Sample records for global warming based

  1. Toward a critical anthropology on the impact of global warming on health and human societies.

    PubMed

    Baer, Hans A

    2008-01-01

    This op-ed essay urges medical anthropologists to join a growing number of public health scholars to examine the impact of global warming on health. Adopting a critical medical anthropology perspective, I argue that global warming is yet another manifestation of the contradictions of the capitalist world system. Ultimately, an serious effort to mitigate the impact of global warming not only on health but also settlement patterns and subsistence will require the creation of a new global political economy based upon social parity, democratic processes, and environmental sustainability.

  2. Arctic Security in a Warming World

    DTIC Science & Technology

    2010-03-01

    2009). 3 Map based on: “Northwest Passage - Map of Arctic Sea Ice: Global Warming is Opening Canada’s Arctic” http://geology.com/articles/northwest...War College, February 17, 2009) 3. 5 Scott G. Borgerson, “Arctic Meltdown: the Economic and Security Implications of Global Warming ”, Foreign Affairs...april/kirkpatrick.pdf (accessed February 10, 2010). 45 Thomas R. McCarthy, Jr., Global Warming Threatens National Interests in the Arctic, Strategy

  3. 75 FR 81179 - Approval and Promulgation of Implementation Plans; Nebraska: Prevention of Significant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-12-27

    ... Global Warming Potential (GWP) was developed to compare the heat- trapping capacity and atmospheric... CH 4 emissions would have 21 times as much impact on global warming over a 100-year time horizon as 1... emissions contribution to global warming based on a single metric. B. What are the general requirements of...

  4. Grade 7 students' normative decision making in science learning about global warming through science technology and society (STS) approach

    NASA Astrophysics Data System (ADS)

    Luengam, Piyanuch; Tupsai, Jiraporn; Yuenyong, Chokchai

    2018-01-01

    This study reported Grade 7 students' normative decision making in teaching and learning about global warming through science technology and society (STS) approach. The participants were 43 Grade 7 students in Sungkom, Nongkhai, Thailand. The teaching and learning about global warming through STS approach had carried out for 5 weeks. The global warming unit through STS approach was developed based on framework of Yuenyong (2006) that consisted of five stages including (1) identification of social issues, (2) identification of potential solutions, (3) need for knowledge, (4) decision-making, and (5) socialization stage. Students' normative decision making was collected during their learning by questionnaire, participant observation, and students' tasks. Students' normative decision making were analyzed from both pre-and post-intervention and students' ideas during the intervention. The aspects of normative include influences of global warming on technology and society; influences of values, culture, and society on global warming; and influences of technology on global warming. The findings revealed that students have chance to learn science concerning with the relationship between science, technology, and society through their giving reasons about issues related to global warming. The paper will discuss implications of these for science teaching and learning through STS in Thailand.

  5. Arctic Sea Ice in a 1.5°C Warmer World

    NASA Astrophysics Data System (ADS)

    Niederdrenk, Anne Laura; Notz, Dirk

    2018-02-01

    We examine the seasonal cycle of Arctic sea ice in scenarios with limited future global warming. To do so, we analyze two sets of observational records that cover the observational uncertainty of Arctic sea ice loss per degree of global warming. The observations are combined with 100 simulations of historical and future climate evolution from the Max Planck Institute Earth System Model Grand Ensemble. Based on the high-sensitivity observations, we find that Arctic September sea ice is lost with low probability (P≈ 10%) for global warming of +1.5°C above preindustrial levels and with very high probability (P> 99%) for global warming of +2°C above preindustrial levels. For the low-sensitivity observations, September sea ice is extremely unlikely to disappear for +1.5°C warming (P≪ 1%) and has low likelihood (P≈ 10%) to disappear even for +2°C global warming. For March, both observational records suggest a loss of 15% to 20% of Arctic sea ice area for 1.5°C to 2°C global warming.

