gba1 mutation. Conclusions Biochemical and pathological analyses demonstrated direct relationships between the degree of tissue glucosylceramides and the gene expression profile alterations. These analyses implicate IFNγ-regulated pro-inflammatory and IL-4-regulated anti-inflammatory networks in differential disease progression with implications for understanding the Gaucher disease course and pathophysiology. PMID:21223590

  10. Global DNA modifications suppress transcription in brown adipose tissue during hibernation.

    PubMed

    Biggar, Yulia; Storey, Kenneth B

    2014-10-01

    Hibernation is crucial to winter survival for many small mammals and is characterized by prolonged periods of torpor during which strong global controls are applied to suppress energy-expensive cellular processes. We hypothesized that one strategy of energy conservation is a global reduction in gene transcription imparted by reversible modifications to DNA and to proteins involved in chromatin packing. Transcriptional regulation during hibernation was examined over euthermic control groups and five stages of the torpor/arousal cycle in brown adipose tissue of thirteen-lined ground squirrels (Ictidomys tridecemlineatus). Brown adipose is crucial to hibernation success because it is responsible for the non-shivering thermogenesis that rewarms animals during arousal. A direct modification of DNA during torpor was revealed by a 1.7-fold increase in global DNA methylation during long term torpor as compared with euthermic controls. Acetylation of histone H3 (on Lys23) was reduced by about 50% when squirrels entered torpor, which would result in increased chromatin packing (and transcriptional repression). This was accompanied by strong increases in histone deacetylase protein levels during torpor; e.g. HDAC1 and HDAC4 levels rose by 1.5- and 6-fold, respectively. Protein levels of two co-repressors of transcription, MBD1 and HP1, also increased by 1.9- and 1.5-fold, respectively, in long-term torpor and remained high during early arousal. MBD1, HP1 and HDACs all returned to near control values during interbout indicating a reversal of their inhibitory actions. Overall, the data presents strong evidence for a global suppression of transcription during torpor via the action of epigenetic regulatory mechanisms in brown adipose tissue of hibernating thirteen-lined ground squirrels.

  11. Human corneal epithelial subpopulations: oxygen dependent ex vivo expansion and transcriptional profiling.

    PubMed

    Bath, Chris

    2013-06-01

    differentiation pathway in human corneal epithelium according to an optimized protocol for maintenance of expression profiles. Isolated total RNA from basal limbal crypts (BLCs), superficial limbal crypts (SLCs), paracentral/central cornea and limbal stroma was amplified and converted to fragmented cDNA libraries for use in deep paired-end next-generation sequencing. Global transcriptional profiling was carried out using bioinformatics. The location of primitive cells in BLCs, migratory and activated cells in SLCs and differentiated cells in paracentral/central cornea was evident from mapping of significantly upregulated genes in each compartment to the gene ontology (GO). Interestingly, many GO terms in BLCs were also involved in neurogenic processes, whereas many GO terms in SLCs were related to vasculature. Mapping upregulated genes in BLCs to pathway annotations in Kyoto Encyclopedia of Genes and Genomes described many active pathways as signalling and cancer-associated pathways. We supply extensive information on possible novel biomarkers, reveal insight into both active pathways and novel regulators of LESCs such as Lrig1 and SOX9 and provide an immense amount of data for future exploration (Bath et al. 2013b). Selective ex vivo expansion of LESCs in hypoxia and the comprehensive molecular characterization of corneal epithelial subpopulations in situ are expected to be beneficial for the future treatment of LSCD by cultured limbal epithelial transplantation. © 2013 Acta Ophthalmologica Scandinavica Foundation.

  12. Global Aerosol Profiling by Orbital Lidar, GLAS Results and Validation

    NASA Technical Reports Server (NTRS)

    Spinhirne, J. D.; Palm, S. P.; Hlavka, D. L.; Hart, W. D.; Mahesh, A.; Welton, E. J.

    2004-01-01

    The Geoscience Laser Altimeter System (GLAS) launched in 2003 is the first polar orbiting satellite lidar. The instrument was designed for high performance observations of the distribution and optical scattering cross sections of clouds and aerosol. GLAS is approaching six months of on orbit data operation. These data from thousands of orbits illustrate the ability of space lidar to accurately and dramatically measure the height distribution of global aerosol to an unprecedented degree. There were many intended science applications of the GLAS data and significant results have already been realized, profiling is a fundamentally new measurement from space with multiple applications. A most important aerosol application is providing input to global aerosol generation transport models. Another is improved measurement of aerosol optical depth. A main approach to verify the aerosol optical depth retrieval is comparison to surface measurements by Aeronet. A special feature of the GLAS satellite bus is to rapidly point the lidar instrument at off nadir targets with less than 100 m accuracy. About a dozen selected Aeronet sites were pointed at whenever the GLAS lidar came within 5 degrees of zenith. These plus a more general comparison to nearby sites support the GLAS data product values. In addition the GLAS data can be used to add vertical distribution information to Aeronet aerosol measurements. As an EOS project instrument, GLAS data products are openly available to the science community. First year results from GLAS are summarized.

  13. Global Aerosol Profiling by Orbital Lidar, GLAS Results and Validation

    NASA Technical Reports Server (NTRS)

    Spinhirne, J. D.; Palm, S. P.; Hlavka, D. L.; Hart, W. D.; Mahesh, A.; Welton, E. J.

    2004-01-01

    The Geoscience Laser Altimeter System (GLAS) launched in 2003 is the first polar orbiting satellite lidar. The instrument was designed for high performance observations of the distribution and optical scattering cross sections of clouds and aerosol. GLAS is approaching six months of on orbit data operation. These data from thousands of orbits illustrate the ability of space lidar to accurately and dramatically measure the height distribution of global aerosol to an unprecedented degree. There were many intended science applications of the GLAS data and significant results have already been realized. profiling is a fundamentally new measurement from space with multiple applications. A most important aerosol application is providing input to global aerosol generation and transport models. Another is improved measurement of aerosol optical depth. A main approach to verify the aerosol optical depth retrieval is comparison to surface measurements by Aeronet. A special feature of the GLAS satellite bus is to rapidly point the lidar instrument at off nadir targets with less than 100 m accuracy. About a dozen selected Aeronet sites were pointed at whenever the G U S lidar came within 5 degrees of zenith. These plus a more general comparison to nearby sites support the G U S data product values. In addition the GUS data can be used to add vertical distribution information to Aeronet aerosol measurements.. As an EOS project instrument, GLAS data products are openly available to the science community. First year results from G U S are summarized.

  14. Global Profiling of Carbohydrate Active Enzymes in Human Gut Microbiome

    PubMed Central

    Mande, Sharmila S.

    2015-01-01

    Motivation Carbohydrate Active enzyme (CAZyme) families, encoded by human gut microflora, play a crucial role in breakdown of complex dietary carbohydrates into components that can be absorbed by our intestinal epithelium. Since nutritional wellbeing of an individual is dependent on the nutrient harvesting capability of the gut microbiome, it is important to understand how CAZyme repertoire in the gut is influenced by factors like age, geography and food habits. Results This study reports a comprehensive in-silico analysis of CAZyme profiles in the gut microbiomes of 448 individuals belonging to different geographies, using similarity searches of the corresponding gut metagenomic contigs against the carbohydrate active enzymes database. The study identifies a core group of 89 CAZyme families that are present across 85% of the gut microbiomes. The study detects several geography/age-specific trends in gut CAZyme repertoires of the individuals. Notably, a group of CAZymes having a positive correlation with BMI has been identified. Further this group of BMI-associated CAZymes is observed to be specifically abundant in the Firmicutes phyla. One of the major findings from this study is identification of three distinct groups of individuals, referred to as 'CAZotypes', having similar CAZyme profiles. Distinct taxonomic drivers for these CAZotypes as well as the probable dietary basis for such trends have also been elucidated. The results of this study provide a global view of CAZyme profiles across individuals of various geographies and age-groups. These results re-iterate the need of a more precise understanding of the role of carbohydrate active enzymes in human nutrition. PMID:26544883

  15. The Molecular Revolution in Cutaneous Biology: The Era of Global Transcriptional Analysis.

    PubMed

    Johnston, Andrew; Sarkar, Mrinal K; Vrana, Antonia; Tsoi, Lam C; Gudjonsson, Johann E

    2017-05-01

    In the 3 decades since the discovery of the polymerase chain reaction, a progression of remarkable technical advances has driven great strides in our understanding of molecular biology such that now we are able to study at once the entire and complete set of RNA transcripts that are produced by the genome. In this review, we describe the milestones that have led to this era of global transcriptional analysis, how these approaches have been extended towards skin disease, and their future directions. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Inadequate protein intake affects skeletal muscle transcript profiles in older humans2

    PubMed Central

    Thalacker-Mercer, Anna E; Fleet, James C; Craig, Bruce A; Carnell, Nadine S; Campbell, Wayne W

    2008-01-01

    Background Inadequate dietary protein intake causes adverse changes in the morphology and function of skeletal muscle. These changes may be reflected in early alterations in muscle messenger RNA levels. Objective This study assessed whether inadequate protein intake differentially affects skeletal muscle transcript concentrations and expression profiles in older adults. Design Twenty-one older men and women (aged 55-80 y) consumed controlled diets that provided 1.2 g protein · kg-1 · d-1 (adequate protein) for 1 wk and then were randomly assigned to consume either 0.5 g protein · kg-1 · d-1 [inadequate protein (IP) group; n = 11] or 1.2 g protein · kg-1 · d-1 (control group; n = 10) for a second week. RNA was isolated from fasting-state vastus lateralis biopsy samples obtained at the end of each period, and transcript levels in the IP group were measured by using microarray anlysis. Changes in selected transcript levels were confirmed by real-time polymerase chain reaction in both groups. Results Analysis of variance showed 529 differentially expressed transcripts (P < 0.05) after inadequate protein intake. Using the false discovery rate (FDR) correction to adjust for multiple comparisons, we observed that 85 transcripts were differentially expressed: 54 were up-regulated and 31 were down-regulated. The differentially expressed transcripts were in functional classes for immune, inflammatory, and stress responses (predominantly up-regulated); contraction, movement, and development (up-regulated); extracellular connective tissue (up-regulated); energy metabolism (down-regulated); protein synthesis (down-regulated); and proliferation (down-regulated). Diet-related differences in the expression of 9 transcripts were cross-validated by using real-time polymerase chain reaction. Conclusion The results document changes in skeletal muscle transcript levels induced by short-term inadequate protein intakes in older humans that might precede adverse metabolic

  17. Transcript identification and profiling during salt stress and recovery of Populus euphratica.

    PubMed

    Gu, Ruisheng; Fonseca, Sandra; Puskás, László G; Hackler, László; Zvara, Agnes; Dudits, Dénes; Pais, Maria S

    2004-03-01

    Populus euphratica Oli. is a salt-tolerant species that can cope with up to 450 mM NaCl under hydroponic conditions and can tolerate high accumulations of Na+ and Cl- in roots and leaves when grown in 300 mM NaCl. Transcript responses to salt stress and recovery were monitored by microarray hybridization of 315 cDNAs preselected by suppression subtractive hybridization. Transcripts of a heat-shock protein and a hydroxyproline-rich glycoprotein accumulated 1.5 and 3 h, respectively, after adding 300 mM NaCl to the culture medium. Transcripts significantly up-regulated by salt stress included ionic and osmotic homeostasis elements such as magnesium transporter-like protein, syntaxin-like protein, seed imbibition protein and plasma membrane intrinsic protein; metabolism regulators like cytochrome P450, zinc finger protein, cleavage factor and aminotransferase; and the photosynthesis-activating enzyme Rubisco activase and photorespiration-related glycolate oxidase. Several photosynthesis-related transcripts were down-regulated in response to 72 h of salt stress but were up-regulated after long-term recovery (48 h). Sucrose synthase, ABC transporter, calmodulin, Pop3 peptide and aquaporin appeared to be actively involved in the process of plant recovery from salt stress. Several transcripts encoding proteins of unknown function were regulated by salt stress. Selected transcripts exhibiting altered transcript profiles in response to salt stress were also analyzed by real-time quantitative PCR. Transcript analysis during salt stress and recovery of this woody species revealed several genes and corresponding proteins deserving special attention in future studies of salt tolerance in woody species.

  18. Integrated pathway-based transcription regulation network mining and visualization based on gene expression profiles.

    PubMed

    Kibinge, Nelson; Ono, Naoaki; Horie, Masafumi; Sato, Tetsuo; Sugiura, Tadao; Altaf-Ul-Amin, Md; Saito, Akira; Kanaya, Shigehiko

    2016-06-01

    Conventionally, workflows examining transcription regulation networks from gene expression data involve distinct analytical steps. There is a need for pipelines that unify data mining and inference deduction into a singular framework to enhance interpretation and hypotheses generation. We propose a workflow that merges network construction with gene expression data mining focusing on regulation processes in the context of transcription factor driven gene regulation. The pipeline implements pathway-based modularization of expression profiles into functional units to improve biological interpretation. The integrated workflow was implemented as a web application software (TransReguloNet) with functions that enable pathway visualization and comparison of transcription factor activity between sample conditions defined in the experimental design. The pipeline merges differential expression, network construction, pathway-based abstraction, clustering and visualization. The framework was applied in analysis of actual expression datasets related to lung, breast and prostrate cancer.

  19. Genome-wide transcriptional profiling reveals molecular signatures of secondary xylem differentiation in Populus tomentosa.

    PubMed

    Yang, X H; Li, X G; Li, B L; Zhang, D Q

    2014-11-11

    Wood formation occurs via cell division, primary cell wall and secondary wall formation, and programmed cell death in the vascular cambium. Transcriptional profiling of secondary xylem differentiation is essential for understanding the molecular mechanisms underlying wood formation. Differential gene expression in secondary xylem differentiation of Populus has been previously investigated using cDNA microarray analysis. However, little is known about the molecular mechanisms from a genome-wide perspective. In this study, the Affymetrix poplar genome chips containing 61,413 probes were used to investigate the changes in the transcriptome during secondary xylem differentiation in Chinese white poplar (Populus tomentosa). Two xylem tissues (newly formed and lignified) were sampled for genome-wide transcriptional profiling. In total, 6843 genes (~11%) were identified with differential expression in the two xylem tissues. Many genes involved in cell division, primary wall modification, and cellulose synthesis were preferentially expressed in the newly formed xylem. In contrast, many genes, including 4-coumarate:cinnamate-4-hydroxylase (C4H), 4-coumarate:CoA ligase (4CL), cinnamyl alcohol dehydrogenase (CAD), and caffeoyl CoA 3-O-methyltransferase (CCoAOMT), associated with lignin biosynthesis were more transcribed in the lignified xylem. The two xylem tissues also showed differential expression of genes related to various hormones; thus, the secondary xylem differentiation could be regulated by hormone signaling. Furthermore, many transcription factor genes were preferentially expressed in the lignified xylem, suggesting that wood lignification involves extensive transcription regulation. The genome-wide transcriptional profiling of secondary xylem differentiation could provide additional insights into the molecular basis of wood formation in poplar species.

  20. Transcriptional profiling of mouse uterus at pre-implantation stage under VEGF repression.

    PubMed

    Ji, Yan; Lu, Xiaodan; Zhong, Qingping; Liu, Peng; An, Yao; Zhang, Yuntao; Zhang, Shujie; Jia, Ruirui; Tesfamariam, Isaias G; Kahsay, Abraha G; Zhang, Luqing; Zhu, Wensheng; Zheng, Yaowu

    2013-01-01

    Uterus development during pre-implantation stage affects implantation process and embryo growth. Aberrant uterus development is associated with many human reproductive diseases. Among the factors regulating uterus development, vascular remodeling promoters are critical for uterus function and fertility. Vascular endothelial growth factor (VEGF), as one of the major members, has been found to be important in endothelial cell growth and blood vessel development, as well as in non-endothelial cells. VEGF mediation in reproduction has been broadly studied, but VEGF-induced transcriptional machinery during implantation window has not been systematically studied. In this study, a genetically repressed VEGF mouse model was used to analyze uterus transcriptome at gestation 2.5 (G2.5) by Solexa/Illumina's digital gene expression (DGE) system. A number of 831 uterus-specific and 2398 VEGF-regulated genes were identified. Gene ontology (GO) analysis indicated that genes actively involved in uterus development were members of collagen biosynthesis, cell proliferation and cell apoptosis. Uterus-specific genes were enriched in activities of phosphatidyl inositol phosphate kinase, histone H3-K36 demethylation and protein acetylation. Among VEGF-regulated genes, up-regulated were associated with RNA polymerase III activity while down-regulated were strongly related with muscle development. Comparable numbers of antisense transcripts were identified. Expression levels of the antisense transcripts were found tightly correlated with their sense expression levels, an indication of possibly non-specific transcripts generated around the active promoters and enhancers. The antisense transcripts with exceptionally high or low expression levels and the antisense transcripts under VEGF regulation were also identified. These transcripts may be important candidates in regulation of uterus development. This study provides a global survey on genes and antisense transcripts regulated by VEGF in

  1. Transcriptional Profiling of Mouse Uterus at Pre-Implantation Stage under VEGF Repression

    PubMed Central

    Ji, Yan; Lu, Xiaodan; Zhong, Qingping; Liu, Peng; An, Yao; Zhang, Yuntao; Zhang, Shujie; Jia, Ruirui; Tesfamariam, Isaias G.; Kahsay, Abraha G.; Zhang, Luqing; Zhu, Wensheng; Zheng, Yaowu

    2013-01-01

    Uterus development during pre-implantation stage affects implantation process and embryo growth. Aberrant uterus development is associated with many human reproductive diseases. Among the factors regulating uterus development, vascular remodeling promoters are critical for uterus function and fertility. Vascular endothelial growth factor (VEGF), as one of the major members, has been found to be important in endothelial cell growth and blood vessel development, as well as in non-endothelial cells. VEGF mediation in reproduction has been broadly studied, but VEGF-induced transcriptional machinery during implantation window has not been systematically studied. In this study, a genetically repressed VEGF mouse model was used to analyze uterus transcriptome at gestation 2.5 (G2.5) by Solexa/Illumina’s digital gene expression (DGE) system. A number of 831 uterus-specific and 2398 VEGF-regulated genes were identified. Gene ontology (GO) analysis indicated that genes actively involved in uterus development were members of collagen biosynthesis, cell proliferation and cell apoptosis. Uterus-specific genes were enriched in activities of phosphatidyl inositol phosphate kinase, histone H3-K36 demethylation and protein acetylation. Among VEGF-regulated genes, up-regulated were associated with RNA polymerase III activity while down-regulated were strongly related with muscle development. Comparable numbers of antisense transcripts were identified. Expression levels of the antisense transcripts were found tightly correlated with their sense expression levels, an indication of possibly non-specific transcripts generated around the active promoters and enhancers. The antisense transcripts with exceptionally high or low expression levels and the antisense transcripts under VEGF regulation were also identified. These transcripts may be important candidates in regulation of uterus development. This study provides a global survey on genes and antisense transcripts regulated by VEGF

  2. Global transcript structure resolution of high gene density genomes through multi-platform data integration

    PubMed Central

    O'Grady, Tina; Wang, Xia; Höner zu Bentrup, Kerstin; Baddoo, Melody; Concha, Monica; Flemington, Erik K.

    2016-01-01

    Annotation of herpesvirus genomes has traditionally been undertaken through the detection of open reading frames and other genomic motifs, supplemented with sequencing of individual cDNAs. Second generation sequencing and high-density microarray studies have revealed vastly greater herpesvirus transcriptome complexity than is captured by existing annotation. The pervasive nature of overlapping transcription throughout herpesvirus genomes, however, poses substantial problems in resolving transcript structures using these methods alone. We present an approach that combines the unique attributes of Pacific Biosciences Iso-Seq long-read, Illumina short-read and deepCAGE (Cap Analysis of Gene Expression) sequencing to globally resolve polyadenylated isoform structures in replicating Epstein-Barr virus (EBV). Our method, Transcriptome Resolution through Integration of Multi-platform Data (TRIMD), identifies nearly 300 novel EBV transcripts, quadrupling the size of the annotated viral transcriptome. These findings illustrate an array of mechanisms through which EBV achieves functional diversity in its relatively small, compact genome including programmed alternative splicing (e.g. across the IR1 repeats), alternative promoter usage by LMP2 and other latency-associated transcripts, intergenic splicing at the BZLF2 locus, and antisense transcription and pervasive readthrough transcription throughout the genome. PMID:27407110

  3. Macrophage Transcriptional Profile Identifies Lipid Catabolic Pathways That Can Be Therapeutically Targeted after Spinal Cord Injury.

    PubMed

    Zhu, Y; Lyapichev, K; Lee, D H; Motti, D; Ferraro, N M; Zhang, Y; Yahn, S; Soderblom, C; Zha, J; Bethea, J R; Spiller, K L; Lemmon, V P; Lee, J K

    2017-03-01

    Although infiltrating macrophages influence many pathological processes after spinal cord injury (SCI), the intrinsic molecular mechanisms that regulate their function are poorly understood. A major hurdle has been dissecting macrophage-specific functions from those in other cell types as well as understanding how their functions change over time. Therefore, we used the RiboTag method to obtain macrophage-specific mRNA directly from the injured spinal cord in mice and performed RNA sequencing to investigate their transcriptional profile. Our data show that at 7 d after SCI, macrophages are best described as foam cells, with lipid catabolism representing the main biological process, and canonical nuclear receptor pathways as their potential mediators. Genetic deletion of a lipoprotein receptor, CD36, reduces macrophage lipid content and improves lesion size and locomotor recovery. Therefore, we report the first macrophage-specific transcriptional profile after SCI and highlight the lipid catabolic pathway as an important macrophage function that can be therapeutically targeted after SCI.SIGNIFICANCE STATEMENT The intrinsic molecular mechanisms that regulate macrophage function after spinal cord injury (SCI) are poorly understood. We obtained macrophage-specific mRNA directly from the injured spinal cord and performed RNA sequencing to investigate their transcriptional profile. Our data show that at 7 d after SCI, macrophages are best described as foam cells, with lipid catabolism representing the main biological process and canonical nuclear receptor pathways as their potential mediators. Genetic deletion of a lipoprotein receptor, CD36, reduces macrophage lipid content and improves lesion size and locomotor recovery. Therefore, we report the first macrophage-specific transcriptional profile after SCI and highlight the lipid catabolic pathway as an important macrophage function that can be therapeutically targeted after SCI. Copyright © 2017 the authors 0270-6474/17/372362-15$15.00/0.

  4. Transcriptome Profiling Reveals Differentially Expressed Transcripts Between the Human Adrenal Zona Fasciculata and Zona Reticularis

    PubMed Central

    Rege, Juilee; Nakamura, Yasuhiro; Wang, Tao; Merchen, Todd D.; Sasano, Hironobu

    2014-01-01

    Context: The human adrenal zona fasciculata (ZF) and zona reticularis (ZR) are responsible for the production of cortisol and 19-carbon steroids (often called adrenal androgens), respectively. However, the gene profiles and exact molecular mechanisms leading to the functional phenotype of the ZF and ZR are still not clearly defined. In the present study, we identified the transcripts that are differentially expressed in the ZF and ZR. Objective: The objective of the study was to compare the transcriptome profiles of ZF and ZR. Design and Methods: ZF and ZR were microdissected from 10 human adrenals. Total RNA was extracted from 10 ZF/ZR pairs and hybridized to Illumina microarray chips. The 10 most differentially expressed transcripts were studied with quantitative RT-PCR (qPCR). Immunohistochemistry was also performed on four zone-specific genes. Results: Microarray results demonstrated that only 347 transcripts of the 47 231 were significantly different by 2-fold or greater in the ZF and ZR. ZF had 195 transcripts with 2-fold or greater increase compared with its paired ZR, whereas ZR was found to have 152 transcripts with 2-fold or greater higher expression than in ZF. Microarray and qPCR analysis of transcripts encoding steroidogenic enzymes (n = 10) demonstrated that only 3β-hydroxysteroid dehydrogenase, steroid sulfotransferase, type 5 17β-hydroxysteroid dehydrogenase, and cytochrome b5 were significantly different. Immunohistochemistry and qPCR studies confirmed that the ZF had an increased expression of lymphoid enhancer-binding factor 1 and nephroblastoma overexpressed, whereas ZR showed an increased expression of solute carrier family 27 (fatty acid transporter) (SLC27A2), member 2 and TSPAN12 (tetraspanin 12) Conclusion: Microarray revealed several novel candidate genes for elucidating the molecular mechanisms governing the ZF and ZR, thereby increasing our understanding of the functional zonation of these two adrenocortical zones. PMID:24423296

  5. Mechanisms of suspended animation are revealed by transcript profiling of diapause in the flesh fly

    PubMed Central

    Ragland, Gregory J.; Denlinger, David L.; Hahn, Daniel A.

    2010-01-01

    Diapause is a widespread adaptation to seasonality across invertebrate taxa. It is critical for persistence in seasonal environments, synchronizing life histories with favorable, resource-rich conditions and mitigating exposure to harsh environments. Despite some promising recent progress, however, we still know very little about the molecular modifications underlying diapause. We used transcriptional profiling to identify key groups of genes and pathways differentially regulated during pupal diapause, dynamically regulated across diapause development, and differentially regulated after diapause was pharmacologically terminated in the flesh fly Sarcophaga crassipalpis. We describe major shifts in stress axes, endocrine signaling, and metabolism that accompany diapause, several of which appear to be common features of dormancy in other taxa. To assess whether invertebrates with different diapause strategies have converged toward similar transcriptional profiles, we use archived expression data to compare the pupal diapause of S. crassipalpis with the adult reproductive diapause of Drosophila melanogaster and the larval dauer of Caenorhabditis elegans. Although dormant invertebrates converge on a few similar physiological phenotypes including metabolic depression and stress resistance, we find little transcriptional similarity among dormancies across species, suggesting that there may be many transcriptional strategies for producing physiologically similar dormancy responses. PMID:20668242

  6. Global transcriptional analysis reveals surface remodeling of Anaplasma marginale in the tick vector

    PubMed Central

    2014-01-01

    Background Pathogens dependent upon vectors for transmission to new hosts undergo environment specific changes in gene transcription dependent on whether they are replicating in the vector or the mammalian host. Differential gene transcription, especially of potential vaccine candidates, is of interest in Anaplasma marginale, the tick-borne causative agent of bovine anaplasmosis. Methods RNA-seq technology allowed a comprehensive analysis of the transcriptional status of A. marginale genes in two conditions: bovine host blood and tick derived cell culture, a model for the tick vector. Quantitative PCR was used to assess transcription of a set of genes in A. marginale infected tick midguts and salivary glands at two time points during the transmission cycle. Results Genes belonging to fourteen pathways or component groups were found to be differentially transcribed in A. marginale in the bovine host versus the tick vector. One of the most significantly altered groups was composed of surface proteins. Of the 56 genes included in the surface protein group, eight were up regulated and 26 were down regulated. The down regulated surface protein encoding genes include several that are well studied due to their immunogenicity and function. Quantitative PCR of a set of genes demonstrated that transcription in tick cell culture most closely approximates transcription in salivary glands of recently infected ticks. Conclusions The ISE6 tick cell culture line is an acceptable model for early infection in tick salivary glands, and reveals disproportionate down regulation of surface protein genes in the tick. Transcriptional profiling in other cell lines may help us simulate additional microenvironments. Understanding vector-specific alteration of gene transcription, especially of surface protein encoding genes, may aid in the development of vaccines or transmission blocking therapies. PMID:24751137

  7. The global gene expression profile of the secondary transition during pancreatic development.

    PubMed

    Willmann, Stefanie J; Mueller, Nikola S; Engert, Silvia; Sterr, Michael; Burtscher, Ingo; Raducanu, Aurelia; Irmler, Martin; Beckers, Johannes; Sass, Steffen; Theis, Fabian J; Lickert, Heiko

    2016-02-01

    Pancreas organogenesis is a highly dynamic process where neighboring tissue interactions lead to dynamic changes in gene regulatory networks that orchestrate endocrine, exocrine, and ductal lineage formation. To understand the spatio-temporal regulatory logic we have used the Forkhead transcription factor Foxa2-Venus fusion (FVF) knock-in reporter mouse to separate the FVF(+) pancreatic epithelium from the FVF(−) surrounding tissue (mesenchyme, neurons, blood, and blood vessels) to perform a genome-wide mRNA expression profiling at embryonic days (E) 12.5-15.5. Annotating genes and molecular processes suggest that FVF marks endoderm-derived multipotent epithelial progenitors at several lineage restriction steps, when the bulk of endocrine, exocrine and ductal cells are formed during the secondary transition. In the pancreatic epithelial compartment, we identified most known endocrine and exocrine lineage determining factors and diabetes-associated genes, but also unknown genes with spatio-temporal regulated pancreatic expression. In the non-endoderm-derived compartment, we identified many well-described regulatory genes that are not yet functionally annotated in pancreas development, emphasizing that neighboring tissue interactions are still ill defined. Pancreatic expression of over 635 genes was analyzed with them RNA in situ hybridization Genepaint public database. This validated the quality of the profiling data set and identified hundreds of genes with spatially restricted expression patterns in the pancreas. Some of these genes are also targeted by pancreatic transcription factors and show active chromatin marks in human islets of Langerhans. Thus, with the highest spatio-temporal resolution of a global gene expression profile during the secondary transition, our study enables to shed light on neighboring tissue interactions, developmental timing and diabetes gene regulation.

  8. Identification of Heat Responsive Genes in Brassica napus Siliques at the Seed-Filling Stage through Transcriptional Profiling

    PubMed Central

    Yang, Qingyong; Li, Xiaodong; Wan, Bingxi; Dong, Yanni; Wang, Xuemin; Zhou, Yongming

    2014-01-01

    High temperature stress results in yield loss and alterations to seed composition during seed filling in oilseed rape (Brassica napus). However, the mechanism underlying this heat response is poorly understood. In this study, global transcription profiles of 20 d-old siliques of B. napus were analyzed after heat stress using a Brassica 95k EST microarray. The up-regulated genes included many HSF/HSP transcripts and other heat-related marker genes, such as ROF2, DREB2a, MBF1c and Hsa32, reflecting the conservation of key heat resistance factors among plants. Other up-regulated genes were preferentially expressed in heat-stressed silique walls or seeds, including some transcription factors and potential developmental regulators. In contrast, down-regulated genes differed between the silique wall and seeds and were largely tied to the biological functions of each tissue, such as glucosinolate metabolism in the silique wall and flavonoid synthesis in seeds. Additionally, a large proportion (one-third) of these differentially expressed genes had unknown functions. Based on these gene expression profiles, Arabidopsis mutants for eight heat-induced Brassica homologous genes were treated with different heat stress methods, and thermotolerance varied with each mutation, heat stress regimen and plant development stage. At least two of the eight mutants exhibited sensitivity to the heat treatments, suggesting the importance of the respective genes in responding to heat stress. In summary, this study elucidated the molecular bases of the heat responses in siliques during later reproductive stages and provides valuable information and gene resources for the genetic improvement of heat tolerance in oilseed rape breeding. PMID:25013950

  9. Identification of heat responsive genes in Brassica napus siliques at the seed-filling stage through transcriptional profiling.

    PubMed

    Yu, Erru; Fan, Chuchuan; Yang, Qingyong; Li, Xiaodong; Wan, Bingxi; Dong, Yanni; Wang, Xuemin; Zhou, Yongming

    2014-01-01

    High temperature stress results in yield loss and alterations to seed composition during seed filling in oilseed rape (Brassica napus). However, the mechanism underlying this heat response is poorly understood. In this study, global transcription profiles of 20 d-old siliques of B. napus were analyzed after heat stress using a Brassica 95k EST microarray. The up-regulated genes included many HSF/HSP transcripts and other heat-related marker genes, such as ROF2, DREB2a, MBF1c and Hsa32, reflecting the conservation of key heat resistance factors among plants. Other up-regulated genes were preferentially expressed in heat-stressed silique walls or seeds, including some transcription factors and potential developmental regulators. In contrast, down-regulated genes differed between the silique wall and seeds and were largely tied to the biological functions of each tissue, such as glucosinolate metabolism in the silique wall and flavonoid synthesis in seeds. Additionally, a large proportion (one-third) of these differentially expressed genes had unknown functions. Based on these gene expression profiles, Arabidopsis mutants for eight heat-induced Brassica homologous genes were treated with different heat stress methods, and thermotolerance varied with each mutation, heat stress regimen and plant development stage. At least two of the eight mutants exhibited sensitivity to the heat treatments, suggesting the importance of the respective genes in responding to heat stress. In summary, this study elucidated the molecular bases of the heat responses in siliques during later reproductive stages and provides valuable information and gene resources for the genetic improvement of heat tolerance in oilseed rape breeding.

  10. Comparative genomics and transcriptional profiles of Saccharopolyspora erythraea NRRL 2338 and a classically improved erythromycin over-producing strain

    PubMed Central

    2012-01-01

    Background The molecular mechanisms altered by the traditional mutation and screening approach during the improvement of antibiotic-producing microorganisms are still poorly understood although this information is essential to design rational strategies for industrial strain improvement. In this study, we applied comparative genomics to identify all genetic changes occurring during the development of an erythromycin overproducer obtained using the traditional mutate-and- screen method. Results Compared with the parental Saccharopolyspora erythraea NRRL 2338, the genome of the overproducing strain presents 117 deletion, 78 insertion and 12 transposition sites, with 71 insertion/deletion sites mapping within coding sequences (CDSs) and generating frame-shift mutations. Single nucleotide variations are present in 144 CDSs. Overall, the genomic variations affect 227 proteins of the overproducing strain and a considerable number of mutations alter genes of key enzymes in the central carbon and nitrogen metabolism and in the biosynthesis of secondary metabolites, resulting in the redirection of common precursors toward erythromycin biosynthesis. Interestingly, several mutations inactivate genes coding for proteins that play fundamental roles in basic transcription and translation machineries including the transcription anti-termination factor NusB and the transcription elongation factor Efp. These mutations, along with those affecting genes coding for pleiotropic or pathway-specific regulators, affect global expression profile as demonstrated by a comparative analysis of the parental and overproducer expression profiles. Genomic data, finally, suggest that the mutate-and-screen process might have been accelerated by mutations in DNA repair genes. Conclusions This study helps to clarify the mechanisms underlying antibiotic overproduction providing valuable information about new possible molecular targets for rationale strain improvement. PMID:22401291

  11. Transcriptome profiling revealed novel transcriptional regulators in maize responses to Ostrinia furnacalis and jasmonic acid

    PubMed Central

    Teng, Shouzhen; Liang, Haisheng; Xin, Hongjia; Gao, Hongjiang; Huang, Dafang

    2017-01-01

    Chewing insects cause severe yield losses in crop production worldwide. Crop plants counteract chewing insects by transcriptionally promoting a repertoire of defense gene products that are either toxic to, or attractive to the natural enemies of, pest insects. However, the complexity of the transcriptional reprogramming in plant defense response against chewing insects is still not well understood. In this study, the genome-wide early responses in maize seedlings to Asian corn borer (ACB, Ostrinia furnacalis) and also to jasmonic acid(JA), the pivotal phytohormone controlling plant defense response against herbivory, were transcriptionally profiled by RNA-Seq. Clustering of differentially expressed genes (DEGs) along with functional enrichment analysis revealed important biological processes regulated in response to ACB infestation and/or jasmonic acid. Moreover, DEGs with distinct expression patterns were differentially enriched with diverse families of cis-elements on their promoters. Multiple inventories of differentially expressed transcription factors (DETFs) in each DEG group were also analyzed. A transient expression assay using transfected maize protoplastswas established to examine the potential roles of DETFs in maize defense response and JA signaling, and this was used to show that ZmNAC60, an ACB- and JA-inducible DETF, represented a novel positive regulator of JA and defense pathway genes. This study provided a comprehensive transcriptional picture for the early dynamics of maize defense responses and JA signaling, and the identification of DETFs offered potential targets for further functional genomics investigation of master regulators in maize defense responses against herbivory. PMID:28520800

  12. Transcriptome profiling revealed novel transcriptional regulators in maize responses to Ostrinia furnacalis and jasmonic acid.

