Science.gov

Sample records for global transcript profiling

  1. The Influence of Microdeletions and Microduplications of 16p11.2 on Global Transcription Profiles.

    PubMed

    Kusenda, Mary; Vacic, Vladimir; Malhotra, Dheeraj; Rodgers, Linda; Pavon, Kevin; Meth, Jennifer; Kumar, Ravinesh A; Christian, Susan L; Peeters, Hilde; Cho, Shawn S; Addington, Anjene; Rapoport, Judith L; Sebat, Jonathan

    2015-12-01

    Copy number variants (CNVs) of a 600 kb region on 16p11.2 are associated with neurodevelopmental disorders and changes in brain volume. The authors hypothesize that abnormal brain development associated with this CNV can be attributed to changes in transcriptional regulation. The authors determined the effects of 16p11.2 dosage on gene expression by transcription profiling of lymphoblast cell lines derived from 6 microdeletion carriers, 15 microduplication carriers and 15 controls. Gene dosage had a significant influence on the transcript abundance of a majority (20/34) of genes within the CNV region. In addition, a limited number of genes were dysregulated in trans. Genes most strongly correlated with patient head circumference included SULT1A, KCTD13, and TMEM242. Given the modest effect of 16p11.2 copy number on global transcriptional regulation in lymphocytes, larger studies utilizing neuronal cell types may be needed in order to elucidate the signaling pathways that influence brain development in this genetic disorder. PMID:26391891

  2. Global Transcriptional Profiling of Diapause and Climatic Adaptation in Drosophila melanogaster.

    PubMed

    Zhao, Xiaqing; Bergland, Alan O; Behrman, Emily L; Gregory, Brian D; Petrov, Dmitri A; Schmidt, Paul S

    2016-03-01

    Wild populations of the model organism Drosophila melanogaster experience highly heterogeneous environments over broad geographical ranges as well as over seasonal and annual timescales. Diapause is a primary adaptation to environmental heterogeneity, and in D. melanogaster the propensity to enter diapause varies predictably with latitude and season. Here we performed global transcriptomic profiling of naturally occurring variation in diapause expression elicited by short day photoperiod and moderately low temperature in two tissue types associated with neuroendocrine and endocrine signaling, heads, and ovaries. We show that diapause in D. melanogaster is an actively regulated phenotype at the transcriptional level, suggesting that diapause is not a simple physiological or reproductive quiescence. Differentially expressed genes and pathways are highly distinct in heads and ovaries, demonstrating that the diapause response is not uniform throughout the soma and suggesting that it may be comprised of functional modules associated with specific tissues. Genes downregulated in heads of diapausing flies are significantly enriched for clinally varying single nucleotide polymorphism (SNPs) and seasonally oscillating SNPs, consistent with the hypothesis that diapause is a driving phenotype of climatic adaptation. We also show that chromosome location-based coregulation of gene expression is present in the transcriptional regulation of diapause. Taken together, these results demonstrate that diapause is a complex phenotype actively regulated in multiple tissues, and support the hypothesis that natural variation in diapause propensity underlies adaptation to spatially and temporally varying selective pressures.

  3. Global transcriptional profiles of the copper responses in the cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Giner-Lamia, Joaquin; López-Maury, Luis; Florencio, Francisco J

    2014-01-01

    Copper is an essential element involved in fundamental processes like respiration and photosynthesis. However, it becomes toxic at high concentration, which has forced organisms to control its cellular concentration. We have recently described a copper resistance system in the cyanobacterium Synechocystis sp. PCC 6803, which is mediated by the two-component system, CopRS, a RND metal transport system, CopBAC and a protein of unknown function, CopM. Here, we report the transcriptional responses to copper additions at non-toxic (0.3 µM) and toxic concentrations (3 µM) in the wild type and in the copper sensitive copR mutant strain. While 0.3 µM copper slightly stimulated metabolism and promoted the exchange between cytochrome c6 and plastocyanin as soluble electron carriers, the addition of 3 µM copper catalyzed the formation of ROS, led to a general stress response and induced expression of Fe-S cluster biogenesis genes. According to this, a double mutant strain copRsufR, which expresses constitutively the sufBCDS operon, tolerated higher copper concentration than the copR mutant strain, suggesting that Fe-S clusters are direct targets of copper toxicity in Synechocystis. In addition we have also demonstrated that InrS, a nickel binding transcriptional repressor that belong to the CsoR family of transcriptional factor, was involved in heavy metal homeostasis, including copper, in Synechocystis. Finally, global gene expression analysis of the copR mutant strain suggested that CopRS only controls the expression of copMRS and copBAC operons in response to copper.

  4. Global Transcriptional Profiles of the Copper Responses in the Cyanobacterium Synechocystis sp. PCC 6803

    PubMed Central

    Giner-Lamia, Joaquin; López-Maury, Luis; Florencio, Francisco J.

    2014-01-01

    Copper is an essential element involved in fundamental processes like respiration and photosynthesis. However, it becomes toxic at high concentration, which has forced organisms to control its cellular concentration. We have recently described a copper resistance system in the cyanobacterium Synechocystis sp. PCC 6803, which is mediated by the two-component system, CopRS, a RND metal transport system, CopBAC and a protein of unknown function, CopM. Here, we report the transcriptional responses to copper additions at non-toxic (0.3 µM) and toxic concentrations (3 µM) in the wild type and in the copper sensitive copR mutant strain. While 0.3 µM copper slightly stimulated metabolism and promoted the exchange between cytochrome c6 and plastocyanin as soluble electron carriers, the addition of 3 µM copper catalyzed the formation of ROS, led to a general stress response and induced expression of Fe-S cluster biogenesis genes. According to this, a double mutant strain copRsufR, which expresses constitutively the sufBCDS operon, tolerated higher copper concentration than the copR mutant strain, suggesting that Fe-S clusters are direct targets of copper toxicity in Synechocystis. In addition we have also demonstrated that InrS, a nickel binding transcriptional repressor that belong to the CsoR family of transcriptional factor, was involved in heavy metal homeostasis, including copper, in Synechocystis. Finally, global gene expression analysis of the copR mutant strain suggested that CopRS only controls the expression of copMRS and copBAC operons in response to copper. PMID:25268225

  5. Global transcriptional profiles of the copper responses in the cyanobacterium Synechocystis sp. PCC 6803.

    PubMed

    Giner-Lamia, Joaquin; López-Maury, Luis; Florencio, Francisco J

    2014-01-01

    Copper is an essential element involved in fundamental processes like respiration and photosynthesis. However, it becomes toxic at high concentration, which has forced organisms to control its cellular concentration. We have recently described a copper resistance system in the cyanobacterium Synechocystis sp. PCC 6803, which is mediated by the two-component system, CopRS, a RND metal transport system, CopBAC and a protein of unknown function, CopM. Here, we report the transcriptional responses to copper additions at non-toxic (0.3 µM) and toxic concentrations (3 µM) in the wild type and in the copper sensitive copR mutant strain. While 0.3 µM copper slightly stimulated metabolism and promoted the exchange between cytochrome c6 and plastocyanin as soluble electron carriers, the addition of 3 µM copper catalyzed the formation of ROS, led to a general stress response and induced expression of Fe-S cluster biogenesis genes. According to this, a double mutant strain copRsufR, which expresses constitutively the sufBCDS operon, tolerated higher copper concentration than the copR mutant strain, suggesting that Fe-S clusters are direct targets of copper toxicity in Synechocystis. In addition we have also demonstrated that InrS, a nickel binding transcriptional repressor that belong to the CsoR family of transcriptional factor, was involved in heavy metal homeostasis, including copper, in Synechocystis. Finally, global gene expression analysis of the copR mutant strain suggested that CopRS only controls the expression of copMRS and copBAC operons in response to copper. PMID:25268225

  6. Global changes in the transcript and metabolic profiles during symbiotic nitrogen fixation in phosphorus-stressed common bean plants.

    PubMed

    Hernández, Georgina; Valdés-López, Oswaldo; Ramírez, Mario; Goffard, Nicolas; Weiller, Georg; Aparicio-Fabre, Rosaura; Fuentes, Sara Isabel; Erban, Alexander; Kopka, Joachim; Udvardi, Michael K; Vance, Carroll P

    2009-11-01

    Phosphorus (P) deficiency is widespread in regions where the common bean (Phaseolus vulgaris), the most important legume for human consumption, is produced, and it is perhaps the factor that most limits nitrogen fixation. Global gene expression and metabolome approaches were used to investigate the responses of nodules from common bean plants inoculated with Rhizobium tropici CIAT899 grown under P-deficient and P-sufficient conditions. P-deficient inoculated plants showed drastic reduction in nodulation and nitrogenase activity as determined by acetylene reduction assay. Nodule transcript profiling was performed through hybridization of nylon filter arrays spotted with cDNAs, approximately 4,000 unigene set, from the nodule and P-deficient root library. A total of 459 genes, representing different biological processes according to updated annotation using the UniProt Knowledgebase database, showed significant differential expression in response to P: 59% of these were induced in P-deficient nodules. The expression platform for transcription factor genes based in quantitative reverse transcriptase-polymerase chain reaction revealed that 37 transcription factor genes were differentially expressed in P-deficient nodules and only one gene was repressed. Data from nontargeted metabolic profiles indicated that amino acids and other nitrogen metabolites were decreased, while organic and polyhydroxy acids were accumulated, in P-deficient nodules. Bioinformatics analyses using MapMan and PathExpress software tools, customized to common bean, were utilized for the analysis of global changes in gene expression that affected overall metabolism. Glycolysis and glycerolipid metabolism, and starch and Suc metabolism, were identified among the pathways significantly induced or repressed in P-deficient nodules, respectively.

  7. Progesterone alters global transcription profiles at environmental concentrations in brain and ovary of female zebrafish (Danio rerio).

    PubMed

    Zucchi, Sara; Castiglioni, Sara; Fent, Karl

    2013-01-01

    Progesterone (P4) is a natural steroid hormone excreted by humans and animals. Noncomplete degradation in treatment plants result in levels in the ng/L range in surface waters. Very little is known of the effects on fish at such concentrations. Here we determine the global expression profile in the brain and ovary of female zebrafish exposed for 14 days to 3.5, 33 and 306 ng/L P4 to elucidate molecular effects. For validation selected transcripts were determined by RT-qPCR. In the brain, 54 and 255 transcripts were altered at 3.5 and 306 ng/L, respectively. Genes related to circadian rhythm (nr1d2b, per1b), cell cycle and reproduction (cdc20, ccnb1) were down-regulated. In the ovary, transcriptional changes occurred in 200, 84 and 196 genes at 3.5, 33 and 306 ng/L, respectively. The genes belong to different pathways including cardiac hypertrophy, cell cycle and its regulation. P4 slightly influenced oocyte maturation as revealed by histology of the ovaries. In the liver, vtg1 was down-regulated at all concentrations and VTG protein at 306 ng/L in the blood. The data show molecular effects and the modes of action of P4 at environmental concentrations. Ultimately they may translate to adverse effects on reproduction. PMID:24083816

  8. Soybean Roots Grown under Heat Stress Show Global Changes in Their Transcriptional and Proteomic Profiles

    PubMed Central

    Valdés-López, Oswaldo; Batek, Josef; Gomez-Hernandez, Nicolas; Nguyen, Cuong T.; Isidra-Arellano, Mariel C.; Zhang, Ning; Joshi, Trupti; Xu, Dong; Hixson, Kim K.; Weitz, Karl K.; Aldrich, Joshua T.; Paša-Tolić, Ljiljana; Stacey, Gary

    2016-01-01

    Heat stress is likely to be a key factor in the negative impact of climate change on crop production. Heat stress significantly influences the functions of roots, which provide support, water, and nutrients to other plant organs. Likewise, roots play an important role in the establishment of symbiotic associations with different microorganisms. Despite the physiological relevance of roots, few studies have examined their response to heat stress. In this study, we performed genome-wide transcriptomic and proteomic analyses on isolated root hairs, which are a single, epidermal cell type, and compared their response to stripped roots. On average, we identified 1849 and 3091 genes differentially regulated in root hairs and stripped roots, respectively, in response to heat stress. Our gene regulatory module analysis identified 10 key modules that might control the majority of the transcriptional response to heat stress. We also conducted proteomic analysis on membrane fractions isolated from root hairs and compared these responses to stripped roots. These experiments identified a variety of proteins whose expression changed within 3 h of application of heat stress. Most of these proteins were predicted to play a significant role in thermo-tolerance, as well as in chromatin remodeling and post-transcriptional regulation. The data presented represent an in-depth analysis of the heat stress response of a single cell type in soybean. PMID:27200004

  9. Transcriptional profiling analysis of the global regulator NorG, a GntR-like protein of Staphylococcus aureus.

    PubMed

    Truong-Bolduc, Q C; Dunman, P M; Eidem, T; Hooper, D C

    2011-11-01

    The GntR-like protein NorG has been shown to affect Staphylococcus aureus genes involved in resistance to quinolones and β-lactams, such as those encoding the NorB and AbcA transporters. To identify the target genes regulated by NorG, we carried out transcriptional-profiling assays using S. aureus RN6390 and its isogenic norG::cat mutant. Our data showed that NorG positively affected the transcription of global regulators mgrA, arlS, and sarZ. The three putative drug efflux pump genes most positively affected by NorG were the NorB efflux pump (5.1-fold), the MmpL-like protein SACOL2566 (5.2-fold), and the BcrA-like drug transporter SACOL2525 (5.7-fold) genes. The S. aureus predicted MmpL protein showed 53% homology with the MmpL lipid transporter of Mycobacterium tuberculosis, and the putative SACOL2525 protein showed 87% homology with the bacitracin drug transporter BcrA of Staphylococcus hominis. Two pump genes most negatively affected by NorG were the NorC (4-fold) and AbcA (6-fold) genes. Other categories of genes, such as those participating in amino acid, inorganic ion, or nucleotide transporters and metabolism, were also affected by NorG. Real-time reverse transcription (RT)-PCR assays for mgrA, arlS, sarZ, norB, norC, abcA, mmpL, and bcrA-like were carried out to verify microarray data and showed the same level of up- or downregulation by NorG. The norG mutant showed a 2-fold increase in resistance to norfloxacin and rhodamine, both substrates of the NorC transporter, which is consistent with the resistance phenotype conferred by overexpression of norC on a plasmid. These data indicate that NorG has broad regulatory function in S. aureus.

  10. Global transcriptional profiling reveals distinct functions of thymic stromal subsets and age-related changes during thymic involution

    PubMed Central

    Ki, Sanghee; Park, Daechan; Selden, Hilary J.; Seita, Jun; Chung, Haewon; Kim, Jonghwan; Iyer, Vishwanath R.; Ehrlich, Lauren I. R.

    2014-01-01

    Summary Age-associated thymic involution results in diminished T cell output and function in aged individuals. However, molecular mediators contributing to the decline in thymic function during early thymic involution remain largely unknown. Here we present transcriptional profiling of purified thymic stromal subsets from mice 1, 3, and 6 months of age, spanning early thymic involution. The data implicate novel biological functions for a subset of thymic epithelial cells. The predominant transcriptional signature of early thymic involution is decreased expression of cell cycle associated genes and E2F3 transcriptional targets in thymic epithelial subsets. Also, expression of pro-inflammatory genes increases with age in thymic dendritic cells. Many genes previously implicated in late involution are already deregulated by 3 to 6 months of age. We provide these thymic stromal datasets, along with thymocyte datasets, in a readily searchable web-based platform, as a resource for investigations into thymocyte: stromal interactions and mechanisms of thymic involution. PMID:25284794

  11. Global transcriptional profiling of longissimus thoracis muscle tissue in fetal and juvenile domestic goat using RNA sequencing.

    PubMed

    Wang, Y H; Zhang, C L; Plath, M; Fang, X T; Lan, X Y; Zhou, Y; Chen, H

    2015-12-01

    Domestic goats are important meat production animals; however, data from transcriptional profiling of skeletal muscle tissue in goat have thus far been scarce. We used comparative transcriptional profiling based on RNA sequencing of longissimus thoracis muscle tissue obtained from fetal goat muscle tissue (27 512 850 clean cDNA reads) and 6-month-old goat muscle tissue (27 582 908 reads) to identify genes that are differentially expressed, novel transcript units and alternative splicing events. Gene annotation revealed that 15 960 and 14 981 genes were expressed in the fetal and juvenile libraries respectively. We detected 6432 differentially expressed genes and, when considering GO terms, found 34, 27 and 55 terms to be significantly enriched in molecular function, cellular component and biological process categories respectively. Pathway analysis revealed that larger numbers of differentially expressed genes were enriched in fetal myogenesis or cell proliferation and differentiation-related pathways (such as Wnt), genes involved in the cell cycle and the Notch signaling pathway, and most of the differentially expressed genes involved in these pathways were downregulated in the juvenile goat library. These genes may be involved in various regulation mechanisms during muscle tissue differentiation between the two development stages examined herein. The identified novel transcript units, including both non-coding and coding RNA, as well as alternative splicing events increase the level of complexity of regulation mechanisms during muscle tissue formation and differentiation. Our study provides a comparative transcriptome analysis on goat muscle tissue, which will provide a valuable genomic resource for future studies investigating the molecular basis of skeletal muscle development.

  12. Common bean (Phaseolus vulgaris L.) PvTIFY orchestrates global changes in transcript profile response to jasmonate and phosphorus deficiency

    PubMed Central

    2013-01-01

    Background TIFY is a large plant-specific transcription factor gene family. A subgroup of TIFY genes named JAZ (Jasmonate-ZIM domain) has been identified as repressors of jasmonate (JA)-regulated transcription in Arabidopsis and other plants. JA signaling is involved in many aspects of plant growth/development and in defense responses to biotic and abiotic stresses. Here, we identified the TIFY genes (designated PvTIFY) from the legume common bean (Phaseolus vulgaris) and functionally characterized PvTIFY10C as a transcriptional regulator. Results Nineteen genes from the PvTIFY gene family were identified through whole-genome sequence analysis. Most of these were induced upon methyl-JA elicitation. We selected PvTIFY10C as a representative JA-responsive PvTIFY gene for further functional analysis. Transcriptome analysis via microarray hybridization using the newly designed Bean Custom Array 90 K was performed on transgenic roots of composite plants with modulated (RNAi-silencing or over-expression) PvTIFY10C gene expression. Data were interpreted using Gene Ontology and MapMan adapted to common bean. Microarray differential gene expression data were validated by real-time qRT-PCR expression analysis. Comparative global gene expression analysis revealed opposite regulatory changes in processes such as RNA and protein regulation, stress responses and metabolism in PvTIFY10C silenced vs. over-expressing roots. These data point to transcript reprogramming (mainly repression) orchestrated by PvTIFY10C. In addition, we found that several PvTIFY genes, as well as genes from the JA biosynthetic pathway, responded to P-deficiency. Relevant P-responsive genes that participate in carbon metabolic pathways, cell wall synthesis, lipid metabolism, transport, DNA, RNA and protein regulation, and signaling were oppositely-regulated in control vs. PvTIFY10C-silenced roots of composite plants under P-stress. These data indicate that PvTIFY10C regulates, directly or indirectly, the

  13. Global transcriptional profiling of a cold-tolerant rice variety under moderate cold stress reveals different cold stress response mechanisms.

    PubMed

    Zhao, Junliang; Zhang, Shaohong; Yang, Tifeng; Zeng, Zichong; Huang, Zhanghui; Liu, Qing; Wang, Xiaofei; Leach, Jan; Leung, Hei; Liu, Bin

    2015-07-01

    Gene expression profiling under severe cold stress (4°C) has been conducted in plants including rice. However, rice seedlings are frequently exposed to milder cold stresses under natural environments. To understand the responses of rice to milder cold stress, a moderately low temperature (8°C) was used for cold treatment prior to genome-wide profiling of gene expression in a cold-tolerant japonica variety, Lijiangxintuanheigu (LTH). A total of 5557 differentially expressed genes (DEGs) were found at four time points during moderate cold stress. Both the DEGs and differentially expressed transcription factor genes were clustered into two groups based on their expression, suggesting a two-phase response to cold stress and a determinative role of transcription factors in the regulation of stress response. The induction of OsDREB2A under cold stress is reported for the first time in this study. Among the anti-oxidant enzyme genes, glutathione peroxidase (GPX) and glutathione S-transferase (GST) were upregulated, suggesting that the glutathione system may serve as the main reactive oxygen species (ROS) scavenger in LTH. Changes in expression of genes in signal transduction pathways for auxin, abscisic acid (ABA) and salicylic acid (SA) imply their involvement in cold stress responses. The induction of ABA response genes and detection of enriched cis-elements in DEGs suggest that ABA signaling pathway plays a dominant role in the cold stress response. Our results suggest that rice responses to cold stress vary with the specific temperature imposed and the rice genotype.

  14. Global Expression Profiling of Transcription Factor Genes Provides New Insights into Pathogenicity and Stress Responses in the Rice Blast Fungus

    PubMed Central

    Park, Sook-Young; Choi, Jaeyoung; Lim, Se-Eun; Lee, Gir-Won; Park, Jongsun; Kim, Yang; Kong, Sunghyung; Kim, Se Ryun; Rho, Hee-Sool; Jeon, Junhyun; Chi, Myung-Hwan; Kim, Soonok; Khang, Chang Hyun; Kang, Seogchan; Lee, Yong-Hwan

    2013-01-01

    Because most efforts to understand the molecular mechanisms underpinning fungal pathogenicity have focused on studying the function and role of individual genes, relatively little is known about how transcriptional machineries globally regulate and coordinate the expression of a large group of genes involved in pathogenesis. Using quantitative real-time PCR, we analyzed the expression patterns of 206 transcription factor (TF) genes in the rice blast fungus Magnaporthe oryzae under 32 conditions, including multiple infection-related developmental stages and various abiotic stresses. The resulting data, which are publicly available via an online platform, provided new insights into how these TFs are regulated and potentially work together to control cellular responses to a diverse array of stimuli. High degrees of differential TF expression were observed under the conditions tested. More than 50% of the 206 TF genes were up-regulated during conidiation and/or in conidia. Mutations in ten conidiation-specific TF genes caused defects in conidiation. Expression patterns in planta were similar to those under oxidative stress conditions. Mutants of in planta inducible genes not only exhibited sensitive to oxidative stress but also failed to infect rice. These experimental validations clearly demonstrated the value of TF expression patterns in predicting the function of individual TF genes. The regulatory network of TF genes revealed by this study provides a solid foundation for elucidating how M. oryzae regulates its pathogenesis, development, and stress responses. PMID:23762023

  15. Global transcriptional profiling of Burkholderia pseudomallei under salt stress reveals differential effects on the Bsa type III secretion system

    PubMed Central

    2010-01-01

    Background Burkholderia pseudomallei is the causative agent of melioidosis where the highest reported incidence world wide is in the Northeast of Thailand, where saline soil and water are prevalent. Moreover, recent reports indicate a potential pathogenic role for B. pseudomallei in cystic fibrosis lung disease, where an increased sodium chloride (NaCl) concentration in airway surface liquid has been proposed. These observations raise the possibility that high salinity may represent a favorable niche for B. pseudomallei. We therefore investigated the global transcriptional response of B. pseudomallei to increased salinity using microarray analysis. Results Transcriptome analysis of B. pseudomallei under salt stress revealed several genes significantly up-regulated in the presence of 320 mM NaCl including genes associated with the bsa-derived Type III secretion system (T3SS). Microarray data were verified by reverse transcriptase-polymerase chain reactions (RT-PCR). Western blot analysis confirmed the increased expression and secretion of the invasion-associated type III secreted proteins BipD and BopE in B. pseudomallei cultures at 170 and 320 mM NaCl relative to salt-free medium. Furthermore, salt-treated B. pseudomallei exhibited greater invasion efficiency into the lung epithelial cell line A549 in a manner partly dependent on a functional Bsa system. Conclusions B. pseudomallei responds to salt stress by modulating the transcription of a relatively small set of genes, among which is the bsa locus associated with invasion and virulence. Expression and secretion of Bsa-secreted proteins was elevated in the presence of exogenous salt and the invasion efficiency was enhanced. Our data indicate that salinity has the potential to influence the virulence of B. pseudomallei. PMID:20540813

  16. Transcriptional profiling of Dictyostelium with RNA sequencing

    PubMed Central

    Miranda, Edward Roshan; Rot, Gregor; Toplak, Marko; Santhanam, Balaji; Curk, Tomaz; Shaulsky, Gad; Zupan, Blaz

    2014-01-01

    Summary Transcriptional profiling methods have been utilized in the analysis of various biological processes in Dictyostelium. Recent advances in high-throughput sequencing have increased the resolution and the dynamic range of transcriptional profiling. Here we describe the utility of RNA-sequencing with the Illumina technology for production of transcriptional profiles. We also describe methods for data mapping and storage as well as common and specialized tools for data analysis, both online and offline. PMID:23494306

  17. Global Rsh-dependent transcription profile of Brucella suis during stringent response unravels adaptation to nutrient starvation and cross-talk with other stress responses

    PubMed Central

    2013-01-01

    Background In the intracellular pathogen Brucella spp., the activation of the stringent response, a global regulatory network providing rapid adaptation to growth-affecting stress conditions such as nutrient deficiency, is essential for replication in the host. A single, bi-functional enzyme Rsh catalyzes synthesis and hydrolysis of the alarmone (p)ppGpp, responsible for differential gene expression under stringent conditions. Results cDNA microarray analysis allowed characterization of the transcriptional profiles of the B. suis 1330 wild-type and Δrsh mutant in a minimal medium, partially mimicking the nutrient-poor intramacrophagic environment. A total of 379 genes (11.6% of the genome) were differentially expressed in a rsh-dependent manner, of which 198 were up-, and 181 were down-regulated. The pleiotropic character of the response was confirmed, as the genes encoded an important number of transcriptional regulators, cell envelope proteins, stress factors, transport systems, and energy metabolism proteins. Virulence genes such as narG and sodC, respectively encoding respiratory nitrate reductase and superoxide dismutase, were under the positive control of (p)ppGpp, as well as expression of the cbb3-type cytochrome c oxidase, essential for chronic murine infection. Methionine was the only amino acid whose biosynthesis was absolutely dependent on stringent response in B. suis. Conclusions The study illustrated the complexity of the processes involved in adaptation to nutrient starvation, and contributed to a better understanding of the correlation between stringent response and Brucella virulence. Most interestingly, it clearly indicated (p)ppGpp-dependent cross-talk between at least three stress responses playing a central role in Brucella adaptation to the host: nutrient, oxidative, and low-oxygen stress. PMID:23834488

  18. Circadian Control of Global Transcription

    PubMed Central

    Li, Shujing; Zhang, Luoying

    2015-01-01

    Circadian rhythms exist in most if not all organisms on the Earth and manifest in various aspects of physiology and behavior. These rhythmic processes are believed to be driven by endogenous molecular clocks that regulate rhythmic expression of clock-controlled genes (CCGs). CCGs consist of a significant portion of the genome and are involved in diverse biological pathways. The transcription of CCGs is tuned by rhythmic actions of transcription factors and circadian alterations in chromatin. Here, we review the circadian control of CCG transcription in five model organisms that are widely used, including cyanobacterium, fungus, plant, fruit fly, and mouse. Comparing the similarity and differences in the five organisms could help us better understand the function of the circadian clock, as well as its output mechanisms adapted to meet the demands of diverse environmental conditions. PMID:26682214

  19. Toxicogenomics: transcription profiling for toxicology assessment.

    PubMed

    Zhou, Tong; Chou, Jeff; Watkins, Paul B; Kaufmann, William K

    2009-01-01

    Toxicogenomics, the application of transcription profiling to toxicology, has been widely used for elucidating the molecular and cellular actions of chemicals and other environmental stressors on biological systems, predicting toxicity before any functional damages, and classification of known or new toxicants based on signatures of gene expression. The success of a toxicogenomics study depends upon close collaboration among experts in different fields, including a toxicologist or biologist, a bioinformatician, statistician, physician and, sometimes, mathematician. This review is focused on toxicogenomics studies, including transcription profiling technology, experimental design, significant gene extraction, toxicological results interpretation, potential pathway identification, database input and the applications of toxicogenomics in various fields of toxicological study. PMID:19157067

  20. Development of the first oligonucleotide microarray for global gene expression profiling in guinea pigs: defining the transcription signature of infectious diseases

    PubMed Central

    2012-01-01

    Background The Guinea pig (Cavia porcellus) is one of the most extensively used animal models to study infectious diseases. However, despite its tremendous contribution towards understanding the establishment, progression and control of a number of diseases in general and tuberculosis in particular, the lack of fully annotated guinea pig genome sequence as well as appropriate molecular reagents has severely hampered detailed genetic and immunological analysis in this animal model. Results By employing the cross-species hybridization technique, we have developed an oligonucleotide microarray with 44,000 features assembled from different mammalian species, which to the best of our knowledge is the first attempt to employ microarray to study the global gene expression profile in guinea pigs. To validate and demonstrate the merit of this microarray, we have studied, as an example, the expression profile of guinea pig lungs during the advanced phase of M. tuberculosis infection. A significant upregulation of 1344 genes and a marked down regulation of 1856 genes in the lungs identified a disease signature of pulmonary tuberculosis infection. Conclusion We report the development of first comprehensive microarray for studying the global gene expression profile in guinea pigs and validation of its usefulness with tuberculosis as a case study. An important gap in the area of infectious diseases has been addressed and a valuable molecular tool is provided to optimally harness the potential of guinea pig model to develop better vaccines and therapies against human diseases. PMID:23031549

  1. Epigenetic hereditary transcription profiles II, aging revisited

    PubMed Central

    Simons, Johannes WIM

    2007-01-01

    Background Previously, we have shown that deviations from the average transcription profile of a group of functionally related genes can be epigenetically transmitted to daughter cells, thereby implicating nuclear programming as the cause. As a first step in further characterizing this phenomenon it was necessary to determine to what extent such deviations occur in non-tumorigenic tissues derived from normal individuals. To this end, a microarray database derived from 90 human donors aged between 22 to 87 years was used to study deviations from the average transcription profile of the proteasome genes. Results Increase in donor age was found to correlate with a decrease in deviations from the general transcription profile with this decline being gender-specific. The age-related index declined at a faster rate for males although it started from a higher level. Additionally, transcription profiles from similar tissues were more alike than those from different tissues, indicating that deviations arise during differentiation. Conclusion These findings suggest that aging and differentiation are related to epigenetic changes that alter the transcription profile of proteasomal genes. Since alterations in the structure and function of the proteasome are unlikely, such changes appear to occur without concomitant change in gene function. These findings, if confirmed, may have a significant impact on our understanding of the aging process. Open peer review This article was reviewed by Nathan Bowen (nominated by I. King Jordan), Timothy E. Reddy (nominated by Charles DeLisi) and by Martijn Huynen. For the full reviews, please go to the Reviewers'comments section. PMID:18163906

  2. Assessment of hepatotoxic liabilities by transcript profiling

    SciTech Connect

    Ruepp, Stefan . E-mail: stefan.ruepp@roche.com; Boess, Franziska; Suter, Laura; Vera, Maria Cristina de; Steiner, Guido; Steele, Thomas; Weiser, Thomas; Albertini, Silvio

    2005-09-01

    Male Wistar rats were treated with various model compounds or the appropriate vehicle controls in order to create a reference database for toxicogenomics assessment of novel compounds. Hepatotoxic compounds in the database were either known hepatotoxicants or showed hepatotoxicity during preclinical testing. Histopathology and clinical chemistry data were used to anchor the transcript profiles to an established endpoint (steatosis, cholestasis, direct acting, peroxisomal proliferation or nontoxic/control). These reference data were analyzed using a supervised learning method (support vector machines, SVM) to generate classification rules. This predictive model was subsequently used to assess compounds with regard to a potential hepatotoxic liability. A steatotic and a non-hepatotoxic 5HT{sub 6} receptor antagonist compound from the same series were successfully discriminated by this toxicogenomics model. Additionally, an example is shown where a hepatotoxic liability was correctly recognized in the absence of pathological findings. In vitro experiments and a dog study confirmed the correctness of the toxicogenomics alert. Another interesting observation was that transcript profiles indicate toxicologically relevant changes at an earlier timepoint than routinely used methods. Together, these results support the useful application of toxicogenomics in raising alerts for adverse effects and generating mechanistic hypotheses that can be followed up by confirmatory experiments.

  3. Impact of heat shock transcription factor 1 on global gene expression profiles in cells which induce either cytoprotective or pro-apoptotic response following hyperthermia

    PubMed Central

    2013-01-01

    Background Elevated temperatures induce activation of the heat shock transcription factor 1 (HSF1) which in somatic cells leads to heat shock proteins synthesis and cytoprotection. However, in the male germ cells (spermatocytes) caspase-3 dependent apoptosis is induced upon HSF1 activation and spermatogenic cells are actively eliminated. Results To elucidate a mechanism of such diverse HSF1 activity we carried out genome-wide transcriptional analysis in control and heat-shocked cells, either spermatocytes or hepatocytes. Additionally, to identify direct molecular targets of active HSF1 we used chromatin immunoprecipitation assay (ChIP) combined with promoter microarrays (ChIP on chip). Genes that are differently regulated after HSF1 binding during hyperthermia in both types of cells have been identified. Despite HSF1 binding to promoter sequences in both types of cells, strong up-regulation of Hsps and other genes typically activated by the heat shock was observed only in hepatocytes. In spermatocytes HSF1 binding correlates with transcriptional repression on a large scale. HSF1-bound and negatively regulated genes encode mainly for proteins required for cell division, involved in RNA processing and piRNA biogenesis. Conclusions Observed suppression of the transcription could lead to genomic instability caused by meiotic recombination disturbances, which in turn might induce apoptosis of spermatogenic cells. We propose that HSF1-dependent induction of cell death is caused by the simultaneous repression of many genes required for spermatogenesis, which guarantees the elimination of cells damaged during heat shock. Such activity of HSF1 prevents transmission of damaged genetic material to the next generation. PMID:23834426

  4. Model-based redesign of global transcription regulation

    PubMed Central

    Carrera, Javier; Rodrigo, Guillermo; Jaramillo, Alfonso

    2009-01-01

    Synthetic biology aims to the design or redesign of biological systems. In particular, one possible goal could be the rewiring of the transcription regulation network by exchanging the endogenous promoters. To achieve this objective, we have adapted current methods to the inference of a model based on ordinary differential equations that is able to predict the network response after a major change in its topology. Our procedure utilizes microarray data for training. We have experimentally validated our inferred global regulatory model in Escherichia coli by predicting transcriptomic profiles under new perturbations. We have also tested our methodology in silico by providing accurate predictions of the underlying networks from expression data generated with artificial genomes. In addition, we have shown the predictive power of our methodology by obtaining the gene profile in experimental redesigns of the E. coli genome, where rewiring the transcriptional network by means of knockouts of master regulators or by upregulating transcription factors controlled by different promoters. Our approach is compatible with most network inference methods, allowing to explore computationally future genome-wide redesign experiments in synthetic biology. PMID:19188257

  5. Transcription profile of Escherichia coli: genomic SELEX search for regulatory targets of transcription factors

    PubMed Central

    Ishihama, Akira; Shimada, Tomohiro; Yamazaki, Yukiko

    2016-01-01

    Bacterial genomes are transcribed by DNA-dependent RNA polymerase (RNAP), which achieves gene selectivity through interaction with sigma factors that recognize promoters, and transcription factors (TFs) that control the activity and specificity of RNAP holoenzyme. To understand the molecular mechanisms of transcriptional regulation, the identification of regulatory targets is needed for all these factors. We then performed genomic SELEX screenings of targets under the control of each sigma factor and each TF. Here we describe the assembly of 156 SELEX patterns of a total of 116 TFs performed in the presence and absence of effector ligands. The results reveal several novel concepts: (i) each TF regulates more targets than hitherto recognized; (ii) each promoter is regulated by more TFs than hitherto recognized; and (iii) the binding sites of some TFs are located within operons and even inside open reading frames. The binding sites of a set of global regulators, including cAMP receptor protein, LeuO and Lrp, overlap with those of the silencer H-NS, suggesting that certain global regulators play an anti-silencing role. To facilitate sharing of these accumulated SELEX datasets with the research community, we compiled a database, ‘Transcription Profile of Escherichia coli’ (www.shigen.nig.ac.jp/ecoli/tec/). PMID:26843427

  6. Transcription profile of Escherichia coli: genomic SELEX search for regulatory targets of transcription factors.

    PubMed

    Ishihama, Akira; Shimada, Tomohiro; Yamazaki, Yukiko

    2016-03-18

    Bacterial genomes are transcribed by DNA-dependent RNA polymerase (RNAP), which achieves gene selectivity through interaction with sigma factors that recognize promoters, and transcription factors (TFs) that control the activity and specificity of RNAP holoenzyme. To understand the molecular mechanisms of transcriptional regulation, the identification of regulatory targets is needed for all these factors. We then performed genomic SELEX screenings of targets under the control of each sigma factor and each TF. Here we describe the assembly of 156 SELEX patterns of a total of 116 TFs performed in the presence and absence of effector ligands. The results reveal several novel concepts: (i) each TF regulates more targets than hitherto recognized; (ii) each promoter is regulated by more TFs than hitherto recognized; and (iii) the binding sites of some TFs are located within operons and even inside open reading frames. The binding sites of a set of global regulators, including cAMP receptor protein, LeuO and Lrp, overlap with those of the silencer H-NS, suggesting that certain global regulators play an anti-silencing role. To facilitate sharing of these accumulated SELEX datasets with the research community, we compiled a database, 'Transcription Profile of Escherichia coli' (www.shigen.nig.ac.jp/ecoli/tec/). PMID:26843427

  7. Global analysis of photosynthesis transcriptional regulatory networks.

    PubMed

    Imam, Saheed; Noguera, Daniel R; Donohue, Timothy J

    2014-12-01

    Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888), which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis.

  8. Global effects of the CSR-1 RNA interference pathway on the transcriptional landscape.

    PubMed

    Cecere, Germano; Hoersch, Sebastian; O'Keeffe, Sean; Sachidanandam, Ravi; Grishok, Alla

    2014-04-01

    Argonaute proteins and their small RNA cofactors short interfering RNAs are known to inhibit gene expression at the transcriptional and post-transcriptional levels. In Caenorhabditis elegans, the Argonaute CSR-1 binds thousands of endogenous siRNAs (endo-siRNAs) that are antisense to germline transcripts. However, its role in gene expression regulation remains controversial. Here we used genome-wide profiling of nascent RNA transcripts and found that the CSR-1 RNA interference pathway promoted sense-oriented RNA polymerase II transcription. Moreover, a loss of CSR-1 function resulted in global increase in antisense transcription and ectopic transcription of silent chromatin domains, which led to reduced chromatin incorporation of centromere-specific histone H3. On the basis of these findings, we propose that the CSR-1 pathway helps maintain the directionality of active transcription, thereby propagating the distinction between transcriptionally active and silent genomic regions.

  9. Impact of the Staphylococcus epidermidis LytSR two-component regulatory system on murein hydrolase activity, pyruvate utilization and global transcriptional profile

    PubMed Central

    2010-01-01

    Background Staphylococcus epidermidis has emerged as one of the most important nosocomial pathogens, mainly because of its ability to colonize implanted biomaterials by forming a biofilm. Extensive studies are focused on the molecular mechanisms involved in biofilm formation. The LytSR two-component regulatory system regulates autolysis and biofilm formation in Staphylococcus aureus. However, the role of LytSR played in S. epidermidis remained unknown. Results In the present study, we demonstrated that lytSR knock-out in S. epidermidis did not alter susceptibility to Triton X-100 induced autolysis. Quantitative murein hydrolase assay indicated that disruption of lytSR in S. epidermidis resulted in decreased activities of extracellular murein hydrolases, although zymogram showed no apparent differences in murein hydrolase patterns between S. epidermidis strain 1457 and its lytSR mutant. Compared to the wild-type counterpart, 1457ΔlytSR produced slightly more biofilm, with significantly decreased dead cells inside. Microarray analysis showed that lytSR mutation affected the transcription of 164 genes (123 genes were upregulated and 41 genes were downregulated). Specifically, genes encoding proteins responsible for protein synthesis, energy metabolism were downregulated, while genes involved in amino acid and nucleotide biosynthesis, amino acid transporters were upregulated. Impaired ability to utilize pyruvate and reduced activity of arginine deiminase was observed in 1457ΔlytSR, which is consistent with the microarray data. Conclusions The preliminary results suggest that in S. epidermidis LytSR two-component system regulates extracellular murein hydrolase activity, bacterial cell death and pyruvate utilization. Based on the microarray data, it appears that lytSR inactivation induces a stringent response. In addition, LytSR may indirectly enhance biofilm formation by altering the metabolic status of the bacteria. PMID:21073699

  10. Global Analysis of Photosynthesis Transcriptional Regulatory Networks

    PubMed Central

    Imam, Saheed; Noguera, Daniel R.; Donohue, Timothy J.

    2014-01-01

    Photosynthesis is a crucial biological process that depends on the interplay of many components. This work analyzed the gene targets for 4 transcription factors: FnrL, PrrA, CrpK and MppG (RSP_2888), which are known or predicted to control photosynthesis in Rhodobacter sphaeroides. Chromatin immunoprecipitation followed by high-throughput sequencing (ChIP-seq) identified 52 operons under direct control of FnrL, illustrating its regulatory role in photosynthesis, iron homeostasis, nitrogen metabolism and regulation of sRNA synthesis. Using global gene expression analysis combined with ChIP-seq, we mapped the regulons of PrrA, CrpK and MppG. PrrA regulates ∼34 operons encoding mainly photosynthesis and electron transport functions, while CrpK, a previously uncharacterized Crp-family protein, regulates genes involved in photosynthesis and maintenance of iron homeostasis. Furthermore, CrpK and FnrL share similar DNA binding determinants, possibly explaining our observation of the ability of CrpK to partially compensate for the growth defects of a ΔFnrL mutant. We show that the Rrf2 family protein, MppG, plays an important role in photopigment biosynthesis, as part of an incoherent feed-forward loop with PrrA. Our results reveal a previously unrealized, high degree of combinatorial regulation of photosynthetic genes and significant cross-talk between their transcriptional regulators, while illustrating previously unidentified links between photosynthesis and the maintenance of iron homeostasis. PMID:25503406

  11. Transcriptional profiling of Saccharomyces cerevisiae exposed to propolis

    PubMed Central

    2012-01-01

    Background Propolis is a natural product of plant resins collected by honeybees (Apis mellifera) from various plant sources. Our previous studies indicated that propolis sensitivity is dependent on the mitochondrial function and that vacuolar acidification and autophagy are important for yeast cell death caused by propolis. Here, we extended our understanding of propolis-mediated cell death in the yeast Saccharomyces cerevisiae by applying systems biology tools to analyze the transcriptional profiling of cells exposed to propolis. Methods We have used transcriptional profiling of S. cerevisiae exposed to propolis. We validated our findings by using real-time PCR of selected genes. Systems biology tools (physical protein-protein interaction [PPPI] network) were applied to analyse the propolis-induced transcriptional bevavior, aiming to identify which pathways are modulated by propolis in S. cerevisiae and potentially influencing cell death. Results We were able to observe 1,339 genes modulated in at least one time point when compared to the reference time (propolis untreated samples) (t-test, p-value 0.01). Enrichment analysis performed by Gene Ontology (GO) Term finder tool showed enrichment for several biological categories among the genes up-regulated in the microarray hybridization such as transport and transmembrane transport and response to stress. Real-time RT-PCR analysis of selected genes showed by our microarray hybridization approach was capable of providing information about S. cerevisiae gene expression modulation with a considerably high level of confidence. Finally, a physical protein-protein (PPPI) network design and global topological analysis stressed the importance of these pathways in response of S. cerevisiae to propolis and were correlated with the transcriptional data obtained thorough the microarray analysis. Conclusions In summary, our data indicate that propolis is largely affecting several pathways in the eukaryotic cell. However, the most

  12. Carbon Nanomaterials Alter Global Gene Expression Profiles.

    PubMed

    Woodman, Sara; Short, John C W; McDermott, Hyoeun; Linan, Alexander; Bartlett, Katelyn; Gadila, Shiva Kumar Goud; Schmelzle, Katie; Wanekaya, Adam; Kim, Kyoungtae

    2016-05-01

    Carbon nanomaterials (CNMs), which include carbon nanotubes (CNTs) and their derivatives, have diverse technological and biomedical applications. The potential toxicity of CNMs to cells and tissues has become an important emerging question in nanotechnology. To assess the toxicity of CNTs and fullerenol C60(OH)24, we in the present work used the budding yeast Saccharomyces cerevisiae, one of the simplest eukaryotic organisms that share fundamental aspects of eukaryotic cell biology. We found that treatment with CNMs, regardless of their physical shape, negatively affected the growth rates, end-point cell densities and doubling times of CNM-exposed yeast cells when compared to unexposed cells. To investigate potential mechanisms behind the CNMs-induced growth defects, we performed RNA-Seq dependent transcriptional analysis and constructed global gene expression profiles of fullerenol C60(OH)24- and CNT-treated cells. When compared to non-treated control cells, CNM-treated cells displayed differential expression of genes whose functions are implicated in membrane transporters and stress response, although differentially expressed genes were not consistent between CNT- and fullerenol C60(OH)24-treated groups, leading to our conclusion that CNMs could serve as environmental toxic factors to eukaryotic cells. PMID:27483901

  13. Transcription factors interfering with dedifferentiation induce cell type-specific transcriptional profiles

    PubMed Central

    Hikichi, Takafusa; Matoba, Ryo; Ikeda, Takashi; Watanabe, Akira; Yamamoto, Takuya; Yoshitake, Satoko; Tamura-Nakano, Miwa; Kimura, Takayuki; Kamon, Masayoshi; Shimura, Mari; Kawakami, Koichi; Okuda, Akihiko; Okochi, Hitoshi; Inoue, Takafumi; Suzuki, Atsushi; Masui, Shinji

    2013-01-01

    Transcription factors (TFs) are able to regulate differentiation-related processes, including dedifferentiation and direct conversion, through the regulation of cell type-specific transcriptional profiles. However, the functional interactions between the TFs regulating different transcriptional profiles are not well understood. Here, we show that the TFs capable of inducing cell type-specific transcriptional profiles prevent the dedifferentiation induced by TFs for pluripotency. Of the large number of TFs expressed in a neural-lineage cell line, we identified a subset of TFs that, when overexpressed, strongly interfered with the dedifferentiation triggered by the procedure to generate induced pluripotent stem cells. This interference occurred through a maintenance mechanism of the cell type-specific transcriptional profile. Strikingly, the maintenance activity of the interfering TF set was strong enough to induce the cell line-specific transcriptional profile when overexpressed in a heterologous cell type. In addition, the TFs that interfered with dedifferentiation in hepatic-lineage cells involved TFs with known induction activity for hepatic-lineage cells. Our results suggest that dedifferentiation suppresses a cell type-specific transcriptional profile, which is primarily maintained by a small subset of TFs capable of inducing direct conversion. We anticipate that this functional correlation might be applicable in various cell types and might facilitate the identification of TFs with induction activity in efforts to understand differentiation. PMID:23550161

  14. Global transcriptional analysis of the stringent response in Enterococcus faecalis

    PubMed Central

    Gaca, Anthony O.; Abranches, Jacqueline; Kajfasz, Jessica K.

    2012-01-01

    In Enterococcus faecalis, production of guanosine tetraphosphate/guanosine pentaphosphate [(p)ppGpp], the effector molecule of the stringent response, is controlled by the bifunctional synthetase/hydrolase RelA and the monofunctional synthetase RelQ. Previously, the (p)ppGpp profiles of strains lacking relA, relQ or both genes indicated that RelA is the primary enzyme responsible for (p)ppGpp synthesis under stress conditions, while the contributions of RelQ to the stringent response and cell homeostasis remained elusive. Here, survival within the mouse-derived macrophage cell line J774A.1 and killing of Galleria mellonella supported initial evidence that virulence was attenuated in the (p)ppGpp0 ΔrelAΔrelQ strain but not in the ΔrelA or ΔrelQ strains. We performed, for the first time to our knowledge, global transcriptome analysis in a documented (p)ppGpp0 Gram-positive bacterium and provided the first insights into the role of a Gram-positive monofunctional (p)ppGpp synthetase in transcriptional regulation. Transcription profiling after mupirocin treatment confirmed that RelA is the major enzyme responsible for the (p)ppGpp-mediated transcriptional repression of genes associated with macromolecular biosynthesis, but also revealed that RelQ is required for full and timely stringent response induction. The delayed transcriptional response of ΔrelQ could not be correlated with reduced or slower production of (p)ppGpp, in part because RelA-dependent (p)ppGpp accumulation occurred very rapidly. Comparisons of the transcriptional responses of ΔrelA or ΔrelAΔrelQ strains with the parent strain under starvation conditions revealed upregulation of operons involved in energy metabolism in the (p)ppGpp0 strain. Thus, while ΔrelA and ΔrelAΔrelQ cannot use (p)ppGpp to sense and respond to stresses, fitness of ΔrelAΔrelQ may be further impaired due to an unbalanced metabolism. PMID:22653948

  15. Transcription Profiling of the Stringent Response in Escherichia coli▿ †

    PubMed Central

    Durfee, Tim; Hansen, Anne-Marie; Zhi, Huijun; Blattner, Frederick R.; Jin, Ding Jun

    2008-01-01

    The bacterial stringent response serves as a paradigm for understanding global regulatory processes. It can be triggered by nutrient downshifts or starvation and is characterized by a rapid RelA-dependent increase in the alarmone (p)ppGpp. One hallmark of the response is the switch from maximum-growth-promoting to biosynthesis-related gene expression. However, the global transcription patterns accompanying the stringent response in Escherichia coli have not been analyzed comprehensively. Here, we present a time series of gene expression profiles for two serine hydroxymate-treated cultures: (i) MG1655, a wild-type E. coli K-12 strain, and (ii) an isogenic relAΔ251 derivative defective in the stringent response. The stringent response in MG1655 develops in a hierarchical manner, ultimately involving almost 500 differentially expressed genes, while the relAΔ251 mutant response is both delayed and limited in scope. We show that in addition to the down-regulation of stable RNA-encoding genes, flagellar and chemotaxis gene expression is also under stringent control. Reduced transcription of these systems, as well as metabolic and transporter-encoding genes, constitutes much of the down-regulated expression pattern. Conversely, a significantly larger number of genes are up-regulated. Under the conditions used, induction of amino acid biosynthetic genes is limited to the leader sequences of attenuator-regulated operons. Instead, up-regulated genes with known functions, including both regulators (e.g., rpoE, rpoH, and rpoS) and effectors, are largely involved in stress responses. However, one-half of the up-regulated genes have unknown functions. How these results are correlated with the various effects of (p)ppGpp (in particular, RNA polymerase redistribution) is discussed. PMID:18039766

  16. Transcriptional profiling of fetal hypothalamic TRH neurons

    PubMed Central

    2011-01-01

    Background During murine hypothalamic development, different neuroendocrine cell phenotypes are generated in overlapping periods; this suggests that cell-type specific developmental programs operate to achieve complete maturation. A balance between programs that include cell proliferation, cell cycle withdrawal as well as epigenetic regulation of gene expression characterizes neurogenesis. Thyrotropin releasing hormone (TRH) is a peptide that regulates energy homeostasis and autonomic responses. To better understand the molecular mechanisms underlying TRH neuron development, we performed a genome wide study of its transcriptome during fetal hypothalamic development. Results In primary cultures, TRH cells constitute 2% of the total fetal hypothalamic cell population. To purify these cells, we took advantage of the fact that the segment spanning -774 to +84 bp of the Trh gene regulatory region confers specific expression of the green fluorescent protein (GFP) in the TRH cells. Transfected TRH cells were purified by fluorescence activated cell sorting, various cell preparations pooled, and their transcriptome compared to that of GFP- hypothalamic cells. TRH cells undergoing the terminal phase of differentiation, expressed genes implicated in protein biosynthesis, intracellular signaling and transcriptional control. Among the transcription-associated transcripts, we identified the transcription factors Klf4, Klf10 and Atf3, which were previously uncharacterized within the hypothalamus. Conclusion To our knowledge, this is one of the first reports identifying transcripts with a potentially important role during the development of a specific hypothalamic neuronal phenotype. This genome-scale study forms a rational foundation for identifying genes that might participate in the development and function of hypothalamic TRH neurons. PMID:21569245

  17. Transcript profiling of developing peanut seeds

    Technology Transfer Automated Retrieval System (TEKTRAN)

    To investigate regulatory processes and mechanisms underlying the development of peanut seeds, 8 x 15k microarrays were used to monitor changes in the transcriptome of a runner peanut genotype. Developing peanut pods from six development stages corresponding R2 through R8 stages were profiled. Sever...

  18. Prediction of ribosome footprint profile shapes from transcript sequences

    PubMed Central

    Liu, Tzu-Yu; Song, Yun S.

    2016-01-01

    Motivation: Ribosome profiling is a useful technique for studying translational dynamics and quantifying protein synthesis. Applications of this technique have shown that ribosomes are not uniformly distributed along mRNA transcripts. Understanding how each transcript-specific distribution arises is important for unraveling the translation mechanism. Results: Here, we apply kernel smoothing to construct predictive features and build a sparse model to predict the shape of ribosome footprint profiles from transcript sequences alone. Our results on Saccharomyces cerevisiae data show that the marginal ribosome densities can be predicted with high accuracy. The proposed novel method has a wide range of applications, including inferring isoform-specific ribosome footprints, designing transcripts with fast translation speeds and discovering unknown modulation during translation. Availability and implementation: A software package called riboShape is freely available at https://sourceforge.net/projects/riboshape Contact: yss@berkeley.edu PMID:27307616

  19. Exploring Ribosome Positioning on Translating Transcripts with Ribosome Profiling.

    PubMed

    Spealman, Pieter; Wang, Hao; May, Gemma; Kingsford, Carl; McManus, C Joel

    2016-01-01

    Recent technological advances (e.g., microarrays and massively parallel sequencing) have facilitated genome-wide measurement of many aspects of gene regulation. Ribosome profiling is a high-throughput sequencing method used to measure gene expression at the level of translation. This is accomplished by quantifying both the number of translating ribosomes and their locations on mRNA transcripts. The inventors of this approach have published several methods papers detailing its implementation and addressing the basics of ribosome profiling data analysis. Here we describe our lab's procedure, which differs in some respects from those published previously. In addition, we describe a data analysis pipeline, Ribomap, for ribosome profiling data. Ribomap allocates sequence reads to alternative mRNA isoforms, normalizes sequencing bias along transcripts using RNA-seq data, and outputs count vectors of per-codon ribosome occupancy for each transcript.

  20. Gene Transcription Profile of the Detached Retina (An AOS Thesis)

    PubMed Central

    Zacks, David N.

    2009-01-01

    Purpose: Separation of the neurosensory retina from the retinal pigment epithelium (RPE) yields many morphologic and functional consequences, including death of the photoreceptor cells, Müller cell hypertrophy, and inner retinal rewiring. Many of these changes are due to the separation-induced activation of specific genes. In this work, we define the gene transcription profile within the retina as a function of time after detachment. We also define the early activation of kinases that might be responsible for the detachment-induced changes in gene transcription. Methods: Separation of the retina from the RPE was induced in Brown-Norway rats by the injection of 1% hyaluronic acid into the subretinal space. Retinas were harvested at 1, 7, and 28 days after separation. Gene transcription profiles for each time point were determined using the Affymetrix Rat 230A gene microarray chip. Transcription levels in detached retinas were compared to those of nondetached retinas with the BRB-ArrayTools Version 3.6.0 using a random variance analysis of variance (ANOVA) model. Confirmation of the significant transcriptional changes for a subset of the genes was performed using microfluidic quantitative real-time polymerase chain reaction (qRT-PCR) assays. Kinase activation was explored using Western blot analysis to look for early phosphorylation of any of the 3 main families of mitogen-activated protein kinases (MAPK): the p38 family, the Janus kinase family, and the p42/p44 family. Results: Retinas separated from the RPE showed extensive alterations in their gene transcription profile. Many of these changes were initiated as early as 1 day after separation, with significant increases by 7 days. ANOVA analysis defined 144 genes that had significantly altered transcription levels as a function of time after separation when setting a false discovery rate at ≤0.1. Confirmatory RT-PCR was performed on 51 of these 144 genes. Differential transcription detected on the microarray

  1. Matrix formulation of a universal microbial transcript profiling system

    SciTech Connect

    Fitch, J P; Ng, J; Sokhansanj, B A

    2000-11-01

    DNA chips and microarrays are used to profile gene transcription. Unfortunately, the initial fabrication cost for a chip and the reagent costs to amplify thousands of open reading frames for a microarray are over $100K for a typical 4 Mbase bacterial genome. To avoid these expensive steps, a matrix formulation of a universal hybrid chip-microarray approach to transcript profiling is demonstrated for synthetic data. Initial considerations for application to the 4.3 Mbase bacterium Yersinia pestis are also presented. This approach can be applied to arbitrary bacteria by recalculating a matrix and pseudoinverse. This approach avoids the large upfront expenses associated with DNA chips and microarrays.

  2. Transcriptional profiling of the Arabidopsis embryo.

    PubMed

    Spencer, Matthew W B; Casson, Stuart A; Lindsey, Keith

    2007-02-01

    We have used laser-capture microdissection to isolate RNA from discrete tissues of globular, heart, and torpedo stage embryos of Arabidopsis (Arabidopsis thaliana). This was amplified and analyzed by DNA microarray using the Affymetrix ATH1 GeneChip, representing approximately 22,800 Arabidopsis genes. Cluster analysis showed that spatial differences in gene expression were less significant than temporal differences. Time course analysis reveals the dynamics and complexity of gene expression in both apical and basal domains of the developing embryo, with several classes of synexpressed genes identifiable. The transition from globular to heart stage is associated in particular with an up-regulation of genes involved in cell cycle control, transcriptional regulation, and energetics and metabolism. The transition from heart to torpedo stage is associated with a repression of cell cycle genes and an up-regulation of genes encoding storage proteins, and pathways of cell growth, energy, and metabolism. The torpedo stage embryo shows strong functional differentiation in the root and cotyledon, as inferred from the classes of genes expressed in these tissues. The time course of expression of the essential EMBRYO-DEFECTIVE genes shows that most are expressed at unchanging levels across all stages of embryogenesis. We show how identified genes can be used to generate cell type-specific markers and promoter activities for future application in cell biology.

  3. Chromatin states reveal functional associations for globally defined transcription start sites in four human cell lines

    PubMed Central

    2014-01-01

    Background Deciphering the most common modes by which chromatin regulates transcription, and how this is related to cellular status and processes is an important task for improving our understanding of human cellular biology. The FANTOM5 and ENCODE projects represent two independent large scale efforts to map regulatory and transcriptional features to the human genome. Here we investigate chromatin features around a comprehensive set of transcription start sites in four cell lines by integrating data from these two projects. Results Transcription start sites can be distinguished by chromatin states defined by specific combinations of both chromatin mark enrichment and the profile shapes of these chromatin marks. The observed patterns can be associated with cellular functions and processes, and they also show association with expression level, location relative to nearby genes, and CpG content. In particular we find a substantial number of repressed inter- and intra-genic transcription start sites enriched for active chromatin marks and Pol II, and these sites are strongly associated with immediate-early response processes and cell signaling. Associations between start sites with similar chromatin patterns are validated by significant correlations in their global expression profiles. Conclusions The results confirm the link between chromatin state and cellular function for expressed transcripts, and also indicate that active chromatin states at repressed transcripts may poise transcripts for rapid activation during immune response. PMID:24669905

  4. Simultaneous Profiling of 194 Distinct Receptor Transcripts in Human Cells

    PubMed Central

    Kang, Byong H.; Jensen, Karin J.; Hatch, Jaime A.; Janes, Kevin A.

    2013-01-01

    Many signal transduction cascades are initiated by transmembrane receptors with the presence or absence and abundance of receptors dictating cellular responsiveness. Here, we provide a validated array of quantitative reverse-transcription polymerase chain reaction (qRT-PCR) reagents for high-throughput profiling of the presence and relative abundance of transcripts for 194 transmembrane receptors in the human genome. We found that the qRT-PCR array had greater sensitivity and specificity for the detected receptor transcript profiles compared to conventional oligonucleotide microarrays or exon microarrays. The qRT-PCR array also distinguished functional receptor presence versus absence more accurately than deep sequencing of adenylated RNA species, RNA-seq. By applying qRT-PCR-based receptor transcript profiling to 40 human cell lines representing four main tissues (pancreas, skin, breast, and colon), we identified clusters of cell lines with enhanced signaling capabilities and revealed a role for receptor silencing in defining tissue lineage. Ectopic expression of the interleukin 10 (IL-10) receptor encoding gene IL10RA in melanoma cells engaged an IL-10 autocrine loop not otherwise present in this cell type, which altered signaling, gene expression, and cellular responses to proinflammatory stimuli. Our array provides a rapid, inexpensive, and convenient means for assigning a receptor signature to any human cell or tissue type. PMID:23921087

  5. Transcriptional profiles reveal a stepwise developmental program of memory CD8(+) T cell differentiation.

    PubMed

    Roychoudhuri, Rahul; Lefebvre, Francois; Honda, Mitsuo; Pan, Li; Ji, Yun; Klebanoff, Christopher A; Nichols, Carmen N; Fourati, Slim; Hegazy, Ahmed N; Goulet, Jean-Philippe; Gattinoni, Luca; Nabel, Gary J; Gilliet, Michel; Cameron, Mark; Restifo, Nicholas P; Sékaly, Rafick P; Flatz, Lukas

    2015-02-11

    The generation of CD8(+) T-cell memory is a major aim of vaccination. While distinct subsets of CD8(+) T-cells are generated following immunization that differ in their ability to confer long-term immunity against infection, the transcriptional profiles of these subsets within endogenous vaccine-induced CD8(+) T cell responses have not been resolved. Here, we measure global transcriptional profiles of endogenous effector (TEFF), effector memory (TEM) and central memory (TCM) CD8(+) T-cells arising from immunization with three distinct prime-boost vaccine regimens. While a proportion of transcripts were uniquely regulated within distinct CD8(+) T cell populations, we observed progressive up- or down-regulation in the expression of a majority of differentially expressed transcripts when subsets were compared in the order TN>TCM>TEM>TEFF. Strikingly, when we compared global differences in gene expression between TN, TCM, TEM and TEFF cells with known transcriptional changes that result when CD8(+) T cells repetitively encounter antigen, our analysis overwhelmingly favored a model whereby cumulative antigen stimulation drives differentiation specifically from TN>TCM>TEM>TEFF and this was common to all vaccines tested. These findings provide insight into the molecular basis of immunological memory and identify potential biomarkers for characterization of vaccine-induced responses and prediction of vaccine efficacy.

  6. Binding Motifs in Bacterial Gene Promoters Modulate Transcriptional Effects of Global Regulators CRP and ArcA

    PubMed Central

    Leuze, Michael R.; Karpinets, Tatiana V.; Syed, Mustafa H.; Beliaev, Alexander S.; Uberbacher, Edward C.

    2012-01-01

    Bacterial gene regulation involves transcription factors (TF) that bind to DNA recognition sequences in operon promoters. These recognition sequences, many of which are palindromic, are known as regulatory elements or transcription factor binding sites (TFBS). Some TFs are global regulators that can modulate the expression of hundreds of genes. In this study we examine global regulator half-sites, where a half-site, which we shall call a binding motif (BM), is one half of a palindromic TFBS. We explore the hypothesis that the number of BMs plays an important role in transcriptional regulation, examining empirical data from transcriptional profiling of the CRP and ArcA regulons. We compare the power of BM counts and of full TFBS characteristics to predict induced transcriptional activity. We find that CRP BM counts have a nonlinear effect on CRP-dependent transcriptional activity and predict this activity better than full TFBS quality or location. PMID:22701314

  7. Binding motifs in bacterial gene promoters modulate transcriptional effects of global regulators CRP and ArcA

    SciTech Connect

    Leuze, Mike; Karpinets, Tatiana V.; Syed, Mustafa H.; Beliaev, Alex S.; Uberbacher, Edward

    2012-05-30

    Bacterial gene regulation involves transcription factors (TF) that bind to DNA recognition sequences in operon promoters. These recognition sequences, many of which are palindromic, are known as regulatory elements or transcription factor binding sites (TFBS). Some TFs are global regulators that can modulate the expression of hundreds of genes. In this study we examine global regulator half-sites, where a half-site, which we shall call a binding motif (BM), is one half of a palindromic TFBS. We explore the hypothesis that the number of BMs plays an important role in transcriptional regulation, examining empirical data from transcriptional profiling of the CRP and ArcA regulons. We compare the power of BM counts and of full TFBS characteristics to predict induced transcriptional activity. We find that CRP BM counts have a nonlinear effect on CRP-dependent transcriptional activity and predict this activity better than full TFBS quality or location.

  8. Global expression profiling of rice microRNAs by one-tube stem-loop reverse transcription quantitative PCR revealed important roles of microRNAs in abiotic stress responses.

    PubMed

    Shen, Jianqiang; Xie, Kabin; Xiong, Lizhong

    2010-12-01

    MicroRNAs are a class of endogenous small RNA molecules (20-24 nucleotides) that have pivotal roles in regulating gene expression mostly at posttranscriptional levels in plants. Plant microRNAs have been implicated in the regulation of diverse biological processes including growth and stress responses. However, the information about microRNAs in regulating abiotic stress responses in rice is limited. We optimized a one-tube stem-loop reverse transcription quantitative PCR (ST-RT qPCR) for high-throughput expression profiling analysis of microRNAs in rice under normal and stress conditions. The optimized ST-RT qPCR method was as accurate as small RNA gel blotting and was more convenient and time-saving than other methods in quantifying microRNAs. With this method, 41 rice microRNAs were quantified for their relative expression levels after drought, salt, cold, and abscisic acid (ABA) treatments. Thirty-two microRNAs showed induced or suppressed expression after stress or ABA treatment. Further analysis suggested that stress-responsive cis-elements were enriched in the promoters of stress-responsive microRNA genes. The expressions of five and seven microRNAs were significantly affected in the rice plant with defects in stress tolerance regulatory genes OsSKIPa and OsbZIP23, respectively. Some of the predicted target genes of these microRNAs were also related to abiotic stresses. We conclude that ST-RT qPCR is an efficient and reliable method for expression profiling of microRNAs and a significant portion of rice microRNAs participate in abiotic stress response and regulation.

  9. Transcript profiling of transcription factor genes during silique development in Arabidopsis.

    PubMed

    de Folter, Stefan; Busscher, Jacqueline; Colombo, Lucia; Losa, Alessia; Angenent, Gerco C

    2004-10-01

    Flower development is a key process for all angiosperms and is essential for sexual reproduction. The last phase in flower development is fertilization of the ovules and formation of the fruits, which are both biologically and economically of importance. Here, we report the expression profiles of over 1100 unique Arabidopsis genes coding for known and putative transcription factors (TFs) during silique development using high-density filter array hybridizations. Hierarchical cluster analyses revealed distinct expression profiles for the different silique developmental stages. This allowed a functional classification of these expression profiles in groups, namely pistil development, embryogenesis, seed maturation, fruit maturation, and fruit development. A further focus was made on the MADS-box family, which contains many members that are functionally well-characterized. The expression profiles of these MADS-box genes during silique development give additional clues on their functions and evolutionary relationship. PMID:15604749

  10. RNAseq Transcriptional Profiling following Whip Development in Sugarcane Smut Disease.

    PubMed

    Schaker, Patricia D C; Palhares, Alessandra C; Taniguti, Lucas M; Peters, Leila P; Creste, Silvana; Aitken, Karen S; Van Sluys, Marie-Anne; Kitajima, João P; Vieira, Maria L C; Monteiro-Vitorello, Claudia B

    2016-01-01

    Sugarcane smut disease is caused by the biotrophic fungus Sporisorium scitamineum. The disease is characterized by the development of a whip-like structure from the primary meristems, where billions of teliospores are produced. Sugarcane smut also causes tillering and low sucrose and high fiber contents, reducing cane productivity. We investigated the biological events contributing to disease symptoms in a smut intermediate-resistant sugarcane genotype by examining the transcriptional profiles (RNAseq) shortly after inoculating the plants and immediately after whip emission. The overall picture of disease progression suggests that premature transcriptional reprogramming of the shoot meristem functions continues until the emergence of the whip. The guidance of this altered pattern is potentially primarily related to auxin mobilization in addition to the involvement of other hormonal imbalances. The consequences associated with whip emission are the modulation of typical meristematic functions toward reproductive organ differentiation, requiring strong changes in carbon partitioning and energy production. These changes include the overexpression of genes coding for invertases and trehalose-6P synthase, as well as other enzymes from key metabolic pathways, such as from lignin biosynthesis. This is the first report describing changes in the transcriptional profiles following whip development, providing a hypothetical model and candidate genes to further study sugarcane smut disease progression. PMID:27583836

  11. RNAseq Transcriptional Profiling following Whip Development in Sugarcane Smut Disease.

    PubMed

    Schaker, Patricia D C; Palhares, Alessandra C; Taniguti, Lucas M; Peters, Leila P; Creste, Silvana; Aitken, Karen S; Van Sluys, Marie-Anne; Kitajima, João P; Vieira, Maria L C; Monteiro-Vitorello, Claudia B

    2016-01-01

    Sugarcane smut disease is caused by the biotrophic fungus Sporisorium scitamineum. The disease is characterized by the development of a whip-like structure from the primary meristems, where billions of teliospores are produced. Sugarcane smut also causes tillering and low sucrose and high fiber contents, reducing cane productivity. We investigated the biological events contributing to disease symptoms in a smut intermediate-resistant sugarcane genotype by examining the transcriptional profiles (RNAseq) shortly after inoculating the plants and immediately after whip emission. The overall picture of disease progression suggests that premature transcriptional reprogramming of the shoot meristem functions continues until the emergence of the whip. The guidance of this altered pattern is potentially primarily related to auxin mobilization in addition to the involvement of other hormonal imbalances. The consequences associated with whip emission are the modulation of typical meristematic functions toward reproductive organ differentiation, requiring strong changes in carbon partitioning and energy production. These changes include the overexpression of genes coding for invertases and trehalose-6P synthase, as well as other enzymes from key metabolic pathways, such as from lignin biosynthesis. This is the first report describing changes in the transcriptional profiles following whip development, providing a hypothetical model and candidate genes to further study sugarcane smut disease progression.

  12. A transcriptional profile of the decidua in preeclampsia

    PubMed Central

    LØSET, Mari; MUNDAL, Siv B.; JOHNSON, Matthew P.; FENSTAD, Mona H.; FREED, Katherine A.; LIAN, Ingrid A.; EIDE, Irina P.; BJØRGE, Line; BLANGERO, John; MOSES, Eric K.; AUSTGULEN, Rigmor

    2010-01-01

    OBJECTIVE To obtain insight into possible mechanisms underlying preeclampsia using genome-wide transcriptional profiling in decidua basalis. STUDY DESIGN Genome-wide transcriptional profiling was performed on decidua basalis tissue from preeclamptic (n = 37) and normal pregnancies (n = 58). Differentially expressed genes were identified and merged into canonical pathways and networks. RESULTS Of the 26,504 expressed transcripts detected, 455 were differentially expressed (P <0.05, FDR P <0.1). Both novel (ARL5B, SLITRK4) and previously reported preeclampsia-associated genes (PLA2G7, HMOX1) were identified. Pathway analysis revealed that ‘tryptophan metabolism’, ‘endoplasmic reticulum stress’, ‘linoleic acid metabolism’, ‘notch signaling’, ‘fatty acid metabolism’, ‘arachidonic acid metabolism’ and ‘NRF2-mediated oxidative stress response’ were overrepresented canonical pathways. CONCLUSION In the present study single genes, canonical pathways and gene-gene networks that are likely to play an important role in the pathogenesis of preeclampsia, have been identified. Future functional studies are needed to accomplish a greater understanding of the mechanisms involved. PMID:20934677

  13. RNAseq Transcriptional Profiling following Whip Development in Sugarcane Smut Disease

    PubMed Central

    Taniguti, Lucas M.; Peters, Leila P.; Creste, Silvana; Aitken, Karen S.; Van Sluys, Marie-Anne; Kitajima, João P.; Vieira, Maria L. C.; Monteiro-Vitorello, Claudia B.

    2016-01-01

    Sugarcane smut disease is caused by the biotrophic fungus Sporisorium scitamineum. The disease is characterized by the development of a whip-like structure from the primary meristems, where billions of teliospores are produced. Sugarcane smut also causes tillering and low sucrose and high fiber contents, reducing cane productivity. We investigated the biological events contributing to disease symptoms in a smut intermediate-resistant sugarcane genotype by examining the transcriptional profiles (RNAseq) shortly after inoculating the plants and immediately after whip emission. The overall picture of disease progression suggests that premature transcriptional reprogramming of the shoot meristem functions continues until the emergence of the whip. The guidance of this altered pattern is potentially primarily related to auxin mobilization in addition to the involvement of other hormonal imbalances. The consequences associated with whip emission are the modulation of typical meristematic functions toward reproductive organ differentiation, requiring strong changes in carbon partitioning and energy production. These changes include the overexpression of genes coding for invertases and trehalose-6P synthase, as well as other enzymes from key metabolic pathways, such as from lignin biosynthesis. This is the first report describing changes in the transcriptional profiles following whip development, providing a hypothetical model and candidate genes to further study sugarcane smut disease progression. PMID:27583836

  14. Transcriptional profile of a myotube starvation model of atrophy

    NASA Technical Reports Server (NTRS)

    Stevenson, Eric J.; Koncarevic, Alan; Giresi, Paul G.; Jackman, Robert W.; Kandarian, Susan C.

    2005-01-01

    Skeletal muscle wasting is a pervasive phenomenon that can result from a wide range of pathological conditions as well as from habitual muscular inactivity. The present work describes a cell-culture condition that induces significant atrophy in skeletal muscle C2C12 myotubes. The failure to replenish differentiation media in mature myotubes leads to rapid atrophy (53% in diameter), which is referred to here as starvation. Affymetrix microarrays were used to develop a transcriptional profile of control (fed) vs. atrophied (nonfed) myotubes. Myotube starvation was characterized by an upregulation of genes involved in translational inhibition, amino acid biosynthesis and transport, and cell cycle arrest/apoptosis, among others. Downregulated genes included several structural and regulatory elements of the extracellular matrix as well as several elements of Wnt/frizzled and TGF-beta signaling pathways. Interestingly, the characteristic transcriptional upregulation of the ubiquitin-proteasome system, calpains, and cathepsins known to occur in multiple in vivo models of atrophy were not seen during myotube starvation. With the exception of the downregulation of extracellular matrix genes, serine protease inhibitor genes, and the upregulation of the translation initiation factor PHAS-I, this model of atrophy in cell culture has a transcriptional profile quite distinct from any study published to date with atrophy in whole muscle. These data show that, although the gross morphology of atrophied muscle fibers may be similar in whole muscle vs. myotube culture, the processes by which this phenotype is achieved differ markedly.

  15. Cytoarchitecture and Transcriptional Profiles of Neocortical Malformations in Inbred Mice

    PubMed Central

    Ramos, Raddy L.; Smith, Phoebe T.; DeCola, Christopher; Tam, Danny; Corzo, Oscar

    2008-01-01

    Malformations of neocortical development are associated with cognitive dysfunction and increased susceptibility to epileptogenesis. Rodent models are widely used to study neocortical malformations and have revealed important genetic and environmental mechanisms that contribute to neocortical development. Interestingly, several inbred mice strains commonly used in behavioral, anatomical, and/or physiological studies display neocortical malformations. In the present report we examine the cytoarchitecture and myeloarchitecture of the neocortex of 11 inbred mouse strains and identified malformations of cortical development, including molecular layer heterotopia, in all but one strain. We used in silico methods to confirm our observations and determined the transcriptional profiles of cells found within heterotopia. These data indicate cellular and transcriptional diversity present in cells in malformations. Furthermore, the presence of dysplasia in nearly every inbred strain examined suggests that malformations of neocortical development are a common feature in the neocortex of inbred mice. PMID:18308707

  16. Transcriptional Profiling of Mycobacterium Tuberculosis During Infection: Lessons Learned

    PubMed Central

    Ward, Sarah K.; Abomoelak, Bassam; Marcus, Sarah A.; Talaat, Adel M.

    2010-01-01

    Infection with Mycobacterium tuberculosis, the causative agent of tuberculosis, is considered one of the biggest infectious disease killers worldwide. A significant amount of attention has been directed toward revealing genes involved in the virulence and pathogenesis of this air-born pathogen. With the advances in technologies for transcriptional profiling, several groups, including ours, took advantage of DNA microarrays to identify transcriptional units differentially regulated by M. tuberculosis within a host. The main idea behind this approach is that pathogens tend to regulate their gene expression levels depending on the host microenvironment, and preferentially express those needed for survival. Identifying this class of genes will improve our understanding of pathogenesis. In our case, we identified an in vivo expressed genomic island that was preferentially active in murine lungs during early infection, as well as groups of genes active during chronic tuberculosis. Other studies have identified additional gene groups that are active during macrophage infection and even in human lungs. Despite all of these findings, one of the lingering questions remaining was whether in vivo expressed transcripts are relevant to the virulence, pathogenesis, and persistence of the organism. The work of our group and others addressed this question by examining the contribution of in vivo expressed genes using a strategy based on gene deletions followed by animal infections. Overall, the analysis of most of the in vivo expressed genes supported a role of these genes in M. tuberculosis pathogenesis. Further, these data suggest that in vivo transcriptional profiling is a valid approach to identify genes required for bacterial pathogenesis. PMID:21738523

  17. Olive phenolic compounds: metabolic and transcriptional profiling during fruit development

    PubMed Central

    2012-01-01

    Background Olive (Olea europaea L.) fruits contain numerous secondary metabolites, primarily phenolics, terpenes and sterols, some of which are particularly interesting for their nutraceutical properties. This study will attempt to provide further insight into the profile of olive phenolic compounds during fruit development and to identify the major genetic determinants of phenolic metabolism. Results The concentration of the major phenolic compounds, such as oleuropein, demethyloleuropein, 3–4 DHPEA-EDA, ligstroside, tyrosol, hydroxytyrosol, verbascoside and lignans, were measured in the developing fruits of 12 olive cultivars. The content of these compounds varied significantly among the cultivars and decreased during fruit development and maturation, with some compounds showing specificity for certain cultivars. Thirty-five olive transcripts homologous to genes involved in the pathways of the main secondary metabolites were identified from the massive sequencing data of the olive fruit transcriptome or from cDNA-AFLP analysis. Their mRNA levels were determined using RT-qPCR analysis on fruits of high- and low-phenolic varieties (Coratina and Dolce d’Andria, respectively) during three different fruit developmental stages. A strong correlation was observed between phenolic compound concentrations and transcripts putatively involved in their biosynthesis, suggesting a transcriptional regulation of the corresponding pathways. OeDXS, OeGES, OeGE10H and OeADH, encoding putative 1-deoxy-D-xylulose-5-P synthase, geraniol synthase, geraniol 10-hydroxylase and arogenate dehydrogenase, respectively, were almost exclusively present at 45 days after flowering (DAF), suggesting that these compounds might play a key role in regulating secoiridoid accumulation during fruit development. Conclusions Metabolic and transcriptional profiling led to the identification of some major players putatively involved in biosynthesis of secondary compounds in the olive tree. Our data

  18. Transcriptional Profiling of Egg Allergy and Relationship to Disease Phenotype

    PubMed Central

    Kosoy, Roman; Agashe, Charuta; Grishin, Alexander; Leung, Donald Y.; Wood, Robert A.; Sicherer, Scott H.; Jones, Stacie M.; Burks, A. Wesley; Davidson, Wendy F.; Lindblad, Robert W.; Dawson, Peter; Merad, Miriam; Kidd, Brian A.; Dudley, Joel T.; Sampson, Hugh A.

    2016-01-01

    Background Egg allergy is one of the most common food allergies of childhood. There is a lack of information on the immunologic basis of egg allergy beyond the role of IgE. Objective To use transcriptional profiling as a novel approach to uncover immunologic processes associated with different phenotypes of egg allergy. Methods Peripheral blood mononuclear cells (PBMCs) were obtained from egg-allergic children who were defined as reactive (BER) or tolerant (BET) to baked egg, and from food allergic controls (AC) who were egg non-allergic. PBMCs were stimulated with egg white protein. Gene transcription was measured by microarray after 24 h, and cytokine secretion by multiplex assay after 5 days. Results The transcriptional response of PBMCs to egg protein differed between BER and BET versus AC subjects. Compared to the AC group, the BER group displayed increased expression of genes associated with allergic inflammation as well as corresponding increased secretion of IL-5, IL-9 and TNF-α. A similar pattern was observed for the BET group. Further similarities in gene expression patterns between BER and BET groups, as well as some important differences, were revealed using a novel Immune Annotation resource developed for this project. This approach identified several novel processes not previously associated with egg allergy, including positive associations with TLR4-stimulated myeloid cells and activated NK cells, and negative associations with an induced Treg signature. Further pathway analysis of differentially expressed genes comparing BER to BET subjects showed significant enrichment of IFN-α and IFN-γ response genes, as well as genes associated with virally-infected DCs. Conclusions Transcriptional profiling identified several novel pathways and processes that differed when comparing the response to egg allergen in BET, BER, and AC groups. We conclude that this approach is a useful hypothesis-generating mechanism to identify novel immune processes associated

  19. Porphyromonas gingivalis infection-induced tissue and bone transcriptional profiles

    PubMed Central

    Meka, Archana; Bakthavatchalu, Vasudevan; Sathishkumar, Sabapathi; Lopez, M. Cecilia; Verma, Raj K.; Wallet, Shannon M.; Bhattacharyya, Indraneel; Boyce, Brendan F.; Handfield, Martin; Lamont, Richard J.; Baker, Henry V.; Ebersole, Jeffrey L.; Lakshmyya, Kesavalu N.