  6. An aftereffect of global warming on tropical Pacific decadal variability

    NASA Astrophysics Data System (ADS)

    Zheng, Jian; Liu, Qinyu; Wang, Chuanyang

    2018-03-01

    Studies have shown that global warming over the past six decades can weaken the tropical Pacific Walker circulation and maintain the positive phase of the Interdecadal Pacific Oscillation (IPO). Based on observations and model simulations, another aftereffect of global warming on IPO is found. After removing linear trends (global warming signals) from observations, however, the tropical Pacific climate still exhibited some obvious differences between two IPO negative phases. The boreal winter (DJF) equatorial central-eastern Pacific sea surface temperature (SST) was colder during the 1999-2014 period (P2) than that during 1961-1976 (P1). This difference may have been a result of global warming nonlinear modulation of precipitation; i.e., in the climatological rainy region, the core area of the tropical Indo-western Pacific warm pool receives more precipitation through the "wet-get-wetter" mechanism. Positive precipitation anomalies in the warm pool during P2 are much stronger than those during P1, even after subtracting the linear trend. Corresponding to the differences of precipitation, the Pacific Walker circulation is stronger in P2 than in P1. Consequent easterly winds over the equatorial Pacific led to a colder equatorial eastern-central Pacific during P2. Therefore, tropical Pacific climate differences between the two negative IPO phases are aftereffects of global warming. These aftereffects are supported by the results of coupled climate model experiments, with and without global warming.

  7. Australia's Unprecedented Future Temperature Extremes Under Paris Limits to Warming

    NASA Astrophysics Data System (ADS)

    Lewis, Sophie C.; King, Andrew D.; Mitchell, Daniel M.

    2017-10-01

    Record-breaking temperatures can detrimentally impact ecosystems, infrastructure, and human health. Previous studies show that climate change has influenced some observed extremes, which are expected to become more frequent under enhanced future warming. Understanding the magnitude, as a well as frequency, of such future extremes is critical for limiting detrimental impacts. We focus on temperature changes in Australian regions, including over a major coral reef-building area, and assess the potential magnitude of future extreme temperatures under Paris Agreement global warming targets (1.5°C and 2°C). Under these limits to global mean warming, we determine a set of projected high-magnitude unprecedented Australian temperature extremes. These include extremes unexpected based on observational temperatures, including current record-breaking events. For example, while the difference in global-average warming during the hottest Australian summer and the 2°C Paris target is 1.1°C, extremes of 2.4°C above the observed summer record are simulated. This example represents a more than doubling of the magnitude of extremes, compared with global mean change, and such temperatures are unexpected based on the observed record alone. Projected extremes do not necessarily scale linearly with mean global warming, and this effect demonstrates the significant potential benefits of limiting warming to 1.5°C, compared to 2°C or warmer.

  8. How the public engages with global warming: A social representations approach.

    PubMed

    Smith, Nicholas; Joffe, Helene

    2013-01-01

    The present study utilises social representations theory to explore common sense conceptualisations of global warming risk using an in-depth, qualitative methodology. Fifty-six members of a British, London-based 2008 public were initially asked to draw or write four spontaneous "first thoughts or feelings" about global warming. These were then explored via an open-ended, exploratory interview. The analysis revealed that first thoughts, either drawn or written, often mirrored the images used by the British press to depict global warming visually. Thus in terms of media framings, it was their visual rather than their textual content that was spontaneously available for their audiences. Furthermore, an in-depth exploration of interview data revealed that global warming was structured around three themata: self/other, natural/unnatural and certainty/uncertainty, reflecting the complex and often contradictory nature of common sense thinking in relation to risk issues.

  9. Global Warming - Are We on Thin Ice?

    NASA Technical Reports Server (NTRS)

    Tucker, Compton J.

    2007-01-01

    The evidence for global warming is very conclusive for the past 400-500 years. Prior to the 16th century, proxy surface temperature data are regionally good but lack a global distribution. The speaker will review surface temperature reconstruction based upon ice cores, coral cores, tree rings, deep sea sediments, and bore holes and discuss the controversy surrounding global warming. This will be contrasted with the excellent data we have from the satellite era of earth observations the past 30+ years that enables the quantitative study of climate across earth science disciplines.