    PubMed

    Wang, Hai; Li, Shengyan; Teng, Shouzhen; Liang, Haisheng; Xin, Hongjia; Gao, Hongjiang; Huang, Dafang; Lang, Zhihong

    2017-01-01

    Chewing insects cause severe yield losses in crop production worldwide. Crop plants counteract chewing insects by transcriptionally promoting a repertoire of defense gene products that are either toxic to, or attractive to the natural enemies of, pest insects. However, the complexity of the transcriptional reprogramming in plant defense response against chewing insects is still not well understood. In this study, the genome-wide early responses in maize seedlings to Asian corn borer (ACB, Ostrinia furnacalis) and also to jasmonic acid(JA), the pivotal phytohormone controlling plant defense response against herbivory, were transcriptionally profiled by RNA-Seq. Clustering of differentially expressed genes (DEGs) along with functional enrichment analysis revealed important biological processes regulated in response to ACB infestation and/or jasmonic acid. Moreover, DEGs with distinct expression patterns were differentially enriched with diverse families of cis-elements on their promoters. Multiple inventories of differentially expressed transcription factors (DETFs) in each DEG group were also analyzed. A transient expression assay using transfected maize protoplastswas established to examine the potential roles of DETFs in maize defense response and JA signaling, and this was used to show that ZmNAC60, an ACB- and JA-inducible DETF, represented a novel positive regulator of JA and defense pathway genes. This study provided a comprehensive transcriptional picture for the early dynamics of maize defense responses and JA signaling, and the identification of DETFs offered potential targets for further functional genomics investigation of master regulators in maize defense responses against herbivory.

  13. Characterization and Improvement of RNA-Seq Precision in Quantitative Transcript Expression Profiling

    SciTech Connect

    Labaj, Pawel P.; Leparc, German G.; Linggi, Bryan E.; Markillie, Lye Meng; Wiley, H. S.; Kreil, David P.

    2011-07-01

    Measurement precision determines the power of any analysis to reliably identify significant signals, such as in screens for differential expression, independent of whether the experimental design incorporates replicates or not. With the compilation of large scale RNA-Seq data sets with technical replicate samples, however, we can now, for the first time, perform a systematic analysis of the precision of expression level estimates from massively parallel sequencing technology. This then allows considerations for its improvement by computational or experimental means. Results: We report on a comprehensive study of target coverage and measurement precision, including their dependence on transcript expression levels, read depth and other parameters. In particular, an impressive target coverage of 84% of the estimated true transcript population could be achieved with 331 million 50 bp reads, with diminishing returns from longer read lengths and even less gains from increased sequencing depths. Most of the measurement power (75%) is spent on only 7% of the known transcriptome, however, making less strongly expressed transcripts harder to measure. Consequently, less than 30% of all transcripts could be quantified reliably with a relative error < 20%. Based on established tools, we then introduce a new approach for mapping and analyzing sequencing reads that yields substantially improved performance in gene expression profiling, increasing the number of transcripts that can reliably be quantified to over 40%. Extrapolations to higher sequencing depths highlight the need for efficient complementary steps. In discussion we outline possible experimental and computational strategies for further improvements in quantification precision.

  14. Post-transcriptional global regulation by CsrA in bacteria.

    PubMed

    Timmermans, Johan; Van Melderen, Laurence

    2010-09-01

    Global regulation allows bacteria to rapidly modulate the expression of a large variety of unrelated genes in response to environmental changes. Global regulators act at different levels of gene expression. This review focuses on CsrA, a post-transcriptional regulator that affects translation of its gene targets by binding mRNAs. CsrA controls a large variety of physiological processes such as central carbon metabolism, motility and biofilm formation. The activity of CsrA is itself tightly regulated by the CsrB and CsrC small RNAs and the BarA-UvrY two-component system.

  15. Global Transcriptional Dynamics of Diapause Induction in Non-Blood-Fed and Blood-Fed Aedes albopictus

    PubMed Central

    Huang, Xin; Poelchau, Monica F.; Armbruster, Peter A.

    2015-01-01

    Background Aedes albopictus is a vector of increasing public health concern due to its rapid global range expansion and ability to transmit Dengue virus, Chikungunya virus and a wide range of additional arboviruses. Traditional vector control strategies have been largely ineffective against Ae. albopictus and novel approaches are urgently needed. Photoperiodic diapause is a crucial ecological adaptation in a wide range of temperate insects. Therefore, targeting the molecular regulation of photoperiodic diapause or diapause-associated physiological processes could provide the basis of novel approaches to vector control. Methodology/Principal Findings We investigated the global transcriptional profiles of diapause induction in Ae. albopictus by performing paired-end RNA-Seq of biologically replicated libraries. We sequenced RNA from whole bodies of adult females reared under diapause-inducing and non-diapause-inducing photoperiods either with or without a blood meal. We constructed a comprehensive transcriptome assembly that incorporated previous assemblies and represents over 14,000 annotated dipteran gene models. Mapping of sequence reads to the transcriptome identified differential expression of 2,251 genes in response to diapause-inducing short-day photoperiods. In non-blood-fed females, potential regulatory elements of diapause induction were transcriptionally up-regulated, including two of the canonical circadian clock genes, timeless and cryptochrome 1. In blood-fed females, genes in metabolic pathways related to energy production and offspring provisioning were differentially expressed under diapause-inducing conditions, including the oxidative phosphorylation pathway and lipid metabolism genes. Conclusions/Significance This study is the first to utilize powerful RNA-Seq technologies to elucidate the transcriptional basis of diapause induction in any insect. We identified candidate genes and pathways regulating diapause induction, including a conserved set of

  16. Global methylation profiles in DNA from different blood cell types.

    PubMed

    Wu, Hui-Chen; Delgado-Cruzata, Lissette; Flom, Julie D; Kappil, Maya; Ferris, Jennifer S; Liao, Yuyan; Santella, Regina M; Terry, Mary Beth

    2011-01-01

    DNA methylation measured in white blood cell DNA is increasingly being used as in studies of cancer susceptibility. However, little is known about the correlation between different assays to measure global methylation and whether the source of DNA matters when examining methylation profiles in different blood cell types. Using information from 620 women, 217 and 403 women with DNA available from granulocytes (Gran), and total white blood cells (WBC), respectively, and 48 women with DNA available from four different sources (WBC, Gran, mononuclear (MN), and lymphoblastoid cell lines (LCL)), we compared DNA methylation for three repetitive elements (LINE1, Sat2, Alu) by MethyLight, luminometric methylation assay (LUMA), and [(3)H]-methyl acceptance assay. For four of the five assays, DNA methylation levels measured in Gran were not correlated with methylation in LBC, MN, or WBC; the exception was Sat2. DNA methylation in LCL was correlated with methylation in MN and WBC for the [(3)H]-methyl acceptance, LINE1, and Alu assays. Methylation in MN was correlated with methylation in WBC for the [(3)H]-methyl acceptance and LUMA assays. When we compared the five assays to each other by source of DNA, we observed statistically significant positive correlations ranging from 0.3-0.7 for each cell type with one exception (Sat2 and Alu in MN). Among the 620 women stratified by DNA source, correlations among assays were highest for the three repetitive elements (range 0.39-0.64). Results from the LUMA assay were modestly correlated with LINE1 (0.18-0.20). These results suggest that both assay and source of DNA are critical components in the interpretation of global DNA methylation patterns from WBC.

  17. Tailoring high-density oligonucleotide arrays for transcript profiling of different Arabidopsis thaliana accessions using a sequence-based approach.

    PubMed

    Boudichevskaia, Anastassia; Cao, Hieu Xuan; Schmidt, Renate

    2017-08-01

    Excluding polymorphic probes from GeneChip (®) transcript profiling experiments via a sequence-based approach results in improved detection of differentially expressed genes in developing seeds of Arabidopsis thaliana accessions Col-0 and C24. GeneChip(®) arrays represent a powerful tool for transcript profiling experiments. The ATH1 GeneChip(®) has been designed based on the sequence of the Arabidopsis thaliana reference genome Col-0, hence the features on the array exactly match the sequences of Col-0 transcripts. In contrast, transcripts of other A. thaliana accessions or related species may show nucleotide differences and/or insertions/deletions when compared to the corresponding Col-0 transcripts, therefore, comparisons of transcript abundance involving different A. thaliana accessions or related species may be compromised for a certain number of transcripts. To tackle this limitation, a sequence-based strategy was developed. Only features on the array that were identical in sequence for the specimen to be compared were considered for transcript profiling. The impact of the proposed strategy was evaluated for transcript profiles that were established for developing seeds of A. thaliana accessions Col-0 and C24.

  18. Omic personality: implications of stable transcript and methylation profiles for personalized medicine.

    PubMed

    Tabassum, Rubina; Sivadas, Ambily; Agrawal, Vartika; Tian, Haozheng; Arafat, Dalia; Gibson, Greg

    2015-08-13

    Personalized medicine is predicated on the notion that individual biochemical and genomic profiles are relatively constant in times of good health and to some extent predictive of disease or therapeutic response. We report a pilot study quantifying gene expression and methylation profile consistency over time, addressing the reasons for individual uniqueness, and its relation to N = 1 phenotypes. Whole blood samples from four African American women, four Caucasian women, and four Caucasian men drawn from the Atlanta Center for Health Discovery and Well Being study at three successive 6-month intervals were profiled by RNA-Seq, miRNA-Seq, and Illumina Methylation 450 K arrays. Standard regression approaches were used to evaluate the proportion of variance for each type of omic measure among individuals, and to quantify correlations among measures and with clinical attributes related to wellness. Longitudinal omic profiles were in general highly consistent over time, with an average of 67 % variance in transcript abundance, 42 % in CpG methylation level (but 88 % for the most differentiated CpG per gene), and 50 % in miRNA abundance among individuals, which are all comparable to 74 % variance among individuals for 74 clinical traits. One third of the variance could be attributed to differential blood cell type abundance, which was also fairly stable over time, and a lesser amount to expression quantitative trait loci (eQTL) effects. Seven conserved axes of covariance that capture diverse aspects of immune function explained over half of the variance. These axes also explained a considerable proportion of individually extreme transcript abundance, namely approximately 100 genes that were significantly up-regulated or down-regulated in each person and were in some cases enriched for relevant gene activities that plausibly associate with clinical attributes. A similar fraction of genes had individually divergent methylation levels, but these did not overlap with the

  19. Genetic mapping and transcription analyses of resistance gene loci in potato using NBS profiling.

    PubMed

    Brugmans, Bart; Wouters, Doret; van Os, Hans; Hutten, Ronald; van der Linden, Gerard; Visser, Richard G F; van Eck, Herman J; van der Vossen, Edwin A G

    2008-11-01

    NBS profiling is a method for the identification of resistance gene analog (RGA) derived fragments. Here we report the use of NBS profiling for the genome wide mapping of RGA loci in potato. NBS profiling analyses on a minimal set of F1 genotypes of the diploid mapping population previously used to generate the ultra dense (UHD) genetic map of potato, allowed us to efficiently map polymorphic RGA fragments relative to 10,000 existing AFLP markers. In total, 34 RGA loci were mapped, of which only 13 contained RGA sequences homologous to RGAs genetically positioned at approximately similar positions in potato or tomato. The remaining RGA loci mapped either at approximate chromosomal regions previously shown to contain RGAs in potato or tomato without sharing homology to these RGAs, or mapped at positions not yet identified as RGA-containing regions. In addition to markers representing RGAs with unknown functions, segregating markers were detected that were closely linked to four functional R genes that segregate in the UHD mapping population. To explore the potential of NBS profiling in RGA transcription analyses, RNA isolated from different tissues was used as template for NBS profiling. Of all the fragments amplified approximately 15% showed putative intensity or absent/present differences between different tissues suggesting putative tissue specific RGA or R gene transcription. Putative absent/present differences between individuals were also found. In addition to being a powerful tool for generating candidate gene markers linked to R gene loci, NBS profiling, when applied to cDNA, can be instrumental in identifying those members of an R gene cluster that are transcribed, and thus putatively functional.

  20. Bombyx mori Transcription Factors: Genome-Wide Identification, Expression Profiles and Response to Pathogens by Microarray Analysis

    PubMed Central

    Huang, Lulin; Cheng, Tingcai; Xu, Pingzhen; Fang, Ting; Xia, Qingyou

    2012-01-01

    Transcription factors are present in all living organisms, and play vital roles in a wide range of biological processes. Studies of transcription factors will help reveal the complex regulation mechanism of organisms. So far, hundreds of domains have been identified that show transcription factor activity. Here, 281 reported transcription factor domains were used as seeds to search the transcription factors in genomes of Bombyx mori L. (Lepidoptera: Bombycidae) and four other model insects. Overall, 666 transcription factors including 36 basal factors and 630 other factors were identified in B. mori genome, which accounted for 4.56% of its genome. The silkworm transcription factors' expression profiles were investigated in relation to multiple tissues, developmental stages, sexual dimorphism, and responses to oral infection by pathogens and direct bacterial injection. These all provided rich clues for revealing the transcriptional regulation mechanism of silkworm organ differentiation, growth and development, sexual dimorphism, and response to pathogen infection. PMID:22943524

  1. Globally profiling sialylation status of macrophages upon statin treatment.

    PubMed

    Wang, Dan; Nie, Huan; Ozhegov, Evgeny; Wang, Lin; Zhou, Aimin; Li, Yu; Sun, Xue-Long

    2015-09-01

    Sialic acids (SAs) are widely expressed on immune cells and their levels and linkages named as sialylation status vary upon cellular environment changes related to both physiological and pathological processes. In this study, we performed a global profiling of the sialylation status of macrophages and their release of SAs in the cell culture medium by using flow cytometry, confocal microscopy and liquid chromatography tandem mass spectrometry (LC-MS/MS). Both flow cytometry and confocal microscopy results showed that cell surface α-2,3-linked SAs were predominant in the normal culture condition and changed slightly upon treatment with atorvastatin for 24 h, whereas α-2,6-linked SAs were negligible in the normal culture condition but significantly increased after treatment. Meanwhile, the amount of total cellular SAs increased about three times (from 369 ± 29 to 1080 ± 50 ng/mL) upon treatment as determined by the LC-MS/MS method. On the other hand, there was no significant change for secreted free SAs and conjugated SAs in the medium. These results indicated that the cell surface α-2,6 sialylation status of macrophages changes distinctly upon atorvastatin stimulation, which may reflect on the biological functions of the cells. © The Author 2015. Published by Oxford University Press. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Effect of chronic uremia on the transcriptional profile of the calcified aorta analyzed by RNA sequencing

    PubMed Central

    Rukov, Jakob L.; Gravesen, Eva; Mace, Maria L.; Hofman-Bang, Jacob; Vinther, Jeppe; Andersen, Claus B.; Lewin, Ewa

    2016-01-01

    The development of vascular calcification (VC) in chronic uremia (CU) is a tightly regulated process controlled by factors promoting and inhibiting mineralization. Next-generation high-throughput RNA sequencing (RNA-seq) is a powerful and sensitive tool for quantitative gene expression profiling and the detection of differentially expressed genes. In the present study, we, for the first time, used RNA-seq to examine rat aorta transcriptomes from CU rats compared with control rats. Severe VC was induced in CU rats, which lead to extensive changes in the transcriptional profile. Among the 10,153 genes with an expression level of >1 reads/kilobase transcript/million mapped reads, 2,663 genes were differentially expressed with 47% upregulated genes and 53% downregulated genes in uremic rats. Significantly deregulated genes were enriched for ontologies related to the extracellular matrix, response to wounding, organic substance, and ossification. The individually affected genes were of relevance to osteogenic transformation, tissue calcification, and Wnt modulation. Downregulation of the Klotho gene in uremia is believed to be involved in the development of VC, but it is debated whether the effect is caused by circulating Klotho only or if Klotho is produced locally in the vasculature. We found that Klotho was neither expressed in the normal aorta nor calcified aorta by RNA-seq. In conclusion, we demonstrated extensive changes in the transcriptional profile of the uremic calcified aorta, which were consistent with a shift in phenotype from vascular tissue toward an osteochondrocytic transcriptome profile. Moreover, neither the normal vasculature nor calcified vasculature in CU expresses Klotho. PMID:26739890

  3. Effect of chronic uremia on the transcriptional profile of the calcified aorta analyzed by RNA sequencing.

    PubMed

    Rukov, Jakob L; Gravesen, Eva; Mace, Maria L; Hofman-Bang, Jacob; Vinther, Jeppe; Andersen, Claus B; Lewin, Ewa; Olgaard, Klaus

    2016-03-15

    The development of vascular calcification (VC) in chronic uremia (CU) is a tightly regulated process controlled by factors promoting and inhibiting mineralization. Next-generation high-throughput RNA sequencing (RNA-seq) is a powerful and sensitive tool for quantitative gene expression profiling and the detection of differentially expressed genes. In the present study, we, for the first time, used RNA-seq to examine rat aorta transcriptomes from CU rats compared with control rats. Severe VC was induced in CU rats, which lead to extensive changes in the transcriptional profile. Among the 10,153 genes with an expression level of >1 reads/kilobase transcript/million mapped reads, 2,663 genes were differentially expressed with 47% upregulated genes and 53% downregulated genes in uremic rats. Significantly deregulated genes were enriched for ontologies related to the extracellular matrix, response to wounding, organic substance, and ossification. The individually affected genes were of relevance to osteogenic transformation, tissue calcification, and Wnt modulation. Downregulation of the Klotho gene in uremia is believed to be involved in the development of VC, but it is debated whether the effect is caused by circulating Klotho only or if Klotho is produced locally in the vasculature. We found that Klotho was neither expressed in the normal aorta nor calcified aorta by RNA-seq. In conclusion, we demonstrated extensive changes in the transcriptional profile of the uremic calcified aorta, which were consistent with a shift in phenotype from vascular tissue toward an osteochondrocytic transcriptome profile. Moreover, neither the normal vasculature nor calcified vasculature in CU expresses Klotho. Copyright © 2016 the American Physiological Society.

  4. Breeding response of transcript profiling in developing seeds of Brassica napus.

    PubMed

    Hu, Yaping; Wu, Gang; Cao, Yinglong; Wu, Yuhua; Xiao, Ling; Li, Xiaodan; Lu, Changming

    2009-05-24

    The upgrading of rapeseed cultivars has resulted in a substantial improvement in yield and quality in China over the past 30 years. With the selective pressure against fatty acid composition and oil content, high erucic acid- and low oil-content cultivars have been replaced by low erucic acid- and high oil-content cultivars. The high erucic acid cultivar Zhongyou 821 and its descendent, low erucic acid cultivar Zhongshuang 9, are representatives of two generations of the most outstanding Chinese rapeseed cultivars (B. napus) developed the past 2 decades. This paper compares the transcriptional profiles of Zhongshuang 9 and Zhongyou 821 for 32 genes that are principally involved in lipid biosynthesis during seed development in order to elucidate how the transcriptional profiles of these genes responded to quality improvement over the past 20 years. Comparison of the cultivar Zhongyou 821 with its descendent, Zhongshuang 9, shows that the transcriptional levels of seven of the 32 genes were upregulated by 30% to 109%, including FAD3, ACCase, FAE1, GKTP, Caleosin, GAPDH, and PEPC. Of the 32 genes, 10 (KAS3, beta-CT, BcRK6, P450, FatA, Oleosin, FAD6, FatB, alpha-CT and SUC1) were downregulated by at least 20% and most by 50%. The Napin gene alone accounted for over 75% of total transcription from all 32 genes assessed in both cultivars. Most of the genes showed significant correlation with fatty acid accumulation, but the correlation in ZS9 was significantly different from that in ZY821. Higher KCR2 activity is associated with higher C16:0, C18:0, and C18:2 in both cultivars, lower C22:1 and total fatty acid content in ZY821, and lower 18:1 in ZS9. This paper illustrates the response of the transcription levels of 32 genes to breeding in developing rapeseed seeds. Both cultivars showed similar transcription profiles, with the Napin gene predominantly transcribed. Selective pressure for zero erucic acid, low glucosinolate, high oleic acid and high oil content, as well

  5. Breeding response of transcript profiling in developing seeds of Brassica napus

    PubMed Central

    Hu, Yaping; Wu, Gang; Cao, Yinglong; Wu, Yuhua; Xiao, Ling; Li, Xiaodan; Lu, Changming

    2009-01-01

    Background The upgrading of rapeseed cultivars has resulted in a substantial improvement in yield and quality in China over the past 30 years. With the selective pressure against fatty acid composition and oil content, high erucic acid- and low oil-content cultivars have been replaced by low erucic acid- and high oil-content cultivars. The high erucic acid cultivar Zhongyou 821 and its descendent, low erucic acid cultivar Zhongshuang 9, are representatives of two generations of the most outstanding Chinese rapeseed cultivars (B. napus) developed the past 2 decades. This paper compares the transcriptional profiles of Zhongshuang 9 and Zhongyou 821 for 32 genes that are principally involved in lipid biosynthesis during seed development in order to elucidate how the transcriptional profiles of these genes responded to quality improvement over the past 20 years. Results Comparison of the cultivar Zhongyou 821 with its descendent, Zhongshuang 9, shows that the transcriptional levels of seven of the 32 genes were upregulated by 30% to 109%, including FAD3, ACCase, FAE1, GKTP, Caleosin, GAPDH, and PEPC. Of the 32 genes, 10 (KAS3, β-CT, BcRK6, P450, FatA, Oleosin, FAD6, FatB, α-CT and SUC1) were downregulated by at least 20% and most by 50%. The Napin gene alone accounted for over 75% of total transcription from all 32 genes assessed in both cultivars. Most of the genes showed significant correlation with fatty acid accumulation, but the correlation in ZS9 was significantly different from that in ZY821. Higher KCR2 activity is associated with higher C16:0, C18:0, and C18:2 in both cultivars, lower C22:1 and total fatty acid content in ZY821, and lower 18:1 in ZS9. Conclusion This paper illustrates the response of the transcription levels of 32 genes to breeding in developing rapeseed seeds. Both cultivars showed similar transcription profiles, with the Napin gene predominantly transcribed. Selective pressure for zero erucic acid, low glucosinolate, high oleic acid and

  6. Bifractality of human DNA strand-asymmetry profiles results from transcription

    NASA Astrophysics Data System (ADS)

    Nicolay, S.; Brodie Of Brodie, E. B.; Touchon, M.; Audit, B.; D'Aubenton-Carafa, Y.; Thermes, C.; Arneodo, A.

    2007-03-01

    We use the wavelet transform modulus maxima method to investigate the multifractal properties of strand-asymmetry DNA walk profiles in the human genome. This study reveals the bifractal nature of these profiles, which involve two competing scale-invariant (up to repeat-masked distances ≲40kbp ) components characterized by Hölder exponents h1=0.78 and h2=1 , respectively. The former corresponds to the long-range-correlated homogeneous fluctuations previously observed in DNA walks generated with structural codings. The latter is associated with the presence of jumps in the original strand-asymmetry noisy signal S . We show that a majority of upward (downward) jumps colocate with gene transcription start (end) sites. Here 7228 human gene transcription start sites from the refGene database are found within 2kbp from an upward jump of amplitude ΔS⩾0.1 which suggests that about 36% of annotated human genes present significant transcription-induced strand asymmetry and very likely high expression rate.

  7. Gene Expression Under the Influence: Transcriptional Profiling of Ethanol in the Brain

    PubMed Central

    Contet, Candice

    2013-01-01

    Sensitivity to ethanol intoxication, propensity to drink ethanol and vulnerability to develop alcoholism are all influenced by genetic factors. Conversely, exposure to ethanol or subsequent withdrawal produce gene expression changes, which, in combination with environmental variables, may participate in the emergence of compulsive drinking and relapse. The present review offers an integrated perspective on brain gene expression profiling in rodent models of predisposition to differential ethanol sensitivity or consumption, in rats and mice subjected to acute or chronic ethanol exposure, as well as in human alcoholics. The functional categories over-represented among differentially expressed genes suggest that the transcriptional effects of chronic ethanol consumption contribute to the neuroplasticity and neurotoxicity characteristic of alcoholism. Importantly, ethanol produces distinct transcriptional changes within the different brain regions involved in intoxication, reinforcement and addiction. Special emphasis is put on recent profiling studies that have provided some insights into the molecular mechanisms potentially mediating genome-wide regulation of gene expression by ethanol. In particular, current evidence for a role of transcription factors, chromatin remodeling and microRNAs in coordinating the expression of large sets of genes in animals predisposed to excessive ethanol drinking or exposed to protracted abstinence, as well as in human alcoholics, is presented. Finally, studies that have compared ethanol with other drugs of abuse have highlighted common gene expression patterns that may play a central role in drug addiction. The availability of novel technologies and a focus on mechanistic approaches are shaping the future of ethanol transcriptomics. PMID:24078902

  8. Comparison of susceptibility and transcription profile of the new antifungal hassallidin A with caspofungin

    SciTech Connect

    Neuhof, Torsten . E-mail: t.neuhof@gmx.de; Seibold, Michael; Thewes, Sascha; Laue, Michael; Han, Chang-Ok; Hube, Bernhard; Doehren, Hans von

    2006-10-20

    This is First report on the antifungal effects of the new glycolipopeptide hassallidin A. Due to related molecular structure moieties between hassallidin A and the established antifungal drug caspofungin we assumed parallels in the effects on cell viability. Therefore we compared hassallidin A with caspofungin by antifungal susceptibility testing and by analysing the genome-wide transcriptional profile of Candida albicans. Furthermore, we examined modifications in ultracellular structure due to hassallidin A treatment by electron microscopy. Hassallidin A was found to be fungicidal against all tested Candida species and Cryptococcus neoformans isolates. MICs ranged from 4 to 8 {mu}g/ml, independently from the species. Electron microscopy revealed noticeable ultrastructural changes in C. albicans cells exposed to hassallidin A. Comparing the transcriptional profile of C. albicans cells treated with hassallidin A to that of cells exposed to caspofungin, only 20 genes were found to be similarly up- or down-regulated in both assays, while 227 genes were up- or down-regulated induced by hassallidin A specifically. Genes up-regulated in cells exposed to hassallidin A included metabolic and mitotic genes, while genes involved in DNA repair, vesicle docking, and membrane fusion were down-regulated. In summary, our data suggest that, although hassallidin A and caspofungin have similar structures, however, the effects on susceptibility and transcriptional response to yeasts seem to be different.

  9. Transcriptional profiling of the pea shoot apical meristem reveals processes underlying its function and maintenance

    PubMed Central

    Wong, Chui E; Bhalla, Prem L; Ottenhof, Harald; Singh, Mohan B

    2008-01-01

    Background Despite the importance of the shoot apical meristem (SAM) in plant development and organ formation, our understanding of the molecular mechanisms controlling its function is limited. Genomic tools have the potential to unravel the molecular mysteries of the SAM, and legume systems are increasingly being used in plant-development studies owing to their unique characteristics such as nitrogen fixation, secondary metabolism, and pod development. Garden pea (Pisum sativum) is a well-established classic model species for genetics studies that has been used since the Mendel era. In addition, the availability of a plethora of developmental mutants makes pea an ideal crop legume for genomics studies. This study aims to utilise genomics tools in isolating genes that play potential roles in the regulation of SAM activity. Results In order to identify genes that are differentially expressed in the SAM, we generated 2735 ESTs from three cDNA libraries derived from freshly micro-dissected SAMs from 10-day-old garden peas (Pisum sativum cv Torsdag). Custom-designed oligonucleotide arrays were used to compare the transcriptional profiles of pea SAMs and non-meristematic tissues. A total of 184 and 175 transcripts were significantly up- or down-regulated in the pea SAM, respectively. As expected, close to 61% of the transcripts down-regulated in the SAM were found in the public database, whereas sequences from the same source only comprised 12% of the genes that were expressed at higher levels in the SAM. This highlights the under-representation of transcripts from the meristematic tissues in the current public pea protein database, and demonstrates the utility of our SAM EST collection as an essential genetic resource for revealing further information on the regulation of this developmental process. In addition to unknowns, many of the up-regulated transcripts are known to encode products associated with cell division and proliferation, epigenetic regulation, auxin

  10. The Impact of Endurance Training on Human Skeletal Muscle Memory, Global Isoform Expression and Novel Transcripts

    PubMed Central

    Lindholm, Maléne E; Giacomello, Stefania; Werne Solnestam, Beata; Kjellqvist, Sanela

    2016-01-01

    Regularly performed endurance training has many beneficial effects on health and skeletal muscle function, and can be used to prevent and treat common diseases e.g. cardiovascular disease, type II diabetes and obesity. The molecular adaptation mechanisms regulating these effects are incompletely understood. To date, global transcriptome changes in skeletal muscles have been studied at the gene level only. Therefore, global isoform expression changes following exercise training in humans are unknown. Also, the effects of repeated interventions on transcriptional memory or training response have not been studied before. In this study, 23 individuals trained one leg for three months. Nine months later, 12 of the same subjects trained both legs in a second training period. Skeletal muscle biopsies were obtained from both legs before and after both training periods. RNA sequencing analysis of all 119 skeletal muscle biopsies showed that training altered the expression of 3,404 gene isoforms, mainly associated with oxidative ATP production. Fifty-four genes had isoforms that changed in opposite directions. Training altered expression of 34 novel transcripts, all with protein-coding potential. After nine months of detraining, no training-induced transcriptome differences were detected between the previously trained and untrained legs. Although there were several differences in the physiological and transcriptional responses to repeated training, no coherent evidence of an endurance training induced transcriptional skeletal muscle memory was found. This human lifestyle intervention induced differential expression of thousands of isoforms and several transcripts from unannotated regions of the genome. It is likely that the observed isoform expression changes reflect adaptational mechanisms and processes that provide the functional and health benefits of regular physical activity. PMID:27657503

  11. Global RNA Half-Life Analysis in Escherichia coli Reveals Positional Patterns of Transcript Degradation

    PubMed Central

    Selinger, Douglas W.; Saxena, Rini Mukherjee; Cheung, Kevin J.; Church, George M.; Rosenow, Carsten

    2003-01-01

    Subgenic-resolution oligonucleotide microarrays were used to study global RNA degradation in wild-type Escherichia coli MG1655. RNA chemical half-lives were measured for 1036 open reading frames (ORFs) and for 329 known and predicted operons. The half-life of total mRNA was 6.8 min under the conditions tested. We also observed significant relationships between gene functional assignments and transcript stability. Unexpectedly, transcription of a single operon (tdcABCDEFG) was relatively rifampicin-insensitive and showed significant increases 2.5 min after rifampicin addition. This supports a novel mechanism of transcription for the tdc operon, whose promoter lacks any recognizable ς binding sites. Probe by probe analysis of all known and predicted operons showed that the 5′ ends of operons degrade, on average, more quickly than the rest of the transcript, with stability increasing in a 3′ direction, supporting and further generalizing the current model of a net 5′ to 3′ directionality of degradation. Hierarchical clustering analysis of operon degradation patterns revealed that this pattern predominates but is not exclusive. We found a weak but highly significant correlation between the degradation of adjacent operon regions, suggesting that stability is determined by a combination of local and operon-wide stability determinants. The 16 ORF dcw gene cluster, which has a complex promoter structure and a partially characterized degradation pattern, was studied at high resolution, allowing a detailed and integrated description of its abundance and degradation. We discuss the application of subgenic resolution DNA microarray analysis to study global mechanisms of RNA transcription and processing. PMID:12566399

  12. Identification and expression profiles of the WRKY transcription factor family in Ricinus communis.

    PubMed

    Li, Hui-Liang; Zhang, Liang-Bo; Guo, Dong; Li, Chang-Zhu; Peng, Shi-Qing

    2012-07-25

    In plants, WRKY proteins constitute a large family of transcription factors. They are involved in many biological processes, such as plant development, metabolism, and responses to biotic and abiotic stresses. A large number of WRKY transcription factors have been reported from Arabidopsis, rice, and other higher plants. The recent publication of the draft genome sequence of castor bean (Ricinus communis) has allowed a genome-wide search for R. communis WRKY (RcWRKY) transcription factors and the comparison of these positively identified proteins with their homologs in model plants. A total of 47 WRKY genes were identified in the castor bean genome. According to the structural features of the WRKY domain, the RcWRKY are classified into seven main phylogenetic groups. Furthermore, putative orthologs of RcWRKY proteins in Arabidopsis and rice could now be assigned. An analysis of expression profiles of RcWRKY genes indicates that 47 WRKY genes display differential expressions either in their transcript abundance or expression patterns under normal growth conditions. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Galactinol synthase transcriptional profile in two genotypes of Coffea canephora with contrasting tolerance to drought

    PubMed Central

    Santos, Tiago Benedito Dos; de Lima, Rogério Barbosa; Nagashima, Getúlio Takashi; Petkowicz, Carmen Lucia de Oliveira; Carpentieri-Pípolo, Valéria; Pereira, Luiz Filipe Protasio; Domingues, Douglas Silva; Vieira, Luiz Gonzaga Esteves

    2015-01-01

    Increased synthesis of galactinol and raffinose family oligosaccharides (RFOs) has been reported in vegetative tissues in response to a range of abiotic stresses. In this work, we evaluated the transcriptional profile of a Coffea canephora galactinol synthase gene (CcGolS1) in two clones that differed in tolerance to water deficit in order to assess the contribution of this gene to drought tolerance. The expression of CcGolS1 in leaves was differentially regulated by water deficit, depending on the intensity of stress and the genotype. In clone 109A (drought-susceptible), the abundance of CcGolS1 transcripts decreased upon exposure to drought, reaching minimum values during recovery from severe water deficit and stress. In contrast, CcGolS1 gene expression in clone 14 (drought-tolerant) was stimulated by water deficit. Changes in galactinol and RFO content did not correlate with variation in the steady-state transcript level. However, the magnitude of increase in RFO accumulation was higher in the tolerant cultivar, mainly under severe water deficit. The finding that the drought-tolerant coffee clone showed enhanced accumulation of CcGolS1 transcripts and RFOs under water deficit suggests the possibility of using this gene to improve drought tolerance in this important crop. PMID:26273221

  14. Transcription factors expressed in olfactory bulb local progenitor cells revealed by genome-wide transcriptome profiling

    PubMed Central

    Campbell, Gordon R. O.; Baudhuin, Ariane; Vranizan, Karen; Ngai, John

    2011-01-01

    The local progenitor population in the olfactory bulb (OB) gives rise to mitral and tufted projection neurons during embryonic development. In contrast, OB interneurons are derived from sources outside the bulb where neurogenesis continues throughout life. While many of the genes involved in OB interneuron development have been characterized, the genetic pathways driving local progenitor cell differentiation in this tissue are largely unknown. To better understand this process, we used transcriptional profiling to monitor gene expression of whole OB at daily intervals from embryonic day 11 through birth, generating a compendium of gene expression encompassing the major developmental events of this tissue. Through hierarchical clustering, bioinformatics analysis, and validation by RNA in situ hybridizations, we identified a large number of transcription factors, DNA binding proteins, and cell cycle-related genes expressed by the local neural progenitor cells (NPCs) of the embryonic OB. Further in silico analysis of transcription factor binding sites identified an enrichment of genes regulated by the E2F-Rb pathway among those expressed in the local NPC population. Together these results provide initial insights into the molecular identity of the OB local NPC population and the transcription factor networks that may regulate their function. PMID:21194568

  15. RNA-Seq profiling of single bovine oocyte transcript abundance and its modulation by cytoplasmic polyadenylation

    PubMed Central

    Reyes, Juan M; Chitwood, James L; Ross, Pablo J

    2014-01-01

    Molecular changes occurring during mammalian oocyte maturation are partly regulated by cytoplasmic polyadenylation (CP) and affect oocyte quality, yet the extent of CP activity during oocyte maturation remains unknown. Single bovine oocyte RNA sequencing (RNA-Seq) was performed to examine changes in transcript abundance during in vitro oocyte maturation in cattle. Polyadenylated RNA from individual germinal-vesicle and metaphase-II oocytes was amplified and processed for Illumina sequencing, producing approximately 30 million reads per replicate for each sample type. A total of 10,494 genes were found to be expressed, of which 2,455 were differentially expressed (adjusted P<0.05 and fold change >2) between stages, with 503 and 1,952 genes respectively increasing and decreasing in abundance. Differentially expressed genes with complete 3’-untranslated-region sequence (279 increasing and 918 decreasing in polyadenylated transcript abundance) were examined for the presence, position, and distribution of motifs mediating CP, revealing enrichment (85%) and lack there of (18%) in up- and down-regulated genes, respectively. Examination of total and polyadenylated RNA abundance by quantitative PCR validated these RNA-Seq findings. The observed increases in polyadenylated transcript abundance within the RNA-Seq data are likely due to CP, providing novel insight into targeted transcripts and resultant differential gene expression profiles that contribute to oocyte maturation. PMID:25560149

  16. RNA-Seq profiling of single bovine oocyte transcript abundance and its modulation by cytoplasmic polyadenylation.

    PubMed

    Reyes, Juan M; Chitwood, James L; Ross, Pablo J

    2015-02-01

    Molecular changes occurring during mammalian oocyte maturation are partly regulated by cytoplasmic polyadenylation (CP) and affect oocyte quality, yet the extent of CP activity during oocyte maturation remains unknown. Single bovine oocyte RNA sequencing (RNA-Seq) was performed to examine changes in transcript abundance during in vitro oocyte maturation in cattle. Polyadenylated RNA from individual germinal-vesicle and metaphase-II oocytes was amplified and processed for Illumina sequencing, producing approximately 30 million reads per replicate for each sample type. A total of 10,494 genes were found to be expressed, of which 2,455 were differentially expressed (adjusted P < 0.05 and fold change >2) between stages, with 503 and 1,952 genes respectively increasing and decreasing in abundance. Differentially expressed genes with complete 3'-untranslated-region sequence (279 increasing and 918 decreasing in polyadenylated transcript abundance) were examined for the presence, position, and distribution of motifs mediating CP, revealing enrichment (85%) and lack thereof (18%) in up- and down-regulated genes, respectively. Examination of total and polyadenylated RNA abundance by quantitative PCR validated these RNA-Seq findings. The observed increases in polyadenylated transcript abundance within the RNA-Seq data are likely due to CP, providing novel insight into targeted transcripts and resultant differential gene expression profiles that contribute to oocyte maturation.