    2010-01-01

    Introduction Porphyromonas gingivalis has been associated with subgingival biofilms in adult periodontitis. However, the molecular mechanisms of its contribution to chronic gingival inflammation and loss of periodontal structural integrity remain unclear. The objectives of this investigation were to examine changes in the host transcriptional profiles during a P. gingivalis infection using a murine calvarial model of inflammation and bone resorption. Methods P. gingivalis FDC 381 was injected into the subcutaneous soft tissue over the calvaria of BALB/c mice for 3 days, after which the soft tissues and calvarial bones were excised. RNA was isolated from infected soft tissues and calvarial bones and analyzed for transcript profiles using Murine GeneChip® arrays to provide a molecular profile of the events that occur following infection of these tissues. Results After P. gingivalis infection, 5517 and 1900 probe sets in the infected soft tissues and calvarial bone, respectively, were differentially expressed (P ≤ 0.05) and up-regulated. Biological pathways significantly impacted by P. gingivalis infection in tissues and calvarial bone included cell adhesion (immune system) molecules, Toll-like receptors, B cell receptor signaling, TGF-β cytokine family receptor signaling, and MHC class II antigen processing pathways resulting in proinflammatory, chemotactic effects, T cell stimulation, and down regulation of antiviral and T cell chemotactic effects. P. gingivalis-induced inflammation activated osteoclasts, leading to local bone resorption. Conclusion This is the first in vivo evidence that localized P. gingivalis infection differentially induces transcription of a broad array of host genes that differed between inflamed soft tissues and calvarial bone. PMID:20331794

  20. SVD identifies transcript length distribution functions from DNA microarray data and reveals evolutionary forces globally affecting GBM metabolism.

    PubMed

    Bertagnolli, Nicolas M; Drake, Justin A; Tennessen, Jason M; Alter, Orly

    2013-01-01

    To search for evolutionary forces that might act upon transcript length, we use the singular value decomposition (SVD) to identify the length distribution functions of sets and subsets of human and yeast transcripts from profiles of mRNA abundance levels across gel electrophoresis migration distances that were previously measured by DNA microarrays. We show that the SVD identifies the transcript length distribution functions as "asymmetric generalized coherent states" from the DNA microarray data and with no a-priori assumptions. Comparing subsets of human and yeast transcripts of the same gene ontology annotations, we find that in both disparate eukaryotes, transcripts involved in protein synthesis or mitochondrial metabolism are significantly shorter than typical, and in particular, significantly shorter than those involved in glucose metabolism. Comparing the subsets of human transcripts that are overexpressed in glioblastoma multiforme (GBM) or normal brain tissue samples from The Cancer Genome Atlas, we find that GBM maintains normal brain overexpression of significantly short transcripts, enriched in transcripts that are involved in protein synthesis or mitochondrial metabolism, but suppresses normal overexpression of significantly longer transcripts, enriched in transcripts that are involved in glucose metabolism and brain activity. These global relations among transcript length, cellular metabolism and tumor development suggest a previously unrecognized physical mode for tumor and normal cells to differentially regulate metabolism in a transcript length-dependent manner. The identified distribution functions support a previous hypothesis from mathematical modeling of evolutionary forces that act upon transcript length in the manner of the restoring force of the harmonic oscillator.

  1. Binding motifs in bacterial gene promoters modulate transcriptional effect of global regulators

    SciTech Connect

    Leuze, Michael Rex; Karpinets, Tatiana V; Syed, Mustafa H; Beliaev, Alexander S; Uberbacher, Edward C

    2012-01-01

    Bacterial gene regulation involves transcription factors (TFs) that influence the expression of many genes. Global regulators, including CRP (cAMP Receptor Protein), ArcA, and FNR, can modulate the transcriptional activity of multiple operons. The similarity of a regulatory element s sequence to a TF s consensus binding site (BS) and the position of the regulatory element in an operon promoter are considered the most important determinants of this TF s regulatory influence. In this study we explore the hypothesis that the number of TFBS half-sites (where a half-site is one half of the palindromic BS consensus sequence, which we shall refer to as a binding motif or a BM) of a global regulator in an operon s promoter plays an important role in the operon s transcriptional regulation. We examine empirical data from transcriptional profiling of the CRP regulon in Shewanella oneidenses MR 1 and Escherichia coli, and of the ArcA regulon in S. oneidenses MR 1. We compare the power of CRP BM counts and of full, symmetrical CRP TFBS characteristics, namely similarity to consensus and location, to predict CRP-induced transcriptional activity. We find that CRP BM counts have a nonlinear effect on CRP-dependent transcriptional activity and predict this activity better than full-length TFBS quality or location. Regression analysis indicates that IHF (Integration Host Factor) and ArcA have synergistic effects on CRP-induced gene transcription, positive and negative, respectively. Based on these results, we propose that the fine-tuning of bacterial transcriptional activity by CRP may involves not only the bending of the operon promoter, facilitated by CRP in cooperation with the histone-like protein IHF, but also the cumulative binding affinity of multiple weak BMs.

  2. A transcriptional profile of aging in the human kidney.

    PubMed

    Rodwell, Graham E J; Sonu, Rebecca; Zahn, Jacob M; Lund, James; Wilhelmy, Julie; Wang, Lingli; Xiao, Wenzhong; Mindrinos, Michael; Crane, Emily; Segal, Eran; Myers, Bryan D; Brooks, James D; Davis, Ronald W; Higgins, John; Owen, Art B; Kim, Stuart K

    2004-12-01

    In this study, we found 985 genes that change expression in the cortex and the medulla of the kidney with age. Some of the genes whose transcripts increase in abundance with age are known to be specifically expressed in immune cells, suggesting that immune surveillance or inflammation increases with age. The age-regulated genes show a similar aging profile in the cortex and the medulla, suggesting a common underlying mechanism for aging. Expression profiles of these age-regulated genes mark not only age, but also the relative health and physiology of the kidney in older individuals. Finally, the set of aging-regulated kidney genes suggests specific mechanisms and pathways that may play a role in kidney degeneration with age.

  3. A Transcriptional Profile of Aging in the Human Kidney

    PubMed Central

    2004-01-01

    In this study, we found 985 genes that change expression in the cortex and the medulla of the kidney with age. Some of the genes whose transcripts increase in abundance with age are known to be specifically expressed in immune cells, suggesting that immune surveillance or inflammation increases with age. The age-regulated genes show a similar aging profile in the cortex and the medulla, suggesting a common underlying mechanism for aging. Expression profiles of these age-regulated genes mark not only age, but also the relative health and physiology of the kidney in older individuals. Finally, the set of aging-regulated kidney genes suggests specific mechanisms and pathways that may play a role in kidney degeneration with age. PMID:15562319

  4. Global MS-Based Proteomics Drug Profiling.

    PubMed

    Carvalho, Ana Sofia; Matthiesen, Rune

    2016-01-01

    DNA-based technologies such as RNAi, chemical-genetic profiling, or gene expression profiling by DNA microarrays combined with other biochemical methods are established strategies for surveying drug mechanisms. Such approaches can provide mechanistic information on how drugs act and affect cellular pathways. By studying how cancer cells compensate for the drug treatment, novel targets used in a combined treatment can be designed. Furthermore, toxicity effects on cells not targeted can be obtained on a molecular level. For example, drug companies are particularly interested in studying the molecular side effects of drugs in the liver. In addition, experiments with the purpose of elucidating liver toxicity can be studied using samples obtained from animal models exposed to different concentrations of a drug over time. More recently considerable advances in mass spectrometry (MS) technologies and bioinformatics tools allows informative global drug profiling experiments to be performed at a cost comparable to other large-scale technologies such as DNA-based technologies. Moreover, MS-based proteomics provides an additional layer of information on the dynamic regulation of proteins translation and particularly protein degradation. MS-based proteomics approaches combined with other biochemical methods delivers information on regulatory networks, signaling cascades, and metabolic pathways upon drug treatment. Furthermore, MS-based proteomics can provide additional information on single amino acid polymorphisms, protein isoform distribution, posttranslational modifications, and subcellular localization. In this chapter, we will share our experience using MS based proteomics as a pharmacoproteomics strategy to characterize drug mechanisms of action in single drug therapy or in multidrug combination. Finally, the emergence of integrated proteogenomics analysis, such as "The Cancer Genome Atlas" program, opened interesting perspectives to extend this approach to drug target

  5. Global MS-Based Proteomics Drug Profiling.

    PubMed

    Carvalho, Ana Sofia; Matthiesen, Rune

    2016-01-01

    DNA-based technologies such as RNAi, chemical-genetic profiling, or gene expression profiling by DNA microarrays combined with other biochemical methods are established strategies for surveying drug mechanisms. Such approaches can provide mechanistic information on how drugs act and affect cellular pathways. By studying how cancer cells compensate for the drug treatment, novel targets used in a combined treatment can be designed. Furthermore, toxicity effects on cells not targeted can be obtained on a molecular level. For example, drug companies are particularly interested in studying the molecular side effects of drugs in the liver. In addition, experiments with the purpose of elucidating liver toxicity can be studied using samples obtained from animal models exposed to different concentrations of a drug over time. More recently considerable advances in mass spectrometry (MS) technologies and bioinformatics tools allows informative global drug profiling experiments to be performed at a cost comparable to other large-scale technologies such as DNA-based technologies. Moreover, MS-based proteomics provides an additional layer of information on the dynamic regulation of proteins translation and particularly protein degradation. MS-based proteomics approaches combined with other biochemical methods delivers information on regulatory networks, signaling cascades, and metabolic pathways upon drug treatment. Furthermore, MS-based proteomics can provide additional information on single amino acid polymorphisms, protein isoform distribution, posttranslational modifications, and subcellular localization. In this chapter, we will share our experience using MS based proteomics as a pharmacoproteomics strategy to characterize drug mechanisms of action in single drug therapy or in multidrug combination. Finally, the emergence of integrated proteogenomics analysis, such as "The Cancer Genome Atlas" program, opened interesting perspectives to extend this approach to drug target

  6. Global transcriptional regulator TrmB family members in prokaryotes.

    PubMed

    Kim, Minwook; Park, Soyoung; Lee, Sung-Jae

    2016-10-01

    Members of the TrmB family act as global transcriptional regulators for the activation or repression of sugar ABC transporters and central sugar metabolic pathways, including glycolytic, gluconeogenic, and other metabolic pathways, and also as chromosomal stabilizers in archaea. As a relatively newly classified transcriptional regulator family, there is limited experimental evidence for their role in Thermococcales, halophilic archaeon Halobacterium salinarum NRC1, and crenarchaea Sulfolobus strains, despite being one of the extending protein families in archaea. Recently, the protein structures of Pyrococcus furiosus TrmB and TrmBL2 were solved, and the transcriptomic data uncovered by microarray and ChIP-Seq were published. In the present review, recent evidence of the functional roles of TrmB family members in archaea is explained and extended to bacteria. PMID:27687225

  7. Global transcriptional regulator TrmB family members in prokaryotes.

    PubMed

    Kim, Minwook; Park, Soyoung; Lee, Sung-Jae

    2016-10-01

    Members of the TrmB family act as global transcriptional regulators for the activation or repression of sugar ABC transporters and central sugar metabolic pathways, including glycolytic, gluconeogenic, and other metabolic pathways, and also as chromosomal stabilizers in archaea. As a relatively newly classified transcriptional regulator family, there is limited experimental evidence for their role in Thermococcales, halophilic archaeon Halobacterium salinarum NRC1, and crenarchaea Sulfolobus strains, despite being one of the extending protein families in archaea. Recently, the protein structures of Pyrococcus furiosus TrmB and TrmBL2 were solved, and the transcriptomic data uncovered by microarray and ChIP-Seq were published. In the present review, recent evidence of the functional roles of TrmB family members in archaea is explained and extended to bacteria.

  8. Transcriptional profiling of XdrA, a new regulator of spa transcription in Staphylococcus aureus.

    PubMed

    McCallum, N; Hinds, J; Ender, M; Berger-Bächi, B; Stutzmann Meier, P

    2010-10-01

    Transcription of spa, encoding the virulence factor protein A in Staphylococcus aureus, is tightly controlled by a complex regulatory network, ensuring its temporal expression over growth and at appropriate stages of the infection process. Transcriptomic profiling of XdrA, a DNA-binding protein that is conserved in all S. aureus genomes and shares similarity with the XRE family of helix-turn-helix, antitoxin-like proteins, revealed it to be a previously unidentified activator of spa transcription. To assess how XdrA fits into the complex web of spa regulation, a series of regulatory mutants were constructed; consisting of single, double, triple, and quadruple mutants lacking XdrA and/or the three key regulators previously shown to influence spa transcription directly (SarS, SarA, and RNAIII). A series of lacZ reporter gene fusions containing nested deletions of the spa promoter identified regions influenced by XdrA and the other three regulators. XdrA had almost as strong an activating effect on spa as SarS and acted on the same spa operator regions as SarS, or closely overlapping regions. All data from microarrays, Northern and Western blot analyses, and reporter gene fusion experiments indicated that XdrA is a major activator of spa expression that appears to act directly on the spa promoter and not through previously characterized regulators.

  9. Genomic profiling of human Leishmania braziliensis lesions identifies transcriptional modules associated with cutaneous immunopathology.

    PubMed

    Novais, Fernanda O; Carvalho, Lucas P; Passos, Sara; Roos, David S; Carvalho, Edgar M; Scott, Phillip; Beiting, Daniel P

    2015-01-01

    The host immune response has a critical role not only in protection from human leishmaniasis but also in promoting disease severity. Although candidate gene approaches in mouse models of leishmaniasis have been extremely informative, a global understanding of the immune pathways active in lesions from human patients is lacking. To address this issue, genome-wide transcriptional profiling of Leishmania braziliensis-infected cutaneous lesions and normal skin controls was carried out. A signature of the L. braziliensis skin lesion was defined, which includes over 2,000 differentially regulated genes. Pathway-level analysis of this transcriptional response revealed key biological pathways present in cutaneous lesions, generating a testable 'metapathway' model of immunopathology and providing new insights for treatment of human leishmaniasis.

  10. Global transcriptional response of Bacillus subtilis to heat shock.

    PubMed

    Helmann, J D; Wu, M F; Kobel, P A; Gamo, F J; Wilson, M; Morshedi, M M; Navre, M; Paddon, C

    2001-12-01

    In response to heat stress, Bacillus subtilis activates the transcription of well over 100 different genes. Many of these genes are members of a general stress response regulon controlled by the secondary sigma factor, sigma(B), while others are under control of the HrcA or CtsR heat shock regulators. We have used DNA microarrays to monitor the global transcriptional response to heat shock. We find strong induction of known sigma(B)-dependent genes with a characteristic rapid induction followed by a return to near prestimulus levels. The HrcA and CtsR regulons are also induced, but with somewhat slower kinetics. Analysis of DNA sequences proximal to newly identified heat-induced genes leads us to propose ~70 additional members of the sigma(B) regulon. We have also identified numerous heat-induced genes that are not members of known heat shock regulons. Notably, we observe very strong induction of arginine biosynthesis and transport operons. Induction of several genes was confirmed by quantitative reverse transcriptase PCR. In addition, the transcriptional responses measured by microarray hybridization compare favorably with the numerous previous studies of heat shock in this organism. Since many different conditions elicit both specific and general stress responses, knowledge of the heat-induced general stress response reported here will be helpful for interpreting future microarray studies of other stress responses. PMID:11717291

  11. Transcriptional Profiling of Nitrogen Fixation in Azotobacter vinelandii▿†

    PubMed Central

    Hamilton, Trinity L.; Ludwig, Marcus; Dixon, Ray; Boyd, Eric S.; Dos Santos, Patricia C.; Setubal, João C.; Bryant, Donald A.; Dean, Dennis R.; Peters, John W.

    2011-01-01

    Most biological nitrogen (N2) fixation results from the activity of a molybdenum-dependent nitrogenase, a complex iron-sulfur enzyme found associated with a diversity of bacteria and some methanogenic archaea. Azotobacter vinelandii, an obligate aerobe, fixes nitrogen via the oxygen-sensitive Mo nitrogenase but is also able to fix nitrogen through the activities of genetically distinct alternative forms of nitrogenase designated the Vnf and Anf systems when Mo is limiting. The Vnf system appears to replace Mo with V, and the Anf system is thought to contain Fe as the only transition metal within the respective active site metallocofactors. Prior genetic analyses suggest that a number of nif-encoded components are involved in the Vnf and Anf systems. Genome-wide transcription profiling of A. vinelandiicultured under nitrogen-fixing conditions under various metal amendments (e.g., Mo or V) revealed the discrete complement of genes associated with each nitrogenase system and the extent of cross talk between the systems. In addition, changes in transcript levels of genes not directly involved in N2fixation provided insight into the integration of central metabolic processes and the oxygen-sensitive process of N2fixation in this obligate aerobe. The results underscored significant differences between Mo-dependent and Mo-independent diazotrophic growth that highlight the significant advantages of diazotrophic growth in the presence of Mo. PMID:21724999

  12. Global transcriptional responses to triclosan exposure in Pseudomonas aeruginosa.

    PubMed

    Chuanchuen, Rungtip; Schweizer, Herbert P

    2012-08-01

    Global gene transcription was assessed by microarray experiments following treatment of a triclosan-susceptible Δ(mexAB-oprM) Pseudomonas aeruginosa strain with subinhibitory concentrations of triclosan. Expression patterns of selected genes were verified by quantitative real-time PCR analysis. The results showed that triclosan exposure had a profound effect on gene expression, affecting 44% of the genes present on the Affymetrix GeneChip(®), with 28% of genes being significantly upregulated and 16% being significantly downregulated in triclosan-treated cells. Genes encoding membrane proteins, transporters of small molecules, aspects of amino acid metabolism, and transcriptional regulators were significantly over-represented among the more strongly upregulated or downregulated genes in triclosan-treated cells. Quorum sensing-regulated genes were among the most strongly downregulated genes, presumably because of decreased acyl-acyl carrier protein pools and the resulting reduced acyl-homoserine lactone molecule synthesis. Surprisingly, iron homeostasis was completed perturbed in triclosan-exposed cells, with iron acquisition systems being strongly downregulated and iron storage systems significantly upregulated, thus mimicking conditions of excess iron. The profound perturbations of cellular metabolism via specific and global mechanisms may explain why triclosan is such a potent antimicrobial in susceptible bacteria.

  13. Transcriptional profiling identifies the metabolic phenotype of gonococcal biofilms.

    PubMed

    Falsetta, Megan L; Bair, Thomas B; Ku, Shan Chi; Vanden Hoven, Rachel N; Steichen, Christopher T; McEwan, Alastair G; Jennings, Michael P; Apicella, Michael A

    2009-09-01

    Neisseria gonorrhoeae, the etiologic agent of gonorrhea, is frequently asymptomatic in women, often leading to chronic infections. One factor contributing to this may be biofilm formation. N. gonorrhoeae can form biofilms on glass and plastic surfaces. There is also evidence that biofilm formation may occur during natural cervical infection. To further study the mechanism of gonococcal biofilm formation, we compared transcriptional profiles of N. gonorrhoeae biofilms to planktonic profiles. Biofilm RNA was extracted from N. gonorrhoeae 1291 grown for 48 h in continuous-flow chambers over glass. Planktonic RNA was extracted from the biofilm runoff. In comparing biofilm with planktonic growth, 3.8% of the genome was differentially regulated. Genes that were highly upregulated in biofilms included aniA, norB, and ccp. These genes encode enzymes that are central to anaerobic respiratory metabolism and stress tolerance. Downregulated genes included members of the nuo gene cluster, which encodes the proton-translocating NADH dehydrogenase. Furthermore, it was observed that aniA, ccp, and norB insertional mutants were attenuated for biofilm formation on glass and transformed human cervical epithelial cells. These data suggest that biofilm formation by the gonococcus may represent a response that is linked to the control of nitric oxide steady-state levels during infection of cervical epithelial cells. PMID:19528210

  14. Transcriptional profiling of Haemophilus parasuis SH0165 response to tilmicosin.

    PubMed

    Liu, Yingyu; Chen, Pin; Wang, Yang; Li, Wentao; Cheng, Shuang; Wang, Chunmei; Zhang, Anding; He, Qigai

    2012-12-01

    The Haemophilus parasuis respiratory tract pathogen poses a severe threat to the swine industry despite available antimicrobial therapies. To gain a more detailed understanding of the molecular mechanisms underlying H. parasuis response to tilmicosin treatment, microarray technology was applied to analyze the variation in gene expression of isolated H. parasuis SH0165 treated in vitro with subinhibitory (0.25 μg/ml) and inhibitory (8 μg/ml) concentrations. Tilmicosin treatment induced differential expression of 405 genes, the encoded products of which are mainly involved in the heat shock response, protein synthesis, and intracellular transportation. The subinhibitory and inhibitory concentrations of tilmicosin induced distinctive gene expression profiles of shared and unique changes, respectively. These changes included 302 genes mainly involved in protein export and the phosphotransferase system to sustain cell growth, and 198 genes mainly related to RNA polymerase, recombination, and repair to inhibit cell growth. In silico analysis of functions related to the differentially expressed genes suggested that adaptation of H. parasuis SH0165 to tilmicosin involves modulation of protein synthesis and membrane transport. Collectively, the genes comprising each transcriptional profile of H. parasuis response to tilmicosin provide novel insights into the physiological functions of this economically significant bacterium and may represent targets of future molecular therapeutic strategies.

  15. Spatiotemporal profiles of arginine vasopressin transcription in cultured suprachiasmatic nucleus.

    PubMed

    Yoshikawa, Tomoko; Nakajima, Yoshihiro; Yamada, Yoshiko; Enoki, Ryosuke; Watanabe, Kazuto; Yamazaki, Maya; Sakimura, Kenji; Honma, Sato; Honma, Ken-ichi

    2015-11-01

    Arginine vasopressin (AVP), a major neuropeptide in the suprachiasmatic nucleus (SCN), is postulated to mediate the output of the circadian oscillation. Mice carrying a reporter gene of AVP transcription (AVP(ELuc)) were produced by knocking-in a cDNA of Emerald-luciferase (ELuc) in the translational initiation site. Homozygous mice did not survive beyond postnatal day 7. Using the heterozygous (AVP(ELuc/+)) mice, a bioluminescence reporter system was developed that enabled to monitor AVP transcription through AVP-ELuc measurement in real time for more than 10 cycles in the cultured brain slice. AVP(ELuc/+) mice showed circadian behaviour rhythms and light responsiveness indistinguishable from those of the wild-type. Robust circadian rhythms in AVP-ELuc were detected in the cultured SCN slice at a single cell as well as tissue levels. The circadian rhythm of the whole SCN slice was stable, with the peak at the mid-light phase of a light-dark cycle, while that of a single cell was more variable. By comparison, rhythmicity in the paraventricular nucleus and supraoptic nucleus in the hypothalamus was unstable and damped rapidly. Spatiotemporal profiles of AVP expression at the pixel level revealed significant circadian rhythms in the entire area of AVP-positive cells in the SCN, and at least two clusters that showed different circadian oscillations. Contour analysis of bioluminescence intensity in a cell-like region demonstrated the radiation area was almost identical to the cell size. This newly developed reporter system for AVP gene expression is a useful tool for the study of circadian rhythms. PMID:26342201

  16. A microfluidic approach to parallelized transcriptional profiling of single cells

    PubMed Central

    Sun, Hao; Olsen, Timothy; Zhu, Jing; Tao, Jianguo; Ponnaiya, Brian; Amundson, Sally A.; Brenner, David J.; Lin, Qiao

    2016-01-01

    The ability to correlate single-cell genetic information with cellular phenotypes is of great importance to biology and medicine, as it holds the potential to gain insight into disease pathways that is unavailable from ensemble measurements. We present a microfluidic approach to parallelized, rapid, quantitative analysis of messenger RNA from single cells via RT-qPCR. The approach leverages an array of single-cell RT-qPCR analysis units formed by a set of parallel microchannels concurrently controlled by elastomeric pneumatic valves, thereby enabling parallelized handling and processing of single cells in a drastically simplified operation procedure using a relatively small number of microvalves. All steps for single-cell RT-qPCR, including cell isolation and immobilization, cell lysis, mRNA purification, reverse transcription and qPCR, are integrated on a single chip, eliminating the need for off-chip manual cell and reagent transfer and qPCR amplification as commonly used in existing approaches. Additionally, the approach incorporates optically transparent microfluidic components to allow monitoring of single-cell trapping without the need for molecular labeling that can potentially alter the targeted gene expression and utilizes a polycarbonate film as a barrier against evaporation to minimize the loss of reagents at elevated temperatures during the analysis. We demonstrate the utility of the approach by the transcriptional profiling for the induction of the cyclin-dependent kinase inhibitor 1a and the glyceraldehyde 3-phosphate dehydrogenase in single cells from the MCF-7 breast cancer cell line. Furthermore, the methyl methanesulfonate is employed to allow measurement of the expression of the genes in individual cells responding to a genotoxic stress. PMID:27194954

  17. Pregnancy complicated by obesity induces global transcript expression alterations in visceral and subcutaneous fat.

    PubMed

    Bashiri, Asher; Heo, Hye J; Ben-Avraham, Danny; Mazor, Moshe; Budagov, Temuri; Einstein, Francine H; Atzmon, Gil

    2014-08-01

    Maternal obesity is a significant risk factor for development of both maternal and fetal metabolic complications. Increase in visceral fat and insulin resistance is a metabolic hallmark of pregnancy, yet not much is known how obesity alters adipose cellular function and how this may contribute to pregnancy morbidities. We sought to identify alterations in genome-wide transcription expression in both visceral (omental) and abdominal subcutaneous fat deposits in pregnancy complicated by obesity. Visceral and abdominal subcutaneous fat deposits were collected from normal weight and obese pregnant women (n = 4/group) at the time of scheduled uncomplicated cesarean section. A genome-wide expression array (Affymetrix Human Exon 1.0 st platform), validated by quantitative real-time PCR, was utilized to establish the gene transcript expression profile in both visceral and abdominal subcutaneous fat in normal weight and obese pregnant women. Global alteration in gene expression was identified in pregnancy complicated by obesity. These regions of variations led to identification of indolethylamine N-methyltransferase, tissue factor pathway inhibitor-2, and ephrin type-B receptor 6, not previously associated with fat metabolism during pregnancy. In addition, subcutaneous fat of obese pregnant women demonstrated increased coding protein transcripts associated with apoptosis as compared to lean counterparts. Global alteration of gene expression in adipose tissue may contribute to adverse pregnancy outcomes associated with obesity.

  18. Pregnancy Complicated by Obesity Induces Global Transcript Expression Alterations in Visceral and Subcutaneous Fat

    PubMed Central

    Bashiri, Asher; Heo, Hye J.; Ben-Avraham, Danny; Mazor, Moshe; Budagov, Temuri; Einstein, Francine H.; Atzmon, Gil

    2014-01-01

    Maternal obesity is a significant risk factor for development of both maternal and fetal metabolic complications. Increase in visceral fat and insulin resistance is a metabolic hallmark of pregnancy, yet little is known how obesity alters adipose cellular function and how this may contribute to pregnancy morbidities. We sought to identify alterations in genome-wide transcription expression in both visceral (omental) and abdominal subcutaneous fat deposits in pregnancy complicated by obesity. Visceral and abdominal subcutaneous fat deposits were collected from normal weight and obese pregnant women (n=4/group) at time of scheduled uncomplicated cesarean section. A genome-wide expression array (Affymetrix Human Exon 1.0 st platform), validated by quantitative real-time PCR, was utilized to establish the gene transcript expression profile in both visceral and abdominal subcutaneous fat in normal weight and obese pregnant women. Global alteration in gene expression was identified in pregnancy complicated by obesity. These regions of variations lead to identification of indolethylamine N-methyltransferase (INMT), tissue factor pathway inhibitor-2 (TFPI-2), and ephrin type-B receptor 6 (EPHB6), not previously associated with fat metabolism during pregnancy. In addition, subcutaneous fat of obese pregnant women demonstrated increased coding protein transcripts associated with apoptosis compared to lean counterparts. Global alteration of gene expression in adipose tissue may contribute to adverse pregnancy outcomes associated with obesity. PMID:24696292

  19. The epithelial-mesenchymal transition induced by keratinocyte growth conditions is overcome by E6 and E7 from HPV16, but not HPV8 and HPV38: Characterization of global transcription profiles

    SciTech Connect

    Azzimonti, Barbara; Dell'Oste, Valentina; Borgogna, Cinzia; Mondini, Michele; Gugliesi, Francesca; De Andrea, Marco; Chiorino, Giovanna; Scatolini, Maria; Ghimenti, Chiara; Landolfo, Santo; Gariglio, Marisa

    2009-06-05

    The aim of this study was to evaluate the growth properties of primary human keratinocytes expressing E6 and E7 proteins, which are from either the beta- or alpha-genotypes, under different culture conditions. We demonstrated that keratinocytes expressing E6 and E7, from both HPV8 and 38, irreversibly underwent the epithelial-mesenchymal transition (EMT) when grown on plastic with FAD medium (F12/DMEM/5%FBS). Expression of E6/E7 from HPV16 was capable of fully overcoming the FAD-induced EMT. Immortalization was only observed in HPV16-transduced cell lines, while the more proliferating phenotype of both KerHPV8 and 38 was mainly related to FAD-induced EMT. Microarray analysis of exponentially growing cells identified 146 cellular genes that were differentially regulated in HPV16 compared to HPV8- and 38-transduced cells. A large accumulation of transcripts associated with epidermal development and differentiation was observed in HPV16-transduced cells, whereas transcripts of genes involved in the extracellular matrix, multicellular organismal processes, and inflammatory response were affected in HPV8 and 38-transduced cells.

  20. Improvement of oxidative stress tolerance in Saccharomyces cerevisiae through global transcription machinery engineering.

    PubMed

    Zhao, Hongwei; Li, Jingyuan; Han, Beizhong; Li, Xuan; Chen, Jingyu

    2014-05-01

    Excessive oxidative stress poses significant damage to yeast cells during fermentation process, and finally affects fermentation efficiency and the quality of products. In this paper, global transcription machinery engineering was employed to elicit Saccharomyces cerevisiae phenotypes of higher tolerance against oxidative stress caused by H2O2. Two strains from two plasmid-based mutagenesis libraries (Spt15 and Taf25), which exhibited significant increases in oxidative stress tolerance, were successfully isolated. At moderate H2O2 shock (≤3.5 mM), a positive correlation was found between the outperformance in cell growth of the oxidation-tolerate strains and H2O2 concentration. Several mutations were observed in the native transcription factors, which resulted in a different transcriptional profile compared with the control. Catalase and superoxide dismutase activities of the two mutants increased under H2O2 stress conditions. Fermentation experiments revealed that the mutant strain taf25-3 has a shorter lag phase compared to the control one, indicating that taf25-3 had improved adaptation ability to H2O2-induced oxidative stress and higher fermentation efficiency. Our study demonstrated that several amino acid substitutions in general transcription factors (Spt15 and Taf25) could modify the cellular oxidation defense systems and improve the anti-oxidation ability of S. cerevisiae. It could make the industrial ethanol fermentation more efficient and cost-effective by using the strain of higher stress tolerance. PMID:24633583

  1. Transcription Profiling Analysis of Mango–Fusarium mangiferae Interaction

    PubMed Central

    Liu, Feng; Wu, Jing-bo; Zhan, Ru-lin; Ou, Xiong-chang

    2016-01-01

    Malformation caused by Fusarium mangiferae is one of the most destructive mango diseases affecting the canopy and floral development, leading to dramatic reduction in fruit yield. To further understand the mechanism of interaction between mango and F. mangiferae, we monitored the transcriptome profiles of buds from susceptible mango plants, which were challenged with F. mangiferae. More than 99 million reads were deduced by RNA-sequencing and were assembled into 121,267 unigenes. Based on the sequence similarity searches, 61,706 unigenes were identified, of which 21,273 and 50,410 were assigned to gene ontology categories and clusters of orthologous groups, respectively, and 33,243 were mapped to 119 KEGG pathways. The differentially expressed genes of mango were detected, having 15,830, 26,061, and 20,146 DEGs respectively, after infection for 45, 75, and 120 days. The analysis of the comparative transcriptome suggests that basic defense mechanisms play important roles in disease resistance. The data also show the transcriptional responses of interactions between mango and the pathogen and more drastic changes in the host transcriptome in response to the pathogen. These results could be used to develop new methods to broaden the resistance of mango to malformation, including the over-expression of key mango genes.

  2. Transcription Profiling Analysis of Mango-Fusarium mangiferae Interaction.

    PubMed

    Liu, Feng; Wu, Jing-Bo; Zhan, Ru-Lin; Ou, Xiong-Chang

    2016-01-01

    Malformation caused by Fusarium mangiferae is one of the most destructive mango diseases affecting the canopy and floral development, leading to dramatic reduction in fruit yield. To further understand the mechanism of interaction between mango and F. mangiferae, we monitored the transcriptome profiles of buds from susceptible mango plants, which were challenged with F. mangiferae. More than 99 million reads were deduced by RNA-sequencing and were assembled into 121,267 unigenes. Based on the sequence similarity searches, 61,706 unigenes were identified, of which 21,273 and 50,410 were assigned to gene ontology categories and clusters of orthologous groups, respectively, and 33,243 were mapped to 119 KEGG pathways. The differentially expressed genes of mango were detected, having 15,830, 26,061, and 20,146 DEGs respectively, after infection for 45, 75, and 120 days. The analysis of the comparative transcriptome suggests that basic defense mechanisms play important roles in disease resistance. The data also show the transcriptional responses of interactions between mango and the pathogen and more drastic changes in the host transcriptome in response to the pathogen. These results could be used to develop new methods to broaden the resistance of mango to malformation, including the over-expression of key mango genes. PMID:27683574

  3. Transcription Profiling Analysis of Mango–Fusarium mangiferae Interaction

    PubMed Central

    Liu, Feng; Wu, Jing-bo; Zhan, Ru-lin; Ou, Xiong-chang

    2016-01-01

    Malformation caused by Fusarium mangiferae is one of the most destructive mango diseases affecting the canopy and floral development, leading to dramatic reduction in fruit yield. To further understand the mechanism of interaction between mango and F. mangiferae, we monitored the transcriptome profiles of buds from susceptible mango plants, which were challenged with F. mangiferae. More than 99 million reads were deduced by RNA-sequencing and were assembled into 121,267 unigenes. Based on the sequence similarity searches, 61,706 unigenes were identified, of which 21,273 and 50,410 were assigned to gene ontology categories and clusters of orthologous groups, respectively, and 33,243 were mapped to 119 KEGG pathways. The differentially expressed genes of mango were detected, having 15,830, 26,061, and 20,146 DEGs respectively, after infection for 45, 75, and 120 days. The analysis of the comparative transcriptome suggests that basic defense mechanisms play important roles in disease resistance. The data also show the transcriptional responses of interactions between mango and the pathogen and more drastic changes in the host transcriptome in response to the pathogen. These results could be used to develop new methods to broaden the resistance of mango to malformation, including the over-expression of key mango genes. PMID:27683574

  4. Circulating Human Eosinophils Share a Similar Transcriptional Profile in Asthma and Other Hypereosinophilic Disorders

    PubMed Central

    Barnig, Cindy; Dembélé, Doulaye; Paul, Nicodème; Poirot, Anh; Uring-Lambert, Béatrice; Georgel, Philippe; de Blay, Fréderic; Bahram, Seiamak

    2015-01-01

    Eosinophils are leukocytes that are released into the peripheral blood in a phenotypically mature state and are capable of being recruited into tissues in response to appropriate stimuli. Eosinophils, traditionally considered cytotoxic effector cells, are leukocytes recruited into the airways of asthma patients where they are believed to contribute to the development of many features of the disease. This perception, however, has been challenged by recent findings suggesting that eosinophils have also immunomodulatory functions and may be involved in tissue homeostasis and wound healing. Here we describe a transcriptome-based approach–in a limited number of patients and controls—to investigate the activation state of circulating human eosinophils isolated by flow cytometry. We provide an overview of the global expression pattern in eosinophils in various relevant conditions, e.g., eosinophilic asthma, hypereosinophilic dermatological diseases, parasitosis and pulmonary aspergillosis. Compared to healthy subjects, circulating eosinophils isolated from asthma patients differed in their gene expression profile which is marked by downregulation of transcripts involved in antigen presentation, pathogen recognition and mucosal innate immunity, whereas up-regulated genes were involved in response to non-specific stimulation, wounding and maintenance of homeostasis. Eosinophils from other hypereosinophilic disorders displayed a very similar transcriptional profile. Taken together, these observations seem to indicate that eosinophils exhibit non-specific immunomodulatory functions important for tissue repair and homeostasis and suggest new roles for these cells in asthma immunobiology. PMID:26524763

  5. Global distribution of seamounts from Seasat profiles

    NASA Technical Reports Server (NTRS)

    Craig, Claire H.; Sandwell, David T.

    1988-01-01

    A new measurement techique based on a model of a Gaussian seamount loading a thin elastic lithosphere was developed to analyze seamounts that, until then, were not surveyed or seamounts with poor bathymetric coverage. The model predicts that the seamount diameter is equal to the peak-to-trough distance along the vertical deflection profile and that the flexural diameter of a seamount is related to the age of the lithosphere when the seamount formed. This model also suggests that these two measurements are relatively insensitive to the cross-track location from the seamount. These model predictions were confirmed using Seasat altimeter profiles crossing 14 surveyed seamounts in the Pacific. The analysis of the seamount distribution indicated considerable variations in population density and type across the oceans. Most notable among them are the absence of seamounts in the Atlantic, variations in population density across large fracture zones in the Pacific, and the prevalence of small signatures in the Indian Ocean.

  6. DNA microarray analysis of functionally discrete human brain regions reveals divergent transcriptional profiles

    PubMed Central

    Evans, S.J.; Choudary, P.V.; Vawter, M.P.; Li, J.; Meador-Woodruff, J.H.; Lopez, J.F.; Burke, S.M.; Thompson, R.C.; Myers, R.M.; Jones, E.G.; Bunney, W.E.; Watson, S.J.; Akil, H.

    2010-01-01

    Transcriptional profiles within discrete human brain regions are likely to reflect structural and functional specialization. Using DNA microarray technology, this study investigates differences in transcriptional profiles of highly divergent brain regions (the cerebellar cortex and the cerebral cortex) as well as differences between two closely related brain structures (the anterior cingulate cortex and the dorsolateral prefrontal cortex). Replication of this study across three independent laboratories, to address false-positive and false-negative results using microarray technology, is also discussed. We find greater than a thousand transcripts to be differentially expressed between cerebellum and cerebral cortex and very few transcripts to be differentially expressed between the two neocortical regions. We further characterized transcripts that were found to be specifically expressed within brain regions being compared and found that ontological classes representing signal transduction machinery, neurogenesis, synaptic transmission, and transcription factors were most highly represented. PMID:14572446

  7. EXPRESSION PROFILING OF FIVE RAT STRAINS REVEAL TRANSCRIPTIONAL MODES IN THE ANTIGEN PROCESSING PATHWAY

    EPA Science Inventory

    Comparative gene expression profiling of rat strains with genetic predisposition to diverse cardiovascular diseases can help decode the transcriptional program that governs cellular behavior. We hypothesized that co-transcribed, intra-pathway, functionally coherent genes can be r...

  8. Sputum is a surrogate for bronchoalveolar lavage for monitoring Mycobacterium tuberculosis transcriptional profiles in TB patients.

    PubMed

    Garcia, Benjamin J; Loxton, Andre G; Dolganov, Gregory M; Van, Tran T; Davis, J Lucian; de Jong, Bouke C; Voskuil, Martin I; Leach, Sonia M; Schoolnik, Gary K; Walzl, Gerhard; Strong, Michael; Walter, Nicholas D

    2016-09-01

    Pathogen-targeted transcriptional profiling in human sputum may elucidate the physiologic state of Mycobacterium tuberculosis (M. tuberculosis) during infection and treatment. However, whether M. tuberculosis transcription in sputum recapitulates transcription in the lung is uncertain. We therefore compared M. tuberculosis transcription in human sputum and bronchoalveolar lavage (BAL) samples from 11 HIV-negative South African patients with pulmonary tuberculosis. We additionally compared these clinical samples with in vitro log phase aerobic growth and hypoxic non-replicating persistence (NRP-2). Of 2179 M. tuberculosis transcripts assayed in sputum and BAL via multiplex RT-PCR, 194 (8.9%) had a p-value <0.05, but none were significant after correction for multiple testing. Categorical enrichment analysis indicated that expression of the hypoxia-responsive DosR regulon was higher in BAL than in sputum. M. tuberculosis transcription in BAL and sputum was distinct from both aerobic growth and NRP-2, with a range of 396-1020 transcripts significantly differentially expressed after multiple testing correction. Collectively, our results indicate that M. tuberculosis transcription in sputum approximates M. tuberculosis transcription in the lung. Minor differences between M. tuberculosis transcription in BAL and sputum suggested lower oxygen concentrations or higher nitric oxide concentrations in BAL. M. tuberculosis-targeted transcriptional profiling of sputa may be a powerful tool for understanding M. tuberculosis pathogenesis and monitoring treatment responses in vivo.

  9. Sputum is a surrogate for bronchoalveolar lavage for monitoring Mycobacterium tuberculosis transcriptional profiles in TB patients.

    PubMed

    Garcia, Benjamin J; Loxton, Andre G; Dolganov, Gregory M; Van, Tran T; Davis, J Lucian; de Jong, Bouke C; Voskuil, Martin I; Leach, Sonia M; Schoolnik, Gary K; Walzl, Gerhard; Strong, Michael; Walter, Nicholas D

    2016-09-01

    Pathogen-targeted transcriptional profiling in human sputum may elucidate the physiologic state of Mycobacterium tuberculosis (M. tuberculosis) during infection and treatment. However, whether M. tuberculosis transcription in sputum recapitulates transcription in the lung is uncertain. We therefore compared M. tuberculosis transcription in human sputum and bronchoalveolar lavage (BAL) samples from 11 HIV-negative South African patients with pulmonary tuberculosis. We additionally compared these clinical samples with in vitro log phase aerobic growth and hypoxic non-replicating persistence (NRP-2). Of 2179 M. tuberculosis transcripts assayed in sputum and BAL via multiplex RT-PCR, 194 (8.9%) had a p-value <0.05, but none were significant after correction for multiple testing. Categorical enrichment analysis indicated that expression of the hypoxia-responsive DosR regulon was higher in BAL than in sputum. M. tuberculosis transcription in BAL and sputum was distinct from both aerobic growth and NRP-2, with a range of 396-1020 transcripts significantly differentially expressed after multiple testing correction. Collectively, our results indicate that M. tuberculosis transcription in sputum approximates M. tuberculosis transcription in the lung. Minor differences between M. tuberculosis transcription in BAL and sputum suggested lower oxygen concentrations or higher nitric oxide concentrations in BAL. M. tuberculosis-targeted transcriptional profiling of sputa may be a powerful tool for understanding M. tuberculosis pathogenesis and monitoring treatment responses in vivo. PMID:27553415

  10. Transcriptional profiling of Medicago truncatula during Erysiphe pisi infection

    PubMed Central

    Curto, Miguel; Krajinski, Franziska; Schlereth, Armin; Rubiales, Diego

    2015-01-01

    Resistance to powdery mildew has been studied in a number of plant species, yet the molecular mechanisms remain largely unknown. Transcription factors (TFs) play a critical role in the plant defense response by regulating the transcriptional machinery which coordinates the expression of a large group of genes involved in plant defense. Using high-throughput quantitative real-time PCR (qPCR) technology more than 1000 Medicago truncatula TFs were screened in a pair of susceptible and resistant genotypes of M. truncatula after 4 h of Erysiphe pisi infection. Seventy nine TF genes, belonging to 33 families showed a significant transcriptional change in response to E. pisi infection. Forty eight TF genes were differentially expressed in the resistant genotypes compared to the susceptible one in response to E. pisi infection, including pathogenesis-related transcriptional factors, AP2/EREBP (APETALA2/ETHYLENE-RESPONSIVE ELEMENT BINDING FACTORS), WRKY (highly conserved WRKYGQK amino-acid sequence), MYB (Myeloblastoma), homeodomain (HD) and zinc finger C2C2 (CYS2-CYS2), C2H2, (CYS2-HIS2), LIM (Lin-11, Isl-1, Mec-3) gene families, which are involved in known defense responses. Our results suggest that these TF genes are among the E. pisi responsive genes in resistant M. truncatula that may constitute a regulatory network which controls the transcriptional changes in defense genes involved in resistance to E. pisi. PMID:26217367

  11. Transcriptional profiling of CcpE-regulated genes in Staphylococcus aureus.

    PubMed

    Li, Han; Ding, Yue; Lan, Lefu

    2015-09-01

    The transcriptional regulator CcpE is an important citrate-sensing regulator that modulates metabolic state, virulence factor expression, and bacterial virulence of Staphylococcus aureus (Ding et al., 2014 [1]). In this article, we report detailed methods for genome-wide transcriptional profiling of CcpE-regulated genes generated for the research article "Metabolic sensor governing bacterial virulence in Staphylococcus aureus" (Ding et al., 2014 [1]). All transcriptional profiling data was deposited to Gene Expression Omnibus (GEO) database under accession number GSE57260. PMID:26484245

  12. Transcriptional Profiling of Mycobacterium tuberculosis Exposed to In Vitro Lysosomal Stress.

    PubMed

    Lin, Wenwei; de Sessions, Paola Florez; Teoh, Garrett Hor Keong; Mohamed, Ahmad Naim Nazri; Zhu, Yuan O; Koh, Vanessa Hui Qi; Ang, Michelle Lay Teng; Dedon, Peter C; Hibberd, Martin Lloyd; Alonso, Sylvie

    2016-09-01

    Increasing experimental evidence supports the idea that Mycobacterium tuberculosis has evolved strategies to survive within lysosomes of activated macrophages. To further our knowledge of M. tuberculosis response to the hostile lysosomal environment, we profiled the global transcriptional activity of M. tuberculosis when exposed to the lysosomal soluble fraction (SF) prepared from activated macrophages. Transcriptome sequencing (RNA-seq) analysis was performed using various incubation conditions, ranging from noninhibitory to cidal based on the mycobacterial replication or killing profile. Under inhibitory conditions that led to the absence of apparent mycobacterial replication, M. tuberculosis expressed a unique transcriptome with modulation of genes involved in general stress response, metabolic reprogramming, respiration, oxidative stress, dormancy response, and virulence. The transcription pattern also indicates characteristic cell wall remodeling with the possible outcomes of increased infectivity, intrinsic resistance to antibiotics, and subversion of the host immune system. Among the lysosome-specific responses, we identified the glgE-mediated 1,4 α-glucan synthesis pathway and a defined group of VapBC toxin/anti-toxin systems, both of which represent toxicity mechanisms that potentially can be exploited for killing intracellular mycobacteria. A meta-analysis including previously reported transcriptomic studies in macrophage infection and in vitro stress models was conducted to identify overlapping and nonoverlapping pathways. Finally, the Tap efflux pump-encoding gene Rv1258c was selected for validation. An M. tuberculosis ΔRv1258c mutant was constructed and displayed increased susceptibility to killing by lysosomal SF and the antimicrobial peptide LL-37, as well as attenuated survival in primary murine macrophages and human macrophage cell line THP-1. PMID:27324481

  13. Analysis of global transcriptional responses of chicken following primary and secondary Eimeria acervulina infections

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Characterization of host transcriptional responses during coccidia infections can provide new clues for the development of alternative disease control strategies against these complex protozoan pathogens. In the current study, we compared chicken duodenal transcriptome profiles following primary and...

  14. Chemical Manipulation of Meristem Dormancy Alters Transcript Profiles in Potato

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The dormancy status of potato tuber meristems can be manipulated by a variety of chemical treatments. The application of bromoethane (BE) results in dormancy cessation, while chlorpropham (CIPC), and 1,4-dimethyl naphthalene (DMN) are used commercially to prolong the dormant state. Transcript analys...

  15. ONTOGENY OF TRANSCRIPTION PROFILES DURING MOUSE EARLY CRANIOFACIAL DEVELOPMENT

    EPA Science Inventory

    Using the CD-1 mouse conceptus, we investigated gene expression changes found in vivo from gestational day (GD)8 through GD9 at 6h intervals, and then at 24h intervals through GD11. Data sets were analyzed for patterns in transcriptional expression over a time course as well as t...

  16. Global transcriptional analysis of nuclear reprogramming in the transition from MEFs to iPSCs.

    PubMed

    Dong, Fulu; Song, Zhenwei; Zhang, Jinping; Lu, Youde; Song, Chunlei; Jiang, BaoChun; Zhang, Baole; Cong, Peiqing; Sun, Hongyan; Shi, Fangxiong; Liu, Honglin

    2013-01-01

    Induced pluripotent stem cells (iPSCs) are flourishing in the investigation of cell reprogramming. However, we still know little about the sequential molecular mechanism during somatic cell reprogramming (SCR). Here, we first observed rapid generation of colonies whereas mouse embryonic fibroblasts (MEFs) were induced by OCT4, SOX2, KLF4 (OSK), and vitamin C for 7 days. The colony's global transcriptional profiles were analyzed using Affymetrix microarray. Microarray data confirmed that SCR was a process in which transcriptome got reversed and pluripotent genes expressed de novo. There were many changes, especially substantial growth expression of epigenetic factors, on transcriptome during the transition from Day 7 to iPSCs indicating that this period may provide 'flexibility' genome structure, chromatin remodeling, and epigenetic modifications to rebind to the transcriptional factors. Several biological processes such as viral immune response, apoptosis, cell fate specification, and cell communication were mainly involved before Day 7 whereas cell cycle, DNA methylation, and histone modification were mainly involved after Day 7. Furthermore, it was suggested that p53 signaling contributed to the transition 'hyperdynamic plastic' cell state and assembled cell niche for SCR, and small molecular compounds useful for chromatin remodeling can enhance iPSCs by exciting epigenetic modification rather than the exogenous expression of more TFs vectors. PMID:23231677

  17. Transcript expression profiling for adventitious roots of Panax ginseng Meyer.

    PubMed

    Subramaniyam, Sathiyamoorthy; Mathiyalagan, Ramya; Natarajan, Sathishkumar; Kim, Yu-Jin; Jang, Moon-Gi; Park, Jun-Hyung; Yang, Deok Chun

    2014-08-01

    Panax ginseng Meyer is one of the major medicinal plants in oriental countries belonging to the Araliaceae family which are the primary source for ginsenosides. However, very few genes were characterized for ginsenoside pathway, due to the limited genome information. Through this study, we obtained a comprehensive transcriptome from adventitious roots, which were treated with methyl jasmonic acids for different time points (control, 2h, 6h, 12h, and 24h) and sequenced by RNA 454 pyrosequencing technology. Reference transcriptome 39,304,529 (0.04GB) was obtained from 5,724,987,880 bases (5.7GB) of 22 libraries by de novo assembly and 35,266 (58.5%) transcripts were annotated with biological schemas (GO and KEGG). The digital gene expression patterns were obtained from in vitro grown adventitious root sequences which mapped to reference, from that, 3813 (6.3%) unique transcripts were involved in ≥2 fold up and downregulations. Finally, candidates for ginsenoside pathway genes were predicted from observed expression patterns. Among them, 30 transcription factors, 20 cytochromes, and 11 glycosyl transferases were predicted as ginsenoside candidates. These data can remarkably expand the existing transcriptome resources of Panax, especially to predict existence of gene networks in P. ginseng. The entity of the data provides a valuable platform to reveal more on secondary metabolism and abiotic stresses from P. ginseng in vitro grown adventitious roots.

  18. Global analysis of transcriptionally engaged yeast RNA polymerase III reveals extended tRNA transcripts

    PubMed Central

    Turowski, Tomasz W.; Leśniewska, Ewa; Delan-Forino, Clementine; Sayou, Camille; Boguta, Magdalena; Tollervey, David

    2016-01-01

    RNA polymerase III (RNAPIII) synthesizes a range of highly abundant small stable RNAs, principally pre-tRNAs. Here we report the genome-wide analysis of nascent transcripts attached to RNAPIII under permissive and restrictive growth conditions. This revealed strikingly uneven polymerase distributions across transcription units, generally with a predominant 5′ peak. This peak was higher for more heavily transcribed genes, suggesting that initiation site clearance is rate-limiting during RNAPIII transcription. Down-regulation of RNAPIII transcription under stress conditions was found to be uneven; a subset of tRNA genes showed low response to nutrient shift or loss of the major transcription regulator Maf1, suggesting potential “housekeeping” roles. Many tRNA genes were found to generate long, 3′-extended forms due to read-through of the canonical poly(U) terminators. The degree of read-through was anti-correlated with the density of U-residues in the nascent tRNA, and multiple, functional terminators can be located far downstream. The steady-state levels of 3′-extended pre-tRNA transcripts are low, apparently due to targeting by the nuclear surveillance machinery, especially the RNA binding protein Nab2, cofactors for the nuclear exosome, and the 5′-exonuclease Rat1. PMID:27206856

  19. Candida albicans Transcriptional Profiling Within Biliary Fluid From a Patient With Cholangitis, Before and After Antifungal Treatment and Surgical Drainage

    PubMed Central

    Clancy, Cornelius J.; Meslin, Camille; Badrane, Hassan; Cheng, Shaoji; Losada, Liliana C.; Nierman, William C.; Vergidis, Pascalis; Clark, Nathan L.; Nguyen, M. Hong

    2016-01-01

    We used ribonucleic acid sequencing to profile Candida albicans transcription within biliary fluid from a patient with cholangitis; samples were collected before and after treatment with fluconazole and drainage. Candida albicans transcriptomes at the infection site distinguished treated from untreated cholangitis. After treatment, 1131 C. albicans genes were differentially expressed in biliary fluid. Up-regulated genes were enriched in hyphal growth, cell wall organization, adhesion, oxidation reduction, biofilm, and fatty acid and ergosterol biosynthesis. This is the first study to define Candida global gene expression during deep-seated human infection. Successful treatment of cholangitis induced C. albicans genes involved in fluconazole responses and pathogenesis.

  20. Identification of a Novel Reference Gene for Apple Transcriptional Profiling under Postharvest Conditions

    PubMed Central

    Storch, Tatiane Timm; Pegoraro, Camila; Finatto, Taciane; Quecini, Vera; Rombaldi, Cesar Valmor; Girardi, César Luis

    2015-01-01

    Reverse Transcription quantitative PCR (RT-qPCR) is one of the most important techniques for gene expression profiling due to its high sensibility and reproducibility. However, the reliability of the results is highly dependent on data normalization, performed by comparisons between the expression profiles of the genes of interest against those of constitutively expressed, reference genes. Although the technique is widely used in fruit postharvest experiments, the transcription stability of reference genes has not been thoroughly investigated under these experimental conditions. Thus, we have determined the transcriptional profile, under these conditions, of three genes commonly used as reference—ACTIN (MdACT), PROTEIN DISULPHIDE ISOMERASE (MdPDI) and UBIQUITIN-CONJUGATING ENZYME E2 (MdUBC)—along with two novel candidates—HISTONE 1 (MdH1) and NUCLEOSSOME ASSEMBLY 1 PROTEIN (MdNAP1). The expression profile of the genes was investigated throughout five experiments, with three of them encompassing the postharvest period and the other two, consisting of developmental and spatial phases. The transcriptional stability was comparatively investigated using four distinct software packages: BestKeeper, NormFinder, geNorm and DataAssist. Gene ranking results for transcriptional stability were similar for the investigated software packages, with the exception of BestKeeper. The classic reference gene MdUBC ranked among the most stably transcribed in all investigated experimental conditions. Transcript accumulation profiles for the novel reference candidate gene MdH1 were stable throughout the tested conditions, especially in experiments encompassing the postharvest period. Thus, our results present a novel reference gene for postharvest experiments in apple and reinforce the importance of checking the transcription profile of reference genes under the experimental conditions of interest. PMID:25774904

  1. Identification of a novel reference gene for apple transcriptional profiling under postharvest conditions.

    PubMed

    Storch, Tatiane Timm; Pegoraro, Camila; Finatto, Taciane; Quecini, Vera; Rombaldi, Cesar Valmor; Girardi, César Luis

    2015-01-01

    Reverse Transcription quantitative PCR (RT-qPCR) is one of the most important techniques for gene expression profiling due to its high sensibility and reproducibility. However, the reliability of the results is highly dependent on data normalization, performed by comparisons between the expression profiles of the genes of interest against those of constitutively expressed, reference genes. Although the technique is widely used in fruit postharvest experiments, the transcription stability of reference genes has not been thoroughly investigated under these experimental conditions. Thus, we have determined the transcriptional profile, under these conditions, of three genes commonly used as reference--ACTIN (MdACT), PROTEIN DISULPHIDE ISOMERASE (MdPDI) and UBIQUITIN-CONJUGATING ENZYME E2 (MdUBC)--along with two novel candidates--HISTONE 1 (MdH1) and NUCLEOSSOME ASSEMBLY 1 PROTEIN (MdNAP1). The expression profile of the genes was investigated throughout five experiments, with three of them encompassing the postharvest period and the other two, consisting of developmental and spatial phases. The transcriptional stability was comparatively investigated using four distinct software packages: BestKeeper, NormFinder, geNorm and DataAssist. Gene ranking results for transcriptional stability were similar for the investigated software packages, with the exception of BestKeeper. The classic reference gene MdUBC ranked among the most stably transcribed in all investigated experimental conditions. Transcript accumulation profiles for the novel reference candidate gene MdH1 were stable throughout the tested conditions, especially in experiments encompassing the postharvest period. Thus, our results present a novel reference gene for postharvest experiments in apple and reinforce the importance of checking the transcription profile of reference genes under the experimental conditions of interest.

  2. Transcriptional profile of Paracoccidioides spp. in response to itraconazole

    PubMed Central

    2014-01-01

    Background Itraconazole is currently used to treat paracoccidioidomycosis. The mechanism of action of azoles has been elucidated in some fungi, although little is known regarding its mechanism of action in Paracoccidioides spp. The present work focused on identification of regulated transcripts using representational difference analysis of Paracoccidioides spp. yeast cells treated with itraconazole for 1 and 2 h. Results Paracoccidioides Pb01 genes up-regulated by itraconazole included genes involved in cellular transport, metabolism/energy, transcription, cell rescue, defense and virulence. ERG11, ERG6, ERG3, ERG5 and ERG25 were up-regulated at multiple time points. In vivo infection experiments in mice corroborated the in vitro results. Ergosterol levels and distribution were evaluated in Paracoccidioides Pb18 yeast cells, and the results demonstrate that both factors were changed in the fungus treated with itraconazole. Conclusion To our knowledge, this is the first transcriptional analysis of Paracoccidioides spp. exposed to a triazole drug. Here acetyl seems to be intensively produced from different metabolic pathways to produce ergosterol by the action of ergosterol synthesis related enzymes, which were also affected in other fungi. Among the genes affected, we identified genes in common with other fungi, as well as genes unique to Paracoccidioides Pb01. Those genes could be considered target to new drugs. Voltage-gated Ca2+ alpha subunit (CAV), Tetracycline resistance protein (TETA) and Hemolisyn-iii channel protein (HLYiii) were found only here and a probably involvement with resistence to itraconazole could be investigated in the future. However our findings do not permit inference to current clinical practice. PMID:24690401

  3. Global Gene Expression Profiling of Individual Human Oocytes and Embryos Demonstrates Heterogeneity in Early Development

    PubMed Central

    Zeef, Leo; Kimber, Susan J.; Brison, Daniel R.

    2013-01-01

    Early development in humans is characterised by low and variable embryonic viability, reflected in low fecundity and high rates of miscarriage, relative to other mammals. Data from assisted reproduction programmes provides additional evidence that this is largely mediated at the level of embryonic competence and is highly heterogeneous among embryos. Understanding the basis of this heterogeneity has important implications in a number of areas including: the regulation of early human development, disorders of pregnancy, assisted reproduction programmes, the long term health of children which may be programmed in early development, and the molecular basis of pluripotency in human stem cell populations. We have therefore investigated global gene expression profiles using polyAPCR amplification and microarray technology applied to individual human oocytes and 4-cell and blastocyst stage embryos. In order to explore the basis of any variability in detail, each developmental stage is replicated in triplicate. Our data show that although transcript profiles are highly stage-specific, within each stage they are relatively variable. We describe expression of a number of gene families and pathways including apoptosis, cell cycle and amino acid metabolism, which are variably expressed and may be reflective of embryonic developmental competence. Overall, our data suggest that heterogeneity in human embryo developmental competence is reflected in global transcript profiles, and that the vast majority of existing human embryo gene expression data based on pooled oocytes and embryos need to be reinterpreted. PMID:23717564

  4. Systematic functional profiling of transcription factor networks in Cryptococcus neoformans.

    PubMed

    Jung, Kwang-Woo; Yang, Dong-Hoon; Maeng, Shinae; Lee, Kyung-Tae; So, Yee-Seul; Hong, Joohyeon; Choi, Jaeyoung; Byun, Hyo-Jeong; Kim, Hyelim; Bang, Soohyun; Song, Min-Hee; Lee, Jang-Won; Kim, Min Su; Kim, Seo-Young; Ji, Je-Hyun; Park, Goun; Kwon, Hyojeong; Cha, Suyeon; Meyers, Gena Lee; Wang, Li Li; Jang, Jooyoung; Janbon, Guilhem; Adedoyin, Gloria; Kim, Taeyup; Averette, Anna K; Heitman, Joseph; Cheong, Eunji; Lee, Yong-Hwan; Lee, Yin-Won; Bahn, Yong-Sun

    2015-04-07

    Cryptococcus neoformans causes life-threatening meningoencephalitis in humans, but its overall biological and pathogenic regulatory circuits remain elusive, particularly due to the presence of an evolutionarily divergent set of transcription factors (TFs). Here, we report the construction of a high-quality library of 322 signature-tagged gene-deletion strains for 155 putative TF genes previously predicted using the DNA-binding domain TF database, and examine their in vitro and in vivo phenotypic traits under 32 distinct growth conditions. At least one phenotypic trait is exhibited by 145 out of 155 TF mutants (93%) and ∼85% of them (132/155) are functionally characterized for the first time in this study. The genotypic and phenotypic data for each TF are available in the C. neoformans TF phenome database (http://tf.cryptococcus.org). In conclusion, our phenome-based functional analysis of the C. neoformans TF mutant library provides key insights into transcriptional networks of basidiomycetous fungi and human fungal pathogens.

  5. Fractional dynamics of globally slow transcription and its impact on deterministic genetic oscillation.

    PubMed

    Wei, Kun; Gao, Shilong; Zhong, Suchuan; Ma, Hong

    2012-01-01

    In dynamical systems theory, a system which can be described by differential equations is called a continuous dynamical system. In studies on genetic oscillation, most deterministic models at early stage are usually built on ordinary differential equations (ODE). Therefore, gene transcription which is a vital part in genetic oscillation is presupposed to be a continuous dynamical system by default. However, recent studies argued that discontinuous transcription might be more common than continuous transcription. In this paper, by appending the inserted silent interval lying between two neighboring transcriptional events to the end of the preceding event, we established that the running time for an intact transcriptional event increases and gene transcription thus shows slow dynamics. By globally replacing the original time increment for each state increment by a larger one, we introduced fractional differential equations (FDE) to describe such globally slow transcription. The impact of fractionization on genetic oscillation was then studied in two early stage models--the Goodwin oscillator and the Rössler oscillator. By constructing a "dual memory" oscillator--the fractional delay Goodwin oscillator, we suggested that four general requirements for generating genetic oscillation should be revised to be negative feedback, sufficient nonlinearity, sufficient memory and proper balancing of timescale. The numerical study of the fractional Rössler oscillator implied that the globally slow transcription tends to lower the chance of a coupled or more complex nonlinear genetic oscillatory system behaving chaotically.

  6. Transcriptional profiling of the epigenetic regulator Smchd1

    PubMed Central

    Liu, Ruijie; Chen, Kelan; Jansz, Natasha; Blewitt, Marnie E.; Ritchie, Matthew E.

    2015-01-01

    Smchd1 is an epigenetic repressor with important functions in healthy cellular processes and disease. To elucidate its role in transcriptional regulation, we performed two independent genome-wide RNA-sequencing studies comparing wild-type and Smchd1 null samples in neural stem cells and lymphoma cell lines. Using an R-based analysis pipeline that accommodates observational and sample-specific weights in the linear modeling, we identify key genes dysregulated by Smchd1 deletion such as clustered protocadherins in the neural stem cells and imprinted genes in both experiments. Here we provide a detailed description of this analysis, from quality control to read mapping and differential expression analysis. These data sets are publicly available from the Gene Expression Omnibus database (accession numbers GSE64099 and GSE65747). PMID:26981392

  7. Isolation, classification and transcription profiles of the AP2/ERF transcription factor superfamily in citrus.

    PubMed

    Xie, Xiu-lan; Shen, Shu-ling; Yin, Xue-ren; Xu, Qian; Sun, Chong-de; Grierson, Donald; Ferguson, Ian; Chen, Kun-song

    2014-07-01

    The AP2/ERF gene family encodes plant-specific transcription factors. In model plants, AP2/ERF genes have been shown to be expressed in response to developmental and environmental stimuli, and many function downstream of the ethylene, biotic, and abiotic stress signaling pathways. In citrus, ethylene is effective in regulation citrus fruit quality, such as degreening and aroma. However, information about the citrus AP2/ERF family is limited, and would enhance our understanding of fruit responses to environmental stress, fruit development and quality. CitAP2/ERF genes were isolated using the citrus genome database, and their expression patterns analyzed by real-time PCR using various orange organs and samples from a fruit developmental series. 126 sequences with homologies to AP2/ERF proteins were identified from the citrus genome, and, on the basis of their structure and sequence, assigned to the ERF family (102), AP2 family (18), RAV family (4) and Soloist (2). MEME motif analysis predicted the defining AP2/ERF domain and EAR repressor domains. Analysis of transcript accumulation in Citrus sinensis cv. 'Newhall' indicated that CitAP2/ERF genes show organ-specific and temporal expression, and provided a framework for understanding the transcriptional regulatory roles of AP2/ERF gene family members in citrus. Hierarchical cluster analysis and t tests identified regulators that potentially function during orange fruit growth and development.

  8. Transcriptional profile of immediate response to ionizing radiation exposure.

    PubMed

    Rouchka, Eric C; Flight, Robert M; Fasciotto, Brigitte H; Estrada, Rosendo; Eaton, John W; Patibandla, Phani K; Waigel, Sabine J; Li, Dazhuo; Kirtley, John K; Sethu, Palaniappan; Keynton, Robert S

    2016-03-01

    Astronauts participating in long duration space missions are likely to be exposed to ionizing radiation associated with highly energetic and charged heavy particles. Previously proposed gene biomarkers for radiation exposure include phosphorylated H2A Histone Family, Member X (γH2AX), Tumor Protein 53 (TP53), and Cyclin-Dependent Kinase Inhibitor 1A (CDKN1A). However, transcripts of these genes may not be the most suitable biomarkers for radiation exposure due to a lack of sensitivity or specificity. As part of a larger effort to develop lab-on-a-chip methods for detecting radiation exposure events using blood samples, we designed a dose-course microarray study in order to determine coding and non-coding RNA transcripts undergoing differential expression immediately following radiation exposure. The main goal was to elicit a small set of sensitive and specific radiation exposure biomarkers at low, medium, and high levels of ionizing radiation exposure. Four separate levels of radiation were considered: 0 Gray (Gy) control; 0.3 Gy; 1.5 Gy; and 3.0 Gy with four replicates at each radiation level. This report includes raw gene expression data files from the resulting microarray experiments from all three radiation levels ranging from a lower, typical exposure than an astronaut might see (0.3 Gy) to high, potentially lethal, levels of radiation (3.0 Gy). The data described here is available in NCBI's Gene Expression Omnibus (GEO), accession GSE64375.

  9. Transcriptional profile of immediate response to ionizing radiation exposure.

    PubMed

    Rouchka, Eric C; Flight, Robert M; Fasciotto, Brigitte H; Estrada, Rosendo; Eaton, John W; Patibandla, Phani K; Waigel, Sabine J; Li, Dazhuo; Kirtley, John K; Sethu, Palaniappan; Keynton, Robert S

    2016-03-01

    Astronauts participating in long duration space missions are likely to be exposed to ionizing radiation associated with highly energetic and charged heavy particles. Previously proposed gene biomarkers for radiation exposure include phosphorylated H2A Histone Family, Member X (γH2AX), Tumor Protein 53 (TP53), and Cyclin-Dependent Kinase Inhibitor 1A (CDKN1A). However, transcripts of these genes may not be the most suitable biomarkers for radiation exposure due to a lack of sensitivity or specificity. As part of a larger effort to develop lab-on-a-chip methods for detecting radiation exposure events using blood samples, we designed a dose-course microarray study in order to determine coding and non-coding RNA transcripts undergoing differential expression immediately following radiation exposure. The main goal was to elicit a small set of sensitive and specific radiation exposure biomarkers at low, medium, and high levels of ionizing radiation exposure. Four separate levels of radiation were considered: 0 Gray (Gy) control; 0.3 Gy; 1.5 Gy; and 3.0 Gy with four replicates at each radiation level. This report includes raw gene expression data files from the resulting microarray experiments from all three radiation levels ranging from a lower, typical exposure than an astronaut might see (0.3 Gy) to high, potentially lethal, levels of radiation (3.0 Gy). The data described here is available in NCBI's Gene Expression Omnibus (GEO), accession GSE64375. PMID:26981369

  10. Transcriptional profile of immediate response to ionizing radiation exposure

    PubMed Central

    Rouchka, Eric C.; Flight, Robert M.; Fasciotto, Brigitte H.; Estrada, Rosendo; Eaton, John W.; Patibandla, Phani K.; Waigel, Sabine J.; Li, Dazhuo; Kirtley, John K.; Sethu, Palaniappan; Keynton, Robert S.

    2015-01-01

    Astronauts participating in long duration space missions are likely to be exposed to ionizing radiation associated with highly energetic and charged heavy particles. Previously proposed gene biomarkers for radiation exposure include phosphorylated H2A Histone Family, Member X (γH2AX), Tumor Protein 53 (TP53), and Cyclin-Dependent Kinase Inhibitor 1A (CDKN1A). However, transcripts of these genes may not be the most suitable biomarkers for radiation exposure due to a lack of sensitivity or specificity. As part of a larger effort to develop lab-on-a-chip methods for detecting radiation exposure events using blood samples, we designed a dose–course microarray study in order to determine coding and non-coding RNA transcripts undergoing differential expression immediately following radiation exposure. The main goal was to elicit a small set of sensitive and specific radiation exposure biomarkers at low, medium, and high levels of ionizing radiation exposure. Four separate levels of radiation were considered: 0 Gray (Gy) control; 0.3 Gy; 1.5 Gy; and 3.0 Gy with four replicates at each radiation level. This report includes raw gene expression data files from the resulting microarray experiments from all three radiation levels ranging from a lower, typical exposure than an astronaut might see (0.3 Gy) to high, potentially lethal, levels of radiation (3.0 Gy). The data described here is available in NCBI's Gene Expression Omnibus (GEO), accession GSE64375. PMID:26981369

  11. Global transcriptomic profiling of Schizosaccharomyces pombe in response to nitrosative stress.

    PubMed

    Biswas, Pranjal; Ghosh, Sanjay

    2015-03-10

    Excess production of nitric oxide (NO) and reactive nitrogen intermediates (RNIs) cause nitrosative stress on cells. Schizosaccharomyces pombe was used as a model to study nitrosative stress response. This is the first report on the global gene expression profile in response to NO in S. pombe using microarray. Among the 4824 genes reported for S. pombe, 818 were differentially expressed by at least 2-fold upon NO donor treatment. We previously showed that Pap1, the Activator Protein 1 transcription factor is required to combat nitrosative stress. In this study, the transcriptional response to NO in a null mutant for pap1 identified 45 genes that seem to be controlled by Pap1. Surprisingly, Pap1 regulated genes in S. pombe were distinctly different under nitrosative stress than those reported under oxidative stress. Genes of the pathway meiosis, cell cycle, spliceosome and oxidative phosphorylation were mostly affected under nitrosative stress in the fission yeast.

  12. Transcription Profile of Aging and Cognition-Related Genes in the Medial Prefrontal Cortex

    PubMed Central

    Ianov, Lara; Rani, Asha; Beas, Blanca S.; Kumar, Ashok; Foster, Thomas C.

    2016-01-01

    Cognitive function depends on transcription; however, there is little information linking altered gene expression to impaired prefrontal cortex function during aging. Young and aged F344 rats were characterized on attentional set shift and spatial memory tasks. Transcriptional differences associated with age and cognition were examined using RNA sequencing to construct transcriptomic profiles for the medial prefrontal cortex (mPFC), white matter, and region CA1 of the hippocampus. The results indicate regional differences in vulnerability to aging. Age-related gene expression in the mPFC was similar to, though less robust than, changes in the dorsolateral PFC of aging humans suggesting that aging processes may be similar. Importantly, the pattern of transcription associated with aging did not predict cognitive decline. Rather, increased mPFC expression of genes involved in regulation of transcription, including transcription factors that regulate the strength of excitatory and inhibitory inputs, and neural activity-related immediate-early genes was observed in aged animals that exhibit delayed set shift behavior. The specificity of impairment on a mPFC-dependent task, associated with a particular mPFC transcriptional profile indicates that impaired executive function involves altered transcriptional regulation and neural activity/plasticity processes that are distinct from that described for impaired hippocampal function. PMID:27242522

  13. Transcriptional profile in afferent lymph cells following vaccination with liposomes incorporating CpG

    PubMed Central

    Neeland, Melanie R; Elhay, Martin J; Powell, David R; Rossello, Fernando J; Meeusen, Els N T; de Veer, Michael J

    2015-01-01

    Vaccine formulations incorporating innate immune stimulants are highly immunogenic; however, the biological signals that originate in the peripheral tissues at the site of injection and are transmitted to the local lymph node to induce immunity remain unclear. By directly cannulating the ovine afferent lymphatic vessels, we have previously shown that it takes 72 hr for mature antigen-loaded dendritic cells and monocytes to appear within afferent lymph following injection of a liposomal formulation containing the Toll-like receptor ligand CpG. In this present study, we characterize the global transcriptional signatures at this time-point in ovine afferent lymph cells as they migrate from the injection site into the lymphatics following vaccination with a liposome antigen formulation incorporating CpG. We show that at 72 hr post vaccination, liposomes alone induce no changes in gene expression and inflammatory profiles within afferent lymph; however, the incorporation of CpG drives interferon, antiviral and cytotoxic gene programmes. This study also measures the expression of key genes within individual cell types in afferent lymph. Antiviral gene signatures are most prominent in lymphocytes, which may play a significant and unexpected role in sustaining the immune response to vaccination at the site of injection. These findings provide a comprehensive analysis of the in vivo immunological pathways that connect the injection site with the local draining lymph node following vaccination. PMID:25308816

  14. Generation and gene expression profiling of 48 transcription-factor-inducible mouse embryonic stem cell lines

    PubMed Central

    Yamamizu, Kohei; Sharov, Alexei A.; Piao, Yulan; Amano, Misa; Yu, Hong; Nishiyama, Akira; Dudekula, Dawood B.; Schlessinger, David; Ko, Minoru S. H.

    2016-01-01

    Mouse embryonic stem cells (ESCs) can differentiate into a wide range – and possibly all cell types in vitro, and thus provide an ideal platform to study systematically the action of transcription factors (TFs) in cell differentiation. Previously, we have generated and analyzed 137 TF-inducible mouse ESC lines. As an extension of this “NIA Mouse ESC Bank,” we generated and characterized 48 additional mouse ESC lines, in which single TFs in each line could be induced in a doxycycline-controllable manner. Together, with the previous ESC lines, the bank now comprises 185 TF-manipulable ESC lines (>10% of all mouse TFs). Global gene expression (transcriptome) profiling revealed that the induction of individual TFs in mouse ESCs for 48 hours shifts their transcriptomes toward specific differentiation fates (e.g., neural lineages by Myt1 Isl1, and St18; mesodermal lineages by Pitx1, Pitx2, Barhl2, and Lmx1a; white blood cells by Myb, Etv2, and Tbx6, and ovary by Pitx1, Pitx2, and Dmrtc2). These data also provide and lists of inferred target genes of each TF and possible functions of these TFs. The results demonstrate the utility of mouse ESC lines and their transcriptome data for understanding the mechanism of cell differentiation and the function of TFs. PMID:27150017

  15. Transcriptional profiling of foam cells in response to hypercholesterolemia.

    PubMed

    Goo, Young-Hwa; Yechoor, Vijay K; Paul, Antoni

    2016-09-01

    Hypercholesterolemia is a main risk factor for atherosclerosis development. Arterial macrophages, or foam cells, take-up and process lipoprotein particles deposited in arteries, and store much of the cholesterol carried by these particles in their cytoplasm. However, the effects of exposure to different cholesterol levels on foam cells remain poorly understood. Given the remarkable plasticity of macrophages in response to environmental variables, studies on macrophage biology should ideally be performed in the environment where they exert their physiological functions, namely atherosclerotic lesions in the case of foam cells. We used a mouse model of atherosclerosis, the apolipoprotein E-deficient mouse, to study in vivo the transcriptional response of foam cells to short- and long-term elevations in plasma cholesterol, induced by feeding mice a western type diet. The microarray data sets from this study have been deposited in NCBI's Gene Expression Omnibus under the accession number GSE70619. Here we provide detailed information on the experimental set-up, on the isolation of RNA by laser capture microdissection, and on the methodology used for RNA amplification and analysis by microarray and quantitative real-time PCR. PMID:27408807

  16. Transcriptional profiling of foam cells in response to hypercholesterolemia.

    PubMed

    Goo, Young-Hwa; Yechoor, Vijay K; Paul, Antoni

    2016-09-01

    Hypercholesterolemia is a main risk factor for atherosclerosis development. Arterial macrophages, or foam cells, take-up and process lipoprotein particles deposited in arteries, and store much of the cholesterol carried by these particles in their cytoplasm. However, the effects of exposure to different cholesterol levels on foam cells remain poorly understood. Given the remarkable plasticity of macrophages in response to environmental variables, studies on macrophage biology should ideally be performed in the environment where they exert their physiological functions, namely atherosclerotic lesions in the case of foam cells. We used a mouse model of atherosclerosis, the apolipoprotein E-deficient mouse, to study in vivo the transcriptional response of foam cells to short- and long-term elevations in plasma cholesterol, induced by feeding mice a western type diet. The microarray data sets from this study have been deposited in NCBI's Gene Expression Omnibus under the accession number GSE70619. Here we provide detailed information on the experimental set-up, on the isolation of RNA by laser capture microdissection, and on the methodology used for RNA amplification and analysis by microarray and quantitative real-time PCR.

  17. Ozone Profiles and Tropospheric Ozone from Global Ozone Monitoring Experiment

    NASA Technical Reports Server (NTRS)

    Liu, X.; Chance, K.; Sioris, C. E.; Sparr, R. J. D.; Kuregm, T. P.; Martin, R. V.; Newchurch, M. J.; Bhartia, P. K.

    2003-01-01

    Ozone profiles are derived from backscattered radiances in the ultraviolet spectra (290-340 nm) measured by the nadir-viewing Global Ozone Monitoring Experiment using optimal estimation. Tropospheric O3 is directly retrieved with the tropopause as one of the retrieval levels. To optimize the retrieval and improve the fitting precision needed for tropospheric O3, we perform extensive wavelength and radiometric calibrations and improve forward model inputs. Retrieved O3 profiles and tropospheric O3 agree well with coincident ozonesonde measurements, and the integrated total O3 agrees very well with Earth Probe TOMS and Dobson/Brewer total O3. The global distribution of tropospheric O3 clearly shows the influences of biomass burning, convection, and air pollution, and is generally consistent with our current understanding.

  18. Global Daily Atmospheric State Profiles from the Atmospheric Infrared Sounder

    NASA Technical Reports Server (NTRS)

    Pagano, Thomas S.; Aumann, Hartmut H.; Fetzer, Eric J.; Lambrigtsen, Bjorn H.; Chahine, Moustafa T.

    2008-01-01

    The Atmospheric Infrared Sounder (AIRS) is a hyperspectral infrared instrument on the EOS Aqua Spacecraft, launched on May 4, 2002. AIRS has 2378 infrared channels ranging from 3.7 (micro)m to 15.4 (micro)m and a 13.5 km footprint. AIRS, in conjunction with the Advanced Microwave Sounding Unit (AMSU), produces temperature profiles with 1K/km accuracy on a global scale, as well as water vapor profiles, clouds, dust and trace gas amounts for CO2, CO, SO2, O3 and CH4.[1] AIRS data are used for weather forecasting and studies of global climate change. The AIRS is a 'facility' instrument developed by NASA as an experimental demonstration of advanced technology for remote sensing and the benefits of high resolution infrared spectra to science investigations.

  19. Double mutants of Saccharomyces cerevisiae with alterations in global genome and transcription-coupled repair.

    PubMed Central

    Verhage, R A; van Gool, A J; de Groot, N; Hoeijmakers, J H; van de Putte, P; Brouwer, J

    1996-01-01

    The nucleotide excision repair (NER) pathway is thought to consist of two subpathways: transcription-coupled repair, limited to the transcribed strand of active genes, and global genome repair for nontranscribed DNA strands. Recently we cloned the RAD26 gene, the Saccharomyces cerevisiae homolog of human CSB/ERCC6, a gene involved in transcription-coupled repair and the disorder Cockayne syndrome. This paper describes the analysis of yeast double mutants selectively affected in each NER subpathway. Although rad26 disruption mutants are defective in transcription-coupled repair, they are not UV sensitive. However, double mutants of RAD26 with the global genome repair determinants RAD7 and RAD16 appeared more UV sensitive than the single rad7 or rad16 mutants but not as sensitive as completely NER-deficient mutants. These findings unmask a role of RAD26 and transcription-coupled repair in UV survival, indicate that transcription-coupled repair and global genome repair are partially overlapping, and provide evidence for a residual NER modality in the double mutants. Analysis of dimer removal from the active RPB2 gene in the rad7/16 rad26 double mutants revealed (i) a contribution of the global genome repair factors Rad7p and Rad16p to repair of the transcribed strand, confirming the partial overlap between both NER subpathways, and (ii) residual repair specifically of the transcribed strand. To investigate the transcription dependence of this repair activity, strand-specific repair of the inducible GAL7 gene was investigated. The template strand of this gene was repaired only under induced conditions, pointing to a role for transcription in the residual repair in the double mutants and suggesting that transcription-coupled repair can to some extent operate independently from Rad26p. Our findings also indicate locus heterogeneity for the dependence of transcription-coupled repair on RAD26. PMID:8552076

  20. Transcription Profiling-Based Identification of Staphylococcus aureus Genes Regulated by the agr and/or sarA Loci

    PubMed Central

    Dunman, P. M.; Murphy, E.; Haney, S.; Palacios, D.; Tucker-Kellogg, G.; Wu, S.; Brown, E. L.; Zagursky, R. J.; Shlaes, D.; Projan, S. J.