  10. Recently amplified arctic warming has contributed to a continual global warming trend

    NASA Astrophysics Data System (ADS)

    Huang, Jianbin; Zhang, Xiangdong; Zhang, Qiyi; Lin, Yanluan; Hao, Mingju; Luo, Yong; Zhao, Zongci; Yao, Yao; Chen, Xin; Wang, Lei; Nie, Suping; Yin, Yizhou; Xu, Ying; Zhang, Jiansong

    2017-12-01

    The existence and magnitude of the recently suggested global warming hiatus, or slowdown, have been strongly debated1-3. Although various physical processes4-8 have been examined to elucidate this phenomenon, the accuracy and completeness of observational data that comprise global average surface air temperature (SAT) datasets is a concern9,10. In particular, these datasets lack either complete geographic coverage or in situ observations over the Arctic, owing to the sparse observational network in this area9. As a consequence, the contribution of Arctic warming to global SAT changes may have been underestimated, leading to an uncertainty in the hiatus debate. Here, we constructed a new Arctic SAT dataset using the most recently updated global SATs2 and a drifting buoys based Arctic SAT dataset11 through employing the `data interpolating empirical orthogonal functions' method12. Our estimate of global SAT rate of increase is around 0.112 °C per decade, instead of 0.05 °C per decade from IPCC AR51, for 1998-2012. Analysis of this dataset shows that the amplified Arctic warming over the past decade has significantly contributed to a continual global warming trend, rather than a hiatus or slowdown.

  11. Environmental Impact Statement: Construction and Operation of Titan IV/Centaur Launch Complex, Vandenberg Air Force Base, California. Volume 3

    DTIC Science & Technology

    1990-08-01

    Form 7.10 Draft EIS Public Hearings Attendance and Speakers Lists 8.0 LIST OF ACRONYMS AND ABBREVIATIONS APPENDIX A: GLOBAL WARMING APPENDIX B: WHITE...expected to contribute significantly to global warming . Impacts to air quality from operations would be the same for the alternative sites. NOISE Noise...and Abbreviations List of Acronyms and Abbreviations used in the Final EM. ● Appendix A - Global Warming This appendix provides a brief discussion of

  12. Beliefs and Willingness to Act about Global Warming: Where to Focus Science Pedagogy?

    ERIC Educational Resources Information Center

    Skamp, Keith; Boyes, Eddie; Stanisstreet, Martin

    2013-01-01

    Science educators have a key role in empowering students to take action to reduce global warming. This involves assisting students to understand its causes as well as taking pedagogical decisions that have optimal probabilities of leading to students being motivated to take actions based on empirically based science beliefs. To this end New South…

  13. From vegetation zones to climatypes: Effects of climate warming on Siberian ecosystems

    Treesearch

    N. M. Tchebakova; G. E. Rehfeldt; E. I. Parfenova

    2010-01-01

    Evidence for global warming over the past 200 years is overwhelming, based on both direct weather observation and indirect physical and biological indicators such as retreating glaciers and snow/ice cover, increasing sea level, and longer growing seasons (IPCC 2001, 2007). On the background of global warming at a rate of 0.6°C during the twentieth century (IPCC 2001),...

  14. Global warming and extinctions of endemic species from biodiversity hotspots.

    Treesearch

    Jay R. Malcolm; Canran Liu; Ronald P. Neilson; Lara Hansen; Lee Hannah

    2006-01-01

    Global warming is a key threat to biodiversity, but few researchers have assessed the magnitude of this threat at the global scale. We used major vegetation types (biomes) as proxies for natural habitats and, based on projected future biome distributions under doubled-C02 climates, calculated changes in habitat areas and associated extinctions of...

  15. Global Warming: Discussion for EOS Science Writers Workshop

    NASA Technical Reports Server (NTRS)

    Hansen, James E

    1999-01-01

    The existence of global warming this century is no longer an issue of scientific debate. But there are many important questions about the nature and causes of long-term climate change, th roles of nature and human-made climate forcings and unforced (chaotic) climate variability, the practical impacts of climate change, and what, if anything, should be done to reduce global warming, Global warming is not a uniform increase of temperature, but rather involves at complex geographically varying climate change. Understanding of global warming will require improved observations of climate change itself and the forcing factors that can lead to climate change. The NASA Terra mission and other NASA Earth Science missions will provide key measurement of climate change and climate forcings. The strategy to develop an understanding of the causes and predictability of long-term climate change must be based on combination of observations with models and analysis. The upcoming NASA missions will make important contributions to the required observations.