  17. Genotype-dependent variation of mitochondrial transcriptional profiles in interpopulation hybrids.

    PubMed

    Ellison, Christopher K; Burton, Ronald S

    2008-10-14

    Hybridization between populations can disrupt gene expression, frequently resulting in deleterious hybrid phenotypes. Reduced fitness in interpopulation hybrids of the marine copepod Tigriopus californicus has been traced to interactions between the nuclear and mitochondrial genomes. Here, we determine transcript levels of four to six genes involved in the mitochondrial oxidative phosphorylation pathway for a series of parental and inbred hybrid lines using RT-qPCR. Both nuclear and mitochondrial-encoded genes are included in the analysis. Although all genes studied are up-regulated under salinity stress, only expression of genes located on the mtDNA differed among lines. Because mitochondrial genes are transcribed by a dedicated RNA polymerase encoded in the nuclear genome, we compare transcript levels among hybrid lines with different combinations of mitochondrial RNA polymerase and mtDNA genotypes. Lines bearing certain mtDNA-mitochondrial RNA polymerase genotypic combinations show a diminished capacity to up-regulate mitochondrial genes in response to hypoosmotic stress. Effects on the transcriptional profile depend on the specific interpopulation cross and are correlated with viability effects. We hypothesize that disruption of the mitochondrial transcriptional system in F(2) hybrids may play a central role in hybrid breakdown.

  18. Genotype-dependent variation of mitochondrial transcriptional profiles in interpopulation hybrids

    PubMed Central

    Ellison, Christopher K.; Burton, Ronald S.

    2008-01-01

    Hybridization between populations can disrupt gene expression, frequently resulting in deleterious hybrid phenotypes. Reduced fitness in interpopulation hybrids of the marine copepod Tigriopus californicus has been traced to interactions between the nuclear and mitochondrial genomes. Here, we determine transcript levels of four to six genes involved in the mitochondrial oxidative phosphorylation pathway for a series of parental and inbred hybrid lines using RT-qPCR. Both nuclear and mitochondrial-encoded genes are included in the analysis. Although all genes studied are up-regulated under salinity stress, only expression of genes located on the mtDNA differed among lines. Because mitochondrial genes are transcribed by a dedicated RNA polymerase encoded in the nuclear genome, we compare transcript levels among hybrid lines with different combinations of mitochondrial RNA polymerase and mtDNA genotypes. Lines bearing certain mtDNA-mitochondrial RNA polymerase genotypic combinations show a diminished capacity to up-regulate mitochondrial genes in response to hypoosmotic stress. Effects on the transcriptional profile depend on the specific interpopulation cross and are correlated with viability effects. We hypothesize that disruption of the mitochondrial transcriptional system in F2 hybrids may play a central role in hybrid breakdown. PMID:18843106

  19. Overview on the application of transcription profiling using selected nephrotoxicants for toxicology assessment.

    PubMed Central

    Kramer, Jeffrey A; Pettit, Syril D; Amin, Rupesh P; Bertram, Timothy A; Car, Bruce; Cunningham, Michael; Curtiss, Sandra W; Davis, John W; Kind, Clive; Lawton, Michael; Naciff, Jorge M; Oreffo, Victor; Roman, Richard J; Sistare, Frank D; Stevens, James; Thompson, Karol; Vickers, Alison E; Wild, Stacey; Afshari, Cynthia A

    2004-01-01

    Microarrays allow for the simultaneous measurement of changes in the levels of thousands of messenger RNAs within a single experiment. As such, the potential for the application of transcription profiling to preclinical safety assessment and mechanism-based risk assessment is profound. However, several practical and technical challenges remain. Among these are nomenclature issues, platform-specific data formats, and the lack of uniform analysis methods and tools. Experiments were designed to address biological, technical, and methodological variability, to evaluate different approaches to data analysis, and to understand the application of the technology to other profiling methodologies and to mechanism-based risk assessment. These goals were addressed using experimental information derived from analysis of the biological response to three mechanistically distinct nephrotoxins: cisplatin, gentamicin, and puromycin aminonucleoside. In spite of the technical challenges, the transcription profiling data yielded mechanistically and topographically valuable information. The analyses detailed in the articles from the Nephrotoxicity Working Group of the International Life Sciences Institute Health and Environmental Sciences Institute suggest at least equal sensitivity of microarray technology compared to traditional end points. Additionally, microarray analysis of these prototypical nephrotoxicants provided an opportunity for the development of candidate bridging biomarkers of nephrotoxicity. The potential future extension of these applications for risk assessment is also discussed. PMID:15033596

  20. Distinctive characteristics of transcriptional profiles from two epithelial cell lines upon interaction with Actinobacillus actinomycetemcomitans.

    PubMed

    Mans, J J; Baker, H V; Oda, D; Lamont, R J; Handfield, M

    2006-08-01

    Transcriptional profiling and gene ontology analyses were performed to investigate the unique responses of two different epithelial cell lines to an Actinobacillus actinomycetemcomitans challenge. A total of 2867 genes were differentially regulated among all experimental conditions. The analysis of these 2867 genes revealed that the predominant specific response to infection in HeLa cells was associated with the regulation of enzyme activity, RNA metabolism, nucleoside and nucleic acid transport and protein modification. The predominant specific response in immortalized human gingival keratinocytes (IHGK) was associated with the regulation of angiogenesis, chemotaxis, transmembrane receptor protein tyrosine kinase signaling, cell differentiation, apoptosis and response to stress. Of particular interest, stress response genes were significantly - yet differently - affected in both cell lines. In HeLa cells, only three regulated genes impacted the response to stress, and the response to unfolded protein was the only term that passed the ontology filters. This strikingly contrasted with the profiles obtained for IHGK, in which 61 regulated genes impacted the response to stress and constituted an extensive network of cell responses to A. actinomycetemcomitans interaction (response to pathogens, oxidative stress, unfolded proteins, DNA damage, starvation and wounding). Hence, while extensive similarities were found in the transcriptional profiles of these two epithelial cell lines, significant differences were highlighted. These differences were predominantly found in pathways that are associated with host-pathogen interactions.

  1. Global gene profiling of aging lungs in Atp8b1 mutant mice

    PubMed Central

    Soundararajan, Ramani; Stearns, Timothy M.; Czachor, Alexander; Fukumoto, Jutaro; Turn, Christina; Westermann-Clark, Emma; Breitzig, Mason; Tan, Lee; Lockey, Richard F.; King, Benjamin L.; Kolliputi, Narasaiah

    2016-01-01

    Objective Recent studies implicate cardiolipin oxidation in several age-related diseases. Atp8b1 encoding Type 4 P-type ATPases is a cardiolipin transporter. Mutation in Atp8b1 gene or inflammation of the lungs impairs the capacity of Atp8b1 to clear cardiolipin from lung fluid. However, the link between Atp8b1 mutation and age-related gene alteration is unknown. Therefore, we investigated how Atp8b1 mutation alters age-related genes. Methods We performed Affymetrix gene profiling of lungs isolated from young (7-9 wks, n=6) and aged (14 months, 14 M, n=6) C57BL/6 and Atp8b1 mutant mice. In addition, Ingenuity Pathway Analysis (IPA) was performed. Differentially expressed genes were validated by quantitative real-time PCR (qRT-PCR). Results Global transcriptome analysis revealed 532 differentially expressed genes in Atp8b1 lungs, 157 differentially expressed genes in C57BL/6 lungs, and 37 overlapping genes. IPA of age-related genes in Atp8b1 lungs showed enrichment of Xenobiotic metabolism and Nrf2-mediated signaling pathways. The increase in Adamts2 and Mmp13 transcripts in aged Atp8b1 lungs was validated by qRT-PCR. Similarly, the decrease in Col1a1 and increase in Cxcr6 transcripts was confirmed in both Atp8b1 mutant and C57BL/6 lungs. Conclusion Based on transcriptome profiling, our study indicates that Atp8b1 mutant mice may be susceptible to age-related lung diseases. PMID:27689529

  2. A graphical modelling approach to the dissection of highly correlated transcription factor binding site profiles.

    PubMed

    Stojnic, Robert; Fu, Audrey Qiuyan; Adryan, Boris

    2012-01-01

    Inferring the combinatorial regulatory code of transcription factors (TFs) from genome-wide TF binding profiles is challenging. A major reason is that TF binding profiles significantly overlap and are therefore highly correlated. Clustered occurrence of multiple TFs at genomic sites may arise from chromatin accessibility and local cooperation between TFs, or binding sites may simply appear clustered if the profiles are generated from diverse cell populations. Overlaps in TF binding profiles may also result from measurements taken at closely related time intervals. It is thus of great interest to distinguish TFs that directly regulate gene expression from those that are indirectly associated with gene expression. Graphical models, in particular Bayesian networks, provide a powerful mathematical framework to infer different types of dependencies. However, existing methods do not perform well when the features (here: TF binding profiles) are highly correlated, when their association with the biological outcome is weak, and when the sample size is small. Here, we develop a novel computational method, the Neighbourhood Consistent PC (NCPC) algorithms, which deal with these scenarios much more effectively than existing methods do. We further present a novel graphical representation, the Direct Dependence Graph (DDGraph), to better display the complex interactions among variables. NCPC and DDGraph can also be applied to other problems involving highly correlated biological features. Both methods are implemented in the R package ddgraph, available as part of Bioconductor (http://bioconductor.org/packages/2.11/bioc/html/ddgraph.html). Applied to real data, our method identified TFs that specify different classes of cis-regulatory modules (CRMs) in Drosophila mesoderm differentiation. Our analysis also found depletion of the early transcription factor Twist binding at the CRMs regulating expression in visceral and somatic muscle cells at later stages, which suggests a CRM

  3. A Graphical Modelling Approach to the Dissection of Highly Correlated Transcription Factor Binding Site Profiles

    PubMed Central

    Stojnic, Robert; Fu, Audrey Qiuyan; Adryan, Boris

    2012-01-01

    Inferring the combinatorial regulatory code of transcription factors (TFs) from genome-wide TF binding profiles is challenging. A major reason is that TF binding profiles significantly overlap and are therefore highly correlated. Clustered occurrence of multiple TFs at genomic sites may arise from chromatin accessibility and local cooperation between TFs, or binding sites may simply appear clustered if the profiles are generated from diverse cell populations. Overlaps in TF binding profiles may also result from measurements taken at closely related time intervals. It is thus of great interest to distinguish TFs that directly regulate gene expression from those that are indirectly associated with gene expression. Graphical models, in particular Bayesian networks, provide a powerful mathematical framework to infer different types of dependencies. However, existing methods do not perform well when the features (here: TF binding profiles) are highly correlated, when their association with the biological outcome is weak, and when the sample size is small. Here, we develop a novel computational method, the Neighbourhood Consistent PC (NCPC) algorithms, which deal with these scenarios much more effectively than existing methods do. We further present a novel graphical representation, the Direct Dependence Graph (DDGraph), to better display the complex interactions among variables. NCPC and DDGraph can also be applied to other problems involving highly correlated biological features. Both methods are implemented in the R package ddgraph, available as part of Bioconductor (http://bioconductor.org/packages/2.11/bioc/html/ddgraph.html). Applied to real data, our method identified TFs that specify different classes of cis-regulatory modules (CRMs) in Drosophila mesoderm differentiation. Our analysis also found depletion of the early transcription factor Twist binding at the CRMs regulating expression in visceral and somatic muscle cells at later stages, which suggests a CRM

  4. RNA-seq for comparative transcript profiling of kenaf under salinity stress.

    PubMed

    Li, Hui; Li, Defang; Chen, Anguo; Tang, Huijuan; Li, Jianjun; Huang, Siqi

    2017-03-01

    Kenaf (Hibiscus cannabinus L.) is an economically important global natural fiber crop. As a consequence of the increased demand for food crops and the reduction of available arable land, kenaf cultivation has increasingly shifted to saline and alkaline land. To investigate the molecular mechanism of salinity tolerance in kenaf, we performed Illumina high-throughput RNA sequencing on shoot tips of kenaf and identified 71,318 unigenes, which were annotated using four different protein databases. In total, 2,384 differentially expressed genes (DEGs) were identified between the salt-stressed and the control plants, 1,702 of these transcripts were up-regulated and 683 transcripts were down-regulated. Thirty-seven transcripts belonging to 15 transcription-factor families that respond to salt stress were identified. Gene ontology function enrichment analysis revealed that the genes encoding antioxidant enzymes were up-regulated. The amino acid metabolism and carbohydrate metabolism pathways were highly enriched among these DEGs under salt stress conditions. In order to confirm the RNA-seq data, we randomly selected 20 unigenes for analysis using a quntitative real-time polymerase chain reaction. Our study not only provided the large-scale assessment of transcriptome resources of kenaf but also guidelines for understanding the mechanism underlying salt stress responses in kenaf.

  5. Global analysis of gene expression profiles in developing physic nut (Jatropha curcas L.) seeds.

    PubMed

    Jiang, Huawu; Wu, Pingzhi; Zhang, Sheng; Song, Chi; Chen, Yaping; Li, Meiru; Jia, Yongxia; Fang, Xiaohua; Chen, Fan; Wu, Guojiang

    2012-01-01

    Physic nut (Jatropha curcas L.) is an oilseed plant species with high potential utility as a biofuel. Furthermore, following recent sequencing of its genome and the availability of expressed sequence tag (EST) libraries, it is a valuable model plant for studying carbon assimilation in endosperms of oilseed plants. There have been several transcriptomic analyses of developing physic nut seeds using ESTs, but they have provided limited information on the accumulation of stored resources in the seeds. We applied next-generation Illumina sequencing technology to analyze global gene expression profiles of developing physic nut seeds 14, 19, 25, 29, 35, 41, and 45 days after pollination (DAP). The acquired profiles reveal the key genes, and their expression timeframes, involved in major metabolic processes including: carbon flow, starch metabolism, and synthesis of storage lipids and proteins in the developing seeds. The main period of storage reserves synthesis in the seeds appears to be 29-41 DAP, and the fatty acid composition of the developing seeds is consistent with relative expression levels of different isoforms of acyl-ACP thioesterase and fatty acid desaturase genes. Several transcription factor genes whose expression coincides with storage reserve deposition correspond to those known to regulate the process in Arabidopsis. The results will facilitate searches for genes that influence de novo lipid synthesis, accumulation and their regulatory networks in developing physic nut seeds, and other oil seeds. Thus, they will be helpful in attempts to modify these plants for efficient biofuel production.

  6. Shared control of gene expression in bacteria by transcription factors and global physiology of the cell

    PubMed Central

    Berthoumieux, Sara; de Jong, Hidde; Baptist, Guillaume; Pinel, Corinne; Ranquet, Caroline; Ropers, Delphine; Geiselmann, Johannes

    2013-01-01

    Gene expression is controlled by the joint effect of (i) the global physiological state of the cell, in particular the activity of the gene expression machinery, and (ii) DNA-binding transcription factors and other specific regulators. We present a model-based approach to distinguish between these two effects using time-resolved measurements of promoter activities. We demonstrate the strength of the approach by analyzing a circuit involved in the regulation of carbon metabolism in E. coli. Our results show that the transcriptional response of the network is controlled by the physiological state of the cell and the signaling metabolite cyclic AMP (cAMP). The absence of a strong regulatory effect of transcription factors suggests that they are not the main coordinators of gene expression changes during growth transitions, but rather that they complement the effect of global physiological control mechanisms. This change of perspective has important consequences for the interpretation of transcriptome data and the design of biological networks in biotechnology and synthetic biology. PMID:23340840

  7. NusA-dependent transcription termination prevents misregulation of global gene expression

    PubMed Central

    Mondal, Smarajit; Yakhnin, Alexander V.; Sebastian, Aswathy; Albert, Istvan; Babitzke, Paul

    2017-01-01

    Intrinsic transcription terminators consist of an RNA hairpin followed by a U-rich tract, and these signals can trigger termination without the involvement of additional factors. Although NusA is known to stimulate intrinsic termination in vitro, the in vivo targets and global impact of NusA are not known because it is essential for viability. Using genome-wide 3′ end-mapping on an engineered Bacillus subtilis NusA depletion strain, we show that weak suboptimal terminators are the principle NusA substrates. Moreover, a subclass of weak non-canonical terminators was identified that completely depend on NusA for effective termination. NusA-dependent terminators tend to have weak hairpins and/or distal U-tract interruptions, supporting a model in which NusA is directly involved in the termination mechanism. Depletion of NusA altered global gene expression directly and indirectly via readthrough of suboptimal terminators. Readthrough of NusA-dependent terminators caused misregulation of genes involved in essential cellular functions, especially DNA replication and metabolism. We further show that nusA is autoregulated by a transcription attenuation mechanism that does not rely on antiterminator structures. Instead, NusA-stimulated termination in its 5′ UTR dictates the extent of transcription into the operon, thereby ensuring tight control of cellular NusA levels. PMID:27571753

  8. Bisphenol A and Bisphenol S Induce Distinct Transcriptional Profiles in Differentiating Human Primary Preadipocytes

    PubMed Central

    Boucher, Jonathan G.; Gagné, Rémi; Rowan-Carroll, Andrea; Boudreau, Adèle; Yauk, Carole L.; Atlas, Ella

    2016-01-01

    Bisphenol S (BPS) is increasingly used as a replacement plasticizer for bisphenol A (BPA) but its effects on human health have not been thoroughly examined. Recent evidence indicates that both BPA and BPS induce adipogenesis, although the mechanisms leading to this effect are unclear. In an effort to identify common and distinct mechanisms of action in inducing adipogenesis, transcriptional profiles of differentiating human preadipocytes exposed to BPA or BPS were compared. Human subcutaneous primary preadipocytes were differentiated in the presence of either 25 μM BPA or BPS for 2 and 4 days. Poly-A RNA-sequencing was used to identify differentially expressed genes (DEGs). Functional analysis of DEGs was undertaken in Ingenuity Pathway Analysis. BPA-treatment resulted in 472 and 176 DEGs on days 2 and 4, respectively, affecting pathways such as liver X receptor (LXR)/retinoid X receptor (RXR) activation, hepatic fibrosis and cholestasis. BPS-treatment resulted in 195 and 51 DEGs on days 2 and 4, respectively, revealing enrichment of genes associated with adipogenesis and lipid metabolism including the adipogenesis pathway and cholesterol biosynthesis. Interestingly, the transcription repressor N-CoR was identified as a negative upstream regulator in both BPA- and BPS-treated cells. This study presents the first comparison of BPA- and BPS-induced transcriptional profiles in human differentiating preadipocytes. While we previously showed that BPA and BPS both induce adipogenesis, the results from this study show that BPS affects adipose specific transcriptional changes earlier than BPA, and alters the expression of genes specifically related to adipogenesis and lipid metabolism. The findings provide insight into potential BPS and BPA-mediated mechanisms of action in inducing adipogenesis in human primary preadipocytes. PMID:27685785

  9. Analysis of transcriptional profiles of Saccharomyces cerevisiae exposed to bisphenol A.

    PubMed

    Bereketoglu, Ceyhun; Arga, Kazim Yalcin; Eraslan, Serpil; Mertoglu, Bulent

    2017-05-01

    Bisphenol A (BPA), an endocrine disrupting chemical, is used as a monomer in the production of epoxy resins and polycarbonates, and as a plasticizer in polyvinyl chloride. As such, it is produced in large quantities worldwide and continuously leaches into the environment. To capture the genome reprogramming in eukaryotic cells under BPA exposure, here, we used Saccharomyces cerevisiae as model organism and analyzed the genome-wide transcriptional profiles of S. cerevisiae BY4742 in response to BPA, focusing on two exposure scenarios: (1) exposure to a low inhibition concentration (50 mg/L; resulting in <10 % inhibition in cell number) and (2) a high inhibition concentration (300 mg/L; resulting in >70 % inhibition in cell number). Based on the transcriptional profiling analyses, 81 genes were repressed and 104 genes were induced in response to 50 mg/L BPA. Meanwhile, 378 genes were downregulated and 606 genes were significantly upregulated upon exposure to 300 mg/L BPA. While similar processes were affected by exposure to distinct BPA concentrations, including mitochondrial processes, nucleobase-containing small molecule metabolic processes, transcription from the RNA polymerase II promoter, and mitosis and associated processes, the number and magnitude of differentially expressed genes differ between low and high inhibition concentration treatments. For example, exposure to 300 mg/L BPA resulted in severe changes in the expression levels of several genes involved in oxidative phosphorylation, the tricarboxylic acid cycle, ribosomal activity, replication, and chemical responses. Conversely, only slight changes were observed in the expression of genes involved in these processes in cells exposed to 50 mg/L BPA. These results demonstrate that yeast cells respond to BPA in a concentration-dependent manner at the transcriptional level via different genes and provide insight into the molecular mechanisms underlying the modes of action of BPA.

  10. Comparative transcriptional profiling-based identification of raphanusanin-inducible genes

    PubMed Central

    2010-01-01

    Background Raphanusanin (Ra) is a light-induced growth inhibitor involved in the inhibition of hypocotyl growth in response to unilateral blue-light illumination in radish seedlings. Knowledge of the roles of Ra still remains elusive. To understand the roles of Ra and its functional coupling to light signalling, we constructed the Ra-induced gene library using the Suppression Subtractive Hybridisation (SSH) technique and present a comparative investigation of gene regulation in radish seedlings in response to short-term Ra and blue-light exposure. Results The predicted gene ontology (GO) term revealed that 55% of the clones in the Ra-induced gene library were associated with genes involved in common defence mechanisms, including thirty four genes homologous to Arabidopsis genes implicated in R-gene-triggered resistance in the programmed cell death (PCD) pathway. Overall, the library was enriched with transporters, hydrolases, protein kinases, and signal transducers. The transcriptome analysis revealed that, among the fifty genes from various functional categories selected from 88 independent genes of the Ra-induced library, 44 genes were up-regulated and 4 were down-regulated. The comparative analysis showed that, among the transcriptional profiles of 33 highly Ra-inducible genes, 25 ESTs were commonly regulated by different intensities and duration of blue-light irradiation. The transcriptional profiles, coupled with the transcriptional regulation of early blue light, have provided the functional roles of many genes expected to be involved in the light-mediated defence mechanism. Conclusions This study is the first comprehensive survey of transcriptional regulation in response to Ra. The results described herein suggest a link between Ra and cellular defence and light signalling, and thereby contribute to further our understanding of how Ra is involved in light-mediated mechanisms of plant defence. PMID:20553608

  11. Modeling and Experimental Methods to Probe the Link between Global Transcription and Spatial Organization of Chromosomes

    PubMed Central

    Gupta, Soumya; Libchaber, Albert; Tlusty, Tsvi; Shivashankar, G. V.

    2012-01-01

    Genomes are spatially assembled into chromosome territories (CT) within the nucleus of living cells. Recent evidences have suggested associations between three-dimensional organization of CTs and the active gene clusters within neighboring CTs. These gene clusters are part of signaling networks sharing similar transcription factor or other downstream transcription machineries. Hence, presence of such gene clusters of active signaling networks in a cell type may regulate the spatial organization of chromosomes in the nucleus. However, given the probabilistic nature of chromosome positions and complex transcription factor networks (TFNs), quantitative methods to establish their correlation is lacking. In this paper, we use chromosome positions and gene expression profiles in interphase fibroblasts and describe methods to capture the correspondence between their spatial position and expression. In addition, numerical simulations designed to incorporate the interacting TFNs, reveal that the chromosome positions are also optimized for the activity of these networks. These methods were validated for specific chromosome pairs mapped in two distinct transcriptional states of T-Cells (naïve and activated). Taken together, our methods highlight the functional coupling between topology of chromosomes and their respective gene expression patterns. PMID:23049710

  12. RNA-Seq for gene identification and transcript profiling of three Stevia rebaudiana genotypes.

    PubMed

    Chen, Junwen; Hou, Kai; Qin, Peng; Liu, Hongchang; Yi, Bin; Yang, Wenting; Wu, Wei

    2014-07-07

    Stevia (Stevia rebaudiana) is an important medicinal plant that yields diterpenoid steviol glycosides (SGs). SGs are currently used in the preparation of medicines, food products and neutraceuticals because of its sweetening property (zero calories and about 300 times sweeter than sugar). Recently, some progress has been made in understanding the biosynthesis of SGs in Stevia, but little is known about the molecular mechanisms underlying this process. Additionally, the genomics of Stevia, a non-model species, remains uncharacterized. The recent advent of RNA-Seq, a next generation sequencing technology, provides an opportunity to expand the identification of Stevia genes through in-depth transcript profiling. We present a comprehensive landscape of the transcriptome profiles of three genotypes of Stevia with divergent SG compositions characterized using RNA-seq. 191,590,282 high-quality reads were generated and then assembled into 171,837 transcripts with an average sequence length of 969 base pairs. A total of 80,160 unigenes were annotated, and 14,211 of the unique sequences were assigned to specific metabolic pathways by the Kyoto Encyclopedia of Genes and Genomes. Gene sequences of all enzymes known to be involved in SG synthesis were examined. A total of 143 UDP-glucosyltransferase (UGT) unigenes were identified, some of which might be involved in SG biosynthesis. The expression patterns of eight of these genes were further confirmed by RT-QPCR. RNA-seq analysis identified candidate genes encoding enzymes responsible for the biosynthesis of SGs in Stevia, a non-model plant without a reference genome. The transcriptome data from this study yielded new insights into the process of SG accumulation in Stevia. Our results demonstrate that RNA-Seq can be successfully used for gene identification and transcript profiling in a non-model species.

  13. Endometrial transcriptional profiling of a bovine fertility model by Next-Generation Sequencing

    PubMed Central

    Mesquita, F.S.; Ramos, R.S.; Pugliesi, G.; Andrade, S.C.S.; Van Hoeck, V.; Langbeen, A.; Oliveira, M.L.; Gonella-Diaza, A.M.; Gasparin, G.; Fukumasu, H.; Pulz, L.H.; Membrive, C.M.; Coutinho, L.L.; Binelli, M.

    2015-01-01

    Studying the multitude of molecular networks and pathways that are potentially involved in a complex trait such as fertility requires an equally complex and broad strategy. Here, we used Next-Generation Sequencing for the characterization of the transcriptional signature of the bovine endometrial tissue. Periovulatory endocrine environments were manipulated to generate two distinctly different fertility phenotypes. Cycling, non-lactating, multiparous Nelore cows were manipulated to ovulate larger (> 13 mm; LF group; high fertility phenotype) or smaller (< 12 mm; SF group) follicles. As a result, greater proestrus estrogen concentrations, corpora lutea and early diestrus progesterone concentrations were also observed in LF group in comparison to SF group. Endometrial cell proliferation was estimated by the protein marker MKI67 on tissues collected 4 (D4) and 7 (D7) days after induction of ovulation. Total RNA extracts from D7 were sequenced and compared according to the transcriptional profile of each experimental group (LF versus SF). Functional enrichment analysis revealed that LF and SF endometria were asynchronous in regards to their phenotype manifestation. Major findings indicated an LF endometrium that was switching phenotypes earlier than the SF one. More specifically, a proliferating SF endometrium was observed on D7, whereas the LF tissue, which expressed a proliferative phenotype earlier at D4, seemed to have already shifted towards a biosynthetically and metabolically active endometrium on D7. Data on MKI67 support the transcriptomic results. RNA-Seq-derived transcriptional profile of the endometrial tissue indicated a temporal effect of the periovulatory endocrine environment, suggesting that the moment of the endometrial exposure to the ovarian steroids, E2 and P4, regulates the timing of phenotype manifestation. Gene expression profiling revealed molecules that may be targeted to elucidate ovarian steroid-dependent mechanisms that regulate

  14. Organization, evolution and transcriptional profile of hexamerin genes of the parasitic wasp Nasonia vitripennis (Hymenoptera: Pteromalidae).

    PubMed

    Cristino, A S; Nunes, F M F; Barchuk, A R; Aguiar-Coelho, V M; Simões, Z L P; Bitondi, M M G

    2010-02-01

    Hexamerins and prophenoloxidases (PPOs) proteins are members of the arthropod-haemocyanin superfamily. In contrast to haemocyanin and PPO, hexamerins do not bind oxygen, but mainly play a role as storage proteins that supply amino acids for insect metamorphosis. We identified seven genes encoding hexamerins, three encoding PPOs, and one hexamerin pseudogene in the genome of the parasitoid wasp Nasonia vitripennis. A phylogenetic analysis of hexamerins and PPOs from this wasp and related proteins from other insect orders suggests an essentially order-specific radiation of hexamerins. Temporal and spatial transcriptional profiles of N. vitripennis hexamerins suggest that they have physiological functions other than metamorphosis, which are arguably coupled with its lifestyle.

  15. Altered Hippocampal Transcript Profile Accompanies an Age-Related Spatial Memory Deficit in Mice

    ERIC Educational Resources Information Center

    Verbitsky, Miguel; Yonan, Amanda L.; Malleret, Gael; Kandel, Eric R.; Gilliam, T. Conrad; Pavlidis, Paul

    2004-01-01

    We have carried out a global survey of age-related changes in mRNA levels in the 57BL/6NIA mouse hippocampus and found a difference in the hippocampal gene expression profile between 2-month-old young mice and 15-month-old middle-aged mice correlated with an age-related cognitive deficit in hippocampal-based explicit memory formation. Middle-aged…

  16. Altered Hippocampal Transcript Profile Accompanies an Age-Related Spatial Memory Deficit in Mice

    ERIC Educational Resources Information Center

    Verbitsky, Miguel; Yonan, Amanda L.; Malleret, Gael; Kandel, Eric R.; Gilliam, T. Conrad; Pavlidis, Paul

    2004-01-01

    We have carried out a global survey of age-related changes in mRNA levels in the 57BL/6NIA mouse hippocampus and found a difference in the hippocampal gene expression profile between 2-month-old young mice and 15-month-old middle-aged mice correlated with an age-related cognitive deficit in hippocampal-based explicit memory formation. Middle-aged…

  17. Characterization and improvement of RNA-Seq precision in quantitative transcript expression profiling

    PubMed Central

    Łabaj, Paweł P.; Leparc, Germán G.; Linggi, Bryan E.; Markillie, Lye Meng; Wiley, H. Steven; Kreil, David P.

    2011-01-01

    Motivation: Measurement precision determines the power of any analysis to reliably identify significant signals, such as in screens for differential expression, independent of whether the experimental design incorporates replicates or not. With the compilation of large-scale RNA-Seq datasets with technical replicate samples, however, we can now, for the first time, perform a systematic analysis of the precision of expression level estimates from massively parallel sequencing technology. This then allows considerations for its improvement by computational or experimental means. Results: We report on a comprehensive study of target identification and measurement precision, including their dependence on transcript expression levels, read depth and other parameters. In particular, an impressive recall of 84% of the estimated true transcript population could be achieved with 331 million 50 bp reads, with diminishing returns from longer read lengths and even less gains from increased sequencing depths. Most of the measurement power (75%) is spent on only 7% of the known transcriptome, however, making less strongly expressed transcripts harder to measure. Consequently, <30% of all transcripts could be quantified reliably with a relative error <20%. Based on established tools, we then introduce a new approach for mapping and analysing sequencing reads that yields substantially improved performance in gene expression profiling, increasing the number of transcripts that can reliably be quantified to over 40%. Extrapolations to higher sequencing depths highlight the need for efficient complementary steps. In discussion we outline possible experimental and computational strategies for further improvements in quantification precision. Contact: rnaseq10@boku.ac.at Supplementary information: Supplementary data are available at Bioinformatics online. PMID:21685096

  18. Whole adult organism transcriptional profiling of acute metal exposures in male Zebrafish

    PubMed Central

    2014-01-01

    Background A convergence of technological breakthroughs in the past decade has facilitated the development of rapid screening tools for biomarkers of toxicant exposure and effect. Platforms using the whole adult organism to evaluate the genome-wide response to toxicants are especially attractive. Recent work demonstrates the feasibility of this approach in vertebrates using the experimentally robust zebrafish model. In the present study, we evaluated gene expression changes in whole adult male zebrafish following an acute 24 hr high dose exposure to three metals with known human health risks. Male adult zebrafish were exposed to nickel chloride, cobalt chloride or sodium dichromate concentrations corresponding to their respective 96 hr LC20, LC40 and LC60. Histopathology was performed on a subset of metal-exposed zebrafish to phenotypically anchor transcriptional changes associated with each metal. Results Comparative analysis identified subsets of differentially expressed transcripts both overlapping and unique to each metal. Application of gene ontology (GO) and transcription factor (TF) enrichment algorithms revealed a number of key biological processes perturbed by metal poisonings and the master transcriptional regulators mediating gene expression changes. Metal poisoning differentially activated biological processes associated with ribosome biogenesis, proteosomal degradation, and p53 signaling cascades, while repressing oxygen-generating pathways associated with amino acid and lipid metabolism. Despite appreciable effects on gene regulation, nickel poisoning did not induce any morphological alterations in male zebrafish organs and tissues. Histopathological effects of cobalt remained confined to the olfactory system, while chromium targeted the gills, pharynx, and intestinal mucosa. A number of enriched transcription factors mediated the observed gene response to metal poisoning, including known targets such as p53, HIF1α, and the myc oncogene, and novel

  19. Whole adult organism transcriptional profiling of acute metal exposures in male zebrafish.

    PubMed

    Hussainzada, Naissan; Lewis, John A; Baer, Christine E; Ippolito, Danielle L; Jackson, David A; Stallings, Jonathan D

    2014-03-10

    A convergence of technological breakthroughs in the past decade has facilitated the development of rapid screening tools for biomarkers of toxicant exposure and effect. Platforms using the whole adult organism to evaluate the genome-wide response to toxicants are especially attractive. Recent work demonstrates the feasibility of this approach in vertebrates using the experimentally robust zebrafish model. In the present study, we evaluated gene expression changes in whole adult male zebrafish following an acute 24 hr high dose exposure to three metals with known human health risks. Male adult zebrafish were exposed to nickel chloride, cobalt chloride or sodium dichromate concentrations corresponding to their respective 96 hr LC20, LC40 and LC60. Histopathology was performed on a subset of metal-exposed zebrafish to phenotypically anchor transcriptional changes associated with each metal. Comparative analysis identified subsets of differentially expressed transcripts both overlapping and unique to each metal. Application of gene ontology (GO) and transcription factor (TF) enrichment algorithms revealed a number of key biological processes perturbed by metal poisonings and the master transcriptional regulators mediating gene expression changes. Metal poisoning differentially activated biological processes associated with ribosome biogenesis, proteosomal degradation, and p53 signaling cascades, while repressing oxygen-generating pathways associated with amino acid and lipid metabolism. Despite appreciable effects on gene regulation, nickel poisoning did not induce any morphological alterations in male zebrafish organs and tissues. Histopathological effects of cobalt remained confined to the olfactory system, while chromium targeted the gills, pharynx, and intestinal mucosa. A number of enriched transcription factors mediated the observed gene response to metal poisoning, including known targets such as p53, HIF1α, and the myc oncogene, and novel regulatory factors

  20. Single Cell Profiling of Circulating Tumor Cells: Transcriptional Heterogeneity and Diversity from Breast Cancer Cell Lines

    PubMed Central

    Coram, Marc A.; Reddy, Anupama; Deng, Glenn; Telli, Melinda L.; Advani, Ranjana H.; Carlson, Robert W.; Mollick, Joseph A.; Sheth, Shruti; Kurian, Allison W.; Ford, James M.; Stockdale, Frank E.; Quake, Stephen R.; Pease, R. Fabian; Mindrinos, Michael N.; Bhanot, Gyan; Dairkee, Shanaz H.; Davis, Ronald W.; Jeffrey, Stefanie S.