    2001-01-01

    The advent of transcription profiling technologies has provided researchers with an unprecedented ability to study biological processes. Accordingly, a custom-made Affymetrix GeneChip, constituting >86% of the Staphylococcus aureus genome, was used to identify open reading frames that are regulated by agr and/or SarA, the two best-studied regulators of the organism's virulence response. RNA extracted from wild-type cells and agr, sarA, and agr sarA mutant cells in the early-, mid-, and late-log and stationary phases of growth was analyzed. Open reading frames with transcription patterns expected of genes either up- or downregulated in an agr- and/or SarA-dependent manner were identified. Oligonucleotide microarray and Northern blot analyses confirmed that the transcription of several known virulence genes, including hla (alpha-toxin) and spa (protein A), is regulated by each effector and provided insights about the regulatory cascades involved in both alpha-hemolysin and protein A expression. Several putative virulence factors were also identified as regulated by agr and/or SarA. In addition, genes that are involved in several biological processes but which are difficult to reconcile as playing a direct role in the organism's pathogenesis also appeared to be regulated by each effector, suggesting that products of both the agr and the sarA locus are more-global transcription regulators than previously realized. PMID:11717293

  1. Defining the microbial transcriptional response to colitis through integrated host and microbiome profiling

    PubMed Central

    Ilott, Nicholas Edward; Bollrath, Julia; Danne, Camille; Schiering, Chris; Shale, Matthew; Adelmann, Krista; Krausgruber, Thomas; Heger, Andreas; Sims, David; Powrie, Fiona

    2016-01-01

    The gut microbiome is significantly altered in inflammatory bowel diseases, but the basis of these changes is not well understood. We have combined metagenomic and metatranscriptomic profiling of the gut microbiome to assess modifications to both bacterial community structure and transcriptional activity in a mouse model of colitis. By using transcriptomic analysis of colonic tissue and luminal RNA derived from the host, we have also characterised how host transcription relates to the microbial transcriptional response in inflammation. In colitis, increased abundance and transcription of diverse microbial gene families involved in responses to nutrient deprivation, antimicrobial peptide production and oxidative stress support an adaptation of multiple commensal genera to withstand a diverse set of environmental stressors in the inflammatory environment. These data are supported by a transcriptional signature of activated macrophages and granulocytes in the gut lumen during colitis, a signature that includes the transcription of the key antimicrobial genes S100a8 and S100a9 (calprotectin). Genes involved in microbial resistance to oxidative stress, including Dps/ferritin, Fe-dependent peroxidase and glutathione S-transferase were identified as changing to a greater extent at the level of transcription than would be predicted by DNA abundance changes, implicating a role for increased oxygen tension and/or host-derived reactive oxygen species in driving transcriptional changes in commensal microbes. PMID:27003245

  2. Defining the microbial transcriptional response to colitis through integrated host and microbiome profiling.

    PubMed

    Ilott, Nicholas Edward; Bollrath, Julia; Danne, Camille; Schiering, Chris; Shale, Matthew; Adelmann, Krista; Krausgruber, Thomas; Heger, Andreas; Sims, David; Powrie, Fiona

    2016-10-01

    The gut microbiome is significantly altered in inflammatory bowel diseases, but the basis of these changes is not well understood. We have combined metagenomic and metatranscriptomic profiling of the gut microbiome to assess modifications to both bacterial community structure and transcriptional activity in a mouse model of colitis. By using transcriptomic analysis of colonic tissue and luminal RNA derived from the host, we have also characterised how host transcription relates to the microbial transcriptional response in inflammation. In colitis, increased abundance and transcription of diverse microbial gene families involved in responses to nutrient deprivation, antimicrobial peptide production and oxidative stress support an adaptation of multiple commensal genera to withstand a diverse set of environmental stressors in the inflammatory environment. These data are supported by a transcriptional signature of activated macrophages and granulocytes in the gut lumen during colitis, a signature that includes the transcription of the key antimicrobial genes S100a8 and S100a9 (calprotectin). Genes involved in microbial resistance to oxidative stress, including Dps/ferritin, Fe-dependent peroxidase and glutathione S-transferase were identified as changing to a greater extent at the level of transcription than would be predicted by DNA abundance changes, implicating a role for increased oxygen tension and/or host-derived reactive oxygen species in driving transcriptional changes in commensal microbes. PMID:27003245

  3. Sequence mining and transcript profiling to explore cyst nematode parasitism

    PubMed Central

    Elling, Axel A; Mitreva, Makedonka; Gai, Xiaowu; Martin, John; Recknor, Justin; Davis, Eric L; Hussey, Richard S; Nettleton, Dan; McCarter, James P; Baum, Thomas J

    2009-01-01

    Background Cyst nematodes are devastating plant parasites that become sedentary within plant roots and induce the transformation of normal plant cells into elaborate feeding cells with the help of secreted effectors, the parasitism proteins. These proteins are the translation products of parasitism genes and are secreted molecular tools that allow cyst nematodes to infect plants. Results We present here the expression patterns of all previously described parasitism genes of the soybean cyst nematode, Heterodera glycines, in all major life stages except the adult male. These insights were gained by analyzing our gene expression dataset from experiments using the Affymetrix Soybean Genome Array GeneChip, which contains probeset sequences for 6,860 genes derived from preparasitic and parasitic H. glycines life stages. Targeting the identification of additional H. glycines parasitism-associated genes, we isolated 633 genes encoding secretory proteins using algorithms to predict secretory signal peptides. Furthermore, because some of the known H. glycines parasitism proteins have strongest similarity to proteins of plants and microbes, we searched for predicted protein sequences that showed their highest similarities to plant or microbial proteins and identified 156 H. glycines genes, some of which also contained a signal peptide. Analyses of the expression profiles of these genes allowed the formulation of hypotheses about potential roles in parasitism. This is the first study combining sequence analyses of a substantial EST dataset with microarray expression data of all major life stages (except adult males) for the identification and characterization of putative parasitism-associated proteins in any parasitic nematode. Conclusion We have established an expression atlas for all known H. glycines parasitism genes. Furthermore, in an effort to identify additional H. glycines genes with putative functions in parasitism, we have reduced the currently known 6,860 H

  4. Global Promoter Targeting of a Conserved Lysine Deacetylase for Transcriptional Shutoff during Quiescence Entry.

    PubMed

    McKnight, Jeffrey N; Boerma, Joseph W; Breeden, Linda L; Tsukiyama, Toshio

    2015-09-01

    Quiescence is a conserved cell-cycle state characterized by cell-cycle arrest, increased stress resistance, enhanced longevity, and decreased transcriptional, translational, and metabolic output. Although quiescence plays essential roles in cell survival and normal differentiation, the molecular mechanisms leading to this state are not well understood. Here, we determined changes in the transcriptome and chromatin structure of S. cerevisiae upon quiescence entry. Our analyses revealed transcriptional shutoff that is far more robust than previously believed and an unprecedented global chromatin transition, which are tightly correlated. These changes require Rpd3 lysine deacetylase targeting to at least half of gene promoters via quiescence-specific transcription factors including Xbp1 and Stb3. Deletion of RPD3 prevents cells from establishing transcriptional quiescence, leading to defects in quiescence entry and shortening of chronological lifespan. Our results define a molecular mechanism for global reprogramming of transcriptome and chromatin structure for quiescence driven by a highly conserved chromatin regulator.

  5. Transcriptional profiling in facioscapulohumeral muscular dystrophy to identify candidate biomarkers

    PubMed Central

    Rahimov, Fedik; King, Oliver D.; Leung, Doris G.; Bibat, Genila M.; Emerson, Charles P.; Kunkel, Louis M.; Wagner, Kathryn R.

    2012-01-01

    Facioscapulohumeral muscular dystrophy (FSHD) is a progressive neuromuscular disorder caused by contractions of repetitive elements within the macrosatellite D4Z4 on chromosome 4q35. The pathophysiology of FSHD is unknown and, as a result, there is currently no effective treatment available for this disease. To better understand the pathophysiology of FSHD and develop mRNA-based biomarkers of affected muscles, we compared global analysis of gene expression in two distinct muscles obtained from a large number of FSHD subjects and their unaffected first-degree relatives. Gene expression in two muscle types was analyzed using GeneChip Gene 1.0 ST arrays: biceps, which typically shows an early and severe disease involvement; and deltoid, which is relatively uninvolved. For both muscle types, the expression differences were mild: using relaxed cutoffs for differential expression (fold change ≥1.2; nominal P value <0.01), we identified 191 and 110 genes differentially expressed between affected and control samples of biceps and deltoid muscle tissues, respectively, with 29 genes in common. Controlling for a false-discovery rate of <0.25 reduced the number of differentially expressed genes in biceps to 188 and in deltoid to 7. Expression levels of 15 genes altered in this study were used as a “molecular signature” in a validation study of an additional 26 subjects and predicted them as FSHD or control with 90% accuracy based on biceps and 80% accuracy based on deltoids. PMID:22988124

  6. Root-specific transcript profiling of contrasting rice genotypes in response to salinity stress

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Elevated salinity imposes osmotic and ion toxicity stresses on living cells and requires a multitude of responses in order to enable plant survival. Building on earlier work profiling transcript levels in rice (Oryza sativa) shoots of FL478, a salt-tolerant indica recombinant inbred line, and IR29, ...

  7. Comparative deep transcriptional profiling of four developing oilseeds.

    PubMed

    Troncoso-Ponce, Manuel A; Kilaru, Aruna; Cao, Xia; Durrett, Timothy P; Fan, Jilian; Jensen, Jacob K; Thrower, Nick A; Pauly, Markus; Wilkerson, Curtis; Ohlrogge, John B

    2011-12-01

    Transcriptome analysis based on deep expressed sequence tag (EST) sequencing allows quantitative comparisons of gene expression across multiple species. Using pyrosequencing, we generated over 7 million ESTs from four stages of developing seeds of Ricinus communis, Brassica napus, Euonymus alatus and Tropaeolum majus, which differ in their storage tissue for oil, their ability to photosynthesize and in the structure and content of their triacylglycerols (TAG). The larger number of ESTs in these 16 datasets provided reliable estimates of the expression of acyltransferases and other enzymes expressed at low levels. Analysis of EST levels from these oilseeds revealed both conserved and distinct species-specific expression patterns for genes involved in the synthesis of glycerolipids and their precursors. Independent of the species and tissue type, ESTs for core fatty acid synthesis enzymes maintained a conserved stoichiometry and a strong correlation in temporal profiles throughout seed development. However, ESTs associated with non-plastid enzymes of oil biosynthesis displayed dissimilar temporal patterns indicative of different regulation. The EST levels for several genes potentially involved in accumulation of unusual TAG structures were distinct. Comparison of expression of members from multi-gene families allowed the identification of specific isoforms with conserved function in oil biosynthesis. In all four oilseeds, ESTs for Rubisco were present, suggesting its possible role in carbon metabolism, irrespective of light availability. Together, these data provide a resource for use in comparative and functional genomics of diverse oilseeds. Expression data for more than 350 genes encoding enzymes and proteins involved in lipid metabolism are available at the 'ARALIP' website (http://aralip.plantbiology.msu.edu/).

  8. Comparative deep transcriptional profiling of four developing oilseeds

    PubMed Central

    Troncoso-Ponce, Manuel A; Kilaru, Aruna; Cao, Xia; Durrett, Timothy P; Fan, Jilian; Jensen, Jacob K; Thrower, Nick A; Pauly, Markus; Wilkerson, Curtis; Ohlrogge, John B

    2011-01-01

    Transcriptome analysis based on deep expressed sequence tag (EST) sequencing allows quantitative comparisons of gene expression across multiple species. Using pyrosequencing, we generated over 7 million ESTs from four stages of developing seeds of Ricinus communis, Brassica napus, Euonymus alatus and Tropaeolum majus, which differ in their storage tissue for oil, their ability to photosynthesize and in the structure and content of their triacylglycerols (TAG). The larger number of ESTs in these 16 datasets provided reliable estimates of the expression of acyltransferases and other enzymes expressed at low levels. Analysis of EST levels from these oilseeds revealed both conserved and distinct species-specific expression patterns for genes involved in the synthesis of glycerolipids and their precursors. Independent of the species and tissue type, ESTs for core fatty acid synthesis enzymes maintained a conserved stoichiometry and a strong correlation in temporal profiles throughout seed development. However, ESTs associated with non-plastid enzymes of oil biosynthesis displayed dissimilar temporal patterns indicative of different regulation. The EST levels for several genes potentially involved in accumulation of unusual TAG structures were distinct. Comparison of expression of members from multi-gene families allowed the identification of specific isoforms with conserved function in oil biosynthesis. In all four oilseeds, ESTs for Rubisco were present, suggesting its possible role in carbon metabolism, irrespective of light availability. Together, these data provide a resource for use in comparative and functional genomics of diverse oilseeds. Expression data for more than 350 genes encoding enzymes and proteins involved in lipid metabolism are available at the ‘ARALIP’ website (http://aralip.plantbiology.msu.edu/). PMID:21851431

  9. Energetic Consequences of Nitrite Stress in Desulfovibrio vulgaris Hildenborough, Inferred from Global Transcriptional Analysis†

    PubMed Central

    He, Qiang; Huang, Katherine H.; He, Zhili; Alm, Eric J.; Fields, Matthew W.; Hazen, Terry C.; Arkin, Adam P.; Wall, Judy D.; Zhou, Jizhong

    2006-01-01

    Many of the proteins that are candidates for bioenergetic pathways involved with sulfate respiration in Desulfovibrio spp. have been studied, but complete pathways and overall cell physiology remain to be resolved for many environmentally relevant conditions. In order to understand the metabolism of these microorganisms under adverse environmental conditions for improved bioremediation efforts, Desulfovibrio vulgaris Hildenborough was used as a model organism to study stress response to nitrite, an important intermediate in the nitrogen cycle. Previous physiological studies demonstrated that growth was inhibited by nitrite and that nitrite reduction was observed to be the primary mechanism of detoxification. Global transcriptional profiling with whole-genome microarrays revealed coordinated cascades of responses to nitrite in pathways of energy metabolism, nitrogen metabolism, oxidative stress response, and iron homeostasis. In agreement with previous observations, nitrite-stressed cells showed a decrease in the expression of genes encoding sulfate reduction functions in addition to respiratory oxidative phosphorylation and ATP synthase activity. Consequently, the stressed cells had decreased expression of the genes encoding ATP-dependent amino acid transporters and proteins involved in translation. Other genes up-regulated in response to nitrite include the genes in the Fur regulon, which is suggested to be involved in iron homeostasis, and genes in the Per regulon, which is predicted to be responsible for oxidative stress response. PMID:16751553

  10. Global transcriptional, physiological and metabolite analyses of Desulfovibrio vulgaris Hildenborough responses to salt adaptation

    SciTech Connect

    He, Z.; Zhou, A.; Baidoo, E.; He, Q.; Joachimiak, M. P.; Benke, P.; Phan, R.; Mukhopadhyay, A.; Hemme, C.L.; Huang, K.; Alm, E.J.; Fields, M.W.; Wall, J.; Stahl, D.; Hazen, T.C.; Keasling, J.D.; Arkin, A.P.; Zhou, J.

    2009-12-01

    The response of Desulfovibrio vulgaris Hildenborough to salt adaptation (long-term NaCl exposure) was examined by physiological, global transcriptional, and metabolite analyses. The growth of D. vulgaris was inhibited by high levels of NaCl, and the growth inhibition could be relieved by the addition of exogenous amino acids (e.g., glutamate, alanine, tryptophan) or yeast extract. Salt adaptation induced the expression of genes involved in amino acid biosynthesis and transport, electron transfer, hydrogen oxidation, and general stress responses (e.g., heat shock proteins, phage shock proteins, and oxidative stress response proteins). Genes involved in carbon metabolism, cell motility, and phage structures were repressed. Comparison of transcriptomic profiles of D. vulgaris responses to salt adaptation with those of salt shock (short-term NaCl exposure) showed some similarity as well as a significant difference. Metabolite assays showed that glutamate and alanine were accumulated under salt adaptation, suggesting that they may be used as osmoprotectants in D. vulgaris. A conceptual model is proposed to link the observed results to currently available knowledge for further understanding the mechanisms of D. vulgaris adaptation to elevated NaCl.

  11. Energetic Consequences of nitrite stress in Desulfovibrio vulgarisHildenborough, inferred from global transcriptional analysis

    SciTech Connect

    He, Qiang; Huang, Katherine H.; He, Zhili; Alm, Eric J.; Fields,Matthew W.; Hazen, Terry C.; Arkin, Adam P.; Wall, Judy D.; Zhou, Jizhong

    2005-11-03

    Many of the proteins that are candidates for bioenergetic pathways involved with sulfate respiration in Desulfovibrio spp. have been studied, but complete pathways and overall cell physiology remain to be resolved for many environmentally relevant conditions. In order to understand the metabolism of these microorganisms under adverse environmental conditions for improved bioremediation efforts, Desulfovibrio vulgaris Hildenborough was used as a model organism to study stress response to nitrite, an important intermediate in the nitrogen cycle. Previous physiological studies demonstrated that growth was inhibited by nitrite and that nitrite reduction was observed to be the primary mechanism of detoxification. Global transcriptional profiling with whole-genome microarrays revealed coordinated cascades of responses to nitrite in pathways of energy metabolism, nitrogen metabolism, oxidative stress response, and iron homeostasis. In agreement with previous observations, nitrite-stressed cells showed a decrease in the expression of genes encoding sulfate reduction functions in addition to respiratory oxidative phosphorylation and ATP synthase activity. Consequently, the stressed cells had decreased expression of the genes encoding ATP-dependent amino acid transporters and proteins involved in translation. Other genes up-regulated in response to nitrite include the genes in the Fur regulon, which is suggested to be involved in iron homeostasis, and genes in the Per regulon, which is predicted to be responsible for oxidative stress response.

  12. The Global Regulatory Architecture of Transcription during the Caulobacter Cell Cycle

    PubMed Central

    Zhou, Bo; Schrader, Jared M.; Kalogeraki, Virginia S.; Abeliuk, Eduardo; Dinh, Cong B.; Pham, James Q.; Cui, Zhongying Z.; Dill, David L.; McAdams, Harley H.; Shapiro, Lucy

    2015-01-01

    Each Caulobacter cell cycle involves differentiation and an asymmetric cell division driven by a cyclical regulatory circuit comprised of four transcription factors (TFs) and a DNA methyltransferase. Using a modified global 5′ RACE protocol, we globally mapped transcription start sites (TSSs) at base-pair resolution, measured their transcription levels at multiple times in the cell cycle, and identified their transcription factor binding sites. Out of 2726 TSSs, 586 were shown to be cell cycle-regulated and we identified 529 binding sites for the cell cycle master regulators. Twenty-three percent of the cell cycle-regulated promoters were found to be under the combinatorial control of two or more of the global regulators. Previously unknown features of the core cell cycle circuit were identified, including 107 antisense TSSs which exhibit cell cycle-control, and 241 genes with multiple TSSs whose transcription levels often exhibited different cell cycle timing. Cumulatively, this study uncovered novel new layers of transcriptional regulation mediating the bacterial cell cycle. PMID:25569173

  13. Target Identification for CNS Diseases by Transcriptional Profiling

    PubMed Central

    Altar, C Anthony; Vawter, Marquis P; Ginsberg, Stephen D

    2008-01-01

    Gene expression changes in neuropsychiatric and neurodegenerative disorders, and gene responses to therapeutic drugs, provide new ways to identify central nervous system (CNS) targets for drug discovery. This review summarizes gene and pathway targets replicated in expression profiling of human postmortem brain, animal models, and cell culture studies. Analysis of isolated human neurons implicates targets for Alzheimer’s disease and the cognitive decline associated with normal aging and mild cognitive impairment. In addition to τ, amyloid-β precursor protein, and amyloid-β peptides (Aβ), these targets include all three high-affinity neurotrophin receptors and the fibroblast growth factor (FGF) system, synapse markers, glutamate receptors (GluRs) and transporters, and dopamine (DA) receptors, particularly the D2 subtype. Gene-based candidates for Parkinson’s disease (PD) include the ubiquitin–proteosome system, scavengers of reactive oxygen species, brain-derived neurotrophic factor (BDNF), its receptor, TrkB, and downstream target early growth response 1, Nurr-1, and signaling through protein kinase C and RAS pathways. Increasing variability and decreases in brain mRNA production from middle age to old age suggest that cognitive impairments during normal aging may be addressed by drugs that restore antioxidant, DNA repair, and synaptic functions including those of DA to levels of younger adults. Studies in schizophrenia identify robust decreases in genes for GABA function, including glutamic acid decarboxylase, HINT1, glutamate transport and GluRs, BDNF and TrkB, numerous 14-3-3 protein family members, and decreases in genes for CNS synaptic and metabolic functions, particularly glycolysis and ATP generation. Many of these metabolic genes are increased by insulin and muscarinic agonism, both of which are therapeutic in psychosis. Differential genomic signals are relatively sparse in bipolar disorder, but include deficiencies in the expression of 14

  14. Global reprogramming of transcription and metabolism in Medicago truncatula during progressive drought and after rewatering

    PubMed Central

    Zhang, Ji-Yi; Cruz de Carvalho, Maria H; Torres-Jerez, Ivone; Kang, Yun; Allen, Stacy N; Huhman, David V; Tang, Yuhong; Murray, Jeremy; Sumner, Lloyd W; Udvardi, Michael K

    2014-01-01

    Medicago truncatula is a model legume forage crop native to the arid and semi-arid environments of the Mediterranean. Given its drought-adapted nature, it is an ideal candidate to study the molecular and biochemical mechanisms conferring drought resistance in plants. Medicago plants were subjected to a progressive drought stress over 14 d of water withholding followed by rewatering under controlled environmental conditions. Based on physiological measurements of plant water status and changes in morphology, plants experienced mild, moderate and severe water stress before rehydration. Transcriptome analysis of roots and shoots from control, mildly, moderately and severely stressed, and rewatered plants, identified many thousands of genes that were altered in expression in response to drought. Many genes with expression tightly coupled to the plant water potential (i.e. drought intensity) were identified suggesting an involvement in Medicago drought adaptation responses. Metabolite profiling of drought-stressed plants revealed the presence of 135 polar and 165 non-polar compounds in roots and shoots. Combining Medicago metabolomic data with transcriptomic data yielded insight into the regulation of metabolic pathways operating under drought stress. Among the metabolites detected in drought-stressed Medicago plants, myo-inositol and proline had striking regulatory profiles indicating involvement in Medicago drought tolerance. Global transcriptional and metabolic responses to drought and rewatering were investigated in Medicago truncatula, a naturally drought-adapted model legume species. Integration of metabolomic and transcriptomic data yielded insights into the regulation of metabolic pathways underlying drought-stress adaptation. Many genes and metabolites with expression tightly coupled to drought intensity were identified, suggesting active involvement in Medicago drought resistance. These could prove useful targets for future translational approaches to improve

  15. Circuit-wide Transcriptional Profiling Reveals Brain Region-Specific Gene Networks Regulating Depression Susceptibility.

    PubMed

    Bagot, Rosemary C; Cates, Hannah M; Purushothaman, Immanuel; Lorsch, Zachary S; Walker, Deena M; Wang, Junshi; Huang, Xiaojie; Schlüter, Oliver M; Maze, Ian; Peña, Catherine J; Heller, Elizabeth A; Issler, Orna; Wang, Minghui; Song, Won-Min; Stein, Jason L; Liu, Xiaochuan; Doyle, Marie A; Scobie, Kimberly N; Sun, Hao Sheng; Neve, Rachael L; Geschwind, Daniel; Dong, Yan; Shen, Li; Zhang, Bin; Nestler, Eric J

    2016-06-01

    Depression is a complex, heterogeneous disorder and a leading contributor to the global burden of disease. Most previous research has focused on individual brain regions and genes contributing to depression. However, emerging evidence in humans and animal models suggests that dysregulated circuit function and gene expression across multiple brain regions drive depressive phenotypes. Here, we performed RNA sequencing on four brain regions from control animals and those susceptible or resilient to chronic social defeat stress at multiple time points. We employed an integrative network biology approach to identify transcriptional networks and key driver genes that regulate susceptibility to depressive-like symptoms. Further, we validated in vivo several key drivers and their associated transcriptional networks that regulate depression susceptibility and confirmed their functional significance at the levels of gene transcription, synaptic regulation, and behavior. Our study reveals novel transcriptional networks that control stress susceptibility and offers fundamentally new leads for antidepressant drug discovery.

  16. Circuit-wide Transcriptional Profiling Reveals Brain Region-Specific Gene Networks Regulating Depression Susceptibility.

    PubMed

    Bagot, Rosemary C; Cates, Hannah M; Purushothaman, Immanuel; Lorsch, Zachary S; Walker, Deena M; Wang, Junshi; Huang, Xiaojie; Schlüter, Oliver M; Maze, Ian; Peña, Catherine J; Heller, Elizabeth A; Issler, Orna; Wang, Minghui; Song, Won-Min; Stein, Jason L; Liu, Xiaochuan; Doyle, Marie A; Scobie, Kimberly N; Sun, Hao Sheng; Neve, Rachael L; Geschwind, Daniel; Dong, Yan; Shen, Li; Zhang, Bin; Nestler, Eric J

    2016-06-01

    Depression is a complex, heterogeneous disorder and a leading contributor to the global burden of disease. Most previous research has focused on individual brain regions and genes contributing to depression. However, emerging evidence in humans and animal models suggests that dysregulated circuit function and gene expression across multiple brain regions drive depressive phenotypes. Here, we performed RNA sequencing on four brain regions from control animals and those susceptible or resilient to chronic social defeat stress at multiple time points. We employed an integrative network biology approach to identify transcriptional networks and key driver genes that regulate susceptibility to depressive-like symptoms. Further, we validated in vivo several key drivers and their associated transcriptional networks that regulate depression susceptibility and confirmed their functional significance at the levels of gene transcription, synaptic regulation, and behavior. Our study reveals novel transcriptional networks that control stress susceptibility and offers fundamentally new leads for antidepressant drug discovery. PMID:27181059

  17. Comparison of Global Transcriptional Responses of Chicken Following Primary and Secondary Eimeria acervulina Infections

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In the current study, we compared chicken gene transcriptional profiles following primary and secondary infections with Eimeria acervulina using a 9.6K avian intestinal intraepithelial lymphocyte cDNA microarray (AVIELA). Gene Ontology analysis showed that primary infection significantly modulated ...

  18. Two modified RNA extraction methods compatible with transcript profiling and gene expression analysis for cotton roots.

    PubMed

    Xie, Chengjian; Wang, Chunyan; Wang, Xiaokun; Yang, Xingyong

    2013-01-01

    Efficient isolation of high-quality RNA is of prime importance for optimal transcript profiling results and further gene expression analysis. However, it is difficult for cotton roots because of lower-than-average RNA content and high content of polysaccharides, polyphenols, and other secondary metabolites. To develop simple and reliable protocols for high-quality RNA extraction from cotton roots for transcript profiling and gene expression analysis, some modifications were introduced to a reported plant RNA isolation protocol and a reagent kit method. Using method A, we successfully extracted high-quality RNA for transcript profiling from cotton roots. Gel electrophoresis analysis and polymerase chain reaction (PCR) assay indicated that RNA had good integrity without protein and genomic DNA contamination. Furthermore, the A260/280 (1.9) and A260/230 (1.6) ratios indicated that the isolated RNA was of high purity. Using method B, about 7 µg total RNA of high quality could be obtained from 0.1 g samples from cotton roots, which can be used for reverse-transcription (RT)-PCR and quantitative real-time RT-PCR. The two RNA extraction methods were used to investigate different gene expression of cotton roots (Gossypium hirsutum) infected by weak pathogenic Verticillium dahliae and the results showed they can satisfy the transcript profiling and quantitative real-time RT-PCR requirements for RNA. Supplemental materials are available for this article. Go to the publisher's online edition of Preparative Biochemistry and Biotechnology to view the supplemental file.

  19. Global profiling strategies for mapping dysregulated metabolic pathways in cancer.

    PubMed

    Benjamin, Daniel I; Cravatt, Benjamin F; Nomura, Daniel K

    2012-11-01

    Cancer cells possess fundamentally altered metabolism that provides a foundation to support tumorigenicity and malignancy. Our understanding of the biochemical underpinnings of cancer has benefited from the integrated utilization of large-scale profiling platforms (e.g., genomics, proteomics, and metabolomics), which, together, can provide a global assessment of how enzymes and their parent metabolic networks become altered in cancer to fuel tumor growth. This review presents several examples of how these integrated platforms have yielded fundamental insights into dysregulated metabolism in cancer. We will also discuss questions and challenges that must be addressed to more completely describe, and eventually control, the diverse metabolic pathways that support tumorigenesis.

  20. Rapid parallel evolutionary changes of gene transcription profiles in farmed Atlantic salmon.

    PubMed

    Roberge, Christian; Einum, Sigurd; Guderley, Helga; Bernatchez, Louis

    2006-01-01

    Farmed salmon strains have been selected to improve growth rates as well as other traits of commercial interest but the 2 million farmed salmon escaping annually may enhance the risk of extinction of wild populations through genetic and ecological interactions. Here, we compare the transcription profiles of 3557 genes in the progeny of farmed and wild Atlantic salmon from Norway and Canada grown in controlled conditions, and demonstrate that five to seven generations of artificial selection led to heritable changes in gene transcription profiles, the average magnitude of the differences being 25% and 18% for at least 1.4% and 1.7% of the expressed genes in juvenile salmon from Norway and Canada, respectively. Moreover, genes showing significant transcription profile differences in both farmed strains (16%) all exhibited parallel changes. These findings, along with the identification of several genes whose expression profiles were modified through artificial selection, provide new insights into the molecular basis of parallel evolution, and suggest how gene flow from farmed escapees may affect the genetic integrity of wild populations. PMID:16367826

  1. Rapid parallel evolutionary changes of gene transcription profiles in farmed Atlantic salmon.

    PubMed

    Roberge, Christian; Einum, Sigurd; Guderley, Helga; Bernatchez, Louis

    2006-01-01

    Farmed salmon strains have been selected to improve growth rates as well as other traits of commercial interest but the 2 million farmed salmon escaping annually may enhance the risk of extinction of wild populations through genetic and ecological interactions. Here, we compare the transcription profiles of 3557 genes in the progeny of farmed and wild Atlantic salmon from Norway and Canada grown in controlled conditions, and demonstrate that five to seven generations of artificial selection led to heritable changes in gene transcription profiles, the average magnitude of the differences being 25% and 18% for at least 1.4% and 1.7% of the expressed genes in juvenile salmon from Norway and Canada, respectively. Moreover, genes showing significant transcription profile differences in both farmed strains (16%) all exhibited parallel changes. These findings, along with the identification of several genes whose expression profiles were modified through artificial selection, provide new insights into the molecular basis of parallel evolution, and suggest how gene flow from farmed escapees may affect the genetic integrity of wild populations.

  2. Fire blight disease reactome: RNA-seq transcriptional profile of apple host plant defense responses to Erwinia amylovora pathogen infection

    PubMed Central

    Kamber, Tim; Buchmann, Jan P.; Pothier, Joël F.; Smits, Theo H. M.; Wicker, Thomas; Duffy, Brion

    2016-01-01

    The molecular basis of resistance and susceptibility of host plants to fire blight, a major disease threat to pome fruit production globally, is largely unknown. RNA-sequencing data from challenged and mock-inoculated flowers were analyzed to assess the susceptible response of apple to the fire blight pathogen Erwinia amylovora. In presence of the pathogen 1,080 transcripts were differentially expressed at 48 h post inoculation. These included putative disease resistance, stress, pathogen related, general metabolic, and phytohormone related genes. Reads, mapped to regions on the apple genome where no genes were assigned, were used to identify potential novel genes and open reading frames. To identify transcripts specifically expressed in response to E. amylovora, RT-PCRs were conducted and compared to the expression patterns of the fire blight biocontrol agent Pantoea vagans strain C9-1, another apple pathogen Pseudomonas syringae pv. papulans, and mock inoculated apple flowers. This led to the identification of a peroxidase superfamily gene that was lower expressed in response to E. amylovora suggesting a potential role in the susceptibility response. Overall, this study provides the first transcriptional profile by RNA-seq of the host plant during fire blight disease and insights into the response of susceptible apple plants to E. amylovora. PMID:26883568

  3. Transcriptional profiling of canker-resistant transgenic sweet orange (Citrus sinensis Osbeck) constitutively overexpressing a spermidine synthase gene.

    PubMed

    Fu, Xing-Zheng; Liu, Ji-Hong

    2013-01-01

    Citrus canker disease caused by Xanthomonas citri subsp. citri (Xcc) is one of the most devastating diseases affecting the citrus industry worldwide. In our previous study, the canker-resistant transgenic sweet orange (Citrus sinensis Osbeck) plants were produced via constitutively overexpressing a spermidine synthase. To unravel the molecular mechanisms underlying Xcc resistance of the transgenic plants, in the present study global transcriptional profiling was compared between untransformed line (WT) and the transgenic line (TG9) by hybridizing with Affymetrix Citrus GeneChip. In total, 666 differentially expressed genes (DEGs) were identified, 448 upregulated, and 218 downregulated. The DEGs were classified into 33 categories after Gene ontology (GO) annotation, in which 68 genes are in response to stimulus and involved in immune system process, 12 genes are related to cell wall, and 13 genes belong to transcription factors. These genes and those related to starch and sucrose metabolism, glutathione metabolism, biosynthesis of phenylpropanoids, and plant hormones were hypothesized to play major roles in the canker resistance of TG9. Semiquantitative RT-PCR analysis showed that the transcript levels of several candidate genes in TG9 were significantly higher than in WT both before and after Xcc inoculation, indicating their potential association with canker disease.

  4. Transcriptional Profiling of Canker-Resistant Transgenic Sweet Orange (Citrus sinensis Osbeck) Constitutively Overexpressing a Spermidine Synthase Gene

    PubMed Central

    Fu, Xing-Zheng; Liu, Ji-Hong

    2013-01-01

    Citrus canker disease caused by Xanthomonas citri subsp. citri (Xcc) is one of the most devastating diseases affecting the citrus industry worldwide. In our previous study, the canker-resistant transgenic sweet orange (Citrus sinensis Osbeck) plants were produced via constitutively overexpressing a spermidine synthase. To unravel the molecular mechanisms underlying Xcc resistance of the transgenic plants, in the present study global transcriptional profiling was compared between untransformed line (WT) and the transgenic line (TG9) by hybridizing with Affymetrix Citrus GeneChip. In total, 666 differentially expressed genes (DEGs) were identified, 448 upregulated, and 218 downregulated. The DEGs were classified into 33 categories after Gene ontology (GO) annotation, in which 68 genes are in response to stimulus and involved in immune system process, 12 genes are related to cell wall, and 13 genes belong to transcription factors. These genes and those related to starch and sucrose metabolism, glutathione metabolism, biosynthesis of phenylpropanoids, and plant hormones were hypothesized to play major roles in the canker resistance of TG9. Semiquantitative RT-PCR analysis showed that the transcript levels of several candidate genes in TG9 were significantly higher than in WT both before and after Xcc inoculation, indicating their potential association with canker disease. PMID:23509803

  5. Fire blight disease reactome: RNA-seq transcriptional profile of apple host plant defense responses to Erwinia amylovora pathogen infection.

    PubMed

    Kamber, Tim; Buchmann, Jan P; Pothier, Joël F; Smits, Theo H M; Wicker, Thomas; Duffy, Brion

    2016-01-01

    The molecular basis of resistance and susceptibility of host plants to fire blight, a major disease threat to pome fruit production globally, is largely unknown. RNA-sequencing data from challenged and mock-inoculated flowers were analyzed to assess the susceptible response of apple to the fire blight pathogen Erwinia amylovora. In presence of the pathogen 1,080 transcripts were differentially expressed at 48 h post inoculation. These included putative disease resistance, stress, pathogen related, general metabolic, and phytohormone related genes. Reads, mapped to regions on the apple genome where no genes were assigned, were used to identify potential novel genes and open reading frames. To identify transcripts specifically expressed in response to E. amylovora, RT-PCRs were conducted and compared to the expression patterns of the fire blight biocontrol agent Pantoea vagans strain C9-1, another apple pathogen Pseudomonas syringae pv. papulans, and mock inoculated apple flowers. This led to the identification of a peroxidase superfamily gene that was lower expressed in response to E. amylovora suggesting a potential role in the susceptibility response. Overall, this study provides the first transcriptional profile by RNA-seq of the host plant during fire blight disease and insights into the response of susceptible apple plants to E. amylovora. PMID:26883568

  6. Global transcriptional start site mapping in Geobacter sulfurreducens during growth with two different electron acceptors.

    PubMed

    González, Getzabeth; Labastida, Aurora; Jímenez-Jacinto, Verónica; Vega-Alvarado, Leticia; Olvera, Maricela; Morett, Enrique; Juárez, Katy

    2016-09-01

    Geobacter sulfurreducens is an anaerobic soil bacterium that is involved in biogeochemical cycles of elements such as Fe and Mn. Although significant progress has been made in the understanding of the electron transfer processes in G. sulfurreducens, little is known about the regulatory mechanisms involved in their control. To expand the study of gene regulation in G. sulfurreducens, we carried out a genome-wide identification of transcription start sites (TSS) by 5'RACE and by deep RNA sequencing of primary mRNAs in two growth conditions. TSSs were identified along G. sulfurreducens genome and over 50% of them were located in the upstream region of the associated gene, and in some cases we detected genes with more than one TSS. Our global mapping of TSSs contributes with valuable information, which is needed for the study of transcript structure and transcription regulation signals and can ultimately contribute to the understanding of transcription initiation phenomena in G. sulfurreducens. PMID:27488344

  7. Genome-wide transcriptional profiling reveals molecular signatures of secondary xylem differentiation in Populus tomentosa.

    PubMed

    Yang, X H; Li, X G; Li, B L; Zhang, D Q

    2014-11-11

    Wood formation occurs via cell division, primary cell wall and secondary wall formation, and programmed cell death in the vascular cambium. Transcriptional profiling of secondary xylem differentiation is essential for understanding the molecular mechanisms underlying wood formation. Differential gene expression in secondary xylem differentiation of Populus has been previously investigated using cDNA microarray analysis. However, little is known about the molecular mechanisms from a genome-wide perspective. In this study, the Affymetrix poplar genome chips containing 61,413 probes were used to investigate the changes in the transcriptome during secondary xylem differentiation in Chinese white poplar (Populus tomentosa). Two xylem tissues (newly formed and lignified) were sampled for genome-wide transcriptional profiling. In total, 6843 genes (~11%) were identified with differential expression in the two xylem tissues. Many genes involved in cell division, primary wall modification, and cellulose synthesis were preferentially expressed in the newly formed xylem. In contrast, many genes, including 4-coumarate:cinnamate-4-hydroxylase (C4H), 4-coumarate:CoA ligase (4CL), cinnamyl alcohol dehydrogenase (CAD), and caffeoyl CoA 3-O-methyltransferase (CCoAOMT), associated with lignin biosynthesis were more transcribed in the lignified xylem. The two xylem tissues also showed differential expression of genes related to various hormones; thus, the secondary xylem differentiation could be regulated by hormone signaling. Furthermore, many transcription factor genes were preferentially expressed in the lignified xylem, suggesting that wood lignification involves extensive transcription regulation. The genome-wide transcriptional profiling of secondary xylem differentiation could provide additional insights into the molecular basis of wood formation in poplar species.

  8. Human corneal epithelial subpopulations: oxygen dependent ex vivo expansion and transcriptional profiling.

    PubMed

    Bath, Chris

    2013-06-01

    differentiation pathway in human corneal epithelium according to an optimized protocol for maintenance of expression profiles. Isolated total RNA from basal limbal crypts (BLCs), superficial limbal crypts (SLCs), paracentral/central cornea and limbal stroma was amplified and converted to fragmented cDNA libraries for use in deep paired-end next-generation sequencing. Global transcriptional profiling was carried out using bioinformatics. The location of primitive cells in BLCs, migratory and activated cells in SLCs and differentiated cells in paracentral/central cornea was evident from mapping of significantly upregulated genes in each compartment to the gene ontology (GO). Interestingly, many GO terms in BLCs were also involved in neurogenic processes, whereas many GO terms in SLCs were related to vasculature. Mapping upregulated genes in BLCs to pathway annotations in Kyoto Encyclopedia of Genes and Genomes described many active pathways as signalling and cancer-associated pathways. We supply extensive information on possible novel biomarkers, reveal insight into both active pathways and novel regulators of LESCs such as Lrig1 and SOX9 and provide an immense amount of data for future exploration (Bath et al. 2013b). Selective ex vivo expansion of LESCs in hypoxia and the comprehensive molecular characterization of corneal epithelial subpopulations in situ are expected to be beneficial for the future treatment of LSCD by cultured limbal epithelial transplantation.

  9. Transcriptional profiling of mouse uterus at pre-implantation stage under VEGF repression.

    PubMed

    Ji, Yan; Lu, Xiaodan; Zhong, Qingping; Liu, Peng; An, Yao; Zhang, Yuntao; Zhang, Shujie; Jia, Ruirui; Tesfamariam, Isaias G; Kahsay, Abraha G; Zhang, Luqing; Zhu, Wensheng; Zheng, Yaowu

    2013-01-01

    Uterus development during pre-implantation stage affects implantation process and embryo growth. Aberrant uterus development is associated with many human reproductive diseases. Among the factors regulating uterus development, vascular remodeling promoters are critical for uterus function and fertility. Vascular endothelial growth factor (VEGF), as one of the major members, has been found to be important in endothelial cell growth and blood vessel development, as well as in non-endothelial cells. VEGF mediation in reproduction has been broadly studied, but VEGF-induced transcriptional machinery during implantation window has not been systematically studied. In this study, a genetically repressed VEGF mouse model was used to analyze uterus transcriptome at gestation 2.5 (G2.5) by Solexa/Illumina's digital gene expression (DGE) system. A number of 831 uterus-specific and 2398 VEGF-regulated genes were identified. Gene ontology (GO) analysis indicated that genes actively involved in uterus development were members of collagen biosynthesis, cell proliferation and cell apoptosis. Uterus-specific genes were enriched in activities of phosphatidyl inositol phosphate kinase, histone H3-K36 demethylation and protein acetylation. Among VEGF-regulated genes, up-regulated were associated with RNA polymerase III activity while down-regulated were strongly related with muscle development. Comparable numbers of antisense transcripts were identified. Expression levels of the antisense transcripts were found tightly correlated with their sense expression levels, an indication of possibly non-specific transcripts generated around the active promoters and enhancers. The antisense transcripts with exceptionally high or low expression levels and the antisense transcripts under VEGF regulation were also identified. These transcripts may be important candidates in regulation of uterus development. This study provides a global survey on genes and antisense transcripts regulated by VEGF in

  10. Transcriptional profiling of Arabidopsis root hairs and pollen defines an apical cell growth signature

    PubMed Central

    2014-01-01

    Background Current views on the control of cell development are anchored on the notion that phenotypes are defined by networks of transcriptional activity. The large amounts of information brought about by transcriptomics should allow the definition of these networks through the analysis of cell-specific transcriptional signatures. Here we test this principle by applying an analogue to comparative anatomy at the cellular level, searching for conserved transcriptional signatures, or conserved small gene-regulatory networks (GRNs) on root hairs (RH) and pollen tubes (PT), two filamentous apical growing cells that are a striking example of conservation of structure and function in plants. Results We developed a new method for isolation of growing and mature root hair cells, analysed their transcriptome by microarray analysis, and further compared it with pollen and other single cell transcriptomics data. Principal component analysis shows a statistical relation between the datasets of RHs and PTs which is suggestive of a common transcriptional profile pattern for the apical growing cells in a plant, with overlapping profiles and clear similarities at the level of small GTPases, vesicle-mediated transport and various specific metabolic responses. Furthermore, cis-regulatory element analysis of co-regulated genes between RHs and PTs revealed conserved binding sequences that are likely required for the expression of genes comprising the apical signature. This included a significant occurrence of motifs associated to a defined transcriptional response upon anaerobiosis. Conclusions Our results suggest that maintaining apical growth mechanisms synchronized with energy yielding might require a combinatorial network of transcriptional regulation. We propose that this study should constitute the foundation for further genetic and physiological dissection of the mechanisms underlying apical growth of plant cells. PMID:25080170

  11. Transcriptome Profiling Reveals Differentially Expressed Transcripts Between the Human Adrenal Zona Fasciculata and Zona Reticularis

    PubMed Central

    Rege, Juilee; Nakamura, Yasuhiro; Wang, Tao; Merchen, Todd D.; Sasano, Hironobu

    2014-01-01

    Context: The human adrenal zona fasciculata (ZF) and zona reticularis (ZR) are responsible for the production of cortisol and 19-carbon steroids (often called adrenal androgens), respectively. However, the gene profiles and exact molecular mechanisms leading to the functional phenotype of the ZF and ZR are still not clearly defined. In the present study, we identified the transcripts that are differentially expressed in the ZF and ZR. Objective: The objective of the study was to compare the transcriptome profiles of ZF and ZR. Design and Methods: ZF and ZR were microdissected from 10 human adrenals. Total RNA was extracted from 10 ZF/ZR pairs and hybridized to Illumina microarray chips. The 10 most differentially expressed transcripts were studied with quantitative RT-PCR (qPCR). Immunohistochemistry was also performed on four zone-specific genes. Results: Microarray results demonstrated that only 347 transcripts of the 47 231 were significantly different by 2-fold or greater in the ZF and ZR. ZF had 195 transcripts with 2-fold or greater increase compared with its paired ZR, whereas ZR was found to have 152 transcripts with 2-fold or greater higher expression than in ZF. Microarray and qPCR analysis of transcripts encoding steroidogenic enzymes (n = 10) demonstrated that only 3β-hydroxysteroid dehydrogenase, steroid sulfotransferase, type 5 17β-hydroxysteroid dehydrogenase, and cytochrome b5 were significantly different. Immunohistochemistry and qPCR studies confirmed that the ZF had an increased expression of lymphoid enhancer-binding factor 1 and nephroblastoma overexpressed, whereas ZR showed an increased expression of solute carrier family 27 (fatty acid transporter) (SLC27A2), member 2 and TSPAN12 (tetraspanin 12) Conclusion: Microarray revealed several novel candidate genes for elucidating the molecular mechanisms governing the ZF and ZR, thereby increasing our understanding of the functional zonation of these two adrenocortical zones. PMID:24423296

  12. Comprehensive analysis of the transcriptional profile of the Mediator complex across human cancer types

    PubMed Central

    Offermann, Anne; Braun, Martin; Deng, Mario; Boehm, Diana; Queisser, Angela; von Mässenhausen, Anne; Brägelmann, Johannes; Vogel, Wenzel; Schmidt, Doris; Majores, Michael; Schindler, Anne; Kristiansen, Glen; Müller, Stefan C.; Ellinger, Jörg; Shaikhibrahim, Zaki; Perner, Sven

    2016-01-01

    The Mediator complex is a key regulator of gene transcription and several studies demonstrated altered expressions of particular subunits in diverse human diseases, especially cancer. However a systematic study deciphering the transcriptional expression of the Mediator across different cancer entities is still lacking. We therefore performed a comprehensive in silico cancer vs. benign analysis of the Mediator complex subunits (MEDs) for 20 tumor entities using Oncomine datasets. The transcriptional expression profiles across almost all cancer entities showed differentially expressed MEDs as compared to benign tissue. Differential expression of MED8 in renal cell carcinoma (RCC) and MED12 in lung cancer (LCa) were validated and further investigated by immunohistochemical staining on tissue microarrays containing large numbers of specimen. MED8 in clear cell RCC (ccRCC) associated with shorter survival and advanced TNM stage and showed higher expression in metastatic than primary tumors. In vitro, siRNA mediated MED8 knockdown significantly impaired proliferation and motility in ccRCC cell lines, hinting at a role for MED8 to serve as a novel therapeutic target in ccRCC. Taken together, our Mediator complex transcriptome proved to be a valid tool for identifying cancer-related shifts in Mediator complex composition, revealing that MEDs do exhibit cancer specific transcriptional expression profiles. PMID:27050271

  13. Identification of Heat Responsive Genes in Brassica napus Siliques at the Seed-Filling Stage through Transcriptional Profiling

    PubMed Central

    Yang, Qingyong; Li, Xiaodong; Wan, Bingxi; Dong, Yanni; Wang, Xuemin; Zhou, Yongming

    2014-01-01

    High temperature stress results in yield loss and alterations to seed composition during seed filling in oilseed rape (Brassica napus). However, the mechanism underlying this heat response is poorly understood. In this study, global transcription profiles of 20 d-old siliques of B. napus were analyzed after heat stress using a Brassica 95k EST microarray. The up-regulated genes included many HSF/HSP transcripts and other heat-related marker genes, such as ROF2, DREB2a, MBF1c and Hsa32, reflecting the conservation of key heat resistance factors among plants. Other up-regulated genes were preferentially expressed in heat-stressed silique walls or seeds, including some transcription factors and potential developmental regulators. In contrast, down-regulated genes differed between the silique wall and seeds and were largely tied to the biological functions of each tissue, such as glucosinolate metabolism in the silique wall and flavonoid synthesis in seeds. Additionally, a large proportion (one-third) of these differentially expressed genes had unknown functions. Based on these gene expression profiles, Arabidopsis mutants for eight heat-induced Brassica homologous genes were treated with different heat stress methods, and thermotolerance varied with each mutation, heat stress regimen and plant development stage. At least two of the eight mutants exhibited sensitivity to the heat treatments, suggesting the importance of the respective genes in responding to heat stress. In summary, this study elucidated the molecular bases of the heat responses in siliques during later reproductive stages and provides valuable information and gene resources for the genetic improvement of heat tolerance in oilseed rape breeding. PMID:25013950

  14. Resequencing of Curcuma longa L. cv. Kedaram through transcriptome profiling reveals various novel transcripts.

    PubMed

    Sahoo, Ambika; Jena, Sudipta; Sahoo, Suprava; Nayak, Sanghamitra; Kar, Basudeba

    2016-09-01

    Curcuma longa L. (Turmeric), of the family Zingiberaceae, is one of the economically as well as medicinally important plant species. It is a sterile, polyploid and vegetatively propagated spice crop cultivated usually in Southeast Asia. In the current study, we carried out re-sequencing through transcriptome profiling of Curcuma longa cv. Kedaram (Cl_Ked_6). We acquired a total of 1 GB raw data by resequencing through paired-end sequencing using Nextseq 500 platform. The raw data obtained in this study can be accessible in NCBI database with accession number of SRR3928562 with bioproject accession number PRJNA324755. Cufflinks-2.2.1 tool was used for transcriptome assembly which resulted in 39,554 numbers of transcripts. The transcript length ranged from 76 to 15,568, having N50 value of 1221 and median transcript length of 860. We annotated the transcripts using multiple databases. This data will be beneficial for studying sequence variations particularly SNPs between cultivars of turmeric towards authentic identification and discovery of novel functional transcripts in Kedaram. PMID:27595066

  15. Characterization and Improvement of RNA-Seq Precision in Quantitative Transcript Expression Profiling

    SciTech Connect

    Labaj, Pawel P.; Leparc, German G.; Linggi, Bryan E.; Markillie, Lye Meng; Wiley, H. S.; Kreil, David P.

    2011-07-01

    Measurement precision determines the power of any analysis to reliably identify significant signals, such as in screens for differential expression, independent of whether the experimental design incorporates replicates or not. With the compilation of large scale RNA-Seq data sets with technical replicate samples, however, we can now, for the first time, perform a systematic analysis of the precision of expression level estimates from massively parallel sequencing technology. This then allows considerations for its improvement by computational or experimental means. Results: We report on a comprehensive study of target coverage and measurement precision, including their dependence on transcript expression levels, read depth and other parameters. In particular, an impressive target coverage of 84% of the estimated true transcript population could be achieved with 331 million 50 bp reads, with diminishing returns from longer read lengths and even less gains from increased sequencing depths. Most of the measurement power (75%) is spent on only 7% of the known transcriptome, however, making less strongly expressed transcripts harder to measure. Consequently, less than 30% of all transcripts could be quantified reliably with a relative error < 20%. Based on established tools, we then introduce a new approach for mapping and analyzing sequencing reads that yields substantially improved performance in gene expression profiling, increasing the number of transcripts that can reliably be quantified to over 40%. Extrapolations to higher sequencing depths highlight the need for efficient complementary steps. In discussion we outline possible experimental and computational strategies for further improvements in quantification precision.

  16. Global DNA modifications suppress transcription in brown adipose tissue during hibernation.

    PubMed

    Biggar, Yulia; Storey, Kenneth B

    2014-10-01

    Hibernation is crucial to winter survival for many small mammals and is characterized by prolonged periods of torpor during which strong global controls are applied to suppress energy-expensive cellular processes. We hypothesized that one strategy of energy conservation is a global reduction in gene transcription imparted by reversible modifications to DNA and to proteins involved in chromatin packing. Transcriptional regulation during hibernation was examined over euthermic control groups and five stages of the torpor/arousal cycle in brown adipose tissue of thirteen-lined ground squirrels (Ictidomys tridecemlineatus). Brown adipose is crucial to hibernation success because it is responsible for the non-shivering thermogenesis that rewarms animals during arousal. A direct modification of DNA during torpor was revealed by a 1.7-fold increase in global DNA methylation during long term torpor as compared with euthermic controls. Acetylation of histone H3 (on Lys23) was reduced by about 50% when squirrels entered torpor, which would result in increased chromatin packing (and transcriptional repression). This was accompanied by strong increases in histone deacetylase protein levels during torpor; e.g. HDAC1 and HDAC4 levels rose by 1.5- and 6-fold, respectively. Protein levels of two co-repressors of transcription, MBD1 and HP1, also increased by 1.9- and 1.5-fold, respectively, in long-term torpor and remained high during early arousal. MBD1, HP1 and HDACs all returned to near control values during interbout indicating a reversal of their inhibitory actions. Overall, the data presents strong evidence for a global suppression of transcription during torpor via the action of epigenetic regulatory mechanisms in brown adipose tissue of hibernating thirteen-lined ground squirrels.

  17. Hypoxia induces a novel signature of chromatin modifications and global repression of transcription.

    PubMed

    Johnson, Amber Buescher; Denko, Nicholas; Barton, Michelle Craig

    2008-04-01

    Tumor cells respond to the harsh hypoxic microenvironment, in part, by transcriptional regulation of specific target genes. We found that hypoxia-mediated activation of selected genes occurs amidst widespread repression of transcription that is neither cell type-specific nor HIF-1-dependent. Despite overall repression, hypoxia induces a pool of histone modifications typically associated with transcriptional activation or repression. Chromatin immunoprecipitation analyses showed that this global mixture of hypoxia-modified histones is sorted in a gene-specific manner to correlate with transcriptional response to hypoxia. Exceptions to this were unexpected increases in H3K4me3 levels, typically associated with transcriptional activation, and decreased H3K27me3 levels, generally a marker of transcriptional silencing, at core promoters of both hypoxia-activated and -repressed genes. These data suggest that a novel signature of chromatin modifications is induced under hypoxic stress, which may play a role in gene regulatory switches active in proliferating tumor cells undergoing cycles of hypoxia and reoxygenation.

  18. Hypoxia induces a novel signature of chromatin modifications and global repression of transcription

    PubMed Central

    Johnson, Amber Buescher; Denko, Nicholas; Barton, Michelle Craig

    2008-01-01

    Tumor cells respond to the harsh hypoxic microenvironment, in part, by transcriptional regulation of specific target genes. We found that hypoxia-mediated activation of selected genes occurs amidst widespread repression of transcription that is neither cell type-specific nor HIF-1-dependent. Despite overall repression, hypoxia induces a pool of histone modifications typically associated with transcriptional activation or repression. Chromatin immunoprecipitation analyses showed that this global mixture of hypoxia-modified histones is sorted in a gene-specific manner to correlate with transcriptional response to hypoxia. Exceptions to this were unexpected increases in H3K4me3 levels, typically associated with transcriptional activation, and decreased H3K27me3 levels, generally a marker of transcriptional silencing, at core promoters of both hypoxia-activated and -repressed genes. These data suggest that a novel signature of chromatin modifications is induced under hypoxic stress, which may play a role in gene regulatory switches active in proliferating tumor cells undergoing cycles of hypoxia and reoxygenation. PMID:18294659

  19. Elucidation of ethanol tolerance mechanisms in Saccharomyces cerevisiae by global metabolite profiling.

    PubMed

    Kim, Sooah; Kim, Jungyeon; Song, Ju Hwan; Jung, Young Hoon; Choi, Il-Sup; Choi, Wonja; Park, Yong-Cheol; Seo, Jin-Ho; Kim, Kyoung Heon

    2016-09-01

    Ethanol, the major fermentation product of yeast, is a stress factor in yeast. We previously constructed an ethanol-tolerant mutant yeast iETS3 by using the global transcriptional machinery engineering. However, the ethanol-tolerance mechanism has not been systematically investigated. In this study, global metabolite profiling was carried out, mainly by gas chromatography/time-of-flight mass spectrometry (GC/TOF MS), to investigate the mechanisms of ethanol tolerance in iETS3. A total of 108 intracellular metabolites were identified by GC/TOF MS and high performance liquid chromatography, and these metabolites were mostly intermediates of the central carbon metabolism. The metabolite profiles of iETS3 and BY4741, cultured with or without ethanol, were significantly different based on principal component and hierarchical clustering analyses. Our metabolomic analyses identified the compositional changes in cell membranes and the activation of glutamate metabolism and the trehalose synthetic pathway as the possible mechanisms for the ethanol tolerance. These metabolic traits can be considered possible targets for further improvement of ethanol tolerance in the mutant. For example, the KGD1 deletion mutant, with up-regulated glutamate metabolism, showed increased tolerance to ethanol. This study has demonstrated that metabolomics can be a useful tool for strain improvement and phenotypic analysis of microorganisms under stress.

  20. JASPAR 2010: the greatly expanded open-access database of transcription factor binding profiles

    PubMed Central

    Portales-Casamar, Elodie; Thongjuea, Supat; Kwon, Andrew T.; Arenillas, David; Zhao, Xiaobei; Valen, Eivind; Yusuf, Dimas; Lenhard, Boris; Wasserman, Wyeth W.; Sandelin, Albin

    2010-01-01

    JASPAR (http://jaspar.genereg.net) is the leading open-access database of matrix profiles describing the DNA-binding patterns of transcription factors (TFs) and other proteins interacting with DNA in a sequence-specific manner. Its fourth major release is the largest expansion of the core database to date: the database now holds 457 non-redundant, curated profiles. The new entries include the first batch of profiles derived from ChIP-seq and ChIP-chip whole-genome binding experiments, and 177 yeast TF binding profiles. The introduction of a yeast division brings the convenience of JASPAR to an active research community. As binding models are refined by newer data, the JASPAR database now uses versioning of matrices: in this release, 12% of the older models were updated to improved versions. Classification of TF families has been improved by adopting a new DNA-binding domain nomenclature. A curated catalog of mammalian TFs is provided, extending the use of the JASPAR profiles to additional TFs belonging to the same structural family. The changes in the database set the system ready for more rapid acquisition of new high-throughput data sources. Additionally, three new special collections provide matrix profile data produced by recent alternative high-throughput approaches. PMID:19906716

  1. Global gene expression profiling of hyperkeratotic skin lesions from inner Mongolians chronically exposed to arsenic.

    PubMed

    Bailey, Kathryn; Xia, Yajuan; Ward, William O; Knapp, Geremy; Mo, Jinyao; Mumford, Judy L; Owen, Russell D; Thai, Sheau-Fung

    2009-12-01

    The skin is an organ that is highly sensitive to chronic arsenic (As) exposure. Skin lesions such as hyperkeratoses (HKs) are common early manifestations of arsenicosis in humans. HKs can be precursor lesions of nonmelanoma skin cancers (NMSCs), but the driving forces behind their formation and how they may ultimately progress to NMSCs are unknown. The goal of this study was to examine the global gene expression profiles of As-related HKs in an effort to better understand gene expression changes that are potentially associated with early stages of As carcinogenesis. HK biopsies were removed from individuals living in an arsenicosis-endemic region in Inner Mongolia who had been exposed to high As levels in their drinking water for >20 years. Gene expression profiling was performed on RNA isolated from 7 individuals in this group and from 4 lesion-free skin samples from healthy individuals. Consistent with the pathological characteristics of the HK lesions, major functional categories and known canonical pathways represented by altered transcripts include those involved in development, differentiation, apoptosis, proliferation, and stress response. The results of this study may help define a signature profile of gene expression changes associated with long-term As exposure in the skin.

  2. Global gene expression profiles in developing soybean seeds.

    PubMed

    Asakura, Tomiko; Tamura, Tomoko; Terauchi, Kaede; Narikawa, Tomoyo; Yagasaki, Kazuhiro; Ishimaru, Yoshiro; Abe, Keiko

    2012-03-01

    The gene expression profiles in soybean (Glycine max L.) seeds at 4 stages of development, namely, pod, 2-mm bean, 5-mm bean, and full-size bean, were examined by DNA microarray analysis. The total genes of each sample were classified into 4 clusters based on stage of development. Gene expression was strictly controlled by seed size, which coincides with the development stage. First, stage specific gene expression was examined. Many transcription factors were expressed in pod, 2-mm bean and 5-mm bean. In contrast, storage proteins were mainly expressed in full-size bean. Next, we extracted the genes that are differentially expressed genes (DEGs) that were extracted using the Rank products method of the Bioconductor software package. These DEGs were sorted into 8 groups using the hclust function according to gene expression patterns. Three of the groups across which the expression levels progressively increased included 100 genes, while 3 groups across which the levels decreased contained 47 genes. Storage proteins, seed-maturation proteins, some protease inhibitors, and the allergen Gly m Bd 28K were classified into the former groups. Lipoxygenase (LOX) family members were present in both the groups, indicating the multi-functionality with different expression patterns. PMID:22245912

  3. Effect of chronic uremia on the transcriptional profile of the calcified aorta analyzed by RNA sequencing

    PubMed Central

    Rukov, Jakob L.; Gravesen, Eva; Mace, Maria L.; Hofman-Bang, Jacob; Vinther, Jeppe; Andersen, Claus B.; Lewin, Ewa

    2016-01-01

    The development of vascular calcification (VC) in chronic uremia (CU) is a tightly regulated process controlled by factors promoting and inhibiting mineralization. Next-generation high-throughput RNA sequencing (RNA-seq) is a powerful and sensitive tool for quantitative gene expression profiling and the detection of differentially expressed genes. In the present study, we, for the first time, used RNA-seq to examine rat aorta transcriptomes from CU rats compared with control rats. Severe VC was induced in CU rats, which lead to extensive changes in the transcriptional profile. Among the 10,153 genes with an expression level of >1 reads/kilobase transcript/million mapped reads, 2,663 genes were differentially expressed with 47% upregulated genes and 53% downregulated genes in uremic rats. Significantly deregulated genes were enriched for ontologies related to the extracellular matrix, response to wounding, organic substance, and ossification. The individually affected genes were of relevance to osteogenic transformation, tissue calcification, and Wnt modulation. Downregulation of the Klotho gene in uremia is believed to be involved in the development of VC, but it is debated whether the effect is caused by circulating Klotho only or if Klotho is produced locally in the vasculature. We found that Klotho was neither expressed in the normal aorta nor calcified aorta by RNA-seq. In conclusion, we demonstrated extensive changes in the transcriptional profile of the uremic calcified aorta, which were consistent with a shift in phenotype from vascular tissue toward an osteochondrocytic transcriptome profile. Moreover, neither the normal vasculature nor calcified vasculature in CU expresses Klotho. PMID:26739890

  4. Effect of chronic uremia on the transcriptional profile of the calcified aorta analyzed by RNA sequencing.

    PubMed

    Rukov, Jakob L; Gravesen, Eva; Mace, Maria L; Hofman-Bang, Jacob; Vinther, Jeppe; Andersen, Claus B; Lewin, Ewa; Olgaard, Klaus

    2016-03-15

    The development of vascular calcification (VC) in chronic uremia (CU) is a tightly regulated process controlled by factors promoting and inhibiting mineralization. Next-generation high-throughput RNA sequencing (RNA-seq) is a powerful and sensitive tool for quantitative gene expression profiling and the detection of differentially expressed genes. In the present study, we, for the first time, used RNA-seq to examine rat aorta transcriptomes from CU rats compared with control rats. Severe VC was induced in CU rats, which lead to extensive changes in the transcriptional profile. Among the 10,153 genes with an expression level of >1 reads/kilobase transcript/million mapped reads, 2,663 genes were differentially expressed with 47% upregulated genes and 53% downregulated genes in uremic rats. Significantly deregulated genes were enriched for ontologies related to the extracellular matrix, response to wounding, organic substance, and ossification. The individually affected genes were of relevance to osteogenic transformation, tissue calcification, and Wnt modulation. Downregulation of the Klotho gene in uremia is believed to be involved in the development of VC, but it is debated whether the effect is caused by circulating Klotho only or if Klotho is produced locally in the vasculature. We found that Klotho was neither expressed in the normal aorta nor calcified aorta by RNA-seq. In conclusion, we demonstrated extensive changes in the transcriptional profile of the uremic calcified aorta, which were consistent with a shift in phenotype from vascular tissue toward an osteochondrocytic transcriptome profile. Moreover, neither the normal vasculature nor calcified vasculature in CU expresses Klotho.

  5. The global gene expression profile of the secondary transition during pancreatic development.

    PubMed

    Willmann, Stefanie J; Mueller, Nikola S; Engert, Silvia; Sterr, Michael; Burtscher, Ingo; Raducanu, Aurelia; Irmler, Martin; Beckers, Johannes; Sass, Steffen; Theis, Fabian J; Lickert, Heiko

    2016-02-01

    Pancreas organogenesis is a highly dynamic process where neighboring tissue interactions lead to dynamic changes in gene regulatory networks that orchestrate endocrine, exocrine, and ductal lineage formation. To understand the spatio-temporal regulatory logic we have used the Forkhead transcription factor Foxa2-Venus fusion (FVF) knock-in reporter mouse to separate the FVF(+) pancreatic epithelium from the FVF(−) surrounding tissue (mesenchyme, neurons, blood, and blood vessels) to perform a genome-wide mRNA expression profiling at embryonic days (E) 12.5-15.5. Annotating genes and molecular processes suggest that FVF marks endoderm-derived multipotent epithelial progenitors at several lineage restriction steps, when the bulk of endocrine, exocrine and ductal cells are formed during the secondary transition. In the pancreatic epithelial compartment, we identified most known endocrine and exocrine lineage determining factors and diabetes-associated genes, but also unknown genes with spatio-temporal regulated pancreatic expression. In the non-endoderm-derived compartment, we identified many well-described regulatory genes that are not yet functionally annotated in pancreas development, emphasizing that neighboring tissue interactions are still ill defined. Pancreatic expression of over 635 genes was analyzed with them RNA in situ hybridization Genepaint public database. This validated the quality of the profiling data set and identified hundreds of genes with spatially restricted expression patterns in the pancreas. Some of these genes are also targeted by pancreatic transcription factors and show active chromatin marks in human islets of Langerhans. Thus, with the highest spatio-temporal resolution of a global gene expression profile during the secondary transition, our study enables to shed light on neighboring tissue interactions, developmental timing and diabetes gene regulation. PMID:26643664

  6. The global gene expression profile of the secondary transition during pancreatic development.

    PubMed

    Willmann, Stefanie J; Mueller, Nikola S; Engert, Silvia; Sterr, Michael; Burtscher, Ingo; Raducanu, Aurelia; Irmler, Martin; Beckers, Johannes; Sass, Steffen; Theis, Fabian J; Lickert, Heiko

    2016-02-01

    Pancreas organogenesis is a highly dynamic process where neighboring tissue interactions lead to dynamic changes in gene regulatory networks that orchestrate endocrine, exocrine, and ductal lineage formation. To understand the spatio-temporal regulatory logic we have used the Forkhead transcription factor Foxa2-Venus fusion (FVF) knock-in reporter mouse to separate the FVF(+) pancreatic epithelium from the FVF(−) surrounding tissue (mesenchyme, neurons, blood, and blood vessels) to perform a genome-wide mRNA expression profiling at embryonic days (E) 12.5-15.5. Annotating genes and molecular processes suggest that FVF marks endoderm-derived multipotent epithelial progenitors at several lineage restriction steps, when the bulk of endocrine, exocrine and ductal cells are formed during the secondary transition. In the pancreatic epithelial compartment, we identified most known endocrine and exocrine lineage determining factors and diabetes-associated genes, but also unknown genes with spatio-temporal regulated pancreatic expression. In the non-endoderm-derived compartment, we identified many well-described regulatory genes that are not yet functionally annotated in pancreas development, emphasizing that neighboring tissue interactions are still ill defined. Pancreatic expression of over 635 genes was analyzed with them RNA in situ hybridization Genepaint public database. This validated the quality of the profiling data set and identified hundreds of genes with spatially restricted expression patterns in the pancreas. Some of these genes are also targeted by pancreatic transcription factors and show active chromatin marks in human islets of Langerhans. Thus, with the highest spatio-temporal resolution of a global gene expression profile during the secondary transition, our study enables to shed light on neighboring tissue interactions, developmental timing and diabetes gene regulation.

  7. Breeding response of transcript profiling in developing seeds of Brassica napus

    PubMed Central

    Hu, Yaping; Wu, Gang; Cao, Yinglong; Wu, Yuhua; Xiao, Ling; Li, Xiaodan; Lu, Changming

    2009-01-01

    Background The upgrading of rapeseed cultivars has resulted in a substantial improvement in yield and quality in China over the past 30 years. With the selective pressure against fatty acid composition and oil content, high erucic acid- and low oil-content cultivars have been replaced by low erucic acid- and high oil-content cultivars. The high erucic acid cultivar Zhongyou 821 and its descendent, low erucic acid cultivar Zhongshuang 9, are representatives of two generations of the most outstanding Chinese rapeseed cultivars (B. napus) developed the past 2 decades. This paper compares the transcriptional profiles of Zhongshuang 9 and Zhongyou 821 for 32 genes that are principally involved in lipid biosynthesis during seed development in order to elucidate how the transcriptional profiles of these genes responded to quality improvement over the past 20 years. Results Comparison of the cultivar Zhongyou 821 with its descendent, Zhongshuang 9, shows that the transcriptional levels of seven of the 32 genes were upregulated by 30% to 109%, including FAD3, ACCase, FAE1, GKTP, Caleosin, GAPDH, and PEPC. Of the 32 genes, 10 (KAS3, β-CT, BcRK6, P450, FatA, Oleosin, FAD6, FatB, α-CT and SUC1) were downregulated by at least 20% and most by 50%. The Napin gene alone accounted for over 75% of total transcription from all 32 genes assessed in both cultivars. Most of the genes showed significant correlation with fatty acid accumulation, but the correlation in ZS9 was significantly different from that in ZY821. Higher KCR2 activity is associated with higher C16:0, C18:0, and C18:2 in both cultivars, lower C22:1 and total fatty acid content in ZY821, and lower 18:1 in ZS9. Conclusion This paper illustrates the response of the transcription levels of 32 genes to breeding in developing rapeseed seeds. Both cultivars showed similar transcription profiles, with the Napin gene predominantly transcribed. Selective pressure for zero erucic acid, low glucosinolate, high oleic acid and

  8. Global Transcriptional Dynamics of Diapause Induction in Non-Blood-Fed and Blood-Fed Aedes albopictus

    PubMed Central

    Huang, Xin; Poelchau, Monica F.; Armbruster, Peter A.

    2015-01-01

    Background Aedes albopictus is a vector of increasing public health concern due to its rapid global range expansion and ability to transmit Dengue virus, Chikungunya virus and a wide range of additional arboviruses. Traditional vector control strategies have been largely ineffective against Ae. albopictus and novel approaches are urgently needed. Photoperiodic diapause is a crucial ecological adaptation in a wide range of temperate insects. Therefore, targeting the molecular regulation of photoperiodic diapause or diapause-associated physiological processes could provide the basis of novel approaches to vector control. Methodology/Principal Findings We investigated the global transcriptional profiles of diapause induction in Ae. albopictus by performing paired-end RNA-Seq of biologically replicated libraries. We sequenced RNA from whole bodies of adult females reared under diapause-inducing and non-diapause-inducing photoperiods either with or without a blood meal. We constructed a comprehensive transcriptome assembly that incorporated previous assemblies and represents over 14,000 annotated dipteran gene models. Mapping of sequence reads to the transcriptome identified differential expression of 2,251 genes in response to diapause-inducing short-day photoperiods. In non-blood-fed females, potential regulatory elements of diapause induction were transcriptionally up-regulated, including two of the canonical circadian clock genes, timeless and cryptochrome 1. In blood-fed females, genes in metabolic pathways related to energy production and offspring provisioning were differentially expressed under diapause-inducing conditions, including the oxidative phosphorylation pathway and lipid metabolism genes. Conclusions/Significance This study is the first to utilize powerful RNA-Seq technologies to elucidate the transcriptional basis of diapause induction in any insect. We identified candidate genes and pathways regulating diapause induction, including a conserved set of

  9. Comparison of susceptibility and transcription profile of the new antifungal hassallidin A with caspofungin

    SciTech Connect

    Neuhof, Torsten . E-mail: t.neuhof@gmx.de; Seibold, Michael; Thewes, Sascha; Laue, Michael; Han, Chang-Ok; Hube, Bernhard; Doehren, Hans von

    2006-10-20

    This is First report on the antifungal effects of the new glycolipopeptide hassallidin A. Due to related molecular structure moieties between hassallidin A and the established antifungal drug caspofungin we assumed parallels in the effects on cell viability. Therefore we compared hassallidin A with caspofungin by antifungal susceptibility testing and by analysing the genome-wide transcriptional profile of Candida albicans. Furthermore, we examined modifications in ultracellular structure due to hassallidin A treatment by electron microscopy. Hassallidin A was found to be fungicidal against all tested Candida species and Cryptococcus neoformans isolates. MICs ranged from 4 to 8 {mu}g/ml, independently from the species. Electron microscopy revealed noticeable ultrastructural changes in C. albicans cells exposed to hassallidin A. Comparing the transcriptional profile of C. albicans cells treated with hassallidin A to that of cells exposed to caspofungin, only 20 genes were found to be similarly up- or down-regulated in both assays, while 227 genes were up- or down-regulated induced by hassallidin A specifically. Genes up-regulated in cells exposed to hassallidin A included metabolic and mitotic genes, while genes involved in DNA repair, vesicle docking, and membrane fusion were down-regulated. In summary, our data suggest that, although hassallidin A and caspofungin have similar structures, however, the effects on susceptibility and transcriptional response to yeasts seem to be different.

  10. Transcription profiling provides insights into gene pathways involved in horn and scurs development in cattle

    PubMed Central

    2010-01-01

    Background Two types of horns are evident in cattle - fixed horns attached to the skull and a variation called scurs, which refers to small loosely attached horns. Cattle lacking horns are referred to as polled. Although both the Poll and Scurs loci have been mapped to BTA1 and 19 respectively, the underlying genetic basis of these phenotypes is unknown, and so far, no candidate genes regulating these developmental processes have been described. This study is the first reported attempt at transcript profiling to identify genes and pathways contributing to horn and scurs development in Brahman cattle, relative to polled counterparts. Results Expression patterns in polled, horned and scurs tissues were obtained using the Agilent 44 k bovine array. The most notable feature when comparing transcriptional profiles of developing horn tissues against polled was the down regulation of genes coding for elements of the cadherin junction as well as those involved in epidermal development. We hypothesize this as a key event involved in keratinocyte migration and subsequent horn development. In the polled-scurs comparison, the most prevalent differentially expressed transcripts code for genes involved in extracellular matrix remodelling, which were up regulated in scurs tissues relative to polled. Conclusion For this first time we describe networks of genes involved in horn and scurs development. Interestingly, we did not observe differential expression in any of the genes present on the fine mapped region of BTA1 known to contain the Poll locus. PMID:20537189

  11. Global transcription network incorporating distal regulator binding reveals selective cooperation of cancer drivers and risk genes

    PubMed Central

    Kim, Kwoneel; Yang, Woojin; Lee, Kang Seon; Bang, Hyoeun; Jang, Kiwon; Kim, Sang Cheol; Yang, Jin Ok; Park, Seongjin; Park, Kiejung; Choi, Jung Kyoon

    2015-01-01

    Global network modeling of distal regulatory interactions is essential in understanding the overall architecture of gene expression programs. Here, we developed a Bayesian probabilistic model and computational method for global causal network construction with breast cancer as a model. Whereas physical regulator binding was well supported by gene expression causality in general, distal elements in intragenic regions or loci distant from the target gene exhibited particularly strong functional effects. Modeling the action of long-range enhancers was critical in recovering true biological interactions with increased coverage and specificity overall and unraveling regulatory complexity underlying tumor subclasses and drug responses in particular. Transcriptional cancer drivers and risk genes were discovered based on the network analysis of somatic and genetic cancer-related DNA variants. Notably, we observed that the risk genes were functionally downstream of the cancer drivers and were selectively susceptible to network perturbation by tumorigenic changes in their upstream drivers. Furthermore, cancer risk alleles tended to increase the susceptibility of the transcription of their associated genes. These findings suggest that transcriptional cancer drivers selectively induce a combinatorial misregulation of downstream risk genes, and that genetic risk factors, mostly residing in distal regulatory regions, increase transcriptional susceptibility to upstream cancer-driving somatic changes. PMID:26001967

  12. Dynamic Metabolite Profiling in an Archaeon Connects Transcriptional Regulation to Metabolic Consequences

    PubMed Central

    Todor, Horia; Gooding, Jessica; Ilkayeva, Olga R.; Schmid, Amy K.