  16. Global warming description using Daisyworld model with greenhouse gases.

    PubMed

    Paiva, Susana L D; Savi, Marcelo A; Viola, Flavio M; Leiroz, Albino J K

    2014-11-01

    Daisyworld is an archetypal model of the earth that is able to describe the global regulation that can emerge from the interaction between life and environment. This article proposes a model based on the original Daisyworld considering greenhouse gases emission and absorption, allowing the description of the global warming phenomenon. Global and local analyses are discussed evaluating the influence of greenhouse gases in the planet dynamics. Numerical simulations are carried out showing the general qualitative behavior of the Daisyworld for different scenarios that includes solar luminosity variations and greenhouse gases effect. Nonlinear dynamics perspective is of concern discussing a way that helps the comprehension of the global warming phenomenon. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  17. Tightening of tropical ascent and high clouds key to precipitation change in a warmer climate

    PubMed Central

    Su, Hui; Jiang, Jonathan H.; Neelin, J. David; Shen, T. Janice; Zhai, Chengxing; Yue, Qing; Wang, Zhien; Huang, Lei; Choi, Yong-Sang; Stephens, Graeme L.; Yung, Yuk L.

    2017-01-01

    The change of global-mean precipitation under global warming and interannual variability is predominantly controlled by the change of atmospheric longwave radiative cooling. Here we show that tightening of the ascending branch of the Hadley Circulation coupled with a decrease in tropical high cloud fraction is key in modulating precipitation response to surface warming. The magnitude of high cloud shrinkage is a primary contributor to the intermodel spread in the changes of tropical-mean outgoing longwave radiation (OLR) and global-mean precipitation per unit surface warming (dP/dTs) for both interannual variability and global warming. Compared to observations, most Coupled Model Inter-comparison Project Phase 5 models underestimate the rates of interannual tropical-mean dOLR/dTs and global-mean dP/dTs, consistent with the muted tropical high cloud shrinkage. We find that the five models that agree with the observation-based interannual dP/dTs all predict dP/dTs under global warming higher than the ensemble mean dP/dTs from the ∼20 models analysed in this study. PMID:28589940

  18. Relative effects on global warming of halogenated methanes and ethanes of social and industrial interest

    NASA Technical Reports Server (NTRS)

    Fisher, Donald A.; Hales, Charles H.; Wang, Wei-Chyung; Ko, Malcolm K. W.; Sze, N. Dak

    1990-01-01

    The relative potential global warming effects for several halocarbons (chlorofluorocarbons (CFC's)-11, 12, 113, 114, and 115; hydrochlorofluorocarbons (HCFC's) 22, 123, 124, 141b, and 142b; and hydrofluorocarbons (HFC's) 125, 134a, 143a, and 152a; carbon tetrachloride; and methyl chloroform) were calculated by two atmospheric modeling groups. These calculations were based on atmospheric chemistry and radiative convective models to determine the chemical profiles and the radiative processes. The resulting relative greenhouse warming when normalized to the effect of CFC-11 agree reasonably well as long as we account for differences between modeled lifetimes. Differences among results are discussed. Sensitivity of relative warming values is determined with respect to trace gas levels assumed. Transient relative global warming effects are analyzed.

  19. Global warming and the regional persistence of a temperate-zone insect (Tenodera sinensis)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rooney, T.P.; Smith, A.T.; Hurd, L.E.