    2012-01-01

    Background To improve cancer therapy, it is critical to target metastasizing cells. Circulating tumor cells (CTCs) are rare cells found in the blood of patients with solid tumors and may play a key role in cancer dissemination. Uncovering CTC phenotypes offers a potential avenue to inform treatment. However, CTC transcriptional profiling is limited by leukocyte contamination; an approach to surmount this problem is single cell analysis. Here we demonstrate feasibility of performing high dimensional single CTC profiling, providing early insight into CTC heterogeneity and allowing comparisons to breast cancer cell lines widely used for drug discovery. Methodology/Principal Findings We purified CTCs using the MagSweeper, an immunomagnetic enrichment device that isolates live tumor cells from unfractionated blood. CTCs that met stringent criteria for further analysis were obtained from 70% (14/20) of primary and 70% (21/30) of metastatic breast cancer patients; none were captured from patients with non-epithelial cancer (n = 20) or healthy subjects (n = 25). Microfluidic-based single cell transcriptional profiling of 87 cancer-associated and reference genes showed heterogeneity among individual CTCs, separating them into two major subgroups, based on 31 highly expressed genes. In contrast, single cells from seven breast cancer cell lines were tightly clustered together by sample ID and ER status. CTC profiles were distinct from those of cancer cell lines, questioning the suitability of such lines for drug discovery efforts for late stage cancer therapy. Conclusions/Significance For the first time, we directly measured high dimensional gene expression in individual CTCs without the common practice of pooling such cells. Elevated transcript levels of genes associated with metastasis NPTN, S100A4, S100A9, and with epithelial mesenchymal transition: VIM, TGFß1, ZEB2, FOXC1, CXCR4, were striking compared to cell lines. Our findings demonstrate that profiling CTCs

  1. Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain

    PubMed Central

    Krienen, Fenna M.; Yeo, B. T. Thomas; Ge, Tian; Buckner, Randy L.; Sherwood, Chet C.

    2016-01-01

    The human brain is patterned with disproportionately large, distributed cerebral networks that connect multiple association zones in the frontal, temporal, and parietal lobes. The expansion of the cortical surface, along with the emergence of long-range connectivity networks, may be reflected in changes to the underlying molecular architecture. Using the Allen Institute’s human brain transcriptional atlas, we demonstrate that genes particularly enriched in supragranular layers of the human cerebral cortex relative to mouse distinguish major cortical classes. The topography of transcriptional expression reflects large-scale brain network organization consistent with estimates from functional connectivity MRI and anatomical tracing in nonhuman primates. Microarray expression data for genes preferentially expressed in human upper layers (II/III), but enriched only in lower layers (V/VI) of mouse, were cross-correlated to identify molecular profiles across the cerebral cortex of postmortem human brains (n = 6). Unimodal sensory and motor zones have similar molecular profiles, despite being distributed across the cortical mantle. Sensory/motor profiles were anticorrelated with paralimbic and certain distributed association network profiles. Tests of alternative gene sets did not consistently distinguish sensory and motor regions from paralimbic and association regions: (i) genes enriched in supragranular layers in both humans and mice, (ii) genes cortically enriched in humans relative to nonhuman primates, (iii) genes related to connectivity in rodents, (iv) genes associated with human and mouse connectivity, and (v) 1,454 gene sets curated from known gene ontologies. Molecular innovations of upper cortical layers may be an important component in the evolution of long-range corticocortical projections. PMID:26739559

  2. Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain.

    PubMed

    Krienen, Fenna M; Yeo, B T Thomas; Ge, Tian; Buckner, Randy L; Sherwood, Chet C

    2016-01-26

    The human brain is patterned with disproportionately large, distributed cerebral networks that connect multiple association zones in the frontal, temporal, and parietal lobes. The expansion of the cortical surface, along with the emergence of long-range connectivity networks, may be reflected in changes to the underlying molecular architecture. Using the Allen Institute's human brain transcriptional atlas, we demonstrate that genes particularly enriched in supragranular layers of the human cerebral cortex relative to mouse distinguish major cortical classes. The topography of transcriptional expression reflects large-scale brain network organization consistent with estimates from functional connectivity MRI and anatomical tracing in nonhuman primates. Microarray expression data for genes preferentially expressed in human upper layers (II/III), but enriched only in lower layers (V/VI) of mouse, were cross-correlated to identify molecular profiles across the cerebral cortex of postmortem human brains (n = 6). Unimodal sensory and motor zones have similar molecular profiles, despite being distributed across the cortical mantle. Sensory/motor profiles were anticorrelated with paralimbic and certain distributed association network profiles. Tests of alternative gene sets did not consistently distinguish sensory and motor regions from paralimbic and association regions: (i) genes enriched in supragranular layers in both humans and mice, (ii) genes cortically enriched in humans relative to nonhuman primates, (iii) genes related to connectivity in rodents, (iv) genes associated with human and mouse connectivity, and (v) 1,454 gene sets curated from known gene ontologies. Molecular innovations of upper cortical layers may be an important component in the evolution of long-range corticocortical projections.

  3. Global Transcriptional, Physiological, and Metabolite Analyses of the Responses of Desulfovibrio vulgaris Hildenborough to Salt Adaptation ▿ †

    PubMed Central

    He, Zhili; Zhou, Aifen; Baidoo, Edward; He, Qiang; Joachimiak, Marcin P.; Benke, Peter; Phan, Richard; Mukhopadhyay, Aindrila; Hemme, Christopher L.; Huang, Katherine; Alm, Eric J.; Fields, Matthew W.; Wall, Judy; Stahl, David; Hazen, Terry C.; Keasling, Jay D.; Arkin, Adam P.; Zhou, Jizhong

    2010-01-01

    The response of Desulfovibrio vulgaris Hildenborough to salt adaptation (long-term NaCl exposure) was examined by performing physiological, global transcriptional, and metabolite analyses. Salt adaptation was reflected by increased expression of genes involved in amino acid biosynthesis and transport, electron transfer, hydrogen oxidation, and general stress responses (e.g., heat shock proteins, phage shock proteins, and oxidative stress response proteins). The expression of genes involved in carbon metabolism, cell growth, and phage structures was decreased. Transcriptome profiles of D. vulgaris responses to salt adaptation were compared with transcriptome profiles of D. vulgaris responses to salt shock (short-term NaCl exposure). Metabolite assays showed that glutamate and alanine accumulated under salt adaptation conditions, suggesting that these amino acids may be used as osmoprotectants in D. vulgaris. Addition of amino acids (glutamate, alanine, and tryptophan) or yeast extract to the growth medium relieved salt-related growth inhibition. A conceptual model that links the observed results to currently available knowledge is proposed to increase our understanding of the mechanisms of D. vulgaris adaptation to elevated NaCl levels. PMID:20038696

  4. Transcription profiling of 12 asian gypsy moth (Lymantria dispar) cytochrome P450 genes in response to insecticides.

    PubMed

    Sun, Lili; Wang, Zhiying; Zou, Chuanshan; Cao, Chuanwang

    2014-04-01

    As the main group of detoxification enzymes, cytochrome P450 monoxygenases (P450s) catalyse an extremely diverse range of reactions that play an important role in the detoxification of foreign compounds. Transcription profiling of 12 Lymantria dispar P450 genes from the CYP6 subfamily believed to be involved in insecticide metabolism was performed in this study. Life-stage transcription profiling of CYP6 genes revealed significant variations between eggs, larvae, pupae, and adult males and females. Exposure of larvae to sublethal doses of deltamethrin, omethoate, and carbaryl enhanced the transcription of most of the CYP6 P450 genes, with induction peaking between 24 and 72 h after exposure. Transcription profiles were dependent on the levels of insecticide exposure and the various developmental stages. © 2014 Wiley Periodicals, Inc.

  5. Large-scale meta-analysis of cancer microarray data identifies common transcriptional profiles of neoplastic transformation and progression

    PubMed Central

    Rhodes, Daniel R.; Yu, Jianjun; Shanker, K.; Deshpande, Nandan; Varambally, Radhika; Ghosh, Debashis; Barrette, Terrence; Pandey, Akhilesh; Chinnaiyan, Arul M.

    2004-01-01

    Many studies have used DNA microarrays to identify the gene expression signatures of human cancer, yet the critical features of these often unmanageably large signatures remain elusive. To address this, we developed a statistical method, comparative metaprofiling, which identifies and assesses the intersection of multiple gene expression signatures from a diverse collection of microarray data sets. We collected and analyzed 40 published cancer microarray data sets, comprising 38 million gene expression measurements from >3,700 cancer samples. From this, we characterized a common transcriptional profile that is universally activated in most cancer types relative to the normal tissues from which they arose, likely reflecting essential transcriptional features of neoplastic transformation. In addition, we characterized a transcriptional profile that is commonly activated in various types of undifferentiated cancer, suggesting common molecular mechanisms by which cancer cells progress and avoid differentiation. Finally, we validated these transcriptional profiles on independent data sets. PMID:15184677

  6. Dynamic transcriptional profiling provides insights into tuberous root development in Rehmannia glutinosa

    PubMed Central

    Sun, Peng; Xiao, Xingguo; Duan, Liusheng; Guo, Yuhai; Qi, Jianjun; Liao, Dengqun; Zhao, Chunli; Liu, Yan; Zhou, Lili; Li, Xianen

    2015-01-01

    Rehmannia glutinosa, an herb of the Scrophulariaceae family, is widely cultivated in the Northern part of China. The tuberous root has well-known medicinal properties; however, yield and quality are threatened by abiotic and biotic stresses. Understanding the molecular process of tuberous root development may help identify novel targets for its control. In the present study, we used Illumina sequencing and de novo assembly strategies to obtain a reference transcriptome that is relevant to tuberous root development. We then conducted RNA-seq quantification analysis to determine gene expression profiles of the adventitious root (AR), thickening adventitious root (TAR), and the developing tuberous root (DTR). Expression profiling identified a total of 6794 differentially expressed unigenes during root development. Bioinformatics analysis and gene expression profiling revealed changes in phenylpropanoid biosynthesis, starch and sucrose metabolism, and plant hormone biosynthesis during root development. Moreover, we identified and allocated putative functions to the genes involved in tuberous root development, including genes related to major carbohydrate metabolism, hormone metabolism, and transcription regulation. The present study provides the initial description of gene expression profiles of AR, TAR, and DTR, which facilitates identification of genes of interest. Moreover, our work provides insights into the molecular mechanisms underlying tuberous root development and may assist in the design and development of improved breeding schemes for different R. glutinosa varieties through genetic manipulation. PMID:26113849

  7. Transcript and metabolite profiling in cell cultures of 18 plant species that produce benzylisoquinoline alkaloids.

    PubMed

    Farrow, Scott C; Hagel, Jillian M; Facchini, Peter J

    2012-05-01

    Benzylisoquinoline alkaloids (BIAs) are a large and diverse group of ~2500 specialized metabolites found predominantly in plants of the order Ranunculales. Research focused on BIA metabolism in a restricted number of plant species has identified many enzymes and cognate genes involved in the biosynthesis of compounds such as morphine, sanguinarine and berberine. However, the formation of most BIAs remains uncharacterized at the molecular biochemical level. Herein a compendium of sequence- and metabolite-profiling resources from 18 species of BIA-accumulating cell cultures was established, representing four related plant families. Our integrated approach consisted of the construction of EST libraries each containing approximately 3500 unigenes per species for a total of 58,787 unigenes. The EST libraries were manually triaged using known BIA-biosynthetic genes as queries to identify putative homologs with similar or potentially different functions. Sequence resources were analyzed in the context of the targeted metabolite profiles obtained for each cell culture using electrospray-ionization and collision-induced dissociation mass spectrometry. Fragmentation analysis was used for the identification or structural characterization coupled with the relative quantification of 72 BIAs, which establishes a key resource for future work on alkaloid biosynthesis. The metabolite profile obtained for each species provides a rational basis for the prediction of enzyme function in BIA metabolism. The metabolic frameworks assembled through the integration of transcript and metabolite profiles allow a comparison of BIA metabolism across several plant species and families. Taken together, these data represent an important tool for the discovery of BIA biosynthetic genes.

  8. JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles

    PubMed Central

    Mathelier, Anthony; Zhao, Xiaobei; Zhang, Allen W.; Parcy, François; Worsley-Hunt, Rebecca; Arenillas, David J.; Buchman, Sorana; Chen, Chih-yu; Chou, Alice; Ienasescu, Hans; Lim, Jonathan; Shyr, Casper; Tan, Ge; Zhou, Michelle; Lenhard, Boris; Sandelin, Albin; Wasserman, Wyeth W.

    2014-01-01

    JASPAR (http://jaspar.genereg.net) is the largest open-access database of matrix-based nucleotide profiles describing the binding preference of transcription factors from multiple species. The fifth major release greatly expands the heart of JASPAR—the JASPAR CORE subcollection, which contains curated, non-redundant profiles—with 135 new curated profiles (74 in vertebrates, 8 in Drosophila melanogaster, 10 in Caenorhabditis elegans and 43 in Arabidopsis thaliana; a 30% increase in total) and 43 older updated profiles (36 in vertebrates, 3 in D. melanogaster and 4 in A. thaliana; a 9% update in total). The new and updated profiles are mainly derived from published chromatin immunoprecipitation-seq experimental datasets. In addition, the web interface has been enhanced with advanced capabilities in browsing, searching and subsetting. Finally, the new JASPAR release is accompanied by a new BioPython package, a new R tool package and a new R/Bioconductor data package to facilitate access for both manual and automated methods. PMID:24194598

  9. Dynamic transcriptional profiling provides insights into tuberous root development in Rehmannia glutinosa.

    PubMed

    Sun, Peng; Xiao, Xingguo; Duan, Liusheng; Guo, Yuhai; Qi, Jianjun; Liao, Dengqun; Zhao, Chunli; Liu, Yan; Zhou, Lili; Li, Xianen

    2015-01-01

    Rehmannia glutinosa, an herb of the Scrophulariaceae family, is widely cultivated in the Northern part of China. The tuberous root has well-known medicinal properties; however, yield and quality are threatened by abiotic and biotic stresses. Understanding the molecular process of tuberous root development may help identify novel targets for its control. In the present study, we used Illumina sequencing and de novo assembly strategies to obtain a reference transcriptome that is relevant to tuberous root development. We then conducted RNA-seq quantification analysis to determine gene expression profiles of the adventitious root (AR), thickening adventitious root (TAR), and the developing tuberous root (DTR). Expression profiling identified a total of 6794 differentially expressed unigenes during root development. Bioinformatics analysis and gene expression profiling revealed changes in phenylpropanoid biosynthesis, starch and sucrose metabolism, and plant hormone biosynthesis during root development. Moreover, we identified and allocated putative functions to the genes involved in tuberous root development, including genes related to major carbohydrate metabolism, hormone metabolism, and transcription regulation. The present study provides the initial description of gene expression profiles of AR, TAR, and DTR, which facilitates identification of genes of interest. Moreover, our work provides insights into the molecular mechanisms underlying tuberous root development and may assist in the design and development of improved breeding schemes for different R. glutinosa varieties through genetic manipulation.

  10. Global irradiation effects, stem cell genes and rare transcripts in the planarian transcriptome.

    PubMed

    Galloni, Mireille

    2012-01-01

    Stem cells are the closest relatives of the totipotent primordial cell, which is able to spawn millions of daughter cells and hundreds of cell types in multicellular organisms. Stem cells are involved in tissue homeostasis and regeneration, and may play a major role in cancer development. Among animals, planarians host a model stem cell type, called the neoblast, which essentially confers immortality. Gaining insights into the global transcriptional landscape of these exceptional cells takes an unprecedented turn with the advent of Next Generation Sequencing methods. Two Digital Gene Expression transcriptomes of Schmidtea mediterranea planarians, with or without neoblasts lost through irradiation, were produced and analyzed. Twenty one bp NlaIII tags were mapped to transcripts in the Schmidtea and Dugesia taxids. Differential representation of tags in normal versus irradiated animals reflects differential gene expression. Canonical and non-canonical tags were included in the analysis, and comparative studies with human orthologs were conducted. Transcripts fell into 3 categories: invariant (including housekeeping genes), absent in irradiated animals (potential neoblast-specific genes, IRDOWN) and induced in irradiated animals (potential cellular stress response, IRUP). Different mRNA variants and gene family members were recovered. In the IR-DOWN class, almost all of the neoblast-specific genes previously described were found. In irradiated animals, a larger number of genes were induced rather than lost. A significant fraction of IRUP genes behaved as if transcript versions of different lengths were produced. Several novel potential neoblast-specific genes have been identified that varied in relative abundance, including highly conserved as well as novel proteins without predicted orthologs. Evidence for a large body of antisense transcripts, for example regulated antisense for the Smed-piwil1 gene, and evidence for RNA shortening in irradiated animals is presented

  11. Nanosilver pathophysiology in earthworms: Transcriptional profiling of secretory proteins and the implication for the protein corona.

    PubMed

    Hayashi, Yuya; Miclaus, Teodora; Engelmann, Péter; Autrup, Herman; Sutherland, Duncan S; Scott-Fordsmand, Janeck J

    2016-01-01

    Previously we have identified lysenin as a key protein constituent of the secretome from Eisenia fetida coelomocytes and revealed its critical importance in priming interactions between the cells and the protein corona around nanosilver. As alterations of the protein environment can directly affect the corona composition, the extent to which nanoparticles influence the cells' protein secretion profile is of remarkable interest that has rarely acquired attention. Here, we have probed transcriptional responses of E. fetida coelomocytes to the representative nanosilver NM-300K (15 nm) in a time-dependent manner (2, 4, 8 and 24 h at a low-cytotoxic concentration), and examined the implication of the temporal changes in transcriptional profiles of secretory proteins with a particular reference to that of lysenin. NM-300K was accumulated in/at the cells and lysenin was, after transient induction, gradually suppressed over time indicating a negative feedback cycle. This may limit further enrichment of lysenin in the corona and thereby decrease the lysenin-assisted uptake of the nanoparticles. Other differentially expressed genes were those involved in metal stress (likewise in AgNO3-stressed cells) and in Toll-like receptor (TLR) signaling. This offers an intriguing perspective of the nanosilver pathophysiology in earthworms, in which the conserved pattern recognition receptor TLRs may play an effector role.

  12. Genome-wide transcript profiling reveals novel breast cancer-associated intronic sense RNAs.

    PubMed

    Kim, Sang Woo; Fishilevich, Elane; Arango-Argoty, Gustavo; Lin, Yuefeng; Liu, Guodong; Li, Zhihua; Monaghan, A Paula; Nichols, Mark; John, Bino

    2015-01-01

    Non-coding RNAs (ncRNAs) play major roles in development and cancer progression. To identify novel ncRNAs that may identify key pathways in breast cancer development, we performed high-throughput transcript profiling of tumor and normal matched-pair tissue samples. Initial transcriptome profiling using high-density genome-wide tiling arrays revealed changes in over 200 novel candidate genomic regions that map to intronic regions. Sixteen genomic loci were identified that map to the long introns of five key protein-coding genes, CRIM1, EPAS1, ZEB2, RBMS1, and RFX2. Consistent with the known role of the tumor suppressor ZEB2 in the cancer-associated epithelial to mesenchymal transition (EMT), in situ hybridization reveals that the intronic regions deriving from ZEB2 as well as those from RFX2 and EPAS1 are down-regulated in cells of epithelial morphology, suggesting that these regions may be important for maintaining normal epithelial cell morphology. Paired-end deep sequencing analysis reveals a large number of distinct genomic clusters with no coding potential within the introns of these genes. These novel transcripts are only transcribed from the coding strand. A comprehensive search for breast cancer associated genes reveals enrichment for transcribed intronic regions from these loci, pointing to an underappreciated role of introns or mechanisms relating to their biology in EMT and breast cancer.

  13. Genome-Wide Transcript Profiling Reveals Novel Breast Cancer-Associated Intronic Sense RNAs

    PubMed Central

    Lin, Yuefeng; Liu, Guodong; Li, Zhihua; Monaghan, A. Paula; Nichols, Mark; John, Bino

    2015-01-01

    Non-coding RNAs (ncRNAs) play major roles in development and cancer progression. To identify novel ncRNAs that may identify key pathways in breast cancer development, we performed high-throughput transcript profiling of tumor and normal matched-pair tissue samples. Initial transcriptome profiling using high-density genome-wide tiling arrays revealed changes in over 200 novel candidate genomic regions that map to intronic regions. Sixteen genomic loci were identified that map to the long introns of five key protein-coding genes, CRIM1, EPAS1, ZEB2, RBMS1, and RFX2. Consistent with the known role of the tumor suppressor ZEB2 in the cancer-associated epithelial to mesenchymal transition (EMT), in situ hybridization reveals that the intronic regions deriving from ZEB2 as well as those from RFX2 and EPAS1 are down-regulated in cells of epithelial morphology, suggesting that these regions may be important for maintaining normal epithelial cell morphology. Paired-end deep sequencing analysis reveals a large number of distinct genomic clusters with no coding potential within the introns of these genes. These novel transcripts are only transcribed from the coding strand. A comprehensive search for breast cancer associated genes reveals enrichment for transcribed intronic regions from these loci, pointing to an underappreciated role of introns or mechanisms relating to their biology in EMT and breast cancer. PMID:25798919

  14. Transcriptional profiling at whole population and single cell levels reveals somatosensory neuron molecular diversity

    PubMed Central

    Chiu, Isaac M; Barrett, Lee B; Williams, Erika K; Strochlic, David E; Lee, Seungkyu; Weyer, Andy D; Lou, Shan; Bryman, Gregory S; Roberson, David P; Ghasemlou, Nader; Piccoli, Cara; Ahat, Ezgi; Wang, Victor; Cobos, Enrique J; Stucky, Cheryl L; Ma, Qiufu; Liberles, Stephen D; Woolf, Clifford J

    2014-01-01

    The somatosensory nervous system is critical for the organism's ability to respond to mechanical, thermal, and nociceptive stimuli. Somatosensory neurons are functionally and anatomically diverse but their molecular profiles are not well-defined. Here, we used transcriptional profiling to analyze the detailed molecular signatures of dorsal root ganglion (DRG) sensory neurons. We used two mouse reporter lines and surface IB4 labeling to purify three major non-overlapping classes of neurons: 1) IB4+SNS-Cre/TdTomato+, 2) IB4−SNS-Cre/TdTomato+, and 3) Parv-Cre/TdTomato+ cells, encompassing the majority of nociceptive, pruriceptive, and proprioceptive neurons. These neurons displayed distinct expression patterns of ion channels, transcription factors, and GPCRs. Highly parallel qRT-PCR analysis of 334 single neurons selected by membership of the three populations demonstrated further diversity, with unbiased clustering analysis identifying six distinct subgroups. These data significantly increase our knowledge of the molecular identities of known DRG populations and uncover potentially novel subsets, revealing the complexity and diversity of those neurons underlying somatosensation. DOI: http://dx.doi.org/10.7554/eLife.04660.001 PMID:25525749

  15. Transcriptional profiling of inductive mesenchyme to identify molecules involved in prostate development and disease.

    PubMed

    Vanpoucke, Griet; Orr, Brigid; Grace, O Cathal; Chan, Ray; Ashley, George R; Williams, Karin; Franco, Omar E; Hayward, Simon W; Thomson, Axel A

    2007-01-01

    The mesenchymal compartment plays a key role in organogenesis, and cells within the mesenchyme/stroma are a source of potent molecules that control epithelia during development and tumorigenesis. We used serial analysis of gene expression (SAGE) to profile a key subset of prostatic mesenchyme that regulates prostate development and is enriched for growth-regulatory molecules. SAGE libraries were constructed from prostatic inductive mesenchyme and from the complete prostatic rudiment (including inductive mesenchyme, epithelium, and smooth muscle). By comparing these two SAGE libraries, we generated a list of 219 transcripts that were enriched or specific to inductive mesenchyme and that may act as mesenchymal regulators of organogenesis and tumorigenesis. We identified Scube1 as enriched in inductive mesenchyme from the list of 219 transcripts; also, quantitative RT-PCR and whole-mount in situ hybridization revealed Scube1 to exhibit a highly restricted expression pattern. The expression of Scube1 in a subset of mesenchymal cells suggests a role in prostatic induction and branching morphogenesis. Additionally, Scube1 transcripts were expressed in prostate cancer stromal cells, and were less abundant in cancer associated fibroblasts relative to matched normal prostate fibroblasts. The use of a precisely defined subset of cells and a back-comparison approach allowed us to identify rare mRNAs that could be overlooked using other approaches. We propose that Scube1 encodes a novel stromal molecule that is involved in prostate development and tumorigenesis.

  16. Meloidogyne javanica Chorismate Mutase Transcript Expression Profile Using Real-Time Quantitative RT-PCR.

    PubMed

    Painter, Janet E; Lambert, Kris N

    2003-03-01

    A developmental expression profile of the Meloidodgyne javanica esophageal gland gene chorismate mutase-1 (Mj-cm-1) could suggest when in the lifecycle of the nematode the Mj-cm-1 product is functional. This study used real-time quantitative RT-PCR to examine the variation in Mj-cm-1 transcript levels over six timepoints in the nematode lifecycle: egg, infective second-stage juveniles (Inf-J2), 2-day post-inoculation (pi), 7-day pi, 14-day pi, and adult. The Mj-cm-1 mRNA levels peaked at 2-day pi, about 100-fold above levels expressed at the egg and Inf-J2 stages. Some expression of Mj-cm-1 remained during the 7-day pi, 14-day pi, and adult stages. High transcript levels of the beta-actin control gene M. javanica Beta-actin-1 (Mj-ba-1) demonstrated the presence of cDNA at all timepoints. The peak in Mj-cm-1 transcript expression at 2-day pi as well as the previously shown esophageal gland localization of Mj-cm-1 mRNA suggest that the product of this gene may be involved early in the establishment of parasitism.

  17. PCBs are associated with altered gene transcript profiles in arctic Beluga Whales (Delphinapterus leucas).

    PubMed

    Noël, Marie; Loseto, Lisa L; Helbing, Caren C; Veldhoen, Nik; Dangerfield, Neil J; Ross, Peter S

    2014-01-01

    High trophic level arctic beluga whales (Delphinapterus leucas) are exposed to persistent organic pollutants (POP) originating primarily from southern latitudes. We collected samples from 43 male beluga harvested by Inuvialuit hunters (2008-2010) in the Beaufort Sea to evaluate the effects of POPs on the levels of 13 health-related gene transcripts using quantitative real-time polymerase chain reaction. Consistent with their role in detoxification, the aryl hydrocarbon receptor (Ahr) (r(2) = 0.18, p = 0.045 for 2008 and 2009) and cytochrome P450 1A1 (Cyp1a1) (r(2) = 0.20, p < 0.001 for 2008 and 2009; r(2) = 0.43, p = 0.049 for 2010) transcripts were positively correlated with polychlorinated biphenyls (PCBs), the dominant POP in beluga. Principal Components Analysis distinguished between these two toxicology genes and 11 other genes primarily involved in growth, metabolism, and development. Factor 1 explained 56% of gene profiles, with these latter 11 gene transcripts displaying greater abundance in years coinciding with periods of low sea ice extent (2008 and 2010). δ(13)C results suggested a shift in feeding ecology and/or change in condition of these ice edge-associated beluga whales during these two years. While this provides insight into the legacy of PCBs in a remote environment, the possible impacts of a changing ice climate on the health of beluga underscores the need for long-term studies.

  18. Transcriptional profiling of genes involved in steviol glycoside biosynthesis in Stevia rebaudiana bertoni during plant hardening.

    PubMed

    Modi, Arpan; Litoriya, Nitesh; Prajapati, Vijay; Rafalia, Rutul; Narayanan, Subhash

    2014-09-01

    Stevioside is a diterpene glycoside found in Stevia rebaudiana Bertoni (Asteraceae) and is 200-300 times sweeter than sucrose. It is synthesized through a plastid localized 2-C-methyl-D-erythritol-4-phosphate (MEP) pathway. Fifteen genes are involved in the formation of steviol glycosides (stevioside and rebaudioside A). In the present investigation, micropropagated plants were allowed to harden for one month during which transcriptional profiling of candidate genes was carried out. Sampling from all the plants was carried out during hardening at different time intervals (day 10, 20, and 30) along with control plants (day 0). Stevioside content was also measured. Of 15 genes, 9 were up-regulated two-fold or greater. Nine genes were expressed at higher levels after 30 days than in the untreated controls. Moreover, these transcriptional differences were correlated with a significant enhancement in stevioside content from 0- (11.48%) to 30- (13.57%) day-old plants. MEP pathway genes in stevia are expressed at higher levels during hardening, a change to vegetative growth from reproductive growth. Although there were higher transcript levels of candidate genes at the initial phase of hardening, the highest stevioside content was found after 30 days of hardening, suggesting translational/posttranslational regulatory mechanisms. Copyright © 2014 Wiley Periodicals, Inc.

  19. Identification, classification, and transcription profiles of the B-type response regulator family in pear

    PubMed Central

    Gao, Ling; Qian, Minjie; Zhong, Linbing; Teng, Yuanwen

    2017-01-01

    Type-B response regulators (B-RRs) are transcription factors that function in the final step of two-component signaling systems. In model plants, B-RRs have been shown to play important roles in cytokinin signal transduction. However, the functions of B-RRs in pear have not been well studied. In this report, we conducted a genome-wide analysis and identified 11 putative genes encoding B-PpRR proteins based on the published genome sequence of Pyrus bretschneideri. A phylogenetic tree of the B-PpRR family was constructed, and the motif distribution, chromosome localization, and gene structure of B-PpRR family genes were determined. Gene transcript profiles, which were determined from transcriptome data, indicated that B-PpRR genes potentially function during pear fruit development, bud dormancy, and light/hormone-induced anthocyanin accumulation. Treatment of the fruitlets of ‘Cuiguan’ pear (Pyrus pyrifolia), which never accumulates anthocyanin, with the cytokinin N-(2-chloro-4-pyridyl)- N′-phenylurea (CPPU) clearly induced anthocyanin accumulation. Anthocyanins accumulated in the skin of fruitlets by 16 days after CPPU treatment, along with the significant activation of most anthocyanin biosynthetic genes. Analyses of B-PpRR transcript levels suggested that B-PpRR genes mediated this accumulation of anthocyanins. These findings enrich our understanding of the function of B-PpRR genes in the physiological processes of pear. PMID:28207822

  20. Transcript profiling reveals rewiring of iron assimilation gene expression in Candida albicans and C. dubliniensis.

    PubMed

    Moran, Gary P

    2012-12-01

    Hyphal growth is repressed in Candida albicans and Candida dubliniensis by the transcription factor Nrg1. Transcript profiling of a C. dubliniensis NRG1 mutant identified a common group of 28 NRG1-repressed genes in both species, including the hypha-specific genes HWP1, ECE1 and the regulator of cell elongation UME6. Unexpectedly, C. dubliniensis NRG1 was required for wild-type levels of expression of 10 genes required for iron uptake including seven ferric reductases, SIT1, FTR1 and RBT5. However, at alkaline pH and during filamentous growth in 10% serum, most of these genes were highly induced in C. dubliniensis. Conversely, RBT5, PGA10, FRE10 and FRP1 did not exhibit induction during hyphal growth when NRG1 is downregulated, indicating that in C. dubliniensis NRG1 is also required for optimal expression of these genes in alkaline environments. In iron-depleted medium at pH 4.5, reduced growth of the NRG1 mutant relative to wild type was observed; however, growth was restored to wild-type levels or greater at pH 6.5, indicating that alkaline induction of iron assimilation gene expression could rescue this phenotype. These data indicate that transcriptional control of iron assimilation and pseudohypha formation has been separated in C. albicans, perhaps promoting growth in a wider range of niches.

  1. cDNA-AFLP transcriptional profiling reveals genes expressed during flower development in Oncidium Milliongolds.

    PubMed

    Qian, X; Gong, M J; Wang, C X; Tian, M

    2014-02-21

    The flower developmental process, which is crucial to the whole lifecycle of higher plants, is influenced by both environmental and endogenous factors. The genus Oncidium is commercially important for cut flower and houseplant industry and is ideal for flower development studies. Using cDNA-amplified restriction fragment length polymorphism analysis, we profiled transcripts that are differentially expressed during flower development of Oncidium Milliongolds. A total of 15,960 transcript-derived fragments were generated, with 114 primer sets. Of these, 1248 were sequenced, producing 993 readable sequences. BLASTX/N analysis showed that 833 of the 993 transcripts showed homology to genes in the NCBI databases, exhibiting functions involved in various processes, such as signal transduction, energy conversion, metabolism, and gene expression regulation. The full-length mRNAs of SUCROSE SYNTHASE 1 (SUS1) and LEAFY (LFY) were cloned, and their expression patterns were characterized. The results showed that the expression levels of SUS1 and LFY were similar during flower development. To confirm the function of SUS1 in flower buds, carbohydrate content and sucrose synthase activity were determined. The results showed that changes in sucrose content and sucrose synthase activity reflected SUS1 expression levels. Collectively, these results indicate that SUS1 influences flower development by regulating LFY expression levels through changing the sucrose content of flower buds.

  2. Identifying genes associated with a quantitative trait or quantitative trait locus via selective transcriptional profiling.

    PubMed

    Wang, Dong; Nettleton, Dan

    2006-06-01

    Genetical genomics is an approach that blends the mapping of quantitative trait loci (QTL) with microarray analysis. The approach can be used to identify associations between the allelic state of a genomic region and a gene's transcript abundance. However, the large number of microarrays required for adequate power results in high material and labor costs that prevent wide adoption of the genetical genomics strategy outside of some well-funded laboratories. We present a method called selective transcriptional profiling that involves selecting an optimal subset of individuals to microarray from a larger set of individuals for which relatively inexpensive quantitative trait and molecular marker data are available. We show how to use microarray data from the selected individuals, along with the trait and marker data from all individuals, to identify genes whose transcript abundance is associated with a quantitative trait of interest through linkage to a trait QTL or correlation with the trait. Our methods for selection and analysis are derived within a missing data framework.

  3. Transcriptional profiling of Actinobacillus pleuropneumoniae during the acute phase of a natural infection in pigs

    PubMed Central

    2010-01-01

    Background Actinobacillus pleuropneumoniae is the etiological agent of porcine pleuropneumonia, a respiratory disease which causes great economic losses worldwide. Many virulence factors are involved in the pathogenesis, namely capsular polysaccharides, RTX toxins, LPS and many iron acquisition systems. In order to identify genes that are expressed in vivo during a natural infection, we undertook transcript profiling experiments with an A. pleuropneumoniae DNA microarray, after recovery of bacterial mRNAs from serotype 5b-infected porcine lungs. AppChip2 contains 2033 PCR amplicons based on the genomic sequence of App serotype 5b strain L20, representing more than 95% of ORFs greater than 160 bp in length. Results Transcriptional profiling of A. pleuropneumoniae recovered from the lung of a pig suffering from a natural infection or following growth of the bacterial isolate in BHI medium was performed. An RNA extraction protocol combining beadbeating and hot-acid-phenol was developed in order to maximize bacterial mRNA yields and quality following total RNA extraction from lung lesions. Nearly all A. pleuropneumoniae transcripts could be detected on our microarrays, and 150 genes were deemed differentially expressed in vivo during the acute phase of the infection. Our results indicate that, for example, gene apxIVA from an operon coding for RTX toxin ApxIV is highly up-regulated in vivo, and that two genes from the operon coding for type IV fimbriae (APL_0878 and APL_0879) were also up-regulated. These transcriptional profiling data, combined with previous comparative genomic hybridizations performed by our group, revealed that 66 out of the 72 up-regulated genes are conserved amongst all serotypes and that 3 of them code for products that are predicted outer membrane proteins (genes irp and APL_0959, predicted to code for a TonB-dependent receptor and a filamentous hemagglutinin/adhesin respectively) or lipoproteins (gene APL_0920). Only 4 of 72 up-regulated genes

  4. Transcription profile of DNA damage response genes at G₀ lymphocytes exposed to gamma radiation.

    PubMed

    Saini, Divyalakshmi; Shelke, Shridevi; Mani Vannan, A; Toprani, Sneh; Jain, Vinay; Das, Birajalaxmi; Seshadri, M

    2012-05-01

    Ionizing radiation induces a plethora of DNA damages in human cells which may alter the level of mRNA expression. We have analyzed mRNA expression profile of DNA damage response genes involved in G(0)/G(1) check point pathway in whole blood to assess their radio-adaptive response, if any, to gamma radiation. Blood samples were collected from twenty-five random, normal, and healthy male donors with written informed consent and irradiated at doses between 0.1 and 2.0 Gy (0.7 Gy/min). DNA strand breaks were studied using comet assay, whereas DNA double-strand breaks were visualized using γH2AX as a biomarker. Dose response if any, at transcriptional level was studied for all these dose groups at 1 and 5-h post-irradiation. Adaptive response at transcriptional level was studied at three different priming doses (0.1, 0.3, and 0.6 Gy) separately followed by a challenging dose of 2.0 Gy after 4 h. For both the experiments, total RNA was isolated from PBMCs obtained from irradiated whole blood and reverse transcribed to cDNA. The level of mRNA expression of ATM, ATR, GADD45A, CDKN1A, P53, CDK2, MDM2, and Cyclin E was studied using real-time quantitative PCR. A significant dose-dependant increase in the percentage of DNA damage in tail was observed using comet assay. Similarly, increased number of foci was observed at γH2AX with increasing dose. At transcriptional level, a significant dose-dependent up-regulation at GADD45A, CDKN1A, and P53 genes up to 1.0 Gy was observed at 5-h post-irradiation (P ≤ 0.05). Radio-adaptive response at mRNA expression level was observed at CDK2, Cyclin E, and P53, whereas ATM, ATR, GADD45A, MDM2, ATM, and ATR have not shown any radio-adaptive changes in the expression profile. DNA damage response genes involved in G(0)/G(1) checkpoint pathway has important implications in terms of radiosensitivity in vivo and changes in the transcriptional profile might throw some new insights to understand the mechanism of adaptive response.