    2015-01-01

    Previous work demonstrated that the TrmB transcription factor is responsible for regulating the expression of many enzyme-coding genes in the hypersaline-adapted archaeon Halobacterium salinarum via a direct interaction with a cis-regulatory sequence in their promoters. This interaction is abolished in the presence of glucose. Although much is known about the effects of TrmB at the transcriptional level, it remains unclear whether and to what extent changes in mRNA levels directly affect metabolite levels. In order to address this question, here we performed a high-resolution metabolite profiling time course during a change in nutrients using a combination of targeted and untargeted methods in wild-type and ΔtrmB strain backgrounds. We found that TrmB-mediated transcriptional changes resulted in widespread and significant changes to metabolite levels across the metabolic network. Additionally, the pattern of growth complementation using various purines suggests that the mis-regulation of gluconeogenesis in the ΔtrmB mutant strain in the absence of glucose results in low phosphoribosylpyrophosphate (PRPP) levels. We confirmed these low PRPP levels using a quantitative mass spectrometric technique and found that they are associated with a metabolic block in de novo purine synthesis, which is partially responsible for the growth defect of the ΔtrmB mutant strain in the absence of glucose. In conclusion, we show how transcriptional regulation of metabolism affects metabolite levels and ultimately, phenotypes. PMID:26284786

  13. Galactinol synthase transcriptional profile in two genotypes of Coffea canephora with contrasting tolerance to drought

    PubMed Central

    Santos, Tiago Benedito Dos; de Lima, Rogério Barbosa; Nagashima, Getúlio Takashi; Petkowicz, Carmen Lucia de Oliveira; Carpentieri-Pípolo, Valéria; Pereira, Luiz Filipe Protasio; Domingues, Douglas Silva; Vieira, Luiz Gonzaga Esteves

    2015-01-01

    Increased synthesis of galactinol and raffinose family oligosaccharides (RFOs) has been reported in vegetative tissues in response to a range of abiotic stresses. In this work, we evaluated the transcriptional profile of a Coffea canephora galactinol synthase gene (CcGolS1) in two clones that differed in tolerance to water deficit in order to assess the contribution of this gene to drought tolerance. The expression of CcGolS1 in leaves was differentially regulated by water deficit, depending on the intensity of stress and the genotype. In clone 109A (drought-susceptible), the abundance of CcGolS1 transcripts decreased upon exposure to drought, reaching minimum values during recovery from severe water deficit and stress. In contrast, CcGolS1 gene expression in clone 14 (drought-tolerant) was stimulated by water deficit. Changes in galactinol and RFO content did not correlate with variation in the steady-state transcript level. However, the magnitude of increase in RFO accumulation was higher in the tolerant cultivar, mainly under severe water deficit. The finding that the drought-tolerant coffee clone showed enhanced accumulation of CcGolS1 transcripts and RFOs under water deficit suggests the possibility of using this gene to improve drought tolerance in this important crop. PMID:26273221

  14. Transcription factors expressed in olfactory bulb local progenitor cells revealed by genome-wide transcriptome profiling

    PubMed Central

    Campbell, Gordon R. O.; Baudhuin, Ariane; Vranizan, Karen; Ngai, John

    2011-01-01

    The local progenitor population in the olfactory bulb (OB) gives rise to mitral and tufted projection neurons during embryonic development. In contrast, OB interneurons are derived from sources outside the bulb where neurogenesis continues throughout life. While many of the genes involved in OB interneuron development have been characterized, the genetic pathways driving local progenitor cell differentiation in this tissue are largely unknown. To better understand this process, we used transcriptional profiling to monitor gene expression of whole OB at daily intervals from embryonic day 11 through birth, generating a compendium of gene expression encompassing the major developmental events of this tissue. Through hierarchical clustering, bioinformatics analysis, and validation by RNA in situ hybridizations, we identified a large number of transcription factors, DNA binding proteins, and cell cycle-related genes expressed by the local neural progenitor cells (NPCs) of the embryonic OB. Further in silico analysis of transcription factor binding sites identified an enrichment of genes regulated by the E2F-Rb pathway among those expressed in the local NPC population. Together these results provide initial insights into the molecular identity of the OB local NPC population and the transcription factor networks that may regulate their function. PMID:21194568

  15. RNA-Seq profiling of single bovine oocyte transcript abundance and its modulation by cytoplasmic polyadenylation

    PubMed Central

    Reyes, Juan M; Chitwood, James L; Ross, Pablo J

    2014-01-01

    Molecular changes occurring during mammalian oocyte maturation are partly regulated by cytoplasmic polyadenylation (CP) and affect oocyte quality, yet the extent of CP activity during oocyte maturation remains unknown. Single bovine oocyte RNA sequencing (RNA-Seq) was performed to examine changes in transcript abundance during in vitro oocyte maturation in cattle. Polyadenylated RNA from individual germinal-vesicle and metaphase-II oocytes was amplified and processed for Illumina sequencing, producing approximately 30 million reads per replicate for each sample type. A total of 10,494 genes were found to be expressed, of which 2,455 were differentially expressed (adjusted P<0.05 and fold change >2) between stages, with 503 and 1,952 genes respectively increasing and decreasing in abundance. Differentially expressed genes with complete 3’-untranslated-region sequence (279 increasing and 918 decreasing in polyadenylated transcript abundance) were examined for the presence, position, and distribution of motifs mediating CP, revealing enrichment (85%) and lack there of (18%) in up- and down-regulated genes, respectively. Examination of total and polyadenylated RNA abundance by quantitative PCR validated these RNA-Seq findings. The observed increases in polyadenylated transcript abundance within the RNA-Seq data are likely due to CP, providing novel insight into targeted transcripts and resultant differential gene expression profiles that contribute to oocyte maturation. PMID:25560149

  16. RNA-Seq profiling of single bovine oocyte transcript abundance and its modulation by cytoplasmic polyadenylation.

    PubMed

    Reyes, Juan M; Chitwood, James L; Ross, Pablo J

    2015-02-01

    Molecular changes occurring during mammalian oocyte maturation are partly regulated by cytoplasmic polyadenylation (CP) and affect oocyte quality, yet the extent of CP activity during oocyte maturation remains unknown. Single bovine oocyte RNA sequencing (RNA-Seq) was performed to examine changes in transcript abundance during in vitro oocyte maturation in cattle. Polyadenylated RNA from individual germinal-vesicle and metaphase-II oocytes was amplified and processed for Illumina sequencing, producing approximately 30 million reads per replicate for each sample type. A total of 10,494 genes were found to be expressed, of which 2,455 were differentially expressed (adjusted P < 0.05 and fold change >2) between stages, with 503 and 1,952 genes respectively increasing and decreasing in abundance. Differentially expressed genes with complete 3'-untranslated-region sequence (279 increasing and 918 decreasing in polyadenylated transcript abundance) were examined for the presence, position, and distribution of motifs mediating CP, revealing enrichment (85%) and lack thereof (18%) in up- and down-regulated genes, respectively. Examination of total and polyadenylated RNA abundance by quantitative PCR validated these RNA-Seq findings. The observed increases in polyadenylated transcript abundance within the RNA-Seq data are likely due to CP, providing novel insight into targeted transcripts and resultant differential gene expression profiles that contribute to oocyte maturation.

  17. Dynamic Metabolite Profiling in an Archaeon Connects Transcriptional Regulation to Metabolic Consequences.

    PubMed

    Todor, Horia; Gooding, Jessica; Ilkayeva, Olga R; Schmid, Amy K

    2015-01-01

    Previous work demonstrated that the TrmB transcription factor is responsible for regulating the expression of many enzyme-coding genes in the hypersaline-adapted archaeon Halobacterium salinarum via a direct interaction with a cis-regulatory sequence in their promoters. This interaction is abolished in the presence of glucose. Although much is known about the effects of TrmB at the transcriptional level, it remains unclear whether and to what extent changes in mRNA levels directly affect metabolite levels. In order to address this question, here we performed a high-resolution metabolite profiling time course during a change in nutrients using a combination of targeted and untargeted methods in wild-type and ΔtrmB strain backgrounds. We found that TrmB-mediated transcriptional changes resulted in widespread and significant changes to metabolite levels across the metabolic network. Additionally, the pattern of growth complementation using various purines suggests that the mis-regulation of gluconeogenesis in the ΔtrmB mutant strain in the absence of glucose results in low phosphoribosylpyrophosphate (PRPP) levels. We confirmed these low PRPP levels using a quantitative mass spectrometric technique and found that they are associated with a metabolic block in de novo purine synthesis, which is partially responsible for the growth defect of the ΔtrmB mutant strain in the absence of glucose. In conclusion, we show how transcriptional regulation of metabolism affects metabolite levels and ultimately, phenotypes.

  18. Global transcriptional and translational repression in human embryonic stem cells-derived Rett Syndrome neurons

    PubMed Central

    Li, Yun; Wang, Haoyi; Muffat, Julien; Cheng, Albert W.; Orlando, David A.; Lovén, Jakob; Kwok, Show-ming; Feldman, Danielle A.; Bateup, Helen S.; Gao, Qing; Hockemeyer, Dirk; Mitalipova, Maisam; Lewis, Caroline A.; Vander Heiden, Matthew G.; Sur, Mriganka; Young, Richard A.; Jaenisch, Rudolf

    2014-01-01

    Summary Rett Syndrome (RTT) is caused by mutations of MECP2, a methyl CpG binding protein thought to act as a global transcriptional repressor. Here we show, using an isogenic human embryonic stem cell model of RTT, that MECP2 mutant neurons display key molecular and cellular features of this disorder. Unbiased global gene expression analyses demonstrate that MECP2 functions as global gene activator in neurons but not in neural precursors. Decreased transcription in neurons was coupled with a significant reduction in nascent protein synthesis and lack of MECP2 was manifested as a severe defect in the activity of the AKT/mTOR pathway. Lack of MECP2 also leads to impaired mitochondrial function in mutant neurons. Activation of AKT/mTOR signaling by exogenous growth factors or by depleting PTEN boosted protein synthesis and ameliorated disease phenotypes in mutant neurons. Our findings indicate a vital function for MECP2 in maintaining active gene transcription in human neuronal cells. PMID:24094325

  19. Global transcriptional start site mapping using differential RNA sequencing reveals novel antisense RNAs in Escherichia coli.

    PubMed

    Thomason, Maureen K; Bischler, Thorsten; Eisenbart, Sara K; Förstner, Konrad U; Zhang, Aixia; Herbig, Alexander; Nieselt, Kay; Sharma, Cynthia M; Storz, Gisela

    2015-01-01

    While the model organism Escherichia coli has been the subject of intense study for decades, the full complement of its RNAs is only now being examined. Here we describe a survey of the E. coli transcriptome carried out using a differential RNA sequencing (dRNA-seq) approach, which can distinguish between primary and processed transcripts, and an automated prediction algorithm for transcriptional start sites (TSS). With the criterion of expression under at least one of three growth conditions examined, we predicted 14,868 TSS candidates, including 5,574 internal to annotated genes (iTSS) and 5,495 TSS corresponding to potential antisense RNAs (asRNAs). We examined expression of 14 candidate asRNAs by Northern analysis using RNA from wild-type E. coli and from strains defective for RNases III and E, two RNases reported to be involved in asRNA processing. Interestingly, nine asRNAs detected as distinct bands by Northern analysis were differentially affected by the rnc and rne mutations. We also compared our asRNA candidates with previously published asRNA annotations from RNA-seq data and discuss the challenges associated with these cross-comparisons. Our global transcriptional start site map represents a valuable resource for identification of transcription start sites, promoters, and novel transcripts in E. coli and is easily accessible, together with the cDNA coverage plots, in an online genome browser.

  20. Comparative transcriptional and functional profiling of clear cell and papillary renal cell carcinoma.

    PubMed

    Diegmann, Julia; Tomiuk, Stefan; Sanjmyatav, Jimsgene; Junker, Kerstin; Hindermann, Winfried; von Eggeling, Ferdinand

    2006-09-01

    Renal cell carcinoma (RCC) is known to effectively prevent immune recognition. However, little is known about the mechanisms that underlie this phenomenon. Thus, the identification of immunogenic molecules associated with RCC and the elucidation of the corresponding signaling pathways are crucial to the development of effective treatments. We performed transcriptional and functional profiling with cDNA microarrays (1070 cDNA probes) on a total of 17 RCCs, 11 clear cell and 6 papillary, and on corresponding normal tissue. Samples were clustered based on their expression profiles. We found a total of 45 genes to be regulated equally by both tumor types compared to the normal tissue. A set of 13 differentially expressed genes was identified between the examined tumor subtypes. Functional analysis was performed for both gene sets and showed a significant enrichment of cell surface genes regulated in both tumor subtypes. Within these we found five surface marker genes to be upregulated (TNFRSF10B, CD70, TNFR1, PDGFRB, and BAFF) which are involved in immune responses via the regulation of lymphocytes and can also induce apoptosis. Their overexpression in both tumor subtypes suggests a possible involvement in the immune escape strategies of RCC. The combination of transcriptional and functional profiling revealed potential target molecules for novel therapy strategies that must be studied in more detail. PMID:16865223

  1. Discovering Transcriptional Modules by Combined Analysis of Expression Profiles and Regulatory Sequences

    NASA Astrophysics Data System (ADS)

    Halperin, Yonit; Linhart, Chaim; Ulitsky, Igor; Shamir, Ron

    A key goal of gene expression analysis is the characterization of transcription factors (TFs) and micro-RNAs (miRNAs) regulating specific transcriptional programs. The most common approach to address this task is a two-step methodology: In the first step, a clustering procedure is executed to partition the genes into groups that are believed to be co-regulated, based on expression profile similarity. In the second step, a motif discovery tool is applied to search for over-represented cis-regulatory motifs within each group. In an effort to obtain better results by simultaneously utilizing all available information, several studies have suggested computational schemes for a single-step combined analysis of expression and sequence data. Despite extensive research, reverse engineering complex regulatory networks from microarray measurements remains a difficult challenge with limited success, especially in metazoans.

  2. Genome-wide transcriptional profiling of human glioblastoma cells in response to ITE treatment.

    PubMed

    Kang, Bo; Zhou, Yanwen; Zheng, Min; Wang, Ying-Jie

    2015-09-01

    A ligand-activated transcription factor aryl hydrocarbon receptor (AhR) is recently revealed to play a key role in embryogenesis and tumorigenesis (Feng et al. [1], Safe et al. [2]) and 2-(1'H-indole-3'-carbonyl)-thiazole-4-carboxylic acid methyl ester (ITE) (Song et al. [3]) is an endogenous AhR ligand that possesses anti-tumor activity. In order to gain insights into how ITE acts via the AhR in embryogenesis and tumorigenesis, we analyzed the genome-wide transcriptional profiles of the following three groups of cells: the human glioblastoma U87 parental cells, U87 tumor sphere cells treated with vehicle (DMSO) and U87 tumor sphere cells treated with ITE. Here, we provide the details of the sample gathering strategy and show the quality controls and the analyses associated with our gene array data deposited into the Gene Expression Omnibus (GEO) under the accession code of GSE67986.

  3. Bisphenol A and Bisphenol S Induce Distinct Transcriptional Profiles in Differentiating Human Primary Preadipocytes

    PubMed Central

    Boucher, Jonathan G.; Gagné, Rémi; Rowan-Carroll, Andrea; Boudreau, Adèle; Yauk, Carole L.; Atlas, Ella

    2016-01-01

    Bisphenol S (BPS) is increasingly used as a replacement plasticizer for bisphenol A (BPA) but its effects on human health have not been thoroughly examined. Recent evidence indicates that both BPA and BPS induce adipogenesis, although the mechanisms leading to this effect are unclear. In an effort to identify common and distinct mechanisms of action in inducing adipogenesis, transcriptional profiles of differentiating human preadipocytes exposed to BPA or BPS were compared. Human subcutaneous primary preadipocytes were differentiated in the presence of either 25 μM BPA or BPS for 2 and 4 days. Poly-A RNA-sequencing was used to identify differentially expressed genes (DEGs). Functional analysis of DEGs was undertaken in Ingenuity Pathway Analysis. BPA-treatment resulted in 472 and 176 DEGs on days 2 and 4, respectively, affecting pathways such as liver X receptor (LXR)/retinoid X receptor (RXR) activation, hepatic fibrosis and cholestasis. BPS-treatment resulted in 195 and 51 DEGs on days 2 and 4, respectively, revealing enrichment of genes associated with adipogenesis and lipid metabolism including the adipogenesis pathway and cholesterol biosynthesis. Interestingly, the transcription repressor N-CoR was identified as a negative upstream regulator in both BPA- and BPS-treated cells. This study presents the first comparison of BPA- and BPS-induced transcriptional profiles in human differentiating preadipocytes. While we previously showed that BPA and BPS both induce adipogenesis, the results from this study show that BPS affects adipose specific transcriptional changes earlier than BPA, and alters the expression of genes specifically related to adipogenesis and lipid metabolism. The findings provide insight into potential BPS and BPA-mediated mechanisms of action in inducing adipogenesis in human primary preadipocytes. PMID:27685785

  4. Genome-wide RNA polymerase II profiles and RNA accumulation reveal kinetics of transcription and associated epigenetic changes during diurnal cycles.

    PubMed

    Le Martelot, Gwendal; Canella, Donatella; Symul, Laura; Migliavacca, Eugenia; Gilardi, Federica; Liechti, Robin; Martin, Olivier; Harshman, Keith; Delorenzi, Mauro; Desvergne, Béatrice; Herr, Winship; Deplancke, Bart; Schibler, Ueli; Rougemont, Jacques; Guex, Nicolas; Hernandez, Nouria; Naef, Felix

    2012-01-01

    Interactions of cell-autonomous circadian oscillators with diurnal cycles govern the temporal compartmentalization of cell physiology in mammals. To understand the transcriptional and epigenetic basis of diurnal rhythms in mouse liver genome-wide, we generated temporal DNA occupancy profiles by RNA polymerase II (Pol II) as well as profiles of the histone modifications H3K4me3 and H3K36me3. We used these data to quantify the relationships of phases and amplitudes between different marks. We found that rhythmic Pol II recruitment at promoters rather than rhythmic transition from paused to productive elongation underlies diurnal gene transcription, a conclusion further supported by modeling. Moreover, Pol II occupancy preceded mRNA accumulation by 3 hours, consistent with mRNA half-lives. Both methylation marks showed that the epigenetic landscape is highly dynamic and globally remodeled during the 24-hour cycle. While promoters of transcribed genes had tri-methylated H3K4 even at their trough activity times, tri-methylation levels reached their peak, on average, 1 hour after Pol II. Meanwhile, rhythms in tri-methylation of H3K36 lagged transcription by 3 hours. Finally, modeling profiles of Pol II occupancy and mRNA accumulation identified three classes of genes: one showing rhythmicity both in transcriptional and mRNA accumulation, a second class with rhythmic transcription but flat mRNA levels, and a third with constant transcription but rhythmic mRNAs. The latter class emphasizes widespread temporally gated posttranscriptional regulation in the mouse liver.

  5. A Data Similarity-Based Strategy for Meta-analysis of Transcriptional Profiles in Cancer

    PubMed Central

    Xiang, Yuzhu; Shyr, Yu; Chen, Xi; Lehmann, Brian David; Viox, Daniel Joseph; George, Alfred L.; Yi, Yajun

    2013-01-01

    Background Robust transcriptional signatures in cancer can be identified by data similarity-driven meta-analysis of gene expression profiles. An unbiased data integration and interrogation strategy has not previously been available. Methods and Findings We implemented and performed a large meta-analysis of breast cancer gene expression profiles from 223 datasets containing 10,581 human breast cancer samples using a novel data similarity-based approach (iterative EXALT). Cancer gene expression signatures extracted from individual datasets were clustered by data similarity and consolidated into a meta-signature with a recurrent and concordant gene expression pattern. A retrospective survival analysis was performed to evaluate the predictive power of a novel meta-signature deduced from transcriptional profiling studies of human breast cancer. Validation cohorts consisting of 6,011 breast cancer patients from 21 different breast cancer datasets and 1,110 patients with other malignancies (lung and prostate cancer) were used to test the robustness of our findings. During the iterative EXALT analysis, 633 signatures were grouped by their data similarity and formed 121 signature clusters. From the 121 signature clusters, we identified a unique meta-signature (BRmet50) based on a cluster of 11 signatures sharing a phenotype related to highly aggressive breast cancer. In patients with breast cancer, there was a significant association between BRmet50 and disease outcome, and the prognostic power of BRmet50 was independent of common clinical and pathologic covariates. Furthermore, the prognostic value of BRmet50 was not specific to breast cancer, as it also predicted survival in prostate and lung cancers. Conclusions We have established and implemented a novel data similarity-driven meta-analysis strategy. Using this approach, we identified a transcriptional meta-signature (BRmet50) in breast cancer, and the prognostic performance of BRmet50 was robust and applicable across a

  6. Comparative transcriptional profiling of human Merkel cells and Merkel cell carcinoma.

    PubMed

    Mouchet, Nicolas; Coquart, Nolwenn; Lebonvallet, Nicolas; Le Gall-Ianotto, Christelle; Mogha, Ariane; Fautrel, Alain; Boulais, Nicholas; Dréno, Brigitte; Martin, Ludovic; Hu, Weiguo; Galibert, Marie-Dominique; Misery, Laurent

    2014-12-01

    Merkel cell carcinoma is believed to be derived from Merkel cells after infection by Merkel cell polyomavirus (MCPyV) and other poorly understood events. Transcriptional profiling using cDNA microarrays was performed on cells from MCPy-negative and MCPy-positive Merkel cell carcinomas and isolated normal Merkel cells. This microarray revealed numerous significantly upregulated genes and some downregulated genes. The extensive list of genes that were identified in these experiments provides a large body of potentially valuable information of Merkel cell carcinoma carcinogenesis and could represent a source of potential targets for cancer therapy.

  7. Endometrial transcriptional profiling of a bovine fertility model by Next-Generation Sequencing

    PubMed Central

    Mesquita, F.S.; Ramos, R.S.; Pugliesi, G.; Andrade, S.C.S.; Van Hoeck, V.; Langbeen, A.; Oliveira, M.L.; Gonella-Diaza, A.M.; Gasparin, G.; Fukumasu, H.; Pulz, L.H.; Membrive, C.M.; Coutinho, L.L.; Binelli, M.

    2015-01-01

    Studying the multitude of molecular networks and pathways that are potentially involved in a complex trait such as fertility requires an equally complex and broad strategy. Here, we used Next-Generation Sequencing for the characterization of the transcriptional signature of the bovine endometrial tissue. Periovulatory endocrine environments were manipulated to generate two distinctly different fertility phenotypes. Cycling, non-lactating, multiparous Nelore cows were manipulated to ovulate larger (> 13 mm; LF group; high fertility phenotype) or smaller (< 12 mm; SF group) follicles. As a result, greater proestrus estrogen concentrations, corpora lutea and early diestrus progesterone concentrations were also observed in LF group in comparison to SF group. Endometrial cell proliferation was estimated by the protein marker MKI67 on tissues collected 4 (D4) and 7 (D7) days after induction of ovulation. Total RNA extracts from D7 were sequenced and compared according to the transcriptional profile of each experimental group (LF versus SF). Functional enrichment analysis revealed that LF and SF endometria were asynchronous in regards to their phenotype manifestation. Major findings indicated an LF endometrium that was switching phenotypes earlier than the SF one. More specifically, a proliferating SF endometrium was observed on D7, whereas the LF tissue, which expressed a proliferative phenotype earlier at D4, seemed to have already shifted towards a biosynthetically and metabolically active endometrium on D7. Data on MKI67 support the transcriptomic results. RNA-Seq-derived transcriptional profile of the endometrial tissue indicated a temporal effect of the periovulatory endocrine environment, suggesting that the moment of the endometrial exposure to the ovarian steroids, E2 and P4, regulates the timing of phenotype manifestation. Gene expression profiling revealed molecules that may be targeted to elucidate ovarian steroid-dependent mechanisms that regulate

  8. Global methylation profiles in DNA from different blood cell types

    PubMed Central

    Wu, Hui-Chen; Delgado-Cruzata, Lissette; Flom, Julie D; Kappil, Maya; Ferris, Jennifer S; Liao, Yuyan; Santella, Regina M

    2011-01-01

    DNA methylation measured in white blood cell DNA is increasingly being used in studies of cancer susceptibility. However, little is known about the correlation between different assays to measure global methylation and whether the source of DNA matters when examining methylation profiles in different blood cell types. Using information from 620 women, 217 and 403 women with DNA available from granulocytes (Gran) and total white blood cells (WBC), respectively, and 48 women with DNA available from four different sources [WBC, Gran, mononuclear (MN) and lymphoblastoid cell lines (LCL)], we compared DNA methylation for three repetitive elements (LINE1, Sat2, Alu) by MethyLight, luminometric methylation assay (LUMA) and [3H]-methyl acceptance assay. For four of the five assays, DNA methylation levels measured in Gran were not correlated with methylation in LCL, MN or WBC; the exception was Sat2. DNA methylation in LCL was correlated with methylation in MN and WBC for the [3H]-methyl acceptance, LINE1 and Alu assays. Methylation in MN was correlated with methylation in WBC for the [3H]-methyl acceptance and LUMA assays. When we compared the five assays to each other by source of DNA, we observed statistically significant correlations ranging from 0.3–0.7 for each cell type with one exception (Sat2 and Alu in MN). Among the 620 women stratified by DNA source, correlations among assays were highest for the three repetitive elements (range 0.39–0.64). Results from the LUMA assay were modestly correlated with LINE1 (0.18–0.20). These results suggest that both assay and source of DNA are critical components in the interpretation of global DNA methylation patterns from WBC. PMID:20890131

  9. The Impact of Endurance Training on Human Skeletal Muscle Memory, Global Isoform Expression and Novel Transcripts

    PubMed Central

    Lindholm, Maléne E; Giacomello, Stefania; Werne Solnestam, Beata; Kjellqvist, Sanela

    2016-01-01

    Regularly performed endurance training has many beneficial effects on health and skeletal muscle function, and can be used to prevent and treat common diseases e.g. cardiovascular disease, type II diabetes and obesity. The molecular adaptation mechanisms regulating these effects are incompletely understood. To date, global transcriptome changes in skeletal muscles have been studied at the gene level only. Therefore, global isoform expression changes following exercise training in humans are unknown. Also, the effects of repeated interventions on transcriptional memory or training response have not been studied before. In this study, 23 individuals trained one leg for three months. Nine months later, 12 of the same subjects trained both legs in a second training period. Skeletal muscle biopsies were obtained from both legs before and after both training periods. RNA sequencing analysis of all 119 skeletal muscle biopsies showed that training altered the expression of 3,404 gene isoforms, mainly associated with oxidative ATP production. Fifty-four genes had isoforms that changed in opposite directions. Training altered expression of 34 novel transcripts, all with protein-coding potential. After nine months of detraining, no training-induced transcriptome differences were detected between the previously trained and untrained legs. Although there were several differences in the physiological and transcriptional responses to repeated training, no coherent evidence of an endurance training induced transcriptional skeletal muscle memory was found. This human lifestyle intervention induced differential expression of thousands of isoforms and several transcripts from unannotated regions of the genome. It is likely that the observed isoform expression changes reflect adaptational mechanisms and processes that provide the functional and health benefits of regular physical activity. PMID:27657503

  10. Whole adult organism transcriptional profiling of acute metal exposures in male Zebrafish

    PubMed Central

    2014-01-01

    Background A convergence of technological breakthroughs in the past decade has facilitated the development of rapid screening tools for biomarkers of toxicant exposure and effect. Platforms using the whole adult organism to evaluate the genome-wide response to toxicants are especially attractive. Recent work demonstrates the feasibility of this approach in vertebrates using the experimentally robust zebrafish model. In the present study, we evaluated gene expression changes in whole adult male zebrafish following an acute 24 hr high dose exposure to three metals with known human health risks. Male adult zebrafish were exposed to nickel chloride, cobalt chloride or sodium dichromate concentrations corresponding to their respective 96 hr LC20, LC40 and LC60. Histopathology was performed on a subset of metal-exposed zebrafish to phenotypically anchor transcriptional changes associated with each metal. Results Comparative analysis identified subsets of differentially expressed transcripts both overlapping and unique to each metal. Application of gene ontology (GO) and transcription factor (TF) enrichment algorithms revealed a number of key biological processes perturbed by metal poisonings and the master transcriptional regulators mediating gene expression changes. Metal poisoning differentially activated biological processes associated with ribosome biogenesis, proteosomal degradation, and p53 signaling cascades, while repressing oxygen-generating pathways associated with amino acid and lipid metabolism. Despite appreciable effects on gene regulation, nickel poisoning did not induce any morphological alterations in male zebrafish organs and tissues. Histopathological effects of cobalt remained confined to the olfactory system, while chromium targeted the gills, pharynx, and intestinal mucosa. A number of enriched transcription factors mediated the observed gene response to metal poisoning, including known targets such as p53, HIF1α, and the myc oncogene, and novel

  11. Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain.

    PubMed

    Krienen, Fenna M; Yeo, B T Thomas; Ge, Tian; Buckner, Randy L; Sherwood, Chet C

    2016-01-26

    The human brain is patterned with disproportionately large, distributed cerebral networks that connect multiple association zones in the frontal, temporal, and parietal lobes. The expansion of the cortical surface, along with the emergence of long-range connectivity networks, may be reflected in changes to the underlying molecular architecture. Using the Allen Institute's human brain transcriptional atlas, we demonstrate that genes particularly enriched in supragranular layers of the human cerebral cortex relative to mouse distinguish major cortical classes. The topography of transcriptional expression reflects large-scale brain network organization consistent with estimates from functional connectivity MRI and anatomical tracing in nonhuman primates. Microarray expression data for genes preferentially expressed in human upper layers (II/III), but enriched only in lower layers (V/VI) of mouse, were cross-correlated to identify molecular profiles across the cerebral cortex of postmortem human brains (n = 6). Unimodal sensory and motor zones have similar molecular profiles, despite being distributed across the cortical mantle. Sensory/motor profiles were anticorrelated with paralimbic and certain distributed association network profiles. Tests of alternative gene sets did not consistently distinguish sensory and motor regions from paralimbic and association regions: (i) genes enriched in supragranular layers in both humans and mice, (ii) genes cortically enriched in humans relative to nonhuman primates, (iii) genes related to connectivity in rodents, (iv) genes associated with human and mouse connectivity, and (v) 1,454 gene sets curated from known gene ontologies. Molecular innovations of upper cortical layers may be an important component in the evolution of long-range corticocortical projections.

  12. Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain.

    PubMed

    Krienen, Fenna M; Yeo, B T Thomas; Ge, Tian; Buckner, Randy L; Sherwood, Chet C

    2016-01-26

    The human brain is patterned with disproportionately large, distributed cerebral networks that connect multiple association zones in the frontal, temporal, and parietal lobes. The expansion of the cortical surface, along with the emergence of long-range connectivity networks, may be reflected in changes to the underlying molecular architecture. Using the Allen Institute's human brain transcriptional atlas, we demonstrate that genes particularly enriched in supragranular layers of the human cerebral cortex relative to mouse distinguish major cortical classes. The topography of transcriptional expression reflects large-scale brain network organization consistent with estimates from functional connectivity MRI and anatomical tracing in nonhuman primates. Microarray expression data for genes preferentially expressed in human upper layers (II/III), but enriched only in lower layers (V/VI) of mouse, were cross-correlated to identify molecular profiles across the cerebral cortex of postmortem human brains (n = 6). Unimodal sensory and motor zones have similar molecular profiles, despite being distributed across the cortical mantle. Sensory/motor profiles were anticorrelated with paralimbic and certain distributed association network profiles. Tests of alternative gene sets did not consistently distinguish sensory and motor regions from paralimbic and association regions: (i) genes enriched in supragranular layers in both humans and mice, (ii) genes cortically enriched in humans relative to nonhuman primates, (iii) genes related to connectivity in rodents, (iv) genes associated with human and mouse connectivity, and (v) 1,454 gene sets curated from known gene ontologies. Molecular innovations of upper cortical layers may be an important component in the evolution of long-range corticocortical projections. PMID:26739559

  13. Transcriptional profiles of supragranular-enriched genes associate with corticocortical network architecture in the human brain

    PubMed Central

    Krienen, Fenna M.; Yeo, B. T. Thomas; Ge, Tian; Buckner, Randy L.; Sherwood, Chet C.

    2016-01-01

    The human brain is patterned with disproportionately large, distributed cerebral networks that connect multiple association zones in the frontal, temporal, and parietal lobes. The expansion of the cortical surface, along with the emergence of long-range connectivity networks, may be reflected in changes to the underlying molecular architecture. Using the Allen Institute’s human brain transcriptional atlas, we demonstrate that genes particularly enriched in supragranular layers of the human cerebral cortex relative to mouse distinguish major cortical classes. The topography of transcriptional expression reflects large-scale brain network organization consistent with estimates from functional connectivity MRI and anatomical tracing in nonhuman primates. Microarray expression data for genes preferentially expressed in human upper layers (II/III), but enriched only in lower layers (V/VI) of mouse, were cross-correlated to identify molecular profiles across the cerebral cortex of postmortem human brains (n = 6). Unimodal sensory and motor zones have similar molecular profiles, despite being distributed across the cortical mantle. Sensory/motor profiles were anticorrelated with paralimbic and certain distributed association network profiles. Tests of alternative gene sets did not consistently distinguish sensory and motor regions from paralimbic and association regions: (i) genes enriched in supragranular layers in both humans and mice, (ii) genes cortically enriched in humans relative to nonhuman primates, (iii) genes related to connectivity in rodents, (iv) genes associated with human and mouse connectivity, and (v) 1,454 gene sets curated from known gene ontologies. Molecular innovations of upper cortical layers may be an important component in the evolution of long-range corticocortical projections. PMID:26739559

  14. Altered Hippocampal Transcript Profile Accompanies an Age-Related Spatial Memory Deficit in Mice

    ERIC Educational Resources Information Center

    Verbitsky, Miguel; Yonan, Amanda L.; Malleret, Gael; Kandel, Eric R.; Gilliam, T. Conrad; Pavlidis, Paul

    2004-01-01

    We have carried out a global survey of age-related changes in mRNA levels in the 57BL/6NIA mouse hippocampus and found a difference in the hippocampal gene expression profile between 2-month-old young mice and 15-month-old middle-aged mice correlated with an age-related cognitive deficit in hippocampal-based explicit memory formation. Middle-aged…

  15. Transcription profiling of 12 asian gypsy moth (Lymantria dispar) cytochrome P450 genes in response to insecticides.

    PubMed

    Sun, Lili; Wang, Zhiying; Zou, Chuanshan; Cao, Chuanwang

    2014-04-01

    As the main group of detoxification enzymes, cytochrome P450 monoxygenases (P450s) catalyse an extremely diverse range of reactions that play an important role in the detoxification of foreign compounds. Transcription profiling of 12 Lymantria dispar P450 genes from the CYP6 subfamily believed to be involved in insecticide metabolism was performed in this study. Life-stage transcription profiling of CYP6 genes revealed significant variations between eggs, larvae, pupae, and adult males and females. Exposure of larvae to sublethal doses of deltamethrin, omethoate, and carbaryl enhanced the transcription of most of the CYP6 P450 genes, with induction peaking between 24 and 72 h after exposure. Transcription profiles were dependent on the levels of insecticide exposure and the various developmental stages. PMID:24488622

  16. Transcription profiling of 12 asian gypsy moth (Lymantria dispar) cytochrome P450 genes in response to insecticides.

    PubMed

    Sun, Lili; Wang, Zhiying; Zou, Chuanshan; Cao, Chuanwang

    2014-04-01

    As the main group of detoxification enzymes, cytochrome P450 monoxygenases (P450s) catalyse an extremely diverse range of reactions that play an important role in the detoxification of foreign compounds. Transcription profiling of 12 Lymantria dispar P450 genes from the CYP6 subfamily believed to be involved in insecticide metabolism was performed in this study. Life-stage transcription profiling of CYP6 genes revealed significant variations between eggs, larvae, pupae, and adult males and females. Exposure of larvae to sublethal doses of deltamethrin, omethoate, and carbaryl enhanced the transcription of most of the CYP6 P450 genes, with induction peaking between 24 and 72 h after exposure. Transcription profiles were dependent on the levels of insecticide exposure and the various developmental stages.

  17. Globally profiling sialylation status of macrophages upon statin treatment

    PubMed Central

    Wang, Dan; Nie, Huan; Ozhegov, Evgeny; Wang, Lin; Zhou, Aimin; Li, Yu; Sun, Xue-Long

    2015-01-01

    Sialic acids (SAs) are widely expressed on immune cells and their levels and linkages named as sialylation status vary upon cellular environment changes related to both physiological and pathological processes. In this study, we performed a global profiling of the sialylation status of macrophages and their release of SAs in the cell culture medium by using flow cytometry, confocal microscopy and liquid chromatography tandem mass spectrometry (LC-MS/MS). Both flow cytometry and confocal microscopy results showed that cell surface α-2,3-linked SAs were predominant in the normal culture condition and changed slightly upon treatment with atorvastatin for 24 h, whereas α-2,6-linked SAs were negligible in the normal culture condition but significantly increased after treatment. Meanwhile, the amount of total cellular SAs increased about three times (from 369 ± 29 to 1080 ± 50 ng/mL) upon treatment as determined by the LC-MS/MS method. On the other hand, there was no significant change for secreted free SAs and conjugated SAs in the medium. These results indicated that the cell surface α-2,6 sialylation status of macrophages changes distinctly upon atorvastatin stimulation, which may reflect on the biological functions of the cells. PMID:26033937

  18. Modeling and Experimental Methods to Probe the Link between Global Transcription and Spatial Organization of Chromosomes

    PubMed Central

    Gupta, Soumya; Libchaber, Albert; Tlusty, Tsvi; Shivashankar, G. V.

    2012-01-01

    Genomes are spatially assembled into chromosome territories (CT) within the nucleus of living cells. Recent evidences have suggested associations between three-dimensional organization of CTs and the active gene clusters within neighboring CTs. These gene clusters are part of signaling networks sharing similar transcription factor or other downstream transcription machineries. Hence, presence of such gene clusters of active signaling networks in a cell type may regulate the spatial organization of chromosomes in the nucleus. However, given the probabilistic nature of chromosome positions and complex transcription factor networks (TFNs), quantitative methods to establish their correlation is lacking. In this paper, we use chromosome positions and gene expression profiles in interphase fibroblasts and describe methods to capture the correspondence between their spatial position and expression. In addition, numerical simulations designed to incorporate the interacting TFNs, reveal that the chromosome positions are also optimized for the activity of these networks. These methods were validated for specific chromosome pairs mapped in two distinct transcriptional states of T-Cells (naïve and activated). Taken together, our methods highlight the functional coupling between topology of chromosomes and their respective gene expression patterns. PMID:23049710

  19. Dynamic transcriptional profiling provides insights into tuberous root development in Rehmannia glutinosa

    PubMed Central

    Sun, Peng; Xiao, Xingguo; Duan, Liusheng; Guo, Yuhai; Qi, Jianjun; Liao, Dengqun; Zhao, Chunli; Liu, Yan; Zhou, Lili; Li, Xianen

    2015-01-01

    Rehmannia glutinosa, an herb of the Scrophulariaceae family, is widely cultivated in the Northern part of China. The tuberous root has well-known medicinal properties; however, yield and quality are threatened by abiotic and biotic stresses. Understanding the molecular process of tuberous root development may help identify novel targets for its control. In the present study, we used Illumina sequencing and de novo assembly strategies to obtain a reference transcriptome that is relevant to tuberous root development. We then conducted RNA-seq quantification analysis to determine gene expression profiles of the adventitious root (AR), thickening adventitious root (TAR), and the developing tuberous root (DTR). Expression profiling identified a total of 6794 differentially expressed unigenes during root development. Bioinformatics analysis and gene expression profiling revealed changes in phenylpropanoid biosynthesis, starch and sucrose metabolism, and plant hormone biosynthesis during root development. Moreover, we identified and allocated putative functions to the genes involved in tuberous root development, including genes related to major carbohydrate metabolism, hormone metabolism, and transcription regulation. The present study provides the initial description of gene expression profiles of AR, TAR, and DTR, which facilitates identification of genes of interest. Moreover, our work provides insights into the molecular mechanisms underlying tuberous root development and may assist in the design and development of improved breeding schemes for different R. glutinosa varieties through genetic manipulation. PMID:26113849

  20. Age-related behaviors have distinct transcriptional profiles in Caenorhabditis elegans.

    PubMed

    Golden, Tamara R; Hubbard, Alan; Dando, Caroline; Herren, Michael A; Melov, Simon

    2008-12-01

    There has been a great deal of interest in identifying potential biomarkers of aging. Biomarkers of aging would be useful to predict potential vulnerabilities in an individual that may arise well before they are chronologically expected, due to idiosyncratic aging rates that occur between individuals. Prior attempts to identify biomarkers of aging have often relied on the comparisons of long-lived animals to a wild-type control. However, the effect of interventions in model systems that prolong lifespan (such as single gene mutations or caloric restriction) can sometimes be difficult to interpret due to the manipulation itself having multiple unforeseen consequences on physiology, unrelated to aging itself. The search for predictive biomarkers of aging therefore is problematic, and the identification of metrics that can be used to predict either physiological or chronological age would be of great value. One methodology that has been used to identify biomarkers for numerous pathologies is gene expression profiling. Here, we report whole-genome expression profiles of individual wild-type Caenorhabditis elegans covering the entire wild-type nematode lifespan. Individual nematodes were scored for either age-related behavioral phenotypes, or survival, and then subsequently associated with their respective gene expression profiles. This facilitated the identification of transcriptional profiles that were highly associated with either physiological or chronological age. Overall, our approach serves as a paradigm for identifying potential biomarkers of aging in higher organisms that can be repeatedly sampled throughout their lifespan.

  1. JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles

    PubMed Central

    Mathelier, Anthony; Zhao, Xiaobei; Zhang, Allen W.; Parcy, François; Worsley-Hunt, Rebecca; Arenillas, David J.; Buchman, Sorana; Chen, Chih-yu; Chou, Alice; Ienasescu, Hans; Lim, Jonathan; Shyr, Casper; Tan, Ge; Zhou, Michelle; Lenhard, Boris; Sandelin, Albin; Wasserman, Wyeth W.

    2014-01-01

    JASPAR (http://jaspar.genereg.net) is the largest open-access database of matrix-based nucleotide profiles describing the binding preference of transcription factors from multiple species. The fifth major release greatly expands the heart of JASPAR—the JASPAR CORE subcollection, which contains curated, non-redundant profiles—with 135 new curated profiles (74 in vertebrates, 8 in Drosophila melanogaster, 10 in Caenorhabditis elegans and 43 in Arabidopsis thaliana; a 30% increase in total) and 43 older updated profiles (36 in vertebrates, 3 in D. melanogaster and 4 in A. thaliana; a 9% update in total). The new and updated profiles are mainly derived from published chromatin immunoprecipitation-seq experimental datasets. In addition, the web interface has been enhanced with advanced capabilities in browsing, searching and subsetting. Finally, the new JASPAR release is accompanied by a new BioPython package, a new R tool package and a new R/Bioconductor data package to facilitate access for both manual and automated methods. PMID:24194598

  2. Global gene profiling of aging lungs in Atp8b1 mutant mice

    PubMed Central

    Soundararajan, Ramani; Stearns, Timothy M.; Czachor, Alexander; Fukumoto, Jutaro; Turn, Christina; Westermann-Clark, Emma; Breitzig, Mason; Tan, Lee; Lockey, Richard F.; King, Benjamin L.; Kolliputi, Narasaiah

    2016-01-01

    Objective Recent studies implicate cardiolipin oxidation in several age-related diseases. Atp8b1 encoding Type 4 P-type ATPases is a cardiolipin transporter. Mutation in Atp8b1 gene or inflammation of the lungs impairs the capacity of Atp8b1 to clear cardiolipin from lung fluid. However, the link between Atp8b1 mutation and age-related gene alteration is unknown. Therefore, we investigated how Atp8b1 mutation alters age-related genes. Methods We performed Affymetrix gene profiling of lungs isolated from young (7-9 wks, n=6) and aged (14 months, 14 M, n=6) C57BL/6 and Atp8b1 mutant mice. In addition, Ingenuity Pathway Analysis (IPA) was performed. Differentially expressed genes were validated by quantitative real-time PCR (qRT-PCR). Results Global transcriptome analysis revealed 532 differentially expressed genes in Atp8b1 lungs, 157 differentially expressed genes in C57BL/6 lungs, and 37 overlapping genes. IPA of age-related genes in Atp8b1 lungs showed enrichment of Xenobiotic metabolism and Nrf2-mediated signaling pathways. The increase in Adamts2 and Mmp13 transcripts in aged Atp8b1 lungs was validated by qRT-PCR. Similarly, the decrease in Col1a1 and increase in Cxcr6 transcripts was confirmed in both Atp8b1 mutant and C57BL/6 lungs. Conclusion Based on transcriptome profiling, our study indicates that Atp8b1 mutant mice may be susceptible to age-related lung diseases. PMID:27689529

  3. Weighted enrichment method for prediction of transcription regulators from transcriptome and global chromatin immunoprecipitation data

    PubMed Central

    Kawakami, Eiryo; Nakaoka, Shinji; Ohta, Tazro; Kitano, Hiroaki

    2016-01-01

    Predicting responsible transcription regulators on the basis of transcriptome data is one of the most promising computational approaches to understanding cellular processes and characteristics. Here, we present a novel method employing vast amounts of chromatin immunoprecipitation (ChIP) experimental data to address this issue. Global high-throughput ChIP data was collected to construct a comprehensive database, containing 8 578 738 binding interactions of 454 transcription regulators. To incorporate information about heterogeneous frequencies of transcription factor (TF)-binding events, we developed a flexible framework for gene set analysis employing the weighted t-test procedure, namely weighted parametric gene set analysis (wPGSA). Using transcriptome data as an input, wPGSA predicts the activities of transcription regulators responsible for observed gene expression. Validation of wPGSA with published transcriptome data, including that from over-expressed TFs, showed that the method can predict activities of various TFs, regardless of cell type and conditions, with results totally consistent with biological observations. We also applied wPGSA to other published transcriptome data and identified potential key regulators of cell reprogramming and influenza virus pathogenesis, generating compelling hypotheses regarding underlying regulatory mechanisms. This flexible framework will contribute to uncovering the dynamic and robust architectures of biological regulation, by incorporating high-throughput experimental data in the form of weights. PMID:27131787

  4. PCBs are associated with altered gene transcript profiles in arctic Beluga Whales (Delphinapterus leucas).

    PubMed

    Noël, Marie; Loseto, Lisa L; Helbing, Caren C; Veldhoen, Nik; Dangerfield, Neil J; Ross, Peter S

    2014-01-01

    High trophic level arctic beluga whales (Delphinapterus leucas) are exposed to persistent organic pollutants (POP) originating primarily from southern latitudes. We collected samples from 43 male beluga harvested by Inuvialuit hunters (2008-2010) in the Beaufort Sea to evaluate the effects of POPs on the levels of 13 health-related gene transcripts using quantitative real-time polymerase chain reaction. Consistent with their role in detoxification, the aryl hydrocarbon receptor (Ahr) (r(2) = 0.18, p = 0.045 for 2008 and 2009) and cytochrome P450 1A1 (Cyp1a1) (r(2) = 0.20, p < 0.001 for 2008 and 2009; r(2) = 0.43, p = 0.049 for 2010) transcripts were positively correlated with polychlorinated biphenyls (PCBs), the dominant POP in beluga. Principal Components Analysis distinguished between these two toxicology genes and 11 other genes primarily involved in growth, metabolism, and development. Factor 1 explained 56% of gene profiles, with these latter 11 gene transcripts displaying greater abundance in years coinciding with periods of low sea ice extent (2008 and 2010). δ(13)C results suggested a shift in feeding ecology and/or change in condition of these ice edge-associated beluga whales during these two years. While this provides insight into the legacy of PCBs in a remote environment, the possible impacts of a changing ice climate on the health of beluga underscores the need for long-term studies.

  5. Transcriptional Profile and Structural Conservation of SUMO-Specific Proteases in Schistosoma mansoni

    PubMed Central

    Pereira, Roberta Verciano; Cabral, Fernanda Janku; de Souza Gomes, Matheus; Jannotti-Passos, Liana Konovaloff; Castro-Borges, William; Guerra-Sá, Renata

    2012-01-01

    Small ubiquitin-related modifier (SUMO) is involved in numerous cellular processes including protein localization, transcription, and cell cycle control. SUMOylation is a dynamic process, catalyzed by three SUMO-specific enzymes and reversed by Sentrin/SUMO-specific proteases (SENPs). Here we report the characterization of these proteases in Schistosoma mansoni. Using in silico analysis, we identified two SENPs sequences, orthologs of mammalian SENP1 and SENP7, confirming their identities and conservation through phylogenetic analysis. In addition, the transcript levels of Smsenp1/7 in cercariae, adult worms, and in vitro cultivated schistosomula were measured by qRT-PCR. Our data revealed upregulation of the Smsenp1/7 transcripts in cercariae and early schistosomula, followed by a marked differential gene expression in the other analyzed stages. However, no significant difference in expression profile between the paralogs was observed for the analyzed stages. Furthermore, in order to detect deSUMOylating capabilities in crude parasite extracts, SmSENP1 enzymatic activity was evaluated using SUMO-1-AMC substrate. The endopeptidase activity related to SUMO-1 precursor processing did not differ significantly between cercariae and adult worms. Taken together, these results support the developmentally regulated expression of SUMO-specific proteases in S. mansoni. PMID:23125916

  6. PCBs are associated with altered gene transcript profiles in arctic Beluga Whales (Delphinapterus leucas).

    PubMed

    Noël, Marie; Loseto, Lisa L; Helbing, Caren C; Veldhoen, Nik; Dangerfield, Neil J; Ross, Peter S

    2014-01-01

    High trophic level arctic beluga whales (Delphinapterus leucas) are exposed to persistent organic pollutants (POP) originating primarily from southern latitudes. We collected samples from 43 male beluga harvested by Inuvialuit hunters (2008-2010) in the Beaufort Sea to evaluate the effects of POPs on the levels of 13 health-related gene transcripts using quantitative real-time polymerase chain reaction. Consistent with their role in detoxification, the aryl hydrocarbon receptor (Ahr) (r(2) = 0.18, p = 0.045 for 2008 and 2009) and cytochrome P450 1A1 (Cyp1a1) (r(2) = 0.20, p < 0.001 for 2008 and 2009; r(2) = 0.43, p = 0.049 for 2010) transcripts were positively correlated with polychlorinated biphenyls (PCBs), the dominant POP in beluga. Principal Components Analysis distinguished between these two toxicology genes and 11 other genes primarily involved in growth, metabolism, and development. Factor 1 explained 56% of gene profiles, with these latter 11 gene transcripts displaying greater abundance in years coinciding with periods of low sea ice extent (2008 and 2010). δ(13)C results suggested a shift in feeding ecology and/or change in condition of these ice edge-associated beluga whales during these two years. While this provides insight into the legacy of PCBs in a remote environment, the possible impacts of a changing ice climate on the health of beluga underscores the need for long-term studies. PMID:24490950

  7. cDNA-AFLP transcriptional profiling reveals genes expressed during flower development in Oncidium Milliongolds.

    PubMed

    Qian, X; Gong, M J; Wang, C X; Tian, M

    2014-01-01

    The flower developmental process, which is crucial to the whole lifecycle of higher plants, is influenced by both environmental and endogenous factors. The genus Oncidium is commercially important for cut flower and houseplant industry and is ideal for flower development studies. Using cDNA-amplified restriction fragment length polymorphism analysis, we profiled transcripts that are differentially expressed during flower development of Oncidium Milliongolds. A total of 15,960 transcript-derived fragments were generated, with 114 primer sets. Of these, 1248 were sequenced, producing 993 readable sequences. BLASTX/N analysis showed that 833 of the 993 transcripts showed homology to genes in the NCBI databases, exhibiting functions involved in various processes, such as signal transduction, energy conversion, metabolism, and gene expression regulation. The full-length mRNAs of SUCROSE SYNTHASE 1 (SUS1) and LEAFY (LFY) were cloned, and their expression patterns were characterized. The results showed that the expression levels of SUS1 and LFY were similar during flower development. To confirm the function of SUS1 in flower buds, carbohydrate content and sucrose synthase activity were determined. The results showed that changes in sucrose content and sucrose synthase activity reflected SUS1 expression levels. Collectively, these results indicate that SUS1 influences flower development by regulating LFY expression levels through changing the sucrose content of flower buds.

  8. Nanosilver pathophysiology in earthworms: Transcriptional profiling of secretory proteins and the implication for the protein corona.

    PubMed

    Hayashi, Yuya; Miclaus, Teodora; Engelmann, Péter; Autrup, Herman; Sutherland, Duncan S; Scott-Fordsmand, Janeck J

    2016-01-01

    Previously we have identified lysenin as a key protein constituent of the secretome from Eisenia fetida coelomocytes and revealed its critical importance in priming interactions between the cells and the protein corona around nanosilver. As alterations of the protein environment can directly affect the corona composition, the extent to which nanoparticles influence the cells' protein secretion profile is of remarkable interest that has rarely acquired attention. Here, we have probed transcriptional responses of E. fetida coelomocytes to the representative nanosilver NM-300K (15 nm) in a time-dependent manner (2, 4, 8 and 24 h at a low-cytotoxic concentration), and examined the implication of the temporal changes in transcriptional profiles of secretory proteins with a particular reference to that of lysenin. NM-300K was accumulated in/at the cells and lysenin was, after transient induction, gradually suppressed over time indicating a negative feedback cycle. This may limit further enrichment of lysenin in the corona and thereby decrease the lysenin-assisted uptake of the nanoparticles. Other differentially expressed genes were those involved in metal stress (likewise in AgNO3-stressed cells) and in Toll-like receptor (TLR) signaling. This offers an intriguing perspective of the nanosilver pathophysiology in earthworms, in which the conserved pattern recognition receptor TLRs may play an effector role.

  9. Genome-wide transcript profiling reveals novel breast cancer-associated intronic sense RNAs.

    PubMed

    Kim, Sang Woo; Fishilevich, Elane; Arango-Argoty, Gustavo; Lin, Yuefeng; Liu, Guodong; Li, Zhihua; Monaghan, A Paula; Nichols, Mark; John, Bino

    2015-01-01

    Non-coding RNAs (ncRNAs) play major roles in development and cancer progression. To identify novel ncRNAs that may identify key pathways in breast cancer development, we performed high-throughput transcript profiling of tumor and normal matched-pair tissue samples. Initial transcriptome profiling using high-density genome-wide tiling arrays revealed changes in over 200 novel candidate genomic regions that map to intronic regions. Sixteen genomic loci were identified that map to the long introns of five key protein-coding genes, CRIM1, EPAS1, ZEB2, RBMS1, and RFX2. Consistent with the known role of the tumor suppressor ZEB2 in the cancer-associated epithelial to mesenchymal transition (EMT), in situ hybridization reveals that the intronic regions deriving from ZEB2 as well as those from RFX2 and EPAS1 are down-regulated in cells of epithelial morphology, suggesting that these regions may be important for maintaining normal epithelial cell morphology. Paired-end deep sequencing analysis reveals a large number of distinct genomic clusters with no coding potential within the introns of these genes. These novel transcripts are only transcribed from the coding strand. A comprehensive search for breast cancer associated genes reveals enrichment for transcribed intronic regions from these loci, pointing to an underappreciated role of introns or mechanisms relating to their biology in EMT and breast cancer. PMID:25798919

  10. Transcriptional profiling at whole population and single cell levels reveals somatosensory neuron molecular diversity

    PubMed Central

    Chiu, Isaac M; Barrett, Lee B; Williams, Erika K; Strochlic, David E; Lee, Seungkyu; Weyer, Andy D; Lou, Shan; Bryman, Gregory S; Roberson, David P; Ghasemlou, Nader; Piccoli, Cara; Ahat, Ezgi; Wang, Victor; Cobos, Enrique J; Stucky, Cheryl L; Ma, Qiufu; Liberles, Stephen D; Woolf, Clifford J

    2014-01-01

    The somatosensory nervous system is critical for the organism's ability to respond to mechanical, thermal, and nociceptive stimuli. Somatosensory neurons are functionally and anatomically diverse but their molecular profiles are not well-defined. Here, we used transcriptional profiling to analyze the detailed molecular signatures of dorsal root ganglion (DRG) sensory neurons. We used two mouse reporter lines and surface IB4 labeling to purify three major non-overlapping classes of neurons: 1) IB4+SNS-Cre/TdTomato+, 2) IB4−SNS-Cre/TdTomato+, and 3) Parv-Cre/TdTomato+ cells, encompassing the majority of nociceptive, pruriceptive, and proprioceptive neurons. These neurons displayed distinct expression patterns of ion channels, transcription factors, and GPCRs. Highly parallel qRT-PCR analysis of 334 single neurons selected by membership of the three populations demonstrated further diversity, with unbiased clustering analysis identifying six distinct subgroups. These data significantly increase our knowledge of the molecular identities of known DRG populations and uncover potentially novel subsets, revealing the complexity and diversity of those neurons underlying somatosensation. DOI: http://dx.doi.org/10.7554/eLife.04660.001 PMID:25525749

  11. Reconstruction of the Core and Extended Regulons of Global Transcription Factors

    PubMed Central

    Dufour, Yann S.; Kiley, Patricia J.; Donohue, Timothy J.

    2010-01-01

    The processes underlying the evolution of regulatory networks are unclear. To address this question, we used a comparative genomics approach that takes advantage of the large number of sequenced bacterial genomes to predict conserved and variable members of transcriptional regulatory networks across phylogenetically related organisms. Specifically, we developed a computational method to predict the conserved regulons of transcription factors across α-proteobacteria. We focused on the CRP/FNR super-family of transcription factors because it contains several well-characterized members, such as FNR, FixK, and DNR. While FNR, FixK, and DNR are each proposed to regulate different aspects of anaerobic metabolism, they are predicted to recognize very similar DNA target sequences, and they occur in various combinations among individual α-proteobacterial species. In this study, the composition of the respective FNR, FixK, or DNR conserved regulons across 87 α-proteobacterial species was predicted by comparing the phylogenetic profiles of the regulators with the profiles of putative target genes. The utility of our predictions was evaluated by experimentally characterizing the FnrL regulon (a FNR-type regulator) in the α-proteobacterium Rhodobacter sphaeroides. Our results show that this approach correctly predicted many regulon members, provided new insights into the biological functions of the respective regulons for these regulators, and suggested models for the evolution of the corresponding transcriptional networks. Our findings also predict that, at least for the FNR-type regulators, there is a core set of target genes conserved across many species. In addition, the members of the so-called extended regulons for the FNR-type regulators vary even among closely related species, possibly reflecting species-specific adaptation to environmental and other factors. The comparative genomics approach we developed is readily applicable to other regulatory networks. PMID

  12. Molecular characterization of BZR transcription factor family and abiotic stress induced expression profiling in Brassica rapa.

    PubMed

    Saha, Gopal; Park, Jong-In; Jung, Hee-Jeong; Ahmed, Nasar Uddin; Kayum, Md Abdul; Kang, Jong-Goo; Nou, Ill-Sup

    2015-07-01

    BRASSINAZOLE-RESISTANT (BZR) transcription factors (TFs) are primarily well known as positive regulators of Brassinosteroid (BR) signal transduction in different plants. BR is a plant specific steroid hormone, which has multiple stress resistance functions besides various growth regulatory roles. Being an important regulator of the BR synthesis, BZR TFs might have stress resistance related activities. However, no stress resistance related functional study of BZR TFs has been reported in any crop plants so far. Therefore, this study identified 15 BZR TFs of Brassica rapa (BrBZR) from a genome-wide survey and characterized them through sequence analysis and expression profiling against several abiotic stresses. Various systematic in silico analysis of these TFs validated the fundamental properties of BZRs, where a high degree of similarity also observed with recognized BZRs of other plant species from the comparison studies. In the organ specific expression analyses, 6 BrBZR TFs constitutively expressed in flower developmental stages indicating their flower specific functions. Subsequently, from the stress resistance related expression profiles differential transcript abundance levels were observed by 6 and 11 BrBZRs against salt and drought stresses, respectively. All BrBZRs showed several folds up-regulation against exogenous ABA treatment. All BrBZRs also showed differential expression against low temperature stress treatments and these TFs were proposed as transcriptional activators of CBF cold response pathway of B. rapa. Notably, three BrBZRs gave co-responsive expression against all the stresses tested here, suggesting their multiple stress resistance related functions. Thus, the findings would be helpful in resolving the complex regulatory mechanism of BZRs in stress resistance and further functional genomics study of these potential TFs in different Brassica crops. PMID:25931321

  13. Complex MHC Class I Gene Transcription Profiles and Their Functional Impact in Orangutans.

    PubMed

    de Groot, Natasja G; Heijmans, Corrine M C; van der Wiel, Marit K H; Blokhuis, Jeroen H; Mulder, Arend; Guethlein, Lisbeth A; Doxiadis, Gaby G M; Claas, Frans H J; Parham, Peter; Bontrop, Ronald E

    2016-01-15

    MHC haplotypes of humans and the African great ape species have one copy of the MHC-A, -B, and -C genes. In contrast, MHC haplotypes of orangutans, the Asian great ape species, exhibit variation in the number of gene copies. An in-depth analysis of the MHC class I gene repertoire in the two orangutan species, Pongo abelii and Pongo pygmaeus, is presented in this article. This analysis involved Sanger and next-generation sequencing methodologies, revealing diverse and complicated transcription profiles for orangutan MHC-A, -B, and -C. Thirty-five previously unreported MHC class I alleles are described. The data demonstrate that each orangutan MHC haplotype has one copy of the MHC-A gene, and that the MHC-B region has been subject to duplication, giving rise to at least three MHC-B genes. The MHC-B*03 and -B*08 lineages of alleles each account for a separate MHC-B gene. All MHC-B*08 allotypes have the C1-epitope motif recognized by killer cell Ig-like receptor. At least one other MHC-B gene is present, pointing to MHC-B alleles that are not B*03 or B*08. The MHC-C gene is present only on some haplotypes, and each MHC-C allotype has the C1-epitope. The transcription profiles demonstrate that MHC-A alleles are highly transcribed, whereas MHC-C alleles, when present, are transcribed at very low levels. The MHC-B alleles are transcribed to a variable extent and over a wide range. For those orangutan MHC class I allotypes that are detected by human monoclonal anti-HLA class I Abs, the level of cell-surface expression of proteins correlates with the level of transcription of the allele. PMID:26685209

  14. Molecular characterization of BZR transcription factor family and abiotic stress induced expression profiling in Brassica rapa.

    PubMed

    Saha, Gopal; Park, Jong-In; Jung, Hee-Jeong; Ahmed, Nasar Uddin; Kayum, Md Abdul; Kang, Jong-Goo; Nou, Ill-Sup

    2015-07-01

    BRASSINAZOLE-RESISTANT (BZR) transcription factors (TFs) are primarily well known as positive regulators of Brassinosteroid (BR) signal transduction in different plants. BR is a plant specific steroid hormone, which has multiple stress resistance functions besides various growth regulatory roles. Being an important regulator of the BR synthesis, BZR TFs might have stress resistance related activities. However, no stress resistance related functional study of BZR TFs has been reported in any crop plants so far. Therefore, this study identified 15 BZR TFs of Brassica rapa (BrBZR) from a genome-wide survey and characterized them through sequence analysis and expression profiling against several abiotic stresses. Various systematic in silico analysis of these TFs validated the fundamental properties of BZRs, where a high degree of similarity also observed with recognized BZRs of other plant species from the comparison studies. In the organ specific expression analyses, 6 BrBZR TFs constitutively expressed in flower developmental stages indicating their flower specific functions. Subsequently, from the stress resistance related expression profiles differential transcript abundance levels were observed by 6 and 11 BrBZRs against salt and drought stresses, respectively. All BrBZRs showed several folds up-regulation against exogenous ABA treatment. All BrBZRs also showed differential expression against low temperature stress treatments and these TFs were proposed as transcriptional activators of CBF cold response pathway of B. rapa. Notably, three BrBZRs gave co-responsive expression against all the stresses tested here, suggesting their multiple stress resistance related functions. Thus, the findings would be helpful in resolving the complex regulatory mechanism of BZRs in stress resistance and further functional genomics study of these potential TFs in different Brassica crops.

  15. Transcriptional profiling of trait deterioration in the insect pathogenic nematode Heterorhabditis bacteriophora

    PubMed Central

    2009-01-01

    Background The success of a biological control agent depends on key traits, particularly reproductive potential, environmental tolerance, and ability to be cultured. These traits can deteriorate rapidly when the biological control agent is reared in culture. Trait deterioration under laboratory conditions has been widely documented in the entomopathogenic nematode (EPN) Heterorhabditis bacteriophora (Hb) but the specific mechanisms behind these genetic processes remain unclear. This research investigates the molecular mechanisms of trait deterioration of two experimental lines of Hb, an inbred line (L5M) and its original parental line (OHB). We generated transcriptional profiles of two experimental lines of Hb, identified the differentially expressed genes (DEGs) and validated their differential expression in the deteriorated line. Results An expression profiling study was performed between experimental lines L5M and OHB of Hb with probes for 15,220 ESTs from the Hb transcriptome. Microarray analysis showed 1,185 DEGs comprising of 469 down- and 716 up-regulated genes in trait deteriorated nematodes. Analysis of the DEGs showed that trait deterioration involves massive changes of the transcripts encoding enzymes involved in metabolism, signal transduction, virulence and longevity. We observed a pattern of reduced expression of enzymes related to primary metabolic processes and induced secondary metabolism. Expression of sixteen DEGs in trait deteriorated nematodes was validated by quantitative reverse transcription-PCR (qRT-PCR) which revealed similar expression kinetics for all the genes tested as shown by microarray. Conclusion As the most closely related major entomopathogen to C. elegans, Hb provides an attractive near-term application for using a model organism to better understand interspecies interactions and to enhance our understanding of the mechanisms underlying trait deterioration in biological control agents. This information could also be used to

  16. Inhibition of P-TEFb disrupts global transcription, oocyte maturation, and embryo development in the mouse.

    PubMed

    Oqani, Reza K; Lin, Tao; Lee, Jae Eun; Kim, So Yeon; Sa, Soo Jin; Woo, Je Seok; Jin, Dong Il

    2016-09-01

    Positive transcription elongation factor b (P-TEFb) is an RNA polymerase II kinase that phosphorylates Ser2 of the carboxyl-terminal domain and promotes the elongation phase of transcription. Despite the fact that P-TEFb has role in many cellular processes, the role of this kinase complex remains to be understood in early developmental events. In this study, using immunocytochemical analyses, we find that the P-TEFb components, Cyclin T1, CDK9, and its T-loop phosphorylated form, are localized to nuclear speckles, as well as in nucleoli in mouse germinal vesicle oocytes. Moreover, using fluorescence in situ hybridization, we show that in absence of CDK9 activity, nucleolar integration, as well as production of 28S rRNA is impaired in oocytes and embryos. We also present evidence indicating that P-TEFb kinase activity is essential for completion of mouse oocyte maturation and embryo development. Treatment with CDK9 inhibitor, flavopiridol resulted in metaphase I arrest in maturing oocytes. Inhibition of CDK9 kinase activity did not interfere with in vitro fertilization and pronuclear formation. However, when zygotes or 2-cell embryos were treated with flavopiridol only in their G2 phase of the cell cycle, development to the blastocyst stage was impaired. Inhibition of the CDK9 activity after embryonic genome activation resulted in failure to form normal blastocysts and aberrant phosphorylation of RNA polymerase II CTD. In all stages analyzed, treatment with flavopiridol abrogated global transcriptional activity. Collectively, our data suggest that P-TEFb kinase activity is crucial for oocyte maturation, embryo development, and regulation of global RNA transcription in mouse early development. PMID:27488304

  17. Global Transcriptional, Physiological, and Metabolite Analyses of the Responses of Desulfovibrio vulgaris Hildenborough to Salt Adaptation ▿ †

    PubMed Central

    He, Zhili; Zhou, Aifen; Baidoo, Edward; He, Qiang; Joachimiak, Marcin P.; Benke, Peter; Phan, Richard; Mukhopadhyay, Aindrila; Hemme, Christopher L.; Huang, Katherine; Alm, Eric J.; Fields, Matthew W.; Wall, Judy; Stahl, David; Hazen, Terry C.; Keasling, Jay D.; Arkin, Adam P.; Zhou, Jizhong

    2010-01-01

    The response of Desulfovibrio vulgaris Hildenborough to salt adaptation (long-term NaCl exposure) was examined by performing physiological, global transcriptional, and metabolite analyses. Salt adaptation was reflected by increased expression of genes involved in amino acid biosynthesis and transport, electron transfer, hydrogen oxidation, and general stress responses (e.g., heat shock proteins, phage shock proteins, and oxidative stress response proteins). The expression of genes involved in carbon metabolism, cell growth, and phage structures was decreased. Transcriptome profiles of D. vulgaris responses to salt adaptation were compared with transcriptome profiles of D. vulgaris responses to salt shock (short-term NaCl exposure). Metabolite assays showed that glutamate and alanine accumulated under salt adaptation conditions, suggesting that these amino acids may be used as osmoprotectants in D. vulgaris. Addition of amino acids (glutamate, alanine, and tryptophan) or yeast extract to the growth medium relieved salt-related growth inhibition. A conceptual model that links the observed results to currently available knowledge is proposed to increase our understanding of the mechanisms of D. vulgaris adaptation to elevated NaCl levels. PMID:20038696

  18. Mycobacterium tuberculosis Lsr2 Is a Global Transcriptional Regulator Required for Adaptation to Changing Oxygen Levels and Virulence

    PubMed Central

    Bartek, I. L.; Woolhiser, L. K.; Baughn, A. D.; Basaraba, R. J.; Jacobs, W. R.; Lenaerts, A. J.

    2014-01-01

    ABSTRACT To survive a dynamic host environment, Mycobacterium tuberculosis must endure a series of challenges, from reactive oxygen and nitrogen stress to drastic shifts in oxygen availability. The mycobacterial Lsr2 protein has been implicated in reactive oxygen defense via direct protection of DNA. To examine the role of Lsr2 in pathogenesis and physiology of M. tuberculosis, we generated a strain deleted for lsr2. Analysis of the M. tuberculosis Δlsr2 strain demonstrated that Lsr2 is not required for DNA protection, as this strain was equally susceptible as the wild type to DNA-damaging agents. The lsr2 mutant did display severe growth defects under normoxic and hyperoxic conditions, but it was not required for growth under low-oxygen conditions. However, it was also required for adaptation to anaerobiosis. The defect in anaerobic adaptation led to a marked decrease in viability during anaerobiosis, as well as a lag in recovery from it. Gene expression profiling of the Δlsr2 mutant under aerobic and anaerobic conditions in conjunction with published DNA binding-site data indicates that Lsr2 is a global transcriptional regulator controlling adaptation to changing oxygen levels. The Δlsr2 strain was capable of establishing an early infection in the BALB/c mouse model; however, it was severely defective in persisting in the lungs and caused no discernible lung pathology. These findings demonstrate M. tuberculosis Lsr2 is a global transcriptional regulator required for control of genes involved in adaptation to extremes in oxygen availability and is required for persistent infection. PMID:24895305

  19. Transcriptional profiling reveals regulated genes in the hippocampus during memory formation

    NASA Technical Reports Server (NTRS)

    Donahue, Christine P.; Jensen, Roderick V.; Ochiishi, Tomoyo; Eisenstein, Ingrid; Zhao, Mingrui; Shors, Tracey; Kosik, Kenneth S.

    2002-01-01

    Transcriptional profiling (TP) offers a powerful approach to identify genes activated during memory formation and, by inference, the molecular pathways involved. Trace eyeblink conditioning is well suited for the study of regional gene expression because it requires the hippocampus, whereas the highly parallel task, delay conditioning, does not. First, we determined when gene expression was most regulated during trace conditioning. Rats were exposed to 200 trials per day of paired and unpaired stimuli each day for 4 days. Changes in gene expression were most apparent 24 h after exposure to 200 trials. Therefore, we profiled gene expression in the hippocampus 24 h after 200 trials of trace eyeblink conditioning, on multiple arrays using additional animals. Of 1,186 genes on the filter array, seven genes met the statistical criteria and were also validated by real-time polymerase chain reaction. These genes were growth hormone (GH), c-kit receptor tyrosine kinase (c-kit), glutamate receptor, metabotropic 5 (mGluR5), nerve growth factor-beta (NGF-beta), Jun oncogene (c-Jun), transmembrane receptor Unc5H1 (UNC5H1), and transmembrane receptor Unc5H2 (UNC5H2). All these genes, except for GH, were downregulated in response to trace conditioning. GH was upregulated; therefore, we also validated the downregulation of the GH inhibitor, somatostatin (SST), even though it just failed to meet criteria on the arrays. By during situ hybridization, GH was expressed throughout the cell layers of the hippocampus in response to trace conditioning. None of the genes regulated in trace eyeblink conditioning were similarly affected by delay conditioning, a task that does not require the hippocampus. These findings demonstrate that transcriptional profiling can exhibit a repertoire of genes sensitive to the formation of hippocampal-dependent associative memories.

  20. Transcript profiling distinguishes complete treatment responders with locally advanced cervical cancer.

    PubMed

    Fernandez-Retana, Jorge; Lasa-Gonsebatt, Federico; Lopez-Urrutia, Eduardo; Coronel-Martínez, Jaime; Cantu De Leon, David; Jacobo-Herrera, Nadia; Peralta-Zaragoza, Oscar; Perez-Montiel, Delia; Reynoso-Noveron, Nancy; Vazquez-Romo, Rafael; Perez-Plasencia, Carlos

    2015-04-01

    Cervical cancer (CC) mortality is a major public health concern since it is the second cause of cancer-related deaths among women. Patients diagnosed with locally advanced CC (LACC) have an important rate of recurrence and treatment failure. Conventional treatment for LACC is based on chemotherapy and radiotherapy; however, up to 40% of patients will not respond to conventional treatment; hence, we searched for a prognostic gene signature able to discriminate patients who do not respond to the conventional treatment employed to treat LACC. Tumor biopsies were profiled with genome-wide high-density expression microarrays. Class prediction was performed in tumor tissues and the resultant gene signature was validated by quantitative reverse transcription-polymerase chain reaction. A 27-predictive gene profile was identified through its association with pathologic response. The 27-gene profile was validated in an independent set of patients and was able to distinguish between patients diagnosed as no response versus complete response. Gene expression analysis revealed two distinct groups of tumors diagnosed as LACC. Our findings could provide a strategy to select patients who would benefit from neoadjuvant radiochemotherapy-based treatment. PMID:25926073

  1. Transcript profiling distinguishes complete treatment responders with locally advanced cervical cancer.

    PubMed

    Fernandez-Retana, Jorge; Lasa-Gonsebatt, Federico; Lopez-Urrutia, Eduardo; Coronel-Martínez, Jaime; Cantu De Leon, David; Jacobo-Herrera, Nadia; Peralta-Zaragoza, Oscar; Perez-Montiel, Delia; Reynoso-Noveron, Nancy; Vazquez-Romo, Rafael; Perez-Plasencia, Carlos

    2015-04-01

    Cervical cancer (CC) mortality is a major public health concern since it is the second cause of cancer-related deaths among women. Patients diagnosed with locally advanced CC (LACC) have an important rate of recurrence and treatment failure. Conventional treatment for LACC is based on chemotherapy and radiotherapy; however, up to 40% of patients will not respond to conventional treatment; hence, we searched for a prognostic gene signature able to discriminate patients who do not respond to the conventional treatment employed to treat LACC. Tumor biopsies were profiled with genome-wide high-density expression microarrays. Class prediction was performed in tumor tissues and the resultant gene signature was validated by quantitative reverse transcription-polymerase chain reaction. A 27-predictive gene profile was identified through its association with pathologic response. The 27-gene profile was validated in an independent set of patients and was able to distinguish between patients diagnosed as no response versus complete response. Gene expression analysis revealed two distinct groups of tumors diagnosed as LACC. Our findings could provide a strategy to select patients who would benefit from neoadjuvant radiochemotherapy-based treatment.

  2. Effects of sub-lethal concentrations of mupirocin on global transcription in Staphylococcus aureus 8325-4 and a model for the escape from inhibition.

    PubMed

    AlHoufie, Sari Talal S; Foster, Howard A

    2016-08-01

    Staphylococcus aureus is a major pathogen in both hospital and community settings, causing infections ranging from mild skin and wound infections to life-threatening systemic illness. Gene expression changes due to the stringent response have been studied in S. aureus using lethal concentrations of mupirocin, but no studies have investigated the effects of sub-lethal concentrations. S. aureus 8325-4 was exposed to sub-inhibitory concentrations of mupirocin. The production of ppGpp was assessed via HPLC and the effects on global transcription were studied by RNAseq (RNA sequencing) analysis. Growth inhibition had occurred after 1 h of treatment and metabolic analysis revealed that the stringent response alarmone ppGpp was present and GTP concentrations decreased. Transcriptome profiles showed that global transcriptional alterations were similar to those for S. aureus after treatment with lethal concentrations of mupirocin, including the repression of genes involved in transcription, translation and replication machineries. Furthermore, up-regulation of genes involved in stress responses, and amino acid biosynthesis and transport, as well as some virulence factor genes, was observed. However, ppGpp was not detectable after 12 or 24 h and cell growth had resumed, although some transcriptional changes remained. Sub-lethal concentrations of mupirocin induce the stringent response, but cells adapt and resume growth once ppGpp levels decrease.

  3. Global Gene Expression Profiling in Lung Tissues of Rat Exposed to Lunar Dust Particles

    NASA Technical Reports Server (NTRS)

    Yeshitla, Samrawit A.; Lam, Chiu-Wing; Kidane, Yared H.; Feiveson, Alan H.; Ploutz-Snyder, Robert; Wu, Honglu; James, John T.; Meyers, Valerie E.; Zhang, Ye

    2014-01-01

    The Moon's surface is covered by a layer of fine, potential reactive dust. Lunar dust contain about 1-2% respirable very fine dust (less than 3 micrometers). The habitable area of any lunar landing vehicle and outpost would inevitably be contaminated with lunar dust that could pose a health risk. The purpose of the study is to analyze the dynamics of global gene expression changes in lung tissues of rats exposed to lunar dust particles. F344 rats were exposed for 4 weeks (6h/d; 5d/wk) in nose-only inhalation chambers to concentrations of 0 (control air), 2.1, 6.8, 21, and 61 mg/m3 of lunar dust. Animals were euthanized at 1 day and 13 weeks after the last inhalation exposure. After being lavaged, lung tissue from each animal was collected and total RNA was isolated. Four samples of each dose group were analyzed using Agilent Rat GE v3 microarray to profile global gene expression of 44K transcripts. After background subtraction, normalization, and log transformation, t tests were used to compare the mean expression levels of each exposed group to the control group. Correction for multiple testing was made using the method of Benjamini, Krieger, and Yekuteli (1) to control the false discovery rate. Genes with significant changes of at least 1.75 fold were identified as genes of interest. Both low and high doses of lunar dust caused dramatic, dose-dependent global gene expression changes in the lung tissues. However, the responses of lung tissue to low dose lunar dust are distinguished from those of high doses, especially those associated with 61mg/m3 dust exposure. The data were further integrated into the Ingenuity system to analyze the gene ontology (GO), pathway distribution and putative upstream regulators and gene targets. Multiple pathways, functions, and upstream regulators have been identified in response to lunar dust induced damage in the lung tissue.

  4. Definition of global and transcript-specific mRNA export pathways in metazoans.

    PubMed

    Farny, Natalie G; Hurt, Jessica A; Silver, Pamela A

    2008-01-01

    Eukaryotic gene expression requires export of messenger RNAs (mRNAs) from their site of transcription in the nucleus to the cytoplasm where they are translated. While mRNA export has been studied in yeast, the complexity of gene structure and cellular function in metazoan cells has likely led to increased diversification of these organisms' export pathways. Here we report the results of a genome-wide RNAi screen in which we identify 72 factors required for polyadenylated [poly-(A(+))] mRNA export from the nucleus in Drosophila cells. Using structural and functional conservation analysis of yeast and Drosophila mRNA export factors, we expose the evolutionary divergence of eukaryotic mRNA export pathways. Additionally, we demonstrate the differential export requirements of two endogenous heat-inducible transcripts--intronless heat-shock protein 70 (HSP70) and intron-containing HSP83--and identify novel export factors that participate in HSP83 mRNA splicing. We characterize several novel factors and demonstrate their participation in interactions with known components of the Drosophila export machinery. One of these factors, Drosophila melanogaster PCI domain-containing protein 2 (dmPCID2), associates with polysomes and may bridge the transition between exported messenger ribonucleoprotein particles (mRNPs) and polysomes. Our results define the global network of factors involved in Drosophila mRNA export, reveal specificity in the export requirements of different transcripts, and expose new avenues for future work in mRNA export.

  5. Unique transcriptional profile of liver-resident memory CD8+ T cells induced by immunization with malaria sporozoites

    PubMed Central

    Tse, Sze-Wah; Cockburn, Ian A.; Zhang, Hao; Scott, Alan L.; Zavala, Fidel

    2013-01-01

    Sterile immunity against live Plasmodium infection can be achieved by immunization with radiation attenuated sporozoites. This protection is known to be mediated in part by antigen-specific memory CD8+ T cells, presumably those residing in the liver. We characterized and compared the transcriptional profile of parasite-specific memory CD8+ T cells residing in the liver and spleen after immunization of mice with irradiated sporozoites. Microarray-based expression analysis of these memory CD8+ T cells indicated that liver resident memory cells display a distinct gene expression profile. We found major differences in the expression of immune function genes as well as genes involved in the cell cycle, cell trafficking, transcription and intracellular signaling. Importantly, the malaria parasite-induced liver resident CD8+ T cells display a transcriptional profile different to that described for CD8+ T cells following other microbial challenges. PMID:23594961

  6. Function of the Pseudomonas aeruginosa NrdR Transcription Factor: Global Transcriptomic Analysis and Its Role on Ribonucleotide Reductase Gene Expression

    PubMed Central

    Crespo, Anna; Pedraz, Lucas; Torrents, Eduard

    2015-01-01

    Ribonucleotide reductases (RNRs) are a family of sophisticated enzymes responsible for the synthesis of the deoxyribonucleotides (dNTPs), the building blocks for DNA synthesis and repair. Although any living cell must contain one RNR activity to continue living, bacteria have the capacity to encode different RNR classes in the same genome, allowing them to adapt to different environments and growing conditions. Pseudomonas aeruginosa is well known for its adaptability and surprisingly encodes all three known RNR classes (Ia, II and III). There must be a complex transcriptional regulation network behind this RNR activity, dictating which RNR class will be expressed according to specific growing conditions. In this work, we aim to uncover the role of the transcriptional regulator NrdR in P. aeruginosa. We demonstrate that NrdR regulates all three RNR classes, being involved in differential control depending on whether the growth conditions are aerobic or anaerobic. Moreover, we also identify for the first time that NrdR is not only involved in controlling RNR expression but also regulates topoisomerase I (topA) transcription. Finally, to obtain the entire picture of NrdR regulon, we performed a global transcriptomic analysis comparing the transcription profile of wild-type and nrdR mutant strains. The results provide many new data about the regulatory network that controls P. aeruginosa RNR transcription, bringing us a step closer to the understanding of this complex system. PMID:25909779

  7. Function of the Pseudomonas aeruginosa NrdR Transcription Factor: Global Transcriptomic Analysis and Its Role on Ribonucleotide Reductase Gene Expression.

    PubMed

    Crespo, Anna; Pedraz, Lucas; Torrents, Eduard

    2015-01-01

    Ribonucleotide reductases (RNRs) are a family of sophisticated enzymes responsible for the synthesis of the deoxyribonucleotides (dNTPs), the building blocks for DNA synthesis and repair. Although any living cell must contain one RNR activity to continue living, bacteria have the capacity to encode different RNR classes in the same genome, allowing them to adapt to different environments and growing conditions. Pseudomonas aeruginosa is well known for its adaptability and surprisingly encodes all three known RNR classes (Ia, II and III). There must be a complex transcriptional regulation network behind this RNR activity, dictating which RNR class will be expressed according to specific growing conditions. In this work, we aim to uncover the role of the transcriptional regulator NrdR in P. aeruginosa. We demonstrate that NrdR regulates all three RNR classes, being involved in differential control depending on whether the growth conditions are aerobic or anaerobic. Moreover, we also identify for the first time that NrdR is not only involved in controlling RNR expression but also regulates topoisomerase I (topA) transcription. Finally, to obtain the entire picture of NrdR regulon, we performed a global transcriptomic analysis comparing the transcription profile of wild-type and nrdR mutant strains. The results provide many new data about the regulatory network that controls P. aeruginosa RNR transcription, bringing us a step closer to the understanding of this complex system. PMID:25909779

  8. Transcription profiling in environmental diagnostics: health assessments in Columbia River basin steelhead (Oncorhynchus mykiss).

    PubMed

    Connon, Richard E; D'Abronzo, Leandro S; Hostetter, Nathan J; Javidmehr, Alireza; Roby, Daniel D; Evans, Allen F; Loge, Frank J; Werner, Inge

    2012-06-01

    The health condition of out-migrating juvenile salmonids can influence migration success. Physical damage, pathogenic infection, contaminant exposure, and immune system status can affect survival probability. The present study is part of a wider investigation of out-migration success in juvenile steelhead (Oncorhynchus mykiss) and focuses on the application of molecular profiling to assess sublethal effects of environmental stressors in field-collected fish. We used a suite of genes in O. mykiss to specifically assess responses that could be directly related to steelhead health condition during out-migration. These biomarkers were used on juvenile steelhead captured in the Snake River, a tributary of the Columbia River, in Washington, USA, and were applied on gill and anterior head kidney tissue to assess immune system responses, pathogen-defense (NRAMP, Mx, CXC), general stress (HSP70), metal-binding (metallothionein-A), and xenobiotic metabolism (Cyp1a1) utilizing quantitative polymerase chain reaction (PCR) technology. Upon capture, fish were ranked according to visual external physical conditions into good, fair, poor, and bad categories; gills and kidney tissues were then dissected and preserved for gene analyses. Transcription responses were tissue-specific for gill and anterior head kidney with less significant responses in gill tissue than in kidney. Significant differences between the condition ranks were attributed to NRAMP, MX, CXC, and Cyp1a1 responses. Gene profiling correlated gene expression with pathogen presence, and results indicated that gene profiling can be a useful tool for identifying specific pathogen types responsible for disease. Principal component analysis (PCA) further correlated these responses with specific health condition categories, strongly differentiating good, poor, and bad condition ranks. We conclude that molecular profiling is an informative and useful tool that could be applied to indicate and monitor numerous population

  9. Age-related behaviors have distinct transcriptional profiles in C.elegans

    PubMed Central

    Golden, Tamara R.; Hubbard, Alan; Dando, Caroline; Herren, Michael A.; Melov, Simon

    2008-01-01

    Summary There has been a great deal of interest in identifying potential biomarkers of aging (Butler et al. 2004). Biomarkers of aging would be useful to predict potential vulnerabilities in an individual that may arise well before they are chronologically expected, due to idiosyncratic aging rates that occur between individuals. Prior attempts to identify biomarkers of aging have often relied on the comparisons of long-lived animals to a wild-type control (Dhahbi et al. 2004). However, the effect of interventions in model systems that prolong lifespan (such as single gene mutations, or caloric restriction) can sometimes be difficult to interpret due to the manipulation itself having multiple unforeseen consequences on physiology, unrelated to aging itself (Gems et al. 2002; Partridge & Gems 2006). The search for predictive biomarkers of aging therefore is problematic, and the identification of metrics that can be used to predict either physiological or chronological age would be of great value (Butler et al. 2004). One methodology which has been used to identify biomarkers for numerous pathologies is gene expression profiling. Here, we report whole-genome expression profiles of individual wild-type Caenorhabditis elegans covering the entire wild-type nematode life span. Individual nematodes were scored for either age-related behavioral phenotypes, or survival, and then subsequently associated with their respective gene expression profiles. This facilitated the identification of transcriptional profiles that were highly associated with either physiological or chronological age. Overall, our approach serves as a paradigm for identifying potential biomarkers of aging in higher organisms that can be repeatedly sampled throughout their lifespan. PMID:18778409

  10. Global Analysis of mRNA Half-Lives and de novo Transcription in a Dinoflagellate, Karenia brevis

    PubMed Central

    Morey, Jeanine S.; Van Dolah, Frances M.

    2013-01-01

    Dinoflagellates possess many physiological processes that appear to be under post-transcriptional control. However, the extent to which their genes are regulated post-transcriptionally remains unresolved. To gain insight into the roles of differential mRNA stability and de novo transcription in dinoflagellates, we biosynthetically labeled RNA with 4-thiouracil to isolate newly transcribed and pre-existing RNA pools in Karenia brevis. These isolated fractions were then used for analysis of global mRNA stability and de novo transcription by hybridization to a K. brevis microarray. Global K. brevis mRNA half-lives were calculated from the ratio of newly transcribed to pre-existing RNA for 7086 array features using the online software HALO (Half-life Organizer). Overall, mRNA half-lives were substantially longer than reported in other organisms studied at the global level, ranging from 42 minutes to greater than 144 h, with a median of 33 hours. Consistent with well-documented trends observed in other organisms, housekeeping processes, including energy metabolism and transport, were significantly enriched in the most highly stable messages. Shorter-lived transcripts included a higher proportion of transcriptional regulation, stress response, and other response/regulatory processes. One such family of proteins involved in post-transcriptional regulation in chloroplasts and mitochondria, the pentatricopeptide repeat (PPR) proteins, had dramatically shorter half-lives when compared to the arrayed transcriptome. As transcript abundances for PPR proteins were previously observed to rapidly increase in response to nutrient addition, we queried the newly synthesized RNA pools at 1 and 4 h following nitrate addition to N-depleted cultures. Transcriptome-wide there was little evidence of increases in the rate of de novo transcription during the first 4 h, relative to that in N-depleted cells, and no evidence for increased PPR protein transcription. These results lend support to

  11. Transcriptional profiling of the effect of lipopolysaccharide (LPS) pretreatment in blood from probiotics-treated dairy cows.

    PubMed

    Adjei-Fremah, Sarah; Ekwemalor, Kingsley; Asiamah, Emmanuel; Ismail, Hamid; Worku, Mulumebet

    2016-12-01

    Probiotic supplements are beneficial for animal health and rumen function; and lipopolysaccharides (LPS) from gram negative bacteria have been associated with inflammatory diseases. In this study the transcriptional profile in whole blood collected from probiotics-treated cows was investigated in response to stimulation with lipopolysaccharides (LPS) in vitro. Microarray experiment was performed between LPS-treated and control samples using the Agilent one-color bovine v2 bovine (v2) 4x44K array slides. Global gene expression analysis identified 13,658 differentially expressed genes (fold change cutoff ≥ 2, P < 0.05), 3816 upregulated genes and 9842 downregulated genes in blood in response to LPS. Treatment with LPS resulted in increased expression of TLR4 (Fold change (FC) = 3.16) and transcription factor NFkB (FC = 5.4) and decreased the expression of genes including TLR1 (FC = - 2.54), TLR3 (FC = - 2.43), TLR10 (FC = - 3.88), NOD2 (FC = - 2.4), NOD1 (FC = - 2.45) and pro-inflammatory cytokine IL1B (- 3.27). The regulation of the genes involved in inflammation signaling pathway suggests that probiotics may stimulate the innate immune response of animal against parasitic and bacterial infections. We have provided a detailed description of the experimental design, microarray experiment and normalization and analysis of data which have been deposited into NCBI Gene Expression Omnibus (GEO): GSE75240. PMID:27656413

  12. Transcript profiling of Zea mays roots reveals gene responses to phosphate deficiency at the plant- and species-specific levels.

    PubMed

    Calderon-Vazquez, Carlos; Ibarra-Laclette, Enrique; Caballero-Perez, Juan; Herrera-Estrella, Luis

    2008-01-01

    Maize (Zea mays) is the most widely cultivated crop around the world; however, it is commonly affected by phosphate (Pi) deficiency in many regions, particularly in acid and alkaline soils of developing countries. To cope with Pi deficiency, plants have evolved a large number of developmental and biochemical adaptations; however, for maize, the underlying molecular basis of these responses is still unknown. In this work, the transcriptional response of maize roots to Pi starvation at 1, 3, 6, and 10 d after the onset of Pi deprivation was assessed. The investigation revealed a total of 1179 Pi-responsive genes, of which 820 and 363 genes were found to be either up- or down-regulated, respectively, by 2-fold or more. Pi-responsive genes were found to be involved in various metabolic, signal transduction, and developmental gene networks. A large set of transcription factors, which may be potential targets for crop breeding, was identified. In addition, gene expression profiles and changes in specific metabolites were also correlated. The results show that several dicotyledonous plant responses to Pi starvation are conserved in maize, but that some genetic responses appear to be more specific and that Pi deficiency leads to a shift in the recycling of internal Pi in maize roots. Ultimately, this work provides a more comprehensive view of Pi-responses in a model for economically important cereals and also sets a framework to produce Pi-specific maize microarrays to study the changes in global gene expression between Pi-efficient and Pi-inefficient maize genotypes. PMID:18503042

  13. Correlation of the electrophysiological profiles and sodium channel transcripts of individual rat dorsal root ganglia neurons.

    PubMed

    Thériault, Olivier; Chahine, Mohamed

    2014-01-01

    Voltage gated sodium channels (Nav channels) play an important role in nociceptive transmission. They are intimately tied to the genesis and transmission of neuronal firing. Five different isoforms (Nav1.3, Nav1.6, Nav1.7, Nav1.8, and Nav1.9) have been linked to nociceptive responses. A change in the biophysical properties of these channels or in their expression levels occurs in different pathological pain states. However, the precise involvement of the isoforms in the genesis and transmission of nociceptive responses is unknown. The aim of the present study was to investigate the synergy between the different populations of Nav channels that give individual neurons a unique electrophysical profile. We used the patch-clamp technique in the whole-cell configuration to record Nav currents and action potentials from acutely dissociated small diameter DRG neurons (<30 μm) from adult rats. We also performed single cell qPCR on the same neurons. Our results revealed that there is a strong correlation between Nav currents and mRNA transcripts in individual neurons. A cluster analysis showed that subgroups formed by Nav channel transcripts by mRNA quantification have different biophysical properties. In addition, the firing frequency of the neurons was not affected by the relative populations of Nav channel. The synergy between populations of Nav channel in individual small diameter DRG neurons gives each neuron a unique electrophysiological profile. The Nav channel remodeling that occurs in different pathological pain states may be responsible for the sensitization of the neurons. PMID:25285069

  14. Profiling ethanol-targeted transcription factors in human carcinoma cell-derived embryoid bodies.

    PubMed

    Mandal, Chanchal; Halder, Debasish; Chai, Jin Choul; Lee, Young Seek; Jung, Kyoung Hwa; Chai, Young Gyu

    2016-01-15

    Fetal alcohol spectrum disorder is a collective term that represents fetal abnormalities associated with maternal alcohol consumption. Prenatal alcohol exposure and related anomalies are well characterized, but the molecular mechanism behind this phenomenon is not yet understood. Few insights have been gained from genetic and epigenetic studies of fetal alcohol spectrum disorder. Our aim was to profile the important molecular regulators of ethanol-related alterations of the genome. For this purpose, we have analyzed the gene expression pattern of human carcinoma cell-derived embryoid bodies in the absence or presence of ethanol. A cDNA microarray analysis was used to profile mRNA expression in embryoid bodies at day 7 with or without ethanol treatment. A total of 493 differentially expressed genes were identified in response to 50 mM ethanol exposure. Of these, 111 genes were up-regulated, and 382 were down-regulated. Gene ontology term enrichment analysis revealed that these genes are involved in important biological processes: neurological system processes, cognition, behavior, sensory perception of smell, taste and chemical stimuli and synaptic transmission. Similarly, the enrichment of disease-related genes included relevant categories such as neurological diseases, developmental disorders, skeletal and muscular disorders, and connective tissue disorders. Furthermore, we have identified a group of 26 genes that encode transcription factors. We validated the relative gene expression of several transcription factors using quantitative real time PCR. We hope that our study substantially contributes to the understanding of the molecular mechanisms underlying the pathology of alcohol-mediated anomalies and facilitates further research.

  15. Single mammalian cells compensate for differences in cellular volume and DNA copy number through independent global transcriptional mechanisms

    PubMed Central

    Padovan-Merhar, Olivia; Nair, Gautham P.; Biaesch, Andrew; Mayer, Andreas; Scarfone, Steven; Foley, Shawn W.; Wu, Angela R.; Churchman, L. Stirling; Singh, Abhyudai; Raj, Arjun

    2015-01-01

    Summary Individual mammalian cells exhibit large variability in cellular volume even with the same absolute DNA content and so must compensate for differences in DNA concentration in order to maintain constant concentration of gene expression products. Using single molecule counting and computational image analysis, we show that transcript abundance correlates with cellular volume at the single cell level due to increased global transcription in larger cells. Cell fusion experiments establish that increased cellular content itself can directly increase transcription. Quantitative analysis shows that this mechanism measures the ratio of cellular volume to DNA content, mostly likely through sequestration of a transcriptional factor to DNA. Analysis of transcriptional bursts reveals a separate mechanism for gene dosage compensation after DNA replication that enables proper transcriptional output during early and late S-phase. Our results provide a framework for quantitatively understanding the relationships between DNA content, cell size and gene expression variability in single cells. PMID:25866248

  16. Comparative Transcriptional Profiling of Primed and Non-primed Rice Seedlings under Submergence Stress

    PubMed Central

    Hussain, Saddam; Yin, Hanqi; Peng, Shaobing; Khan, Faheem A.; Khan, Fahad; Sameeullah, Muhammad; Hussain, Hafiz A.; Huang, Jianliang; Cui, Kehui; Nie, Lixiao

    2016-01-01

    Submergence stress is a limiting factor for direct-seeded rice systems in rainfed lowlands and flood-prone areas of South and Southeast Asia. The present study demonstrated that submergence stress severely hampered the germination and seedling growth of rice, however, seed priming alleviated the detrimental effects of submergence stress. To elucidate the molecular basis of seed priming-induced submergence tolerance, transcriptome analyses were performed using 4-day-old primed (selenium-Se and salicylic acid-SA priming) and non-primed rice seedlings under submergence stress. Genomewide transcriptomic profiling identified 2371 and 2405 transcripts with Se- and SA-priming, respectively, that were differentially expressed in rice compared with non-priming treatment under submergence. Pathway and gene ontology term enrichment analyses revealed that genes involved in regulation of secondary metabolism, development, cell, transport, protein, and metal handling were over-represented after Se- or SA-priming. These coordinated factors might have enhanced the submergence tolerance and maintained the better germination and vigorous seedling growth of primed rice seedlings. It was also found that many genes involved in cellular and metabolic processes such as carbohydrate metabolism, cellular, and metabolic biosynthesis, nitrogen compound metabolic process, transcription, and response to oxidative stress were induced and overlapped in seed priming treatments, a finding which reveals the common mechanism of seed priming-induced submergence tolerance. Taken together, these results may provide new avenues for understanding and advancing priming-induced responses to submergence tolerance in crop plants. PMID:27516766

  17. Phenotypic Characterization of Retinoic Acid Differentiated SH-SY5Y Cells by Transcriptional Profiling

    PubMed Central

    Korecka, Joanna A.; van Kesteren, Ronald E.; Blaas, Eva; Spitzer, Sonia O.; Kamstra, Jorke H.; Smit, August B.; Swaab, Dick F.; Verhaagen, Joost; Bossers, Koen

    2013-01-01

    Multiple genetic and environmental factors play a role in the development and progression of Parkinson’s disease (PD). The main neuropathological hallmark of PD is the degeneration of dopaminergic (DAergic) neurons in the substantia nigra pars compacta. To study genetic and molecular contributors to the disease process, there is a great need for readily accessible cells with prominent DAergic features that can be used for reproducible in vitro cellular screening. Here, we investigated the molecular phenotype of retinoic acid (RA) differentiated SH-SY5Y cells using genome wide transcriptional profiling combined with gene ontology, transcription factor and molecular pathway analysis. We demonstrated that RA induces a general neuronal differentiation program in SH-SY5Y cells and that these cells develop a predominantly mature DAergic-like neurotransmitter phenotype. This phenotype is characterized by increased dopamine levels together with a substantial suppression of other neurotransmitter phenotypes, such as those for noradrenaline, acetylcholine, glutamate, serotonin and histamine. In addition, we show that RA differentiated SH-SY5Y cells express the dopamine and noradrenalin neurotransmitter transporters that are responsible for uptake of MPP(+), a well known DAergic cell toxicant. MPP(+) treatment alters mitochondrial activity according to its proposed cytotoxic effect in DAergic neurons. Taken together, RA differentiated SH-SY5Y cells have a DAergic-like phenotype, and provide a good cellular screening tool to find novel genes or compounds that affect cytotoxic processes that are associated with PD. PMID:23724009

  18. Integration of deep transcript and targeted metabolite profiles for eight cultivars of opium poppy.

    PubMed

    Desgagné-Penix, Isabel; Farrow, Scott C; Cram, Dustin; Nowak, Jacek; Facchini, Peter J

    2012-06-01

    Recent advances in DNA sequencing technology and analytical mass spectrometry are providing unprecedented opportunities to develop the functional genomics resources required to investigate complex biological processes in non-model plants. Opium poppy produces a wide variety of benzylisoquinoline alkaloids (BIAs), including the pharmaceutical compounds codeine, morphine, noscapine and papaverine. A functional genomics platform to identify novel BIA biosynthetic and regulatory genes in opium poppy has been established based on the differential metabolite profile of eight selected cultivars. Stem cDNA libraries from each of the eight opium poppy cultivars were subjected to 454 pyrosequencing and searchable expressed sequence tag databases were created from the assembled reads. These deep and integrated metabolite and transcript databases provide a nearly complete representation of the genetic and metabolic variances responsible for the differential occurrence of specific BIAs in each cultivar as demonstrated using the biochemically well characterized pathway from tyrosine to morphine. Similar correlations between the occurrence of specific transcripts and alkaloids effectively reveals candidate genes encoding uncharacterized biosynthetic enzymes as shown using cytochromes P450 potentially involved in the formation of papaverine and noscapine.

  19. Comparative Transcriptional Profiling of Primed and Non-primed Rice Seedlings under Submergence Stress.

    PubMed

    Hussain, Saddam; Yin, Hanqi; Peng, Shaobing; Khan, Faheem A; Khan, Fahad; Sameeullah, Muhammad; Hussain, Hafiz A; Huang, Jianliang; Cui, Kehui; Nie, Lixiao

    2016-01-01

    Submergence stress is a limiting factor for direct-seeded rice systems in rainfed lowlands and flood-prone areas of South and Southeast Asia. The present study demonstrated that submergence stress severely hampered the germination and seedling growth of rice, however, seed priming alleviated the detrimental effects of submergence stress. To elucidate the molecular basis of seed priming-induced submergence tolerance, transcriptome analyses were performed using 4-day-old primed (selenium-Se and salicylic acid-SA priming) and non-primed rice seedlings under submergence stress. Genomewide transcriptomic profiling identified 2371 and 2405 transcripts with Se- and SA-priming, respectively, that were differentially expressed in rice compared with non-priming treatment under submergence. Pathway and gene ontology term enrichment analyses revealed that genes involved in regulation of secondary metabolism, development, cell, transport, protein, and metal handling were over-represented after Se- or SA-priming. These coordinated factors might have enhanced the submergence tolerance and maintained the better germination and vigorous seedling growth of primed rice seedlings. It was also found that many genes involved in cellular and metabolic processes such as carbohydrate metabolism, cellular, and metabolic biosynthesis, nitrogen compound metabolic process, transcription, and response to oxidative stress were induced and overlapped in seed priming treatments, a finding which reveals the common mechanism of seed priming-induced submergence tolerance. Taken together, these results may provide new avenues for understanding and advancing priming-induced responses to submergence tolerance in crop plants.

  20. Comparative Transcriptional Profiling of Primed and Non-primed Rice Seedlings under Submergence Stress.

    PubMed

    Hussain, Saddam; Yin, Hanqi; Peng, Shaobing; Khan, Faheem A; Khan, Fahad; Sameeullah, Muhammad; Hussain, Hafiz A; Huang, Jianliang; Cui, Kehui; Nie, Lixiao

    2016-01-01

    Submergence stress is a limiting factor for direct-seeded rice systems in rainfed lowlands and flood-prone areas of South and Southeast Asia. The present study demonstrated that submergence stress severely hampered the germination and seedling growth of rice, however, seed priming alleviated the detrimental effects of submergence stress. To elucidate the molecular basis of seed priming-induced submergence tolerance, transcriptome analyses were performed using 4-day-old primed (selenium-Se and salicylic acid-SA priming) and non-primed rice seedlings under submergence stress. Genomewide transcriptomic profiling identified 2371 and 2405 transcripts with Se- and SA-priming, respectively, that were differentially expressed in rice compared with non-priming treatment under submergence. Pathway and gene ontology term enrichment analyses revealed that genes involved in regulation of secondary metabolism, development, cell, transport, protein, and metal handling were over-represented after Se- or SA-priming. These coordinated factors might have enhanced the submergence tolerance and maintained the better germination and vigorous seedling growth of primed rice seedlings. It was also found that many genes involved in cellular and metabolic processes such as carbohydrate metabolism, cellular, and metabolic biosynthesis, nitrogen compound metabolic process, transcription, and response to oxidative stress were induced and overlapped in seed priming treatments, a finding which reveals the common mechanism of seed priming-induced submergence tolerance. Taken together, these results may provide new avenues for understanding and advancing priming-induced responses to submergence tolerance in crop plants. PMID:27516766

  1. The Streptococcus pneumoniae cia regulon: CiaR target sites and transcription profile analysis.

    PubMed

    Mascher, Thorsten; Zähner, Dorothea; Merai, Michelle; Balmelle, Nadège; de Saizieu, Antoine B; Hakenbeck, Regine

    2003-01-01

    The ciaR-ciaH system is one of 13 two-component signal-transducing systems of the human pathogen Streptococcus pneumoniae. Mutations in the histidine protein kinase CiaH confer increased resistance to beta-lactam antibiotics and interfere with the development of genetic competence. In order to identify the genes controlled by the cia system, the cia regulon, DNA fragments targeted by the response regulator CiaR were isolated from restricted chromosomal DNA using the solid-phase DNA binding assay and analyzed by hybridization to an oligonucleotide microarray representing the S. pneumoniae genome. A set of 18 chromosomal regions containing 26 CiaR target sites were detected and proposed to represent the minimal cia regulon. The putative CiaR target loci included genes important for the synthesis and modification of cell wall polymers, peptide pheromone and bacteriocin production, and the htrA-spo0J region. In addition, the transcription profile of cia loss-of-function mutants and those with an apparent activated cia system representing the off and on states of the regulatory system were analyzed. The transcript analysis confirmed the cia-dependent expression of seven putative target loci and revealed three additional cia-regulated loci. Five putative target regions were silent under all conditions, and for the remaining three regions, no cia-dependent expression could be detected. Furthermore, the competence regulon, including the comCDE operon required for induction of competence, was completely repressed by the cia system.

  2. Transcriptional profiling of Petunia seedlings reveals candidate regulators of the cold stress response

    PubMed Central

    Li, Bei; Ning, Luyun; Zhang, Junwei; Bao, Manzhu; Zhang, Wei

    2015-01-01

    Petunias are important ornamentals with the capacity for cold acclimation. So far, there is limited information concerning gene regulation and signaling pathways associated with the cold stress response in petunias. A custom-designed petunia microarray representing 24816 genes was used to perform transcriptome profiling in petunia seedlings subjected to cold at 2°C for 0.5 h, 2 h, 24 h, and 5 d. A total of 2071 transcripts displayed differential expression patterns under cold stress, of which 1149 were up-regulated and 922 were down-regulated. Gene ontology enrichment analysis demarcated related biological processes, suggesting a possible link between flavonoid metabolism and plant adaptation to low temperatures. Many novel stress-responsive regulators were revealed, suggesting that diverse regulatory pathways may exist in petunias in addition to the well-characterized CBF pathway. The expression changes of selected genes under cold and other abiotic stress conditions were confirmed by real-time RT-PCR. Furthermore, weighted gene co-expression network analysis divided the petunia genes on the array into 65 modules that showed high co-expression and identified stress-specific hub genes with high connectivity. Our identification of these transcriptional responses and groups of differentially expressed regulators will facilitate the functional dissection of the molecular mechanism in petunias responding to environment stresses and extend our ability to improve cold tolerance in plants. PMID:25784921

  3. Mitochondrial-Nuclear Interactions Mediate Sex-Specific Transcriptional Profiles in Drosophila

    PubMed Central

    Mossman, Jim A.; Tross, Jennifer G.; Li, Nan; Wu, Zhijin; Rand, David M.

    2016-01-01

    The assembly and function of mitochondria require coordinated expression from two distinct genomes, the mitochondrial DNA (mtDNA) and nuclear DNA (nDNA). Mutations in either genome can be a source of phenotypic variation, yet their coexpression has been largely overlooked as a source of variation, particularly in the emerging paradigm of mitochondrial replacement therapy. Here we tested how the transcriptome responds to mtDNA and nDNA variation, along with mitonuclear interactions (mtDNA × nDNA) in Drosophila melanogaster. We used two mtDNA haplotypes that differ in a substantial number of single nucleotide polymorphisms, with >100 amino acid differences. We placed each haplotype on each of two D. melanogaster nuclear backgrounds and tested for transcription differences in both sexes. We found that large numbers of transcripts were differentially expressed between nuclear backgrounds, and that mtDNA type altered the expression of nDNA genes, suggesting a retrograde, trans effect of mitochondrial genotype. Females were generally more sensitive to genetic perturbation than males, and males demonstrated an asymmetrical effect of mtDNA in each nuclear background; mtDNA effects were nuclear-background specific. mtDNA-sensitive genes were not enriched in male- or female-limited expression space in either sex. Using a variety of differential expression analyses, we show the responses to mitonuclear covariation to be substantially different between the sexes, yet the mtDNA genes were consistently differentially expressed across nuclear backgrounds and sexes. Our results provide evidence that the main mtDNA effects can be consistent across nuclear backgrounds, but the interactions between mtDNA and nDNA can lead to sex-specific global transcript responses. PMID:27558138

  4. LncRNA profiling of human lymphoid progenitors reveals transcriptional divergence of B and T lineages

    PubMed Central

    Casero, David; Sandoval, Salemiz; Seet, Christopher S.; Scholes, Jessica; Zhu, Yuhua; Ha, Vi Luan; Luong, Annie; Parekh, Chintan; Crooks, Gay M.

    2015-01-01

    To elucidate the transcriptional landscape that regulates human lymphoid commitment during postnatal life, we used RNA sequencing to assemble the long non-coding transcriptome across human bone marrow and thymic progenitors spanning the earliest stages of B and T lymphoid specification. Over 3000 novel long non-coding RNA genes (lncRNAs) were revealed through the analysis of these rare populations. Lymphoid commitment was characterized by lncRNA expression patterns that were highly stage-specific and more lineage-specific than protein coding patterns. Protein-coding genes co-expressed with neighboring lncRNA genes were enriched for ontologies related to lymphoid differentiation. The exquisite cell-type specificity of global lncRNA expression patterns independently revealed new developmental relationships between the earliest progenitors in the human bone marrow and thymus. PMID:26502406

  5. Marli: Mars Lidar for Global Wind Profiles and Aerosol Profiles from Orbit

    NASA Technical Reports Server (NTRS)

    Abshire, J. B.; Guzewich, S. D.; Smith, M. D.; Riris, H.; Sun, X.; Gentry, B. M.; Yu, A.; Allan, G. R.

    2016-01-01

    The Mars Exploration Analysis Group's Next Orbiter Science Analysis Group (NEXSAG) has recently identified atmospheric wind measurements as one of 5 top compelling science objectives for a future Mars orbiter. To date, only isolated lander observations of martian winds exist. Winds are the key variable to understand atmospheric transport and answer fundamental questions about the three primary cycles of the martian climate: CO2, H2O, and dust. However, the direct lack of observations and imprecise and indirect inferences from temperature observations leave many basic questions about the atmospheric circulation unanswered. In addition to addressing high priority science questions, direct wind observations from orbit would help validate 3D general circulation models (GCMs) while also providing key input to atmospheric reanalyses. The dust and CO2 cycles on Mars are partially coupled and their influences on the atmospheric circulation modify the global wind field. Dust absorbs solar infrared radiation and its variable spatial distribution forces changes in the atmospheric temperature and wind fields. Thus it is important to simultaneously measure the height-resolved wind and dust profiles. MARLI provides a unique capability to observe these variables continuously, day and night, from orbit.

  6. Gene Structures, Evolution and Transcriptional Profiling of the WRKY Gene Family in Castor Bean (Ricinus communis L.).

    PubMed

    Zou, Zhi; Yang, Lifu; Wang, Danhua; Huang, Qixing; Mo, Yeyong; Xie, Guishui

    2016-01-01

    WRKY proteins comprise one of the largest transcription factor families in plants and form key regulators of many plant processes. This study presents the characterization of 58 WRKY genes from the castor bean (Ricinus communis L., Euphorbiaceae) genome. Compared with the automatic genome annotation, one more WRKY-encoding locus was identified and 20 out of the 57 predicted gene models were manually corrected. All RcWRKY genes were shown to contain at least one intron in their coding sequences. According to the structural features of the present WRKY domains, the identified RcWRKY genes were assigned to three previously defined groups (I-III). Although castor bean underwent no recent whole-genome duplication event like physic nut (Jatropha curcas L., Euphorbiaceae), comparative genomics analysis indicated that one gene loss, one intron loss and one recent proximal duplication occurred in the RcWRKY gene family. The expression of all 58 RcWRKY genes was supported by ESTs and/or RNA sequencing reads derived from roots, leaves, flowers, seeds and endosperms. Further global expression profiles with RNA sequencing data revealed diverse expression patterns among various tissues. Results obtained from this study not only provide valuable information for future functional analysis and utilization of the castor bean WRKY genes, but also provide a useful reference to investigate the gene family expansion and evolution in Euphorbiaceus plants.

  7. Gene Structures, Evolution and Transcriptional Profiling of the WRKY Gene Family in Castor Bean (Ricinus communis L.).

    PubMed

    Zou, Zhi; Yang, Lifu; Wang, Danhua; Huang, Qixing; Mo, Yeyong; Xie, Guishui

    2016-01-01

    WRKY proteins comprise one of the largest transcription factor families in plants and form key regulators of many plant processes. This study presents the characterization of 58 WRKY genes from the castor bean (Ricinus communis L., Euphorbiaceae) genome. Compared with the automatic genome annotation, one more WRKY-encoding locus was identified and 20 out of the 57 predicted gene models were manually corrected. All RcWRKY genes were shown to contain at least one intron in their coding sequences. According to the structural features of the present WRKY domains, the identified RcWRKY genes were assigned to three previously defined groups (I-III). Although castor bean underwent no recent whole-genome duplication event like physic nut (Jatropha curcas L., Euphorbiaceae), comparative genomics analysis indicated that one gene loss, one intron loss and one recent proximal duplication occurred in the RcWRKY gene family. The expression of all 58 RcWRKY genes was supported by ESTs and/or RNA sequencing reads derived from roots, leaves, flowers, seeds and endosperms. Further global expression profiles with RNA sequencing data revealed diverse expression patterns among various tissues. Results obtained from this study not only provide valuable information for future functional analysis and utilization of the castor bean WRKY genes, but also provide a useful reference to investigate the gene family expansion and evolution in Euphorbiaceus plants. PMID:26849139

  8. Identification of novel candidate genes involved in mineralization of dental enamel by genome-wide transcript profiling.

    PubMed

    Lacruz, Rodrigo S; Smith, Charles E; Bringas, Pablo; Chen, Yi-Bu; Smith, Susan M; Snead, Malcolm L; Kurtz, Ira; Hacia, Joseph G; Hubbard, Michael J; Paine, Michael L

    2012-05-01

    The gene repertoire regulating vertebrate biomineralization is poorly understood. Dental enamel, the most highly mineralized tissue in mammals, differs from other calcifying systems in that the formative cells (ameloblasts) lack remodeling activity and largely degrade and resorb the initial extracellular matrix. Enamel mineralization requires that ameloblasts undergo a profound functional switch from matrix-secreting to maturational (calcium transport, protein resorption) roles as mineralization progresses. During the maturation stage, extracellular pH decreases markedly, placing high demands on ameloblasts to regulate acidic environments present around the growing hydroxyapatite crystals. To identify the genetic events driving enamel mineralization, we conducted genome-wide transcript profiling of the developing enamel organ from rat incisors and highlight over 300 genes differentially expressed during maturation. Using multiple bioinformatics analyses, we identified groups of maturation-associated genes whose functions are linked to key mineralization processes including pH regulation, calcium handling, and matrix turnover. Subsequent qPCR and Western blot analyses revealed that a number of solute carrier (SLC) gene family members were up-regulated during maturation, including the novel protein Slc24a4 involved in calcium handling as well as other proteins of similar function (Stim1). By providing the first global overview of the cellular machinery required for enamel maturation, this study provide a strong foundation for improving basic understanding of biomineralization and its practical applications in healthcare.

  9. Gene Structures, Evolution and Transcriptional Profiling of the WRKY Gene Family in Castor Bean (Ricinus communis L.)

    PubMed Central

    Huang, Qixing; Mo, Yeyong; Xie, Guishui

    2016-01-01

    WRKY proteins comprise one of the largest transcription factor families in plants and form key regulators of many plant processes. This study presents the characterization of 58 WRKY genes from the castor bean (Ricinus communis L., Euphorbiaceae) genome. Compared with the automatic genome annotation, one more WRKY-encoding locus was identified and 20 out of the 57 predicted gene models were manually corrected. All RcWRKY genes were shown to contain at least one intron in their coding sequences. According to the structural features of the present WRKY domains, the identified RcWRKY genes were assigned to three previously defined groups (I–III). Although castor bean underwent no recent whole-genome duplication event like physic nut (Jatropha curcas L., Euphorbiaceae), comparative genomics analysis indicated that one gene loss, one intron loss and one recent proximal duplication occurred in the RcWRKY gene family. The expression of all 58 RcWRKY genes was supported by ESTs and/or RNA sequencing reads derived from roots, leaves, flowers, seeds and endosperms. Further global expression profiles with RNA sequencing data revealed diverse expression patterns among various tissues. Results obtained from this study not only provide valuable information for future functional analysis and utilization of the castor bean WRKY genes, but also provide a useful reference to investigate the gene family expansion and evolution in Euphorbiaceus plants. PMID:26849139

  10. Global analysis of induced transcription factors and cofactors identifies Tfdp2 as an essential coregulator during terminal erythropoiesis.

    PubMed

    Chen, Cynthia; Lodish, Harvey F

    2014-06-01

    Key transcriptional regulators of terminal erythropoiesis, such as GATA-binding factor 1 (GATA1) and T-cell acute lymphocytic leukemia protein 1 (TAL1), have been well characterized, but transcription factors and cofactors and their expression modulations have not yet been explored on a global scale. Here, we use global gene expression analysis to identify 28 transcription factors and 19 transcriptional cofactors induced during terminal erythroid differentiation whose promoters are enriched for binding by GATA1 and TAL1. Utilizing protein-protein interaction databases to identify cofactors for each transcription factor, we pinpoint several co-induced pairs, of which E2f2 and its cofactor transcription factor Dp-2 (Tfdp2) were the most highly induced. TFDP2 is a critical cofactor required for proper cell cycle control and gene expression. GATA1 and TAL1 are bound to the regulatory regions of Tfdp2 and upregulate its expression and knockdown of Tfdp2 results in significantly reduced rates of proliferation as well as reduced upregulation of many erythroid-important genes. Loss of Tfdp2 also globally inhibits the normal downregulation of many E2F2 target genes, including those that regulate the cell cycle, causing cells to accumulate in S phase and resulting in increased erythrocyte size. Our findings highlight the importance of TFDP2 in coupling the erythroid cell cycle with terminal differentiation and validate this study as a resource for future work on elucidating the role of diverse transcription factors and coregulators in erythropoiesis.

  11. Comprehensive analysis and expression profile of the homeodomain leucine zipper IV transcription factor family in tomato.

    PubMed

    Gao, Yanna; Gao, Shenghua; Xiong, Cheng; Yu, Gang; Chang, Jiang; Ye, Zhibiao; Yang, Changxian

    2015-11-01

    Homeodomain leucine zipper IV (HD-ZIP IV) proteins are plant-specific transcription factors that play important roles in development of epidermal cell layers and cuticle formation. The functions of two HD-ZIP IV family genes, CD2 and Wo, have been well characterized in tomato (Solanum lycopersicum). CD2 and Wo are involved in cuticle biosynthesis and trichome formation, respectively. In this study, we identified 13 novel tomato HD-ZIP IV (SlHDZIV) genes. We analyzed the structures, chromosome locations, phylogeny, protein motifs, and expression profiles of these SlHDZIV genes. Gene structure analysis revealed that a module of 11 exons and 10 introns existed in the SlHDZIV genes. These genes were asymmetrically distributed on chromosomes, except on chromosome 4 and 5. Segmental duplication possibly contributed to the expansion of tomato HD-ZIP IV genes. The expression profiles of these genes revealed their broad expression pattern and high expression in young leaves and flowers. Each gene responded to more than one of different phytohormones [abscisic acid, ethephon, 4-(indolyl)-butyric acid, jasmonic acid, salicylic acid, gibberellic acid, and 6-benzylaminopurine] and four abiotic stress treatments (cold, heat, salt, and drought). This study provided significant insights into the diverse roles of SlHDZIV genes in tomato growth and development.

  12. Stochastic theory of protein synthesis and polysome: ribosome profile on a single mRNA transcript.

    PubMed

    Sharma, Ajeet K; Chowdhury, Debashish

    2011-11-21

    The process of polymerizing a protein by a ribosome, using a messenger RNA (mRNA) as the corresponding template, is called translation. Ribosome may be regarded as a molecular motor for which the mRNA template serves also as the track. Often several ribosomes may translate the same (mRNA) simultaneously. The ribosomes bound simultaneously to a single mRNA transcript are the members of a polyribosome (or, simply, polysome). Experimentally measured polysome profile gives the distribution of polysome sizes. Recently a breakthrough in determining the instantaneous positions of the ribosomes on a given mRNA track has been achieved and the technique is called ribosome profiling (Ingolia et al., 2009; Guo et al., 2010). Motivated by the success of these techniques, we have studied the spatio-temporal organization of ribosomes by extending a theoretical model that we have reported elsewhere (Sharma and Chowdhury, 2011). This extended version of our model incorporates not only (i) mechano-chemical cycle of individual ribomes, and (ii) their steric interactions, but also (iii) the effects of (a) kinetic proofreading, (b) translational infidelity, (c) ribosome recycling, and (d) sequence inhomogeneities. The theoretical framework developed here will serve in guiding further experiments and in analyzing the data to gain deep insight into various kinetic processes involved in translation.

  13. Transcriptional profiling of human smooth muscle cells infected with gingipain and fimbriae mutants of Porphyromonas gingivalis

    PubMed Central

    Zhang, Boxi; Sirsjö, Allan; Khalaf, Hazem; Bengtsson, Torbjörn

    2016-01-01

    Porphyromonas gingivalis (P. gingivalis) is considered to be involved in the development of atherosclerosis. However, the role of different virulence factors produced by P. gingivalis in this process is still uncertain. The aim of this study was to investigate the transcriptional profiling of human aortic smooth muscle cells (AoSMCs) infected with wild type, gingipain mutants or fimbriae mutants of P. gingivalis. AoSMCs were exposed to wild type (W50 and 381), gingipain mutants (E8 and K1A), or fimbriae mutants (DPG-3 and KRX-178) of P. gingivalis. We observed that wild type P. gingivalis changes the expression of a considerable larger number of genes in AoSMCs compare to gingipain and fimbriae mutants, respectively. The results from pathway analysis revealed that the common differentially expressed genes for AoSMCs infected by 3 different wild type P. gingivalis strains were enriched in pathways of cancer, cytokine-cytokine receptor interaction, regulation of the actin cytoskeleton, focal adhesion, and MAPK signaling pathway. Disease ontology analysis showed that various strains of P. gingivalis were associated with different disease profilings. Our results suggest that gingipains and fimbriae, especially arginine-specific gingipain, produced by P. gingivalis play important roles in the association between periodontitis and other inflammatory diseases, including atherosclerosis. PMID:26907358

  14. Gene Transcriptional and Metabolic Profile Changes in Mimetic Aging Mice Induced by D-Galactose

    PubMed Central

    Zhou, Yue-Yue; Zhu, Xiao-Juan; Li, Rong-Hua; Mu, Chang-Kao; Wang, Chun-Lin; Song, Wei-Wei

    2015-01-01

    D-galactose injection has been shown to induce many changes in mice that represent accelerated aging. This mouse model has been widely used for pharmacological studies of anti-aging agents. The underlying mechanism of D-galactose induced aging remains unclear, however, it appears to relate to glucose and 1ipid metabolic disorders. Currently, there has yet to be a study that focuses on investigating gene expression changes in D-galactose aging mice. In this study, integrated analysis of gas chromatography/mass spectrometry-based metabonomics and gene expression profiles was used to investigate the changes in transcriptional and metabolic profiles in mimetic aging mice injected with D-galactose. Our findings demonstrated that 48 mRNAs were differentially expressed between control and D-galactose mice, and 51 potential biomarkers were identified at the metabolic level. The effects of D-galactose on aging could be attributed to glucose and 1ipid metabolic disorders, oxidative damage, accumulation of advanced glycation end products (AGEs), reduction in abnormal substance elimination, cell apoptosis, and insulin resistance. PMID:26176541

  15. mRNA profiling for body fluid identification by reverse transcription endpoint PCR and realtime PCR.

    PubMed

    Haas, C; Klesser, B; Maake, C; Bär, W; Kratzer, A

    2009-03-01

    mRNA profiling is a promising new method for the identification of body fluids from biological stains. Major advantages of mRNA profiling are the possibility of detecting several body fluids in one multiplex reaction and of simultaneously isolating DNA without loss of material. A reverse transcription endpoint polymerase chain reaction (PCR) method and a realtime PCR assay were established for the identification of blood, saliva, semen, vaginal secretions and menstrual blood, and were compared to conventional enzymatic and immunologic tests. The results for specificity, sensitivity and suitability to biological stains were satisfying and mRNA stability was demonstrated for up to 2-year-old stains. Two novel multiplex assays were created with the endpoint PCR primers: multiplex 1 amplifies two markers for each of the above mentioned body fluids and is suited for screening; multiplex 2 was designed for the detection of blood, vaginal secretions and menstrual blood. The results demonstrate that both endpoint PCR and realtime PCR are suitable for the identification of body fluids in forensic stains and represent an effective alternative to conventional enzymatic and immunologic tests.

  16. Optimal Detection of Global Warming using Temperature Profiles

    NASA Technical Reports Server (NTRS)

    Leroy, Stephen S.

    1997-01-01

    Optimal fingerprinting is applied to estimate the amount of time it would take to detect warming by increased concentrations of carbon dioxide in monthly averages of temperature profiles over the Indian Ocean.

  17. Transcriptional Profiling of Human Dendritic Cell Populations and Models - Unique Profiles of In Vitro Dendritic Cells and Implications on Functionality and Applicability

    PubMed Central

    Lundberg, Kristina; Albrekt, Ann-Sofie; Nelissen, Inge; Santegoets, Saskia; de Gruijl, Tanja D.; Gibbs, Sue; Lindstedt, Malin

    2013-01-01

    Background Dendritic cells (DCs) comprise heterogeneous populations of cells, which act as central orchestrators of the immune response. Applicability of primary DCs is restricted due to their scarcity and therefore DC models are commonly employed in DC-based immunotherapy strategies and in vitro tests assessing DC function. However, the interrelationship between the individual in vitro DC models and their relative resemblance to specific primary DC populations remain elusive. Objective To describe and assess functionality and applicability of the available in vitro DC models by using a genome-wide transcriptional approach. Methods Transcriptional profiling was performed with four commonly used in vitro DC models (MUTZ-3-DCs, monocyte-derived DCs, CD34-derived DCs and Langerhans cells (LCs)) and nine primary DC populations (dermal DCs, LCs, blood and tonsillar CD123+, CD1c+ and CD141+ DCs, and blood CD16+ DCs). Results Principal Component Analysis showed that transcriptional profiles of each in vitro DC model most closely resembled CD1c+ and CD141+ tonsillar myeloid DCs (mDCs) among primary DC populations. Thus, additional differentiation factors may be required to generate model DCs that more closely resemble other primary DC populations. Also, no model DC stood out in terms of primary DC resemblance. Nevertheless, hierarchical clustering showed clusters of differentially expressed genes among individual DC models as well as primary DC populations. Furthermore, model DCs were shown to differentially express immunologically relevant transcripts and transcriptional signatures identified for each model DC included several immune-associated transcripts. Conclusion The unique transcriptional profiles of in vitro DC models suggest distinct functionality in immune applications. The presented results will aid in the selection of an appropriate DC model for in vitro assays and assist development of DC-based immunotherapy. PMID:23341914

  18. Genetic Networks of Liver Metabolism Revealed by Integration of Metabolic and Transcriptional Profiling

    PubMed Central

    Ferrara, Christine T.; Wang, Ping; Neto, Elias Chaibub; Stevens, Robert D.; Bain, James R.; Wenner, Brett R.; Ilkayeva, Olga R.; Keller, Mark P.; Blasiole, Daniel A.; Kendziorski, Christina; Yandell, Brian S.; Newgard, Christopher B.; Attie, Alan D.

    2008-01-01

    Although numerous quantitative trait loci (QTL) influencing disease-related phenotypes have been detected through gene mapping and positional cloning, identification of the individual gene(s) and molecular pathways leading to those phenotypes is often elusive. One way to improve understanding of genetic architecture is to classify phenotypes in greater depth by including transcriptional and metabolic profiling. In the current study, we have generated and analyzed mRNA expression and metabolic profiles in liver samples obtained in an F2 intercross between the diabetes-resistant C57BL/6 leptinob/ob and the diabetes-susceptible BTBR leptinob/ob mouse strains. This cross, which segregates for genotype and physiological traits, was previously used to identify several diabetes-related QTL. Our current investigation includes microarray analysis of over 40,000 probe sets, plus quantitative mass spectrometry-based measurements of sixty-seven intermediary metabolites in three different classes (amino acids, organic acids, and acyl-carnitines). We show that liver metabolites map to distinct genetic regions, thereby indicating that tissue metabolites are heritable. We also demonstrate that genomic analysis can be integrated with liver mRNA expression and metabolite profiling data to construct causal networks for control of specific metabolic processes in liver. As a proof of principle of the practical significance of this integrative approach, we illustrate the construction of a specific causal network that links gene expression and metabolic changes in the context of glutamate metabolism, and demonstrate its validity by showing that genes in the network respond to changes in glutamine and glutamate availability. Thus, the methods described here have the potential to reveal regulatory networks that contribute to chronic, complex, and highly prevalent diseases and conditions such as obesity and diabetes. PMID:18369453

  19. Transcriptional profile of P. syringae pv. phaseolicola NPS3121 at low temperature: Physiology of phytopathogenic bacteria

    PubMed Central

    2013-01-01

    Background Low temperatures play key roles in the development of most plant diseases, mainly because of their influence on the expression of various virulence factors in phytopathogenic bacteria. Thus far, studies regarding this environmental parameter have focused on specific themes and little is known about phytopathogenic bacteria physiology under these conditions. To obtain a global view regarding phytopathogenic bacteria strategies in response to physiologically relevant temperature changes, we used DNA microarray technology to compare the gene expression profile of the model bacterial pathogen P. syringae pv. phaseolicola NPS3121 grown at 18°C and 28°C. Results A total of 236 differentially regulated genes were identified, of which 133 were up-regulated and 103 were down-regulated at 18°C compared to 28°C. The majority of these genes are involved in pathogenicity and virulence processes. In general, the results of this study suggest that the expression profile obtained may be related to the fact that low temperatures induce oxidative stress in bacterial cells, which in turn influences the expression of iron metabolism genes. The expression also appears to be correlated with the profile expression obtained in genes related to motility, biofilm production, and the type III secretion system. Conclusions From the data obtained in this study, we can begin to understand the strategies used by this phytopathogen during low temperature growth, which can occur in host interactions and disease development. PMID:23587016

  20. JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles.

    PubMed

    Mathelier, Anthony; Fornes, Oriol; Arenillas, David J; Chen, Chih-Yu; Denay, Grégoire; Lee, Jessica; Shi, Wenqiang; Shyr, Casper; Tan, Ge; Worsley-Hunt, Rebecca; Zhang, Allen W; Parcy, François; Lenhard, Boris; Sandelin, Albin; Wasserman, Wyeth W

    2016-01-01

    JASPAR (http://jaspar.genereg.net) is an open-access database storing curated, non-redundant transcription factor (TF) binding profiles representing transcription factor binding preferences as position frequency matrices for multiple species in six taxonomic groups. For this 2016 release, we expanded the JASPAR CORE collection with 494 new TF binding profiles (315 in vertebrates, 11 in nematodes, 3 in insects, 1 in fungi and 164 in plants) and updated 59 profiles (58 in vertebrates and 1 in fungi). The introduced profiles represent an 83% expansion and 10% update when compared to the previous release. We updated the structural annotation of the TF DNA binding domains (DBDs) following a published hierarchical structural classification. In addition, we introduced 130 transcription factor flexible models trained on ChIP-seq data for vertebrates, which capture dinucleotide dependencies within TF binding sites. This new JASPAR release is accompanied by a new web tool to infer JASPAR TF binding profiles recognized by a given TF protein sequence. Moreover, we provide the users with a Ruby module complementing the JASPAR API to ease programmatic access and use of the JASPAR collection of profiles. Finally, we provide the JASPAR2016 R/Bioconductor data package with the data of this release.

  1. JASPAR 2016: a major expansion and update of the open-access database of transcription factor binding profiles

    PubMed Central

    Mathelier, Anthony; Fornes, Oriol; Arenillas, David J.; Chen, Chih-yu; Denay, Grégoire; Lee, Jessica; Shi, Wenqiang; Shyr, Casper; Tan, Ge; Worsley-Hunt, Rebecca; Zhang, Allen W.; Parcy, François; Lenhard, Boris; Sandelin, Albin; Wasserman, Wyeth W.

    2016-01-01

    JASPAR (http://jaspar.genereg.net) is an open-access database storing curated, non-redundant transcription factor (TF) binding profiles representing transcription factor binding preferences as position frequency matrices for multiple species in six taxonomic groups. For this 2016 release, we expanded the JASPAR CORE collection with 494 new TF binding profiles (315 in vertebrates, 11 in nematodes, 3 in insects, 1 in fungi and 164 in plants) and updated 59 profiles (58 in vertebrates and 1 in fungi). The introduced profiles represent an 83% expansion and 10% update when compared to the previous release. We updated the structural annotation of the TF DNA binding domains (DBDs) following a published hierarchical structural classification. In addition, we introduced 130 transcription factor flexible models trained on ChIP-seq data for vertebrates, which capture dinucleotide dependencies within TF binding sites. This new JASPAR release is accompanied by a new web tool to infer JASPAR TF binding profiles recognized by a given TF protein sequence. Moreover, we provide the users with a Ruby module complementing the JASPAR API to ease programmatic access and use of the JASPAR collection of profiles. Finally, we provide the JASPAR2016 R/Bioconductor data package with the data of this release. PMID:26531826

  2. A complex interplay of three R2R3 MYB transcription factors determines the profile of aliphatic glucosinolates in Arabidopsis.

    PubMed

    Sønderby, Ida Elken; Burow, Meike; Rowe, Heather C; Kliebenstein, Daniel J; Halkier, Barbara Ann

    2010-05-01

    While R2R3 MYB transcription factors are a large gene family of transcription factors within plants, comprehensive functional data in planta are still scarce. A model for studying R2R3 MYB control of metabolic networks is the glucosinolates (GLSs), secondary metabolites that control plant resistance against insects and pathogens and carry cancer-preventive properties. Three related members of the R2R3 MYB transcription factor family within Arabidopsis (Arabidopsis thaliana), MYB28, MYB29, and MYB76, are the commonly defined regulators of aliphatic GLS biosynthesis. We utilized new genotypes and systems analysis techniques to test the existing regulatory model in which MYB28 is the dominant regulator, MYB29 plays a minor rheostat role, and MYB76 is largely uninvolved. We unequivocally show that MYB76 is not dependent on MYB28 and MYB29 for induction of aliphatic GLSs and that MYB76 plays a role in determining the spatial distribution of aliphatic GLSs within the leaf, pointing at a potential role of MYB76 in transport regulation. Transcriptional profiling of knockout mutants revealed that GLS metabolite levels are uncoupled from the level of transcript accumulation for aliphatic GLS biosynthetic genes. This uncoupling of chemotypes from biosynthetic transcripts suggests revising our view of the regulation of GLS metabolism from a simple linear transcription factor-promoter model to a more modular system in which transcription factors cause similar chemotypes via nonoverlapping regulatory patterns. Similar regulatory networks might exist in other secondary pathways.

  3. Global expression profiling of globose basal cells and neurogenic progression within the olfactory epithelium.

    PubMed

    Krolewski, Richard C; Packard, Adam; Schwob, James E

    2013-03-01

    Ongoing, lifelong neurogenesis maintains the neuronal population of the olfactory epithelium in the face of piecemeal neuronal turnover and restores it following wholesale loss. The molecular phenotypes corresponding to different stages along the progression from multipotent globose basal cell (GBC) progenitor to differentiated olfactory sensory neuron are poorly characterized. We used the transgenic expression of enhanced green fluorescent protein (eGFP) and cell surface markers to FACS-isolate ΔSox2-eGFP(+) GBCs, Neurog1-eGFP(+) GBCs and immature neurons, and ΔOMP-eGFP(+) mature neurons from normal adult mice. In addition, the latter two populations were also collected 3 weeks after olfactory bulb ablation, a lesion that results in persistently elevated neurogenesis. Global profiling of mRNA from the populations indicates that all stages of neurogenesis share a cohort of >2,100 genes that are upregulated compared to sustentacular cells. A further cohort of >1,200 genes are specifically upregulated in GBCs as compared to sustentacular cells and differentiated neurons. The increased rate of neurogenesis caused by olfactory bulbectomy had little effect on the transcriptional profile of the Neurog1-eGFP(+) population. In contrast, the abbreviated lifespan of ΔOMP-eGFP(+) neurons born in the absence of the bulb correlated with substantial differences in gene expression as compared to the mature neurons of the normal epithelium. Detailed examination of the specific genes upregulated in the different progenitor populations revealed that the chromatin modifying complex proteins LSD1 and coREST were expressed sequentially in upstream ΔSox2-eGFP(+) GBCs and Neurog1-eGFP(+) GBCs/immature neurons. The expression patterns of these proteins are dynamically regulated after activation of the epithelium by methyl bromide lesion.

  4. Global Analysis of Gene Expression Profiles in Developing Physic Nut (Jatropha curcas L.) Seeds

    PubMed Central

    Jiang, Huawu; Wu, Pingzhi; Zhang, Sheng; Song, Chi; Chen, Yaping; Li, Meiru; Jia, Yongxia; Fang, Xiaohua; Chen, Fan; Wu, Guojiang

    2012-01-01

    Background Physic nut (Jatropha curcas L.) is an oilseed plant species with high potential utility as a biofuel. Furthermore, following recent sequencing of its genome and the availability of expressed sequence tag (EST) libraries, it is a valuable model plant for studying carbon assimilation in endosperms of oilseed plants. There have been several transcriptomic analyses of developing physic nut seeds using ESTs, but they have provided limited information on the accumulation of stored resources in the seeds. Methodology/Principal Findings We applied next-generation Illumina sequencing technology to analyze global gene expression profiles of developing physic nut seeds 14, 19, 25, 29, 35, 41, and 45 days after pollination (DAP). The acquired profiles reveal the key genes, and their expression timeframes, involved in major metabolic processes including: carbon flow, starch metabolism, and synthesis of storage lipids and proteins in the developing seeds. The main period of storage reserves synthesis in the seeds appears to be 29–41 DAP, and the fatty acid composition of the developing seeds is consistent with relative expression levels of different isoforms of acyl-ACP thioesterase and fatty acid desaturase genes. Several transcription factor genes whose expression coincides with storage reserve deposition correspond to those known to regulate the process in Arabidopsis. Conclusions/Significance The results will facilitate searches for genes that influence de novo lipid synthesis, accumulation and their regulatory networks in developing physic nut seeds, and other oil seeds. Thus, they will be helpful in attempts to modify these plants for efficient biofuel production. PMID:22574177

  5. Global expression profiling of globose basal cells and neurogenic progression within the olfactory epithelium.

    PubMed

    Krolewski, Richard C; Packard, Adam; Schwob, James E

    2013-03-01

    Ongoing, lifelong neurogenesis maintains the neuronal population of the olfactory epithelium in the face of piecemeal neuronal turnover and restores it following wholesale loss. The molecular phenotypes corresponding to different stages along the progression from multipotent globose basal cell (GBC) progenitor to differentiated olfactory sensory neuron are poorly characterized. We used the transgenic expression of enhanced green fluorescent protein (eGFP) and cell surface markers to FACS-isolate ΔSox2-eGFP(+) GBCs, Neurog1-eGFP(+) GBCs and immature neurons, and ΔOMP-eGFP(+) mature neurons from normal adult mice. In addition, the latter two populations were also collected 3 weeks after olfactory bulb ablation, a lesion that results in persistently elevated neurogenesis. Global profiling of mRNA from the populations indicates that all stages of neurogenesis share a cohort of >2,100 genes that are upregulated compared to sustentacular cells. A further cohort of >1,200 genes are specifically upregulated in GBCs as compared to sustentacular cells and differentiated neurons. The increased rate of neurogenesis caused by olfactory bulbectomy had little effect on the transcriptional profile of the Neurog1-eGFP(+) population. In contrast, the abbreviated lifespan of ΔOMP-eGFP(+) neurons born in the absence of the bulb correlated with substantial differences in gene expression as compared to the mature neurons of the normal epithelium. Detailed examination of the specific genes upregulated in the different progenitor populations revealed that the chromatin modifying complex proteins LSD1 and coREST were expressed sequentially in upstream ΔSox2-eGFP(+) GBCs and Neurog1-eGFP(+) GBCs/immature neurons. The expression patterns of these proteins are dynamically regulated after activation of the epithelium by methyl bromide lesion. PMID:22847514

  6. Global Reprogramming of Transcription in Chinese Fir (Cunninghamia lanceolata) during Progressive Drought Stress and after Rewatering

    PubMed Central

    Hu, Ruiyang; Wu, Bo; Zheng, Huiquan; Hu, Dehuo; Wang, Xinjie; Duan, Hongjing; Sun, Yuhan; Wang, Jinxing; Zhang, Yue; Li, Yun

    2015-01-01

    Chinese fir (Cunninghamia lanceolata), an evergreen conifer, is the most commonly grown afforestation species in southeast China due to its rapid growth and good wood qualities. To gain a better understanding of the drought-signalling pathway and the molecular metabolic reactions involved in the drought response, we performed a genome-wide transcription analysis using RNA sequence data. In this study, Chinese fir plantlets were subjected to progressively prolonged drought stress, up to 15 d, followed by rewatering under controlled environmental conditions. Based on observed morphological changes, plantlets experienced mild, moderate, or severe water stress before rehydration. Transcriptome analysis of plantlets, representing control and mild, moderate, and severe drought-stress treatments, and the rewatered plantlets, identified several thousand genes whose expression was altered in response to drought stress. Many genes whose expression was tightly coupled to the levels of drought stress were identified, suggesting involvement in Chinese fir drought adaptation responses. These genes were associated with transcription factors, signal transport, stress kinases, phytohormone signalling, and defence/stress response. The present study provides the most comprehensive transcriptome resource and the first dynamic transcriptome profiles of Chinese fir under drought stress. The drought-responsive genes identified in this study could provide further information for understanding the mechanisms of drought tolerance in Chinese fir. PMID:26154763

  7. Global Reprogramming of Transcription in Chinese Fir (Cunninghamia lanceolata) during Progressive Drought Stress and after Rewatering.

    PubMed

    Hu, Ruiyang; Wu, Bo; Zheng, Huiquan; Hu, Dehuo; Wang, Xinjie; Duan, Hongjing; Sun, Yuhan; Wang, Jinxing; Zhang, Yue; Li, Yun

    2015-07-06

    Chinese fir (Cunninghamia lanceolata), an evergreen conifer, is the most commonly grown afforestation species in southeast China due to its rapid growth and good wood qualities. To gain a better understanding of the drought-signalling pathway and the molecular metabolic reactions involved in the drought response, we performed a genome-wide transcription analysis using RNA sequence data. In this study, Chinese fir plantlets were subjected to progressively prolonged drought stress, up to 15 d, followed by rewatering under controlled environmental conditions. Based on observed morphological changes, plantlets experienced mild, moderate, or severe water stress before rehydration. Transcriptome analysis of plantlets, representing control and mild, moderate, and severe drought-stress treatments, and the rewatered plantlets, identified several thousand genes whose expression was altered in response to drought stress. Many genes whose expression was tightly coupled to the levels of drought stress were identified, suggesting involvement in Chinese fir drought adaptation responses. These genes were associated with transcription factors, signal transport, stress kinases, phytohormone signalling, and defence/stress response. The present study provides the most comprehensive transcriptome resource and the first dynamic transcriptome profiles of Chinese fir under drought stress. The drought-responsive genes identified in this study could provide further information for understanding the mechanisms of drought tolerance in Chinese fir.

  8. Integrated Left Ventricular Global Transcriptome and Proteome Profiling in Human End-Stage Dilated Cardiomyopathy

    PubMed Central

    Kaya, Namik; Muiya, Nzioka P.; AlHarazi, Olfat; Shinwari, Zakia; Andres, Editha

    2016-01-01

    Aims The disease pathways leading to idiopathic dilated cardiomyopathy (DCM) are still elusive. The present study investigated integrated global transcriptional and translational changes in human DCM for disease biomarker discovery. Methods We used identical myocardial tissues from five DCM hearts compared to five non-failing (NF) donor hearts for both transcriptome profiling using the ABI high-density oligonucleotide microarrays and proteome expression with One-Dimensional Nano Acquity liquid chromatography coupled with tandem mass spectrometry on the Synapt G2 system. Results We identified 1262 differentially expressed genes (DEGs) and 269 proteins (DEPs) between DCM cases and healthy controls. Among the most significantly upregulated (>5-fold) proteins were GRK5, APOA2, IGHG3, ANXA6, HSP90AA1, and ATP5C1 (p< 0.01). On the other hand, the most significantly downregulated proteins were GSTM5, COX17, CAV1 and ANXA3. At least ten entities were concomitantly upregulated on the two analysis platforms: GOT1, ALDH4A1, PDHB, BDH1, SLC2A11, HSP90AA1, HSP90AB1, H2AFV, HSPA5 and NDUFV1. Gene ontology analyses of DEGs and DEPs revealed significant overlap with enrichment of genes/proteins related to metabolic process, biosynthetic process, cellular component organization, oxidative phosphorylation, alterations in glycolysis and ATP synthesis, Alzheimer’s disease, chemokine-mediated inflammation and cytokine signalling pathways. Conclusion The concomitant use of transcriptome and proteome expression to evaluate global changes in DCM has led to the identification of sixteen commonly altered entities as well as novel genes, proteins and pathways whose cardiac functions have yet to be deciphered. This data should contribute towards better management of the disease. PMID:27711126

  9. Analysis of PBase Binding Profile Indicates an Insertion Target Selection Mechanism Dependent on TTAA, But Not Transcriptional Activity

    PubMed Central

    Yang, Dong; Liao, Ruiqi; Zheng, Yun; Sun, Ling; Xu, Tian

    2016-01-01

    Transposons and retroviruses are important pathogenic agents and tools for mutagenesis and transgenesis. Insertion target selection is a key feature for a given transposon or retrovirus. The piggyBac (PB) transposon is highly active in mice and human cells, which has a much better genome-wide distribution compared to the retrovirus and P-element. However, the underlying reason is not clear. Utilizing a tagged functional PB transposase (PBase), we were able to conduct genome-wide profiling for PBase binding sites in the mouse genome. We have shown that PBase binding mainly depends on the distribution of the tetranucleotide TTAA, which is not affected by the presence of PB DNA. Furthermore, PBase binding is negatively influenced by the methylation of CG sites in the genome. Analysis of a large collection of PB insertions in mice has revealed an insertion profile similar to the PBase binding profile. Interestingly, this profile is not correlated with transcriptional active genes in the genome or transcriptionally active regions within a transcriptional unit. This differs from what has been previously shown for P-element and retroviruses insertions. Our study provides an explanation for PB's genome-wide insertion distribution and also suggests that PB target selection relies on a new mechanism independent of active transcription and open chromatin structure. PMID:27570481

  10. Analysis of PBase Binding Profile Indicates an Insertion Target Selection Mechanism Dependent on TTAA, But Not Transcriptional Activity.

    PubMed

    Yang, Dong; Liao, Ruiqi; Zheng, Yun; Sun, Ling; Xu, Tian

    2016-01-01

    Transposons and retroviruses are important pathogenic agents and tools for mutagenesis and transgenesis. Insertion target selection is a key feature for a given transposon or retrovirus. The piggyBac (PB) transposon is highly active in mice and human cells, which has a much better genome-wide distribution compared to the retrovirus and P-element. However, the underlying reason is not clear. Utilizing a tagged functional PB transposase (PBase), we were able to conduct genome-wide profiling for PBase binding sites in the mouse genome. We have shown that PBase binding mainly depends on the distribution of the tetranucleotide TTAA, which is not affected by the presence of PB DNA. Furthermore, PBase binding is negatively influenced by the methylation of CG sites in the genome. Analysis of a large collection of PB insertions in mice has revealed an insertion profile similar to the PBase binding profile. Interestingly, this profile is not correlated with transcriptional active genes in the genome or transcriptionally active regions within a transcriptional unit. This differs from what has been previously shown for P-element and retroviruses insertions. Our study provides an explanation for PB's genome-wide insertion distribution and also suggests that PB target selection relies on a new mechanism independent of active transcription and open chromatin structure. PMID:27570481

  11. ASSESSMENT OF THE SWINE PROTEIN-ANNOTATED OLIGONUCLEOTIDE MICROARRAY AND UTILITY OF THE ARRAYS FOR EQTL AND TRANSCRIPTIONAL PROFILING STUDIES

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have evaluated the new Swine Protein-Annotated Oligonucleotide Microarray (http://www.pigoligoarray.org) by analyzing transcriptional profiles for longissimus dorsi muscle (LD), Bronchial lymph node (BLN) and Lung. Four LD samples were used to assess the stringency of hybridization conditions com...

  12. DNA phosphorothioate modifications influence the global transcriptional response and protect DNA from double-stranded breaks

    PubMed Central

    Gan, Rui; Wu, Xiaolin; He, Wei; Liu, Zhenhua; Wu, Shuangju; Chen, Chao; Chen, Si; Xiang, Qianrong; Deng, Zixin; Liang, Dequan; Chen, Shi; Wang, Lianrong

    2014-01-01

    The modification of DNA by phosphorothioate (PT) occurs when the non-bridging oxygen in the sugar-phosphate backbone of DNA is replaced with sulfur. This DNA backbone modification was recently discovered and is governed by the dndABCDE genes in a diverse group of bacteria and archaea. However, the biological function of DNA PT modifications is poorly understood. In this study, we employed the RNA-seq analysis to characterize the global transcriptional changes in response to PT modifications. Our results show that DNA without PT protection is susceptible to DNA damage caused by the dndFGHI gene products. The DNA double-stranded breaks then trigger the SOS response, cell filamentation and prophage induction. Heterologous expression of dndBCDE conferring DNA PT modifications at GPSA and GPST prevented the damage in Salmonella enterica. Our data provide insights into the physiological role of the DNA PT system. PMID:25319634

  13. An experimentally supported model of the Bacillus subtilis global transcriptional regulatory network.

    PubMed

    Arrieta-Ortiz, Mario L; Hafemeister, Christoph; Bate, Ashley Rose; Chu, Timothy; Greenfield, Alex; Shuster, Bentley; Barry, Samantha N; Gallitto, Matthew; Liu, Brian; Kacmarczyk, Thadeous; Santoriello, Francis; Chen, Jie; Rodrigues, Christopher D A; Sato, Tsutomu; Rudner, David Z; Driks, Adam; Bonneau, Richard; Eichenberger, Patrick

    2015-11-01

    Organisms from all domains of life use gene regulation networks to control cell growth, identity, function, and responses to environmental challenges. Although accurate global regulatory models would provide critical evolutionary and functional insights, they remain incomplete, even for the best studied organisms. Efforts to build comprehensive networks are confounded by challenges including network scale, degree of connectivity, complexity of organism-environment interactions, and difficulty of estimating the activity of regulatory factors. Taking advantage of the large number of known regulatory interactions in Bacillus subtilis and two transcriptomics datasets (including one with 38 separate experiments collected specifically for this study), we use a new combination of network component analysis and model selection to simultaneously estimate transcription factor activities and learn a substantially expanded transcriptional regulatory network for this bacterium. In total, we predict 2,258 novel regulatory interactions and recall 74% of the previously known interactions. We obtained experimental support for 391 (out of 635 evaluated) novel regulatory edges (62% accuracy), thus significantly increasing our understanding of various cell processes, such as spore formation. PMID:26577401

  14. Understanding the Role of the Master Regulator XYR1 in Trichoderma reesei by Global Transcriptional Analysis

    PubMed Central

    dos Santos Castro, Lilian; de Paula, Renato G.; Antoniêto, Amanda C. C.; Persinoti, Gabriela F.; Silva-Rocha, Rafael; Silva, Roberto N.

    2016-01-01

    We defined the role of the transcriptional factor—XYR1—in the filamentous fungus Trichoderma reesei during cellulosic material degradation. In this regard, we performed a global transcriptome analysis using RNA-Seq of the Δxyr1 mutant strain of T. reesei compared with the parental strain QM9414 grown in the presence of cellulose, sophorose, and glucose as sole carbon sources. We found that 5885 genes were expressed differentially under the three tested carbon sources. Of these, 322 genes were upregulated in the presence of cellulose, while 367 and 188 were upregulated in sophorose and glucose, respectively. With respect to genes under the direct regulation of XYR1, 30 and 33 are exclusive to cellulose and sophorose, respectively. The most modulated genes in the Δxyr1 belong to Carbohydrate-Active Enzymes (CAZymes), transcription factors, and transporters families. Moreover, we highlight the downregulation of transporters belonging to the MFS and ABC transporter families. Of these, MFS members were mostly downregulated in the presence of cellulose. In sophorose and glucose, the expression of these transporters was mainly upregulated. Our results revealed that MFS and ABC transporters could be new players in cellulose degradation and their role was shown to be carbon source-dependent. Our findings contribute to a better understanding of the regulatory mechanisms of XYR1 to control cellulase gene expression in T. reesei in the presence of cellulosic material, thereby potentially enhancing its application in several biotechnology fields. PMID:26909077

  15. Deletion of the Desulfovibrio vulgaris carbon monoxide sensor invokes global changes in transcription.

    PubMed

    Rajeev, Lara; Hillesland, Kristina L; Zane, Grant M; Zhou, Aifen; Joachimiak, Marcin P; He, Zhili; Zhou, Jizhong; Arkin, Adam P; Wall, Judy D; Stahl, David A

    2012-11-01

    The carbon monoxide-sensing transcriptional factor CooA has been studied only in hydrogenogenic organisms that can grow using CO as the sole source of energy. Homologs for the canonical CO oxidation system, including CooA, CO dehydrogenase (CODH), and a CO-dependent Coo hydrogenase, are present in the sulfate-reducing bacterium Desulfovibrio vulgaris, although it grows only poorly on CO. We show that D. vulgaris Hildenborough has an active CO dehydrogenase capable of consuming exogenous CO and that the expression of the CO dehydrogenase, but not that of a gene annotated as encoding a Coo hydrogenase, is dependent on both CO and CooA. Carbon monoxide did not act as a general metabolic inhibitor, since growth of a strain deleted for cooA was inhibited by CO on lactate-sulfate but not pyruvate-sulfate. While the deletion strain did not accumulate CO in excess, as would have been expected if CooA were important in the cycling of CO as a metabolic intermediate, global transcriptional analyses suggested that CooA and CODH are used during normal metabolism.

  16. Global analysis of induced transcription factors and cofactors identifies Tfdp2 as an essential coregulator during terminal erythropoiesis

    PubMed Central

    Chen, Cynthia; Lodish, Harvey F.

    2014-01-01

    Key transcriptional regulators of terminal erythropoiesis, such as GATA1 and TAL1, have been well characterized, but transcription factors and cofactors and their expression modulations have not yet been explored on a global scale. Here we use global gene expression analysis to identify 28 transcription factors and 19 transcriptional cofactors induced during terminal erythroid differentiation and whose promoters are enriched for binding by GATA1 and TAL1. Utilizing protein-protein interaction databases to identify cofactors for each transcription factor, we pinpoint several co-induced pairs, of which E2f2 and its cofactor Tfdp2 were the most highly induced. TFDP2 is a critical cofactor required for proper cell cycle control and gene expression. GATA1 and TAL1 are bound to the regulatory regions of Tfdp2 and upregulate its expression, and knockdown of Tfdp2 results in significantly reduced rates of proliferation, as well as reduced upregulation of many erythroid-important genes. Loss of Tfdp2 also globally inhibits the normal downregulation of many E2F2 target genes, including those that regulate the cell cycle, causing cells to accumulate in S phase and resulting in increased erythrocyte size. Our findings highlight the importance of TFDP2 in coupling the erythroid cell cycle with terminal differentiation and validate this study as a resource for future work on elucidating the role of diverse transcription factors and coregulators in erythropoiesis. PMID:24607859

  17. Molecular Characterization and Expression Profiling of NAC Transcription Factors in Brachypodium distachyon L.

    PubMed

    Zhu, Gengrui; Chen, Guanxing; Zhu, Jiantang; Zhu, Yan; Lu, Xiaobing; Li, Xiaohui; Hu, Yingkao; Yan, Yueming

    2015-01-01

    NAC (NAM, ATAF1/2, CUC2) transcription factors are involved in regulating plant developmental processes and response to environmental stresses. Brachypodium distachyon is an emerging model system for cereals, temperate grasses and biofuel crops. In this study, a comprehensive investigation of the molecular characterizations, phylogenetics and expression profiles under various abiotic stresses of the NAC gene family in Brachypodium distachyon was performed. In total, 118 BNAC genes in B. distachyon were identified, of which 22 (18.64%) were tandemly duplicated and segmentally duplicated, respectively. The Bayesian phylogenetic inference using Markov Chain Monte Carlo (MCMC) algorithms showed that they were divided into two clades and fourteen subfamilies, supported by similar motif compositions within one subfamily. Some critical amino acids detected using DIVERGE v3.0 might contribute to functional divergence among subfamilies. The different exon-intron organizations among subfamilies revealed structural differentiation. Promoter sequence predictions showed that the BNAC genes were involved in various developmental processes and diverse stress responses. Three NAC domain-encoding genes (BNAC012, BNAC078 and BNAC108), orthologous of NAC1, were targeted by five miRNA164 (Bdi-miR164a-c, e, f), suggesting that they might function in lateral organ enlargement, floral development and the responses to abiotic stress. Eleven (~9.32%) BNAC proteins containing α-helical transmembrane motifs were identified. 23 representative BNAC genes were analyzed by quantitative real-time PCR, showing different expression patterns under various abiotic stresses, of which 18, 17 and 11 genes were up-regulated significantly under drought, H2O2 and salt stresses, respectively. Only four and two genes were up-regulated under cold and cadmium stresses, respectively. Dynamic transcriptional expression analysis revealed that six genes showed constitutive expression and period

  18. Aspirin insensitive thrombophilia: Transcript profiling of blood identifies platelet abnormalities and HLA restriction

    PubMed Central

    Fallahi, Payam; Katz, Richard; Toma, Ian; Li, Ranyang; Reiner, Jonathan; VanHouten, Kiersten; Carpio, Larry; Marshall, Lorraine; Lian, Yi; Bupp, Sujata; Fu, Sidney W.; Rickles, Frederick; Leitenberg, David; Lai, Yinglei; Weksler, Babette B.; Rebling, Frederik; Yang, Zhaoqing; McCaffrey, Timothy A.

    2016-01-01

    Aspirin is the most widely used antiplatelet agent because it is safe, efficient, and inexpensive. However, a significant subset of patients does not exhibit a full inhibition of platelet aggregation, termed ‘aspirin resistance’ (AR). Several major studies have observed that AR patients have a 4-fold increased risk of myocardial infarction (MI), stroke, and other thrombotic events. Arachidonic acid-stimulated whole blood aggregation was tested in 132 adults at risk for ischemic events, and identified an inadequate response to aspirin therapy in 9 patients (6.8%). Expression profiling of blood RNA by microarray was used to generate new hypotheses about the etiology of AR. Among the differentially expressed genes, there were decreases in several known platelet transcripts, including clusterin (CLU), glycoproteins IIb/IIIa (ITGA2B/3), lipocalin (LCN2), lactoferrin (LTF), and the thrombopoetin receptor (MPL), but with increased mRNA for the T-cell Th1 chemokine CXCL10. There was a strong association of AR with expression of HLA-DRB4 and HLA-DQA1. Similar HLA changes have been linked to autoimmune disorders, particularly antiphospholipid syndrome (APS), in which autoantibodies to phospholipid/protein complexes can trigger platelet activation. Consistent with APS, AR patients exhibited a 30% reduction in platelet counts. Follow-up testing for autoimmune antibodies observed only borderline titers in AR patients. Overall, these results suggest that AR may be related to changes in platelet gene expression creating a hyperreactive platelet, despite antiplatelet therapy. Future studies will focus on determining the protein levels of these differential transcripts in platelets, and the possible involvement of HLA restriction as a contributing factor. PMID:23454623

  19. Laser-assisted Microdissection (LAM) as a Tool for Transcriptional Profiling of Individual Cell Types.

    PubMed

    Florez Rueda, Ana Marcela; Grossniklaus, Ueli; Schmidt, Anja

    2016-01-01

    The understanding of developmental processes at the molecular level requires insights into transcriptional regulation, and thus the transcriptome, at the level of individual cell types. While the methods described here are generally applicable to a wide range of species and cell types, our research focuses on plant reproduction. Plant cultivation and seed production is of crucial importance for human and animal nutrition. A detailed understanding of the regulatory networks that govern the formation of the reproductive lineage (germline) and ultimately of seeds is a precondition for the targeted manipulation of plant reproduction. In particular, the engineering of apomixis (asexual reproduction through seeds) into crop plants promises great improvements, as it leads to the formation of clonal seeds that are genetically identical to the mother plant. Consequently, the cell types of the female germline are of major importance for the understanding and engineering of apomixis. However, as the corresponding cells are deeply embedded within the floral tissues, they are very difficult to access for experimental analyses, including cell-type specific transcriptomics. To overcome this limitation, sections of individual cells can be isolated by laser-assisted microdissection (LAM). While LAM in combination with transcriptional profiling allows the identification of genes and pathways active in any cell type with high specificity, establishing a suitable protocol can be challenging. Specifically, the quality of RNA obtained after LAM can be compromised, especially when small, single cells are targeted. To circumvent this problem, we have established a workflow for LAM that reproducibly results in high RNA quality that is well suitable for transcriptomics, as exemplified here by the isolation of cells of the female germline in apomictic Boechera. In this protocol, procedures are described for tissue preparation and LAM, also with regard to RNA extraction and quality control

  20. Molecular Characterization and Expression Profiling of NAC Transcription Factors in Brachypodium distachyon L.

    PubMed

    Zhu, Gengrui; Chen, Guanxing; Zhu, Jiantang; Zhu, Yan; Lu, Xiaobing; Li, Xiaohui; Hu, Yingkao; Yan, Yueming

    2015-01-01

    NAC (NAM, ATAF1/2, CUC2) transcription factors are involved in regulating plant developmental processes and response to environmental stresses. Brachypodium distachyon is an emerging model system for cereals, temperate grasses and biofuel crops. In this study, a comprehensive investigation of the molecular characterizations, phylogenetics and expression profiles under various abiotic stresses of the NAC gene family in Brachypodium distachyon was performed. In total, 118 BNAC genes in B. distachyon were identified, of which 22 (18.64%) were tandemly duplicated and segmentally duplicated, respectively. The Bayesian phylogenetic inference using Markov Chain Monte Carlo (MCMC) algorithms showed that they were divided into two clades and fourteen subfamilies, supported by similar motif compositions within one subfamily. Some critical amino acids detected using DIVERGE v3.0 might contribute to functional divergence among subfamilies. The different exon-intron organizations among subfamilies revealed structural differentiation. Promoter sequence predictions showed that the BNAC genes were involved in various developmental processes and diverse stress responses. Three NAC domain-encoding genes (BNAC012, BNAC078 and BNAC108), orthologous of NAC1, were targeted by five miRNA164 (Bdi-miR164a-c, e, f), suggesting that they might function in lateral organ enlargement, floral development and the responses to abiotic stress. Eleven (~9.32%) BNAC proteins containing α-helical transmembrane motifs were identified. 23 representative BNAC genes were analyzed by quantitative real-time PCR, showing different expression patterns under various abiotic stresses, of which 18, 17 and 11 genes were up-regulated significantly under drought, H2O2 and salt stresses, respectively. Only four and two genes were up-regulated under cold and cadmium stresses, respectively. Dynamic transcriptional expression analysis revealed that six genes showed constitutive expression and period

  1. Molecular Characterization and Expression Profiling of NAC Transcription Factors in Brachypodium distachyon L

    PubMed Central

    Zhu, Yan; Lu, Xiaobing; Li, Xiaohui; Hu, Yingkao; Yan, Yueming

    2015-01-01

    NAC (NAM, ATAF1/2, CUC2) transcription factors are involved in regulating plant developmental processes and response to environmental stresses. Brachypodium distachyon is an emerging model system for cereals, temperate grasses and biofuel crops. In this study, a comprehensive investigation of the molecular characterizations, phylogenetics and expression profiles under various abiotic stresses of the NAC gene family in Brachypodium distachyon was performed. In total, 118 BNAC genes in B. distachyon were identified, of which 22 (18.64%) were tandemly duplicated and segmentally duplicated, respectively. The Bayesian phylogenetic inference using Markov Chain Monte Carlo (MCMC) algorithms showed that they were divided into two clades and fourteen subfamilies, supported by similar motif compositions within one subfamily. Some critical amino acids detected using DIVERGE v3.0 might contribute to functional divergence among subfamilies. The different exon-intron organizations among subfamilies revealed structural differentiation. Promoter sequence predictions showed that the BNAC genes were involved in various developmental processes and diverse stress responses. Three NAC domain-encoding genes (BNAC012, BNAC078 and BNAC108), orthologous of NAC1, were targeted by five miRNA164 (Bdi-miR164a-c, e, f), suggesting that they might function in lateral organ enlargement, floral development and the responses to abiotic stress. Eleven (~9.32%) BNAC proteins containing α-helical transmembrane motifs were identified. 23 representative BNAC genes were analyzed by quantitative real-time PCR, showing different expression patterns under various abiotic stresses, of which 18, 17 and 11 genes were up-regulated significantly under drought, H2O2 and salt stresses, respectively. Only four and two genes were up-regulated under cold and cadmium stresses, respectively. Dynamic transcriptional expression analysis revealed that six genes showed constitutive expression and period

  2. Stemness-Related Transcriptional Factors and Homing Gene Expression Profiles in Hepatic Differentiation and Cancer

    PubMed Central

    Toraih, Eman A; Fawzy, Manal S; El-Falouji, Abdullah I; Hamed, Elham O; Nemr, Nader A; Hussein, Mohammad H; Fadeal, Noha M Abd El

    2016-01-01

    Stem cell transcriptional signature activation is an essential event in the development of cancer. This study aimed to investigate the differential expression profiles of three pluripotency-associated genes, OCT4, NANOG and SOX2, G-protein-coupled chemokine receptor 4 (CXCR4) and the ligand CXCL2, and alpha-fetoprotein (AFP) in hepatogenic differentiated stem cells and in sera of hepatitis C virus (HCV) and HCV-induced hepatocellular carcinoma (HCC) patients. Mesenchymal stem cells derived from umbilical cord blood were differentiated using hepatogenic differentiation media. Serum specimens were collected from 96 patients (32 cirrhotic HCV, 32 early HCC and 32 late HCC) and 96 controls. Real-time quantitative reverse transcription polymerase chain reaction (qRT-PCR) was performed for relative quantification of the six target genes using the Livak method. In silico network analysis was also executed to explore the pluripotency and tumorigenetic regulatory circuits in liver cancer. The expression levels of all genes declined gradually during the stages of stem cell differentiation. On univariate and multivariate analyses, NANOG, CXCR4 and AFP were significantly upregulated in late clinical stage HCC patients. In contrast, SOX2 and CXCL2 were markedly overexpressed in cirrhotic patients and could be used for clear demarcation between cirrhotic and HCC patients in our cases. In conclusion, our data highlight the potential role of the SOX2 stem cell marker and CXCL2 chemokine in liver cell degeneration and fibrogenesis in HCV-induced hepatic cirrhosis in our sample of the Egyptian population. In addition, the significant association of NANOG and CXCR4 high expression with late HCC could contribute to the acquisition of stem cell–like properties in hepatic cancer and dissemination in late stages, respectively. Taken together, our results could have potential application in HCC prognosis and treatment. PMID:27623812

  3. Identification of key transcription factors in caerulein-induced pancreatitis through expression profiling data.

    PubMed

    Qi, Dachuan; Wu, Bo; Tong, Danian; Pan, Ye; Chen, Wei

    2015-08-01

    The current study aimed to isolate key transcription factors (TFs) in caerulein-induced pancreatitis, and to identify the difference between wild type and Mist1 knockout (KO) mice, in order to elucidate the contribution of Mist1 to pancreatitis. The gene profile of GSE3644 was downloaded from the Gene Expression Omnibus database then analyzed using the t-test. The isolated differentially expressed genes (DEGs) were mapped into a transcriptional regulatory network derived from the Integrated Transcription Factor Platform database and in the network, the interaction pairs involving at least one DEG were screened. Fisher's exact test was used to analyze the functional enrichment of the target genes. A total of 1,555 and 3,057 DEGs were identified in the wild type and Mist1KO mice treated with caerulein, respectively. DEGs screened in Mist1KO mice were predominantly enriched in apoptosis, mitogen-activated protein kinase signaling and other cancer-associated pathways. A total of 188 and 51 TFs associated with pathopoiesis were isolated in Mist1KO and wild type mice, respectively. Out of the top 10 TFs (ranked by P-value), 7 TFs, including S-phase kinase-associated protein 2 (Skp2); minichromosome maintenance complex component 3 (Mcm3); cell division cycle 6 (Cdc6); cyclin B1 (Ccnb1); mutS homolog 6 (Msh6); cyclin A2 (Ccna2); and cyclin B2 (Ccnb2), were expressed in the two types of mouse. These TFs were predominantly involved in phosphorylation, DNA replication, cell division and DNA mismatch repair. In addition, specific TFs, including minichromosome maintenance complex component 7 (Mcm7); lymphoid-specific helicase (Hells); and minichromosome maintenance complex component 6 (Mcm6), that function in the unwinding of DNA were identified to participate in Mist1KO pancreatitis. The DEGs, including Cdc6, Mcm6, Msh6 and Wdr1 are closely associated with the regulation of caerulein-induced pancreatitis. Furthermore, other identified TFs were also involved in this type of

  4. Oak Root Response to Ectomycorrhizal Symbiosis Establishment: RNA-Seq Derived Transcript Identification and Expression Profiling

    PubMed Central

    Lino-Neto, Teresa; Monteiro, Filipa; Figueiredo, Andreia; Sousa, Lisete; Pais, Maria Salomé; Tavares, Rui; Paulo, Octávio S.