  5. Global Gene Expression Profiling in Lung Tissues of Rat Exposed to Lunar Dust Particles

    NASA Technical Reports Server (NTRS)

    Yeshitla, Samrawit A.; Lam, Chiu-Wing; Kidane, Yared H.; Feiveson, Alan H.; Ploutz-Snyder, Robert; Wu, Honglu; James, John T.; Meyers, Valerie E.; Zhang, Ye

    2014-01-01

    The Moon's surface is covered by a layer of fine, potential reactive dust. Lunar dust contain about 1-2% respirable very fine dust (less than 3 micrometers). The habitable area of any lunar landing vehicle and outpost would inevitably be contaminated with lunar dust that could pose a health risk. The purpose of the study is to analyze the dynamics of global gene expression changes in lung tissues of rats exposed to lunar dust particles. F344 rats were exposed for 4 weeks (6h/d; 5d/wk) in nose-only inhalation chambers to concentrations of 0 (control air), 2.1, 6.8, 21, and 61 mg/m3 of lunar dust. Animals were euthanized at 1 day and 13 weeks after the last inhalation exposure. After being lavaged, lung tissue from each animal was collected and total RNA was isolated. Four samples of each dose group were analyzed using Agilent Rat GE v3 microarray to profile global gene expression of 44K transcripts. After background subtraction, normalization, and log transformation, t tests were used to compare the mean expression levels of each exposed group to the control group. Correction for multiple testing was made using the method of Benjamini, Krieger, and Yekuteli (1) to control the false discovery rate. Genes with significant changes of at least 1.75 fold were identified as genes of interest. Both low and high doses of lunar dust caused dramatic, dose-dependent global gene expression changes in the lung tissues. However, the responses of lung tissue to low dose lunar dust are distinguished from those of high doses, especially those associated with 61mg/m3 dust exposure. The data were further integrated into the Ingenuity system to analyze the gene ontology (GO), pathway distribution and putative upstream regulators and gene targets. Multiple pathways, functions, and upstream regulators have been identified in response to lunar dust induced damage in the lung tissue.

  6. Correlation between transcript profiles and fitness of deletion mutants in anaerobic chemostat cultures of Saccharomyces cerevisiae

    PubMed Central

    Tai, Siew Leng; Snoek, Ishtar; Luttik, Marijke A. H.; Almering, Marinka J. H.; Walsh, Michael C.; Pronk, Jack T.; Daran, Jean-Marc

    2007-01-01

    The applicability of transcriptomics for functional genome analysis rests on the assumption that global information on gene function can be inferred from transcriptional regulation patterns. This study investigated whether Saccharomyces cerevisiae genes that show a consistently higher transcript level under anaerobic than aerobic conditions do indeed contribute to fitness in the absence of oxygen. Tagged deletion mutants were constructed in 27 S. cerevisiae genes that showed a strong and consistent transcriptional upregulation under anaerobic conditions, irrespective of the nature of the growth-limiting nutrient (glucose, ammonia, sulfate or phosphate). Competitive anaerobic chemostat cultivation showed that only five out of the 27 mutants (eug1Δ, izh2Δ, plb2Δ, ylr413wΔ and yor012wΔ) conferred a significant disadvantage relative to a tagged reference strain. The implications of this study are that: (i) transcriptome analysis has a very limited predictive value for the contribution of individual genes to fitness under specific environmental conditions, and (ii) competitive chemostat cultivation of tagged deletion strains offers an efficient approach to select relevant leads for functional analysis studies. PMID:17322208

  7. Expression profiles of key transcription factors involved in lipid metabolism in Beijing-You chickens.

    PubMed

    Fu, R Q; Liu, R R; Zhao, G P; Zheng, M Q; Chen, J L; Wen, J

    2014-03-01

    Intramuscular fat (IMF) is a crucial factor for the meat quality of chickens. With the aim of studying the molecular mechanisms underlying IMF deposition in chickens, the expression profiles of five candidate transcription factors involved in lipid metabolism in several tissues were examined in Beijing-You (BJY) chickens at five ages (0, 4, 8, 14 and 20 wk). Results showed that accumulation of IMF in breast (IMFbr), thigh (IMFth) and abdominal fat weight increased significantly (P<0.01) after 8 wk. Accumulation of both IMFbr and IMFth from 8 to 14 wk exceeded that from 14 to 20 wk; IMFth was 4-7 times of IMFbr. As for the expression profiles of key transcription factors: 1) expression of C/EBPα and PPARγ in abdominal fat was significantly higher than that in breast and thigh muscles at all ages. The expression of C/EBPα was positively correlated with PPARγ in both breast and thigh muscles, which indicated that both C/EBPα and PPARγ promoted fat deposition and might act through a unified pathway; 2) the expression of SREBP-1 in 0, 4, and 8 wk in thigh muscle was significantly higher than that in breast; 3) expression of C/EBPβ at 4 and 8 wk was significantly higher than that at 14 and 20 wk; and it was positively correlated with IMFth and IMFbr from 0 to 8 wk; 4) expression of PPARα in breast and thigh muscles was significantly higher than that in abdominal fat. Taken together, all five transcription factors studied play roles in lipid metabolism in chickens with C/EBPα and PPARγ being important effectors.

  8. Complex MHC class I gene transcription profiles and their functional impact in orangutans

    PubMed Central

    de Groot, Natasja G.; Heijmans, Corrine M.C.; van der Wiel, Marit K.H.; Blokhuis, Jeroen H.; Mulder, Arend; Guethlein, Lisbeth A.; Doxiadis, Gaby G.M.; Claas, Frans H.J.; Parham, Peter; Bontrop, Ronald E.

    2015-01-01

    MHC haplotypes of humans and the African great ape species have one copy of the MHC-A, -B, and -C genes. In contrast, MHC haplotypes of orangutans, the Asian great ape species, exhibit variation in the number of gene copies. An in-depth analysis of the MHC class I gene repertoire in the two orangutan species, Pongo abelii and Pongo pygmaeus, is presented here. This analysis involved Sanger and next-generation sequencing methodologies, revealing diverse and complicated transcription profiles for orangutan MHC-A, -B, and -C. Thirty-five previously unreported MHC class I alleles are described. The data demonstrate that each orangutan MHC haplotype has one copy of the MHC-A gene, and that the MHC-B region has been subject to duplication, giving rise to at least three MHC-B genes. The MHC-B*03 and -B*08 lineages of alleles each account for a separate MHC-B gene. All MHC-B*08 allotypes have the C1-epitope motif recognized by KIR. At least one other MHC-B gene is present, pointing to MHC-B alleles that are not B*03 or B*08. The MHC-C gene is present only on some haplotypes, and each MHC-C allotype has the C1-epitope. The transcription profiles demonstrate that MHC-A alleles are highly transcribed, whereas MHC-C alleles, when present, are transcribed at very low levels. The MHC-B alleles are transcribed to a variable extent and over a wide range. For those orangutan MHC class I allotypes that are detected by human monoclonal anti-HLA class I antibodies, the level of cell-surface expression of proteins correlates with the level of transcription of the allele. PMID:26685209

  9. Molecular characterization of BZR transcription factor family and abiotic stress induced expression profiling in Brassica rapa.

    PubMed

    Saha, Gopal; Park, Jong-In; Jung, Hee-Jeong; Ahmed, Nasar Uddin; Kayum, Md Abdul; Kang, Jong-Goo; Nou, Ill-Sup

    2015-07-01

    BRASSINAZOLE-RESISTANT (BZR) transcription factors (TFs) are primarily well known as positive regulators of Brassinosteroid (BR) signal transduction in different plants. BR is a plant specific steroid hormone, which has multiple stress resistance functions besides various growth regulatory roles. Being an important regulator of the BR synthesis, BZR TFs might have stress resistance related activities. However, no stress resistance related functional study of BZR TFs has been reported in any crop plants so far. Therefore, this study identified 15 BZR TFs of Brassica rapa (BrBZR) from a genome-wide survey and characterized them through sequence analysis and expression profiling against several abiotic stresses. Various systematic in silico analysis of these TFs validated the fundamental properties of BZRs, where a high degree of similarity also observed with recognized BZRs of other plant species from the comparison studies. In the organ specific expression analyses, 6 BrBZR TFs constitutively expressed in flower developmental stages indicating their flower specific functions. Subsequently, from the stress resistance related expression profiles differential transcript abundance levels were observed by 6 and 11 BrBZRs against salt and drought stresses, respectively. All BrBZRs showed several folds up-regulation against exogenous ABA treatment. All BrBZRs also showed differential expression against low temperature stress treatments and these TFs were proposed as transcriptional activators of CBF cold response pathway of B. rapa. Notably, three BrBZRs gave co-responsive expression against all the stresses tested here, suggesting their multiple stress resistance related functions. Thus, the findings would be helpful in resolving the complex regulatory mechanism of BZRs in stress resistance and further functional genomics study of these potential TFs in different Brassica crops.

  10. Identification, classification and transcriptional profiles of dirigent domain-containing proteins in sugarcane.

    PubMed

    Nobile, Paula Macedo; Bottcher, Alexandra; Mayer, Juliana L S; Brito, Michael S; Dos Anjos, Ivan A; Landell, Marcos Guimarães de Andrade; Vicentini, Renato; Creste, Silvana; Riaño-Pachón, Diego Mauricio; Mazzafera, Paulo

    2017-07-11

    Dirigent (DIR) proteins, encoded by DIR genes, are referred to as "dirigent" because they direct the outcome of the coupling of the monolignol coniferyl alcohol into (+) or (-) pinoresinol, the first intermediates in the enantiocomplementary pathways for lignan biosynthesis. DIR domain-containing or DIR-like proteins are, thus, termed for not having a clear characterization. A transcriptome- and genome-wide survey of DIR domain-containing proteins in sugarcane was carried out, in addition to phylogenetic, physicochemical and transcriptional analyses. A total of 120 non-redundant sequences containing the DIR domain were identified and classified into 64 groups according to phylogenetic and sequence alignment analyses. In silico analysis of transcript abundance showed that these sequences are expressed at low levels in leaves and genes in the same phylogenetic clade have similar expression patterns. Expression analysis of ShDIR1-like transcripts in the culm internodes of sugarcane demonstrates their abundance in mature internodes, their induction by nitrogen fertilization and their predominant expression in cells that have a lignified secondary cell wall, such as vascular bundles of young internodes and parenchymal cells of the pith of mature internodes. Due to the lack of information about the functional role of DIR in plants, a possible relationship is discussed between the ShDIR1-like transcriptional profile and cell wall development in parenchyma cells of sugarcane culm, which typically accumulates large amounts of sucrose. The number of genes encoding the DIR domain-containing proteins in sugarcane is intriguing and is an indication per se that these proteins may have an important metabolic role and thus deserve to be better studied.

  11. Transcriptional profiling reveals regulated genes in the hippocampus during memory formation

    NASA Technical Reports Server (NTRS)

    Donahue, Christine P.; Jensen, Roderick V.; Ochiishi, Tomoyo; Eisenstein, Ingrid; Zhao, Mingrui; Shors, Tracey; Kosik, Kenneth S.

    2002-01-01

    Transcriptional profiling (TP) offers a powerful approach to identify genes activated during memory formation and, by inference, the molecular pathways involved. Trace eyeblink conditioning is well suited for the study of regional gene expression because it requires the hippocampus, whereas the highly parallel task, delay conditioning, does not. First, we determined when gene expression was most regulated during trace conditioning. Rats were exposed to 200 trials per day of paired and unpaired stimuli each day for 4 days. Changes in gene expression were most apparent 24 h after exposure to 200 trials. Therefore, we profiled gene expression in the hippocampus 24 h after 200 trials of trace eyeblink conditioning, on multiple arrays using additional animals. Of 1,186 genes on the filter array, seven genes met the statistical criteria and were also validated by real-time polymerase chain reaction. These genes were growth hormone (GH), c-kit receptor tyrosine kinase (c-kit), glutamate receptor, metabotropic 5 (mGluR5), nerve growth factor-beta (NGF-beta), Jun oncogene (c-Jun), transmembrane receptor Unc5H1 (UNC5H1), and transmembrane receptor Unc5H2 (UNC5H2). All these genes, except for GH, were downregulated in response to trace conditioning. GH was upregulated; therefore, we also validated the downregulation of the GH inhibitor, somatostatin (SST), even though it just failed to meet criteria on the arrays. By during situ hybridization, GH was expressed throughout the cell layers of the hippocampus in response to trace conditioning. None of the genes regulated in trace eyeblink conditioning were similarly affected by delay conditioning, a task that does not require the hippocampus. These findings demonstrate that transcriptional profiling can exhibit a repertoire of genes sensitive to the formation of hippocampal-dependent associative memories.

  12. Transcriptional profiling reveals regulated genes in the hippocampus during memory formation

    NASA Technical Reports Server (NTRS)

    Donahue, Christine P.; Jensen, Roderick V.; Ochiishi, Tomoyo; Eisenstein, Ingrid; Zhao, Mingrui; Shors, Tracey; Kosik, Kenneth S.

    2002-01-01

    Transcriptional profiling (TP) offers a powerful approach to identify genes activated during memory formation and, by inference, the molecular pathways involved. Trace eyeblink conditioning is well suited for the study of regional gene expression because it requires the hippocampus, whereas the highly parallel task, delay conditioning, does not. First, we determined when gene expression was most regulated during trace conditioning. Rats were exposed to 200 trials per day of paired and unpaired stimuli each day for 4 days. Changes in gene expression were most apparent 24 h after exposure to 200 trials. Therefore, we profiled gene expression in the hippocampus 24 h after 200 trials of trace eyeblink conditioning, on multiple arrays using additional animals. Of 1,186 genes on the filter array, seven genes met the statistical criteria and were also validated by real-time polymerase chain reaction. These genes were growth hormone (GH), c-kit receptor tyrosine kinase (c-kit), glutamate receptor, metabotropic 5 (mGluR5), nerve growth factor-beta (NGF-beta), Jun oncogene (c-Jun), transmembrane receptor Unc5H1 (UNC5H1), and transmembrane receptor Unc5H2 (UNC5H2). All these genes, except for GH, were downregulated in response to trace conditioning. GH was upregulated; therefore, we also validated the downregulation of the GH inhibitor, somatostatin (SST), even though it just failed to meet criteria on the arrays. By during situ hybridization, GH was expressed throughout the cell layers of the hippocampus in response to trace conditioning. None of the genes regulated in trace eyeblink conditioning were similarly affected by delay conditioning, a task that does not require the hippocampus. These findings demonstrate that transcriptional profiling can exhibit a repertoire of genes sensitive to the formation of hippocampal-dependent associative memories.

  13. Global position analysis of the Pseudomonas aeruginosa quorum-sensing transcription factor LasR.

    PubMed

    Gilbert, Kerrigan B; Kim, Tae Hoon; Gupta, Rashmi; Greenberg, E Peter; Schuster, Martin

    2009-09-01

    In Pseudomonas aeruginosa quorum sensing (QS), the transcriptional regulator LasR controls the expression of more than 300 genes. Several of these genes are activated indirectly via a second, subordinate QS regulator, RhlR. Conserved sequence elements upstream of individual other genes have been shown to bind LasR in vitro. To comprehensively identify all regions that are bound by LasR in vivo, we employed chromatin immunoprecipitation in conjunction with microarray analysis. We identified 35 putative promoter regions that direct the expression of up to 74 genes. In vitro DNA binding studies allowed us to distinguish between cooperative and non-cooperative LasR binding sites, and allowed us to build consensus sequences according to the mode of binding. Five promoter regions were not previously recognized as QS-controlled. Two of the associated transcript units encode proteins involved in the cold-shock response and in Psl exopolysaccharide synthesis respectively. The LasR regulon includes seven genes encoding transcriptional regulators, while secreted factors and secretion machinery are the most over-represented functional categories overall. This supports the notion that the core function of LasR is to co-ordinate the production of extracellular factors, although many of its effects on global gene expression are likely mediated indirectly by regulatory genes under its control.

  14. Definition of global and transcript-specific mRNA export pathways in metazoans.

    PubMed

    Farny, Natalie G; Hurt, Jessica A; Silver, Pamela A

    2008-01-01

    Eukaryotic gene expression requires export of messenger RNAs (mRNAs) from their site of transcription in the nucleus to the cytoplasm where they are translated. While mRNA export has been studied in yeast, the complexity of gene structure and cellular function in metazoan cells has likely led to increased diversification of these organisms' export pathways. Here we report the results of a genome-wide RNAi screen in which we identify 72 factors required for polyadenylated [poly-(A(+))] mRNA export from the nucleus in Drosophila cells. Using structural and functional conservation analysis of yeast and Drosophila mRNA export factors, we expose the evolutionary divergence of eukaryotic mRNA export pathways. Additionally, we demonstrate the differential export requirements of two endogenous heat-inducible transcripts--intronless heat-shock protein 70 (HSP70) and intron-containing HSP83--and identify novel export factors that participate in HSP83 mRNA splicing. We characterize several novel factors and demonstrate their participation in interactions with known components of the Drosophila export machinery. One of these factors, Drosophila melanogaster PCI domain-containing protein 2 (dmPCID2), associates with polysomes and may bridge the transition between exported messenger ribonucleoprotein particles (mRNPs) and polysomes. Our results define the global network of factors involved in Drosophila mRNA export, reveal specificity in the export requirements of different transcripts, and expose new avenues for future work in mRNA export.

  15. Marli: Mars Lidar for Global Wind Profiles and Aerosol Profiles from Orbit

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Guzewich, S. D.; Smith, M. D.; Riris, H.; Sun, X.; Gentry, B. M.; Yu, A.; Allan, G. R.

    2016-01-01

    The Mars Exploration Analysis Group's Next Orbiter Science Analysis Group (NEXSAG) has recently identified atmospheric wind measurements as one of 5 top compelling science objectives for a future Mars orbiter. To date, only isolated lander observations of martian winds exist. Winds are the key variable to understand atmospheric transport and answer fundamental questions about the three primary cycles of the martian climate: CO2, H2O, and dust. However, the direct lack of observations and imprecise and indirect inferences from temperature observations leave many basic questions about the atmospheric circulation unanswered. In addition to addressing high priority science questions, direct wind observations from orbit would help validate 3D general circulation models (GCMs) while also providing key input to atmospheric reanalyses. The dust and CO2 cycles on Mars are partially coupled and their influences on the atmospheric circulation modify the global wind field. Dust absorbs solar infrared radiation and its variable spatial distribution forces changes in the atmospheric temperature and wind fields. Thus it is important to simultaneously measure the height-resolved wind and dust profiles. MARLI provides a unique capability to observe these variables continuously, day and night, from orbit.

  16. Global transcription engineering of brewer's yeast enhances the fermentation performance under high-gravity conditions.

    PubMed

    Gao, Cuijuan; Wang, Zhikun; Liang, Quanfeng; Qi, Qingsheng

    2010-08-01

    Global transcription engineering was developed as a tool to reprogram gene transcription for eliciting new phenotypes important for technological applications (Science 2006, 314(5805):1565-1568). A recent report indicated that the beneficial growth advantage of yeast cells expressing the SPT15-300 mutation is the result of enhanced uptake and/or improved utilization of leucine and thus was seen only on defined media with low concentrations of leucine (Appl Environ Microbiol 2009, 75(19):6055-6061). Further investigation towards a leucine-prototrophic strain of industrial lager brewer's yeast indicated that integration one copy of SPT15-300 in SPT15 allele, however, did lead to an increased ethanol tolerance on complex rich medium at high gravity fermentation condition. Under brewing conditions, the SPT15-300 mutant produced 80.78 g/L ethanol from 200 g/L carbohydrates after 384 h, almost twice as much as that of the wild-type strain. The results convinced us that the effect of global regulator modification of yeast is at multi-genes level and is extremely complicated.

  17. Impact of nonsense-mediated mRNA decay on the global expression profile of budding yeast.

    PubMed

    Guan, Qiaoning; Zheng, Wei; Tang, Shijie; Liu, Xiaosong; Zinkel, Robert A; Tsui, Kam-Wah; Yandell, Brian S; Culbertson, Michael R

    2006-11-24

    Nonsense-mediated mRNA decay (NMD) is a eukaryotic mechanism of RNA surveillance that selectively eliminates aberrant transcripts coding for potentially deleterious proteins. NMD also functions in the normal repertoire of gene expression. In Saccharomyces cerevisiae, hundreds of endogenous RNA Polymerase II transcripts achieve steady-state levels that depend on NMD. For some, the decay rate is directly influenced by NMD (direct targets). For others, abundance is NMD-sensitive but without any effect on the decay rate (indirect targets). To distinguish between direct and indirect targets, total RNA from wild-type (Nmd(+)) and mutant (Nmd(-)) strains was probed with high-density arrays across a 1-h time window following transcription inhibition. Statistical models were developed to describe the kinetics of RNA decay. 45% +/- 5% of RNAs targeted by NMD were predicted to be direct targets with altered decay rates in Nmd(-) strains. Parallel experiments using conventional methods were conducted to empirically test predictions from the global experiment. The results show that the global assay reliably distinguished direct versus indirect targets. Different types of targets were investigated, including transcripts containing adjacent, disabled open reading frames, upstream open reading frames, and those prone to out-of-frame initiation of translation. Known targeting mechanisms fail to account for all of the direct targets of NMD, suggesting that additional targeting mechanisms remain to be elucidated. 30% of the protein-coding targets of NMD fell into two broadly defined functional themes: those affecting chromosome structure and behavior and those affecting cell surface dynamics. Overall, the results provide a preview for how expression profiles in multi-cellular eukaryotes might be impacted by NMD. Furthermore, the methods for analyzing decay rates on a global scale offer a blueprint for new ways to study mRNA decay pathways in any organism where cultured cell lines are

  18. Global profiling of alternative RNA splicing events provides insights into molecular differences between various types of hepatocellular carcinoma.

    PubMed

    Tremblay, Marie-Pier; Armero, Victoria E S; Allaire, Andréa; Boudreault, Simon; Martenon-Brodeur, Camille; Durand, Mathieu; Lapointe, Elvy; Thibault, Philippe; Tremblay-Létourneau, Maude; Perreault, Jean-Pierre; Scott, Michelle S; Bisaillon, Martin

    2016-08-26

    Dysregulations in alternative splicing (AS) patterns have been associated with many human diseases including cancer. In the present study, alterations to the global RNA splicing landscape of cellular genes were investigated in a large-scale screen from 377 liver tissue samples using high-throughput RNA sequencing data. Our study identifies modifications in the AS patterns of transcripts encoded by more than 2500 genes such as tumor suppressor genes, transcription factors, and kinases. These findings provide insights into the molecular differences between various types of hepatocellular carcinoma (HCC). Our analysis allowed the identification of 761 unique transcripts for which AS is misregulated in HBV-associated HCC, while 68 are unique to HCV-associated HCC, 54 to HBV&HCV-associated HCC, and 299 to virus-free HCC. Moreover, we demonstrate that the expression pattern of the RNA splicing factor hnRNPC in HCC tissues significantly correlates with patient survival. We also show that the expression of the HBx protein from HBV leads to modifications in the AS profiles of cellular genes. Finally, using RNA interference and a reverse transcription-PCR screening platform, we examined the implications of cellular proteins involved in the splicing of transcripts involved in apoptosis and demonstrate the potential contribution of these proteins in AS control. This study provides the first comprehensive portrait of global changes in the RNA splicing signatures that occur in hepatocellular carcinoma. Moreover, these data allowed us to identify unique signatures of genes for which AS is misregulated in the different types of HCC.

  19. Global Analysis of mRNA Half-Lives and de novo Transcription in a Dinoflagellate, Karenia brevis

    PubMed Central

    Morey, Jeanine S.; Van Dolah, Frances M.

    2013-01-01

    Dinoflagellates possess many physiological processes that appear to be under post-transcriptional control. However, the extent to which their genes are regulated post-transcriptionally remains unresolved. To gain insight into the roles of differential mRNA stability and de novo transcription in dinoflagellates, we biosynthetically labeled RNA with 4-thiouracil to isolate newly transcribed and pre-existing RNA pools in Karenia brevis. These isolated fractions were then used for analysis of global mRNA stability and de novo transcription by hybridization to a K. brevis microarray. Global K. brevis mRNA half-lives were calculated from the ratio of newly transcribed to pre-existing RNA for 7086 array features using the online software HALO (Half-life Organizer). Overall, mRNA half-lives were substantially longer than reported in other organisms studied at the global level, ranging from 42 minutes to greater than 144 h, with a median of 33 hours. Consistent with well-documented trends observed in other organisms, housekeeping processes, including energy metabolism and transport, were significantly enriched in the most highly stable messages. Shorter-lived transcripts included a higher proportion of transcriptional regulation, stress response, and other response/regulatory processes. One such family of proteins involved in post-transcriptional regulation in chloroplasts and mitochondria, the pentatricopeptide repeat (PPR) proteins, had dramatically shorter half-lives when compared to the arrayed transcriptome. As transcript abundances for PPR proteins were previously observed to rapidly increase in response to nutrient addition, we queried the newly synthesized RNA pools at 1 and 4 h following nitrate addition to N-depleted cultures. Transcriptome-wide there was little evidence of increases in the rate of de novo transcription during the first 4 h, relative to that in N-depleted cells, and no evidence for increased PPR protein transcription. These results lend support to

  20. Transcript profiling distinguishes complete treatment responders with locally advanced cervical cancer.

    PubMed

    Fernandez-Retana, Jorge; Lasa-Gonsebatt, Federico; Lopez-Urrutia, Eduardo; Coronel-Martínez, Jaime; Cantu De Leon, David; Jacobo-Herrera, Nadia; Peralta-Zaragoza, Oscar; Perez-Montiel, Delia; Reynoso-Noveron, Nancy; Vazquez-Romo, Rafael; Perez-Plasencia, Carlos

    2015-04-01

    Cervical cancer (CC) mortality is a major public health concern since it is the second cause of cancer-related deaths among women. Patients diagnosed with locally advanced CC (LACC) have an important rate of recurrence and treatment failure. Conventional treatment for LACC is based on chemotherapy and radiotherapy; however, up to 40% of patients will not respond to conventional treatment; hence, we searched for a prognostic gene signature able to discriminate patients who do not respond to the conventional treatment employed to treat LACC. Tumor biopsies were profiled with genome-wide high-density expression microarrays. Class prediction was performed in tumor tissues and the resultant gene signature was validated by quantitative reverse transcription-polymerase chain reaction. A 27-predictive gene profile was identified through its association with pathologic response. The 27-gene profile was validated in an independent set of patients and was able to distinguish between patients diagnosed as no response versus complete response. Gene expression analysis revealed two distinct groups of tumors diagnosed as LACC. Our findings could provide a strategy to select patients who would benefit from neoadjuvant radiochemotherapy-based treatment. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  1. SPECtre: a spectral coherence--based classifier of actively translated transcripts from ribosome profiling sequence data.

    PubMed

    Chun, Sang Y; Rodriguez, Caitlin M; Todd, Peter K; Mills, Ryan E

    2016-11-25

    Active protein translation can be assessed and measured using ribosome profiling sequencing strategies. Prevailing analytical approaches applied to this technology make use of sequence fragment length profiling or reading frame occupancy enrichment to differentiate between active translation and background noise, however they do not consider additional characteristics inherent to the technology which limits their overall accuracy. Here, we present an analytical tool that models the overall tri-nucleotide periodicity of ribosomal occupancy using a classifier based on spectral coherence. Our software, SPECtre, examines the relationship of normalized ribosome profiling read coverage over a rolling series of windows along a transcript relative to an idealized reference signal without the matched requirement of mRNA-Seq. A comparison of SPECtre against previously published methods on existing data shows a marked improvement in accuracy for detecting active translation and exhibits overall high accuracy at a low false discovery rate. In addition, SPECtre performs comparably to a recently published method similarly based on spectral coherence, however with reduced runtime and memory requirements. SPECtre is available as an open source software package at https://github.com/mills-lab/spectreok .

  2. Single-cell mRNA profiling reveals transcriptional heterogeneity among pancreatic circulating tumour cells.

    PubMed

    Lapin, Morten; Tjensvoll, Kjersti; Oltedal, Satu; Javle, Milind; Smaaland, Rune; Gilje, Bjørnar; Nordgård, Oddmund

    2017-05-31

    Single-cell mRNA profiling of circulating tumour cells may contribute to a better understanding of the biology of these cells and their role in the metastatic process. In addition, such analyses may reveal new knowledge about the mechanisms underlying chemotherapy resistance and tumour progression in patients with cancer. Single circulating tumour cells were isolated from patients with locally advanced or metastatic pancreatic cancer with immuno-magnetic depletion and immuno-fluorescence microscopy. mRNA expression was analysed with single-cell multiplex RT-qPCR. Hierarchical clustering and principal component analysis were performed to identify expression patterns. Circulating tumour cells were detected in 33 of 56 (59%) examined blood samples. Single-cell mRNA profiling of intact isolated circulating tumour cells revealed both epithelial-like and mesenchymal-like subpopulations, which were distinct from leucocytes. The profiled circulating tumour cells also expressed elevated levels of stem cell markers, and the extracellular matrix protein, SPARC. The expression of SPARC might correspond to an epithelial-mesenchymal transition in pancreatic circulating tumour cells. The analysis of single pancreatic circulating tumour cells identified distinct subpopulations and revealed elevated expression of transcripts relevant to the dissemination of circulating tumour cells to distant organ sites.

  3. Optimal Detection of Global Warming using Temperature Profiles

    NASA Technical Reports Server (NTRS)

    Leroy, Stephen S.

    1997-01-01

    Optimal fingerprinting is applied to estimate the amount of time it would take to detect warming by increased concentrations of carbon dioxide in monthly averages of temperature profiles over the Indian Ocean.

  4. Optimal Detection of Global Warming using Temperature Profiles

    NASA Technical Reports Server (NTRS)

    Leroy, Stephen S.

    1997-01-01

    Optimal fingerprinting is applied to estimate the amount of time it would take to detect warming by increased concentrations of carbon dioxide in monthly averages of temperature profiles over the Indian Ocean.

  5. [Analysis of protein-on-DNA binding profiles, detected with chIP-seq method, reveals possible interaction of specific transcription factors with RNA polymerase II in the process of transcription elongation].

    PubMed

    Belostotskiĭ, A A

    2012-01-01

    It is thought that in the course of mRNA transcription almost all transcription factors stay on a promoter while RNA polymerase II "clears" the promoter and "proceeds" to elongation. However, analysis of some specific transcription factors and RNA polymerase II binding profiles on DNA, detected with ChIP-seq method, revealed the possibility of interaction between transcription factors and RNA polymerase II in the process of transcription elongation.

  6. Global analysis of induced transcription factors and cofactors identifies Tfdp2 as an essential coregulator during terminal erythropoiesis.

    PubMed

    Chen, Cynthia; Lodish, Harvey F

    2014-06-01

    Key transcriptional regulators of terminal erythropoiesis, such as GATA-binding factor 1 (GATA1) and T-cell acute lymphocytic leukemia protein 1 (TAL1), have been well characterized, but transcription factors and cofactors and their expression modulations have not yet been explored on a global scale. Here, we use global gene expression analysis to identify 28 transcription factors and 19 transcriptional cofactors induced during terminal erythroid differentiation whose promoters are enriched for binding by GATA1 and TAL1. Utilizing protein-protein interaction databases to identify cofactors for each transcription factor, we pinpoint several co-induced pairs, of which E2f2 and its cofactor transcription factor Dp-2 (Tfdp2) were the most highly induced. TFDP2 is a critical cofactor required for proper cell cycle control and gene expression. GATA1 and TAL1 are bound to the regulatory regions of Tfdp2 and upregulate its expression and knockdown of Tfdp2 results in significantly reduced rates of proliferation as well as reduced upregulation of many erythroid-important genes. Loss of Tfdp2 also globally inhibits the normal downregulation of many E2F2 target genes, including those that regulate the cell cycle, causing cells to accumulate in S phase and resulting in increased erythrocyte size. Our findings highlight the importance of TFDP2 in coupling the erythroid cell cycle with terminal differentiation and validate this study as a resource for future work on elucidating the role of diverse transcription factors and coregulators in erythropoiesis.

  7. MARLI: MARs LIdar for Global Wind Profiles and Aerosol Profiles from Orbit

    NASA Astrophysics Data System (ADS)

    Abshire, J. B.; Guzewich, S. D.; Smith, M. D.; Riris, H.; Sun, X.; Gentry, B. M.; Yu, A.; Allan, G. R.

    2016-10-01

    Winds are the key variable to understand atmospheric transport and to answer fundamental questions about the three primary cycles of the Mars climate. We are developing a new orbital lidar to directly measure both wind profiles and aerosol profiles.

  8. Transcription profiling in environmental diagnostics: health assessments in Columbia River basin steelhead (Oncorhynchus mykiss).

    PubMed

    Connon, Richard E; D'Abronzo, Leandro S; Hostetter, Nathan J; Javidmehr, Alireza; Roby, Daniel D; Evans, Allen F; Loge, Frank J; Werner, Inge

    2012-06-05

    The health condition of out-migrating juvenile salmonids can influence migration success. Physical damage, pathogenic infection, contaminant exposure, and immune system status can affect survival probability. The present study is part of a wider investigation of out-migration success in juvenile steelhead (Oncorhynchus mykiss) and focuses on the application of molecular profiling to assess sublethal effects of environmental stressors in field-collected fish. We used a suite of genes in O. mykiss to specifically assess responses that could be directly related to steelhead health condition during out-migration. These biomarkers were used on juvenile steelhead captured in the Snake River, a tributary of the Columbia River, in Washington, USA, and were applied on gill and anterior head kidney tissue to assess immune system responses, pathogen-defense (NRAMP, Mx, CXC), general stress (HSP70), metal-binding (metallothionein-A), and xenobiotic metabolism (Cyp1a1) utilizing quantitative polymerase chain reaction (PCR) technology. Upon capture, fish were ranked according to visual external physical conditions into good, fair, poor, and bad categories; gills and kidney tissues were then dissected and preserved for gene analyses. Transcription responses were tissue-specific for gill and anterior head kidney with less significant responses in gill tissue than in kidney. Significant differences between the condition ranks were attributed to NRAMP, MX, CXC, and Cyp1a1 responses. Gene profiling correlated gene expression with pathogen presence, and results indicated that gene profiling can be a useful tool for identifying specific pathogen types responsible for disease. Principal component analysis (PCA) further correlated these responses with specific health condition categories, strongly differentiating good, poor, and bad condition ranks. We conclude that molecular profiling is an informative and useful tool that could be applied to indicate and monitor numerous population

  9. Discovery of directional and nondirectional pioneer transcription factors by modeling DNase profile magnitude and shape.