    2014-01-01

    Ectomycorrhizal symbiosis is essential for the life and health of trees in temperate and boreal forests where it plays a major role in nutrient cycling and in functioning of the forest ecosystem. Trees with ectomycorrhizal root tips are more tolerant to environmental stresses, such as drought, and biotic stresses such as root pathogens. Detailed information on these molecular processes is essential for the understanding of symbiotic tissue development in order to optimize the benefits of this natural phenomenon. Next generation sequencing tools allow the analysis of non model ectomycorrhizal plant-fungal interactions that can contribute to find the “symbiosis toolkits” and better define the role of each partner in the mutualistic interaction. By using 454 pyrosequencing we compared ectomycorrhizal cork oak roots with non-symbiotic roots. From the two cDNA libraries sequenced, over 2 million reads were obtained that generated 19552 cork oak root unique transcripts. A total of 2238 transcripts were found to be differentially expressed when ECM roots were compared with non-symbiotic roots. Identification of up- and down-regulated gens in ectomycorrhizal roots lead to a number of insights into the molecular mechanisms governing this important symbiosis. In cork oak roots, ectomycorrhizal colonization resulted in extensive cell wall remodelling, activation of the secretory pathway, alterations in flavonoid biosynthesis, and expression of genes involved in the recognition of fungal effectors. In addition, we identified genes with putative roles in symbiotic processes such as nutrient exchange with the fungal partner, lateral root formation or root hair decay. These findings provide a global overview of the transcriptome of an ectomycorrhizal host root, and constitute a foundation for future studies on the molecular events controlling this important symbiosis. PMID:24859293

  5. Oak root response to ectomycorrhizal symbiosis establishment: RNA-Seq derived transcript identification and expression profiling.

    PubMed

    Sebastiana, Mónica; Vieira, Bruno; Lino-Neto, Teresa; Monteiro, Filipa; Figueiredo, Andreia; Sousa, Lisete; Pais, Maria Salomé; Tavares, Rui; Paulo, Octávio S

    2014-01-01

    Ectomycorrhizal symbiosis is essential for the life and health of trees in temperate and boreal forests where it plays a major role in nutrient cycling and in functioning of the forest ecosystem. Trees with ectomycorrhizal root tips are more tolerant to environmental stresses, such as drought, and biotic stresses such as root pathogens. Detailed information on these molecular processes is essential for the understanding of symbiotic tissue development in order to optimize the benefits of this natural phenomenon. Next generation sequencing tools allow the analysis of non model ectomycorrhizal plant-fungal interactions that can contribute to find the "symbiosis toolkits" and better define the role of each partner in the mutualistic interaction. By using 454 pyrosequencing we compared ectomycorrhizal cork oak roots with non-symbiotic roots. From the two cDNA libraries sequenced, over 2 million reads were obtained that generated 19,552 cork oak root unique transcripts. A total of 2238 transcripts were found to be differentially expressed when ECM roots were compared with non-symbiotic roots. Identification of up- and down-regulated gens in ectomycorrhizal roots lead to a number of insights into the molecular mechanisms governing this important symbiosis. In cork oak roots, ectomycorrhizal colonization resulted in extensive cell wall remodelling, activation of the secretory pathway, alterations in flavonoid biosynthesis, and expression of genes involved in the recognition of fungal effectors. In addition, we identified genes with putative roles in symbiotic processes such as nutrient exchange with the fungal partner, lateral root formation or root hair decay. These findings provide a global overview of the transcriptome of an ectomycorrhizal host root, and constitute a foundation for future studies on the molecular events controlling this important symbiosis.

  6. Transcript profiling of the ruminant liver indicates a unique program of transcriptional regulation of ketogenic enzymes during food restriction.

    PubMed

    Doelman, John; Cao, Honghe; Purdie, Norman G; Kim, Julie J M; Swanson, Kendall C; Osborne, Vernon R; Tey, Jasper; Ali, Ayesha; Feng, Zeny; Karrow, Niel A; Cant, John P

    2012-09-01

    Ruminants absorb little glucose and rely on hepatic gluconeogenesis and ketogenesis in the fed state to convert short-chain fatty acids produced during digestion into glucose and ketone bodies, respectively. In contrast to the non-ruminant response, fluxes through gluconeogenic and ketogenic pathways decrease during food restriction. Transcriptional regulation responsible for these unique food restriction responses has not been established. To determine the hepatic transcriptional response of ruminants to an acute drop in dietary nutrient supply, 102 yearling heifers were assigned to either ad libitum feeding or 24 h of food withdrawal in a randomized block design. Liver biopsies were obtained for microarray and quantitative real-time PCR analyses of gene expression. Plasma concentrations of non-esterified fatty acids were higher in food restricted heifers, while levels of β-hydroxybutyrate, triacylglycerol, and glucose were decreased. Despite a decline in substrate supply and a lower hepatic production of glucose, expression of the key gluconeogenic enzymes pyruvate carboxylase, phosphoenolpyruvate carboxykinase and fructose-1,6-bisphosphatase was upregulated as in non-ruminants. Downregulation of cholesterolgenic genes and upregulation of fatty acid oxidative genes were consistent with SREBP-2 and PPARα control, respectively. Ketogenesis from short-chain fatty acids was downregulated, contrary to the non-ruminant response to food restriction. Short-chain fatty acids may exert transcriptional control in the ruminant liver similar to that demonstrated in the large intestine of non-ruminants.

  7. Transcriptional profiling of Medicago truncatula under salt stress identified a novel CBF transcription factor MtCBF4 that plays an important role in abiotic stress responses

    PubMed Central

    2011-01-01

    Background Salt stress hinders the growth of plants and reduces crop production worldwide. However, different plant species might possess different adaptive mechanisms to mitigate salt stress. We conducted a detailed pathway analysis of transcriptional dynamics in the roots of Medicago truncatula seedlings under salt stress and selected a transcription factor gene, MtCBF4, for experimental validation. Results A microarray experiment was conducted using root samples collected 6, 24, and 48 h after application of 180 mM NaCl. Analysis of 11 statistically significant expression profiles revealed different behaviors between primary and secondary metabolism pathways in response to external stress. Secondary metabolism that helps to maintain osmotic balance was induced. One of the highly induced transcription factor genes was successfully cloned, and was named MtCBF4. Phylogenetic analysis revealed that MtCBF4, which belongs to the AP2-EREBP transcription factor family, is a novel member of the CBF transcription factor in M. truncatula. MtCBF4 is shown to be a nuclear-localized protein. Expression of MtCBF4 in M. truncatula was induced by most of the abiotic stresses, including salt, drought, cold, and abscisic acid, suggesting crosstalk between these abiotic stresses. Transgenic Arabidopsis over-expressing MtCBF4 enhanced tolerance to drought and salt stress, and activated expression of downstream genes that contain DRE elements. Over-expression of MtCBF4 in M. truncatula also enhanced salt tolerance and induced expression level of corresponding downstream genes. Conclusion Comprehensive transcriptomic analysis revealed complex mechanisms exist in plants in response to salt stress. The novel transcription factor gene MtCBF4 identified here played an important role in response to abiotic stresses, indicating that it might be a good candidate gene for genetic improvement to produce stress-tolerant plants. PMID:21718548

  8. Refining transcriptional programs in kidney development by integration of deep RNA-sequencing and array-based spatial profiling

    PubMed Central

    2011-01-01

    Background The developing mouse kidney is currently the best-characterized model of organogenesis at a transcriptional level. Detailed spatial maps have been generated for gene expression profiling combined with systematic in situ screening. These studies, however, fall short of capturing the transcriptional complexity arising from each locus due to the limited scope of microarray-based technology, which is largely based on "gene-centric" models. Results To address this, the polyadenylated RNA and microRNA transcriptomes of the 15.5 dpc mouse kidney were profiled using strand-specific RNA-sequencing (RNA-Seq) to a depth sufficient to complement spatial maps from pre-existing microarray datasets. The transcriptional complexity of RNAs arising from mouse RefSeq loci was catalogued; including 3568 alternatively spliced transcripts and 532 uncharacterized alternate 3' UTRs. Antisense expressions for 60% of RefSeq genes was also detected including uncharacterized non-coding transcripts overlapping kidney progenitor markers, Six2 and Sall1, and were validated by section in situ hybridization. Analysis of genes known to be involved in kidney development, particularly during mesenchymal-to-epithelial transition, showed an enrichment of non-coding antisense transcripts extended along protein-coding RNAs. Conclusion The resulting resource further refines the transcriptomic cartography of kidney organogenesis by integrating deep RNA sequencing data with locus-based information from previously published expression atlases. The added resolution of RNA-Seq has provided the basis for a transition from classical gene-centric models of kidney development towards more accurate and detailed "transcript-centric" representations, which highlights the extent of transcriptional complexity of genes that direct complex development events. PMID:21888672

  9. Whole genome transcription profiling of Anaplasma phagocytophilum in human and tick host cells by tiling array analysis

    PubMed Central

    Nelson, Curtis M; Herron, Michael J; Felsheim, Roderick F; Schloeder, Brian R; Grindle, Suzanne M; Chavez, Adela Oliva; Kurtti, Timothy J; Munderloh, Ulrike G

    2008-01-01

    Background Anaplasma phagocytophilum (Ap) is an obligate intracellular bacterium and the agent of human granulocytic anaplasmosis, an emerging tick-borne disease. Ap alternately infects ticks and mammals and a variety of cell types within each. Understanding the biology behind such versatile cellular parasitism may be derived through the use of tiling microarrays to establish high resolution, genome-wide transcription profiles of the organism as it infects cell lines representative of its life cycle (tick; ISE6) and pathogenesis (human; HL-60 and HMEC-1). Results Detailed, host cell specific transcriptional behavior was revealed. There was extensive differential Ap gene transcription between the tick (ISE6) and the human (HL-60 and HMEC-1) cell lines, with far fewer differentially transcribed genes between the human cell lines, and all disproportionately represented by membrane or surface proteins. There were Ap genes exclusively transcribed in each cell line, apparent human- and tick-specific operons and paralogs, and anti-sense transcripts that suggest novel expression regulation processes. Seven virB2 paralogs (of the bacterial type IV secretion system) showed human or tick cell dependent transcription. Previously unrecognized genes and coding sequences were identified, as were the expressed p44/msp2 (major surface proteins) paralogs (of 114 total), through elevated signal produced to the unique hypervariable region of each – 2/114 in HL-60, 3/114 in HMEC-1, and none in ISE6. Conclusion Using these methods, whole genome transcription profiles can likely be generated for Ap, as well as other obligate intracellular organisms, in any host cells and for all stages of the cell infection process. Visual representation of comprehensive transcription data alongside an annotated map of the genome renders complex transcription into discernable patterns. PMID:18671858

  10. Probabilistic Inference on Multiple Normalized Signal Profiles from Next Generation Sequencing: Transcription Factor Binding Sites.

    PubMed

    Wong, Ka-Chun; Peng, Chengbin; Li, Yue

    2015-01-01

    With the prevalence of chromatin immunoprecipitation (ChIP) with sequencing (ChIP-Seq) technology, massive ChIP-Seq data has been accumulated. The ChIP-Seq technology measures the genome-wide occupancy of DNA-binding proteins in vivo. It is well-known that different DNA-binding protein occupancies may result in a gene being regulated in different conditions (e.g. different cell types). To fully understand a gene's function, it is essential to develop probabilistic models on multiple ChIP-Seq profiles for deciphering the gene transcription causalities. In this work, we propose and describe two probabilistic models. Assuming the conditional independence of different DNA-binding proteins' occupancies, the first method (SignalRanker) is developed as an intuitive method for ChIP-Seq genome-wide signal profile inference. Unfortunately, such an assumption may not always hold in some gene regulation cases. Thus, we propose and describe another method (FullSignalRanker) which does not make the conditional independence assumption. The proposed methods are compared with other existing methods on ENCODE ChIP-Seq datasets, demonstrating its regression and classification ability. The results suggest that FullSignalRanker is the best-performing method for recovering the signal ranks on the promoter and enhancer regions. In addition, FullSignalRanker is also the best-performing method for peak sequence classification. We envision that SignalRanker and FullSignalRanker will become important in the era of next generation sequencing. FullSignalRanker program is available on the following website: http://www.cs.toronto.edu/~wkc/FullSignalRanker/.

  11. Gene transcript profiles in the desert plant Nitraria tangutorum during fruit development and ripening.

    PubMed

    Wang, Jia; Dang, Zhenhua; Zhang, Huirong; Zheng, Linlin; Borjigin, Tebuqin; Wang, Yingchun

    2016-02-01

    Nitraria tangutorum Bobr., a valuable wild shrub distributed in Northwest China, produces edible and medicinal berries. However, little is known about the molecular mechanisms of its fruit development and ripening. We performed de novo transcriptome sequencing of N. tangutorum fruit using the Illumina HiSeq™ 2000 sequencing platform. More than 62.94 million reads were obtained and assembled into 69,306 unigenes (average length, 587 bp). These unigenes were annotated by querying against five databases (Nr, Swiss-Prot, GO, COG, and KEGG); 42,929 and 26,809 unigenes were found in the Nr and Swiss-Prot databases, respectively. In ortholog analyses, 33,363 unigenes were assigned with one or more GO terms, 15,537 hits were aligned to 25 COG classes, and 24,592 unigenes were classified into 128 KEGG pathways. Digital gene expression analyses were conducted on N. tangutorum fruit at the green (S1), yellow (S2), and red (S3) developmental stages. In total, 8240, 5985, and 4994 differentially expressed genes (DEGs) were detected for S1 vs. S2, S1 vs. S3, and S2 vs. S3, respectively. Cluster analyses showed that a large proportion of DEGs related to plant hormones and transcription factors (TFs) showed high expression in S1, down-regulated expression in S2, and up-regulated expression in S3. We analyzed the expression patterns of 23 genes encoding 12 putative enzymes involved in flavonoid biosynthesis. The expression profiles of 10 DEGs involved in flavonoid biosynthesis were validated by Q-PCR analysis. The assembled and annotated transcriptome sequences and gene expression profile analyses provide valuable genetic resources for research on N. tangutorum.

  12. Probabilistic Inference on Multiple Normalized Signal Profiles from Next Generation Sequencing: Transcription Factor Binding Sites.

    PubMed

    Wong, Ka-Chun; Peng, Chengbin; Li, Yue

    2015-01-01

    With the prevalence of chromatin immunoprecipitation (ChIP) with sequencing (ChIP-Seq) technology, massive ChIP-Seq data has been accumulated. The ChIP-Seq technology measures the genome-wide occupancy of DNA-binding proteins in vivo. It is well-known that different DNA-binding protein occupancies may result in a gene being regulated in different conditions (e.g. different cell types). To fully understand a gene's function, it is essential to develop probabilistic models on multiple ChIP-Seq profiles for deciphering the gene transcription causalities. In this work, we propose and describe two probabilistic models. Assuming the conditional independence of different DNA-binding proteins' occupancies, the first method (SignalRanker) is developed as an intuitive method for ChIP-Seq genome-wide signal profile inference. Unfortunately, such an assumption may not always hold in some gene regulation cases. Thus, we propose and describe another method (FullSignalRanker) which does not make the conditional independence assumption. The proposed methods are compared with other existing methods on ENCODE ChIP-Seq datasets, demonstrating its regression and classification ability. The results suggest that FullSignalRanker is the best-performing method for recovering the signal ranks on the promoter and enhancer regions. In addition, FullSignalRanker is also the best-performing method for peak sequence classification. We envision that SignalRanker and FullSignalRanker will become important in the era of next generation sequencing. FullSignalRanker program is available on the following website: http://www.cs.toronto.edu/~wkc/FullSignalRanker/. PMID:26671811

  13. NrdR Transcription Regulation: Global Proteome Analysis and Its Role in Escherichia coli Viability and Virulence.

    PubMed

    Naveen, Vankadari; Hsiao, Chwan-Deng

    2016-01-01

    Bacterial ribonucleotide reductases (RNRs) play an important role in the synthesis of dNTPs and their expression is regulated by the transcription factors, NrdR and Fur. Recent transcriptomic studies using deletion mutants have indicated a role for NrdR in bacterial chemotaxis and in the maintenance of topoisomerase levels. However, NrdR deletion alone has no effect on bacterial growth or virulence in infected flies or in human blood cells. Furthermore, transcriptomic studies are limited to the deletion strain alone, and so are inadequate for drawing biological implications when the NrdR repressor is active or abundant. Therefore, further examination is warranted of changes in the cellular proteome in response to both NrdR overexpression, as well as deletion, to better understand its functional relevance as a bacterial transcription repressor. Here, we profile bacterial fate under conditions of overexpression and deletion of NrdR in E. coli. Biochemical assays show auxiliary zinc enhances the DNA binding activity of NrdR. We also demonstrate at the physiological level that increased nrdR expression causes a significant reduction in bacterial growth and fitness even at normal temperatures, and causes lethality at elevated temperatures. Corroborating these direct effects, global proteome analysis following NrdR overexpression showed a significant decrease in global protein expression. In parallel, studies on complementary expression of downregulated essential genes polA, eno and thiL showed partial rescue of the fitness defect caused by NrdR overexpression. Deletion of downregulated non-essential genes ygfK and trxA upon NrdR overexpression resulted in diminished bacterial growth and fitness suggesting an additional role for NrdR in regulating other genes. Moreover, in comparison with NrdR deletion, E. coli cells overexpressing NrdR showed significantly diminished adherence to human epithelial cells, reflecting decreased bacterial virulence. These results suggest

  14. NrdR Transcription Regulation: Global Proteome Analysis and Its Role in Escherichia coli Viability and Virulence

    PubMed Central

    Naveen, Vankadari; Hsiao, Chwan-Deng

    2016-01-01

    Bacterial ribonucleotide reductases (RNRs) play an important role in the synthesis of dNTPs and their expression is regulated by the transcription factors, NrdR and Fur. Recent transcriptomic studies using deletion mutants have indicated a role for NrdR in bacterial chemotaxis and in the maintenance of topoisomerase levels. However, NrdR deletion alone has no effect on bacterial growth or virulence in infected flies or in human blood cells. Furthermore, transcriptomic studies are limited to the deletion strain alone, and so are inadequate for drawing biological implications when the NrdR repressor is active or abundant. Therefore, further examination is warranted of changes in the cellular proteome in response to both NrdR overexpression, as well as deletion, to better understand its functional relevance as a bacterial transcription repressor. Here, we profile bacterial fate under conditions of overexpression and deletion of NrdR in E. coli. Biochemical assays show auxiliary zinc enhances the DNA binding activity of NrdR. We also demonstrate at the physiological level that increased nrdR expression causes a significant reduction in bacterial growth and fitness even at normal temperatures, and causes lethality at elevated temperatures. Corroborating these direct effects, global proteome analysis following NrdR overexpression showed a significant decrease in global protein expression. In parallel, studies on complementary expression of downregulated essential genes polA, eno and thiL showed partial rescue of the fitness defect caused by NrdR overexpression. Deletion of downregulated non-essential genes ygfK and trxA upon NrdR overexpression resulted in diminished bacterial growth and fitness suggesting an additional role for NrdR in regulating other genes. Moreover, in comparison with NrdR deletion, E. coli cells overexpressing NrdR showed significantly diminished adherence to human epithelial cells, reflecting decreased bacterial virulence. These results suggest

  15. Global expression profiling in leaves of free-growing aspen

    PubMed Central

    Sjödin, Andreas; Wissel, Kirsten; Bylesjö, Max; Trygg, Johan; Jansson, Stefan

    2008-01-01

    Background Genomic studies are routinely performed on young plants in controlled environments which is very different from natural conditions. In reality plants in temperate countries are exposed to large fluctuations in environmental conditions, in the case of perennials over several years. We have studied gene expression in leaves of a free-growing aspen (Populus tremula) throughout multiple growing seasons Results We show that gene expression during the first month of leaf development was largely determined by a developmental program although leaf expansion, chlorophyll accumulation and the speed of progression through this program was regulated by the temperature. We were also able to define "transcriptional signatures" for four different substages of leaf development. In mature leaves, weather factors were important for gene regulation. Conclusion This study shows that multivariate methods together with high throughput transcriptional methods in the field can provide additional, novel information as to plant status under changing environmental conditions that is impossible to mimic in laboratory conditions. We have generated a dataset that could be used to e.g. identify marker genes for certain developmental stages or treatments, as well as to assess natural variation in gene expression. PMID:18500984

  16. Array-Based Transcript Profiling and Limiting-Dilution Reverse Transcription-PCR Analysis Identify Additional Latent Genes in Kaposi's Sarcoma-Associated Herpesvirus▿ †

    PubMed Central

    Chandriani, Sanjay; Ganem, Don

    2010-01-01

    Kaposi's sarcoma-associated herpesvirus (KSHV) is a B-lymphotropic herpesvirus strongly linked to both lymphoproliferative diseases and Kaposi's sarcoma. The viral latency program of KSHV is central to persistent infection and plays important roles in the pathogenesis of KSHV-related tumors. Up to six polypeptides and 18 microRNAs are known to be expressed in latency, but it is unclear if all major latency genes have been identified. Here, we have employed array-based transcript profiling and limiting-dilution reverse transcription-PCR (RT-PCR) methodologies to explore this issue in several KSHV-infected cell lines. Our results show that RNAs encoding the K1 protein are found at low levels in most latently infected cell lines. The gene encoding v-IL-6 is also expressed as a latent transcript in some contexts. Both genes encode powerful signaling molecules with particular relevance to B cell biology: K1 mimics signaling through the B cell receptor, and v-IL-6 promotes B cell survival. These data resolve earlier controversies about K1 and v-IL-6 expression and indicate that, in addition to core latency genes, some transcripts can be expressed in KSHV latency in a context-dependent manner. PMID:20219929

  17. Molecular analysis of post-harvest withering in grape by AFLP transcriptional profiling

    PubMed Central

    Zamboni, Anita; Minoia, Leone; Ferrarini, Alberto; Tornielli, Giovanni Battista; Zago, Elisa; Delledonne, Massimo; Pezzotti, Mario

    2008-01-01

    Post-harvest withering of grape berries is used in the production of dessert and fortified wines to alter must quality characteristics and increase the concentration of simple sugars. The molecular processes that occur during withering are poorly understood, so a detailed transcriptomic analysis of post-harvest grape berries was carried out by AFLP-transcriptional profiling analysis. This will help to elucidate the molecular mechanisms of berry withering and will provide an opportunity to select markers that can be used to follow the drying process and evaluate different drying techniques. AFLP-TP identified 699 withering-specific genes, 167 and 86 of which were unique to off-plant and on-plant withering, respectively. Although similar molecular events were revealed in both withering processes, it was apparent that off-plant withering induced a stronger dehydration stress response resulting in the high level expression of genes involved in stress protection mechanisms, such as dehydrin and osmolite accumulation. Genes involved in hexose metabolism and transport, cell wall composition, and secondary metabolism (particularly the phenolic and terpene compound pathways) were similarly regulated in both processes. This work provides the first comprehensive analysis of the molecular events underpinning post-harvest withering and could help to define markers for different withering processes. PMID:19010774

  18. PHARMACOLOGICAL SIRT1 ACTIVATION IMPROVES MORTALITY AND MARKEDLY ALTERS TRANSCRIPTIONAL PROFILES THAT ACCOMPANY EXPERIMENTAL SEPSIS.

    PubMed

    Opal, Steven M; Ellis, James L; Suri, Vipin; Freudenberg, Johannes M; Vlasuk, George P; Li, Yong; Chahin, Abdullah B; Palardy, John E; Parejo, Nicholas; Yamamoto, Michelle; Chahin, Abdulrahman; Kessimian, Noubar

    2016-04-01

    The sirtuin family consists of seven NAD+-dependent enzymes affecting a broad array of regulatory protein networks by primarily catalyzing the deacetylation of key lysine residues in regulatory proteins. The enzymatic activity of SIRT1 can be enhanced by small molecule activators known as SIRT1 activator compounds (STACs). We tested the therapeutic potential of the STAC SRT3025 in two preclinical models of severe infection, the murine cecal ligation and puncture (CLP) model to induce peritonitis and intratracheal installation of Streptococcus pneumoniae to induce severe bacterial pneumonia. SRT3025 provided significant survival benefits over vehicle control in both the peritonitis and pneumococcal pneumonia models when administered with appropriate antimicrobial agents. The survival benefit of SRT3025 in the CLP model was absent in SIRT1 knockout showing the SIRT1 dependency of SRT3025's effects. SRT3025 administration promoted bacterial clearance and significantly reduced inflammatory cytokines from the lungs of animals challenged with S. pneumoniae. SRT3025 treatment was also accompanied by striking changes in the transcription profiles in multiple inflammatory and metabolic pathways in liver, spleen, small bowel, and lung tissue. Remarkably, these organ-specific changes in the transcriptome analyses were similar following CLP or pneumococcal challenge despite different sets of pathogens at disparate sites of infection. Pharmacologic activation of SIRT1 modulates the innate host response and could represent a novel treatment strategy for severe infection. PMID:26974318

  19. PHARMACOLOGICAL SIRT1 ACTIVATION IMPROVES MORTALITY AND MARKEDLY ALTERS TRANSCRIPTIONAL PROFILES THAT ACCOMPANY EXPERIMENTAL SEPSIS.

    PubMed

    Opal, Steven M; Ellis, James L; Suri, Vipin; Freudenberg, Johannes M; Vlasuk, George P; Li, Yong; Chahin, Abdullah B; Palardy, John E; Parejo, Nicholas; Yamamoto, Michelle; Chahin, Abdulrahman; Kessimian, Noubar

    2016-04-01

    The sirtuin family consists of seven NAD+-dependent enzymes affecting a broad array of regulatory protein networks by primarily catalyzing the deacetylation of key lysine residues in regulatory proteins. The enzymatic activity of SIRT1 can be enhanced by small molecule activators known as SIRT1 activator compounds (STACs). We tested the therapeutic potential of the STAC SRT3025 in two preclinical models of severe infection, the murine cecal ligation and puncture (CLP) model to induce peritonitis and intratracheal installation of Streptococcus pneumoniae to induce severe bacterial pneumonia. SRT3025 provided significant survival benefits over vehicle control in both the peritonitis and pneumococcal pneumonia models when administered with appropriate antimicrobial agents. The survival benefit of SRT3025 in the CLP model was absent in SIRT1 knockout showing the SIRT1 dependency of SRT3025's effects. SRT3025 administration promoted bacterial clearance and significantly reduced inflammatory cytokines from the lungs of animals challenged with S. pneumoniae. SRT3025 treatment was also accompanied by striking changes in the transcription profiles in multiple inflammatory and metabolic pathways in liver, spleen, small bowel, and lung tissue. Remarkably, these organ-specific changes in the transcriptome analyses were similar following CLP or pneumococcal challenge despite different sets of pathogens at disparate sites of infection. Pharmacologic activation of SIRT1 modulates the innate host response and could represent a novel treatment strategy for severe infection.

  20. Host Transcriptional Profiles and Immunopathologic Response following Mycobacterium avium subsp. paratuberculosis Infection in Mice

    PubMed Central

    Shin, Min-Kyoung; Park, Hongtae; Shin, Seung Won; Jung, Myunghwan; Lee, Su-Hyung; Kim, Dae-Yong; Yoo, Han Sang

    2015-01-01

    Paratuberculosis or Johne’s disease is a chronic granulomatous enteropathy in ruminants caused by Mycobacterium avium subsp. paratuberculosis (MAP) infection. In the present study, we examined the host response to MAP infection in spleens of mice in order to investigate the host immunopathology accompanying host-pathogen interaction. Transcriptional profiles of the MAP-infected mice at 3 and 6 weeks p.i. showed severe histopathological changes, whereas those at 12 weeks p.i. displayed reduced lesion severity in the spleen and liver. MAP-infected mice at 3 and 6 weeks p.i. showed up-regulation of interferon-related genes, scavenger receptor, and complement components, suggesting an initial innate immune reaction, such as macrophage activation, bactericidal activity, and macrophage invasion of MAP. Concurrently, MAP-infected mice at 3 and 6 weeks p.i. were also suggested to express M2 macrophage phenotype with up-regulation of Mrc1, and Marco and down-regulation of MHC class II, Ccr7, and Irf5, and canonical pathways related to the T cell response including ICOS-ICOSL signaling in T helper cells, calcium-induced T lymphocyte apoptosis, and CD28 signaling in T helper cell. These results provide information which furthers the understanding of the immunopathologic response to MAP infection in mice, thereby providing insights valuable for research into the pathogenesis for MAP infection. PMID:26439498

  1. Acetohydroxyacid synthase activity and transcripts profiling reveal tissue-specific regulation of ahas genes in sunflower.

    PubMed

    Ochogavía, Ana C; Breccia, Gabriela; Vega, Tatiana; Felitti, Silvina A; Picardi, Liliana A; Nestares, Graciela

    2014-07-01

    Acetohydroxyacid synthase (AHAS) is the target site of several herbicides and catalyses the first step in the biosynthesis of branched chain amino acid. Three genes coding for AHAS catalytic subunit (ahas1, ahas2 and ahas3) have been reported for sunflower. The aim of this work was to study the expression pattern of ahas genes family and AHAS activity in sunflower (Helianthus annuus L.). Different organs (leaves, hypocotyls, roots, flowers and embryos) were evaluated at several developmental stages. The transcriptional profile was studied through RT-qPCR. The highest expression for ahas1 was shown in leaves, where all the induced and natural gene mutations conferring herbicide resistance were found. The maximal expression of ahas2 and ahas3 occurred in immature flowers and embryos. The highest AHAS activity was found in leaves and immature embryos. Correlation analysis among ahas gene expression and AHAS activity was discussed. Our results show that differences in ahas genes expression are tissue-specific and temporally regulated. Moreover, the conservation of multiple AHAS isoforms in sunflower seems to result from different expression requirements controlled by tissue-specific regulatory mechanisms at different developmental stages. PMID:24908515

  2. Transcriptional profiling of CRP-regulated genes in deep-sea bacterium Shewanella piezotolerans WP3.

    PubMed

    Jian, Huahua; Hu, Jing; Xiao, Xiang

    2015-09-01

    The cAMP receptor protein (CRP) is a conserved regulator in bacteria and involved in regulation of energy metabolism, such as glucose, galactose, and citrate (Green et al., 2014 [1]). As an important catabolite activator protein, it has been well characterized in model microorganism such as Escherichia coli. However, our understanding of the roles of CRP in deep-sea bacteria is rather limited. To indentify the function of CRP, we performed whole genome transcriptional profiling using a custom designed microarray which contains 95% open reading frames of Shewanella piezotolerans WP3, which was isolated from West Pacific sediment at a depth of 1914 m (Xiao et al., 2007 [2]; Wang et al., 2008 [3]). Here we describe the experimental procedures and methods in detail to reproduce the results (available at Gene Expression Omnibus database under GSE67731 and GSE67732) and provide resource to be employed for comparative analyses of CRP regulon and the regulatory network of anaerobic respiration in microorganisms which inhabited in different environments, and thus broaden our understanding of mechanism of bacteria against various environment stresses.

  3. Estimating binding properties of transcription factors from genome-wide binding profiles

    PubMed Central

    Zabet, Nicolae Radu; Adryan, Boris

    2015-01-01

    The binding of transcription factors (TFs) is essential for gene expression. One important characteristic is the actual occupancy of a putative binding site in the genome. In this study, we propose an analytical model to predict genomic occupancy that incorporates the preferred target sequence of a TF in the form of a position weight matrix (PWM), DNA accessibility data (in the case of eukaryotes), the number of TF molecules expected to be bound specifically to the DNA and a parameter that modulates the specificity of the TF. Given actual occupancy data in the form of ChIP-seq profiles, we backwards inferred copy number and specificity for five Drosophila TFs during early embryonic development: Bicoid, Caudal, Giant, Hunchback and Kruppel. Our results suggest that these TFs display thousands of molecules that are specifically bound to the DNA and that whilst Bicoid and Caudal display a higher specificity, the other three TFs (Giant, Hunchback and Kruppel) display lower specificity in their binding (despite having PWMs with higher information content). This study gives further weight to earlier investigations into TF copy numbers that suggest a significant proportion of molecules are not bound specifically to the DNA. PMID:25432957

  4. Expression profile of undifferentiated cell transcription factor 1 in normal and cancerous human epithelia

    PubMed Central

    Mouallif, Mustapha; Albert, Adelin; Zeddou, Mustapha; Ennaji, My Mustapha; Delvenne, Philippe; Guenin, Samuel

    2014-01-01

    Undifferentiated cell Transcription Factor 1 (UTF1) is a chromatin-bound protein involved in stem cell differentiation. It was initially reported to be restricted to stem cells or germinal tissues. However, recent work suggests that UTF1 is also expressed in somatic cells and that its expression may increase during carcinogenesis. To further clarify the expression profile of UTF1, we evaluated UTF1 expression levels immunohistochemically in eight normal human epithelia (from breast, prostate, endometrium, bladder, colon, oesophagus, lung and kidney) and their corresponding tumours as well as in several epithelial cell lines. We showed UTF1 staining in normal and tumour epithelial tissues, but with varying intensities according to the tissue location. In vitro analyses also revealed that UTF1 is expressed in somatic epithelial cell lines even in the absence of Oct4A and Sox2, its two main known regulators. The comparison of UTF1 levels in normal and tumoral tissues revealed significant overexpression in endometrial and prostatic adenocarcinomas, whereas lower intensity of the staining was observed in renal and colic tumours, suggesting a potential tissue-specific function of UTF1. Altogether, these results highlight a potential dual role for UTF1, acting either as an oncogene or as a tumour suppressor depending on the tissue. These findings also question its role as a specific marker for stem cells. PMID:24738751

  5. Comparative Transcriptional Profiling and Preliminary Study on Heterosis Mechanism of Super-Hybrid Rice

    PubMed Central

    Song, Gui-Sheng; Zhai, Hong-Li; Peng, Yong-Gang; Zhang, Lei; Wei, Gang; Chen, Xiao-Ying; Xiao, Yu-Guo; Wang, Lili; Wu, Bin; Zhang, Yu; Feng, Xiu-Jing; Gong, Wan-Kui; Liu, Yao; Yin, Zhi-Jie; Wang, Feng; Liu, Guo-Zhen; Xu, Hong-Lin; Wei, Xiao-Li; Zhao, Xiao-Ling; Ouwerkerk, Pieter B.F.; Hankemeier, Thomas; Reijmers, Theo; van der Heijden, Rob; Wang, Mei; van der Greef, Jan; Zhu, Zhen

    2010-01-01

    Heterosis is a biological phenomenon whereby the offspring from two parents show improved and superior performance than either inbred parental lines. Hybrid rice is one of the most successful apotheoses in crops utilizing heterosis. Transcriptional profiling of F1 super-hybrid rice Liangyou-2186 and its parents by serial analysis of gene expression (SAGE) revealed 1183 differentially expressed genes (DGs), among which DGs were found significantly enriched in pathways such as photosynthesis and carbon-fixation, and most of the key genes involved in the carbon-fixation pathway exhibited up-regulated expression in F1 hybrid rice. Moreover, increased catabolic activity of corresponding enzymes and photosynthetic efficiency were also detected, which combined to indicate that carbon fixation is enhanced in F1 hybrid, and might probably be associated with the yield vigor and heterosis in super-hybrid rice. By correlating DGs with yield-related quantitative trait loci (QTL), a potential relationship between differential gene expression and phenotypic changes was also found. In addition, a regulatory network involving circadian-rhythms and light signaling pathways was also found, as previously reported in Arabidopsis, which suggest that such a network might also be related with heterosis in hybrid rice. Altogether, the present study provides another view for understanding the molecular mechanism underlying heterosis in rice. PMID:20729474

  6. Suppressing Sorbitol Synthesis Substantially Alters the Global Expression Profile of Stress Response Genes in Apple (Malus domestica) Leaves.

    PubMed

    Wu, Ting; Wang, Yi; Zheng, Yi; Fei, Zhangjun; Dandekar, Abhaya M; Xu, Kenong; Han, Zhenhai; Cheng, Lailiang

    2015-09-01

    Sorbitol is a major product of photosynthesis in apple (Malus domestica) that is involved in carbohydrate metabolism and stress tolerance. However, little is known about how the global transcript levels in apple leaves respond to decreased sorbitol synthesis. In this study we used RNA sequencing (RNA-seq) profiling to characterize the transcriptome of leaves from transgenic lines of the apple cultivar 'Greensleeves' exhibiting suppressed expression of aldose-6-phosphate reductase (A6PR) to gain insights into sorbitol function and the consequences of decreased sorbitol synthesis on gene expression. We observed that, although the leaves of the low sorbitol transgenic lines accumulate higher levels of various primary metabolites, only very limited changes were found in the levels of transcripts associated with primary metabolism. We suggest that this is indicative of post-transcriptional and/or post-translational regulation of primary metabolite accumulation and central carbon metabolism. However, we identified significantly enriched gene ontology terms belonging to the 'stress related process' category in the antisense lines (P-value < 0.05). These include genes involved in the synthesis/degradation of abscisic acid, salicylic acid and jasmonic acid, nucleotide-binding site leucine-rich repeat (NBS-LRR) disease resistance genes and ATP-binding cassette (ABC) transporter genes. This suggests that sorbitol plays a role in the responses of apple trees to abiotic and biotic stresses. PMID:26076968

  7. Suppressing Sorbitol Synthesis Substantially Alters the Global Expression Profile of Stress Response Genes in Apple (Malus domestica) Leaves.

    PubMed

    Wu, Ting; Wang, Yi; Zheng, Yi; Fei, Zhangjun; Dandekar, Abhaya M; Xu, Kenong; Han, Zhenhai; Cheng, Lailiang

    2015-09-01

    Sorbitol is a major product of photosynthesis in apple (Malus domestica) that is involved in carbohydrate metabolism and stress tolerance. However, little is known about how the global transcript levels in apple leaves respond to decreased sorbitol synthesis. In this study we used RNA sequencing (RNA-seq) profiling to characterize the transcriptome of leaves from transgenic lines of the apple cultivar 'Greensleeves' exhibiting suppressed expression of aldose-6-phosphate reductase (A6PR) to gain insights into sorbitol function and the consequences of decreased sorbitol synthesis on gene expression. We observed that, although the leaves of the low sorbitol transgenic lines accumulate higher levels of various primary metabolites, only very limited changes were found in the levels of transcripts associated with primary metabolism. We suggest that this is indicative of post-transcriptional and/or post-translational regulation of primary metabolite accumulation and central carbon metabolism. However, we identified significantly enriched gene ontology terms belonging to the 'stress related process' category in the antisense lines (P-value < 0.05). These include genes involved in the synthesis/degradation of abscisic acid, salicylic acid and jasmonic acid, nucleotide-binding site leucine-rich repeat (NBS-LRR) disease resistance genes and ATP-binding cassette (ABC) transporter genes. This suggests that sorbitol plays a role in the responses of apple trees to abiotic and biotic stresses.

  8. Variations of transcript profiles between sea otters Enhydra lutris from Prince William Sound, Alaska, and clinically normal reference otters

    USGS Publications Warehouse

    Miles, A. Keith; Bowen, Lizabeth; Ballachey, Brenda E.; Bodkin, James L.; Murray, M.; Estes, J.L.; Keister, Robin A.; Stott, J.L.

    2012-01-01

    Development of blood leukocyte gene transcript profiles has the potential to expand condition assessments beyond those currently available to evaluate wildlife health, including sea otters Enhydra lutris, both individually and as populations. The 10 genes targeted in our study represent multiple physiological systems that play a role in immuno-modulation, inflammation, cell protection, tumor suppression, cellular stress-response, xenobiotic metabolizing enzymes, and antioxidant enzymes. These genes can be modified by biological, physical, or anthropogenic impacts and consequently provide information on the general type of stressors present in a given environment. We compared gene transcript profiles of sea otters sampled in 2008 among areas within Prince William Sound impacted to varying degrees by the 1989 ‘Exxon Valdez’ oil spill with those of captive and wild reference sea otters. Profiles of sea otters from Prince William Sound showed elevated transcription in genes associated with tumor formation, cell death, organic exposure, inflammation, and viral exposure when compared to the reference sea otter group, indicating possible recent and chronic exposure to organic contaminants. Sea otters from historically designated oiled areas within Prince William Sound 19 yr after the oil spill had higher transcription of genes associated with tumor formation, cell death, heat shock, and inflammation than those from areas designated as less impacted by the spill.

  9. Differential transcription profiles in Aedes aegypti detoxification genes after temephos selection.

    PubMed

    Saavedra-Rodriguez, K; Strode, C; Flores, A E; Garcia-Luna, S; Reyes-Solis, G; Ranson, H; Hemingway, J; Black, W C

    2014-04-01

    The mosquito Aedes aegypti is the main vector of Dengue and Yellow Fever flaviviruses. The organophosphate insecticide temephos is a larvicide that is used globally to control Ae. aegypti populations; many of which have in turn evolved resistance. Target site alteration in the acetylcholine esterase of this species has not being identified. Instead, we tracked changes in transcription of metabolic detoxification genes using the Ae. aegypti 'Detox Chip' microarray during five generations of temephos selection. We selected for temephos resistance in three replicates in each of six collections, five from Mexico, and one from Peru. The response to selection was tracked in terms of lethal concentrations. Uniform upregulation was seen in the epsilon class glutathione-S-transferase (eGST) genes in strains from Mexico prior to laboratory selection, while eGSTs in the Iquitos Peru strain became upregulated after five generations of temephos selection. While expression of many carboxyl/cholinesterase esterase (CCE) genes increased with selection, no single esterase was consistently upregulated and this same pattern was noted in the cytochrome P450 monooxygenase (CYP) genes and in other genes involved in reduction or oxidation of xenobiotics. Bioassays using glutathione-S-transferase (GST), CCE and CYP inhibitors suggest that various CCEs instead of GSTs are the main metabolic mechanism conferring resistance to temephos. We show that temephos-selected strains show no cross resistance to permethrin and that genes associated with temephos selection are largely independent of those selected with permethrin in a previous study.

  10. Role of the global transcriptional regulator PrrA in Rhodobacter sphaeroides 2.4.1: combined transcriptome and proteome analysis

    SciTech Connect

    Eraso, Jesus M.; Roh, Jung Hyeob; Zeng, Xiaohua; Callister, Stephen J.; Lipton, Mary S.; Kaplan, Samuel

    2008-07-01

    The PrrBA two-component regulatory system is a major global regulator in Rhodobacter sphaeroides 2.4.1. In this study we have compared the transcriptome and proteome profiles of the wild type (WT) and mutant PrrA2 cells grown anaerobically, in the dark, with DMSO as electron acceptor. Approximately 25% of the genes present in the genome are PrrA-regulated, at the transcriptional level, either directly or indirectly, by ≥ 2-fold relative to wild type. The genes affected are widespread throughout all COG functional categories, with previously unsuspected “metabolic” genes affected when in the PrrA mutant background. PrrA was found to act both as an activator and a repressor of transcription, with more genes being repressed in the presence of PrrA (9:5 ratio). An analysis of the genes encoding the 1,536 peptides detected through our chromatographic study, which corresponds to 36% coverage of the genome, revealed that approximately 20% of the genes encoding these proteins were positively regulated, whereas approximately 32% were negatively regulated by PrrA, which is in excellent agreement with the percentages obtained for the whole genomic transcriptome profile. In addition, comparison of the transcriptome and proteome mean parameter values chosen between WT and PrrA2 showed good qualitative agreement, indicating that transcript regulation paralleled the corresponding protein abundance, although not one for one. The microarray analysis was validated by direct mRNA measurement of randomly selected, both positively and negatively regulated genes. lacZ transcriptional and kan translational fusions enabled us to map putative PrrA binding sites, as well as revealing potential gene targets for indirect regulation by PrrA.

  11. Global Fitness Profiling Identifies Arsenic and Cadmium Tolerance Mechanisms in Fission Yeast

    PubMed Central

    Guo, Lan; Ganguly, Abantika; Sun, Lingling; Suo, Fang; Du, Li-Lin; Russell, Paul

    2016-01-01

    Heavy metals and metalloids such as cadmium [Cd(II)] and arsenic [As(III)] are widespread environmental toxicants responsible for multiple adverse health effects in humans. However, the molecular mechanisms underlying metal-induced cytotoxicity and carcinogenesis, as well as the detoxification and tolerance pathways, are incompletely understood. Here, we use global fitness profiling by barcode sequencing to quantitatively survey the Schizosaccharomyces pombe haploid deletome for genes that confer tolerance of cadmium or arsenic. We identified 106 genes required for cadmium resistance and 110 genes required for arsenic resistance, with a highly significant overlap of 36 genes. A subset of these 36 genes account for almost all proteins required for incorporating sulfur into the cysteine-rich glutathione and phytochelatin peptides that chelate cadmium and arsenic. A requirement for Mms19 is explained by its role in directing iron–sulfur cluster assembly into sulfite reductase as opposed to promoting DNA repair, as DNA damage response genes were not enriched among those required for cadmium or arsenic tolerance. Ubiquinone, siroheme, and pyridoxal 5′-phosphate biosynthesis were also identified as critical for Cd/As tolerance. Arsenic-specific pathways included prefoldin-mediated assembly of unfolded proteins and protein targeting to the peroxisome, whereas cadmium-specific pathways included plasma membrane and vacuolar transporters, as well as Spt–Ada–Gcn5-acetyltransferase (SAGA) transcriptional coactivator that controls expression of key genes required for cadmium tolerance. Notable differences are apparent with corresponding screens in the budding yeast Saccharomyces cerevisiae, underscoring the utility of analyzing toxic metal defense mechanisms in both organisms. PMID:27558664

  12. Global functional analysis of nucleophosmin in Taxol response, cancer, chromatin regulation, and ribosomal DNA transcription

    SciTech Connect

    Bergstralh, Daniel T. . E-mail: dan.bergstralh@med.unc.edu; Conti, Brian J.; Moore, Chris B.; Brickey, W. June; Taxman, Debra J.; Ting, Jenny P.-Y.

    2007-01-01

    Analysis of lung cancer response to chemotherapeutic agents showed the accumulation of a Taxol-induced protein that reacted with an anti-phospho-MEK1/2 antibody. Mass spectroscopy identified the protein as nucleophosmin/B23 (NPM), a multifunctional protein with diverse roles: ribosome biosynthesis, p53 regulation, nuclear-cytoplasmic shuttling, and centrosome duplication. Our work demonstrates that following cellular exposure to mitosis-arresting agents, NPM is phosphorylated and its chromatographic property is altered, suggesting changes in function during mitosis. To determine the functional relevance of NPM, its expression in tumor cells was reduced by siRNA. Cells with reduced NPM were treated with Taxol followed by microarray profiling accompanied by gene/protein pathway analyses. These studies demonstrate several expected and unexpected consequences of NPM depletion. The predominant downstream effectors of NPM are genes involved in cell proliferation, cancer, and the cell cycle. In congruence with its role in cancer, NPM is over-expressed in primary malignant lung cancer tissues. We also demonstrate a role for NPM in the expression of genes encoding SET (TAF1{beta}) and the histone methylase SET8. Additionally, we show that NPM is required for a previously unobserved G2/M upregulation of TAF1A, which encodes the rDNA transcription factor TAF{sub I}48. These results demonstrate multi-faceted functions of NPM that can affect cancer cells.

  13. Gene transcript profiling in sea otters post-Exxon Valdez oil spill: A tool for marine ecosystem health assessment

    USGS Publications Warehouse

    Bowen, Lizabeth; Miles, A. Keith; Ballachey, Brenda E.; Waters, Shannon C.; Bodkin, James L.

    2016-01-01

    Using a panel of genes stimulated by oil exposure in a laboratory study, we evaluated gene transcription in blood leukocytes sampled from sea otters captured from 2006–2012 in western Prince William Sound (WPWS), Alaska, 17–23 years after the 1989 Exxon Valdez oil spill (EVOS). We compared WPWS sea otters to reference populations (not affected by the EVOS) from the Alaska Peninsula (2009), Katmai National Park and Preserve (2009), Clam Lagoon at Adak Island (2012), Kodiak Island (2005) and captive sea otters in aquaria. Statistically, sea otter gene transcript profiles separated into three distinct clusters: Cluster 1, Kodiak and WPWS 2006–2008 (higher relative transcription); Cluster 2, Clam Lagoon and WPWS 2010–2012 (lower relative transcription); and Cluster 3, Alaska Peninsula, Katmai and captive sea otters (intermediate relative transcription). The lower transcription of the aryl hydrocarbon receptor (AHR), an established biomarker for hydrocarbon exposure, in WPWS 2010–2012 compared to earlier samples from WPWS is consistent with declining hydrocarbon exposure, but the pattern of overall low levels of transcription seen in WPWS 2010–2012 could be related to other factors, such as food limitation, pathogens or injury, and may indicate an inability to mount effective responses to stressors. Decreased transcriptional response across the entire gene panel precludes the evaluation of whether or not individual sea otters show signs of exposure to lingering oil. However, related studies on sea otter demographics indicate that by 2012, the sea otter population in WPWS had recovered, which indicates diminishing oil exposure.

  14. Use of a Multiplex Transcript Method for Analysis of Pseudomonas aeruginosa Gene Expression Profiles in the Cystic Fibrosis Lung.

    PubMed

    Gifford, Alex H; Willger, Sven D; Dolben, Emily L; Moulton, Lisa A; Dorman, Dana B; Bean, Heather; Hill, Jane E; Hampton, Thomas H; Ashare, Alix; Hogan, Deborah A

    2016-10-01

    The discovery of therapies that modulate Pseudomonas aeruginosa virulence or that can eradicate chronic P. aeruginosa lung infections associated with cystic fibrosis (CF) will be advanced by an improved understanding of P. aeruginosa behavior in vivo We demonstrate the use of multiplexed Nanostring technology to monitor relative abundances of P. aeruginosa transcripts across clinical isolates, in serial samples, and for the purposes of comparing microbial physiology in vitro and in vivo The expression of 75 transcripts encoded by genes implicated in CF lung disease was measured in a variety of P. aeruginosa strains as well as RNA serial sputum samples from four P. aeruginosa-colonized subjects with CF collected over 6 months. We present data on reproducibility, the results from different methods of normalization, and demonstrate high concordance between transcript relative abundance data obtained by Nanostring or transcriptome sequencing (RNA-Seq) analysis. Furthermore, we address considerations regarding sequence variation between strains during probe design. Analysis of P. aeruginosa grown in vitro identified transcripts that correlated with the different phenotypes commonly observed in CF clinical isolates. P. aeruginosa transcript profiles in RNA from CF sputum indicated alginate production in vivo, and transcripts involved in quorum-sensing regulation were less abundant in sputum than strains grown in the laboratory. P. aeruginosa gene expression patterns from sputum clustered closely together relative to patterns for laboratory-grown cultures; in contrast, laboratory-grown P. aeruginosa showed much greater transcriptional variation with only loose clustering of strains with different phenotypes. The clustering within and between subjects was surprising in light of differences in inhaled antibiotic and respiratory symptoms, suggesting that the pathways represented by these 75 transcripts are stable in chronic CF P. aeruginosa lung infections. PMID:27481238

  15. Transcript-Specific Expression Profiles Derived from Sequence-Based Analysis of Standard Microarrays

    PubMed Central

    Moll, Anton G.; Lindenmeyer, Maja T.; Kretzler, Matthias; Nelson, Peter J.; Zimmer, Ralf; Cohen, Clemens D.

    2009-01-01

    Background Alternative mRNA processing mechanisms lead to multiple transcripts (i.e. splice isoforms) of a given gene which may have distinct biological functions. Microarrays like Affymetrix GeneChips measure mRNA expression of genes using sets of nucleotide probes. Until recently probe sets were not designed for transcript specificity. Nevertheless, the re-analysis of established microarray data using newly defined transcript-specific probe sets may provide information about expression levels of specific transcripts. Methodology/Principal Findings In the present study alignment of probe sequences of the Affymetrix microarray HG-U133A with Ensembl transcript sequences was performed to define transcript-specific probe sets. Out of a total of 247,965 perfect match probes, 95,008 were designated “transcript-specific”, i.e. showing complete sequence alignment, no cross-hybridization, and transcript-, not only gene-specificity. These probes were grouped into 7,941 transcript-specific probe sets and 15,619 gene-specific probe sets, respectively. The former were used to differentiate 445 alternative transcripts of 215 genes. For selected transcripts, predicted by this analysis to be differentially expressed in the human kidney, confirmatory real-time RT-PCR experiments were performed. First, the expression of two specific transcripts of the genes PPM1A (PP2CA_HUMAN and P35813) and PLG (PLMN_HUMAN and Q5TEH5) in human kidneys was determined by the transcript-specific array analysis and confirmed by real-time RT-PCR. Secondly, disease-specific differential expression of single transcripts of PLG and ABCA1 (ABCA1_HUMAN and Q5VYS0_HUMAN) was computed from the available array data sets and confirmed by transcript-specific real-time RT-PCR. Conclusions Transcript-specific analysis of microarray experiments can be employed to study gene-regulation on the transcript level using conventional microarray data. In this study, predictions based on sufficient probe set size and

  16. The Global Transcription Factor Lrp Controls Virulence Modulation in Xenorhabdus nematophila

    PubMed Central

    Hussa, Elizabeth A.; Casanova-Torres, Ángel M.

    2015-01-01

    ABSTRACT The bacterium Xenorhabdus nematophila engages in phenotypic variation with respect to pathogenicity against insect larvae, yielding both virulent and attenuated subpopulations of cells from an isogenic culture. The global regulatory protein Lrp is necessary for X. nematophila virulence and immunosuppression in insects, as well as colonization of the mutualistic host nematode Steinernema carpocapsae, and mediates expression of numerous genes implicated in each of these phenotypes. Given the central role of Lrp in X. nematophila host associations, as well as its involvement in regulating phenotypic variation pathways in other bacteria, we assessed its function in virulence modulation. We discovered that expression of lrp varies within an isogenic population, in a manner that correlates with modulation of virulence. Unexpectedly, although Lrp is necessary for optimal virulence and immunosuppression, cells expressing high levels of lrp were attenuated in these processes relative to those with low to intermediate lrp expression. Furthermore, fixed expression of lrp at high and low levels resulted in attenuated and normal virulence and immunosuppression, respectively, and eliminated population variability of these phenotypes. These data suggest that fluctuating lrp expression levels are sufficient to drive phenotypic variation in X. nematophila. IMPORTANCE Many bacteria use cell-to-cell phenotypic variation, characterized by distinct phenotypic subpopulations within an isogenic population, to cope with environmental change. Pathogenic bacteria utilize this strategy to vary antigen or virulence factor expression. Our work establishes that the global transcription factor Lrp regulates phenotypic variation in the insect pathogen Xenorhabdus nematophila, leading to attenuation of virulence and immunosuppression in insect hosts. Unexpectedly, we found an inverse correlation between Lrp expression levels and virulence: high levels of expression of Lrp

  17. Comparative Analysis of the Brassica napus Root and Leaf Transcript Profiling in Response to Drought Stress.

    PubMed

    Liu, Chunqing; Zhang, Xuekun; Zhang, Ka; An, Hong; Hu, Kaining; Wen, Jing; Shen, Jinxiong; Ma, Chaozhi; Yi, Bin; Tu, Jinxing; Fu, Tingdong

    2015-08-11

    Drought stress is one of the major abiotic factors affecting Brassica napus (B. napus) productivity. In order to identify genes of potential importance to drought stress and obtain a deeper understanding of the molecular mechanisms regarding the responses of B. napus to dehydration stress, we performed large-scale transcriptome sequencing of B. napus plants under dehydration stress using the Illumina sequencing technology. In this work, a relatively drought tolerant B. napus line, Q2, identified in our previous study, was used. Four cDNA libraries constructed from mRNAs of control and dehydration-treated root and leaf were sequenced by Illumina technology. A total of 6018 and 5377 differentially expressed genes (DEGs) were identified in root and leaf. In addition, 1745 genes exhibited a coordinated expression profile between the two tissues under drought stress, 1289 (approximately 74%) of which showed an inverse relationship, demonstrating different regulation patterns between the root and leaf. The gene ontology (GO) enrichment test indicated that up-regulated genes in root were mostly involved in "stimulus" "stress" biological process, and activated genes in leaf mainly functioned in "cell" "cell part" components. Furthermore, a comparative network related to plant hormone signal transduction and AREB/ABF, AP2/EREBP, NAC, WRKY and MYC/MYB transcription factors (TFs) provided a view of different stress tolerance mechanisms between root and leaf. Some of the DEGs identified may be candidates for future research aimed at detecting drought-responsive genes and will be useful for understanding the molecular mechanisms of drought tolerance in root and leaf of B. napus.

  18. Complete genome sequence and transcription profiles of the rock bream iridovirus RBIV-C1.

    PubMed

    Zhang, Bao-Cun; Zhang, Min; Sun, Bo-Guang; Fang, Yong; Xiao, Zhi-Zhong; Sun, Li

    2013-06-13

    The family Iridoviridae consists of 5 genera of double-stranded DNA viruses, including the genus Megalocytivirus, which contains species that are important fish pathogens. In a previous study, we isolated the first rock bream iridovirus from China (RBIV-C1) and identified it as a member of the genus Megalocytivirus. In this report, we determined the complete genomic sequence of RBIV-C1 and examined its in vivo expression profiles. The genome of RBIV-C1 is 112333 bp in length, with a GC content of 55% and a coding density of 92%. RBIV-C1 contains 4584 simple sequence repeats, 89.8% of which are distributed among coding regions. A total of 119 potential open reading frames (ORFs) were identified in RBIV-C1, including the 26 core iridovirus genes; 41 ORFs encode proteins that are predicted to be associated with essential biological functions. RBIV-C1 exhibits the highest degree of sequence conservation and colinear arrangement of genes with orange-spotted grouper iridovirus (OSGIV) and rock bream iridovirus (RBIV). The pairwise nucleotide identities are 99.49% between RBIV-C1 and OSGIV and 98.69% between RBIV-C1 and RBIV. Compared to OSGIV, RBIV-C1 contains 11 insertions, 13 deletions, and 103 single nucleotide mutations. Whole-genome transcription analysis showed that following experimental infection of rock bream with RBIV-C1, all but 1 of the 119 ORFs were expressed at different time points and clustered into 3 hierarchical groups based on their expression patterns. These results provide new insights into the genetic nature and gene expression features of megalocytiviruses.

  19. Effects of Argentilactone on the Transcriptional Profile, Cell Wall and Oxidative Stress of Paracoccidioides spp.

    PubMed

    Araújo, Felipe Souto; Coelho, Luciene Melo; Silva, Lívia do Carmo; da Silva Neto, Benedito Rodrigues; Parente-Rocha, Juliana Alves; Bailão, Alexandre Melo; de Oliveira, Cecília Maria Alves; Fernandes, Gabriel da Rocha; Hernández, Orville; Ochoa, Juan Guillermo McEwen; Soares, Célia Maria de Almeida; Pereira, Maristela

    2016-01-01

    Paracoccidioides spp., a dimorphic pathogenic fungus, is the etiologic agent of paracoccidioidomycosis (PCM). PCM is an endemic disease that affects at least 10 million people in Latin America, causing severe public health problems. The drugs used against pathogenic fungi have various side effects and limited efficacy; therefore, there is an inevitable and urgent medical need for the development of new antifungal drugs. In the present study, we evaluated the transcriptional profile of Paracoccidioides lutzii exposed to argentilactone, a constituent of the essential oil of Hyptis ovalifolia. A total of 1,058 genes were identified, of which 208 were up-regulated and 850 were down-regulated. Cell rescue, defense and virulence, with a total of 26 genes, was a functional category with a large number of genes induced, including heat shock protein 90 (hsp90), cytochrome c peroxidase (ccp), the hemoglobin ligand RBT5 (rbt5) and superoxide dismutase (sod). Quantitative real-time PCR revealed an increase in the expression level of all of those genes. An enzymatic assay showed a significant increase in SOD activity. The reduced growth of Pbhsp90-aRNA, Pbccp-aRNA, Pbsod-aRNA and Pbrbt5-aRNA isolates in the presence of argentilactone indicates the importance of these genes in the response of Paracoccidioides spp. to argentilactone. The response of the P. lutzii cell wall to argentilactone treatment was also evaluated. The results showed that argentilactone caused a decrease in the levels of polymers in the cell wall. These results suggest that argentilactone is a potential candidate for antifungal therapy.

  20. Comparative Analysis of the Brassica napus Root and Leaf Transcript Profiling in Response to Drought Stress.

    PubMed

    Liu, Chunqing; Zhang, Xuekun; Zhang, Ka; An, Hong; Hu, Kaining; Wen, Jing; Shen, Jinxiong; Ma, Chaozhi; Yi, Bin; Tu, Jinxing; Fu, Tingdong

    2015-01-01

    Drought stress is one of the major abiotic factors affecting Brassica napus (B. napus) productivity. In order to identify genes of potential importance to drought stress and obtain a deeper understanding of the molecular mechanisms regarding the responses of B. napus to dehydration stress, we performed large-scale transcriptome sequencing of B. napus plants under dehydration stress using the Illumina sequencing technology. In this work, a relatively drought tolerant B. napus line, Q2, identified in our previous study, was used. Four cDNA libraries constructed from mRNAs of control and dehydration-treated root and leaf were sequenced by Illumina technology. A total of 6018 and 5377 differentially expressed genes (DEGs) were identified in root and leaf. In addition, 1745 genes exhibited a coordinated expression profile between the two tissues under drought stress, 1289 (approximately 74%) of which showed an inverse relationship, demonstrating different regulation patterns between the root and leaf. The gene ontology (GO) enrichment test indicated that up-regulated genes in root were mostly involved in "stimulus" "stress" biological process, and activated genes in leaf mainly functioned in "cell" "cell part" components. Furthermore, a comparative network related to plant hormone signal transduction and AREB/ABF, AP2/EREBP, NAC, WRKY and MYC/MYB transcription factors (TFs) provided a view of different stress tolerance mechanisms between root and leaf. Some of the DEGs identified may be candidates for future research aimed at detecting drought-responsive genes and will be useful for understanding the molecular mechanisms of drought tolerance in root and leaf of B. napus. PMID:26270661

  1. Effects of Argentilactone on the Transcriptional Profile, Cell Wall and Oxidative Stress of Paracoccidioides spp.

    PubMed Central

    Araújo, Felipe Souto; Coelho, Luciene Melo; Silva, Lívia do Carmo; da Silva Neto, Benedito Rodrigues; Parente-Rocha, Juliana Alves; Bailão, Alexandre Melo; de Oliveira, Cecília Maria Alves; Fernandes, Gabriel da Rocha; Hernández, Orville; Ochoa, Juan Guillermo McEwen; Soares, Célia Maria de Almeida; Pereira, Maristela

    2016-01-01

    Paracoccidioides spp., a dimorphic pathogenic fungus, is the etiologic agent of paracoccidioidomycosis (PCM). PCM is an endemic disease that affects at least 10 million people in Latin America, causing severe public health problems. The drugs used against pathogenic fungi have various side effects and limited efficacy; therefore, there is an inevitable and urgent medical need for the development of new antifungal drugs. In the present study, we evaluated the transcriptional profile of Paracoccidioides lutzii exposed to argentilactone, a constituent of the essential oil of Hyptis ovalifolia. A total of 1,058 genes were identified, of which 208 were up-regulated and 850 were down-regulated. Cell rescue, defense and virulence, with a total of 26 genes, was a functional category with a large number of genes induced, including heat shock protein 90 (hsp90), cytochrome c peroxidase (ccp), the hemoglobin ligand RBT5 (rbt5) and superoxide dismutase (sod). Quantitative real-time PCR revealed an increase in the expression level of all of those genes. An enzymatic assay showed a significant increase in SOD activity. The reduced growth of Pbhsp90-aRNA, Pbccp-aRNA, Pbsod-aRNA and Pbrbt5-aRNA isolates in the presence of argentilactone indicates the importance of these genes in the response of Paracoccidioides spp. to argentilactone. The response of the P. lutzii cell wall to argentilactone treatment was also evaluated. The results showed that argentilactone caused a decrease in the levels of polymers in the cell wall. These results suggest that argentilactone is a potential candidate for antifungal therapy. PMID:26734764

  2. RNA-seq Transcriptional Profiling of Peripheral Blood Leukocytes from Cattle Infected with Mycobacterium bovis

    PubMed Central

    McLoughlin, Kirsten E.; Nalpas, Nicolas C.; Rue-Albrecht, Kévin; Browne, John A.; Magee, David A.; Killick, Kate E.; Park, Stephen D. E.; Hokamp, Karsten; Meade, Kieran G.; O’Farrelly, Cliona; Gormley, Eamonn; Gordon, Stephen V.; MacHugh, David E.

    2014-01-01

    Bovine tuberculosis, caused by infection with Mycobacterium bovis, is a major endemic disease affecting cattle populations worldwide, despite the implementation of stringent surveillance and control programs in many countries. The development of high-throughput functional genomics technologies, including gene expression microarrays and RNA-sequencing (RNA-seq), has enabled detailed analysis of the host transcriptome to M. bovis infection, particularly at the macrophage and peripheral blood level. In the present study, we have analyzed the peripheral blood leukocyte (PBL) transcriptome of eight natural M. bovis-infected and eight age- and sex-matched non-infected control Holstein-Friesian animals using RNA-seq. In addition, we compared gene expression profiles generated using RNA-seq with those previously generated using the high-density Affymetrix® GeneChip® Bovine Genome Array platform from the same PBL-extracted RNA. A total of 3,250 differentially expressed (DE) annotated genes were detected in the M. bovis-infected samples relative to the controls (adjusted P-value ≤0.05), with the number of genes displaying decreased relative expression (1,671) exceeding those with increased relative expression (1,579). Ingenuity® Systems Pathway Analysis (IPA) of all DE genes revealed enrichment for genes with immune function. Notably, transcriptional suppression was observed among several of the top-ranking canonical pathways including Leukocyte Extravasation Signaling. Comparative platform analysis demonstrated that RNA-seq detected a larger number of annotated DE genes (3,250) relative to the microarray (1,398), of which 917 genes were common to both technologies and displayed the same direction of expression. Finally, we show that RNA-seq had an increased dynamic range compared to the microarray for estimating differential gene expression. PMID:25206354

  3. Comparative Analysis of the Brassica napus Root and Leaf Transcript Profiling in Response to Drought Stress

    PubMed Central

    Liu, Chunqing; Zhang, Xuekun; Zhang, Ka; An, Hong; Hu, Kaining; Wen, Jing; Shen, Jinxiong; Ma, Chaozhi; Yi, Bin; Tu, Jinxing; Fu, Tingdong

    2015-01-01

    Drought stress is one of the major abiotic factors affecting Brassica napus (B. napus) productivity. In order to identify genes of potential importance to drought stress and obtain a deeper understanding of the molecular mechanisms regarding the responses of B. napus to dehydration stress, we performed large-scale transcriptome sequencing of B. napus plants under dehydration stress using the Illumina sequencing technology. In this work, a relatively drought tolerant B. napus line, Q2, identified in our previous study, was used. Four cDNA libraries constructed from mRNAs of control and dehydration-treated root and leaf were sequenced by Illumina technology. A total of 6018 and 5377 differentially expressed genes (DEGs) were identified in root and leaf. In addition, 1745 genes exhibited a coordinated expression profile between the two tissues under drought stress, 1289 (approximately 74%) of which showed an inverse relationship, demonstrating different regulation patterns between the root and leaf. The gene ontology (GO) enrichment test indicated that up-regulated genes in root were mostly involved in “stimulus” “stress” biological process, and activated genes in leaf mainly functioned in “cell” “cell part” components. Furthermore, a comparative network related to plant hormone signal transduction and AREB/ABF, AP2/EREBP, NAC, WRKY and MYC/MYB transcription factors (TFs) provided a view of different stress tolerance mechanisms between root and leaf. Some of the DEGs identified may be candidates for future research aimed at detecting drought-responsive genes and will be useful for understanding the molecular mechanisms of drought tolerance in root and leaf of B. napus. PMID:26270661

  4. Calorie restriction in humans inhibits the PI3K/AKT pathway and induces a younger transcription profile

    PubMed Central

    Mercken, Evi M.; Crosby, Seth D.; Lamming, Dudley W.; JeBailey, Lellean; Krzysik-Walker, Susan; Villareal, Dennis; Capri, Miriam; Franceschi, Claudio; Zhang, Yongqing; Becker, Kevin; Sabatini, David M.; de Cabo, Rafael; Fontana, Luigi

    2013-01-01

    Summary Caloric restriction (CR) and down-regulation of the insulin/IGF pathway are the most robust interventions known to increase longevity in lower organisms. However, little is known about the molecular adaptations induced by CR in humans. Here we report that long-term CR in humans inhibits the IGF-1/insulin pathway in skeletal muscle, a key metabolic tissue. We also demonstrate that CR-induced dramatic changes of the skeletal muscle transcriptional profile that resemble those of younger individuals. Finally, in both rats and humans CR evoked similar responses in the transcriptional profiles of skeletal muscle. This common signature consisted of three key pathways typically associated with longevity: IGF-1/insulin signaling, mitochondrial biogenesis and inflammation. Furthermore, our data identifies promising pathways for therapeutic targets to combat age-related diseases and promote health in humans. PMID:23601134

  5. Transcript profiles of maize embryo sacs and preliminary identification of genes involved in the embryo sac–pollen tube interaction

    PubMed Central

    Wang, Shuai Shuai; Wang, Fang; Tan, Su Jian; Wang, Ming Xiu; Sui, Na; Zhang, Xian Sheng

    2014-01-01

    The embryo sac, the female gametophyte of flowering plants, plays important roles in the pollination and fertilization process. Maize (Zea mays L.) is a model monocot, but little is known about the interactions between its embryo sac and the pollen tube. In this study, we compared the transcript profiles of mature embryo sacs, mature embryo sacs 14–16 h after pollination, and mature nucelli. Comparing the transcript profiles of the embryo sacs before and after the entry of the pollen tube, we identified 3467 differentially expressed transcripts (3382 differentially expressed genes; DEGs). The DEGs were grouped into 22 functional categories. Among the DEGs, 221 genes were induced upon the entry of the pollen tube, and many of them encoded proteins involved in RNA binding, processing, and transcription, signaling, miscellaneous enzyme family processes, and lipid metabolism processes. Genes in the DEG dataset were grouped into 17 classes in a gene ontology enrichment analysis. The DEGs included many genes encoding proteins involved in protein amino acid phosphorylation and protein ubiquitination, implying that these processes might play important roles in the embryo sac–pollen tube interaction. Additionally, our analyses indicate that the expression of 112 genes encoding cysteine-rich proteins (CRPs) is induced during pollination and fertilization. The CRPs likely regulate pollen tube guidance and embryo sac development. These results provide important information on the genes involved in the embryo sac–pollen tube interaction in maize. PMID:25566277

  6. Global transcriptional response of Escherichia coli O157:H7 to growth transitions in glucose minimal medium

    PubMed Central

    Bergholz, Teresa M; Wick, Lukas M; Qi, Weihong; Riordan, James T; Ouellette, Lindsey M; Whittam, Thomas S

    2007-01-01

    phase belonged to one cluster (n = 923) which includes genes involved in stress responses (e.g. gadAB, osmBC, and dps). These transcript levels remained relatively high for > 3 h in stationary phase. The Shiga toxin genes (stx1AB and stx2B) were significantly induced after transition into stationary phase. Conclusion: Expression of more than 300 O157-specific ORFs, many implicated in virulence of the O157 pathogen, was modulated in a growth dependent manner. These results provide a baseline transcriptional profile that can be compared to patterns of gene expression of this important foodborne pathogen under adverse environmental conditions. PMID:17967175

  7. Global transcriptional expression in ovarian follicles from Tsaiya ducks (Anas platyrhynchos) with a high-fertilization rate.

    PubMed

    Wu, Shyh-Jong; Cheng, Yu-Shin; Liu, Hsiao-Lung; Wang, Hsing-He; Huang, Hsiu-Lin

    2016-05-01

    Novel candidates for biomarkers of a high-fertilization rate were identified here through global transcriptional profiling of ovarian follicles. Some other differentially expressed candidate genes were first noted to influence animal reproduction in our previous cDNA microarray analysis and are now recognized as markers for marker-assisted selection. In the present study, we compared gene expression in ovarian follicles from animals with high- and low-fertilization rates using an oligonucleotide array. On the basis of a fold change of greater than 1.2 and less than -1.2, a difference of >100 Affymetrix arbitrary units between the two groups, and a P value of less than 0.05, 47 genes were found to be associated with fertilization rate. GOEAST and MetaCore software were further used to identify the functional categories of genes that were differentially expressed. Then, we focused on three interesting genes associated with a high-fertilization rate: one of these genes was discovered to participate in signaling pathways of fertilization, and two genes take roles in lipid metabolism. An oligonucleotide array showed that the levels of orthodenticle homeobox 2 (OTX2) and lecithin:cholesterol acyltransferase (LCAT) gene expression were 1.62-fold and 1.95-fold higher in the high-fertilization rate group than in the low-fertilization rate group, respectively (P < 0.05). The level of apolipoprotein A-I (APOA1) gene expression was also higher in the high-fertilization rate group, with a difference of 2.31-fold (P < 0.05). The data were validated through quantitative polymerase chain reaction analysis. These results confirm the usefulness of the array technique and data mining methods in the discovery of new biomarkers and add knowledge to our understanding of the factors affecting fertilization rates in ovarian follicles. PMID:26861074

  8. Small RNAs endow a transcriptional activator with essential repressor functions for single-tier control of a global stress regulon.

    PubMed

    Gogol, Emily B; Rhodius, Virgil A; Papenfort, Kai; Vogel, Jörg; Gross, Carol A

    2011-08-01

    The Escherichia coli σ(E) envelope stress response monitors and repairs the outer membrane, a function central to the life of Gram-negative bacteria. The σ(E) stress response was characterized as a single-tier activation network comprised of ~100 genes, including the MicA and RybB noncoding sRNAs. These highly expressed sRNAs were thought to carry out the specialized function of halting de novo synthesis of several abundant porins when envelope homeostasis was perturbed. Using a systematic target profiling and validation approach we discovered that MicA and RybB are each global mRNA repressors of both distinct and shared targets, and that the two sRNAs constitute a posttranscriptional repression arm whose regulatory scope rivals that of the protein-based σ(E) activation arm. Intriguingly, porin mRNAs constitute only ~1/3 of all targets and new nonporin targets predict roles for MicA and RybB in crosstalk with other regulatory responses. This work also provides an example of evolutionarily unrelated sRNAs that are coinduced and bind the same targets, but at different sites. Our finding that expression of either MicA or RybB sRNA protects the cell from the loss of viability experienced when σ(E) activity is inadequate illustrates the importance of the posttranscriptional repression arm of the response. σ(E) is a paradigm of a single-tier stress response with a clear division of labor in which highly expressed noncoding RNAs (MicA, RybB) endow a transcriptional factor intrinsically restricted to gene activation (σ(E)) with the opposite repressor function. PMID:21768388

  9. Small RNAs endow a transcriptional activator with essential repressor functions for single-tier control of a global stress regulon

    PubMed Central

    Gogol, Emily B.; Rhodius, Virgil A.; Papenfort, Kai; Vogel, Jörg; Gross, Carol A.

    2011-01-01

    The Escherichia coli σE envelope stress response monitors and repairs the outer membrane, a function central to the life of Gram-negative bacteria. The σE stress response was characterized as a single-tier activation network comprised of ∼100 genes, including the MicA and RybB noncoding sRNAs. These highly expressed sRNAs were thought to carry out the specialized function of halting de novo synthesis of several abundant porins when envelope homeostasis was perturbed. Using a systematic target profiling and validation approach we discovered that MicA and RybB are each global mRNA repressors of both distinct and shared targets, and that the two sRNAs constitute a posttranscriptional repression arm whose regulatory scope rivals that of the protein-based σE activation arm. Intriguingly, porin mRNAs constitute only ∼1/3 of all targets and new nonporin targets predict roles for MicA and RybB in crosstalk with other regulatory responses. This work also provides an example of evolutionarily unrelated sRNAs that are coinduced and bind the same targets, but at different sites. Our finding that expression of either MicA or RybB sRNA protects the cell from the loss of viability experienced when σE activity is inadequate illustrates the importance of the posttranscriptional repression arm of the response. σE is a paradigm of a single-tier stress response with a clear division of labor in which highly expressed noncoding RNAs (MicA, RybB) endow a transcriptional factor intrinsically restricted to gene activation (σE) with the opposite repressor function. PMID:21768388

  10. Fidelity and enhanced sensitivity of differential transcription profiles following linear amplification of nanogram amounts of endothelial mRNA

    NASA Technical Reports Server (NTRS)

    Polacek, Denise C.; Passerini, Anthony G.; Shi, Congzhu; Francesco, Nadeene M.; Manduchi, Elisabetta; Grant, Gregory R.; Powell, Steven; Bischof, Helen; Winkler, Hans; Stoeckert, Christian J Jr; Davies, Peter F.