    PubMed

    Sherwood, Richard I; Hashimoto, Tatsunori; O'Donnell, Charles W; Lewis, Sophia; Barkal, Amira A; van Hoff, John Peter; Karun, Vivek; Jaakkola, Tommi; Gifford, David K

    2014-02-01

    We describe protein interaction quantitation (PIQ), a computational method for modeling the magnitude and shape of genome-wide DNase I hypersensitivity profiles to identify transcription factor (TF) binding sites. Through the use of machine-learning techniques, PIQ identified binding sites for >700 TFs from one DNase I hypersensitivity analysis followed by sequencing (DNase-seq) experiment with accuracy comparable to that of chromatin immunoprecipitation followed by sequencing (ChIP-seq). We applied PIQ to analyze DNase-seq data from mouse embryonic stem cells differentiating into prepancreatic and intestinal endoderm. We identified 120 and experimentally validated eight 'pioneer' TF families that dynamically open chromatin. Four pioneer TF families only opened chromatin in one direction from their motifs. Furthermore, we identified 'settler' TFs whose genomic binding is principally governed by proximity to open chromatin. Our results support a model of hierarchical TF binding in which directional and nondirectional pioneer activity shapes the chromatin landscape for population by settler TFs.

  10. Genome-wide profiling of RNA polymerase transcription at nucleotide resolution in human cells with native elongating transcript sequencing

    PubMed Central

    Mayer, Andreas; Churchman, L. Stirling

    2017-01-01

    Many features of gene transcription in human cells remain unclear, mainly due to a lack of quantitative approaches to follow genome transcription with nucleotide precision in vivo. Here we present a robust genome-wide approach to study RNA polymerase (Pol) II-mediated transcription in human cells at single-nucleotide resolution by native elongating transcript sequencing (NET-seq). Elongating RNA polymerase and the associated nascent RNA is prepared by cell fractionation, avoiding immunoprecipitation or RNA labeling. The 3′-ends of nascent RNAs are captured through barcode linker ligation and converted into a DNA sequencing library. The identity and abundance of the 3′-ends are determined by high-throughput sequencing, revealing the exact genomic locations of Pol II. Human NET-seq can be applied to study the full spectrum of Pol II transcriptional activities, including the production of unstable RNAs and transcriptional pausing. Using the protocol described here, a NET-seq library can be obtained from human cells in 5 days. PMID:27010758

  11. Unique transcriptional profile of liver-resident memory CD8+ T cells induced by immunization with malaria sporozoites

    PubMed Central

    Tse, Sze-Wah; Cockburn, Ian A.; Zhang, Hao; Scott, Alan L.; Zavala, Fidel

    2013-01-01

    Sterile immunity against live Plasmodium infection can be achieved by immunization with radiation attenuated sporozoites. This protection is known to be mediated in part by antigen-specific memory CD8+ T cells, presumably those residing in the liver. We characterized and compared the transcriptional profile of parasite-specific memory CD8+ T cells residing in the liver and spleen after immunization of mice with irradiated sporozoites. Microarray-based expression analysis of these memory CD8+ T cells indicated that liver resident memory cells display a distinct gene expression profile. We found major differences in the expression of immune function genes as well as genes involved in the cell cycle, cell trafficking, transcription and intracellular signaling. Importantly, the malaria parasite-induced liver resident CD8+ T cells display a transcriptional profile different to that described for CD8+ T cells following other microbial challenges. PMID:23594961

  12. Global Analysis of Gene Expression Profiles in Developing Physic Nut (Jatropha curcas L.) Seeds

    PubMed Central

    Jiang, Huawu; Wu, Pingzhi; Zhang, Sheng; Song, Chi; Chen, Yaping; Li, Meiru; Jia, Yongxia; Fang, Xiaohua; Chen, Fan; Wu, Guojiang

    2012-01-01

    Background Physic nut (Jatropha curcas L.) is an oilseed plant species with high potential utility as a biofuel. Furthermore, following recent sequencing of its genome and the availability of expressed sequence tag (EST) libraries, it is a valuable model plant for studying carbon assimilation in endosperms of oilseed plants. There have been several transcriptomic analyses of developing physic nut seeds using ESTs, but they have provided limited information on the accumulation of stored resources in the seeds. Methodology/Principal Findings We applied next-generation Illumina sequencing technology to analyze global gene expression profiles of developing physic nut seeds 14, 19, 25, 29, 35, 41, and 45 days after pollination (DAP). The acquired profiles reveal the key genes, and their expression timeframes, involved in major metabolic processes including: carbon flow, starch metabolism, and synthesis of storage lipids and proteins in the developing seeds. The main period of storage reserves synthesis in the seeds appears to be 29–41 DAP, and the fatty acid composition of the developing seeds is consistent with relative expression levels of different isoforms of acyl-ACP thioesterase and fatty acid desaturase genes. Several transcription factor genes whose expression coincides with storage reserve deposition correspond to those known to regulate the process in Arabidopsis. Conclusions/Significance The results will facilitate searches for genes that influence de novo lipid synthesis, accumulation and their regulatory networks in developing physic nut seeds, and other oil seeds. Thus, they will be helpful in attempts to modify these plants for efficient biofuel production. PMID:22574177

  13. Global Expression Profiling of Globose Basal Cells and Neurogenic Progression Within the Olfactory Epithelium

    PubMed Central

    Krolewski, Richard C.; Packard, Adam; Schwob, James E.

    2013-01-01

    Ongoing, lifelong neurogenesis maintains the neuronal population of the olfactory epithelium in the face of piecemeal neuronal turnover and restores it following wholesale loss. The molecular phenotypes corresponding to different stages along the progression from multipotent globose basal cell (GBC) progenitor to differentiated olfactory sensory neuron are poorly characterized. We used the transgenic expression of enhanced green fluorescent protein (eGFP) and cell surface markers to FACS-isolate ΔSox2-eGFP(+) GBCs, Neurog1-eGFP(+) GBCs and immature neurons, and ΔOMP-eGFP(+) mature neurons from normal adult mice. In addition, the latter two populations were also collected 3 weeks after olfactory bulb ablation, a lesion that results in persistently elevated neurogenesis. Global profiling of mRNA from the populations indicates that all stages of neurogenesis share a cohort of >2,100 genes that are upregulated compared to sustentacular cells. A further cohort of >1,200 genes are specifically upregulated in GBCs as compared to sustentacular cells and differentiated neurons. The increased rate of neurogenesis caused by olfactory bulbectomy had little effect on the transcriptional profile of the Neurog1-eGFP(+) population. In contrast, the abbreviated lifespan of ΔOMP-eGFP(+) neurons born in the absence of the bulb correlated with substantial differences in gene expression as compared to the mature neurons of the normal epithelium. Detailed examination of the specific genes upregulated in the different progenitor populations revealed that the chromatin modifying complex proteins LSD1 and coREST were expressed sequentially in upstream ΔSox2-eGFP(+) GBCs and Neurog1-eGFP(+) GBCs/immature neurons. The expression patterns of these proteins are dynamically regulated after activation of the epithelium by methyl bromide lesion. PMID:22847514

  14. Oviductal transcriptional profiling of a bovine fertility model by next-generation sequencing.

    PubMed

    Gonella-Diaza, Angela Maria; da Silva Andrade, Sónia Cristina; Sponchiado, Mariana; Pugliesi, Guilherme; Mesquita, Fernando Silveira; Van Hoeck, Veerle; de Francisco Strefezzi, Ricardo; Gasparin, Gustavo R; Coutinho, Luiz L; Binelli, Mario

    2017-09-01

    In cattle, the oviduct plays a fundamental role in the reproductive process. Oviductal functions are controlled by the ovarian sex steroids: estradiol and progesterone. Here, we tested the hypothesis that the exposure to contrasting sex steroid milieus differentially impacts the oviductal transcriptional profile. We manipulated growth of the pre-ovulatory follicle to obtain cows that ovulated a larger (LF group) or a smaller (SF group) follicle. The LF group presented greater proestrus/estrus concentrations of estradiol and metaestrus concentrations of progesterone (Gonella-Diaza et al. 2015 [1], Mesquita et al. 2014 [2]). Also, the LF group was associated with greater fertility in timed-artificial insemination programs (Pugliesi et al. 2016 [3]). Cows were slaughtered on day 4 of the estrous cycle and total RNA was extracted from ampulla and isthmus fragments and analyzed by RNAseq. The resulting reads were mapped to the bovine genome (Bos taurus UMD 3.1, NCBI). The differential expression analyses revealed that 325 and 367 genes in ampulla and 274 and 316 genes in the isthmus were up-regulated and down-regulated in LF samples, respectively. To validate the RNAseq results, transcript abundance of 23 genes was assessed by qPCR and expression patterns were consistent between the two techniques. A functional enrichment analysis was performed using Database for Annotation, Visualization and Integrated Discovery (DAVID) software. Processes enriched in the LF group included tissue morphology changes (extracellular matrix remodeling), cellular changes (proliferation), and secretion changes (growth factors, ions and metal transporters). An overview of the gene expression data was deposited in the NCBI's Gene Expression Omnibus (GEO) and is accessible through the accession number GSE65681. In conclusion, differences in the peri-ovulatory sex steroid milieu modify the oviductal gene expression profiles. Such differences may be associated with the greater fertility of the LF

  15. Profiling ethanol-targeted transcription factors in human carcinoma cell-derived embryoid bodies.

    PubMed

    Mandal, Chanchal; Halder, Debasish; Chai, Jin Choul; Lee, Young Seek; Jung, Kyoung Hwa; Chai, Young Gyu

    2016-01-15

    Fetal alcohol spectrum disorder is a collective term that represents fetal abnormalities associated with maternal alcohol consumption. Prenatal alcohol exposure and related anomalies are well characterized, but the molecular mechanism behind this phenomenon is not yet understood. Few insights have been gained from genetic and epigenetic studies of fetal alcohol spectrum disorder. Our aim was to profile the important molecular regulators of ethanol-related alterations of the genome. For this purpose, we have analyzed the gene expression pattern of human carcinoma cell-derived embryoid bodies in the absence or presence of ethanol. A cDNA microarray analysis was used to profile mRNA expression in embryoid bodies at day 7 with or without ethanol treatment. A total of 493 differentially expressed genes were identified in response to 50 mM ethanol exposure. Of these, 111 genes were up-regulated, and 382 were down-regulated. Gene ontology term enrichment analysis revealed that these genes are involved in important biological processes: neurological system processes, cognition, behavior, sensory perception of smell, taste and chemical stimuli and synaptic transmission. Similarly, the enrichment of disease-related genes included relevant categories such as neurological diseases, developmental disorders, skeletal and muscular disorders, and connective tissue disorders. Furthermore, we have identified a group of 26 genes that encode transcription factors. We validated the relative gene expression of several transcription factors using quantitative real time PCR. We hope that our study substantially contributes to the understanding of the molecular mechanisms underlying the pathology of alcohol-mediated anomalies and facilitates further research.

  16. Transcriptional profiling reveals functional dichotomy between human slan(+) non-classical monocytes and myeloid dendritic cells.

    PubMed

    van Leeuwen-Kerkhoff, Nathalie; Lundberg, Kristina; Westers, Theresia M; Kordasti, Shahram; Bontkes, Hetty J; de Gruijl, Tanja D; Lindstedt, Malin; van de Loosdrecht, Arjan A

    2017-10-01

    Human 6-sulfo LacNac-positive (slan(+)) cells have been subject to a paradigm debate. They have previously been classified as a distinct dendritic cell (DC) subset. However, evidence has emerged that they may be more related to monocytes than to DCs. To gain deeper insight into the functional specialization of slan(+) cells, we have compared them with both conventional myeloid DC subsets (CD1c(+) and CD141(+)) in human peripheral blood (PB). With the use of genome-wide transcriptional profiling, as well as functional tests, we clearly show that slan(+) cells form a distinct, non-DC-like population. They cluster away from both DC subsets, and their gene-expression profile evidently suggests involvement in distinct inflammatory processes. An extensive transcriptional meta-analysis confirmed the relationship of slan(+) cells with the monocytic compartment rather than with DCs. From a functional perspective, their ability to prime CD4(+) and CD8(+) T cells is relatively low. Combined with the finding that "antigen presentation by MHC class II" is at the top of under-represented pathways in slan(+) cells, this points to a minimal role in directing adaptive T cell immunity. Rather, the higher expression levels of complement receptors on their cell surface, together with their high secretion of IL-1β and IL-6, imply a specific role in innate inflammatory processes, which is consistent with their recent identification as non-classical monocytes. This study extends our knowledge on DC/monocyte subset biology under steady-state conditions and contributes to our understanding of their role in immune-mediated diseases and their potential use in immunotherapeutic strategies. © Society for Leukocyte Biology.

  17. Transcriptional Profiling of Midgut Immunity Response and Degeneration in the Wandering Silkworm, Bombyx mori

    PubMed Central

    Xiao, Guohua; Yang, Bing; Zhang, Jie; Li, Xuquan; Guan, Jingmin; Shao, Qimiao; Beerntsen, Brenda T.; Zhang, Peng; Wang, Chengshu; Ling, Erjun

    2012-01-01

    Background Lepidoptera insects have a novel development process comprising several metamorphic stages during their life cycle compared with vertebrate animals. Unlike most Lepidoptera insects that live on nectar during the adult stage, the Bombyx mori silkworm adults do not eat anything and die after egg-laying. In addition, the midguts of Lepidoptera insects produce antimicrobial proteins during the wandering stage when the larval tissues undergo numerous changes. The exact mechanisms responsible for these phenomena remain unclear. Principal Findings We used the silkworm as a model and performed genome-wide transcriptional profiling of the midgut between the feeding stage and the wandering stage. Many genes concerned with metabolism, digestion, and ion and small molecule transportation were down-regulated during the wandering stage, indicating that the wandering stage midgut loses its normal functions. Microarray profiling, qRT-PCR and western blot proved the production of antimicrobial proteins (peptides) in the midgut during the wandering stage. Different genes of the immune deficiency (Imd) pathway were up-regulated during the wandering stage. However, some key genes belonging to the Toll pathway showed no change in their transcription levels. Unlike butterfly (Pachliopta aristolochiae), the midgut of silkworm moth has a layer of cells, indicating that the development of midgut since the wandering stage is not usual. Cell division in the midgut was observed only for a short time during the wandering stage. However, there was extensive cell apoptosis before pupation. The imbalance of cell division and apoptosis probably drives the continuous degeneration of the midgut in the silkworm since the wandering stage. Conclusions This study provided an insight into the mechanism of the degeneration of the silkworm midgut and the production of innate immunity-related proteins during the wandering stage. The imbalance of cell division and apoptosis induces irreversible

  18. Transcriptional profiling of cork oak phellogenic cells isolated by laser microdissection.

    PubMed

    Teixeira, Rita Teresa; Fortes, Ana Margarida; Bai, Hua; Pinheiro, Carla; Pereira, Helena

    2017-10-07

    The phenylpropanoid pathway impacts the cork quality development. In cork of bad quality, the flavonoid route is favored, whereas in good quality, cork lignin and suberin production prevails. Cork oaks develop a thick cork tissue as a protective shield that results of the continuous activity of a secondary meristem, the cork cambium, or phellogen. Most studies applied to developmental processes do not consider the cell types from which the samples were extracted. Here, laser microdissection (LM) coupled with transcript profiling using RNA sequencing (454 pyrosequencing) was applied to phellogen cells of trees producing low- and good quality cork. Functional annotation and functional enrichment analyses showed that stress-related genes are enriched in samples extracted from trees producing good quality cork (GQC). This process is under tight transcriptional (transcription factors, kinases) regulation and also hormonal control involving ABA, ethylene, and auxins. The phellogen cells collected from trees producing bad quality cork (BQC) show a consistent up-regulation of genes belonging to the flavonoid pathway as a response to stress. They also display a different modulation of cell wall genes resulting into a thinner cork layer, i.e., less meristematic activity. Based on the analysis of the phenylpropanoid pathway regulating genes, in GQC, the synthesis of lignin and suberin is promoted, whereas in BQC, the same pathway favors the biosynthesis of free phenolic compounds. This study provided new insights of how cell-specific gene expression can determine tissue and organ morphology and physiology and identified robust candidate genes that can be used in breeding programs aiming at improving cork quality.

  19. Transcriptional profile of glucose-shocked and acid-adapted strains of Streptococcus mutans.

    PubMed

    Baker, J L; Abranches, J; Faustoferri, R C; Hubbard, C J; Lemos, J A; Courtney, M A; Quivey, R

    2015-12-01

    The aciduricity of Streptococcus mutans is an important virulence factor of the organism, required to both out-compete commensal oral microorganisms and cause dental caries. In this study, we monitored transcriptional changes that occurred as a continuous culture of either an acid-tolerant strain (UA159) or an acid-sensitive strain (fabM::Erm) moved from steady-state growth at neutral pH, experienced glucose-shock and acidification of the culture, and transitioned to steady-state growth at low pH. Hence, the timing of elements of the acid tolerance response (ATR) could be observed and categorized as acute vs. adaptive ATR mechanisms. Modulation of branched chain amino acid biosynthesis, DNA/protein repair mechanisms, reactive oxygen species metabolizers and phosphoenolpyruvate:phosphotransferase systems occurred in the initial acute phase, immediately following glucose-shock, while upregulation of F1 F0 -ATPase did not occur until the adaptive phase, after steady-state growth had been re-established. In addition to the archetypal ATR pathways mentioned above, glucose-shock led to differential expression of genes suggesting a re-routing of resources away from the synthesis of fatty acids and proteins, and towards synthesis of purines, pyrimidines and amino acids. These adjustments were largely transient, as upon establishment of steady-state growth at acidic pH, transcripts returned to basal expression levels. During growth at steady-state pH 7, fabM::Erm had a transcriptional profile analogous to that of UA159 during glucose-shock, indicating that even during growth in rich media at neutral pH, the cells were stressed. These results, coupled with a recently established collection of deletion strains, provide a starting point for elucidation of the acid tolerance response in S. mutans.

  20. Transcriptional profile of glucose-shocked and acid-adapted strains of Streptococcus mutans

    PubMed Central

    Baker, J.L.; Abranches, J.; Faustoferri, R.C.; Hubbard, C.J.; Lemos, J.A.; Courtney, M.A.; Quivey, R.

    2015-01-01

    Summary The aciduricity of Streptococcus mutans is an important virulence factor of the organism, required to both out-compete commensal oral microorganisms and cause dental caries. In this study, we monitored transcriptional changes that occurred as a continuous culture of either an acid-tolerant strain (UA159) or an acid-sensitive strain (fabM::Erm) moved from steady-state growth at neutral pH, experienced glucose-shock and acidification of the culture, and transitioned to steady-state growth at low pH. Thus, the timing of elements of the acid tolerance response (ATR) could be observed and categorized as acute vs. adaptive ATR mechanisms. Modulation of BCAA biosynthesis, DNA/protein repair mechanisms, ROS metabolizers, and PTS occurred in the initial acute phase, immediately following glucose-shock, while up-regulation of F1F0-ATPase did not occur until the adaptive phase, after steady-state growth had been re-established. In addition to the archetypal ATR pathways mentioned above, glucose-shock led to differential expression of genes suggesting a re-routing of resources away from synthesis of fatty acids and proteins, and towards synthesis of purines, pyrimidines and amino acids. These adjustments were largely transient, as upon establishment of steady-state growth at acidic pH, transcripts returned to basal expression levels. During growth at steady-state pH 7, fabM::Erm had a transcriptional profile analogous to that of UA159 during glucose-shock, indicating that even during growth in rich media at neutral pH, the cells were stressed. These results, coupled with a recently established collection of deletion strains (Quivey et al., 2015), provide a starting point for elucidation of the acid tolerance response in S. mutans. PMID:26042838

  1. Cluster analysis reveals differential transcript profiles associated with resistance training-induced human skeletal muscle hypertrophy

    PubMed Central

    Thalacker-Mercer, Anna; Stec, Michael; Cui, Xiangqin; Cross, James; Windham, Samuel

    2013-01-01

    Using genomic microarray analysis, we sought to identify and annotate differences in the pretraining skeletal muscle transcriptomes among human subjects clustered as nonresponders (Non), modest responders (Mod), and extreme responders (Xtr) based on differential magnitudes of myofiber hypertrophy in response to progressive resistance training (RT) (Non −16 μm2, Mod 1,111 μm2, or Xtr 2,475 μm2). In prior work, we noted differences among clusters in the prevalence of myogenic stem cells prior to and during RT (35), and in the translational signaling responses to the first bout of resistance exercise (30). Here we identified remarkable differences in the pretraining transcript profiles among clusters (8,026 gene transcripts differentially expressed between Xtr and Non, 2,463 between Xtr and Mod, and 1,294 between Mod and Non). Annotated functions and networks of differentially expressed genes suggest Xtr were “primed” to respond to RT through transcriptional regulation, along with a uniquely expressed network of genes involved in skeletal muscle development, while the failed response in Non may have been driven by excessive proinflammatory signaling. Protein follow-up analysis revealed higher basal levels of acetylated histone H3 (K36) in the two responder clusters (Mod, Xtr) compared with Non, and only the responders experienced alterations in the muscle content of select proteins (e.g., α-tubulin, p27kip) in response to the first resistance exercise stimulus. Overall, the widely disparate transcriptomes identified prior to RT among the three clusters support the notion that at least some of the interindividual heterogeneity in propensity for RT-induced myofiber hypertrophy is likely predetermined. PMID:23632419

  2. Integrated Left Ventricular Global Transcriptome and Proteome Profiling in Human End-Stage Dilated Cardiomyopathy

    PubMed Central

    Kaya, Namik; Muiya, Nzioka P.; AlHarazi, Olfat; Shinwari, Zakia; Andres, Editha

    2016-01-01

    Aims The disease pathways leading to idiopathic dilated cardiomyopathy (DCM) are still elusive. The present study investigated integrated global transcriptional and translational changes in human DCM for disease biomarker discovery. Methods We used identical myocardial tissues from five DCM hearts compared to five non-failing (NF) donor hearts for both transcriptome profiling using the ABI high-density oligonucleotide microarrays and proteome expression with One-Dimensional Nano Acquity liquid chromatography coupled with tandem mass spectrometry on the Synapt G2 system. Results We identified 1262 differentially expressed genes (DEGs) and 269 proteins (DEPs) between DCM cases and healthy controls. Among the most significantly upregulated (>5-fold) proteins were GRK5, APOA2, IGHG3, ANXA6, HSP90AA1, and ATP5C1 (p< 0.01). On the other hand, the most significantly downregulated proteins were GSTM5, COX17, CAV1 and ANXA3. At least ten entities were concomitantly upregulated on the two analysis platforms: GOT1, ALDH4A1, PDHB, BDH1, SLC2A11, HSP90AA1, HSP90AB1, H2AFV, HSPA5 and NDUFV1. Gene ontology analyses of DEGs and DEPs revealed significant overlap with enrichment of genes/proteins related to metabolic process, biosynthetic process, cellular component organization, oxidative phosphorylation, alterations in glycolysis and ATP synthesis, Alzheimer’s disease, chemokine-mediated inflammation and cytokine signalling pathways. Conclusion The concomitant use of transcriptome and proteome expression to evaluate global changes in DCM has led to the identification of sixteen commonly altered entities as well as novel genes, proteins and pathways whose cardiac functions have yet to be deciphered. This data should contribute towards better management of the disease. PMID:27711126

  3. Autonomous Metabolomics for Rapid Metabolite Identification in Global Profiling

    PubMed Central

    2015-01-01

    An autonomous metabolomic workflow combining mass spectrometry analysis with tandem mass spectrometry data acquisition was designed to allow for simultaneous data processing and metabolite characterization. Although previously tandem mass spectrometry data have been generated on the fly, the experiments described herein combine this technology with the bioinformatic resources of XCMS and METLIN. As a result of this unique integration, we can analyze large profiling datasets and simultaneously obtain structural identifications. Validation of the workflow on bacterial samples allowed the profiling on the order of a thousand metabolite features with simultaneous tandem mass spectra data acquisition. The tandem mass spectrometry data acquisition enabled automatic search and matching against the METLIN tandem mass spectrometry database, shortening the current workflow from days to hours. Overall, the autonomous approach to untargeted metabolomics provides an efficient means of metabolomic profiling, and will ultimately allow the more rapid integration of comparative analyses, metabolite identification, and data analysis at a systems biology level. PMID:25496351

  4. Autonomous Metabolomics for Rapid Metabolite Identification in Global Profiling

    SciTech Connect

    Benton, H. Paul; Ivanisevic, Julijana; Mahieu, Nathaniel G.; Kurczy, Michael E.; Johnson, Caroline H.; Franco, Lauren; Rinehart, Duane; Valentine, Elizabeth; Gowda, Harsha; Ubhi, Baljit K.; Tautenhahn, Ralf; Gieschen, Andrew; Fields, Matthew W.; Patti, Gary J.; Siuzdak, Gary

    2014-12-12

    An autonomous metabolomic workflow combining mass spectrometry analysis with tandem mass spectrometry data acquisition was designed to allow for simultaneous data processing and metabolite characterization. Although previously tandem mass spectrometry data have been generated on the fly, the experiments described herein combine this technology with the bioinformatic resources of XCMS and METLIN. We can analyze large profiling datasets and simultaneously obtain structural identifications, as a result of this unique integration. Furthermore, validation of the workflow on bacterial samples allowed the profiling on the order of a thousand metabolite features with simultaneous tandem mass spectra data acquisition. The tandem mass spectrometry data acquisition enabled automatic search and matching against the METLIN tandem mass spectrometry database, shortening the current workflow from days to hours. Overall, the autonomous approach to untargeted metabolomics provides an efficient means of metabolomic profiling, and will ultimately allow the more rapid integration of comparative analyses, metabolite identification, and data analysis at a systems biology level.

  5. Transcriptional profiling defines the roles of ERK and p38 kinases in epidermal keratinocytes.

    PubMed

    Gazel, Alix; Nijhawan, Rajiv I; Walsh, Rebecca; Blumenberg, Miroslav

    2008-05-01

    Epidermal keratinocytes respond to extracellular influences by activating cytoplasmic signal transduction pathways that change gene expression. Using pathway-specific transcriptional profiling, we identified the genes regulated by two such pathways, p38 and ERK. These pathways are at the fulcrum of epidermal differentiation, proliferative and inflammatory skin diseases. We used SB203580 and PD98059 as specific inhibitors and Affymetrix Hu133Av2 microarrays, to identify the genes regulated after 1, 4, 24, and 48 h and compared them to genes regulated by JNK. Unexpectedly, inhibition of MAPK pathways is compensated by activation of the NFkappaB pathway and suppression of the DUSP enzymes. Both pathways promote epidermal differentiation; however, there is a surprising disconnect between the expression of steroid synthesis enzymes and differentiation markers. The p38 pathway induces the expression of extracellular matrix and proliferation-associated genes, while suppressing microtubule-associated genes. The ERK pathway induces nuclear envelope and mRNA splicing proteins, while suppressing steroid synthesis and mitochondrial energy production enzymes. Transcription factors SRY, c-FOS, and N-Myc are the principal targets of the p38 pathway, Elk-1 SAP1 and HLH2 of ERK, while FREAC-4, ARNT and USF are shared. The results suggest a list of targets potentially useful in therapeutic interventions in cutaneous diseases and wound healing.

  6. Transcript profiling of aquaporins during basidiocarp development in Laccaria bicolor ectomycorrhizal with Picea glauca.

    PubMed

    Xu, Hao; Navarro-Ródenas, Alfonso; Cooke, Janice E K; Zwiazek, Janusz J

    2016-01-01

    Sporocarp formation is part of the reproductive stage in the life cycle of many mycorrhizal macrofungi. Sporocarp formation is accompanied by a transcriptomic switch and profound changes in regulation of the gene families that play crucial roles in the sporocarp initiation and maturation. Since sporocarp growth requires efficient water delivery, in the present study, we investigated changes in transcript abundance of six fungal aquaporin genes that could be cloned from the ectomycorrhizal fungus Laccaria bicolor strain UAMH8232, during the initiation and development of its basidiocarp. Aquaporins are intrinsic membrane proteins facilitating the transmembrane transport of water and other small neutral molecules. In controlled-environment experiments, we induced basidiocarp formation in L. bicolor, which formed ectomycorrhizal associations with white spruce (Picea glauca) seedlings. We profiled transcript abundance corresponding to six fungal aquaporin genes at six different developmental stages of basidiocarp growth and development. We also compared physiological parameters of non-inoculated to mycorrhizal seedlings with and without the presence of basidiocarps. Two L. bicolor aquaporins--JQ585592, a functional channel for CO2, NO and H2O2, and JQ585595, a functional water channel--showed the greatest degree of upregulation during development of the basidiocarp. Our findings point to the importance of aquaporin-mediated transmembrane water and CO2 transport during distinct stages of basidiocarp development.

  7. Transcriptional profiling of biomass degradation-related genes during Trichoderma reesei growth on different carbon sources.

    PubMed

    Chen, Xiuzhen; Luo, Yingfeng; Yu, Hongtao; Sun, Yuhui; Wu, Hong; Song, Shuhui; Hu, Songnian; Dong, Zhiyang

    2014-03-10

    To identify all the gene products involved in cellulosic biomass degradation, we employed RNA sequencing technology to perform a genome-wide comparison of gene expression during growth of Trichoderma reesei QM9414 on cellulose or glucose. Due to their important role in lignocellulose decomposition, we focused on CAZymes and other secreted proteins. In total, 122 CAZymes showed at least a two-fold change in mRNA abundance, and 97 of those were highly induced by cellulose. Compared to the well-characterized cellulases and hemicellulases, a majority of the other upregulated CAZymes showed lower transcriptional levels. In addition, 64 secreted proteins, including oxidoreductases, exhibited at least two-fold upregulation on cellulose medium. To better understand the potential roles of low-abundance CAZymes in cellulose breakdown, we compared the expression patterns of 25 glycoside hydrolase genes under different conditions via real-time PCR. Substantial differences for the 25 genes were observed for individual strains grown on different carbon sources, and between QM9414 and RUTC30 when grown on the same carbon source. Moreover, we identified 3 genes that are coregulated with known cellulases. Collectively, this study highlights a comprehensive transcriptional profile for biomass degradation-related proteins and provides a first step toward the identification of candidates to construct optimized enzyme cocktails.

  8. Different substrate regimes determine transcriptional profiles and gene co-expression in Methanosarcina barkeri (DSM 800).

    PubMed

    Lin, Qiang; Fang, Xiaoyu; Ho, Adrian; Li, Jiaying; Yan, Xuefeng; Tu, Bo; Li, Chaonan; Li, Jiabao; Yao, Minjie; Li, Xiangzhen

    2017-08-21

    Methanosarcina barkeri (DSM 800) is a metabolically versatile methanogen and shows distinct metabolic status under different substrate regimes. However, the mechanisms underlying distinct transcriptional profiles under different substrate regimes remain elusive. In this study, based on transcriptional analysis, the growth performances and gene expressions of M. barkeri fed on acetate, H2 + CO2, and methanol, respectively, were investigated. M. barkeri showed higher growth performances under methanol, followed by H2 + CO2 and acetate, which corresponded well with the variations of gene expressions. The α diversity (evenness) of gene expressions was highest under the acetate regime, followed by H2 + CO2 and methanol, and significantly and negatively correlated with growth performances. The gene co-expression analysis showed that "Energy production and conversion," "Coenzyme transport and metabolism," and "Translation, ribosomal structure, and biogenesis" showed deterministic cooperation patterns of intra- and inter-functional classes. However, "Posttranslational modification, protein turnover, chaperones" showed exclusion with other functional classes. The gene expressions and especially the relationships among them potentially drove the shifts of metabolic status under different substrate regimes. Consequently, this study revealed the diversity-related ecological strategies that a high α diversity probably provided more fitness and tolerance under natural environments and oppositely a low α diversity strengthened some specific physiological functions, as well as the co-responses of gene expressions to different substrate regimes.

  9. Integration of deep transcript and targeted metabolite profiles for eight cultivars of opium poppy.

    PubMed

    Desgagné-Penix, Isabel; Farrow, Scott C; Cram, Dustin; Nowak, Jacek; Facchini, Peter J

    2012-06-01

    Recent advances in DNA sequencing technology and analytical mass spectrometry are providing unprecedented opportunities to develop the functional genomics resources required to investigate complex biological processes in non-model plants. Opium poppy produces a wide variety of benzylisoquinoline alkaloids (BIAs), including the pharmaceutical compounds codeine, morphine, noscapine and papaverine. A functional genomics platform to identify novel BIA biosynthetic and regulatory genes in opium poppy has been established based on the differential metabolite profile of eight selected cultivars. Stem cDNA libraries from each of the eight opium poppy cultivars were subjected to 454 pyrosequencing and searchable expressed sequence tag databases were created from the assembled reads. These deep and integrated metabolite and transcript databases provide a nearly complete representation of the genetic and metabolic variances responsible for the differential occurrence of specific BIAs in each cultivar as demonstrated using the biochemically well characterized pathway from tyrosine to morphine. Similar correlations between the occurrence of specific transcripts and alkaloids effectively reveals candidate genes encoding uncharacterized biosynthetic enzymes as shown using cytochromes P450 potentially involved in the formation of papaverine and noscapine.

  10. The Streptococcus pneumoniae cia regulon: CiaR target sites and transcription profile analysis.

    PubMed

    Mascher, Thorsten; Zähner, Dorothea; Merai, Michelle; Balmelle, Nadège; de Saizieu, Antoine B; Hakenbeck, Regine

    2003-01-01

    The ciaR-ciaH system is one of 13 two-component signal-transducing systems of the human pathogen Streptococcus pneumoniae. Mutations in the histidine protein kinase CiaH confer increased resistance to beta-lactam antibiotics and interfere with the development of genetic competence. In order to identify the genes controlled by the cia system, the cia regulon, DNA fragments targeted by the response regulator CiaR were isolated from restricted chromosomal DNA using the solid-phase DNA binding assay and analyzed by hybridization to an oligonucleotide microarray representing the S. pneumoniae genome. A set of 18 chromosomal regions containing 26 CiaR target sites were detected and proposed to represent the minimal cia regulon. The putative CiaR target loci included genes important for the synthesis and modification of cell wall polymers, peptide pheromone and bacteriocin production, and the htrA-spo0J region. In addition, the transcription profile of cia loss-of-function mutants and those with an apparent activated cia system representing the off and on states of the regulatory system were analyzed. The transcript analysis confirmed the cia-dependent expression of seven putative target loci and revealed three additional cia-regulated loci. Five putative target regions were silent under all conditions, and for the remaining three regions, no cia-dependent expression could be detected. Furthermore, the competence regulon, including the comCDE operon required for induction of competence, was completely repressed by the cia system.

  11. Phenotypic Characterization of Retinoic Acid Differentiated SH-SY5Y Cells by Transcriptional Profiling

    PubMed Central

    Korecka, Joanna A.; van Kesteren, Ronald E.; Blaas, Eva; Spitzer, Sonia O.; Kamstra, Jorke H.; Smit, August B.; Swaab, Dick F.; Verhaagen, Joost; Bossers, Koen

    2013-01-01

    Multiple genetic and environmental factors play a role in the development and progression of Parkinson’s disease (PD). The main neuropathological hallmark of PD is the degeneration of dopaminergic (DAergic) neurons in the substantia nigra pars compacta. To study genetic and molecular contributors to the disease process, there is a great need for readily accessible cells with prominent DAergic features that can be used for reproducible in vitro cellular screening. Here, we investigated the molecular phenotype of retinoic acid (RA) differentiated SH-SY5Y cells using genome wide transcriptional profiling combined with gene ontology, transcription factor and molecular pathway analysis. We demonstrated that RA induces a general neuronal differentiation program in SH-SY5Y cells and that these cells develop a predominantly mature DAergic-like neurotransmitter phenotype. This phenotype is characterized by increased dopamine levels together with a substantial suppression of other neurotransmitter phenotypes, such as those for noradrenaline, acetylcholine, glutamate, serotonin and histamine. In addition, we show that RA differentiated SH-SY5Y cells express the dopamine and noradrenalin neurotransmitter transporters that are responsible for uptake of MPP(+), a well known DAergic cell toxicant. MPP(+) treatment alters mitochondrial activity according to its proposed cytotoxic effect in DAergic neurons. Taken together, RA differentiated SH-SY5Y cells have a DAergic-like phenotype, and provide a good cellular screening tool to find novel genes or compounds that affect cytotoxic processes that are associated with PD. PMID:23724009

  12. Intervention of pumpkin seed oil on metabolic disease revealed by metabonomics and transcript profile.

    PubMed

    Zhao, Xiu-Ju; Chen, Yu-Lian; Fu, Bing; Zhang, Wen; Liu, Zhiguo; Zhuo, Hexian

    2017-03-01

    Understanding the metabolic and transcription basis of pumpkin seed oil (PSO) intervention on metabolic disease (MD) is essential to daily nutrition and health. This study analyzed the liver metabolic variations of Wistar rats fed normal diet (CON), high-fat diet (HFD) and high-fat plus PSO diet (PSO) to establish the relationship between the liver metabolite composition/transcript profile and the effects of PSO on MD. By using proton nuclear magnetic resonance spectroscopy together with multivariate data analysis, it was found that, compared with CON rats, HFD rats showed clear dysfunctions of choline metabolism, glucose metabolism and nucleotide and amino acid metabolism. Using quantitative real-time polymerase chain reaction (qPCR), it was found that, compared with HFD rats, PSO rats showed alleviated endoplasmic reticulum stress accompanied by lowered unfolded protein response. These findings provide useful information to understand the metabolic alterations triggered by MD and to evaluate the effects of PSO intervention. © 2016 Society of Chemical Industry. © 2016 Society of Chemical Industry.

  13. Arabidopsis transcript and metabolite profiles: ecotype-specific responses to open-air elevated [CO2].

    PubMed

    Li, Pinghua; Ainsworth, Elizabeth A; Leakey, Andrew D B; Ulanov, Alexander; Lozovaya, Vera; Ort, Donald R; Bohnert, Hans J

    2008-11-01

    A Free-Air CO(2) Enrichment (FACE) experiment compared the physiological parameters, transcript and metabolite profiles of Arabidopsis thaliana Columbia-0 (Col-0) and Cape Verde Island (Cvi-0) at ambient (approximately 0.375 mg g(-1)) and elevated (approximately 0.550 mg g(-1)) CO(2) ([CO(2)]). Photoassimilate pool sizes were enhanced in high [CO(2)] in an ecotype-specific manner. Short-term growth at elevated [CO(2)] stimulated carbon gain irrespective of down-regulation of plastid functions and altered expression of genes involved in nitrogen metabolism resembling patterns observed under N-deficiency. The study confirmed well-known characteristics, but the use of a time course, ecotypic genetic differences, metabolite analysis and the focus on clusters of functional categories provided new aspects about responses to elevated [CO(2)]. Longer-term Cvi-0 responded by down-regulating functions favouring carbon accumulation, and both ecotypes showed altered expression of genes for defence, redox control, transport, signalling, transcription and chromatin remodelling. Overall, carbon fixation with a smaller commitment of resources in elevated [CO(2)] appeared beneficial, with the extra C only partially utilized possibly due to disturbance of the C : N ratio. To different degrees, both ecotypes perceived elevated [CO(2)] as a metabolic perturbation that necessitated increased functions consuming or storing photoassimilate, with Cvi-0 emerging as more capable of acclimating. Elevated [CO(2)] in Arabidopsis favoured adjustments in reactive oxygen species (ROS) homeostasis and signalling that defined genotypic markers.

  14. Gene expression profiling of M. truncatula transcription factors identifies putative regulators of grain legume seed filling.

    PubMed

    Verdier, Jérôme; Kakar, Klementina; Gallardo, Karine; Le Signor, Christine; Aubert, Grégoire; Schlereth, Armin; Town, Christopher D; Udvardi, Michael K; Thompson, Richard D

    2008-08-01

    Legume seeds represent a major source of proteins for human and livestock diets. The model legume Medicago truncatula is characterized by a process of seed development very similar to that of other legumes, involving the interplay of sets of transcription factors (TFs). Here, we report the first expression profiling of over 700 M. truncatula genes encoding putative TFs throughout seven stages of seed development, obtained using real-time quantitative RT-PCR. A total of 169 TFs were selected which were expressed at late embryogenesis, seed filling or desiccation. The site of expression within the seed was examined for 41 highly expressed transcription factors out of the 169. To identify possible target genes for these TFs, the data were combined with a microarray-derived transcriptome dataset. This study identified 17 TFs preferentially expressed in individual seed tissues and 135 corresponding co-expressed genes, including possible targets. Certain of the TFs co-expressed with storage protein mRNAs correspond to those already known to regulate seed storage protein synthesis in Arabidopsis, whereas the timing of expression of others may be more specifically related to the delayed expression of the legumin-class storage proteins observed in legumes.

  15. Dual-species transcriptional profiling during systemic candidiasis reveals organ-specific host-pathogen interactions

    PubMed Central

    Hebecker, Betty; Vlaic, Sebastian; Conrad, Theresia; Bauer, Michael; Brunke, Sascha; Kapitan, Mario; Linde, Jörg; Hube, Bernhard; Jacobsen, Ilse D.

    2016-01-01

    Candida albicans is a common cause of life-threatening fungal bloodstream infections. In the murine model of systemic candidiasis, the kidney is the primary target organ while the fungal load declines over time in liver and spleen. To better understand these organ-specific differences in host-pathogen interaction, we performed gene expression profiling of murine kidney, liver and spleen and determined the fungal transcriptome in liver and kidney. We observed a delayed transcriptional immune response accompanied by late induction of fungal stress response genes in the kidneys. In contrast, early upregulation of the proinflammatory response in the liver was associated with a fungal transcriptome resembling response to phagocytosis, suggesting that phagocytes contribute significantly to fungal control in the liver. Notably, C. albicans hypha-associated genes were upregulated in the absence of visible filamentation in the liver, indicating an uncoupling of gene expression and morphology and a morphology-independent effect by hypha-associated genes in this organ. Consistently, integration of host and pathogen transcriptional data in an inter-species gene regulatory network indicated connections of C. albicans cell wall remodelling and metabolism to the organ-specific immune responses. PMID:27808111

  16. Comparative Transcriptional Profiling of Primed and Non-primed Rice Seedlings under Submergence Stress

    PubMed Central

    Hussain, Saddam; Yin, Hanqi; Peng, Shaobing; Khan, Faheem A.; Khan, Fahad; Sameeullah, Muhammad; Hussain, Hafiz A.; Huang, Jianliang; Cui, Kehui; Nie, Lixiao

    2016-01-01

    Submergence stress is a limiting factor for direct-seeded rice systems in rainfed lowlands and flood-prone areas of South and Southeast Asia. The present study demonstrated that submergence stress severely hampered the germination and seedling growth of rice, however, seed priming alleviated the detrimental effects of submergence stress. To elucidate the molecular basis of seed priming-induced submergence tolerance, transcriptome analyses were performed using 4-day-old primed (selenium-Se and salicylic acid-SA priming) and non-primed rice seedlings under submergence stress. Genomewide transcriptomic profiling identified 2371 and 2405 transcripts with Se- and SA-priming, respectively, that were differentially expressed in rice compared with non-priming treatment under submergence. Pathway and gene ontology term enrichment analyses revealed that genes involved in regulation of secondary metabolism, development, cell, transport, protein, and metal handling were over-represented after Se- or SA-priming. These coordinated factors might have enhanced the submergence tolerance and maintained the better germination and vigorous seedling growth of primed rice seedlings. It was also found that many genes involved in cellular and metabolic processes such as carbohydrate metabolism, cellular, and metabolic biosynthesis, nitrogen compound metabolic process, transcription, and response to oxidative stress were induced and overlapped in seed priming treatments, a finding which reveals the common mechanism of seed priming-induced submergence tolerance. Taken together, these results may provide new avenues for understanding and advancing priming-induced responses to submergence tolerance in crop plants. PMID:27516766

  17. Developmental transcript profiling of cyst nematode feeding cells in soybean roots.

    PubMed

    Ithal, Nagabhushana; Recknor, Justin; Nettleton, Dan; Maier, Tom; Baum, Thomas J; Mitchum, Melissa G

    2007-05-01

    Cyst nematodes of the genus Heterodera are obligate, sedentary endoparasites that have developed highly evolved relationships with specific host plant species. Successful parasitism involves significant physiological and morphological changes to plant root cells for the formation of specialized feeding cells called syncytia. To better understand the molecular mechanisms that lead to the development of nematode feeding cells, transcript profiling was conducted on developing syncytia induced by the soybean cyst nematode Heterodera glycines in soybean roots by coupling laser capture microdissection with high-density oligonucleotide microarray analysis. This approach has identified pathways that may play intrinsic roles in syncytium induction, formation, and function. Our data suggest interplay among phytohormones that likely regulates synchronized changes in the expression of genes encoding cell-wall-modifying proteins. This process appears to be tightly controlled and coordinately regulated with cell wall rigidification processes that may involve lignification of feeding cell walls. Our data also show local downregulation of jasmonic acid biosynthesis and responses in developing syncytia, which suggest a local suppression of plant defense mechanisms. Moreover, we identified genes encoding putative transcription factors and components of signal transduction pathways that may be important in the regulatory processes governing syncytium formation and function. Our analysis provides a broad mechanistic picture that forms the basis for future hypothesis-driven research to understand cyst nematode parasitism and to develop effective management tools against these pathogens.

  18. In Vivo Functional and Transcriptional Profiling of Bone Marrow Stem Cells after Transplantation into Ischemic Myocardium

    PubMed Central

    Sheikh, Ahmad Y.; Huber, Bruno C.; Narsinh, Kazim H.; Spin, Joshua M.; van der Bogt, Koen; de Almeida, Patricia E.; Ransohoff, Katherine J.; Kraft, Daniel L.; Fajardo, Giovanni; Ardigo, Diego; Ransohoff, Julia; Bernstein, Daniel; Fischbein, Michael P.; Robbins, Robert C.; Wu, Joseph C.

    2011-01-01

    Objective Clinical trials of bone marrow-derived stem cell therapy for the heart have yielded variable results. The basic mechanism(s) that underlie their potential efficacy remains unknown. In the present study, we evaluate the survival kinetics, transcriptional response, and functional outcome of intramyocardial bone marrow mononuclear cell (BMMC) transplantation for cardiac repair in murine myocardial infarction model. Methods and Results We utilized molecular-genetic bioluminescence imaging and high throughput transcriptional profiling to evaluate the in vivo survival kinetics and gene expression changes of transplanted BMMCs after their engraftment into ischemic myocardium. Our results demonstrate short-lived survival of cells following transplant, with less than 1% of cells surviving by 6 weeks post-transplantation. Moreover, transcriptomic analysis of BMMCs revealed non-specific upregulation of various cell regulatory genes with a marked downregulation of cell differentiation and maturation pathways. BMMC therapy caused limited improvement of heart function as assessed by echocardiography, invasive hemodynamics, and positron emission tomography (PET). Histological evaluation of cell fate further confirmed findings of the in vivo cell tracking and transcriptomic analysis. Conclusions Collectively, these data suggest that BMMC therapy, in its present iteration, may be less efficacious than once thought. Additional refinement of existing cell delivery protocols should be considered to induce better therapeutic efficacy. PMID:22034515

  19. Transcriptional profiling of Petunia seedlings reveals candidate regulators of the cold stress response

    PubMed Central

    Li, Bei; Ning, Luyun; Zhang, Junwei; Bao, Manzhu; Zhang, Wei

    2015-01-01

    Petunias are important ornamentals with the capacity for cold acclimation. So far, there is limited information concerning gene regulation and signaling pathways associated with the cold stress response in petunias. A custom-designed petunia microarray representing 24816 genes was used to perform transcriptome profiling in petunia seedlings subjected to cold at 2°C for 0.5 h, 2 h, 24 h, and 5 d. A total of 2071 transcripts displayed differential expression patterns under cold stress, of which 1149 were up-regulated and 922 were down-regulated. Gene ontology enrichment analysis demarcated related biological processes, suggesting a possible link between flavonoid metabolism and plant adaptation to low temperatures. Many novel stress-responsive regulators were revealed, suggesting that diverse regulatory pathways may exist in petunias in addition to the well-characterized CBF pathway. The expression changes of selected genes under cold and other abiotic stress conditions were confirmed by real-time RT-PCR. Furthermore, weighted gene co-expression network analysis divided the petunia genes on the array into 65 modules that showed high co-expression and identified stress-specific hub genes with high connectivity. Our identification of these transcriptional responses and groups of differentially expressed regulators will facilitate the functional dissection of the molecular mechanism in petunias responding to environment stresses and extend our ability to improve cold tolerance in plants. PMID:25784921

  20. Transcription profiles of Streptococcus pneumoniae grown under different conditions of normal gravitation

    NASA Astrophysics Data System (ADS)

    Allen, C. A.; Galindo, C. L.; Pandya, U.; Watson, D. A.; Chopra, A. K.; Niesel, D. W.

    2007-02-01

    High-aspect rotating vessels (HARVs) are used to study the effects low-shear modeled microgravity (LSMMG) on bacterial gene expression. LSMMG is generated by orienting HARVs with the axis of rotation perpendicular to the gravity vector while gravitational controls are oriented with the axis of rotation parallel to the gravity vector. Microarray analysis was performed on Streptococcus pneumoniae TIGR4 grown in HARVs under three conditions (LSMMG, 1×g, and static) to determine if global transcriptional activity is altered between different gravitational controls and LSMMG. Results revealed 101 differentially expressed genes under static conditions compared to 1×g, 46 genes between 1×g and LSMMG, and nine genes between static and LSMMG. Hierarchical cluster analysis revealed 15 genes exhibiting similar expression patterns under static conditions compared to 1×g. These results indicate that rotation, in addition to low-shear forces, might contribute to bacterial adaptation to the LSMMG.

  1. LncRNA profiling of human lymphoid progenitors reveals transcriptional divergence of B and T lineages

    PubMed Central

    Casero, David; Sandoval, Salemiz; Seet, Christopher S.; Scholes, Jessica; Zhu, Yuhua; Ha, Vi Luan; Luong, Annie; Parekh, Chintan; Crooks, Gay M.

    2015-01-01

    To elucidate the transcriptional landscape that regulates human lymphoid commitment during postnatal life, we used RNA sequencing to assemble the long non-coding transcriptome across human bone marrow and thymic progenitors spanning the earliest stages of B and T lymphoid specification. Over 3000 novel long non-coding RNA genes (lncRNAs) were revealed through the analysis of these rare populations. Lymphoid commitment was characterized by lncRNA expression patterns that were highly stage-specific and more lineage-specific than protein coding patterns. Protein-coding genes co-expressed with neighboring lncRNA genes were enriched for ontologies related to lymphoid differentiation. The exquisite cell-type specificity of global lncRNA expression patterns independently revealed new developmental relationships between the earliest progenitors in the human bone marrow and thymus. PMID:26502406

  2. Mitochondrial-Nuclear Interactions Mediate Sex-Specific Transcriptional Profiles in Drosophila

    PubMed Central

    Mossman, Jim A.; Tross, Jennifer G.; Li, Nan; Wu, Zhijin; Rand, David M.

    2016-01-01

    The assembly and function of mitochondria require coordinated expression from two distinct genomes, the mitochondrial DNA (mtDNA) and nuclear DNA (nDNA). Mutations in either genome can be a source of phenotypic variation, yet their coexpression has been largely overlooked as a source of variation, particularly in the emerging paradigm of mitochondrial replacement therapy. Here we tested how the transcriptome responds to mtDNA and nDNA variation, along with mitonuclear interactions (mtDNA × nDNA) in Drosophila melanogaster. We used two mtDNA haplotypes that differ in a substantial number of single nucleotide polymorphisms, with >100 amino acid differences. We placed each haplotype on each of two D. melanogaster nuclear backgrounds and tested for transcription differences in both sexes. We found that large numbers of transcripts were differentially expressed between nuclear backgrounds, and that mtDNA type altered the expression of nDNA genes, suggesting a retrograde, trans effect of mitochondrial genotype. Females were generally more sensitive to genetic perturbation than males, and males demonstrated an asymmetrical effect of mtDNA in each nuclear background; mtDNA effects were nuclear-background specific. mtDNA-sensitive genes were not enriched in male- or female-limited expression space in either sex. Using a variety of differential expression analyses, we show the responses to mitonuclear covariation to be substantially different between the sexes, yet the mtDNA genes were consistently differentially expressed across nuclear backgrounds and sexes. Our results provide evidence that the main mtDNA effects can be consistent across nuclear backgrounds, but the interactions between mtDNA and nDNA can lead to sex-specific global transcript responses. PMID:27558138

  3. Mitochondrial-Nuclear Interactions Mediate Sex-Specific Transcriptional Profiles in Drosophila.

    PubMed

    Mossman, Jim A; Tross, Jennifer G; Li, Nan; Wu, Zhijin; Rand, David M

    2016-10-01

    The assembly and function of mitochondria require coordinated expression from two distinct genomes, the mitochondrial DNA (mtDNA) and nuclear DNA (nDNA). Mutations in either genome can be a source of phenotypic variation, yet their coexpression has been largely overlooked as a source of variation, particularly in the emerging paradigm of mitochondrial replacement therapy. Here we tested how the transcriptome responds to mtDNA and nDNA variation, along with mitonuclear interactions (mtDNA × nDNA) in Drosophila melanogaster We used two mtDNA haplotypes that differ in a substantial number of single nucleotide polymorphisms, with >100 amino acid differences. We placed each haplotype on each of two D. melanogaster nuclear backgrounds and tested for transcription differences in both sexes. We found that large numbers of transcripts were differentially expressed between nuclear backgrounds, and that mtDNA type altered the expression of nDNA genes, suggesting a retrograde, trans effect of mitochondrial genotype. Females were generally more sensitive to genetic perturbation than males, and males demonstrated an asymmetrical effect of mtDNA in each nuclear background; mtDNA effects were nuclear-background specific. mtDNA-sensitive genes were not enriched in male- or female-limited expression space in either sex. Using a variety of differential expression analyses, we show the responses to mitonuclear covariation to be substantially different between the sexes, yet the mtDNA genes were consistently differentially expressed across nuclear backgrounds and sexes. Our results provide evidence that the main mtDNA effects can be consistent across nuclear backgrounds, but the interactions between mtDNA and nDNA can lead to sex-specific global transcript responses. Copyright © 2016 by the Genetics Society of America.

  4. IDENTIFICATION OF NOVEL CANDIDATE GENES INVOLVED IN MINERALIZATION OF DENTAL ENAMEL BY GENOME-WIDE TRANSCRIPT PROFILING

    PubMed Central

    Lacruz, Rodrigo S.; Smith, Charles E.; Bringas, Pablo; Chen, Yi-Bu; Smith, Susan M.; Snead, Malcolm L.; Kurtz, Ira; Hacia, Joseph G.; Hubbard, Michael J.; Paine, Michael L.

    2011-01-01

    The gene repertoire regulating vertebrate biomineralization is poorly understood. Dental enamel, the most highly mineralized tissue in mammals, differs from other calcifying systems in that the formative cells (ameloblasts) lack remodeling activity and largely degrade and resorb the initial extracellular matrix. Enamel mineralization requires that ameloblasts undergo a profound functional switch from matrix-secreting to maturational (calcium transport, protein resorption) roles as mineralization progresses. During the maturation stage, extracellular pH decreases markedly, placing high demands on ameloblasts to regulate acidic environments present around the growing hydroxyapatite crystals. To identify the genetic events driving enamel mineralization, we conducted genome-wide transcript profiling of the developing enamel organ from rat incisors and highlight over 300 genes differentially expressed during maturation. Using multiple bioinformatics analyses, we identified groups of maturation-associated genes whose functions are linked to key mineralization processes including pH regulation, calcium handling and matrix turnover. Subsequent qPCR and Western blot analyses revealed that a number of solute carrier (SLC) gene family members were up-regulated during maturation, including the novel protein Slc24a4 involved in calcium handling as well as other proteins of similar function (Stim1). By providing the first global overview of the cellular machinery required for enamel maturation, this study provide a strong foundation for improving basic understanding of biomineralization and its practical applications in healthcare. PMID:21809343

  5. Identification of novel candidate genes involved in mineralization of dental enamel by genome-wide transcript profiling.

    PubMed

    Lacruz, Rodrigo S; Smith, Charles E; Bringas, Pablo; Chen, Yi-Bu; Smith, Susan M; Snead, Malcolm L; Kurtz, Ira; Hacia, Joseph G; Hubbard, Michael J; Paine, Michael L

    2012-05-01

    The gene repertoire regulating vertebrate biomineralization is poorly understood. Dental enamel, the most highly mineralized tissue in mammals, differs from other calcifying systems in that the formative cells (ameloblasts) lack remodeling activity and largely degrade and resorb the initial extracellular matrix. Enamel mineralization requires that ameloblasts undergo a profound functional switch from matrix-secreting to maturational (calcium transport, protein resorption) roles as mineralization progresses. During the maturation stage, extracellular pH decreases markedly, placing high demands on ameloblasts to regulate acidic environments present around the growing hydroxyapatite crystals. To identify the genetic events driving enamel mineralization, we conducted genome-wide transcript profiling of the developing enamel organ from rat incisors and highlight over 300 genes differentially expressed during maturation. Using multiple bioinformatics analyses, we identified groups of maturation-associated genes whose functions are linked to key mineralization processes including pH regulation, calcium handling, and matrix turnover. Subsequent qPCR and Western blot analyses revealed that a number of solute carrier (SLC) gene family members were up-regulated during maturation, including the novel protein Slc24a4 involved in calcium handling as well as other proteins of similar function (Stim1). By providing the first global overview of the cellular machinery required for enamel maturation, this study provide a strong foundation for improving basic understanding of biomineralization and its practical applications in healthcare. Copyright © 2011 Wiley Periodicals, Inc.

  6. Gene Structures, Evolution and Transcriptional Profiling of the WRKY Gene Family in Castor Bean (Ricinus communis L.).

    PubMed

    Zou, Zhi; Yang, Lifu; Wang, Danhua; Huang, Qixing; Mo, Yeyong; Xie, Guishui

    2016-01-01

    WRKY proteins comprise one of the largest transcription factor families in plants and form key regulators of many plant processes. This study presents the characterization of 58 WRKY genes from the castor bean (Ricinus communis L., Euphorbiaceae) genome. Compared with the automatic genome annotation, one more WRKY-encoding locus was identified and 20 out of the 57 predicted gene models were manually corrected. All RcWRKY genes were shown to contain at least one intron in their coding sequences. According to the structural features of the present WRKY domains, the identified RcWRKY genes were assigned to three previously defined groups (I-III). Although castor bean underwent no recent whole-genome duplication event like physic nut (Jatropha curcas L., Euphorbiaceae), comparative genomics analysis indicated that one gene loss, one intron loss and one recent proximal duplication occurred in the RcWRKY gene family. The expression of all 58 RcWRKY genes was supported by ESTs and/or RNA sequencing reads derived from roots, leaves, flowers, seeds and endosperms. Further global expression profiles with RNA sequencing data revealed diverse expression patterns among various tissues. Results obtained from this study not only provide valuable information for future functional analysis and utilization of the castor bean WRKY genes, but also provide a useful reference to investigate the gene family expansion and evolution in Euphorbiaceus plants.

  7. Gene Structures, Evolution and Transcriptional Profiling of the WRKY Gene Family in Castor Bean (Ricinus communis L.)

    PubMed Central

    Huang, Qixing; Mo, Yeyong; Xie, Guishui

    2016-01-01

    WRKY proteins comprise one of the largest transcription factor families in plants and form key regulators of many plant processes. This study presents the characterization of 58 WRKY genes from the castor bean (Ricinus communis L., Euphorbiaceae) genome. Compared with the automatic genome annotation, one more WRKY-encoding locus was identified and 20 out of the 57 predicted gene models were manually corrected. All RcWRKY genes were shown to contain at least one intron in their coding sequences. According to the structural features of the present WRKY domains, the identified RcWRKY genes were assigned to three previously defined groups (I–III). Although castor bean underwent no recent whole-genome duplication event like physic nut (Jatropha curcas L., Euphorbiaceae), comparative genomics analysis indicated that one gene loss, one intron loss and one recent proximal duplication occurred in the RcWRKY gene family. The expression of all 58 RcWRKY genes was supported by ESTs and/or RNA sequencing reads derived from roots, leaves, flowers, seeds and endosperms. Further global expression profiles with RNA sequencing data revealed diverse expression patterns among various tissues. Results obtained from this study not only provide valuable information for future functional analysis and utilization of the castor bean WRKY genes, but also provide a useful reference to investigate the gene family expansion and evolution in Euphorbiaceus plants. PMID:26849139

  8. Distinct transcriptional and metabolic profiles associated with empathy in Buddhist priests: a pilot study.

    PubMed

    Ohnishi, Junji; Ayuzawa, Satoshi; Nakamura, Seiji; Sakamoto, Shigeko; Hori, Miyo; Sasaoka, Tomoko; Takimoto-Ohnishi, Eriko; Tanatsugu, Masakazu; Murakami, Kazuo

    2017-09-02

    Growing evidence suggests that spiritual/religious involvement may have beneficial effects on both psychological and physical functions. However, the biological basis for this relationship remains unclear. This study explored the role of spiritual/religious involvement across a wide range of biological markers, including transcripts and metabolites, associated with the psychological aspects of empathy in Buddhist priests. Ten professional Buddhist priests and 10 age-matched non-priest controls were recruited. The participants provided peripheral blood samples for the analysis of gene expression and metabolic profiles. The participants also completed validated questionnaires measuring empathy, the Health-Promoting Lifestyle Profile-II (HPLP-II), and a brief-type self-administered diet history questionnaire (BDHQ). The microarray analyses revealed that the distinct transcripts in the Buddhist priests included up-regulated genes related to type I interferon (IFN) innate anti-viral responses (i.e., MX1, RSAD2, IFIT1, IFIT3, IFI27, IFI44L, and HERC5), and the genes C17orf97 (ligand of arginyltranseferase 1; ATE1), hemoglobin γA (HBG1), keratin-associated protein (KRTAP10-12), and sialic acid Ig-like lectin 14 (SIGLEC14) were down-regulated at baseline. The metabolomics analysis revealed that the metabolites, including 3-aminoisobutylic acid (BAIBA), choline, several essential amino acids (e.g., methionine, phenylalanine), and amino acid derivatives (e.g., 2-aminoadipic acid, asymmetric dimethyl-arginine (ADMA), symmetric dimethyl-arginine (SMDA)), were elevated in the Buddhist priests. By contrast, there was no significant difference of healthy lifestyle behaviors and daily nutrient intakes between the priests and the controls in this study. With regard to the psychological aspects, the Buddhist priests showed significantly higher empathy compared with the control. Spearman's rank correlation analysis showed that empathy aspects in the priests were significantly

  9. Transcriptional profiling of the LPS induced NF-κB response in macrophages

    PubMed Central

    Sharif, Omar; Bolshakov, Viacheslav N; Raines, Stephanie; Newham, Peter; Perkins, Neil D

    2007-01-01

    Background Exposure of macrophages to bacterial products such as lipopolysaccharide (LPS) results in activation of the NF-κB transcription factor, which orchestrates a gene expression programme that underpins the macrophage-dependent immune response. These changes include the induction or repression of a wide range of genes that regulate inflammation, cell proliferation, migration and cell survival. This process is tightly regulated and loss of control is associated with conditions such as septic shock, inflammatory diseases and cancer. To study this response, it is important to have in vitro model systems that reflect the behaviour of cells in vivo. In addition, it is necessary to understand the natural differences that can occur between individuals. In this report, we have investigated and compared the LPS response in macrophage derived cell lines and peripheral blood mononuclear cell (PBMC) derived macrophages. Results Gene expression profiles were determined following LPS treatment of THP-1 cells for 1 and 4 hours. LPS significantly induced or repressed 72 out of 465 genes selected as being known or putative NF-κB target genes, which exhibited 4 temporal patterns of expression. Results for 34 of these genes, including several genes not previously identified as LPS target genes, were validated using real time PCR. A high correlation between microarray and real time PCR data was found. Significantly, the LPS induced expression profile of THP-1 cells, as determined using real time PCR, was found to be very similar to that of human PBMC derived macrophages. Interestingly, some differences were observed in the LPS response between the two donor PBMC macrophage populations. Surprisingly, we found that the LPS response in U937 cells was dramatically different to both THP-1 and PBMC derived macrophages. Conclusion This study revealed a dynamic and diverse transcriptional response to LPS in macrophages, involving both the induction and repression of gene expression in

  10. Preeclampsia: novel insights from global RNA profiling of trophoblast subpopulations.

    PubMed

    Gormley, Matthew; Ona, Katherine; Kapidzic, Mirhan; Garrido-Gomez, Tamara; Zdravkovic, Tamara; Fisher, Susan J

    2017-08-01

    The maternal signs of preeclampsia, which include the new onset of high blood pressure, can occur because of faulty placentation. We theorized that transcriptomic analyses of trophoblast subpopulations in situ would lend new insights into the role of these cells in preeclampsia pathogenesis. Our goal was to enrich syncytiotrophoblasts, invasive cytotrophoblasts, or endovascular cytotrophoblasts from the placentas of severe preeclampsia cases. Total RNA was subjected to global transcriptional profiling to identify RNAs that were misexpressed compared with controls. This was a cross-sectional analysis of placentas from women who had been diagnosed with severe preeclampsia. Gestational age-matched controls were placentas from women who had a preterm birth with no signs of infection. Laser microdissection enabled enrichment of syncytiotrophoblasts, invasive cytotrophoblasts, or endovascular cytotrophoblasts. After RNA isolation, a microarray approach was used for global transcriptional profiling. Immunolocalization identified changes in messenger RNA expression that carried over to the protein level. Differential expression of non-protein-coding RNAs was confirmed by in situ hybridization. A 2-way analysis of variance of non-coding RNA expression identified particular classes that distinguished trophoblasts in cases vs controls. Cajal body foci were visualized by coilin immunolocalization. Comparison of the trophoblast subtype data within each group (severe preeclampsia or noninfected preterm birth) identified many highly differentially expressed genes. They included molecules that are known to be expressed by each subpopulation, which is evidence that the method worked. Genes that were expressed differentially between the 2 groups, in a cell-type-specific manner, encoded a combination of molecules that previous studies associated with severe preeclampsia and those that were not known to be dysregulated in this pregnancy complication. Gene ontology analysis of the

  11. Global Reprogramming of Transcription in Chinese Fir (Cunninghamia lanceolata) during Progressive Drought Stress and after Rewatering

    PubMed Central

    Hu, Ruiyang; Wu, Bo; Zheng, Huiquan; Hu, Dehuo; Wang, Xinjie; Duan, Hongjing; Sun, Yuhan; Wang, Jinxing; Zhang, Yue; Li, Yun

    2015-01-01

    Chinese fir (Cunninghamia lanceolata), an evergreen conifer, is the most commonly grown afforestation species in southeast China due to its rapid growth and good wood qualities. To gain a better understanding of the drought-signalling pathway and the molecular metabolic reactions involved in the drought response, we performed a genome-wide transcription analysis using RNA sequence data. In this study, Chinese fir plantlets were subjected to progressively prolonged drought stress, up to 15 d, followed by rewatering under controlled environmental conditions. Based on observed morphological changes, plantlets experienced mild, moderate, or severe water stress before rehydration. Transcriptome analysis of plantlets, representing control and mild, moderate, and severe drought-stress treatments, and the rewatered plantlets, identified several thousand genes whose expression was altered in response to drought stress. Many genes whose expression was tightly coupled to the levels of drought stress were identified, suggesting involvement in Chinese fir drought adaptation responses. These genes were associated with transcription factors, signal transport, stress kinases, phytohormone signalling, and defence/stress response. The present study provides the most comprehensive transcriptome resource and the first dynamic transcriptome profiles of Chinese fir under drought stress. The drought-responsive genes identified in this study could provide further information for understanding the mechanisms of drought tolerance in Chinese fir. PMID:26154763

  12. Global Reprogramming of Transcription in Chinese Fir (Cunninghamia lanceolata) during Progressive Drought Stress and after Rewatering.

    PubMed

    Hu, Ruiyang; Wu, Bo; Zheng, Huiquan; Hu, Dehuo; Wang, Xinjie; Duan, Hongjing; Sun, Yuhan; Wang, Jinxing; Zhang, Yue; Li, Yun

    2015-07-06

    Chinese fir (Cunninghamia lanceolata), an evergreen conifer, is the most commonly grown afforestation species in southeast China due to its rapid growth and good wood qualities. To gain a better understanding of the drought-signalling pathway and the molecular metabolic reactions involved in the drought response, we performed a genome-wide transcription analysis using RNA sequence data. In this study, Chinese fir plantlets were subjected to progressively prolonged drought stress, up to 15 d, followed by rewatering under controlled environmental conditions. Based on observed morphological changes, plantlets experienced mild, moderate, or severe water stress before rehydration. Transcriptome analysis of plantlets, representing control and mild, moderate, and severe drought-stress treatments, and the rewatered plantlets, identified several thousand genes whose expression was altered in response to drought stress. Many genes whose expression was tightly coupled to the levels of drought stress were identified, suggesting involvement in Chinese fir drought adaptation responses. These genes were associated with transcription factors, signal transport, stress kinases, phytohormone signalling, and defence/stress response. The present study provides the most comprehensive transcriptome resource and the first dynamic transcriptome profiles of Chinese fir under drought stress. The drought-responsive genes identified in this study could provide further information for understanding the mechanisms of drought tolerance in Chinese fir.

  13. DNA phosphorothioate modifications influence the global transcriptional response and protect DNA from double-stranded breaks

    PubMed Central

    Gan, Rui; Wu, Xiaolin; He, Wei; Liu, Zhenhua; Wu, Shuangju; Chen, Chao; Chen, Si; Xiang, Qianrong; Deng, Zixin; Liang, Dequan; Chen, Shi; Wang, Lianrong

    2014-01-01

    The modification of DNA by phosphorothioate (PT) occurs when the non-bridging oxygen in the sugar-phosphate backbone of DNA is replaced with sulfur. This DNA backbone modification was recently discovered and is governed by the dndABCDE genes in a diverse group of bacteria and archaea. However, the biological function of DNA PT modifications is poorly understood. In this study, we employed the RNA-seq analysis to characterize the global transcriptional changes in response to PT modifications. Our results show that DNA without PT protection is susceptible to DNA damage caused by the dndFGHI gene products. The DNA double-stranded breaks then trigger the SOS response, cell filamentation and prophage induction. Heterologous expression of dndBCDE conferring DNA PT modifications at GPSA and GPST prevented the damage in Salmonella enterica. Our data provide insights into the physiological role of the DNA PT system. PMID:25319634

  14. Non-Additive Transcriptional Profiles Underlie Dikaryotic Superiority in Pleurotus ostreatus Laccase Activity

    PubMed Central

    Castanera, Raúl; Omarini, Alejandra; Santoyo, Francisco; Pérez, Gúmer; Pisabarro, Antonio G.; Ramírez, Lucía

    2013-01-01

    Background The basidiomycete Pleurotus ostreatus is an efficient producer of laccases, a group of enzymes appreciated for their use in multiple industrial processes. The aim of this study was to reveal the molecular basis of the superiority of laccase production by dikaryotic strains compared to their parental monokaryons. Methodology/Principal Findings We bred and studied a set of dikaryotic strains starting from a meiotic population of monokaryons. We then completely characterised the laccase allelic composition, the laccase gene expression and activity profiles in the dikaryotic strain N001, in two of its meiotic full-sib monokaryons and in the dikaryon formed from their mating. Conclusions/Significance Our results suggested that the dikaryotic superiority observed in laccase activity was due to non-additive transcriptional increases in lacc6 and lacc10 genes. Furthermore, the expression of these genes was divergent in glucose- vs. lignocellulose-supplemented media and was highly correlated to the detected extracellular laccase activity. Moreover, the expression profile of lacc2 in the dikaryotic strains was affected by its allelic composition, indicating a putative single locus heterozygous advantage. PMID:24039902

  15. Transcriptional profiling of human smooth muscle cells infected with gingipain and fimbriae mutants of Porphyromonas gingivalis

    PubMed Central

    Zhang, Boxi; Sirsjö, Allan; Khalaf, Hazem; Bengtsson, Torbjörn

    2016-01-01

    Porphyromonas gingivalis (P. gingivalis) is considered to be involved in the development of atherosclerosis. However, the role of different virulence factors produced by P. gingivalis in this process is still uncertain. The aim of this study was to investigate the transcriptional profiling of human aortic smooth muscle cells (AoSMCs) infected with wild type, gingipain mutants or fimbriae mutants of P. gingivalis. AoSMCs were exposed to wild type (W50 and 381), gingipain mutants (E8 and K1A), or fimbriae mutants (DPG-3 and KRX-178) of P. gingivalis. We observed that wild type P. gingivalis changes the expression of a considerable larger number of genes in AoSMCs compare to gingipain and fimbriae mutants, respectively. The results from pathway analysis revealed that the common differentially expressed genes for AoSMCs infected by 3 different wild type P. gingivalis strains were enriched in pathways of cancer, cytokine-cytokine receptor interaction, regulation of the actin cytoskeleton, focal adhesion, and MAPK signaling pathway. Disease ontology analysis showed that various strains of P. gingivalis were associated with different disease profilings. Our results suggest that gingipains and fimbriae, especially arginine-specific gingipain, produced by P. gingivalis play important roles in the association between periodontitis and other inflammatory diseases, including atherosclerosis. PMID:26907358

  16. Spatial Profiling of Nuclear Receptor Transcription Patterns over the Course of Drosophila Development

    PubMed Central

    Wilk, Ronit; Hu, Jack; Krause, Henry M.