    2003-01-01

    Although mRNA amplification is necessary for microarray analyses from limited amounts of cells and tissues, the accuracy of transcription profiles following amplification has not been well characterized. We tested the fidelity of differential gene expression following linear amplification by T7-mediated transcription in a well-established in vitro model of cytokine [tumor necrosis factor alpha (TNFalpha)]-stimulated human endothelial cells using filter arrays of 13,824 human cDNAs. Transcriptional profiles generated from amplified antisense RNA (aRNA) (from 100 ng total RNA, approximately 1 ng mRNA) were compared with profiles generated from unamplified RNA originating from the same homogeneous pool. Amplification accurately identified TNFalpha-induced differential expression in 94% of the genes detected using unamplified samples. Furthermore, an additional 1,150 genes were identified as putatively differentially expressed using amplified RNA which remained undetected using unamplified RNA. Of genes sampled from this set, 67% were validated by quantitative real-time PCR as truly differentially expressed. Thus, in addition to demonstrating fidelity in gene expression relative to unamplified samples, linear amplification results in improved sensitivity of detection and enhances the discovery potential of high-throughput screening by microarrays.

  11. Gene transcription profiles associated with inter-modular hubs and connection distance in human functional magnetic resonance imaging networks

    PubMed Central

    Vértes, Petra E.; Rittman, Timothy; Whitaker, Kirstie J.; Romero-Garcia, Rafael; Váša, František; Wagstyl, Konrad; Fonagy, Peter; Dolan, Raymond J.; Jones, Peter B.; Goodyer, Ian M.

    2016-01-01

    Human functional magnetic resonance imaging (fMRI) brain networks have a complex topology comprising integrative components, e.g. long-distance inter-modular edges, that are theoretically associated with higher biological cost. Here, we estimated intra-modular degree, inter-modular degree and connection distance for each of 285 cortical nodes in multi-echo fMRI data from 38 healthy adults. We used the multivariate technique of partial least squares (PLS) to reduce the dimensionality of the relationships between these three nodal network parameters and prior microarray data on regional expression of 20 737 genes. The first PLS component defined a transcriptional profile associated with high intra-modular degree and short connection distance, whereas the second PLS component was associated with high inter-modular degree and long connection distance. Nodes in superior and lateral cortex with high inter-modular degree and long connection distance had local transcriptional profiles enriched for oxidative metabolism and mitochondria, and for genes specific to supragranular layers of human cortex. In contrast, primary and secondary sensory cortical nodes in posterior cortex with high intra-modular degree and short connection distance had transcriptional profiles enriched for RNA translation and nuclear components. We conclude that, as predicted, topologically integrative hubs, mediating long-distance connections between modules, are more costly in terms of mitochondrial glucose metabolism. This article is part of the themed issue ‘Interpreting BOLD: a dialogue between cognitive and cellular neuroscience’. PMID:27574314

  12. Gene transcription profiles associated with inter-modular hubs and connection distance in human functional magnetic resonance imaging networks.

    PubMed

    Vértes, Petra E; Rittman, Timothy; Whitaker, Kirstie J; Romero-Garcia, Rafael; Váša, František; Kitzbichler, Manfred G; Wagstyl, Konrad; Fonagy, Peter; Dolan, Raymond J; Jones, Peter B; Goodyer, Ian M; Bullmore, Edward T

    2016-10-01

    Human functional magnetic resonance imaging (fMRI) brain networks have a complex topology comprising integrative components, e.g. long-distance inter-modular edges, that are theoretically associated with higher biological cost. Here, we estimated intra-modular degree, inter-modular degree and connection distance for each of 285 cortical nodes in multi-echo fMRI data from 38 healthy adults. We used the multivariate technique of partial least squares (PLS) to reduce the dimensionality of the relationships between these three nodal network parameters and prior microarray data on regional expression of 20 737 genes. The first PLS component defined a transcriptional profile associated with high intra-modular degree and short connection distance, whereas the second PLS component was associated with high inter-modular degree and long connection distance. Nodes in superior and lateral cortex with high inter-modular degree and long connection distance had local transcriptional profiles enriched for oxidative metabolism and mitochondria, and for genes specific to supragranular layers of human cortex. In contrast, primary and secondary sensory cortical nodes in posterior cortex with high intra-modular degree and short connection distance had transcriptional profiles enriched for RNA translation and nuclear components. We conclude that, as predicted, topologically integrative hubs, mediating long-distance connections between modules, are more costly in terms of mitochondrial glucose metabolism.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'. PMID:27574314

  13. Gene transcription profiles associated with inter-modular hubs and connection distance in human functional magnetic resonance imaging networks.

    PubMed

    Vértes, Petra E; Rittman, Timothy; Whitaker, Kirstie J; Romero-Garcia, Rafael; Váša, František; Kitzbichler, Manfred G; Wagstyl, Konrad; Fonagy, Peter; Dolan, Raymond J; Jones, Peter B; Goodyer, Ian M; Bullmore, Edward T

    2016-10-01

    Human functional magnetic resonance imaging (fMRI) brain networks have a complex topology comprising integrative components, e.g. long-distance inter-modular edges, that are theoretically associated with higher biological cost. Here, we estimated intra-modular degree, inter-modular degree and connection distance for each of 285 cortical nodes in multi-echo fMRI data from 38 healthy adults. We used the multivariate technique of partial least squares (PLS) to reduce the dimensionality of the relationships between these three nodal network parameters and prior microarray data on regional expression of 20 737 genes. The first PLS component defined a transcriptional profile associated with high intra-modular degree and short connection distance, whereas the second PLS component was associated with high inter-modular degree and long connection distance. Nodes in superior and lateral cortex with high inter-modular degree and long connection distance had local transcriptional profiles enriched for oxidative metabolism and mitochondria, and for genes specific to supragranular layers of human cortex. In contrast, primary and secondary sensory cortical nodes in posterior cortex with high intra-modular degree and short connection distance had transcriptional profiles enriched for RNA translation and nuclear components. We conclude that, as predicted, topologically integrative hubs, mediating long-distance connections between modules, are more costly in terms of mitochondrial glucose metabolism.This article is part of the themed issue 'Interpreting BOLD: a dialogue between cognitive and cellular neuroscience'.

  14. Transcriptional profiling of genes involved in embryogenic, non-embryogenic calluses and somatic embryogenesis of Valencia sweet orange by SSH-based microarray.

    PubMed

    Ge, Xiao-Xia; Chai, Li-Jun; Liu, Zheng; Wu, Xiao-Meng; Deng, Xiu-Xin; Guo, Wen-Wu

    2012-10-01

    Somatic embryogenesis (SE) is a most promising technology that is used for in vitro germplasm conservation and genetic improvement via biotechnological approaches in citrus. Herein, three suppression subtractive hybridization (SSH) libraries were constructed using calluses of Citrus sinensis cv. 'Valencia' to explore the molecular mechanisms that underlie the SE in citrus. A total of 880 unisequences were identified by microarray screening based on these three SSH libraries. Gene ontology analysis of the differentially expressed genes indicated that nucleolus associated regulation and biogenesis processes, hormone signal transduction, and stress factors might be involved in SE. Transcription factors might also play an important role. LEC1/B3 domain regulatory network genes (LEC1, L1L, FUS3, ABI3, and ABI5) were isolated in citrus SE. Some new transcription factors associated with citrus SE, like a B3 domain containing gene and HB4, were identified. To understand the influence of these isolated genes on SE competence, their expression profiles were compared among callus lines of seven citrus cultivars with different SE competence. The expression dynamics suggested that these genes could be necessary for the SE initiation and might play a role in embryogenic competence maintenance in different cultivars. On the basis of gene expression profiles, an overview of major physiological and biosynthesis processes at different developmental stages during citrus SE is presented. For the first time, these data provide a global resource for transcriptional events important for SE in citrus, and the specific genes offer new information for further investigation on citrus SE maintenance and development.

  15. Transcriptional profiling by cDNA-AFLP analysis showed differential transcript abundance in response to water stress in Populus hopeiensis

    PubMed Central

    2012-01-01

    Background Drought is one of the main environmental factors limiting tree growth and productivity of plantation forests worldwide. Populus hopeiensis Hu et Chow is one of the most important commercial plantation tree species in China. However, the genes controlling drought tolerance in this species have not been identified or characterized. Here, we conducted differential expression analyses and identified a number of genes that were up- or downregulated in P. hopeiensis during water stress. To the best of our knowledge, this is the first comprehensive study of differentially expressed genes in water-stressed P. hopeiensis. Results Using the cDNA-AFLP detection technique, we used 256 primer combinations to identify differentially expressed genes in P. hopeiensis during water stress. In total, 415 transcript derived-fragments (TDFs) were obtained from 10× deep sequencing of 473 selected TDFs. Of the 415 TDFs, 412 were annotated by BLAST searches against various databases. The majority of these genes encoded products involved in ion transport and compartmentalization, cell division, metabolism, and protein synthesis. The TDFs were clustered into 12 groups on the basis of their expression patterns. Of the 415 reliable TDFs, the sequences of 35 were homologous to genes that play roles in short or long-term resistance to drought stress. Some genes were further selected for validation of cDNA-AFLP expression patterns using real-time PCR analyses. The results confirmed the expression patterns that were detected using the cDNA-AFLP technique. Conclusion The cDNA-AFLP technique is an effective and powerful tool for identifying candidate genes that are differentially expressed under water stress. We demonstrated that 415 TDFs were differentially expressed in water-stressed poplar. The products of these genes are involved in various biological processes in the drought response of poplar. The results of this study will aid in the identification of candidate genes of future

  16. Transcriptional profiling of canola developing embryo and identification of the important roles of BnDof5.6 in embryo development and fatty acids synthesis.

    PubMed

    Deng, Wei; Yan, Fang; Zhang, Xiaolan; Tang, Yuwei; Yuan, Yujin

    2015-08-01

    Canola is an important vegetable oil crop globally, and the understanding of the molecular mechanism underlying fatty acids biosynthesis during seed embryo development is an important research goal. Here we report the transcriptional profiling analysis of developing canola embryos using RNA-sequencing (RNA-Seq) method. RNA-Seq analysis generated 58,579,451 sequence reads aligned with 32,243 genes. It was found that a total of 55 differential expression genes (DEGs) encoding 28 enzymes function in carbon flow to fatty acids of storage TAG. Most of the DEGs encoding above enzymes showed similar expression pattern, indicating the DEGs are cooperatively involved in carbon flow into fatty acids. In addition, 41 DEGs associated with signal transductions, transport and metabolic processing of auxin, gibberellin, abscisic acid, cytokinin and salicylic acids were found in the RNA-Seq database, which indicates the important roles of the phytohormones in controlling embryo development and fatty acids synthesis. 122 DEGs encoding transcriptional factor family members were found in developing canola embryos. Furthermore, BnDOF5.6, a zinc finger transcriptional factor gene, found in RNA-Seq database was down-regulated in developing canola embryos. The transgenic plants displayed reduced embryo sizes, decreased fatty acids contents and altered seed fatty acids composition in canola. Down-regulated of BnDof5.6 also changed the expression levels of genes involved in fatty acids synthesis and desaturation. Our results indicate that BnDof5.6 is required for embryo development and fatty acids synthesis in canola. Overall this study presents new information on the global expression patterns of genes during embryo development and will expand our understanding of the complex molecular mechanism of carbon flow into fatty acids and embryo development in canola. PMID:26092973

  17. Transcript profiles at different growth stages and tap-root zones identify correlated developmental and metabolic pathways of sugar beet.

    PubMed

    Bellin, Diana; Schulz, Britta; Soerensen, Thomas Rosleff; Salamini, Francesco; Schneider, Katharina

    2007-01-01

    Field-grown sugar beets were analysed for morphological characters, sucrose content, and reproducible transcript profiles by macroarray analyses with 11,520 unique sugar-beet cDNA targets in two different years. Seasonal differences were partly compensated by expressing sampling dates as thermal time. During early beet development the number of cambial rings, root length, and sucrose concentration had already achieved >40% of their final values. Sucrose levels rose from 10% to 17% over the thermal time of 1300-1400 degrees Cd with only small changes later when lower concentrations were restricted to the exterior zone at the minimum of the spatial sucrose gradient through the beet. The number of leaves and root diameter followed the same temporal growth pattern, but mass increased until beet maturity at around 2000 degrees Cd. Cluster analysis identified 543 transcripts with reproducible preferential expression between 1300-1400 degrees Cd, and 170 showing the highest transcript levels later. In maturing beets, 373 transcripts were over-represented in the inner zone and 148 in the outer zone. During early development, genes involved in cytoskeletal reorganization and transport processes showed the highest transcript levels. Cell wall biogenesis-, defence-, stress-, and degradation-related transcripts were identified in all samples, and associated with pathogen attack during late development and in the outer zone. Candidates with potential roles in carbohydrate metabolism appeared to serve anaplerotic functions by converting excess intermediates to sucrose production. Transcripts preferentially occurring in sucrose-accumulating young beet cells and newly generated peripheral cells of mature beets are discussed as potential breeding targets to improve sink strength and growth.

  18. PSR1 Is a Global Transcriptional Regulator of Phosphorus Deficiency Responses and Carbon Storage Metabolism in Chlamydomonas reinhardtii1[OPEN

    PubMed Central

    Bajhaiya, Amit K.; Dean, Andrew P.; Zeef, Leo A.H.; Webster, Rachel E.; Pittman, Jon K.

    2016-01-01

    Many eukaryotic microalgae modify their metabolism in response to nutrient stresses such as phosphorus (P) starvation, which substantially induces storage metabolite biosynthesis, but the genetic mechanisms regulating this response are poorly understood. Here, we show that P starvation-induced lipid and starch accumulation is inhibited in a Chlamydomonas reinhardtii mutant lacking the transcription factor Pi Starvation Response1 (PSR1). Transcriptomic analysis identified specific metabolism transcripts that are induced by P starvation but misregulated in the psr1 mutant. These include transcripts for starch and triacylglycerol synthesis but also transcripts for photosynthesis-, redox-, and stress signaling-related proteins. To further examine the role of PSR1 in regulating lipid and starch metabolism, PSR1 complementation lines in the psr1 strain and PSR1 overexpression lines in a cell wall-deficient strain were generated. PSR1 expression in the psr1 lines was shown to be functional due to rescue of the psr1 phenotype. PSR1 overexpression lines exhibited increased starch content and number of starch granules per cell, which correlated with a higher expression of specific starch metabolism genes but reduced neutral lipid content. Furthermore, this phenotype was consistent in the presence and absence of acetate. Together, these results identify a key transcriptional regulator in global metabolism and demonstrate transcriptional engineering in microalgae to modulate starch biosynthesis. PMID:26704642

  19. Global transcriptome analysis profiles metabolic pathways in traditional herb Astragalus membranaceus Bge. var. mongolicus (Bge.) Hsiao

    PubMed Central

    2015-01-01

    Background Astragalus membranaceus Bge. var. mongolicus (Bge.) Hsiao (A. mongolicus, family Leguminosae) is one of the most important traditional Chinese herbs. Among many secondary metabolites it produces, the effective bioactive constituents include isoflavonoids and triterpene saponins. The genomic resources regarding the biosynthesis of these metabolites in A. mongolicus are limited. Although roots are the primary material harvested for medical use, the biosynthesis of the bioactive compounds and its regulation in A. mongolicus are not well understood. Therefore, a global transcriptome analysis on A. mongolicus tissues was performed to identify the genes essential for the metabolism and to profile their expression patterns in greater details. Results RNA-sequencing was performed for three different A. mongolicus tissues: leaf, stem, and root, using the Illumina Hiseq2000 platform. A total of 159.5 million raw sequence reads were generated, and assembled into 186,324 unigenes with an N50 of 1,524bp. Among them, 129,966 unigenes (~69.7%) were annotated using four public databases (Swiss-Prot, TrEMBL, CDD, Pfam), and 90,202, 63,946, and 78,326 unigenes were found to express in leaves, roots, and stems, respectively. A total of 8,025 transcription factors (TFs) were identified, in which the four largest families, bHLH, MYB, C3H, and WRKY, were implicated in regulation of tissue development, metabolisms, stress response, etc. Unigenes associated with secondary metabolism, especially those with isolavonoids and triterpene saponins biosynthesis were characterized and profiled. Most genes involved in the isoflavonoids biosynthesis had the lowest expression in the leaves, and the highest in the stems. For triterpene saponin biosynthesis, we found the genes in MVA and non-MVA pathways were differentially expressed among three examined tissues, indicating the parallel but compartmentally separated biosynthesis pathways of IPP and DMAPP in A. mongolicus. The first

  20. Bacterial global regulators DksA/ppGpp increase fidelity of transcription.

    PubMed

    Roghanian, Mohammad; Zenkin, Nikolay; Yuzenkova, Yulia

    2015-02-18

    Collisions between paused transcription elongation complexes and replication forks inevitably happen, which may lead to collapse of replication fork and could be detrimental to cells. Bacterial transcription factor DksA and its cofactor alarmone ppGpp were proposed to contribute to prevention of such collisions, although the mechanism of this activity remains elusive. Here we show that DksA/ppGpp do not destabilise transcription elongation complexes or inhibit their backtracking, as was proposed earlier. Instead, we show, both in vitro and in vivo, that DksA/ppGpp increase fidelity of transcription elongation by slowing down misincorporation events. As misincorporation events cause temporary pauses, contribution to fidelity suggests the mechanism by which DksA/ppGpp contribute to prevention of collisions of transcription elongation complexes with replication forks. DksA is only the second known accessory factor, after transcription factor Gre, that increases fidelity of RNA synthesis in bacteria.

  1. Transcriptional Profile of Mycobacterium tuberculosis Replicating in Type II Alveolar Epithelial Cells

    PubMed Central

    Peng, Zhengyu; Laal, Suman

    2015-01-01

    Mycobacterium tuberculosis (M. tb) infection is initiated by the few bacilli inhaled into the alveolus. Studies in lungs of aerosol-infected mice provided evidence for extensive replication of M. tb in non-migrating, non-antigen-presenting cells in the alveoli during the first 2–3 weeks post-infection. Alveoli are lined by type II and type I alveolar epithelial cells (AEC) which outnumber alveolar macrophages by several hundred-fold. M. tb DNA and viable M. tb have been demonstrated in AEC and other non-macrophage cells of the kidney, liver, and spleen in autopsied tissues from latently-infected subjects from TB-endemic regions indicating systemic bacterial dissemination during primary infection. M. tb have also been demonstrated to replicate rapidly in A549 cells (type II AEC line) and acquire increased invasiveness for endothelial cells. Together, these results suggest that AEC could provide an important niche for bacterial expansion and development of a phenotype that promotes dissemination during primary infection. In the current studies, we have compared the transcriptional profile of M. tb replicating intracellularly in A549 cells to that of M. tb replicating in laboratory broth, by microarray analysis. Genes significantly upregulated during intracellular residence were consistent with an active, replicative, metabolic, and aerobic state, as were genes for tryptophan synthesis and for increased virulence (ESAT-6, and ESAT-6-like genes, esxH, esxJ, esxK, esxP, and esxW). In contrast, significant downregulation of the DevR (DosR) regulon and several hypoxia-induced genes was observed. Stress response genes were either not differentially expressed or were downregulated with the exception of the heat shock response and those induced by low pH. The intra-type II AEC M. tb transcriptome strongly suggests that AEC could provide a safe haven in which M. tb can expand dramatically and disseminate from the lung prior to the elicitation of adaptive immune responses

  2. Physiological Basis and Transcriptional Profiling of Three Salt-Tolerant Mutant Lines of Rice

    PubMed Central

    Domingo, Concha; Lalanne, Eric; Catalá, María M.; Pla, Eva; Reig-Valiente, Juan L.; Talón, Manuel

    2016-01-01

    Salinity is a complex trait that affects growth and productivity in many crops, including rice. Mutation induction, a useful tool to generate salt tolerant plants, enables the analysis of plants with similar genetic background, facilitating the understanding of the salt tolerance mechanisms. In this work, we generated three salt tolerant mutant lines by irradiation of a salt-sensitive cultivar plants and screened M2 plants at seedling stage in the presence of high salinity. These three lines, SaT20, SaS62, and SaT58, showed different responses to salinity, but exhibited similar phenotype to wild type plants, except SaT20 that displayed shorter height when grown in the absence of salt. Under salt conditions, all three mutants and the parental line showed similar reduction in yield, although relevant differences in other physiological parameters, such as Na+ accumulation in healthy leaves of SaT20, were registered. Microarray analyses of gene expression profiles in roots revealed the occurrence of common and specific responses in the mutants. The three mutants showed up-regulation of responsive genes, the activation of oxido-reduction process and the inhibition of ion transport. The participation of jasmonate in the plant response to salt was evident by down-regulation of a gene coding for a jasmonate O-methyltransferase. Genes dealing with lipid transport and metabolism were, in general, up-regulated except in SaS62, that also exhibited down-regulation of genes involved in ion transport and Ca2+ signal transduction. The two most tolerant varieties, SaS62 and SaT20, displayed lower levels of transcripts involved in K+ uptake. The physiological study and the description of the expression analysis evidenced that the three lines showed different responses to salt: SaT20 showed a high Na+ content in leaves, SaS62 presented an inhibition of lipid metabolism and ion transport and SaT58 differs in both features in the response to salinity. The analysis of these salt

  3. Global transcriptional response of Clostridium difficile carrying the CD38 prophage.

    PubMed

    Sekulovic, Ognjen; Fortier, Louis-Charles

    2015-02-01

    Clostridium difficile is one of the most dangerous pathogens in hospital settings. Most strains of C. difficile carry one or more prophages, and some of them, like CD38-2 and CD119, can influence the expression of toxin genes. However, little is known about the global host response in the presence of a given prophage. In order to fill this knowledge gap, we used high-throughput RNA sequencing (RNA-seq) to conduct a genome-wide transcriptomic analysis of the epidemic C. difficile strain R20291 carrying the CD38-2 prophage. A total of 39 bacterial genes were differentially expressed in the R20291 lysogen, 26 of them being downregulated. Several of the regulated genes encode transcriptional regulators and phosphotransferase system (PTS) subunits involved in glucose, fructose, and glucitol/sorbitol uptake and metabolism. CD38-2 also upregulated the expression of a group of regulatory genes located in phi-027, a resident prophage common to most ribotype 027 isolates. The most differentially expressed gene was that encoding the conserved phase-variable cell wall protein CwpV, which was upregulated 20-fold in the lysogen. Quantitative PCR and immunofluorescence showed that the increased cwpV expression results from a greater proportion of cells actively transcribing the gene. Indeed, 95% of f lysogenic cells express cwpV, as opposed to only 5% of wild-type cells. Furthermore, the higher proportion of cells expressing cwpV results from a higher frequency of recombination of the genetic switch controlling phase variation, which we confirmed to be dependent on the host-encoded recombinase RecV. In summary, CD38-2 interferes with phase variation of the surface protein CwpV and the expression of metabolic genes. PMID:25501487

  4. Genomewide transcriptional signatures of migratory flight activity in a globally invasive insect pest.

    PubMed

    Jones, Christopher M; Papanicolaou, Alexie; Mironidis, George K; Vontas, John; Yang, Yihua; Lim, Ka S; Oakeshott, John G; Bass, Chris; Chapman, Jason W

    2015-10-01

    Migration is a key life history strategy for many animals and requires a suite of behavioural, morphological and physiological adaptations which together form the 'migratory syndrome'. Genetic variation has been demonstrated for many traits that make up this syndrome, but the underlying genes involved remain elusive. Recent studies investigating migration-associated genes have focussed on sampling migratory and nonmigratory populations from different geographic locations but have seldom explored phenotypic variation in a migratory trait. Here, we use a novel combination of tethered flight and next-generation sequencing to determine transcriptomic differences associated with flight activity in a globally invasive moth pest, the cotton bollworm Helicoverpa armigera. By developing a state-of-the-art phenotyping platform, we show that field-collected H. armigera display continuous variation in flight performance with individuals capable of flying up to 40 km during a single night. Comparative transcriptomics of flight phenotypes drove a gene expression analysis to reveal a suite of expressed candidate genes which are clearly related to physiological adaptations required for long-distance flight. These include genes important to the mobilization of lipids as flight fuel, the development of flight muscle structure and the regulation of hormones that influence migratory physiology. We conclude that the ability to express this complex set of pathways underlines the remarkable flexibility of facultative insect migrants to respond to deteriorating conditions in the form of migratory flight and, more broadly, the results provide novel insights into the fundamental transcriptional changes required for migration in insects and other taxa.

  5. Oral Bisphenol A (BPA) given to rats at moderate doses is associated with erectile dysfunction, cavernosal lipofibrosis and alterations of global gene transcription.

    PubMed

    Kovanecz, I; Gelfand, R; Masouminia, M; Gharib, S; Segura, D; Vernet, D; Rajfer, J; Li, D K; Kannan, K; Gonzalez-Cadavid, N F

    2014-01-01

    Bisphenol A (BPA), a suspected reproductive biohazard and endocrine disruptor, released from plastics is associated with ED in occupationally exposed workers. However, in rats, despite the induction of hypogonadism, apoptosis of the penile corporal smooth muscle (SM), fat infiltration into the cavernosal tissue and changes in global gene expression with the intraperitoneal administration of high dose BPA, ED was not observed. We investigated whether BPA administered orally rather than intraperitoneally to rats for longer periods and lower doses will lead to ED. Main outcome measures are ED, histological, and biochemical markers in rat penile tissues. In all, 2.5-month-old rats were given drinking water daily without and with BPA at 1 and 0.1 mg kg(-1) per day. Two months later, erectile function was determined by cavernosometry and electrical field stimulation (EFS) and serum levels of testosterone (T), estradiol (E2) and BPA were measured. Penile tissue sections were assayed by Masson (SM/collagen), Oil Red O (fat), terminal deoxynucleotidyl transferase dUTP nick end labeling (TUNEL) (apoptosis), immunohistochemistry for Oct4 (stem cells), and α-SM actin/calponin (SM and myofibroblasts), applying quantitative image analysis. Other markers were assayed by western blotting. DNA microarrays/microRNA (miR) assays defined transcription profiles. Orally administered BPA did not affect body weight, but (1) decreased serum T and E2; (2) reduced the EFS response and increased the drop rate; (3) increased within the corporal tissue the presence of fat, myofibroblasts and apoptosis; (4) lowered the contents of SM and stem cells, but not nerve terminals; and (5) caused alterations in the transcriptional profiles for both mRNA and miRs within the penile shaft. Long-term exposure of rats to oral BPA caused a moderate corporal veno-occlusive dysfunction (CVOD), possibly due to alterations within the corporal tissue that pose gene transcriptional changes related to inflammation

  6. A Transcript-Specific eIF3 Complex Mediates Global Translational Control of Energy Metabolism.

    PubMed

    Shah, Meera; Su, Dan; Scheliga, Judith S; Pluskal, Tomáš; Boronat, Susanna; Motamedchaboki, Khatereh; Campos, Alexandre Rosa; Qi, Feng; Hidalgo, Elena; Yanagida, Mitsuhiro; Wolf, Dieter A

    2016-08-16

    The multi-subunit eukaryotic translation initiation factor eIF3 is thought to assist in the recruitment of ribosomes to mRNA. The expression of eIF3 subunits is frequently disrupted in human cancers, but the specific roles of individual subunits in mRNA translation and cancer remain elusive. Using global transcriptomic, proteomic, and metabolomic profiling, we found a striking failure of Schizosaccharomyces pombe cells lacking eIF3e and eIF3d to synthesize components of the mitochondrial electron transport chain, leading to a defect in respiration, endogenous oxidative stress, and premature aging. Energy balance was maintained, however, by a switch to glycolysis with increased glucose uptake, upregulation of glycolytic enzymes, and strict dependence on a fermentable carbon source. This metabolic regulatory function appears to be conserved in human cells where eIF3e binds metabolic mRNAs and promotes their translation. Thus, via its eIF3d-eIF3e module, eIF3 orchestrates an mRNA-specific translational mechanism controlling energy metabolism that may be disrupted in cancer. PMID:27477275

  7. Improving Mode of Action Analysis Using Transcript Profiling in Nullizygous Mouse Models

    EPA Science Inventory

    A number of nuclear receptors (NR) mediate transcriptional, hepatocyte growth and carcinogenic effects in the rodent liver after chemical exposure. These receptors include the constitutive activated/androstane receptor (CAR), pregnane X receptor (PXR), and peroxisome proliferator...

  8. Transcriptional profiling of hexaploid wheat (Triticum aestivum L.) roots identifies novel, dehydration-responsive genes.

    PubMed

    Mohammadi, Mohsen; Kav, Nat N V; Deyholos, Michael K

    2007-05-01

    We used a long-oligonucleotide microarray to identify transcripts that increased or decreased in abundance in roots of dehydration-tolerant hexaploid bread wheat, in response to withholding of water. We observed that the major classes of dehydration-responsive genes (e.g. osmoprotectants, compatible solutes, proteases, glycosyltransferases/hydrolases, signal transducers components, ion transporters) were generally similar to those observed previously in other species and osmotic stresses. More specifically, we highlighted increases in transcript expression for specific genes including those putatively related to the synthesis of asparagine, trehalose, oligopeptide transporters, metal-binding proteins, the gamma-aminobutyric acid (GABA) shunt and transcription factors. Conversely, we noted a decrease in transcript abundance for diverse classes of glutathione and sulphur-related enzymes, specific amino acids, as well as MATE-efflux carrier proteins. From these data, we identified a novel, dehydration-induced putative AP2/ERF transcription factor, which we predict to function as a transcriptional repressor. We also identified a dehydration-induced 'little protein' (LitP; predicted mass: 8 kDa) that is highly conserved across spermatophytes. Using qRT-PCR, we compared the expression patterns of selected genes between two related wheat genotypes that differed in their susceptibility to dehydration, and confirmed that these novel genes were highly inducible by water limitation in both genotypes, although the magnitude of induction differed.

  9. Transcriptional and enzymatic profiling of Pleurotus ostreatus laccase genes in submerged and solid-state fermentation cultures.

    PubMed

    Castanera, Raúl; Pérez, Gúmer; Omarini, Alejandra; Alfaro, Manuel; Pisabarro, Antonio G; Faraco, Vincenza; Amore, Antonella; Ramírez, Lucía

    2012-06-01

    The genome of the white rot basidiomycete Pleurotus ostreatus includes 12 phenol oxidase (laccase) genes. In this study, we examined their expression profiles in different fungal strains under different culture conditions (submerged and solid cultures) and in the presence of a wheat straw extract, which was used as an inducer of the laccase gene family. We used a reverse transcription-quantitative PCR (RT-qPCR)-based approach and focused on determining the reaction parameters (in particular, the reference gene set for the normalization and reaction efficiency determinations) used to achieve an accurate estimation of the relative gene expression values. The results suggested that (i) laccase gene transcription is upregulated in the induced submerged fermentation (iSmF) cultures but downregulated in the solid fermentation (SSF) cultures, (ii) the Lacc2 and Lacc10 genes are the main sources of laccase activity in the iSmF cultures upon induction with water-soluble wheat straw extracts, and (iii) an additional, as-yet-uncharacterized activity (Unk1) is specifically induced in SSF cultures that complements the activity of Lacc2 and Lacc10. Moreover, both the enzymatic laccase activities and the Lacc gene family transcription profiles greatly differ between closely related strains. These differences can be targeted for biotechnological breeding programs for enzyme production in submerged fermentation reactors. PMID:22467498

  10. Translatome profiling in dormant and nondormant sunflower (Helianthus annuus) seeds highlights post-transcriptional regulation of germination.

    PubMed

    Layat, Elodie; Leymarie, Juliette; El-Maarouf-Bouteau, Hayat; Caius, José; Langlade, Nicolas; Bailly, Christophe

    2014-12-01

    Seed dormancy, which blocks germination in apparently favourable conditions, is a key regulatory control point of plant population establishment. As germination requires de novo translation, its regulation by dormancy is likely to be related to the association of individual transcripts to polysomes. Here, the polysome-associated mRNAs, that is, the translatome, were fractionated and characterized with microarrays in dormant and nondormant sunflower (Helianthus annuus) embryos during their imbibition at 10°C, a temperature preventing germination of dormant embryos. Profiling of mRNAs in polysomal complexes revealed that the translatome differs between germinating and nongerminating embryos. Association of transcripts with polysomes reached a maximum after 15 h of imbibition; at this time-point 194 polysome-associated transcripts were specifically found in nondormant embryos and 47 in dormant embryos only. The proteins corresponding to the polysomal mRNAs in nondormant embryos appeared to be very pertinent for germination and were involved mainly in transport, regulation of transcription or cell wall modifications. This work demonstrates that seed germination results from a timely regulated and selective recruitment of mRNAs to polysomes, thus opening novel fields of investigation for the understanding of this developmental process.

  11. Grouping of histone deacetylase inhibitors and other toxicants disturbing neural crest migration by transcriptional profiling.

    PubMed

    Dreser, Nadine; Zimmer, Bastian; Dietz, Christian; Sügis, Elena; Pallocca, Giorgia; Nyffeler, Johanna; Meisig, Johannes; Blüthgen, Nils; Berthold, Michael R; Waldmann, Tanja; Leist, Marcel

    2015-09-01

    Functional assays, such as the "migration inhibition of neural crest cells" (MINC) developmental toxicity test, can identify toxicants without requiring knowledge on their mode of action (MoA). Here, we were interested, whether (i) inhibition of migration by structurally diverse toxicants resulted in a unified signature of transcriptional changes; (ii) whether statistically-identified transcript patterns would inform on compound grouping even though individual genes were little regulated, and (iii) whether analysis of a small group of biologically-relevant transcripts would allow the grouping of compounds according to their MoA. We analyzed transcripts of 35 'migration genes' after treatment with 16 migration-inhibiting toxicants. Clustering, principal component analysis and correlation analyses of the data showed that mechanistically related compounds (e.g. histone deacetylase inhibitors (HDACi), PCBs) triggered similar transcriptional changes, but groups of structurally diverse toxicants largely differed in their transcriptional effects. Linear discriminant analysis (LDA) confirmed the specific clustering of HDACi across multiple separate experiments. Similarity of the signatures of the HDACi trichostatin A and suberoylanilide hydroxamic acid to the one of valproic acid (VPA), suggested that the latter compound acts as HDACi when impairing neural crest migration. In conclusion, the data suggest that (i) a given functional effect (e.g. inhibition of migration) can be associated with highly diverse signatures of transcript changes; (ii) statistically significant grouping of mechanistically-related compounds can be achieved on the basis of few genes with small regulations. Thus, incorporation of mechanistic markers in functional in vitro tests may support read-across procedures, also for structurally un-related compounds.

  12. Genome-wide localization and expression profiling establish Sp2 as a sequence-specific transcription factor regulating vitally important genes

    PubMed Central

    Terrados, Gloria; Finkernagel, Florian; Stielow, Bastian; Sadic, Dennis; Neubert, Juliane; Herdt, Olga; Krause, Michael; Scharfe, Maren; Jarek, Michael; Suske, Guntram

    2012-01-01

    The transcription factor Sp2 is essential for early mouse development and for proliferation of mouse embryonic fibroblasts in culture. Yet its mechanisms of action and its target genes are largely unknown. In this study, we have combined RNA interference, in vitro DNA binding, chromatin immunoprecipitation sequencing and global gene-expression profiling to investigate the role of Sp2 for cellular functions, to define target sites and to identify genes regulated by Sp2. We show that Sp2 is important for cellular proliferation that it binds to GC-boxes and occupies proximal promoters of genes essential for vital cellular processes including gene expression, replication, metabolism and signalling. Moreover, we identified important key target genes and cellular pathways that are directly regulated by Sp2. Most significantly, Sp2 binds and activates numerous sequence-specific transcription factor and co-activator genes, and represses the whole battery of cholesterol synthesis genes. Our results establish Sp2 as a sequence-specific regulator of vitally important genes. PMID:22684502

  13. Microfluidic single-cell transcriptional analysis rationally identifies novel surface marker profiles to enhance cell-based therapies.

    PubMed

    Rennert, Robert C; Januszyk, Michael; Sorkin, Michael; Rodrigues, Melanie; Maan, Zeshaan N; Duscher, Dominik; Whittam, Alexander J; Kosaraju, Revanth; Chung, Michael T; Paik, Kevin; Li, Alexander Y; Findlay, Michael; Glotzbach, Jason P; Butte, Atul J; Gurtner, Geoffrey C

    2016-01-01

    Current progenitor cell therapies have only modest efficacy, which has limited their clinical adoption. This may be the result of a cellular heterogeneity that decreases the number of functional progenitors delivered to diseased tissue, and prevents correction of underlying pathologic cell population disruptions. Here, we develop a high-resolution method of identifying phenotypically distinct progenitor cell subpopulations via single-cell transcriptional analysis and advanced bioinformatics. When combined with high-throughput cell surface marker screening, this approach facilitates the rational selection of surface markers for prospective isolation of cell subpopulations with desired transcriptional profiles. We establish the usefulness of this platform in costly and highly morbid diabetic wounds by identifying a subpopulation of progenitor cells that is dysfunctional in the diabetic state, and normalizes diabetic wound healing rates following allogeneic application. We believe this work presents a logical framework for the development of targeted cell therapies that can be customized to any clinical application. PMID:27324848

  14. Microfluidic single-cell transcriptional analysis rationally identifies novel surface marker profiles to enhance cell-based therapies.

    PubMed

    Rennert, Robert C; Januszyk, Michael; Sorkin, Michael; Rodrigues, Melanie; Maan, Zeshaan N; Duscher, Dominik; Whittam, Alexander J; Kosaraju, Revanth; Chung, Michael T; Paik, Kevin; Li, Alexander Y; Findlay, Michael; Glotzbach, Jason P; Butte, Atul J; Gurtner, Geoffrey C

    2016-06-21

    Current progenitor cell therapies have only modest efficacy, which has limited their clinical adoption. This may be the result of a cellular heterogeneity that decreases the number of functional progenitors delivered to diseased tissue, and prevents correction of underlying pathologic cell population disruptions. Here, we develop a high-resolution method of identifying phenotypically distinct progenitor cell subpopulations via single-cell transcriptional analysis and advanced bioinformatics. When combined with high-throughput cell surface marker screening, this approach facilitates the rational selection of surface markers for prospective isolation of cell subpopulations with desired transcriptional profiles. We establish the usefulness of this platform in costly and highly morbid diabetic wounds by identifying a subpopulation of progenitor cells that is dysfunctional in the diabetic state, and normalizes diabetic wound healing rates following allogeneic application. We believe this work presents a logical framework for the development of targeted cell therapies that can be customized to any clinical application.

  15. Global transcriptional analysis of Escherichia coli expressing IrrE, a regulator from Deinococcus radiodurans, in response to NaCl shock.

    PubMed

    Zhao, Peng; Zhou, Zhengfu; Zhang, Wei; Lin, Min; Chen, Ming; Wei, Gehong

    2015-04-01

    Improving the microbial tolerance to stresses is very important for bioprocesses. Our previous study showed that IrrE, a global regulator from the extremely radioresistant bacterium Deinococcus radiodurans, dramatically enhanced the multi-stress tolerance of Escherichia coli when expressed exogenously. However, the function of IrrE is still unclear. In this study, we used whole-genome microarray assays to profile the global gene expression of the IrrE-expressing E. coli strain MGE and the control strain MGT with or without salt shock. The analysis showed that IrrE expression led to many differentially expressed genes in E. coli, which were responsible for the transport and metabolism of trehalose and glycerol, nucleotide biosynthesis, carbon source utilization, amino acid utilization, and acid resistance, including many RpoS-dependent genes, e.g., the trehalose biosynthesis genes otsAB, the acid-resistance genes gadABC and uspB, the osmotic and oxidative stress response genes katE (response to DNA damage stimulus and stress) and osmBC (response to stress), and gadWX (which controls the transcription of pH-inducible genes). The intracellular content of trehalose and glycerol increased significantly in the IrrE-expressing strain after NaCl treatment for 0 and 60 min as determined by HPLC. These results indicated the possibility that IrrE regulates the global regulator RpoS. Interestingly, we found that although IrrE did not affect the level of the rpoS transcript, it enhanced the accumulation of the RpoS protein by increasing the expression of the antiadaptors, AppY, IraM and IraD, which inhibit RpoS degradation, suggesting that the accumulation of RpoS due to IrrE regulation is an important way to improve tolerance to salt and other stresses in E. coli. PMID:25703007

  16. Global transcriptional analysis of Escherichia coli expressing IrrE, a regulator from Deinococcus radiodurans, in response to NaCl shock.

    PubMed

    Zhao, Peng; Zhou, Zhengfu; Zhang, Wei; Lin, Min; Chen, Ming; Wei, Gehong

    2015-04-01

    Improving the microbial tolerance to stresses is very important for bioprocesses. Our previous study showed that IrrE, a global regulator from the extremely radioresistant bacterium Deinococcus radiodurans, dramatically enhanced the multi-stress tolerance of Escherichia coli when expressed exogenously. However, the function of IrrE is still unclear. In this study, we used whole-genome microarray assays to profile the global gene expression of the IrrE-expressing E. coli strain MGE and the control strain MGT with or without salt shock. The analysis showed that IrrE expression led to many differentially expressed genes in E. coli, which were responsible for the transport and metabolism of trehalose and glycerol, nucleotide biosynthesis, carbon source utilization, amino acid utilization, and acid resistance, including many RpoS-dependent genes, e.g., the trehalose biosynthesis genes otsAB, the acid-resistance genes gadABC and uspB, the osmotic and oxidative stress response genes katE (response to DNA damage stimulus and stress) and osmBC (response to stress), and gadWX (which controls the transcription of pH-inducible genes). The intracellular content of trehalose and glycerol increased significantly in the IrrE-expressing strain after NaCl treatment for 0 and 60 min as determined by HPLC. These results indicated the possibility that IrrE regulates the global regulator RpoS. Interestingly, we found that although IrrE did not affect the level of the rpoS transcript, it enhanced the accumulation of the RpoS protein by increasing the expression of the antiadaptors, AppY, IraM and IraD, which inhibit RpoS degradation, suggesting that the accumulation of RpoS due to IrrE regulation is an important way to improve tolerance to salt and other stresses in E. coli.

  17. SuperSAGE combined with PCR walking allows global gene expression profiling of banana (Musa acuminata), a non-model organism.

    PubMed

    Coemans, Bert; Matsumura, Hideo; Terauchi, Ryohei; Remy, Serge; Swennen, Rony; Sági, László

    2005-10-01

    Super-serial analysis of gene expression (SuperSAGE) was used to characterize, for the first time, the global gene expression pattern in banana (Musa acuminata). A total of 10,196 tags were generated from leaf tissue, representing 5,292 expressed genes. Forty-nine tags of the top 100 most abundantly expressed transcripts were annotated by homology to cDNA or EST sequences. Typically for leaf tissue, analysis of the transcript profiles showed that the majority of the abundant transcripts are involved in energy production, mainly photosynthesis. However, the most abundant tag was derived from a type 3 metallothionein transcript, which accounted for nearly 3% of total transcripts analysed. Furthermore, the 26-bp long SuperSAGE tags were applied in 3'-rapid amplification of cDNA ends (3'RACE) for the identification of unknown tags. In combination with thermal asymmetric interlaced PCR (TAIL-PCR), this allowed the recovery of a full gene sequence of a novel NADPH:protochlorophyllide oxidoreductase, the key enzyme in chlorophyll biosynthesis. SuperSAGE in conjunction with 3'RACE and TAIL-PCR will be a powerful tool for transcriptomics of non-model, but otherwise important organisms.

  18. BloodChIP: a database of comparative genome-wide transcription factor binding profiles in human blood cells.

    PubMed

    Chacon, Diego; Beck, Dominik; Perera, Dilmi; Wong, Jason W H; Pimanda, John E

    2014-01-01

    The BloodChIP database (http://www.med.unsw.edu.au/CRCWeb.nsf/page/BloodChIP) supports exploration and visualization of combinatorial transcription factor (TF) binding at a particular locus in human CD34-positive and other normal and leukaemic cells or retrieval of target gene sets for user-defined combinations of TFs across one or more cell types. Increasing numbers of genome-wide TF binding profiles are being added to public repositories, and this trend is likely to continue. For the power of these data sets to be fully harnessed by experimental scientists, there is a need for these data to be placed in context and easily accessible for downstream applications. To this end, we have built a user-friendly database that has at its core the genome-wide binding profiles of seven key haematopoietic TFs in human stem/progenitor cells. These binding profiles are compared with binding profiles in normal differentiated and leukaemic cells. We have integrated these TF binding profiles with chromatin marks and expression data in normal and leukaemic cell fractions. All queries can be exported into external sites to construct TF-gene and protein-protein networks and to evaluate the association of genes with cellular processes and tissue expression.

  19. BloodChIP: a database of comparative genome-wide transcription factor binding profiles in human blood cells

    PubMed Central

    Chacon, Diego; Beck, Dominik; Perera, Dilmi; Wong, Jason W. H.; Pimanda, John E.

    2014-01-01

    The BloodChIP database (http://www.med.unsw.edu.au/CRCWeb.nsf/page/BloodChIP) supports exploration and visualization of combinatorial transcription factor (TF) binding at a particular locus in human CD34-positive and other normal and leukaemic cells or retrieval of target gene sets for user-defined combinations of TFs across one or more cell types. Increasing numbers of genome-wide TF binding profiles are being added to public repositories, and this trend is likely to continue. For the power of these data sets to be fully harnessed by experimental scientists, there is a need for these data to be placed in context and easily accessible for downstream applications. To this end, we have built a user-friendly database that has at its core the genome-wide binding profiles of seven key haematopoietic TFs in human stem/progenitor cells. These binding profiles are compared with binding profiles in normal differentiated and leukaemic cells. We have integrated these TF binding profiles with chromatin marks and expression data in normal and leukaemic cell fractions. All queries can be exported into external sites to construct TF–gene and protein–protein networks and to evaluate the association of genes with cellular processes and tissue expression. PMID:24185696

  20. HIV Skews the Lineage-Defining Transcriptional Profile of Mycobacterium tuberculosis-Specific CD4+ T Cells.

    PubMed

    Riou, Catherine; Strickland, Natalie; Soares, Andreia P; Corleis, Björn; Kwon, Douglas S; Wherry, E John; Wilkinson, Robert J; Burgers, Wendy A

    2016-04-01

    HIV-infected persons are at greater risk of developing tuberculosis (TB) even before profound CD4 loss occurs, suggesting that HIV alters CD4(+) T cell functions capable of containing bacterial replication. An effective immune response to Mycobacterium tuberculosis most likely relies on the development of a balanced CD4 response, in which distinct CD4(+) Th subsets act in synergy to control the infection. To define the diversity of M. tuberculosis-specific CD4(+) Th subsets and determine whether HIV infection impacts such responses, the expression of lineage-defining transcription factors T-bet, Gata3, RORγt, and Foxp3 was measured in M. tuberculosis-specific CD4(+) T cells in HIV-uninfected (n = 20) and HIV-infected individuals (n = 20) with latent TB infection. Our results show that, upon 5-d restimulation in vitro, M. tuberculosis-specific CD4(+) T cells from healthy individuals have the ability to exhibit a broad spectrum of Th subsets, defined by specific patterns of transcription factor coexpression. These transcription factor profiles were skewed in HIV-infected individuals where the proportion of T-bet(high)Foxp3(+) M. tuberculosis-specific CD4(+) T cells was significantly decreased (p = 0.002) compared with HIV-uninfected individuals, a change that correlated inversely with HIV viral load (p = 0.0007) and plasma TNF-α (p = 0.027). Our data demonstrate an important balance in Th subset diversity defined by lineage-defining transcription factor coexpression profiles that is disrupted by HIV infection and suggest a role for HIV in impairing TB immunity by altering the equilibrium of M. tuberculosis-specific CD4(+) Th subsets.

  1. Transcription Profiling of Malaria-Naïve and Semi-immune Colombian Volunteers in a Plasmodium vivax Sporozoite Challenge

    PubMed Central

    Rojas-Peña, Monica L.; Vallejo, Andres; Herrera, Sócrates; Gibson, Greg; Arévalo-Herrera, Myriam

    2015-01-01

    Background Continued exposure to malaria-causing parasites in endemic regions of malaria induces significant levels of acquired immunity in adult individuals. A better understanding of the transcriptional basis for this acquired immunological response may provide insight into how the immune system can be boosted during vaccination, and into why infected individuals differ in symptomology. Methodology/Principal Findings Peripheral blood gene expression profiles of 9 semi-immune volunteers from a Plasmodium vivax malaria prevalent region (Buenaventura, Colombia) were compared to those of 7 naïve individuals from a region with no reported transmission of malaria (Cali, Colombia) after a controlled infection mosquito bite challenge with P. vivax. A Fluidigm nanoscale quantitative RT-PCR array was used to survey altered expression of 96 blood informative transcripts at 7 timepoints after controlled infection, and RNASeq was used to contrast pre-infection and early parasitemia timepoints. There was no evidence for transcriptional changes prior to the appearance of blood stage parasites at day 12 or 13, at which time there was a strong interferon response and, unexpectedly, down-regulation of transcripts related to inflammation and innate immunity. This differential expression was confirmed with RNASeq, which also suggested perturbations of aspects of T cell function and erythropoiesis. Despite differences in clinical symptoms between the semi-immune and malaria naïve individuals, only subtle differences in their transcriptomes were observed, although 175 genes showed significantly greater induction or repression in the naïve volunteers from Cali. Conclusion/Significance Gene expression profiling of whole blood reveals the type and duration of the immune response to P. vivax infection, and highlights a subset of genes that may mediate adaptive immunity. PMID:26244760

  2. Functional genomics in chickens: development of integrated-systems microarrays for transcriptional profiling and discovery of regulatory pathways.

    PubMed

    Cogburn, L A; Wang, X; Carre, W; Rejto, L; Aggrey, S E; Duclos, M J; Simon, J; Porter, T E

    2004-01-01

    The genetic networks that govern the differentiation and growth of major tissues of economic importance in the chicken are largely unknown. Under a functional genomics project, our consortium has generated 30 609 expressed sequence tags (ESTs) and developed several chicken DNA microarrays, which represent the Chicken Metabolic/Somatic (10 K) and Neuroendocrine/Reproductive (8 K) Systems (http://udgenome.ags.udel.edu/cogburn/). One of the major challenges facing functional genomics is the development of mathematical models to reconstruct functional gene networks and regulatory pathways from vast volumes of microarray data. In initial studies with liver-specific microarrays (3.1 K), we have examined gene expression profiles in liver during the peri-hatch transition and during a strong metabolic perturbation-fasting and re-feeding-in divergently selected broiler chickens (fast vs. slow-growth lines). The expression of many genes controlling metabolic pathways is dramatically altered by these perturbations. Our analysis has revealed a large number of clusters of functionally related genes (mainly metabolic enzymes and transcription factors) that control major metabolic pathways. Currently, we are conducting transcriptional profiling studies of multiple tissues during development of two sets of divergently selected broiler chickens (fast vs. slow growing and fat vs. lean lines). Transcriptional profiling across multiple tissues should permit construction of a detailed genetic blueprint that illustrates the developmental events and hierarchy of genes that govern growth and development of chickens. This review will briefly describe the recent acquisition of chicken genomic resources (ESTs and microarrays) and our consortium's efforts to help launch the new era of functional genomics in the chicken.

  3. Functional genomics in chickens: development of integrated-systems microarrays for transcriptional profiling and discovery of regulatory pathways.

    PubMed

    Cogburn, L A; Wang, X; Carre, W; Rejto, L; Aggrey, S E; Duclos, M J; Simon, J; Porter, T E

    2004-01-01

    The genetic networks that govern the differentiation and growth of major tissues of economic importance in the chicken are largely unknown. Under a functional genomics project, our consortium has generated 30 609 expressed sequence tags (ESTs) and developed several chicken DNA microarrays, which represent the Chicken Metabolic/Somatic (10 K) and Neuroendocrine/Reproductive (8 K) Systems (http://udgenome.ags.udel.edu/cogburn/). One of the major challenges facing functional genomics is the development of mathematical models to reconstruct functional gene networks and regulatory pathways from vast volumes of microarray data. In initial studies with liver-specific microarrays (3.1 K), we have examined gene expression profiles in liver during the peri-hatch transition and during a strong metabolic perturbation-fasting and re-feeding-in divergently selected broiler chickens (fast vs. slow-growth lines). The expression of many genes controlling metabolic pathways is dramatically altered by these perturbations. Our analysis has revealed a large number of clusters of functionally related genes (mainly metabolic enzymes and transcription factors) that control major metabolic pathways. Currently, we are conducting transcriptional profiling studies of multiple tissues during development of two sets of divergently selected broiler chickens (fast vs. slow growing and fat vs. lean lines). Transcriptional profiling across multiple tissues should permit construction of a detailed genetic blueprint that illustrates the developmental events and hierarchy of genes that govern growth and development of chickens. This review will briefly describe the recent acquisition of chicken genomic resources (ESTs and microarrays) and our consortium's efforts to help launch the new era of functional genomics in the chicken. PMID:18629153

  4. P-TEFb Kinase Activity Is Essential for Global Transcription, Resumption of Meiosis and Embryonic Genome Activation in Pig

    PubMed Central

    Oqani, Reza K.; Lin, Tao; Lee, Jae Eun; Choi, Ki Myung; Shin, Hyun Young; Jin, Dong Il

    2016-01-01

    Positive transcription elongation factor b (P-TEFb) is a RNA polymerase II carboxyl-terminal domain (Pol II CTD) kinase that phosphorylates Ser2 of the CTD and promotes the elongation phase of transcription. Despite the fact that P-TEFb has role in many cellular processes, the role of this kinase complex remains to be understood in mammalian early developmental events. In this study, using immunocytochemical analyses, we found that the P-TEFb components, CDK9, Cyclin T1 and Cyclin T2 were localized to nuclear speckles, as well as in nucleolar-like bodies in pig germinal vesicle oocytes. Using nascent RNA labeling and small molecule inhibitors, we showed that inhibition of CDK9 activity abolished the transcription of GV oocytes globally. Moreover, using fluorescence in situ hybridization, in absence of CDK9 kinase activity the production of ribosomal RNAs was impaired. We also presented the evidences indicating that P-TEFb kinase activity is essential for resumption of oocyte meiosis and embryo development. Treatment with CDK9 inhibitors resulted in germinal vesicle arrest in maturing oocytes in vitro. Inhibition of CDK9 kinase activity did not interfere with in vitro fertilization and pronuclear formation. However, when in vitro produced zygotes were treated with CDK9 inhibitors, their development beyond the 4-cell stage was impaired. In these embryos, inhibition of CDK9 abrogated global transcriptional activity and rRNA production. Collectively, our data suggested that P-TEFb kinase activity is crucial for oocyte maturation, embryo development and regulation of RNA transcription in pig. PMID:27011207

  5. P-TEFb Kinase Activity Is Essential for Global Transcription, Resumption of Meiosis and Embryonic Genome Activation in Pig.

    PubMed

    Oqani, Reza K; Lin, Tao; Lee, Jae Eun; Choi, Ki Myung; Shin, Hyun Young; Jin, Dong Il

    2016-01-01

    Positive transcription elongation factor b (P-TEFb) is a RNA polymerase II carboxyl-terminal domain (Pol II CTD) kinase that phosphorylates Ser2 of the CTD and promotes the elongation phase of transcription. Despite the fact that P-TEFb has role in many cellular processes, the role of this kinase complex remains to be understood in mammalian early developmental events. In this study, using immunocytochemical analyses, we found that the P-TEFb components, CDK9, Cyclin T1 and Cyclin T2 were localized to nuclear speckles, as well as in nucleolar-like bodies in pig germinal vesicle oocytes. Using nascent RNA labeling and small molecule inhibitors, we showed that inhibition of CDK9 activity abolished the transcription of GV oocytes globally. Moreover, using fluorescence in situ hybridization, in absence of CDK9 kinase activity the production of ribosomal RNAs was impaired. We also presented the evidences indicating that P-TEFb kinase activity is essential for resumption of oocyte meiosis and embryo development. Treatment with CDK9 inhibitors resulted in germinal vesicle arrest in maturing oocytes in vitro. Inhibition of CDK9 kinase activity did not interfere with in vitro fertilization and pronuclear formation. However, when in vitro produced zygotes were treated with CDK9 inhibitors, their development beyond the 4-cell stage was impaired. In these embryos, inhibition of CDK9 abrogated global transcriptional activity and rRNA production. Collectively, our data suggested that P-TEFb kinase activity is crucial for oocyte maturation, embryo development and regulation of RNA transcription in pig.

  6. P-TEFb Kinase Activity Is Essential for Global Transcription, Resumption of Meiosis and Embryonic Genome Activation in Pig.

    PubMed

    Oqani, Reza K; Lin, Tao; Lee, Jae Eun; Choi, Ki Myung; Shin, Hyun Young; Jin, Dong Il

    2016-01-01

    Positive transcription elongation factor b (P-TEFb) is a RNA polymerase II carboxyl-terminal domain (Pol II CTD) kinase that phosphorylates Ser2 of the CTD and promotes the elongation phase of transcription. Despite the fact that P-TEFb has role in many cellular processes, the role of this kinase complex remains to be understood in mammalian early developmental events. In this study, using immunocytochemical analyses, we found that the P-TEFb components, CDK9, Cyclin T1 and Cyclin T2 were localized to nuclear speckles, as well as in nucleolar-like bodies in pig germinal vesicle oocytes. Using nascent RNA labeling and small molecule inhibitors, we showed that inhibition of CDK9 activity abolished the transcription of GV oocytes globally. Moreover, using fluorescence in situ hybridization, in absence of CDK9 kinase activity the production of ribosomal RNAs was impaired. We also presented the evidences indicating that P-TEFb kinase activity is essential for resumption of oocyte meiosis and embryo development. Treatment with CDK9 inhibitors resulted in germinal vesicle arrest in maturing oocytes in vitro. Inhibition of CDK9 kinase activity did not interfere with in vitro fertilization and pronuclear formation. However, when in vitro produced zygotes were treated with CDK9 inhibitors, their development beyond the 4-cell stage was impaired. In these embryos, inhibition of CDK9 abrogated global transcriptional activity and rRNA production. Collectively, our data suggested that P-TEFb kinase activity is crucial for oocyte maturation, embryo development and regulation of RNA transcription in pig. PMID:27011207

  7. Global Profiling of the Cellular Alternative RNA Splicing Landscape during Virus-Host Interactions.

    PubMed

    Boudreault, Simon; Martenon-Brodeur, Camille; Caron, Marie; Garant, Jean-Michel; Tremblay, Marie-Pier; Armero, Victoria E S; Durand, Mathieu; Lapointe, Elvy; Thibault, Philippe; Tremblay-Létourneau, Maude; Perreault, Jean-Pierre; Scott, Michelle S; Lemay, Guy; Bisaillon, Martin

    2016-01-01

    Alternative splicing (AS) is a central mechanism of genetic regulation which modifies the sequence of RNA transcripts in higher eukaryotes. AS has been shown to increase both the variability and diversity of the cellular proteome by changing the composition of resulting proteins through differential choice of exons to be included in mature mRNAs. In the present study, alterations to the global RNA splicing landscape of cellular genes upon viral infection were investigated using mammalian reovirus as a model. Our study provides the first comprehensive portrait of global changes in the RNA splicing signatures that occur in eukaryotic cells following infection with a human virus. We identify 240 modified alternative splicing events upon infection which belong to transcripts frequently involved in the regulation of gene expression and RNA metabolism. Using mass spectrometry, we also confirm modifications to transcript-specific peptides resulting from AS in virus-infected cells. These findings provide additional insights into the complexity of virus-host interactions as these splice variants expand proteome diversity and function during viral infection. PMID:27598998

  8. Global Profiling of the Cellular Alternative RNA Splicing Landscape during Virus-Host Interactions

    PubMed Central

    Boudreault, Simon; Martenon-Brodeur, Camille; Caron, Marie; Garant, Jean-Michel; Tremblay, Marie-Pier; Armero, Victoria E. S.; Durand, Mathieu; Lapointe, Elvy; Thibault, Philippe; Tremblay-Létourneau, Maude; Perreault, Jean-Pierre; Scott, Michelle S.; Lemay, Guy; Bisaillon, Martin

    2016-01-01

    Alternative splicing (AS) is a central mechanism of genetic regulation which modifies the sequence of RNA transcripts in higher eukaryotes. AS has been shown to increase both the variability and diversity of the cellular proteome by changing the composition of resulting proteins through differential choice of exons to be included in mature mRNAs. In the present study, alterations to the global RNA splicing landscape of cellular genes upon viral infection were investigated using mammalian reovirus as a model. Our study provides the first comprehensive portrait of global changes in the RNA splicing signatures that occur in eukaryotic cells following infection with a human virus. We identify 240 modified alternative splicing events upon infection which belong to transcripts frequently involved in the regulation of gene expression and RNA metabolism. Using mass spectrometry, we also confirm modifications to transcript-specific peptides resulting from AS in virus-infected cells. These findings provide additional insights into the complexity of virus-host interactions as these splice variants expand proteome diversity and function during viral infection. PMID:27598998

  9. RNA remodeling by bacterial global regulator CsrA promotes Rho-dependent transcription termination

    PubMed Central

    Figueroa-Bossi, Nara; Schwartz, Annie; Guillemardet, Benoit; D’Heygère, François; Bossi, Lionello; Boudvillain, Marc

    2014-01-01

    RNA-binding protein CsrA is a key regulator of a variety of cellular processes in bacteria, including carbon and stationary phase metabolism, biofilm formation, quorum sensing, and virulence gene expression in pathogens. CsrA binds to bipartite sequence elements at or near the ribosome loading site in messenger RNA (mRNA), most often inhibiting translation initiation. Here we describe an alternative novel mechanism through which CsrA achieves negative regulation. We show that CsrA binding to the upstream portion of the 5′ untranslated region of Escherichia coli pgaA mRNA—encoding a polysaccharide adhesin export protein—unfolds a secondary structure that sequesters an entry site for transcription termination factor Rho, resulting in the premature stop of transcription. These findings establish a new paradigm for bacterial gene regulation in which remodeling of the nascent transcript by a regulatory protein promotes Rho-dependent transcription attenuation. PMID:24888591

  10. USE OF TRANSCRIPTIONAL COUPLING AND KEGG PATHWAY ANALYSIS OF GLOBAL GENE EXPRESSION TO REVEAL TRANSCRIPTIONAL CHANGES BETWEEN STATIONARY- AND LOG-PHASE SALMONELLA TYPHIMURIUM LT2

    EPA Science Inventory

    DNA microarray analysis is plagued by a lack of data reproducibility and by limits to the detectability of transcripts by hybridization. To mitigate these limitations, we employed transcriptional coupling within the S. typhimurium genome. This genome has 2664 transcriptionally co...

  11. Transcription profile of boar spermatozoa as revealed by RNA-sequencing

    Technology Transfer Automated Retrieval System (TEKTRAN)

    High-throughput RNA sequencing (RNA-Seq) overcomes the limitations of the current hybridization-based techniques to detect the actual pool of RNA transcripts in spermatozoa. The application of this technology in livestock can speed the discovery of potential predictors of male fertility. As a first ...

  12. A global transcriptional regulator in Thermococcus kodakaraensis controls the expression levels of both glycolytic and gluconeogenic enzyme-encoding genes.

    PubMed

    Kanai, Tamotsu; Akerboom, Jasper; Takedomi, Shogo; van de Werken, Harmen J G; Blombach, Fabian; van der Oost, John; Murakami, Taira; Atomi, Haruyuki; Imanaka, Tadayuki

    2007-11-16

    We identified a novel regulator, Thermococcales glycolytic regulator (Tgr), functioning as both an activator and a repressor of transcription in the hyperthermophilic archaeon Thermococcus kodakaraensis KOD1. Tgr (TK1769) displays similarity (28% identical) to Pyrococcus furiosus TrmB (PF1743), a transcriptional repressor regulating the trehalose/maltose ATP-binding cassette transporter genes, but is more closely related (67%) to a TrmB paralog in P. furiosus (PF0124). Growth of a tgr disruption strain (Deltatgr) displayed a significant decrease in growth rate under gluconeogenic conditions compared with the wild-type strain, whereas comparable growth rates were observed under glycolytic conditions. A whole genome microarray analysis revealed that transcript levels of almost all genes related to glycolysis and maltodextrin metabolism were at relatively high levels in the Deltatgr mutant even under gluconeogenic conditions. The Deltatgr mutant also displayed defects in the transcriptional activation of gluconeogenic genes under these conditions, indicating that Tgr functions as both an activator and a repressor. Genes regulated by Tgr contain a previously identified sequence motif, the Thermococcales glycolytic motif (TGM). The TGM was positioned upstream of the Transcription factor B-responsive element (BRE)/TATA sequence in gluconeogenic promoters and downstream of it in glycolytic promoters. Electrophoretic mobility shift assay indicated that recombinant Tgr protein specifically binds to promoter regions containing a TGM. Tgr was released from the DNA when maltotriose was added, suggesting that this sugar is most likely the physiological effector. Our results strongly suggest that Tgr is a global transcriptional regulator that simultaneously controls, in response to sugar availability, both glycolytic and gluconeogenic metabolism in T. kodakaraensis via its direct binding to the TGM.

  13. Transcriptome-wide profiling and expression analysis of transcription factor families in a liverwort, Marchantia polymorpha

    PubMed Central

    2013-01-01

    Background Transcription factors (TFs) are vital elements that regulate transcription and the spatio-temporal expression of genes, thereby ensuring the accurate development and functioning of an organism. The identification of TF-encoding genes in a liverwort, Marchantia polymorpha, offers insights into TF organization in the members of the most basal lineages of land plants (embryophytes). Therefore, a comparison of Marchantia TF genes with other land plants (monocots, dicots, bryophytes) and algae (chlorophytes, rhodophytes) provides the most comprehensive view of the rates of expansion or contraction of TF genes in plant evolution. Results In this study, we report the identification of TF-encoding transcripts in M. polymorpha for the first time, as evidenced by deep RNA sequencing data. In total, 3,471 putative TF encoding transcripts, distributed in 80 families, were identified, representing 7.4% of the generated Marchantia gametophytic transcriptome dataset. Overall, TF basic functions and distribution across families appear to be conserved when compared to other plant species. However, it is of interest to observe the genesis of novel sequences in 24 TF families and the apparent termination of 2 TF families with the emergence of Marchantia. Out of 24 TF families, 6 are known to be associated with plant reproductive development processes. We also examined the expression pattern of these TF-encoding transcripts in six male and female developmental stages in vegetative and reproductive gametophytic tissues of Marchantia. Conclusions The analysis highlighted the importance of Marchantia, a model plant system, in an evolutionary context. The dataset generated here provides a scientific resource for TF gene discovery and other comparative evolutionary studies of land plants. PMID:24365221

  14. Gene transcription profiling in wild and laboratory-exposed eels: Effect of captivity and in situ chronic exposure to pollution.

    PubMed

    Baillon, Lucie; Pierron, Fabien; Pannetier, Pauline; Normandeau, Eric; Couture, Patrice; Labadie, Pierre; Budzinski, Hélène; Lambert, Patrick; Bernatchez, Louis; Baudrimont, Magalie

    2016-11-15

    Aquatic ecosystems are subjected to a variety of man-induced stressors but also vary spatially and temporally due to variation in natural factors. In such complex environments, it remains difficult to detect, dissociate and evaluate the effects of contaminants in wild organisms. In this context, the aim of this study was to test whether the hepatic transcriptome profile of fish may be used to detect in situ exposure to a particular contaminant. Transcriptomic profiles from laboratory-exposed and wild eels sampled along a contamination gradient were compared. During laboratory experiments, fish were exposed during 45days to different pollutants (Hg, PCBs, OCPs or Cd) or natural factors (temperature, salinity or low food supply) at levels close to those found in the sampling sites. A strong difference was observed between the transcriptomic profiles obtained from wild and laboratory-exposed animals (whatever the sites or experimental conditions), suggesting a general stress induced by captivity in the laboratory. Among the biological functions that were up-regulated in laboratory eels in comparison to wild eels, histone modification was the most represented. This finding suggests that laboratory conditions could affect the epigenome of fish and thus modulate the transcriptional responses developed by fish in response to pollutant exposure. Among experimental conditions, only the transcription profiles of laboratory animals exposed to cold temperature were correlated with those obtained from wild fish, and more significantly with fish from contaminated sites. Common regulated genes were mainly involved in cell differentiation and liver development, suggesting that stem/progenitor liver cells could be involved in the adaptive response developed by fish chronically exposed to pollutant mixtures. PMID:27470668

  15. Gene transcription profiling in wild and laboratory-exposed eels: Effect of captivity and in situ chronic exposure to pollution.

    PubMed

    Baillon, Lucie; Pierron, Fabien; Pannetier, Pauline; Normandeau, Eric; Couture, Patrice; Labadie, Pierre; Budzinski, Hélène; Lambert, Patrick; Bernatchez, Louis; Baudrimont, Magalie

    2016-11-15

    Aquatic ecosystems are subjected to a variety of man-induced stressors but also vary spatially and temporally due to variation in natural factors. In such complex environments, it remains difficult to detect, dissociate and evaluate the effects of contaminants in wild organisms. In this context, the aim of this study was to test whether the hepatic transcriptome profile of fish may be used to detect in situ exposure to a particular contaminant. Transcriptomic profiles from laboratory-exposed and wild eels sampled along a contamination gradient were compared. During laboratory experiments, fish were exposed during 45days to different pollutants (Hg, PCBs, OCPs or Cd) or natural factors (temperature, salinity or low food supply) at levels close to those found in the sampling sites. A strong difference was observed between the transcriptomic profiles obtained from wild and laboratory-exposed animals (whatever the sites or experimental conditions), suggesting a general stress induced by captivity in the laboratory. Among the biological functions that were up-regulated in laboratory eels in comparison to wild eels, histone modification was the most represented. This finding suggests that laboratory conditions could affect the epigenome of fish and thus modulate the transcriptional responses developed by fish in response to pollutant exposure. Among experimental conditions, only the transcription profiles of laboratory animals exposed to cold temperature were correlated with those obtained from wild fish, and more significantly with fish from contaminated sites. Common regulated genes were mainly involved in cell differentiation and liver development, suggesting that stem/progenitor liver cells could be involved in the adaptive response developed by fish chronically exposed to pollutant mixtures.

  16. Global profiling of stimulus-induced polyadenylation in cells using a poly(A) trap

    PubMed Central

    Curanovic, Dusica; Cohen, Michael; Singh, Irtisha; Slagle, Christopher E.; Leslie, Christina S.; Jaffrey, Samie R.

    2013-01-01

    Polyadenylation of mRNA leads to increased protein expression in response to diverse stimuli, but it is difficult to identify mRNAs that become polyadenylated in living cells. Here we describe a click chemistry-compatible nucleoside analog that is selectively incorporated into poly(A) tails of transcripts in cells. Next-generation sequencing of labeled mRNAs enables a transcriptome-wide profile of polyadenylation and provides insights into the mRNA sequence elements that are correlated with polyadenylation. PMID:23995769

  17. Global transcriptome profiles of Italian Mediterranean buffalo embryos with normal and retarded growth.

    PubMed

    Strazzullo, Maria; Gasparrini, Bianca; Neglia, Gianluca; Balestrieri, Maria Luisa; Francioso, Romina; Rossetti, Cristina; Nassa, Giovanni; De Filippo, Maria Rosaria; Weisz, Alessandro; Di Francesco, Serena; Vecchio, Domenico; D'Esposito, Maurizio; D'Occhio, Michael John; Zicarelli, Luigi; Campanile, Giuseppe

    2014-01-01

    The transcriptome profiles were compared for buffalo embryos with normal growth and embryos with retarded growth on Day 25 after mating. Embryos with retarded growth on Day 25 after mating have a reduced likelihood of undergoing attachment to the uterine endometrium and establishing a pregnancy. Italian Mediterranean buffaloes were mated by AI and on Day 25 underwent trans-rectal ultrasonography to ascertain embryo development. Embryos with an embryonic width (EW)>2.7 mm were classed as normal embryos and embryos with an EW<2.7 mm were classed as retarded embryos. Three buffaloes with embryos of the largest EW (3.7, 3.7 and 3.9 mm) and three buffaloes with embryos of the smallest EW (1.5, 1.6 and 1.9 mm) were slaughtered on Day 27 to recover embryos for transcriptome analysis using a bovine custom designed oligo array. A total of 1,047 transcripts were differentially expressed between embryos with normal growth and embryos with retarded growth. Retarded embryos showed 773/1,047 (74%) transcripts that were down-regulated and 274/1,047 (26%) transcripts that were up-regulated relative to normal embryos; in silico analyses focused on 680/1,047 (65%) of the differentially expressed transcripts. The most altered transcripts observed in retarded embryos were associated with membrane structure and function and with metabolic and homeostasis maintenance functions. Other notable functions altered in retarded embryos were developmental processes and in particular nervous system differentiation and function. Specific biochemical pathways such as the complement cascade and coagulation were also altered in retarded embryos. It was concluded from the findings that buffalo embryos with retarded growth on Day 25 after mating show altered gene expression compared with normal embryos, and some de-regulated functions are associated with attachment to the uterine endometrium. PMID:24587197

  18. Global Transcriptome Profiles of Italian Mediterranean Buffalo Embryos with Normal and Retarded Growth

    PubMed Central

    Neglia, Gianluca; Balestrieri, Maria Luisa; Francioso, Romina; Rossetti, Cristina; Nassa, Giovanni; De Filippo, Maria Rosaria; Weisz, Alessandro; Di Francesco, Serena; Vecchio, Domenico; D'Esposito, Maurizio; D'Occhio, Michael John; Zicarelli, Luigi; Campanile, Giuseppe

    2014-01-01

    The transcriptome profiles were compared for buffalo embryos with normal growth and embryos with retarded growth on Day 25 after mating. Embryos with retarded growth on Day 25 after mating have a reduced likelihood of undergoing attachment to the uterine endometrium and establishing a pregnancy. Italian Mediterranean buffaloes were mated by AI and on Day 25 underwent trans-rectal ultrasonography to ascertain embryo development. Embryos with an embryonic width (EW)>2.7 mm were classed as normal embryos and embryos with an EW<2.7 mm were classed as retarded embryos. Three buffaloes with embryos of the largest EW (3.7, 3.7 and 3.9 mm) and three buffaloes with embryos of the smallest EW (1.5, 1.6 and 1.9 mm) were slaughtered on Day 27 to recover embryos for transcriptome analysis using a bovine custom designed oligo array. A total of 1,047 transcripts were differentially expressed between embryos with normal growth and embryos with retarded growth. Retarded embryos showed 773/1,047 (74%) transcripts that were down-regulated and 274/1,047 (26%) transcripts that were up-regulated relative to normal embryos; in silico analyses focused on 680/1,047 (65%) of the differentially expressed transcripts. The most altered transcripts observed in retarded embryos were associated with membrane structure and function and with metabolic and homeostasis maintenance functions. Other notable functions altered in retarded embryos were developmental processes and in particular nervous system differentiation and function. Specific biochemical pathways such as the complement cascade and coagulation were also altered in retarded embryos. It was concluded from the findings that buffalo embryos with retarded growth on Day 25 after mating show altered gene expression compared with normal embryos, and some de-regulated functions are associated with attachment to the uterine endometrium. PMID:24587197

  19. Global analysis of transcription in castration-resistant prostate cancer cells uncovers active enhancers and direct androgen receptor targets

    PubMed Central

    Toropainen, Sari; Niskanen, Einari A.; Malinen, Marjo; Sutinen, Päivi; Kaikkonen, Minna U.; Palvimo, Jorma J.

    2016-01-01

    Androgen receptor (AR) is a male sex steroid-activated transcription factor (TF) that plays a critical role in prostate cancers, including castration-resistant prostate cancers (CRPC) that typically express amplified levels of the AR. CRPC-derived VCaP cells display an excessive number of chromatin AR-binding sites (ARBs) most of which localize to distal inter- or intragenic regions. Here, we analyzed direct transcription programs of the AR in VCaP cells using global nuclear run-on sequencing (GRO-seq) and integrated the GRO-seq data with the ARB and VCaP cell-specific TF-binding data. Androgen immediately activated transcription of hundreds of protein-coding genes, including IGF-1 receptor and EGF receptor. Androgen also simultaneously repressed transcription of a large number of genes, including MYC. As functional enhancers have been postulated to produce enhancer-templated non-coding RNAs (eRNAs), we also analyzed the eRNAs, which revealed that only a fraction of the ARBs reside at functional enhancers. Activation of these enhancers was most pronounced at the sites that also bound PIAS1, ERG and HDAC3, whereas binding of HDAC3 and PIAS1 decreased at androgen-repressed enhancers. In summary, our genome-wide data of androgen-regulated enhancers and primary target genes provide new insights how the AR can directly regulate cellular growth and control signaling pathways in CPRC cells. PMID:27641228

  20. Global analysis of transcription in castration-resistant prostate cancer cells uncovers active enhancers and direct androgen receptor targets.

    PubMed

    Toropainen, Sari; Niskanen, Einari A; Malinen, Marjo; Sutinen, Päivi; Kaikkonen, Minna U; Palvimo, Jorma J

    2016-01-01

    Androgen receptor (AR) is a male sex steroid-activated transcription factor (TF) that plays a critical role in prostate cancers, including castration-resistant prostate cancers (CRPC) that typically express amplified levels of the AR. CRPC-derived VCaP cells display an excessive number of chromatin AR-binding sites (ARBs) most of which localize to distal inter- or intragenic regions. Here, we analyzed direct transcription programs of the AR in VCaP cells using global nuclear run-on sequencing (GRO-seq) and integrated the GRO-seq data with the ARB and VCaP cell-specific TF-binding data. Androgen immediately activated transcription of hundreds of protein-coding genes, including IGF-1 receptor and EGF receptor. Androgen also simultaneously repressed transcription of a large number of genes, including MYC. As functional enhancers have been postulated to produce enhancer-templated non-coding RNAs (eRNAs), we also analyzed the eRNAs, which revealed that only a fraction of the ARBs reside at functional enhancers. Activation of these enhancers was most pronounced at the sites that also bound PIAS1, ERG and HDAC3, whereas binding of HDAC3 and PIAS1 decreased at androgen-repressed enhancers. In summary, our genome-wide data of androgen-regulated enhancers and primary target genes provide new insights how the AR can directly regulate cellular growth and control signaling pathways in CPRC cells. PMID:27641228

  1. A reliable method for the selection of exploitable melanoma archival paraffin embedded tissues for transcript biomarker profiling.

    PubMed

    Lebbe, Celeste; Guedj, Mickael; Basset-Seguin, Nicole; Podgorniak, Marie Pierre; Menashi, Suzanne; Janin, Anne; Mourah, Samia

    2012-01-01

    The source tissue for biomarkers mRNA expression profiling of tumors has traditionally been fresh-frozen tissue. The adaptation of formalin-fixed, paraffin-embedded (FFPE) tissues for routine mRNA profiling would however be invaluable in view of their abundance and the clinical information related to them. However, their use in the clinic remains a challenge due to the poor quality of RNA extracted from such tissues. Here, we developed a method for the selection of melanoma archival paraffin-embedded tissues that can be reliably used for transcript biomarker profiling. For that, we used qRT-PCR to conduct a comparative study in matched pairs of frozen and FFPE melanoma tissues of the expression of 25 genes involved in angiogenesis/tumor invasion and 15 housekeeping genes. A classification method was developed that can select the samples with a good frozen/FFPE correlation and identify those that should be discarded on the basis of paraffin data for four reference genes only. We propose therefore a simple and inexpensive assay which improves reliability of mRNA profiling in FFPE samples by allowing the identification and analysis of "good" samples only. This assay which can be extended to other genes would however need validation at the clinical level and on independent tumor series. PMID:22272228

  2. Global gene expression profiles reveal significant nuclear reprogramming by the blastocyst stage after cloning.

    PubMed

    Smith, Sadie L; Everts, Robin E; Tian, X Cindy; Du, Fuliang; Sung, Li-Ying; Rodriguez-Zas, Sandra L; Jeong, Byeong-Seon; Renard, Jean-Paul; Lewin, Harris A; Yang, Xiangzhong

    2005-12-01

    Nuclear transfer (NT) has potential applications in agriculture and biomedicine, but the technology is hindered by low efficiency. Global gene expression analysis of clones is important for the comprehensive study of nuclear reprogramming. Here, we compared global gene expression profiles of individual bovine NT blastocysts with their somatic donor cells and fertilized control embryos using cDNA microarray technology. The NT embryos' gene expression profiles were drastically different from those of their donor cells and closely resembled those of the naturally fertilized embryos. Our findings demonstrate that the NT embryos have undergone significant nuclear reprogramming by the blastocyst stage; however, problems may occur during redifferentiation for tissue genesis and organogenesis, and small reprogramming errors may be magnified downstream in development.

  3. Pollen-Specific Activation of Arabidopsis Retrogenes Is Associated with Global Transcriptional Reprogramming[W][OPEN

    PubMed Central

    Abdelsamad, Ahmed; Pecinka, Ales

    2014-01-01

    Duplications allow for gene functional diversification and accelerate genome evolution. Occasionally, the transposon amplification machinery reverse transcribes the mRNA of a gene, integrates it into the genome, and forms an RNA-duplicated copy: the retrogene. Although retrogenes have been found in plants, their biology and evolution are poorly understood. Here, we identified 251 (216 novel) retrogenes in Arabidopsis thaliana, corresponding to 1% of protein-coding genes. Arabidopsis retrogenes are derived from ubiquitously transcribed parents and reside in gene-rich chromosomal regions. Approximately 25% of retrogenes are cotranscribed with their parents and 3% with head-to-head oriented neighbors. This suggests transcription by novel promoters for 72% of Arabidopsis retrogenes. Many retrogenes reach their transcription maximum in pollen, the tissue analogous to animal spermatocytes, where upregulation of retrogenes has been found previously. This implies an evolutionarily conserved mechanism leading to this transcription pattern of RNA-duplicated genes. During transcriptional repression, retrogenes are depleted of permissive chromatin marks without an obvious enrichment for repressive modifications. However, this pattern is common to many other pollen-transcribed genes independent of their evolutionary origin. Hence, retroposition plays a role in plant genome evolution, and the developmental transcription pattern of retrogenes suggests an analogous regulation of RNA-duplicated genes in plants and animals. PMID:25118244

  4. Increased global transcription activity as a mechanism of replication stress in cancer

    PubMed Central

    Kotsantis, Panagiotis; Silva, Lara Marques; Irmscher, Sarah; Jones, Rebecca M.; Folkes, Lisa; Gromak, Natalia; Petermann, Eva

    2016-01-01

    Cancer is a disease associated with genomic instability that often results from oncogene activation. This in turn leads to hyperproliferation and replication stress. However, the molecular mechanisms that underlie oncogene-induced replication stress are still poorly understood. Oncogenes such as HRASV12 promote proliferation by upregulating general transcription factors to stimulate RNA synthesis. Here we investigate whether this increase in transcription underlies oncogene-induced replication stress. We show that in cells overexpressing HRASV12, elevated expression of the general transcription factor TATA-box binding protein (TBP) leads to increased RNA synthesis, which together with R-loop accumulation results in replication fork slowing and DNA damage. Furthermore, overexpression of TBP alone causes the hallmarks of oncogene-induced replication stress, including replication fork slowing, DNA damage and senescence. Consequently, we reveal that increased transcription can be a mechanism of oncogene-induced DNA damage, providing a molecular link between upregulation of the transcription machinery and genomic instability in cancer. PMID:27725641

  5. A Molecular Profile of Cocaine Abuse Includes the Differential Expression of Genes that Regulate Transcription, Chromatin, and Dopamine Cell Phenotype

    PubMed Central

    Bannon, Michael J; Johnson, Magen M; Michelhaugh, Sharon K; Hartley, Zachary J; Halter, Steven D; David, James A; Kapatos, Gregory; Schmidt, Carl J

    2014-01-01

    Chronic drug abuse, craving, and relapse are thought to be linked to long-lasting changes in neural gene expression arising through transcriptional and chromatin-related mechanisms. The key contributions of midbrain dopamine (DA)-synthesizing neurons throughout the addiction process provide a compelling rationale for determining the drug-induced molecular changes that occur in these cells. Yet our understanding of these processes remains rudimentary. The postmortem human brain constitutes a unique resource that can be exploited to gain insights into the pathophysiology of complex disorders such as drug addiction. In this study, we analyzed the profiles of midbrain gene expression in chronic cocaine abusers and well-matched drug-free control subjects using microarray and quantitative PCR. A small number of genes exhibited robust differential expression; many of these are involved in the regulation of transcription, chromatin, or DA cell phenotype. Transcript abundances for approximately half of these differentially expressed genes were diagnostic for assigning subjects to the cocaine-abusing vs control cohort. Identification of a molecular signature associated with pathophysiological changes occurring in cocaine abusers' midbrains should contribute to the development of biomarkers and novel therapeutic targets for drug addiction. PMID:24642598

  6. Sequential use of transcriptional profiling, expression quantitative trait mapping, and gene association implicates MMP20 in human kidney aging.

    PubMed

    Wheeler, Heather E; Metter, E Jeffrey; Tanaka, Toshiko; Absher, Devin; Higgins, John; Zahn, Jacob M; Wilhelmy, Julie; Davis, Ronald W; Singleton, Andrew; Myers, Richard M; Ferrucci, Luigi; Kim, Stuart K

    2009-10-01

    Kidneys age at different rates, such that some people show little or no effects of aging whereas others show rapid functional decline. We sequentially used transcriptional profiling and expression quantitative trait loci (eQTL) mapping to narrow down which genes to test for association with kidney aging. We first performed whole-genome transcriptional profiling to find 630 genes that change expression with age in the kidney. Using two methods to detect eQTLs, we found 101 of these age-regulated genes contain expression-associated SNPs. We tested the eQTLs for association with kidney aging, measured by glomerular filtration rate (GFR) using combined data from the Baltimore Longitudinal Study of Aging (BLSA) and the InCHIANTI study. We found a SNP association (rs1711437 in MMP20) with kidney aging (uncorrected p = 3.6 x 10(-5), empirical p = 0.01) that explains 1%-2% of the variance in GFR among individuals. The results of this sequential analysis may provide the first evidence for a gene association with kidney aging in humans.

  7. Sequential Use of Transcriptional Profiling, Expression Quantitative Trait Mapping, and Gene Association Implicates MMP20 in Human Kidney Aging

    PubMed Central

    Wheeler, Heather E.; Metter, E. Jeffrey; Tanaka, Toshiko; Absher, Devin; Higgins, John; Zahn, Jacob M.; Wilhelmy, Julie; Davis, Ronald W.; Singleton, Andrew; Myers, Richard M.; Ferrucci, Luigi; Kim, Stuart K.

    2009-01-01

    Kidneys age at different rates, such that some people show little or no effects of aging whereas others show rapid functional decline. We sequentially used transcriptional profiling and expression quantitative trait loci (eQTL) mapping to narrow down which genes to test for association with kidney aging. We first performed whole-genome transcriptional profiling to find 630 genes that change expression with age in the kidney. Using two methods to detect eQTLs, we found 101 of these age-regulated genes contain expression-associated SNPs. We tested the eQTLs for association with kidney aging, measured by glomerular filtration rate (GFR) using combined data from the Baltimore Longitudinal Study of Aging (BLSA) and the InCHIANTI study. We found a SNP association (rs1711437 in MMP20) with kidney aging (uncorrected p = 3.6×10−5, empirical p = 0.01) that explains 1%–2% of the variance in GFR among individuals. The results of this sequential analysis may provide the first evidence for a gene association with kidney aging in humans. PMID:19834535

  8. Comprehensive transcript profiling of Pto- and Prf-mediated host defense responses to infection by Pseudomonas syringae pv. tomato.

    PubMed

    Mysore, Kirankumar S; Crasta, Oswald R; Tuori, Robert P; Folkerts, Otto; Swirsky, Peter B; Martin, Gregory B

    2002-11-01

    The disease resistance gene Pto encodes a serine/threonine protein kinase that confers resistance in tomato to Pseudomonas syringae pv. tomato strains that express the effector protein AvrPto. Pto-mediated resistance to bacterial speck disease also requires Prf, a protein with leucine-rich repeats and a putative nucleotide-binding site, although the role of Prf in the defense pathway is not known. We used GeneCalling, an open-architecture, mRNA-profiling technology, to identify genes that are either induced or suppressed in leaves 4 h after bacterial infection in the Pto- and Prf-mediated tomato-Pseudomonas(avrPto) interaction. Over 135 000 individual cDNA fragments representing an estimated 90% of the transcripts expressed in tomato leaves were examined and 432 differentially expressed genes were identified. The genes encode over 25 classes of proteins including 11 types of transcription factors and many signal transduction components. Differential expression of 91% of the genes required both Pto and Prf. Interestingly, differential expression of 32 genes did not require Pto but was dependent on Prf. Thus, our data support a role for Prf early in the Pto pathway and indicate that Prf can also function as an independent host recognition determinant of bacterial infection. Comprehensive expression profiling of the Pto-mediated defense response allows the development of many new hypotheses about the molecular basis of resistance to bacterial speck disease.

  9. Transcript profiling reveals that cysteine protease inhibitors are up-regulated in tuber sprouts after extended darkness.

    PubMed

    Grandellis, Carolina; Giammaria, Veronica; Fantino, Elisa; Cerrudo, Ignacio; Bachmann, Sandra; Santin, Franco; Ulloa, Rita M

    2016-07-01

    Potato (Solanum tuberosum L.) tubers are an excellent staple food due to its high nutritional value. When the tuber reaches physiological competence, sprouting proceeds accompanied by changes at mRNA and protein levels. Potato tubers become a source of carbon and energy until sprouts are capable of independent growth. Transcript profiling of sprouts grown under continuous light or dark conditions was performed using the TIGR 10K EST Solanaceae microarray. The profiles analyzed show a core of highly expressed transcripts that are associated to the reactivation of growth. Under light conditions, the photosynthetic machinery was fully activated; the highest up-regulation was observed for the Rubisco activase (RCA), the glyceraldehyde-3-phosphate dehydrogenase (GAPDH), and the Photosystem II 22 kDa protein (CP22) genes, among others. On the other hand, sprouts exposed to continuous darkness elongate longer, and after extended darkness, synthesis of chloroplast components was repressed, the expression of proteases was reduced while genes encoding cysteine protease inhibitors (CPIs) and metallocarboxypeptidase inhibitors (MPIs) were strongly induced. Northern blot and RT-PCR analysis confirmed that MPI levels correlated with the length of the dark period; however, CPI expression was strong only after longer periods of darkness, suggesting a feedback loop (regulation mechanism) in response to dark-induced senescence. Prevention of cysteine protease activity in etiolated sprouts exposed to extended darkness could delay senescence until they emerge to light.

  10. Cysteine-Generated Sulfide in the Cytosol Negatively Regulates Autophagy and Modulates the Transcriptional Profile in Arabidopsis[W

    PubMed Central

    Álvarez, Consolación; García, Irene; Moreno, Inmaculada; Pérez-Pérez, María Esther; Crespo, José L.; Romero, Luis C.; Gotor, Cecilia

    2012-01-01

    In Arabidopsis thaliana, DES1 is the only identified l-Cysteine desulfhydrase located in the cytosol, and it is involved in the degradation of cysteine and the concomitant production of H2S in this cell compartment. Detailed characterization of the T-DNA insertion mutants des1-1 and des1-2 has provided insight into the role of sulfide metabolically generated in the cytosol as a signaling molecule. Mutations of L-CYS DESULFHYDRASE 1 (DES1) impede H2S generation in the Arabidopsis cytosol and strongly affect plant metabolism. Senescence-associated vacuoles are detected in mesophyll protoplasts of des1 mutants. Additionally, DES1 deficiency promotes the accumulation and lipidation of the ATG8 protein, which is associated with the process of autophagy. The transcriptional profile of the des1-1 mutant corresponds to its premature senescence and autophagy-induction phenotypes, and restoring H2S generation has been shown to eliminate the phenotypic defects of des1 mutants. Moreover, sulfide is able to reverse ATG8 accumulation and lipidation, even in wild-type plants when autophagy is induced by carbon starvation, suggesting a general effect of sulfide on autophagy regulation that is unrelated to sulfur or nitrogen limitation stress. Our results suggest that cysteine-generated sulfide in the cytosol negatively regulates autophagy and modulates the transcriptional profile of Arabidopsis. PMID:23144183

  11. Omics-Based Comparative Transcriptional Profiling of Two Contrasting Rice Genotypes during Early Infestation by Small Brown Planthopper

    PubMed Central

    Zhang, Weilin; Yang, Ling; Li, Mei; Ma, Bojun; Yan, Chengqi; Chen, Jianping

    2015-01-01

    The small brown planthopper (SBPH) is one of the destructive pests of rice. Although different biochemical pathways that are involved in rice responding to planthopper infestation have been documented, it is unclear which individual metabolic pathways are responsive to planthopper infestation. In this study, an omics-based comparative transcriptional profiling of two contrasting rice genotypes, an SBPH-resistant and an SBPH-susceptible rice line, was assessed for rice individual metabolic pathways responsive to SBPH infestation. When exposed to SBPH, 166 metabolic pathways were differentially regulated; of these, more than one-third of metabolic pathways displayed similar change patterns between these two contrasting rice genotypes; the difference of change pattern between these two contrasting rice genotypes mostly lies in biosynthetic pathways and the obvious difference of change pattern lies in energy metabolism pathways. Combining the Pathway Tools Omics Viewer with the web tool Venn, 21 and 6 metabolic pathways which potentially associated with SBPH resistance and susceptibility, respectively were identified. This study presents an omics-based comparative transcriptional profiling of SBPH-resistant and SBPH-susceptible rice plants during early infestation by SBPH, which will be very informative in studying rice-insect interaction. The results will provide insight into how rice plants respond to early infestation by SBPH from the biochemical pathways perspective. PMID:26633389

  12. Global and Quantitative Profiling of Polyadenylated RNAs Using PAS-seq

    PubMed Central

    Yao, Chengguo; Shi, Yongsheng

    2015-01-01

    mRNA alternative polyadenylation (APA) has been increasingly recognized as a widespread and evolutionarily conserved mechanism for eukaryotic gene regulation. Here we describe a method called poly(A) site sequencing that can not only map RNA polyadenylation sites on a transcriptome level but also provide quantitative information on the relative abundance of polyadenylated RNAs. This method has been successfully used for both global APA analysis and digital gene expression profiling. PMID:24590790

  13. Identification and Expression Profiles of Six Transcripts Encoding Carboxylesterase Protein in Vitis flexuosa Infected with Pathogens.

    PubMed

    Islam, Md Zaherul; Yun, Hae Keun

    2016-08-01

    Plants protect themselves from pathogen attacks via several mechanisms, including hypersensitive cell death. Recognition of pathogen attack by the plant resistance gene triggers expression of carboxylesterase genes associated with hypersensitive response. We identified six transcripts of carboxylesterase genes, Vitis flexuosa carboxylesterase 5585 (VfCXE5585), VfCXE12827, VfCXE13132, VfCXE17159, VfCXE18231, and VfCXE47674, which showed different expression patterns upon transcriptome analysis of V. flexuosa inoculated with Elsinoe ampelina. The lengths of genes ranged from 1,098 to 1,629 bp, and their encoded proteins consisted of 309 to 335 amino acids. The predicted amino acid sequences showed hydrolase like domains in all six transcripts and contained two conserved motifs, GXSXG of serine hydrolase characteristics and HGGGF related to the carboxylesterase family. The deduced amino acid sequence also contained a potential catalytic triad consisted of serine, aspartic acid and histidine. Of the six transcripts, VfCXE12827 showed upregulated expression against E. ampelina at all time points. Three genes (VfCXE5585, VfCXE12827, and VfCXE13132) showed upregulation, while others (VfCXE17159, VfCXE18231, and VfCXE47674) were down regulated in grapevines infected with Botrytis cinerea. All transcripts showed upregulated expression against Rhizobium vitis at early and later time points except VfCXE12827, and were downregulated for up to 48 hours post inoculation (hpi) after upregulation at 1 hpi in response to R. vitis infection. All tested genes showed high and differential expression in response to pathogens, indicating that they all may play a role in defense pathways during pathogen infection in grapevines. PMID:27493610

  14. Identification and Expression Profiles of Six Transcripts Encoding Carboxylesterase Protein in Vitis flexuosa Infected with Pathogens

    PubMed Central

    Islam, Md. Zaherul; Yun, Hae Keun

    2016-01-01

    Plants protect themselves from pathogen attacks via several mechanisms, including hypersensitive cell death. Recognition of pathogen attack by the plant resistance gene triggers expression of carboxylesterase genes associated with hypersensitive response. We identified six transcripts of carboxylesterase genes, Vitis flexuosa carboxylesterase 5585 (VfCXE5585), VfCXE12827, VfCXE13132, VfCXE17159, VfCXE18231, and VfCXE47674, which showed different expression patterns upon transcriptome analysis of V. flexuosa inoculated with Elsinoe ampelina. The lengths of genes ranged from 1,098 to 1,629 bp, and their encoded proteins consisted of 309 to 335 amino acids. The predicted amino acid sequences showed hydrolase like domains in all six transcripts and contained two conserved motifs, GXSXG of serine hydrolase characteristics and HGGGF related to the carboxylesterase family. The deduced amino acid sequence also contained a potential catalytic triad consisted of serine, aspartic acid and histidine. Of the six transcripts, VfCXE12827 showed upregulated expression against E. ampelina at all time points. Three genes (VfCXE5585, VfCXE12827, and VfCXE13132) showed upregulation, while others (VfCXE17159, VfCXE18231, and VfCXE47674) were down regulated in grapevines infected with Botrytis cinerea. All transcripts showed upregulated expression against Rhizobium vitis at early and later time points except VfCXE12827, and were downregulated for up to 48 hours post inoculation (hpi) after upregulation at 1 hpi in response to R. vitis infection. All tested genes showed high and differential expression in response to pathogens, indicating that they all may play a role in defense pathways during pathogen infection in grapevines. PMID:27493610

  15. Transcriptional profiling of the soil invertebrate Folsomia candida in pentachlorophenol-contaminated soil.

    PubMed

    Qiao, Min; Wang, Guang-Peng; Zhang, Cai; Roelofs, Dick; van Straalen, Nico M; Zhu, Yong-Guan

    2015-06-01

    Pentachlorophenol (PCP), a widely used pesticide, is considered to be an endocrine disruptor. The molecular effects of chemicals with endocrine-disrupting potential on soil invertebrates are largely unknown. In the present study, the authors explored the transcriptional expression changes of collembola (Folsomia candida) in response to PCP contamination. A total of 92 genes were significantly differentially expressed at all exposure times, and the majority of them were found to be downregulated. In addition to the transcripts encoding cytochrome P450s and transferase enzymes, chitin-binding protein was also identified in the list of common differentially expressed genes. Analyses of gene ontology annotation and enrichment revealed that cell cycle-related transcripts were significantly induced by PCP, indicating that PCP can stimulate cell proliferation in springtail, as has been reported in human breast cancer cells. Enrichment of functional terms related to steroid receptors was observed, particularly in 20 significant differentially expressed genes involved in chitin metabolism in response to PCP exposure. Combined with confirmation by quantitative polymerase chain reaction, the results indicate that the adverse effects on reproduction of springtails after exposure to PCP can be attributed to a chemical-induced delay in the molting cycle and that molting-associated genes may serve as possible biomarkers for assessing toxicological effects. PMID:25703271

  16. Transcriptional and Proteomic Profiling of Aspergillus flavipes in Response to Sulfur Starvation

    PubMed Central

    El-Sayed, Ashraf S. A.; Yassin, Marwa A.; Ali, Gul Shad

    2015-01-01

    Aspergillus flavipes has received considerable interest due to its potential to produce therapeutic enzymes involved in sulfur amino acid metabolism. In natural habitats, A. flavipes survives under sulfur limitations by mobilizing endogenous and exogenous sulfur to operate diverse cellular processes. Sulfur limitation affects virulence and pathogenicity, and modulates proteome of sulfur assimilating enzymes of several fungi. However, there are no previous reports aimed at exploring effects of sulfur limitation on the regulation of A. flavipes sulfur metabolism enzymes at the transcriptional, post-transcriptional and proteomic levels. In this report, we show that sulfur limitation affects morphological and physiological responses of A. flavipes. Transcription and enzymatic activities of several key sulfur metabolism genes, ATP-sulfurylase, sulfite reductase, methionine permease, cysteine synthase, cystathionine β- and γ-lyase, glutathione reductase and glutathione peroxidase were increased under sulfur starvation conditions. A 50 kDa protein band was strongly induced by sulfur starvation, and the proteomic analyses of this protein band using LC-MS/MS revealed similarity to many proteins involved in the sulfur metabolism pathway. PMID:26633307

  17. Complementary Post Transcriptional Regulatory Information is Detected by PUNCH-P and Ribosome Profiling

    PubMed Central

    Zur, Hadas; Aviner, Ranen; Tuller, Tamir

    2016-01-01

    Two novel approaches were recently suggested for genome-wide identification of protein aspects synthesized at a given time. Ribo-Seq is based on sequencing all the ribosome protected mRNA fragments in a cell, while PUNCH-P is based on mass-spectrometric analysis of only newly synthesized proteins. Here we describe the first Ribo-Seq/PUNCH-P comparison via the analysis of mammalian cells during the cell-cycle for detecting relevant differentially expressed genes between G1 and M phase. Our analyses suggest that the two approaches significantly overlap with each other. However, we demonstrate that there are biologically meaningful proteins/genes that can be detected to be post-transcriptionally regulated during the mammalian cell cycle only by each of the approaches, or their consolidation. Such gene sets are enriched with proteins known to be related to intra-cellular signalling pathways such as central cell cycle processes, central gene expression regulation processes, processes related to chromosome segregation, DNA damage, and replication, that are post-transcriptionally regulated during the mammalian cell cycle. Moreover, we show that combining the approaches better predicts steady state changes in protein abundance. The results reported here support the conjecture that for gaining a full post-transcriptional regulation picture one should integrate the two approaches. PMID:26898226

  18. Differential sensitivities of transcription factor target genes underlie cell type-specific gene expression profiles

    PubMed Central

    Johnson, Kirby D.; Kim, Shin-Il; Bresnick, Emery H.

    2006-01-01

    Changes in transcription factor levels and activities dictate developmental fate. Such a change might affect the full ensemble of target genes for a factor or only uniquely sensitive targets. We investigated the relationship among activity of the hematopoietic transcription factor GATA-1, chromatin occupancy, and target gene sensitivity. Graded activation of GATA-1 in GATA-1-null cells revealed high-, intermediate-, and low-sensitivity targets. GATA-1 activity requirements for occupancy and transcription often correlated. A GATA-1 amino-terminal deletion mutant severely deregulated the low-sensitivity gene Tac-2. Thus, cells expressing different levels of a cell type-specific activator can have qualitatively distinct target gene expression patterns, and factor mutations preferentially deregulate low-sensitivity genes. Unlike other target genes, GATA-1-mediated Tac-2 regulation was bimodal, with activation followed by repression, and the coregulator Friend of GATA-1 (FOG-1) selectively mediated repression. A GATA-1 mutant defective in FOG-1 binding occupied a Tac-2 regulatory region at levels higher than wild-type GATA-1, whereas FOG-1 facilitated chromatin occupancy at a distinct target site. These results indicate that FOG-1 is a determinant of GATA factor target gene sensitivity by either facilitating or opposing chromatin occupancy. PMID:17043224

  19. Impact of DNA damaging agents on genome-wide transcriptional profiles in two marine Synechococcus species

    PubMed Central

    Tetu, Sasha G.; Johnson, Daniel A.; Varkey, Deepa; Phillippy, Katherine; Stuart, Rhona K.; Dupont, Chris L.; Hassan, Karl A.; Palenik, Brian; Paulsen, Ian T.

    2013-01-01

    Marine microorganisms, particularly those residing in coastal areas, may come in contact with any number of chemicals of environmental or xenobiotic origin. The sensitivity and response of marine cyanobacteria to such chemicals is, at present, poorly understood. We have looked at the transcriptional response of well characterized Synechococcus open ocean (WH8102) and coastal (CC9311) isolates to two DNA damaging agents, mitomycin C and ethidium bromide, using whole-genome expression microarrays. The coastal strain showed differential regulation of a larger proportion of its genome following “shock” treatment with each agent. Many of the orthologous genes in these strains, including those encoding sensor kinases, showed different transcriptional responses, with the CC9311 genes more likely to show significant changes in both treatments. While the overall response of each strain was considerably different, there were distinct transcriptional responses common to both strains observed for each DNA damaging agent, linked to the mode of action of each chemical. In both CC9311 and WH8102 there was evidence of SOS response induction under mitomycin C treatment, with genes recA, lexA and umuC significantly upregulated in this experiment but not under ethidium bromide treatment. Conversely, ethidium bromide treatment tended to result in upregulation of the DNA-directed RNA polymerase genes, not observed following mitomycin C treatment. Interestingly, a large number of genes residing on putative genomic island regions of each genome also showed significant upregulation under one or both chemical treatments. PMID:23966990

  20. The LysR-type transcription factor PacR is a global regulator of photosynthetic carbon assimilation in Anabaena.

    PubMed

    Picossi, Silvia; Flores, Enrique; Herrero, Antonia

    2015-09-01

    Cyanobacteria perform water-splitting photosynthesis and are important primary producers impacting the carbon and nitrogen cycles at global scale. They fix CO2 through ribulose-bisphosphate carboxylase/oxygenase (RuBisCo) and have evolved a distinct CO2 concentrating mechanism (CCM) that builds high CO2 concentrations in the vicinity of RuBisCo favouring its carboxylase activity. Filamentous cyanobacteria such as Anabaena fix CO2 in photosynthetic vegetative cells, which donate photosynthate to heterocysts that rely on a heterotrophic metabolism to fix N2 . CCM elements are induced in response to inorganic carbon limitation, a cue that exposes the photosynthetic apparatus to photodamage by over-reduction. An Anabaena mutant lacking the LysR-type transcription factor All3953 grew poorly and dies under high light. The rbcL operon encoding RuBisCo was induced upon carbon limitation in the wild type but not in the mutant. ChIP-Seq analysis was used to globally identify All3953 targets under carbon limitation. Targets include, besides rbcL, genes encoding CCM elements, photorespiratory pathway- photosystem- and electron transport-related components, and factors, including flavodiiron proteins, with a demonstrated or putative function in photoprotection. Quantitative reverse transcription polymerase chain reaction analysis of selected All3953 targets showed regulation in the wild type but not in the mutant. All3953 (PacR) is a global regulator of carbon assimilation in an oxygenic photoautotroph.

  1. The LysR-type transcription factor PacR is a global regulator of photosynthetic carbon assimilation in Anabaena.

    PubMed

    Picossi, Silvia; Flores, Enrique; Herrero, Antonia

    2015-09-01

    Cyanobacteria perform water-splitting photosynthesis and are important primary producers impacting the carbon and nitrogen cycles at global scale. They fix CO2 through ribulose-bisphosphate carboxylase/oxygenase (RuBisCo) and have evolved a distinct CO2 concentrating mechanism (CCM) that builds high CO2 concentrations in the vicinity of RuBisCo favouring its carboxylase activity. Filamentous cyanobacteria such as Anabaena fix CO2 in photosynthetic vegetative cells, which donate photosynthate to heterocysts that rely on a heterotrophic metabolism to fix N2 . CCM elements are induced in response to inorganic carbon limitation, a cue that exposes the photosynthetic apparatus to photodamage by over-reduction. An Anabaena mutant lacking the LysR-type transcription factor All3953 grew poorly and dies under high light. The rbcL operon encoding RuBisCo was induced upon carbon limitation in the wild type but not in the mutant. ChIP-Seq analysis was used to globally identify All3953 targets under carbon limitation. Targets include, besides rbcL, genes encoding CCM elements, photorespiratory pathway- photosystem- and electron transport-related components, and factors, including flavodiiron proteins, with a demonstrated or putative function in photoprotection. Quantitative reverse transcription polymerase chain reaction analysis of selected All3953 targets showed regulation in the wild type but not in the mutant. All3953 (PacR) is a global regulator of carbon assimilation in an oxygenic photoautotroph. PMID:25684321

  2. Global O-GlcNAc Levels Modulate Transcription of the Adipocyte Secretome during Chronic Insulin Resistance

    PubMed Central

    Wollaston-Hayden, Edith E.; Harris, Ruth B. S.; Liu, Bingqiang; Bridger, Robert; Xu, Ying; Wells, Lance

    2015-01-01

    Increased flux through the hexosamine biosynthetic pathway and the corresponding increase in intracellular glycosylation of proteins via O-linked β-N-acetylglucosamine (O-GlcNAc) is sufficient to induce insulin resistance (IR) in multiple systems. Previously, our group used shotgun proteomics to identify multiple rodent adipocytokines and secreted proteins whose levels are modulated upon the induction of IR by indirectly and directly modulating O-GlcNAc levels. We have validated the relative levels of several of these factors using immunoblotting. Since adipocytokines levels are regulated primarily at the level of transcription and O-GlcNAc alters the function of many transcription factors, we hypothesized that elevated O-GlcNAc levels on key transcription factors are modulating secreted protein expression. Here, we show that upon the elevation of O-GlcNAc levels and the induction of IR in mature 3T3-F442a adipocytes, the transcript levels of multiple secreted proteins reflect the modulation observed at the protein level. We validate the transcript levels in male mouse models of diabetes. Using inguinal fat pads from the severely IR db/db mouse model and the mildly IR diet-induced mouse model, we have confirmed that the secreted proteins regulated by O-GlcNAc modulation in cell culture are likewise modulated in the whole animal upon a shift to IR. By comparing the promoters of similarly regulated genes, we determine that Sp1 is a common cis-acting element. Furthermore, we show that the LPL and SPARC promoters are enriched for Sp1 and O-GlcNAc modified proteins during insulin resistance in adipocytes. Thus, the O-GlcNAc modification of proteins bound to promoters, including Sp1, is linked to adipocytokine transcription during insulin resistance. PMID:25657638

  3. Global transcription analysis of vaccinated channel catfish following challenge with virulent Edwardsiella ictaluri.

    PubMed

    Pridgeon, Julia W; Yeh, Hung-Yueh; Shoemaker, Craig A; Klesius, Phillip H

    2012-03-15

    To determine the identities of genes involved in either innate or adaptive immunity, microarray analysis of 65,182 UniGene transcripts were performed to compare gene expression in vaccinated channel catfish after challenge with a virulent Edwardsiella ictaluri compared to that in sham-vaccinated fish without challenge. With a filter of false-discovery rate less than 0.05 and fold change greater than 2, a total of 167 functionally known unique transcripts were found to be up-regulated, whereas 40 were down-regulated. The 167 up-regulated transcripts represent genes with putative functions in the following eight major categories: (1) immunity (30%); (2) metabolism and energy production (22%); (3) transcription or translation (12%); (4) protein degradation (11%); (5) signal transduction (6%); (6) traffic and transport (6%); (7) cell structure or cell cycle (8%); and (8) others (5%). The 40 down-regulated transcripts represent genes with putative functions in the following six major categories: (1) metabolism (27.5%); (2) immunity (17.5%); (3) cell structure (17.5%); (4) cell motility (10%); (5) signal transduction (15%); and (6) others (12.5%). Microarray analysis revealed that lysozyme c was up-regulated the most (70-fold) in vaccinated fish at 48 h post challenge of virulent E. ictaluri whereas myotubularin related protein 1a and cytochrome P450 2J27 were down-regulated the most (8.1 fold). Differential regulation of eight randomly selected transcripts in vaccinated fish after challenge with virulent E. ictaluri was also validated by quantitative PCR. Our results suggest that these differentially regulated genes might play important roles in channel catfish immunity against E. ictaluri.

  4. Mars Global Surveyor Radio Science Electron Density Profiles: Interannual Variability and Implications for the Neutral Atmosphere

    NASA Technical Reports Server (NTRS)

    Bougher, S. W.; Engel, S.; Hinson, D. P.; Murphy, J. R.

    2003-01-01

    The Mars Global Surveyor (MGS) Radio Science (RS) experiment employs an ultrastable oscillator aboard the spacecraft. The signal from the oscillator to Earth is refracted by the Martian ionosphere, allowing retrieval of electron density profiles versus radius and geopotential. The present analysis is carried out on five sets of occultation measurements: (1) four obtained near northern summer solstice (Ls = 74-116, near aphelion) at high northern latitudes (64.7-77.6N), and (2) one set of profiles approaching equinox conditions (Ls = 135- 146) at high southern latitudes (64.7-69.1S). Electron density profiles (95 to 200 km) are examined over a narrow range of solar zenith angles (76.5-86.9 degrees) for local true solar times of (1) 3-4 hours and (2) 12.1 hours. Variations spanning 1-Martian year are specifically examined in the Northern hemisphere.

  5. Transcriptional profiling of pea ABR17 mediated changes in gene expression in Arabidopsis thaliana

    PubMed Central

    Krishnaswamy, Sowmya S; Srivastava, Sanjeeva; Mohammadi, Mohsen; Rahman, Muhammad H; Deyholos, Michael K; Kav, Nat NV

    2008-01-01

    Background Pathogenesis-related proteins belonging to group 10 (PR10) are elevated in response to biotic and abiotic stresses in plants. Previously, we have shown a drastic salinity-induced increase in the levels of ABR17, a member of the PR10 family, in pea. Furthermore, we have also demonstrated that the constitutive expression of pea ABR17 cDNA in Arabidopsis thaliana and Brassica napus enhances their germination and early seedling growth under stress. Although it has been reported that several members of the PR10 family including ABR17 possess RNase activity, the exact mechanism by which the aforementioned characteristics are conferred by ABR17 is unknown at this time. We hypothesized that a study of differences in transcriptome between wild type (WT) and ABR17 transgenic A. thaliana may shed light on this process. Results The molecular changes brought about by the expression of pea ABR17 cDNA in A. thaliana in the presence or absence of salt stress were investigated using microarrays consisting of 70-mer oligonucleotide probes representing 23,686 Arabidopsis genes. Statistical analysis identified number of genes which were over represented among up- or down-regulated transcripts in the transgenic line. Our results highlight the important roles of many abscisic acid (ABA) and cytokinin (CK) responsive genes in ABR17 transgenic lines. Although the transcriptional changes followed a general salt response theme in both WT and transgenic seedlings under salt stress, many genes exhibited differential expression patterns when the transgenic and WT lines were compared. These genes include plant defensins, heat shock proteins, other defense related genes, and several transcriptional factors. Our microarray results for selected genes were validated using quantitative real-time PCR. Conclusion Transcriptional analysis in ABR17 transgenic Arabidopsis plants, both under normal and saline conditions, revealed significant changes in abundance of transcripts for many stress

  6. Metabolite profiling and transcript analysis reveal specificities in the response of a berry derived cell culture to abiotic stresses

    PubMed Central

    Ayenew, Biruk; Degu, Asfaw; Manela, Neta; Perl, Avichai; Shamir, Michal O.; Fait, Aaron

    2015-01-01

    As climate changes, there is a need to understand the expected effects on viticulture. In nature, stresses exist in a combined manner, hampering the elucidation of the effect of individual cues on grape berry metabolism. Cell suspension culture originated from pea-size Gamy Red grape berry was used to harness metabolic response to high light (HL; 2500 μmol m-2s-1), high temperature (HT; 40°C) and their combination in comparison to 25°C and 100 μmol m-2s-1 under controlled condition. When LC–MS and GC–MS based metabolite profiling was implemented and integrated with targeted RT-qPCR transcript analysis specific responses were observed to the different cues. HL enhanced polyphenol metabolism while HT and its combination with HL induced amino acid and organic acid metabolism with additional effect on polyphenols. The trend of increment in TCA cycle genes like ATCs, ACo1, and IDH in the combined treatment might support the observed increment in organic acids, GABA shunt, and their derivatives. The apparent phenylalanine reduction with polyphenol increment under HL suggests enhanced fueling of the precursor toward the downstream phenylpropanoid pathway. In the polyphenol metabolism, a differential pattern of expression of flavonoid 3′,5′ hydroxylase and flavonoid 3′ hydroxylase was observed under high light (HL) and combined cues which were accompanied by characteristic metabolite profiles. HT decreased glycosylated cyanidin and peonidin forms while the combined cues increased acetylated and coumarylated peonidin forms. Transcription factors regulating anthocyanin metabolism and their methylation, MYB, OMT, UFGT, and DFR, were expressed differentially among the treatments, overall in agreement with the metabolite profiles. Taken together these data provide insights into the coordination of central and secondary metabolism in relation to multiple abiotic stresses. PMID:26442042

  7. Survival and Growth in the Presence of Elevated Copper: Transcriptional Profiling of Copper-Stressed Pseudomonas aeruginosa†

    PubMed Central

    Teitzel, Gail M.; Geddie, Ashley; De Long, Susan K.; Kirisits, Mary Jo; Whiteley, Marvin; Parsek, Matthew R.

    2006-01-01

    Transcriptional profiles of Pseudomonas aeruginosa exposed to two separate copper stress conditions were determined. Actively growing bacteria subjected to a pulse of elevated copper for a short period of time was defined as a “copper-shocked” culture. Conversely, copper-adapted populations were defined as cells actively growing in the presence of elevated copper. Expression of 405 genes changed in the copper-shocked culture, compared to 331 genes for the copper-adapted cultures. Not surprisingly, there were genes identified in common to both conditions. For example, both stress conditions resulted in up-regulation of genes encoding several active transport functions. However, there were some interesting differences between the two types of stress. Only copper-adapted cells significantly altered expression of passive transport functions, down-regulating expression of several porins belonging to the OprD family. Copper shock produced expression profiles suggestive of an oxidative stress response, probably due to the participation of copper in Fenton-like chemistry. Copper-adapted populations did not show such a response. Transcriptional profiles also indicated that iron acquisition is fine-tuned in the presence of copper. Several genes induced under iron-limiting conditions, such as the siderophore pyoverdine, were up-regulated in copper-adapted populations. Interesting exceptions were the genes involved in the production of the siderophore pyochelin, which were down-regulated. Analysis of the copper sensitivity of select mutant strains confirmed the array data. These studies suggest that two resistance nodulation division efflux systems, a P-type ATPase, and a two-component regulator were particularly important for copper tolerance in P. aeruginosa. PMID:17015663

  8. Metabolite profiling and transcript analysis reveal specificities in the response of a berry derived cell culture to abiotic stresses.

    PubMed

    Ayenew, Biruk; Degu, Asfaw; Manela, Neta; Perl, Avichai; Shamir, Michal O; Fait, Aaron

    2015-01-01

    As climate changes, there is a need to understand the expected effects on viticulture. In nature, stresses exist in a combined manner, hampering the elucidation of the effect of individual cues on grape berry metabolism. Cell suspension culture originated from pea-size Gamy Red grape berry was used to harness metabolic response to high light (HL; 2500 μmol m(-2)s(-1)), high temperature (HT; 40°C) and their combination in comparison to 25°C and 100 μmol m(-2)s(-1) under controlled condition. When LC-MS and GC-MS based metabolite profiling was implemented and integrated with targeted RT-qPCR transcript analysis specific responses were observed to the different cues. HL enhanced polyphenol metabolism while HT and its combination with HL induced amino acid and organic acid metabolism with additional effect on polyphenols. The trend of increment in TCA cycle genes like ATCs, ACo1, and IDH in the combined treatment might support the observed increment in organic acids, GABA shunt, and their derivatives. The apparent phenylalanine reduction with polyphenol increment under HL suggests enhanced fueling of the precursor toward the downstream phenylpropanoid pathway. In the polyphenol metabolism, a differential pattern of expression of flavonoid 3',5' hydroxylase and flavonoid 3' hydroxylase was observed under high light (HL) and combined cues which were accompanied by characteristic metabolite profiles. HT decreased glycosylated cyanidin and peonidin forms while the combined cues increased acetylated and coumarylated peonidin forms. Transcription factors regulating anthocyanin metabolism and their methylation, MYB, OMT, UFGT, and DFR, were expressed differentially among the treatments, overall in agreement with the metabolite profiles. Taken together these data provide insights into the coordination of central and secondary metabolism in relation to multiple abiotic stresses. PMID:26442042

  9. Transcriptional Profiling of Ileocecal Valve of Holstein Dairy Cows Infected with Mycobacterium avium subsp. Paratuberculosis.

    PubMed

    Hempel, Randy J; Bannantine, John P; Stabel, Judith R

    2016-01-01

    Johne's disease is a chronic infection of the small intestine caused by Mycobacterium avium subspecies paratuberculosis (MAP), an intracellular bacterium. The events of pathogen survival within the host cell(s), chronic inflammation and the progression from asymptomatic subclinical stage to an advanced clinical stage of infection, are poorly understood. This study examines gene expression in the ileocecal valve (ICV) of Holstein dairy cows at different stages of MAP infection. The ICV is known to be a primary site of MAP colonization and provides an ideal location to identify genes that are relevant to the progression of this disease. RNA was prepared from ICV tissues and RNA-Seq was used to compare gene transcription between clinical, subclinical, and uninfected control animals. Interpretation of the gene expression data was performed using pathway analysis and gene ontology categories containing multiple differentially expressed genes. Results demonstrated that many of the pathways that had strong differential gene expression between uninfected control and clinical cows were related to the immune system, such as the T- and B-cell receptor signaling, apoptosis, NOD-like receptor signaling, and leukocyte transendothelial migration pathways. In contrast, the comparison of gene transcription between control and subclinical cows identified pathways that were primarily involved in metabolism. The results from the comparison between clinical and subclinical animals indicate recruitment of neutrophils, up regulation of lysosomal peptidases, increase in immune cell transendothelial migration, and modifications of the extracelluar matrix. This study provides important insight into how cattle respond to a natural MAP infection at the gene transcription level within a key target tissue for infection.

  10. Expression Profiles of the Nuclear Receptors and Their Transcriptional Coregulators During Differentiation of Neural Stem Cells

    PubMed Central

    Androutsellis-Theotokis, A.; Chrousos, G. P.; McKay, R. D.; DeCherney, A. H.; Kino, T.

    2013-01-01

    Neural stem cells (NSCs) are pluripotent precursors with the ability to proliferate and differentiate into 3 neural cell lineages, neurons, astrocytes and oligodendrocytes. Elucidation of the mechanisms underlying these biologic processes is essential for understanding both physiologic and pathologic neural development and regeneration after injury. Nuclear hormone receptors (NRs) and their transcriptional coregulators also play crucial roles in neural development, functions and fate. To identify key NRs and their transcriptional regulators in NSC differentiation, we examined mRNA expression of 49 NRs and many of their coregulators during differentiation (0–5 days) of mouse embryonic NSCs induced by withdrawal of fibroblast growth factor-2 (FGF2). 37 out of 49 NRs were expressed in NSCs before induction of differentiation, while receptors known to play major roles in neural development, such as THRα, RXRs, RORs, TRs, and COUPTFs, were highly expressed. CAR, which plays important roles in xenobiotic metabolism, was also highly expressed. FGF2 withdrawal induced mRNA expression of RORγ, RXRγ, and MR by over 20-fold. Most of the transcriptional coregulators examined were expressed basally and throughout differentiation without major changes, while FGF2 withdrawal strongly induced mRNA expression of several histone deacetylases (HDACs), including HDAC11. Dexamethasone and aldosterone, respectively a synthetic glucocorticoid and natural mineralocorticoid, increased NSC numbers and induced differentiation into neurons and astrocytes. These results indicate that the NRs and their coregulators are present and/or change their expression during NSC differentiation, suggesting that they may influence development of the central nervous system in the absence or presence of their ligands. PMID:22990992

  11. Transcriptional Profiling of Ileocecal Valve of Holstein Dairy Cows Infected with Mycobacterium avium subsp. Paratuberculosis

    PubMed Central

    Hempel, Randy J.; Bannantine, John P.

    2016-01-01

    Johne’s disease is a chronic infection of the small intestine caused by Mycobacterium avium subspecies paratuberculosis (MAP), an intracellular bacterium. The events of pathogen survival within the host cell(s), chronic inflammation and the progression from asymptomatic subclinical stage to an advanced clinical stage of infection, are poorly understood. This study examines gene expression in the ileocecal valve (ICV) of Holstein dairy cows at different stages of MAP infection. The ICV is known to be a primary site of MAP colonization and provides an ideal location to identify genes that are relevant to the progression of this disease. RNA was prepared from ICV tissues and RNA-Seq was used to compare gene transcription between clinical, subclinical, and uninfected control animals. Interpretation of the gene expression data was performed using pathway analysis and gene ontology categories containing multiple differentially expressed genes. Results demonstrated that many of the pathways that had strong differential gene expression between uninfected control and clinical cows were related to the immune system, such as the T- and B-cell receptor signaling, apoptosis, NOD-like receptor signaling, and leukocyte transendothelial migration pathways. In contrast, the comparison of gene transcription between control and subclinical cows identified pathways that were primarily involved in metabolism. The results from the comparison between clinical and subclinical animals indicate recruitment of neutrophils, up regulation of lysosomal peptidases, increase in immune cell transendothelial migration, and modifications of the extracelluar matrix. This study provides important insight into how cattle respond to a natural MAP infection at the gene transcription level within a key target tissue for infection. PMID:27093613

  12. Transcriptional Profiling of Ileocecal Valve of Holstein Dairy Cows Infected with Mycobacterium avium subsp. Paratuberculosis.

    PubMed

    Hempel, Randy J; Bannantine, John P; Stabel, Judith R

    2016-01-01

    Johne's disease is a chronic infection of the small intestine caused by Mycobacterium avium subspecies paratuberculosis (MAP), an intracellular bacterium. The events of pathogen survival within the host cell(s), chronic inflammation and the progression from asymptomatic subclinical stage to an advanced clinical stage of infection, are poorly understood. This study examines gene expression in the ileocecal valve (ICV) of Holstein dairy cows at different stages of MAP infection. The ICV is known to be a primary site of MAP colonization and provides an ideal location to identify genes that are relevant to the progression of this disease. RNA was prepared from ICV tissues and RNA-Seq was used to compare gene transcription between clinical, subclinical, and uninfected control animals. Interpretation of the gene expression data was performed using pathway analysis and gene ontology categories containing multiple differentially expressed genes. Results demonstrated that many of the pathways that had strong differential gene expression between uninfected control and clinical cows were related to the immune system, such as the T- and B-cell receptor signaling, apoptosis, NOD-like receptor signaling, and leukocyte transendothelial migration pathways. In contrast, the comparison of gene transcription between control and subclinical cows identified pathways that were primarily involved in metabolism. The results from the comparison between clinical and subclinical animals indicate recruitment of neutrophils, up regulation of lysosomal peptidases, increase in immune cell transendothelial migration, and modifications of the extracelluar matrix. This study provides important insight into how cattle respond to a natural MAP infection at the gene transcription level within a key target tissue for infection. PMID:27093613

  13. Transcript profiling of individual twin blastomeres derived by splitting two-cell stage murine embryos.

    PubMed

    Roberts, R Michael; Katayama, Mika; Magnuson, Scott R; Falduto, Michael T; Torres, Karen E O

    2011-03-01

    In invertebrates and amphibians, informational macromolecules in egg cytoplasm are organized to provide direction to the formation of embryonic lineages, but it is unclear whether vestiges of such prepatterning exist in mammals. Here we examined whether twin blastomeres from 2-cell stage mouse embryos differ in mRNA content. mRNA from 26 blastomeres derived from 13 embryos approximately mid-way through their second cell cycle was subjected to amplification. Twenty amplified samples were hybridized to arrays. Of those samples that hybridized successfully, 12 samples in six pairs were used in the final analysis. Probes displaying normalized values >0.25 (n = 4573) were examined for consistent bias in expression within blastomere pairs. Although transcript content varied between both individual embryos and twin blastomeres, no consistent asymmetries were observed for the majority of genes, with only 178 genes displaying a >1.4-fold difference in expression across all six pairs. Although class discovery clustering showed that blastomere pairs separated into two distinct groups in terms of their differentially expressed genes, when the data were tested for significance of asymmetrical expression, only 39 genes with >1.4-fold change ratios in six of six blastomere pairs passed the two-sample t-test (P < 0.05). Transcripts encoding proteins implicated in RNA processing and cytoskeletal organization were among the most abundant, differentially distributed mRNA, suggesting that a stochastically based lack of synchrony in cell cycle progression between the two cells might explain at least some and possibly all of the asymmetries in transcript composition.

  14. Transcript Profile of Flowering Regulatory Genes in VcFT-Overexpressing Blueberry Plants.

    PubMed

    Walworth, Aaron E; Chai, Benli; Song, Guo-Qing

    2016-01-01

    In order to identify genetic components in flowering pathways of highbush blueberry (Vaccinium corymbosum L.), a transcriptome reference composed of 254,396 transcripts and 179,853 gene contigs was developed by assembly of 72.7 million reads using Trinity. Using this transcriptome reference and a query of flowering pathway genes of herbaceous plants, we identified potential flowering pathway genes/transcripts of blueberry. Transcriptome analysis of flowering pathway genes was then conducted on leaf tissue samples of transgenic blueberry cv. Aurora ('VcFT-Aurora'), which overexpresses a blueberry FLOWERING LOCUS T-like gene (VcFT). Sixty-one blueberry transcripts of 40 genes showed high similarities to 33 known flowering-related genes of herbaceous plants, of which 17 down-regulated and 16 up-regulated genes were identified in 'VcFT-Aurora'. All down-regulated genes encoded transcription factors/enzymes upstream in the signaling pathway containing VcFT. A blueberry CONSTANS-LIKE 5-like (VcCOL5) gene was down-regulated and associated with five other differentially expressed (DE) genes in the photoperiod-mediated flowering pathway. Three down-regulated genes, i.e., a MADS-AFFECTING FLOWERING 2-like gene (VcMAF2), a MADS-AFFECTING FLOWERING 5-like gene (VcMAF5), and a VERNALIZATION1-like gene (VcVRN1), may function as integrators in place of FLOWERING LOCUS C (FLC) in the vernalization pathway. Because no CONSTAN1-like or FLOWERING LOCUS C-like genes were found in blueberry, VcCOL5 and VcMAF2/VcMAF5 or VRN1 might be the major integrator(s) in the photoperiod- and vernalization-mediated flowering pathway, respectively. The major down-stream genes of VcFT, i.e., SUPPRESSOR of Overexpression of Constans 1-like (VcSOC1), LEAFY-like (VcLFY), APETALA1-like (VcAP1), CAULIFLOWER 1-like (VcCAL1), and FRUITFULL-like (VcFUL) genes were present and showed high similarity to their orthologues in herbaceous plants. Moreover, overexpression of VcFT promoted expression of all of these

  15. Transcriptional profiling of summer wheat, grown under different realistic UV-B irradiation regimes.

    PubMed

    Zinser, Christian; Seidlitz, Harald K; Welzl, Gerhard; Sandermann, Heinrich; Heller, Werner; Ernst, Dieter; Rau, Werner

    2007-07-01

    There is limited information on the impact of present-day ultraviolet-B (UV-B) radiation on a reprogramming of gene expression in crops. Summer wheat was cultivated in controlled environmental facilities under simulated realistic climatic conditions. We investigated the effect of different regimes of UV-B radiation on summer wheat (Triticum aestivum L.) cultivars Nandu, Star and Turbo. Until recently, these were most important in Bavaria. Different cultivars of crops often show great differences in their sensitivity towards UV-B radiation. To identify genes that might be involved in UV-B defence mechanisms, we first analyzed selected genes known to be involved in plant defence mechanisms. RNA gel blot analysis of RNA isolated from the flag leaf of 84-day-old plants showed differences in transcript levels among the cultivars. Flag leaves are known to be important for grain development, which was completed at 84 days post-anthesis. Catalase 2 (Cat2) transcripts were elevated by increased UV irradiation in all cultivars with highest levels in cv. Nandu. Pathogenesis-related protein 1 (PR1) transcripts were elevated only in cv. Star. A minor influence on transcripts for phenylalanine ammonia-lyase (PAL) was observed in all three cultivars. This indicates different levels of acclimation to UV-B radiation in the wheat cultivars studied. To analyze these responses in more detail, UV-B-exposed flag leaves of 84-day-old wheat (cv. Nandu) were pooled to isolate cDNAs of induced genes by suppression-subtractive hybridization (SSH). Among the initially isolated cDNA clones, 13 were verified by RNA gel blot analysis showing an up-regulation at elevated levels of UV-B radiation. Functional classification revealed genes encoding proteins associated with protein assembly, chaperonins, programmed cell death and signal transduction. We also studied growth, flowering time, ear development and yield as more typical agricultural parameters. Plant growth of young plants was reduced at

  16. Transcript Profile of Flowering Regulatory Genes in VcFT-Overexpressing Blueberry Plants

    PubMed Central

    Walworth, Aaron E.; Chai, Benli; Song, Guo-qing

    2016-01-01

    In order to identify genetic components in flowering pathways of highbush blueberry (Vaccinium corymbosum L.), a transcriptome reference composed of 254,396 transcripts and 179,853 gene contigs was developed by assembly of 72.7 million reads using Trinity. Using this transcriptome reference and a query of flowering pathway genes of herbaceous plants, we identified potential flowering pathway genes/transcripts of blueberry. Transcriptome analysis of flowering pathway genes was then conducted on leaf tissue samples of transgenic blueberry cv. Aurora (‘VcFT-Aurora’), which overexpresses a blueberry FLOWERING LOCUS T-like gene (VcFT). Sixty-one blueberry transcripts of 40 genes showed high similarities to 33 known flowering-related genes of herbaceous plants, of which 17 down-regulated and 16 up-regulated genes were identified in ‘VcFT-Aurora’. All down-regulated genes encoded transcription factors/enzymes upstream in the signaling pathway containing VcFT. A blueberry CONSTANS-LIKE 5-like (VcCOL5) gene was down-regulated and associated with five other differentially expressed (DE) genes in the photoperiod-mediated flowering pathway. Three down-regulated genes, i.e., a MADS-AFFECTING FLOWERING 2-like gene (VcMAF2), a MADS-AFFECTING FLOWERING 5-like gene (VcMAF5), and a VERNALIZATION1-like gene (VcVRN1), may function as integrators in place of FLOWERING LOCUS C (FLC) in the vernalization pathway. Because no CONSTAN1-like or FLOWERING LOCUS C-like genes were found in blueberry, VcCOL5 and VcMAF2/VcMAF5 or VRN1 might be the major integrator(s) in the photoperiod- and vernalization-mediated flowering pathway, respectively. The major down-stream genes of VcFT, i.e., SUPPRESSOR of Overexpression of Constans 1-like (VcSOC1), LEAFY-like (VcLFY), APETALA1-like (VcAP1), CAULIFLOWER 1-like (VcCAL1), and FRUITFULL-like (VcFUL) genes were present and showed high similarity to their orthologues in herbaceous plants. Moreover, overexpression of VcFT promoted expression of all

  17. Global Expressions Landscape of NAC Transcription Factor Family and Their Responses to Abiotic Stresses in Citrullus lanatus

    PubMed Central

    Lv, Xiaolong; Lan, Shanrong; Guy, Kateta Malangisha; Yang, Jinghua; Zhang, Mingfang; Hu, Zhongyuan

    2016-01-01

    Watermelon (Citrullus lanatus) is one xerophyte that has relative higher tolerance to drought and salt stresses as well as more sensitivity to cold stress, compared with most model plants. These characteristics facilitate it a potential model crop for researches on salt, drought or cold tolerance. In this study, a genome-wide comprehensive analysis of the ClNAC transcription factor (TF) family was carried out for the first time, to investigate their transcriptional profiles and potential functions in response to these abiotic stresses. The expression profiling analysis reveals that several NAC TFs are highly responsive to abiotic stresses and development, for instance, subfamily IV NACs may play roles in maintaining water status under drought or salt conditions, as well as water and metabolites conduction and translocation toward fruit. In contrast, rapid and negative responses of most of the ClNACs to low-temperature adversity may be related to the sensitivity to cold stress. Crosstalks among these abiotic stresses and hormone (abscisic acid and jasmonic acid) pathways were also discussed based on the expression of ClNAC genes. Our results will provide useful insights for the functional mining of NAC family in watermelon, as well as into the mechanisms underlying abiotic tolerance in other cash crops. PMID:27491393

  18. Global Expressions Landscape of NAC Transcription Factor Family and Their Responses to Abiotic Stresses in Citrullus lanatus.

    PubMed

    Lv, Xiaolong; Lan, Shanrong; Guy, Kateta Malangisha; Yang, Jinghua; Zhang, Mingfang; Hu, Zhongyuan

    2016-01-01

    Watermelon (Citrullus lanatus) is one xerophyte that has relative higher tolerance to drought and salt stresses as well as more sensitivity to cold stress, compared with most model plants. These characteristics facilitate it a potential model crop for researches on salt, drought or cold tolerance. In this study, a genome-wide comprehensive analysis of the ClNAC transcription factor (TF) family was carried out for the first time, to investigate their transcriptional profiles and potential functions in response to these abiotic stresses. The expression profiling analysis reveals that several NAC TFs are highly responsive to abiotic stresses and development, for instance, subfamily IV NACs may play roles in maintaining water status under drought or salt conditions, as well as water and metabolites conduction and translocation toward fruit. In contrast, rapid and negative responses of most of the ClNACs to low-temperature adversity may be related to the sensitivity to cold stress. Crosstalks among these abiotic stresses and hormone (abscisic acid and jasmonic acid) pathways were also discussed based on the expression of ClNAC genes. Our results will provide useful insights for the functional mining of NAC family in watermelon, as well as into the mechanisms underlying abiotic tolerance in other cash crops. PMID:27491393

  19. Global Expressions Landscape of NAC Transcription Factor Family and Their Responses to Abiotic Stresses in Citrullus lanatus.

    PubMed

    Lv, Xiaolong; Lan, Shanrong; Guy, Kateta Malangisha; Yang, Jinghua; Zhang, Mingfang; Hu, Zhongyuan

    2016-08-05

    Watermelon (Citrullus lanatus) is one xerophyte that has relative higher tolerance to drought and salt stresses as well as more sensitivity to cold stress, compared with most model plants. These characteristics facilitate it a potential model crop for researches on salt, drought or cold tolerance. In this study, a genome-wide comprehensive analysis of the ClNAC transcription factor (TF) family was carried out for the first time, to investigate their transcriptional profiles and potential functions in response to these abiotic stresses. The expression profiling analysis reveals that several NAC TFs are highly responsive to abiotic stresses and development, for instance, subfamily IV NACs may play roles in maintaining water status under drought or salt conditions, as well as water and metabolites conduction and translocation toward fruit. In contrast, rapid and negative responses of most of the ClNACs to low-temperature adversity may be related to the sensitivity to cold stress. Crosstalks among these abiotic stresses and hormone (abscisic acid and jasmonic acid) pathways were also discussed based on the expression of ClNAC genes. Our results will provide useful insights for the functional mining of NAC family in watermelon, as well as into the mechanisms underlying abiotic tolerance in other cash crops.

  20. In Vivo Transcriptional Profiling of Yersinia pestis Reveals a Novel Bacterial Mediator of Pulmonary Inflammation

    PubMed Central

    Pechous, Roger D.; Broberg, Christopher A.; Stasulli, Nikolas M.; Miller, Virginia L.

    2015-01-01

    ABSTRACT Inhalation of Yersinia pestis results in primary pneumonic plague, a highly lethal and rapidly progressing necrotizing pneumonia. The disease begins with a period of extensive bacterial replication in the absence of disease symptoms, followed by the sudden onset of inflammatory responses that ultimately prove fatal. Very little is known about the bacterial and host factors that contribute to the rapid biphasic progression of pneumonic plague. In this work, we analyzed the in vivo transcription kinetics of 288 bacterial open reading frames previously shown by microarray analysis to be dynamically regulated in the lung. Using this approach combined with bacterial genetics, we were able to identify five Y. pestis genes that contribute to the development of pneumonic plague. Deletion of one of these genes, ybtX, did not alter bacterial survival but attenuated host inflammatory responses during late-stage disease. Deletion of ybtX in another lethal respiratory pathogen, Klebsiella pneumoniae, also resulted in diminished host inflammation during infection. Thus, our in vivo transcriptional screen has identified an important inflammatory mediator that is common to two Gram-negative bacterial pathogens that cause severe pneumonia. PMID:25691593

  1. Blood Genome-Wide Transcriptional Profiles of HER2 Negative Breast Cancers Patients

    PubMed Central

    Balacescu, Ovidiu; Balacescu, Loredana; Gherman, Claudia; Drigla, Flaviu; Pop, Laura; Bolba-Morar, Gabriela; Tudoran, Oana; Berindan-Neagoe, Ioana

    2016-01-01

    Tumors act systemically to sustain cancer progression, affecting the physiological processes in the host and triggering responses in the blood circulating cells. In this study, we explored blood transcriptional patterns of patients with two subtypes of HER2 negative breast cancers, with different prognosis and therapeutic outcome. Peripheral blood samples from seven healthy female donors and 29 women with breast cancer including 14 triple-negative breast cancers and 15 hormone-dependent breast cancers were evaluated by microarray. We also evaluated the stroma in primary tumors. Transcriptional analysis revealed distinct molecular signatures in the blood of HER2− breast cancer patients according to ER/PR status. Our data showed the implication of immune signaling in both breast cancer subtypes with an enrichment of these processes in the blood of TNBC patients. We observed a significant alteration of “chemokine signaling,” “IL-8 signaling,” and “communication between innate and adaptive immune cells” pathways in the blood of TNBC patients correlated with an increased inflammation and necrosis in their primary tumors. Overall, our data indicate that the presence of triple-negative breast cancer is associated with an enrichment of altered systemic immune-related pathways, suggesting that immunotherapy could possibly be synergistic to the chemotherapy, to improve the clinical outcome of these patients. PMID:26884644

  2. Effects of wildfire on sea otter (Enhydra lutris) gene transcript profiles

    USGS Publications Warehouse

    Bowen, Lizabeth; Miles, A. Keith; Kolden, Crystal A.; Saarinen, Justin A.; Bodkin, James L.; Murray, Michael J.; Tinker, M. Tim

    2015-01-01

    Wildfires have been shown to impact terrestrial species over a range of temporal scales. Little is known, however, about the more subtle toxicological effects of wildfires, particularly in downstream marine or downwind locations from the wildfire perimeter. These down-current effects may be just as substantial as those effects within the perimeter. We used gene transcription technology, a sensitive indicator of immunological perturbation, to study the effects of the 2008 Basin Complex Fire on the California coast on a sentinel marine species, the sea otter (Enhydra lutris). We captured sea otters in 2008 (3 mo after the Basin Complex Fire was controlled) and 2009 (15 mo after the Basin Complex Fire was controlled) in the adjacent nearshore environment near Big Sur, California. Gene responses were distinctly different between Big Sur temporal groups, signifying detoxification of PAHs, possible associated response to potential malignant transformation, and suppression of immune function as the primary responses of sea otters to fire in 2008 compared to those captured in 2009. In general, gene transcription patterns in the 2008 sea otters were indicative of molecular reactions to organic exposure, malignant transformation, and decreased ability to respond to pathogens that seemed to consistent with short-term hydrocarbon exposure.

  3. Transcriptional profiling of MHC class I genes in rainbow trout infected with infectious hematopoietic necrosis virus

    USGS Publications Warehouse

    Landis, E.D.; Purcell, M.K.; Thorgaard, G.H.; Wheeler, P.A.; Hansen, J.D.

    2008-01-01

    Major histocompatibility complex (MHC) molecules are important mediators of cell-mediated immunity in vertebrates. MHC class IA molecules are important for host anti-viral immunity as they present intracellular antigens and regulate natural killer cell (NK) activity. MHC class Ib molecules on the other hand are less understood and have demonstrated diverse immune and non-immune functions in mammals. Rainbow trout possess a single classical MHC IA locus (Onmy-UBA) that is believed to function similar to that of mammalian MHC class Ia. Numerous MHC class Ib genes with undetermined functions have also been described in trout. Here we utilize quantitative reverse transcriptase PCR (qRT-PCR) techniques to survey the levels of basal and inducible transcription for selected trout MHC class Ib genes, sIgM and sentinels of IFN induction in response to viral infection. Basal transcription of all the class Ib genes examined in this study was lower than Onmy-UBA in nai??ve fish. UBA, along with all of the non-classical genes were induced in fish infected with virus but not in control fish. Our results support a non-classical designation for the majority of the class IB genes surveyed in this study based upon expression levels while also indicating that they may play an important role in anti-viral immunity in trout.

  4. Comparative Analysis of the Chrysanthemum Leaf Transcript Profiling in Response to Salt Stress

    PubMed Central

    Wu, Yin-Huan; Wang, Tong; Wang, Ke; Liang, Qian-Yu; Bai, Zhen-Yu; Liu, Qing-Lin; Pan, Yuan-Zhi; Jiang, Bei-Bei; Zhang, Lei

    2016-01-01

    Salt stress has some remarkable influence on chrysanthemum growth and productivity. To understand the molecular mechanisms associated with salt stress and identify genes of potential importance in cultivated chrysanthemum, we carried out transcriptome sequencing of chrysanthemum. Two cDNA libraries were generated from the control and salt-treated samples (Sample_0510_control and Sample_0510_treat) of leaves. By using the Illumina Solexa RNA sequencing technology, 94 million high quality sequencing reads and 161,522 unigenes were generated and then we annotated unigenes through comparing these sequences to diverse protein databases. A total of 126,646 differentially expressed transcripts (DETs) were identified in leaf. Plant hormones, amino acid metabolism, photosynthesis and secondary metabolism were all changed under salt stress after the complete list of GO term and KEGG enrichment analysis. The hormone biosynthesis changing and oxidative hurt decreasing appeared to be significantly related to salt tolerance of chrysanthemum. Important protein kinases and major transcription factor families involved in abiotic stress were differentially expressed, such as MAPKs, CDPKs, MYB, WRKY, AP2 and HD-zip. In general, these results can help us to confirm the molecular regulation mechanism and also provide us a comprehensive resource of chrysanthemum under salt stress. PMID:27447718

  5. Comparative Analysis of the Chrysanthemum Leaf Transcript Profiling in Response to Salt Stress.

    PubMed

    Wu, Yin-Huan; Wang, Tong; Wang, Ke; Liang, Qian-Yu; Bai, Zhen-Yu; Liu, Qing-Lin; Pan, Yuan-Zhi; Jiang, Bei-Bei; Zhang, Lei

    2016-01-01

    Salt stress has some remarkable influence on chrysanthemum growth and productivity. To understand the molecular mechanisms associated with salt stress and identify genes of potential importance in cultivated chrysanthemum, we carried out transcriptome sequencing of chrysanthemum. Two cDNA libraries were generated from the control and salt-treated samples (Sample_0510_control and Sample_0510_treat) of leaves. By using the Illumina Solexa RNA sequencing technology, 94 million high quality sequencing reads and 161,522 unigenes were generated and then we annotated unigenes through comparing these sequences to diverse protein databases. A total of 126,646 differentially expressed transcripts (DETs) were identified in leaf. Plant hormones, amino acid metabolism, photosynthesis and secondary metabolism were all changed under salt stress after the complete list of GO term and KEGG enrichment analysis. The hormone biosynthesis changing and oxidative hurt decreasing appeared to be significantly related to salt tolerance of chrysanthemum. Important protein kinases and major transcription factor families involved in abiotic stress were differentially expressed, such as MAPKs, CDPKs, MYB, WRKY, AP2 and HD-zip. In general, these results can help us to confirm the molecular regulation mechanism and also provide us a comprehensive resource of chrysanthemum under salt stress. PMID:27447718

  6. Transcriptional profiling of the mouse hippocampus supports an NMDAR-mediated neurotoxic mode of action for benzo[a]pyrene.

    PubMed

    Chepelev, Nikolai L; Long, Alexandra S; Bowers, Wayne J; Gagné, Rémi; Williams, Andrew; Kuo, Byron; Phillips, David H; Arlt, Volker M; White, Paul A; Yauk, Carole L

    2016-06-01

    Benzo[a]pyrene (BaP) is a genotoxic carcinogen and a neurotoxicant. The neurotoxicity of BaP is proposed to arise from either genotoxicity leading to neuronal cell death, or perturbed expression of N-methyl-d-aspartate receptor (NMDAR) subunits. To explore these hypotheses, we profiled hippocampal gene expression of adult male Muta(™) Mouse administered 0, 1, 35, or 70 mg BaP/kg bw per day by oral gavage for 3 days. Transcriptional profiles were examined by RNA-sequencing (RNA-seq), DNA microarrays, and real-time quantitative reverse transcription polymerase chain reaction (RT-PCR). BaP-DNA adducts in the cerebellum were quantified by (32) P-post-labeling to measure genotoxicity. RNA-seq revealed altered expression of 0, 260, and 219 genes (P-value < 0.05, fold-change ≥ ± 1.5) following exposure to the low, medium, and high doses, respectively; 54 genes were confirmed by microarrays. Microarray and RT-PCR analysis showed increased expression of NMDAR subunits Grina and Grin2a. In contrast, no effects on DNA-damage response genes were observed despite comparable BaP-DNA adduct levels in the cerebellum and in the lungs and livers of mice at similar BaP doses in previous studies. The results suggest that DNA-damage response does not play a major role in BaP-induced adult neurotoxicity. Meta-analysis revealed that BaP-induced transcriptional profiles are highly correlated with those from the hippocampus of transgenic mice exhibiting similar neurotoxicity outcomes to BaP-exposed mice and rats (i.e., defects in learning and memory). Overall, we suggest that BaP-induced neurotoxicity is more likely to be a consequence of NMDAR perturbation than genotoxicity, and identify other important genes potentially mediating this adverse outcome. Environ. Mol. Mutagen. 57:350-363, 2016. © 2016 Her Majesty the Queen in Right of Canada. Environmental and Molecular Mutagenesis © 2016 Environmental Mutagen Society.

  7. Transcriptional profiling of the mouse hippocampus supports an NMDAR‐mediated neurotoxic mode of action for benzo[a]pyrene

    PubMed Central

    Chepelev, Nikolai L.; Long, Alexandra S.; Bowers, Wayne J.; Gagné, Rémi; Williams, Andrew; Kuo, Byron; Phillips, David H.; Arlt, Volker M.; White, Paul A.

    2016-01-01

    Benzo[a]pyrene (BaP) is a genotoxic carcinogen and a neurotoxicant. The neurotoxicity of BaP is proposed to arise from either genotoxicity leading to neuronal cell death, or perturbed expression of N‐methyl‐d‐aspartate receptor (NMDAR) subunits. To explore these hypotheses, we profiled hippocampal gene expression of adult male Muta™Mouse administered 0, 1, 35, or 70 mg BaP/kg bw per day by oral gavage for 3 days. Transcriptional profiles were examined by RNA‐sequencing (RNA‐seq), DNA microarrays, and real‐time quantitative reverse transcription polymerase chain reaction (RT‐PCR). BaP‐DNA adducts in the cerebellum were quantified by 32P‐post‐labeling to measure genotoxicity. RNA‐seq revealed altered expression of 0, 260, and 219 genes (P‐value < 0.05, fold‐change ≥ ± 1.5) following exposure to the low, medium, and high doses, respectively; 54 genes were confirmed by microarrays. Microarray and RT‐PCR analysis showed increased expression of NMDAR subunits Grina and Grin2a. In contrast, no effects on DNA‐damage response genes were observed despite comparable BaP‐DNA adduct levels in the cerebellum and in the lungs and livers of mice at similar BaP doses in previous studies. The results suggest that DNA‐damage response does not play a major role in BaP‐induced adult neurotoxicity. Meta‐analysis revealed that BaP‐induced transcriptional profiles are highly correlated with those from the hippocampus of transgenic mice exhibiting similar neurotoxicity outcomes to BaP‐exposed mice and rats (i.e., defects in learning and memory). Overall, we suggest that BaP‐induced neurotoxicity is more likely to be a consequence of NMDAR perturbation than genotoxicity, and identify other important genes potentially mediating this adverse outcome. Environ. Mol. Mutagen. 57:350–363, 2016. © 2016 Her Majesty the Queen in Right of Canada. Environmental and Molecular Mutagenesis © 2016 Environmental Mutagen Society. PMID:27195522

  8. Changes in global DNA methylation intensity and DNMT1 transcription during the aging process of scallop Chlamys farreri

    NASA Astrophysics Data System (ADS)

    Lian, Shanshan; He, Yan; Li, Xue; Zhao, Bosong; Hou, Rui; Hu, Xiaoli; Zhang, Lingling; Bao, Zhenmin

    2015-08-01

    DNA methylation is an important epigenetic regulatory mechanism that influences genomic stability, gene activation, X-chromosome inactivation and other factors. A change in DNA methylation is usually associated with aging and cellular senescence. DNA methyltransferase 1 (DNMT1) is the most abundant DNA methyltransferase, and it plays an important role in maintaining the established methylation pattern during DNA replication in vertebrates. Although the effect of aging on DNA methylation has been well studied in vertebrates, little research has been conducted in invertebrates, especially in marine bivalves. In this study, we examined global DNA methylation levels in four groups of adult Zhikong scallop Chlamys farreri at different ages. The results showed that both the age and tissue type had a strong effect on the DNA methylation. In addition, a significant decrease in DNA methylation with aging (1-4 years) can be detected in mantle, kidney and hepatopancreas. We further measured the change in DNMT1 transcript abundance using quantitative reverse transcription PCR (qRT-PCR), which revealed that DNMT1 transcription significantly decreased with aging in mantle and hepatopancreas and strongly correlated with DNA methylation ( R = 0.72). Our data provided greater insight into the aging-related decline of DNA methylation, which could aid in gaining a better understanding of the relationship between DNA methylation and the aging process in bivalve mollusks.

  9. Transcriptional and translational regulatory responses to iron limitation in the globally distributed marine bacterium Candidatus Pelagibacter ubique

    SciTech Connect

    Smith, Daniel P.; Kitner, J. B.; Norbeck, Angela D.; Clauss, Therese RW; Lipton, Mary S.; Schwalbach, M. S.; Steindler, L.; Nicora, Carrie D.; Smith, Richard D.; Giovannoni, Stephen J.

    2010-05-05

    Abstract Background: Iron is recognized as an important micronutrient that limits microbial plankton productivity over vast regions of the oceans. We investigated the gene expression responses of Candidatus Pelagibacter ubique cultures to iron limitation in natural seawater media supplemented with a siderophore to chelate iron. Methodology/Principal Findings: Microarray data indicated transcription of the periplasmic iron binding protein sfuC increased by 16-fold, and iron transporter subunits, iron-sulfur center assembly genes, and the putative ferroxidase rubrerythrin transcripts increased to a lesser extent. Quantitative peptide mass spectrometry revealed that sfuC protein abundance increased 27-fold, despite an average decrease of 59% across the global proteome. Two RNA-binding proteins, CspE and CspL, correlated well with iron availability, suggesting that they may contribute to the observed differences between the transcriptome and proteome. Conclusions/Significance: We propose sfuC as a marker gene for indicating iron limitation in marine metatranscriptomic and metaproteomic ecological surveys. The marked proteome reduction was not directly correlated to changes in the transcriptome, implicating post-transcriptional regulatory mechanisms as modulators of protein expression. We propose a model in which the RNA-binding activity of cspE and cspL selectively enables protein synthesis of the iron acquisition protein sfuC during transient growth-limiting episodes of iron scarcity.

  10. HPR1 encodes a global positive regulator of transcription in Saccharomyces cerevisiae.

    PubMed Central

    Zhu, Y; Peterson, C L; Christman, M F

    1995-01-01

    The Hpr1 protein has an unknown function, although it contains a region of homology to DNA topoisomerase I. We have found that hpr1 null mutants are defective in the transcription of many physiologically unrelated genes, including GAL1, HO, ADH1, and SUC2, by using a combination of Northern (RNA) blot analysis, primer extension, and upstream activation sequence-lacZ fusions. Many of the genes positively regulated by HPR1 also require SWI1, SWI2-SNF2, SWI3, SNF5, and SNF6. The transcriptional defect at HO and the CCB::lacZ upstream activation sequence in hpr1 mutants is partially suppressed by a deletion of SIN1, which encodes an HMG1p-like protein. Elevated gene dosage of either histones H3 and H4 or H2A and H2B results in a severe growth defect in combination with an hpr1 null mutation. However, increased gene dosage of all four histones simultaneously restores near-normal growth in hpr1 mutants. Altered in vivo Dam methylase sensitivity is observed at two HPR1-dependent promoters (GAL1 and SUC2). Most of the Hpr1 protein present in the cell is in a large complex (10(6) Da) that is distinct from the SWI-SNF protein complex. We propose that HPR1 affects transcription and recombination by altering chromatin structure. PMID:7862161

  11. Transcript Profiling Distinguishes Complete Treatment Responders With Locally Advanced Cervical Cancer1234

    PubMed Central

    Fernandez-Retana, Jorge; Lasa-Gonsebatt, Federico; Lopez-Urrutia, Eduardo; Coronel-Martínez, Jaime; Cantu De Leon, David; Jacobo-Herrera, Nadia; Peralta-Zaragoza, Oscar; Perez-Montiel, Delia; Reynoso-Noveron, Nancy; Vazquez-Romo, Rafael; Perez-Plasencia, Carlos

    2015-01-01

    Cervical cancer (CC) mortality is a major public health concern since it is the second cause of cancer-related deaths among women. Patients diagnosed with locally advanced CC (LACC) have an important rate of recurrence and treatment failure. Conventional treatment for LACC is based on chemotherapy and radiotherapy; however, up to 40% of patients will not respond to conventional treatment; hence, we searched for a prognostic gene signature able to discriminate patients who do not respond to the conventional treatment employed to treat LACC. Tumor biopsies were profiled with genome-wide high-density expression microarrays. Class prediction was performed in tumor tissues and the resultant gene signature was validated by quantitative reverse transcription–polymerase chain reaction. A 27-predictive gene profile was identified through its association with pathologic response. The 27-gene profile was validated in an independent set of patients and was able to distinguish between patients diagnosed as no response versus complete response. Gene expression analysis revealed two distinct groups of tumors diagnosed as LACC. Our findings could provide a strategy to select patients who would benefit from neoadjuvant radiochemotherapy-based treatment. PMID:25926073

  12. Transcript profiles in longissimus dorsi muscle and subcutaneous adipose tissue: a comparison of pigs with different postweaning growth rates.

    PubMed

    Pilcher, C M; Jones, C K; Schroyen, M; Severin, A J; Patience, J F; Tuggle, C K; Koltes, J E

    2015-05-01

    Although most pigs recover rapidly from stresses associated with the transition of weaning, a portion of the population lags behind their contemporaries in growth performance. The underlying biological and molecular mechanisms involved in postweaning differences in growth performance are poorly understood. The objective of this experiment was to use transcriptional profiling of skeletal muscle and adipose tissue to develop a better understanding of the metabolic basis for poor weaned-pig transition. A total of 1,054 pigs was reared in commercial conditions and weighed at birth, weaning, and 3 wk postweaning. Transition ADG (tADG) was calculated as the ADG for the 3-wk period postweaning. Nine pigs from both the lowest 10th percentile (low tADG) and the 60th to 70th percentile (high tADG) were harvested at 3 wk postweaning. Differential expression analysis was conducted in longissimus dorsi muscle (LM) and subcutaneous adipose tissue using RNA-Seq methodology. In LM, 768 transcripts were differentially expressed (DE), 327 with higher expression in low tADG and 441 with higher expression in high tADG pigs (q < 0.10). Expression patterns measured in LM by RNA-Seq were verified in 30 of 32 transcripts using quantitative PCR. No DE transcripts were identified in adipose tissue. To identify biological functions potentially underlying the effects of tADG on skeletal muscle metabolism and physiology, functional annotation analysis of the DE transcripts was conducted using DAVID and Pathway Studio analytic tools. The group of DE genes with lower expression in LM of low tADG pigs was enriched in genes with functions related to muscle contraction, glucose metabolism, cytoskeleton organization, muscle development, and response to hormone stimulus (enrichment score > 1.3). The list of DE genes with higher expression in low tADG LM was enriched in genes with functions related to protein catabolism (enrichment score > 1.3). Analysis of known gene-gene interactions identified

  13. Transcript profiles in cortical cells of maize primary root during ethylene-induced lysigenous aerenchyma formation under aerobic conditions

    PubMed Central

    Takahashi, Hirokazu; Yamauchi, Takaki; Rajhi, Imene; Nishizawa, Naoko K.; Nakazono, Mikio

    2015-01-01

    Background and Aims Internal aeration is important for plants to survive during periods of waterlogging, and the ability to form aerenchyma contributes by creating a continuous gas space between the shoots and the roots. Roots of maize (Zea mays) react to prolonged waterlogging by forming aerenchyma in root cortical cells by programmed cell death (PCD) in response to ethylene. The aim of this study was to understand the molecular mechanisms of ethylene-induced aerenchyma formation by identifying genes that are either up- or downregulated by ethylene treatment in maize root cortical cells. Methods Three-day-old maize seedlings were treated with ethylene for several hours under aerobic conditions. Cortical cells were isolated from the primary roots using laser microdissection (LM), and transcript profiles with and without ethylene treatment were compared by microarray. In addition, the effect on ethylene-induced aerenchyma formation of diphenyleneiodonium (DPI), an inhibitor of NADPH oxidases, was examined in order to assess the involvement of reactive oxygen species (ROS). Key Results A total of 223 genes were identified whose transcript levels were significantly increased or decreased by ethylene treatment in root cortical cells under aerobic conditions. Subsequent tissue-specific quantitative reverse-transcription PCR analyses revealed that ethylene increased the transcript levels of genes related to ethylene signalling in all of the root tissues examined (stelar cells, cortical cells and outer cell layers), whereas it increased the transcript levels of genes related to cell wall modification and proteolysis specifically in the cortical cells. DPI treatment inhibited the ethylene-induced aerenchyma formation and suppressed expression of some cell wall modification-related genes. Conclusions Several genes related to cell wall modification and proteolysis are specifically up- or downregulated in cortical cells during lysigenous aerenchyma formation under aerobic

  14. Unique Transcriptional Profile of Sustained Ligand-Activated Preconditioning in Pre- and Post-Ischemic Myocardium

    PubMed Central

    Ashton, Kevin J.; Tupicoff, Amanda; Williams-Pritchard, Grant; Kiessling, Can J.; See Hoe, Louise E.; Headrick, John P.; Peart, Jason N.

    2013-01-01

    Background Opioidergic SLP (sustained ligand-activated preconditioning) induced by 3–5 days of opioid receptor (OR) agonism induces persistent protection against ischemia-reperfusion (I-R) injury in young and aged hearts, and is mechanistically distinct from conventional preconditioning responses. We thus applied unbiased gene-array interrogation to identify molecular effects of SLP in pre- and post-ischemic myocardium. Methodology/Principal Findings Male C57Bl/6 mice were implanted with 75 mg morphine or placebo pellets for 5 days. Resultant SLP did not modify cardiac function, and markedly reduced dysfunction and injury in perfused hearts subjected to 25 min ischemia/45 min reperfusion. Microarray analysis identified 14 up- and 86 down-regulated genes in normoxic hearts from SLP mice (≥1.3-fold change, FDR≤5%). Induced genes encoded sarcomeric/contractile proteins (Myh7, Mybpc3,Myom2,Des), natriuretic peptides (Nppa,Nppb) and stress-signaling elements (Csda,Ptgds). Highly repressed genes primarily encoded chemokines (Ccl2,Ccl4,Ccl7,Ccl9,Ccl13,Ccl3l3,Cxcl3), cytokines (Il1b,Il6,Tnf) and other proteins involved in inflammation/immunity (C3,Cd74,Cd83, Cd86,Hla-dbq1,Hla-drb1,Saa1,Selp,Serpina3), together with endoplasmic stress proteins (known: Dnajb1,Herpud1,Socs3; putative: Il6, Gadd45g,Rcan1) and transcriptional controllers (Egr2,Egr3, Fos,Hmox1,Nfkbid). Biological themes modified thus related to inflammation/immunity, together with cellular/cardiovascular movement and development. SLP also modified the transcriptional response to I-R (46 genes uniquely altered post-ischemia), which may influence later infarction/remodeling. This included up-regulated deter