    2013-01-01

    Previous work has shown that many of the 18 family members of Drosophila nuclear receptor transcription factors function in a temporal hierarchy to coordinate developmental progression and growth with the rate limiting process of metabolism. To gain further insight into these interactions and processes, we have undertaken a whole-family analysis of nuclear receptor mRNA spatial expression patterns over the entire process of embryogenesis, as well as the 3rd instar wandering larva stage, by using high-resolution fluorescence in situ hybridization. Overall, the patterns of expression are remarkably consistent with previously mapped spatial activity profiles documented during the same time points, with similar hot spots and temporal profiles in endocrine and metabolically important tissues. Among the more remarkable of the findings is that the majority of mRNA expression patterns observed show striking subcellular distributions, indicating potentially critical roles in the control of protein synthesis and subsequent subcellular distributions. These patterns will serve as a useful reference for future studies on the tissue-specific roles and interactions of nuclear receptor proteins, partners, cofactors and ligands. PMID:23665880

  17. Gene Transcriptional and Metabolic Profile Changes in Mimetic Aging Mice Induced by D-Galactose

    PubMed Central

    Zhou, Yue-Yue; Zhu, Xiao-Juan; Li, Rong-Hua; Mu, Chang-Kao; Wang, Chun-Lin; Song, Wei-Wei

    2015-01-01

    D-galactose injection has been shown to induce many changes in mice that represent accelerated aging. This mouse model has been widely used for pharmacological studies of anti-aging agents. The underlying mechanism of D-galactose induced aging remains unclear, however, it appears to relate to glucose and 1ipid metabolic disorders. Currently, there has yet to be a study that focuses on investigating gene expression changes in D-galactose aging mice. In this study, integrated analysis of gas chromatography/mass spectrometry-based metabonomics and gene expression profiles was used to investigate the changes in transcriptional and metabolic profiles in mimetic aging mice injected with D-galactose. Our findings demonstrated that 48 mRNAs were differentially expressed between control and D-galactose mice, and 51 potential biomarkers were identified at the metabolic level. The effects of D-galactose on aging could be attributed to glucose and 1ipid metabolic disorders, oxidative damage, accumulation of advanced glycation end products (AGEs), reduction in abnormal substance elimination, cell apoptosis, and insulin resistance. PMID:26176541

  18. Gene Transcriptional and Metabolic Profile Changes in Mimetic Aging Mice Induced by D-Galactose.

    PubMed

    Zhou, Yue-Yue; Ji, Xiong-Fei; Fu, Jian-Ping; Zhu, Xiao-Juan; Li, Rong-Hua; Mu, Chang-Kao; Wang, Chun-Lin; Song, Wei-Wei

    2015-01-01

    D-galactose injection has been shown to induce many changes in mice that represent accelerated aging. This mouse model has been widely used for pharmacological studies of anti-aging agents. The underlying mechanism of D-galactose induced aging remains unclear, however, it appears to relate to glucose and 1ipid metabolic disorders. Currently, there has yet to be a study that focuses on investigating gene expression changes in D-galactose aging mice. In this study, integrated analysis of gas chromatography/mass spectrometry-based metabonomics and gene expression profiles was used to investigate the changes in transcriptional and metabolic profiles in mimetic aging mice injected with D-galactose. Our findings demonstrated that 48 mRNAs were differentially expressed between control and D-galactose mice, and 51 potential biomarkers were identified at the metabolic level. The effects of D-galactose on aging could be attributed to glucose and 1ipid metabolic disorders, oxidative damage, accumulation of advanced glycation end products (AGEs), reduction in abnormal substance elimination, cell apoptosis, and insulin resistance.

  19. Identifying candidate oocyte reprogramming factors using cross-species global transcriptional analysis.

    PubMed

    Awe, Jason P; Byrne, James A

    2013-04-01

    There is mounting evidence to suggest that the epigenetic reprogramming capacity of the oocyte is superior to that of the current factor-based reprogramming approaches and that some factor-reprogrammed induced pluripotent stem cells (iPSCs) retain a degree of epigenetic memory that can influence differentiation capacity and may be linked to the observed expression of immunogenicity genes in iPSC derivatives. One hypothesis for this differential reprogramming capacity is the "chromatin loosening/enhanced reprogramming" concept, as previously described by John Gurdon and Ian Wilmut, as well as others, which postulates that the oocyte possesses factors that loosen the somatic cell chromatin structure, providing the epigenetic and transcriptional regulatory factors more ready access to repressed genes and thereby significantly increasing epigenetic reprogramming. However, to empirically test this hypothesis a list of candidate oocyte reprogramming factors (CORFs) must be ascertained that are significantly expressed in metaphase II oocytes. Previous studies have focused on intraspecies or cross-species transcriptional analysis of up to two different species of oocytes. In this study, we have identified eight CORFs (ARID2, ASF1A, ASF1B, DPPA3, ING3, MSL3, H1FOO, and KDM6B) based on unbiased global transcriptional analysis of oocytes from three different species (human, rhesus monkey, and mouse) that both demonstrate significant (p<0.05, FC>3) expression in oocytes of all three species and have well-established roles in loosening/opening up chromatin structure. We also identified an additional 15 CORFs that fit within our proposed "chromatin opening/fate transformative" (COFT) model. These CORFs may be able to augment Shinya Yamanaka's previously identified reprogramming factors (OCT4, SOX2, KLF4, and cMYC) and potentially facilitate the removal of epigenetic memory in iPSCs and/or reduce the expression of immunogenicity genes in iPSC derivatives, and may have

  20. Transcriptional Profiling Confirms the Therapeutic Effects of Mast Cell Stabilization in a Dengue Disease Model.

    PubMed

    Morrison, Juliet; Rathore, Abhay P S; Mantri, Chinmay K; Aman, Siti A B; Nishida, Andrew; St John, Ashley L

    2017-09-15

    There are no approved therapeutics for the treatment of dengue disease despite the global prevalence of dengue virus (DENV) and its mosquito vectors. DENV infections can lead to vascular complications, hemorrhage, and shock due to the ability of DENV to infect a variety of immune and nonimmune cell populations. Increasingly, studies have implicated the host response as a major contributor to severe disease. Inflammatory products of various cell types, including responding T cells, mast cells (MCs), and infected monocytes, can contribute to immune pathology. In this study, we show that the host response to DENV infection in immunocompetent mice recapitulates transcriptional changes that have been described in human studies. We found that DENV infection strongly induced metabolic dysregulation, complement signaling, and inflammation. DENV also affected the immune cell content of the spleen and liver, enhancing NK, NKT, and CD8(+) T cell activation. The MC-stabilizing drug ketotifen reversed many of these responses without suppressing memory T cell formation and induced additional changes in the transcriptome and immune cell composition of the spleen, consistent with reduced inflammation. This study provides a global transcriptional map of immune activation in DENV target organs of an immunocompetent host and supports the further development of targeted immunomodulatory strategies to treat DENV disease.IMPORTANCE Dengue virus (DENV), which causes febrile illness, is transmitted by mosquito vectors throughout tropical and subtropical regions of the world. Symptoms of DENV infection involve damage to blood vessels and, in rare cases, hemorrhage and shock. Currently, there are no targeted therapies to treat DENV infection, but it is thought that drugs that target the host immune response may be effective in limiting symptoms that result from excessive inflammation. In this study, we measured the host transcriptional response to infection in multiple DENV target organs

  1. Substantial Histone Reduction Modulates Genomewide Nucleosomal Occupancy and Global Transcriptional Output

    PubMed Central

    Celona, Barbara; Weiner, Assaf; Di Felice, Francesca; Mancuso, Francesco M.; Cesarini, Elisa; Rossi, Riccardo L.; Gregory, Lorna; Baban, Dilair; Rossetti, Grazisa; Grianti, Paolo; Pagani, Massimiliano; Bonaldi, Tiziana; Ragoussis, Jiannis; Friedman, Nir; Camilloni, Giorgio; Bianchi, Marco E.; Agresti, Alessandra

    2011-01-01

    The basic unit of genome packaging is the nucleosome, and nucleosomes have long been proposed to restrict DNA accessibility both to damage and to transcription. Nucleosome number in cells was considered fixed, but recently aging yeast and mammalian cells were shown to contain fewer nucleosomes. We show here that mammalian cells lacking High Mobility Group Box 1 protein (HMGB1) contain a reduced amount of core, linker, and variant histones, and a correspondingly reduced number of nucleosomes, possibly because HMGB1 facilitates nucleosome assembly. Yeast nhp6 mutants lacking Nhp6a and -b proteins, which are related to HMGB1, also have a reduced amount of histones and fewer nucleosomes. Nucleosome limitation in both mammalian and yeast cells increases the sensitivity of DNA to damage, increases transcription globally, and affects the relative expression of about 10% of genes. In yeast nhp6 cells the loss of more than one nucleosome in four does not affect the location of nucleosomes and their spacing, but nucleosomal occupancy. The decrease in nucleosomal occupancy is non-uniform and can be modelled assuming that different nucleosomal sites compete for available histones. Sites with a high propensity to occupation are almost always packaged into nucleosomes both in wild type and nucleosome-depleted cells; nucleosomes on sites with low propensity to occupation are disproportionately lost in nucleosome-depleted cells. We suggest that variation in nucleosome number, by affecting nucleosomal occupancy both genomewide and gene-specifically, constitutes a novel layer of epigenetic regulation. PMID:21738444

  2. Understanding the Role of the Master Regulator XYR1 in Trichoderma reesei by Global Transcriptional Analysis.

    PubMed

    Dos Santos Castro, Lilian; de Paula, Renato G; Antoniêto, Amanda C C; Persinoti, Gabriela F; Silva-Rocha, Rafael; Silva, Roberto N

    2016-01-01

    We defined the role of the transcriptional factor-XYR1-in the filamentous fungus Trichoderma reesei during cellulosic material degradation. In this regard, we performed a global transcriptome analysis using RNA-Seq of the Δxyr1 mutant strain of T. reesei compared with the parental strain QM9414 grown in the presence of cellulose, sophorose, and glucose as sole carbon sources. We found that 5885 genes were expressed differentially under the three tested carbon sources. Of these, 322 genes were upregulated in the presence of cellulose, while 367 and 188 were upregulated in sophorose and glucose, respectively. With respect to genes under the direct regulation of XYR1, 30 and 33 are exclusive to cellulose and sophorose, respectively. The most modulated genes in the Δxyr1 belong to Carbohydrate-Active Enzymes (CAZymes), transcription factors, and transporters families. Moreover, we highlight the downregulation of transporters belonging to the MFS and ABC transporter families. Of these, MFS members were mostly downregulated in the presence of cellulose. In sophorose and glucose, the expression of these transporters was mainly upregulated. Our results revealed that MFS and ABC transporters could be new players in cellulose degradation and their role was shown to be carbon source-dependent. Our findings contribute to a better understanding of the regulatory mechanisms of XYR1 to control cellulase gene expression in T. reesei in the presence of cellulosic material, thereby potentially enhancing its application in several biotechnology fields.

  3. Deletion of the Desulfovibrio vulgaris carbon monoxide sensor invokes global changes in transcription.

    PubMed

    Rajeev, Lara; Hillesland, Kristina L; Zane, Grant M; Zhou, Aifen; Joachimiak, Marcin P; He, Zhili; Zhou, Jizhong; Arkin, Adam P; Wall, Judy D; Stahl, David A

    2012-11-01

    The carbon monoxide-sensing transcriptional factor CooA has been studied only in hydrogenogenic organisms that can grow using CO as the sole source of energy. Homologs for the canonical CO oxidation system, including CooA, CO dehydrogenase (CODH), and a CO-dependent Coo hydrogenase, are present in the sulfate-reducing bacterium Desulfovibrio vulgaris, although it grows only poorly on CO. We show that D. vulgaris Hildenborough has an active CO dehydrogenase capable of consuming exogenous CO and that the expression of the CO dehydrogenase, but not that of a gene annotated as encoding a Coo hydrogenase, is dependent on both CO and CooA. Carbon monoxide did not act as a general metabolic inhibitor, since growth of a strain deleted for cooA was inhibited by CO on lactate-sulfate but not pyruvate-sulfate. While the deletion strain did not accumulate CO in excess, as would have been expected if CooA were important in the cycling of CO as a metabolic intermediate, global transcriptional analyses suggested that CooA and CODH are used during normal metabolism.

  4. Understanding the Role of the Master Regulator XYR1 in Trichoderma reesei by Global Transcriptional Analysis

    PubMed Central

    dos Santos Castro, Lilian; de Paula, Renato G.; Antoniêto, Amanda C. C.; Persinoti, Gabriela F.; Silva-Rocha, Rafael; Silva, Roberto N.

    2016-01-01

    We defined the role of the transcriptional factor—XYR1—in the filamentous fungus Trichoderma reesei during cellulosic material degradation. In this regard, we performed a global transcriptome analysis using RNA-Seq of the Δxyr1 mutant strain of T. reesei compared with the parental strain QM9414 grown in the presence of cellulose, sophorose, and glucose as sole carbon sources. We found that 5885 genes were expressed differentially under the three tested carbon sources. Of these, 322 genes were upregulated in the presence of cellulose, while 367 and 188 were upregulated in sophorose and glucose, respectively. With respect to genes under the direct regulation of XYR1, 30 and 33 are exclusive to cellulose and sophorose, respectively. The most modulated genes in the Δxyr1 belong to Carbohydrate-Active Enzymes (CAZymes), transcription factors, and transporters families. Moreover, we highlight the downregulation of transporters belonging to the MFS and ABC transporter families. Of these, MFS members were mostly downregulated in the presence of cellulose. In sophorose and glucose, the expression of these transporters was mainly upregulated. Our results revealed that MFS and ABC transporters could be new players in cellulose degradation and their role was shown to be carbon source-dependent. Our findings contribute to a better understanding of the regulatory mechanisms of XYR1 to control cellulase gene expression in T. reesei in the presence of cellulosic material, thereby potentially enhancing its application in several biotechnology fields. PMID:26909077

  5. Random mutagenesis of global transcription factor cAMP receptor protein for improved osmotolerance.

    PubMed

    Zhang, Hongfang; Chong, Huiqing; Ching, Chi Bun; Jiang, Rongrong

    2012-05-01

    The naturally existing microbial hosts can rarely satisfy industrial requirements, thus there has always been an intense effort in strain engineering to meet the needs of these bioprocesses. Here, in this work, we want to prove the concept that engineering global transcription factor cAMP receptor protein (CRP) of Escherichia coli can improve cell phenotypes. CRP is one of the global regulatory proteins that can regulate the transcription of over 400 genes in E. coli. The target phenotype in this study is strain osmotolerance. Amino acid mutations were introduced to CRP by either error-prone PCR or DNA shuffling, and the random mutagenesis libraries were subjected to enrichment selection under NaCl stress. Five CRP mutants (MT1-MT5) were selected from the error-prone PCR libraries with enhanced osmotolerance. DNA shuffling technique was employed to generate mutant MT6 with MT1-MT5 as templates. All of these variants showed much better growth in the presence of NaCl compared to the wild type, and MT6 presented the best tolerance towards NaCl. In the presence of 0.9 M NaCl, the growth rate of MT6 is 0.113 h(-1), while that of WT is 0.077 h(-1). MT6 also exhibited resistance to other osmotic stressors, such as KCl, glucose, and sucrose. DNA microarray analysis showed that genes involved in colanic acid biosynthesis are up-regulated in the absence of salt stress, whereas carbohydrate metabolic genes are differentially expressed under NaCl stress when comparing MT6 to WT. Scanning electron microscopy images confirmed the elongation of both WT and MT6 when exposed to NaCl but the cell surface of MT6 was relatively smooth.

  6. Transcriptional profile of P. syringae pv. phaseolicola NPS3121 at low temperature: Physiology of phytopathogenic bacteria

    PubMed Central

    2013-01-01

    Background Low temperatures play key roles in the development of most plant diseases, mainly because of their influence on the expression of various virulence factors in phytopathogenic bacteria. Thus far, studies regarding this environmental parameter have focused on specific themes and little is known about phytopathogenic bacteria physiology under these conditions. To obtain a global view regarding phytopathogenic bacteria strategies in response to physiologically relevant temperature changes, we used DNA microarray technology to compare the gene expression profile of the model bacterial pathogen P. syringae pv. phaseolicola NPS3121 grown at 18°C and 28°C. Results A total of 236 differentially regulated genes were identified, of which 133 were up-regulated and 103 were down-regulated at 18°C compared to 28°C. The majority of these genes are involved in pathogenicity and virulence processes. In general, the results of this study suggest that the expression profile obtained may be related to the fact that low temperatures induce oxidative stress in bacterial cells, which in turn influences the expression of iron metabolism genes. The expression also appears to be correlated with the profile expression obtained in genes related to motility, biofilm production, and the type III secretion system. Conclusions From the data obtained in this study, we can begin to understand the strategies used by this phytopathogen during low temperature growth, which can occur in host interactions and disease development. PMID:23587016

  7. Oas1b-dependent Immune Transcriptional Profiles of West Nile Virus Infection in the Collaborative Cross.

    PubMed

    Green, Richard; Wilkins, Courtney; Thomas, Sunil; Sekine, Aimee; Hendrick, Duncan M; Voss, Kathleen; Ireton, Renee C; Mooney, Michael; Go, Jennifer T; Choonoo, Gabrielle; Jeng, Sophia; de Villena, Fernando Pardo-Manuel; Ferris, Martin T; McWeeney, Shannon; Gale, Michael

    2017-06-07

    The oligoadenylate-synthetase (Oas) gene locus provides innate immune resistance to virus infection. In mouse models, variation in the Oas1b gene influences host susceptibility to flavivirus infection. However, the impact of Oas variation on overall innate immune programming and global gene expression among tissues and in different genetic backgrounds has not been defined. We examined how Oas1b acts in spleen and brain tissue to limit West Nile virus (WNV) susceptibility and disease across a range of genetic backgrounds. The laboratory founder strains of the mouse Collaborative Cross (CC) (A/J, C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ, and NZO/HlLtJ) all encode a truncated, defective Oas1b, whereas the three wild-derived inbred founder strains (CAST/EiJ, PWK/PhJ, and WSB/EiJ) encode a full-length OAS1B protein. We assessed disease profiles and transcriptional signatures of F1 hybrids derived from these founder strains. F1 hybrids included wild-type Oas1b (F/F), homozygous null Oas1b (N/N), and heterozygous offspring of both parental combinations (F/N and N/F). These mice were challenged with WNV, and brain and spleen samples were harvested for global gene expression analysis. We found that the Oas1b haplotype played a role in WNV susceptibility and disease metrics, but the presence of a functional Oas1b allele in heterozygous offspring did not absolutely predict protection against disease. Our results indicate that Oas1b status as wild-type or truncated, and overall Oas1b gene dosage, link with novel innate immune gene signatures that impact specific biological pathways for the control of flavivirus infection and immunity through both Oas1b-dependent and independent processes. Copyright © 2017 Green et al.

  8. Oas1b-dependent Immune Transcriptional Profiles of West Nile Virus Infection in the Collaborative Cross

    PubMed Central

    Green, Richard; Wilkins, Courtney; Thomas, Sunil; Sekine, Aimee; Hendrick, Duncan M.; Voss, Kathleen; Ireton, Renee C.; Mooney, Michael; Go, Jennifer T.; Choonoo, Gabrielle; Jeng, Sophia; de Villena, Fernando Pardo-Manuel; Ferris, Martin T.; McWeeney, Shannon; Gale, Michael

    2017-01-01

    The oligoadenylate-synthetase (Oas) gene locus provides innate immune resistance to virus infection. In mouse models, variation in the Oas1b gene influences host susceptibility to flavivirus infection. However, the impact of Oas variation on overall innate immune programming and global gene expression among tissues and in different genetic backgrounds has not been defined. We examined how Oas1b acts in spleen and brain tissue to limit West Nile virus (WNV) susceptibility and disease across a range of genetic backgrounds. The laboratory founder strains of the mouse Collaborative Cross (CC) (A/J, C57BL/6J, 129S1/SvImJ, NOD/ShiLtJ, and NZO/HlLtJ) all encode a truncated, defective Oas1b, whereas the three wild-derived inbred founder strains (CAST/EiJ, PWK/PhJ, and WSB/EiJ) encode a full-length OAS1B protein. We assessed disease profiles and transcriptional signatures of F1 hybrids derived from these founder strains. F1 hybrids included wild-type Oas1b (F/F), homozygous null Oas1b (N/N), and heterozygous offspring of both parental combinations (F/N and N/F). These mice were challenged with WNV, and brain and spleen samples were harvested for global gene expression analysis. We found that the Oas1b haplotype played a role in WNV susceptibility and disease metrics, but the presence of a functional Oas1b allele in heterozygous offspring did not absolutely predict protection against disease. Our results indicate that Oas1b status as wild-type or truncated, and overall Oas1b gene dosage, link with novel innate immune gene signatures that impact specific biological pathways for the control of flavivirus infection and immunity through both Oas1b-dependent and independent processes. PMID:28592649

  9. Transcriptional network profile on synovial fluid T cells in psoriatic arthritis.

    PubMed

    Fiocco, Ugo; Martini, Veronica; Accordi, Benedetta; Caso, Francesco; Costa, Luisa; Oliviero, Francesca; Scanu, Anna; Facco, Monica; Boso, Daniele; Gatto, Mariele; Felicetti, Mara; Frallonardo, Paola; Ramonda, Roberta; Piva, Lucia; Zambello, Renato; Agostini, Carlo; Scarpa, Raffaele; Basso, Giuseppe; Semenzato, Gianpietro; Dayer, Jean-Michel; Punzi, Leonardo; Doria, Andrea

    2015-09-01

    The objective of the study was to quantify the transcriptional profile, as the main T cell lineage-transcription factors on synovial fluid (SF) T cells, in relation to SF cytokines and T cell frequencies (%) of psoriatic arthritis (PsA) patients. Reverse phase protein array was employed to identify interleukin (IL)-23Rp19-, FOXP3- and related orphan receptor gamma T (RORγt)- protein and Janus associated tyrosine kinases 1 (JAK1), signal transducer and activator and transcription 1 (STAT1), STAT3 and STAT5 phosphoproteins in total T cell lysates from SF of PsA patients. IL-1β, IL-2, IL-6, IL-21 and interferon (INF)-γ were measured using a multiplex bead immunoassay in SF from PsA patients and peripheral blood (PB) from healthy controls (HC). Frequencies of CD4(+)CD25(-), CD4(+)CD25(high) FOXP3(+) and CD4(+)CD25(high) CD127(low) Treg, and either mean fluorescence intensity (MFI) of FOXP3(+) on CD4(+) Treg or MFI of classic IL-6 receptor (IL-6R) α expression on CD4(+)CD25(-) helper/effector T cells (Th/eff) and Treg cells, were quantified in SF of PsA patients and in PB from HC by flow cytometry (FC). In PsA SF samples, IL-2, IL-21 and IFN-γ were not detectable, whereas IL-6 and IL-1β levels were higher than in SF of non-inflammatory osteoarthritis patients. Higher levels of IL-23R-, FOXP3- and RORγt proteins and JAK1, STAT1, STAT3 and STAT5 were found in total T cells from SF of PsA patients compared with PB from HC. Direct correlations between JAK1 Y1022/Y1023 and STAT5 Y694, and STAT3 Y705 and IL6, were found in SF of PsA patients. Increased proportion of CD4(+)CD25(high) FOXP3(+) and CD4(+)CD25(high) CD127(low) Treg cells and brighter MFI of IL-6Rα were observed both on CD4(+)CD25(high)- and CD4(+)CD25(-) T cells in PsA SF. The study showed a distinctive JAK1/STAT3/STAT5 transcriptional network on T cells in the joint microenvironment, outlining the interplay of IL-6, IL-23, IL-1β and γC cytokines in the polarization and plasticity of Th17 and Treg cells

  10. Global expression profiling in leaves of free-growing aspen

    PubMed Central

    Sjödin, Andreas; Wissel, Kirsten; Bylesjö, Max; Trygg, Johan; Jansson, Stefan

    2008-01-01

    Background Genomic studies are routinely performed on young plants in controlled environments which is very different from natural conditions. In reality plants in temperate countries are exposed to large fluctuations in environmental conditions, in the case of perennials over several years. We have studied gene expression in leaves of a free-growing aspen (Populus tremula) throughout multiple growing seasons Results We show that gene expression during the first month of leaf development was largely determined by a developmental program although leaf expansion, chlorophyll accumulation and the speed of progression through this program was regulated by the temperature. We were also able to define "transcriptional signatures" for four different substages of leaf development. In mature leaves, weather factors were important for gene regulation. Conclusion This study shows that multivariate methods together with high throughput transcriptional methods in the field can provide additional, novel information as to plant status under changing environmental conditions that is impossible to mimic in laboratory conditions. We have generated a dataset that could be used to e.g. identify marker genes for certain developmental stages or treatments, as well as to assess natural variation in gene expression. PMID:18500984

  11. Global analysis of induced transcription factors and cofactors identifies Tfdp2 as an essential coregulator during terminal erythropoiesis

    PubMed Central

    Chen, Cynthia; Lodish, Harvey F.

    2014-01-01

    Key transcriptional regulators of terminal erythropoiesis, such as GATA1 and TAL1, have been well characterized, but transcription factors and cofactors and their expression modulations have not yet been explored on a global scale. Here we use global gene expression analysis to identify 28 transcription factors and 19 transcriptional cofactors induced during terminal erythroid differentiation and whose promoters are enriched for binding by GATA1 and TAL1. Utilizing protein-protein interaction databases to identify cofactors for each transcription factor, we pinpoint several co-induced pairs, of which E2f2 and its cofactor Tfdp2 were the most highly induced. TFDP2 is a critical cofactor required for proper cell cycle control and gene expression. GATA1 and TAL1 are bound to the regulatory regions of Tfdp2 and upregulate its expression, and knockdown of Tfdp2 results in significantly reduced rates of proliferation, as well as reduced upregulation of many erythroid-important genes. Loss of Tfdp2 also globally inhibits the normal downregulation of many E2F2 target genes, including those that regulate the cell cycle, causing cells to accumulate in S phase and resulting in increased erythrocyte size. Our findings highlight the importance of TFDP2 in coupling the erythroid cell cycle with terminal differentiation and validate this study as a resource for future work on elucidating the role of diverse transcription factors and coregulators in erythropoiesis. PMID:24607859

  12. Genetic Networks of Liver Metabolism Revealed by Integration of Metabolic and Transcriptional Profiling

    PubMed Central

    Ferrara, Christine T.; Wang, Ping; Neto, Elias Chaibub; Stevens, Robert D.; Bain, James R.; Wenner, Brett R.; Ilkayeva, Olga R.; Keller, Mark P.; Blasiole, Daniel A.; Kendziorski, Christina; Yandell, Brian S.; Newgard, Christopher B.; Attie, Alan D.

    2008-01-01

    Although numerous quantitative trait loci (QTL) influencing disease-related phenotypes have been detected through gene mapping and positional cloning, identification of the individual gene(s) and molecular pathways leading to those phenotypes is often elusive. One way to improve understanding of genetic architecture is to classify phenotypes in greater depth by including transcriptional and metabolic profiling. In the current study, we have generated and analyzed mRNA expression and metabolic profiles in liver samples obtained in an F2 intercross between the diabetes-resistant C57BL/6 leptinob/ob and the diabetes-susceptible BTBR leptinob/ob mouse strains. This cross, which segregates for genotype and physiological traits, was previously used to identify several diabetes-related QTL. Our current investigation includes microarray analysis of over 40,000 probe sets, plus quantitative mass spectrometry-based measurements of sixty-seven intermediary metabolites in three different classes (amino acids, organic acids, and acyl-carnitines). We show that liver metabolites map to distinct genetic regions, thereby indicating that tissue metabolites are heritable. We also demonstrate that genomic analysis can be integrated with liver mRNA expression and metabolite profiling data to construct causal networks for control of specific metabolic processes in liver. As a proof of principle of the practical significance of this integrative approach, we illustrate the construction of a specific causal network that links gene expression and metabolic changes in the context of glutamate metabolism, and demonstrate its validity by showing that genes in the network respond to changes in glutamine and glutamate availability. Thus, the methods described here have the potential to reveal regulatory networks that contribute to chronic, complex, and highly prevalent diseases and conditions such as obesity and diabetes. PMID:18369453

  13. Expression profile and transcription factor binding site exploration of imprinted genes in human and mouse

    PubMed Central

    Steinhoff, Christine; Paulsen, Martina; Kielbasa, Szymon; Walter, Jörn; Vingron, Martin

    2009-01-01

    Background In mammals, imprinted genes are regulated by an epigenetic mechanism that results in parental origin-specific expression. Though allele-specific regulation of imprinted genes has been studied for several individual genes in detail, little is known about their overall tissue-specific expression patterns and interspecies conservation of expression. Results We performed a computational analysis of microarray expression data of imprinted genes in human and mouse placentae and in a variety of adult tissues. For mouse, early embryonic stages were also included. The analysis reveals that imprinted genes are expressed in a broad spectrum of tissues for both species. Overall, the relative tissue-specific expression levels of orthologous imprinted genes in human and mouse are not highly correlated. However, in both species distinctive expression profiles are found in tissues of the endocrine pathways such as adrenal gland, pituitary, pancreas as well as placenta. In mouse, the placental and embryonic expression patterns of imprinted genes are highly similar. Transcription factor binding site (TFBS) prediction reveals correlation of tissue-specific expression patterns and the presence of distinct TFBS signatures in the upstream region of human imprinted genes. Conclusion Imprinted genes are broadly expressed pre- and postnatally and do not exhibit a distinct overall expression pattern when compared to non-imprinted genes. The relative expression of most orthologous gene pairs varies significantly between human and mouse suggesting rapid species-specific changes in gene regulation. Distinct expression profiles of imprinted genes are confined to certain human and mouse hormone producing tissues, and placentae. In contrast to the overall variability, distinct expression profiles and enriched TFBS signatures are found in human and mouse endocrine tissues and placentae. This points towards an important role played by imprinted gene regulation in these tissues. PMID

  14. Global Gene Expression Profiling in PAI-1 Knockout Murine Heart and Kidney: Molecular Basis of Cardiac-Selective Fibrosis

    PubMed Central

    Ghosh, Asish K.; Murphy, Sheila B.; Kishore, Raj; Vaughan, Douglas E.

    2013-01-01

    Fibrosis is defined as an abnormal matrix remodeling due to excessive synthesis and accumulation of extracellular matrix proteins in tissues during wound healing or in response to chemical, mechanical and immunological stresses. At present, there is no effective therapy for organ fibrosis. Previous studies demonstrated that aged plasminogen activator inhibitor-1(PAI-1) knockout mice develop spontaneously cardiac-selective fibrosis without affecting any other organs. We hypothesized that differential expressions of profibrotic and antifibrotic genes in PAI-1 knockout hearts and unaffected organs lead to cardiac selective fibrosis. In order to address this prediction, we have used a genome-wide gene expression profiling of transcripts derived from aged PAI-1 knockout hearts and kidneys. The variations of global gene expression profiling were compared within four groups: wildtype heart vs. knockout heart; wildtype kidney vs. knockout kidney; knockout heart vs. knockout kidney and wildtype heart vs. wildtype kidney. Analysis of illumina-based microarray data revealed that several genes involved in different biological processes such as immune system processing, response to stress, cytokine signaling, cell proliferation, adhesion, migration, matrix organization and transcriptional regulation were affected in hearts and kidneys by the absence of PAI-1, a potent inhibitor of urokinase and tissue-type plasminogen activator. Importantly, the expressions of a number of genes, involved in profibrotic pathways including Ankrd1, Pi16, Egr1, Scx, Timp1, Timp2, Klf6, Loxl1 and Klotho, were deregulated in PAI-1 knockout hearts compared to wildtype hearts and PAI-1 knockout kidneys. While the levels of Ankrd1, Pi16 and Timp1 proteins were elevated during EndMT, the level of Timp4 protein was decreased. To our knowledge, this is the first comprehensive report on the influence of PAI-1 on global gene expression profiling in the heart and kidney and its implication in fibrogenesis and

  15. Early Lung Cancer Detection via Global Protein Modification Profiles

    DTIC Science & Technology

    2013-12-01

    remission at 3 years (low risk) following diagnosis (Figure 2). The top graph shows the mean difference in the observed expression of the first 100...in patients with remission at 3 years. These preliminary results suggest that the PTM profiles of Lung cancer tumors with poor prognosis may be...highly divergent from that of tumors from patients that were in remission at 3 years following diagnosis and these differences can be detected using

  16. Autonomous Metabolomics for Rapid Metabolite Identification in Global Profiling

    DOE PAGES

    Benton, H. Paul; Ivanisevic, Julijana; Mahieu, Nathaniel G.; ...

    2014-12-12

    An autonomous metabolomic workflow combining mass spectrometry analysis with tandem mass spectrometry data acquisition was designed to allow for simultaneous data processing and metabolite characterization. Although previously tandem mass spectrometry data have been generated on the fly, the experiments described herein combine this technology with the bioinformatic resources of XCMS and METLIN. We can analyze large profiling datasets and simultaneously obtain structural identifications, as a result of this unique integration. Furthermore, validation of the workflow on bacterial samples allowed the profiling on the order of a thousand metabolite features with simultaneous tandem mass spectra data acquisition. The tandem mass spectrometrymore » data acquisition enabled automatic search and matching against the METLIN tandem mass spectrometry database, shortening the current workflow from days to hours. Overall, the autonomous approach to untargeted metabolomics provides an efficient means of metabolomic profiling, and will ultimately allow the more rapid integration of comparative analyses, metabolite identification, and data analysis at a systems biology level.« less

  17. JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles

    PubMed Central

    Mathelier, Anthony; Fornes, Oriol; Arenillas, David J.; Chen, Chih-yu; Denay, Grégoire; Lee, Jessica; Shi, Wenqiang; Shyr, Casper; Tan, Ge; Worsley-Hunt, Rebecca; Zhang, Allen W.; Parcy, François; Lenhard, Boris; Sandelin, Albin; Wasserman, Wyeth W.

    2016-01-01

    JASPAR (http://jaspar.genereg.net) is an open-access database storing curated, non-redundant transcription factor (TF) binding profiles representing transcription factor binding preferences as position frequency matrices for multiple species in six taxonomic groups. For this 2016 release, we expanded the JASPAR CORE collection with 494 new TF binding profiles (315 in vertebrates, 11 in nematodes, 3 in insects, 1 in fungi and 164 in plants) and updated 59 profiles (58 in vertebrates and 1 in fungi). The introduced profiles represent an 83% expansion and 10% update when compared to the previous release. We updated the structural annotation of the TF DNA binding domains (DBDs) following a published hierarchical structural classification. In addition, we introduced 130 transcription factor flexible models trained on ChIP-seq data for vertebrates, which capture dinucleotide dependencies within TF binding sites. This new JASPAR release is accompanied by a new web tool to infer JASPAR TF binding profiles recognized by a given TF protein sequence. Moreover, we provide the users with a Ruby module complementing the JASPAR API to ease programmatic access and use of the JASPAR collection of profiles. Finally, we provide the JASPAR2016 R/Bioconductor data package with the data of this release. PMID:26531826

  18. JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles.

    PubMed

    Mathelier, Anthony; Fornes, Oriol; Arenillas, David J; Chen, Chih-Yu; Denay, Grégoire; Lee, Jessica; Shi, Wenqiang; Shyr, Casper; Tan, Ge; Worsley-Hunt, Rebecca; Zhang, Allen W; Parcy, François; Lenhard, Boris; Sandelin, Albin; Wasserman, Wyeth W

    2016-01-04

    JASPAR (http://jaspar.genereg.net) is an open-access database storing curated, non-redundant transcription factor (TF) binding profiles representing transcription factor binding preferences as position frequency matrices for multiple species in six taxonomic groups. For this 2016 release, we expanded the JASPAR CORE collection with 494 new TF binding profiles (315 in vertebrates, 11 in nematodes, 3 in insects, 1 in fungi and 164 in plants) and updated 59 profiles (58 in vertebrates and 1 in fungi). The introduced profiles represent an 83% expansion and 10% update when compared to the previous release. We updated the structural annotation of the TF DNA binding domains (DBDs) following a published hierarchical structural classification. In addition, we introduced 130 transcription factor flexible models trained on ChIP-seq data for vertebrates, which capture dinucleotide dependencies within TF bindi