    Models based on the paleoecological record predict that animals in temperate regions will respond to global warming by migrating poleward to remain within their temperature tolerance ranges. The effect of global warming on invertebrates is of great concern because of their critical role in ecosystem structure and function. Migration poses a problem for many species because of their limited dispersal abilities. The life cycle of a typical temperature zone univoltine insect. Tenodera sinensis (Mantodea: Mantidae) is constrained by degree-days per season: too few prevent maturation before the killing frost in the autumn; too many allow egg hatch before a killingmore » frost. We used field and laboratory observation on the life history and ecology of this species to predict the effect of global warming on the regional distribution of this insect by the end of the next century. Based on the simplified, best-case, biological assumptions of our model, the geographical range of T. sinensis in eastern North America would be compressed toward the northern part of its present contiguous regional distribution. This and other univoltine temperate species with long maturation periods and low vagility could face regional extinction if global warming predictions are accurate. 61 refs., 3 figs.« less

  20. Global drought and severe drought-affected populations in 1.5 and 2 °C warmer worlds

    NASA Astrophysics Data System (ADS)

    Liu, Wenbin; Sun, Fubao; Lim, Wee Ho; Zhang, Jie; Wang, Hong; Shiogama, Hideo; Zhang, Yuqing

    2018-03-01

    The 2015 Paris Agreement proposed a more ambitious climate change mitigation target on limiting global warming to 1.5 °C instead of 2 °C above preindustrial levels. Scientific investigations on environmental risks associated with these warming targets are necessary to inform climate policymaking. Based on the Coupled Model Intercomparison Project phase 5 (CMIP5) climate models, we present the first risk-based assessment of changes in global drought and the impact of severe drought on populations from additional 1.5 and 2 °C warming conditions. Our results highlight the risk of drought on a global scale and in several hotspot regions such as the Amazon, northeastern Brazil, southern Africa and Central Europe at both 1.5 and 2 °C global warming relative to the historical period, showing increases in drought durations from 2.9 to 3.2 months. Correspondingly, more total and urban populations would be exposed to severe droughts globally (+132.5 ± 216.2 million and +194.5 ± 276.5 million total population and +350.2 ± 158.8 million and +410.7 ± 213.5 million urban populations in 1.5 and 2 °C warmer worlds) and regionally (e.g., East Africa, West Africa and South Asia). Less rural populations (-217.7 ± 79.2 million and -216.2 ± 82.4 million rural populations in 1.5 and 2 °C warmer worlds) would be exposed to severe drought globally under climate warming, population growth and especially the urbanization-induced population migration. By keeping global warming at 1.5 °C above the preindustrial levels instead of 2 °C, there is a decrease in drought risks (i.e., less drought duration, less drought intensity and severity but relatively more frequent drought) and the affected total, urban and rural populations would decrease globally and in most regions. While challenging for both East Africa and South Asia, the benefits of limiting warming to below 1.5 °C in terms of global drought risk and impact reduction are significant.

  1. Do mitigation strategies reduce global warming potential in the northern U.S. corn belt?

    PubMed

    Johnson, Jane M-F; Archer, David W; Weyers, Sharon L; Barbour, Nancy W

    2011-01-01

    Agricultural management practices that enhance C sequestration, reduce greenhouse gas emission (nitrous oxide [N₂O], methane [CH₄], and carbon dioxide [CO₂]), and promote productivity are needed to mitigate global warming without sacrificing food production. The objectives of the study were to compare productivity, greenhouse gas emission, and change in soil C over time and to assess whether global warming potential and global warming potential per unit biomass produced were reduced through combined mitigation strategies when implemented in the northern U.S. Corn Belt. The systems compared were (i) business as usual (BAU); (ii) maximum C sequestration (MAXC); and (iii) optimum greenhouse gas benefit (OGGB). Biomass production, greenhouse gas flux change in total and organic soil C, and global warming potential were compared among the three systems. Soil organic C accumulated only in the surface 0 to 5 cm. Three-year average emission of N₂O and CH was similar among all management systems. When integrated from planting to planting, N₂O emission was similar for MAXC and OGGB systems, although only MAXC was fertilized. Overall, the three systems had similar global warming potential based on 4-yr changes in soil organic C, but average rotation biomass was less in the OGGB systems. Global warming potential per dry crop yield was the least for the MAXC system and the most for OGGB system. This suggests management practices designed to reduce global warming potential can be achieved without a loss of productivity. For example, MAXC systems over time may provide sufficient soil C sequestration to offset associated greenhouse gas emission. by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America, Inc.

  2. A CRADLE TO GATE LIFE CYCLE ANALYSIS OF THE BIOPOLYMER POLYLACTIC ACID: LOOKING BEYOND GLOBAL WARMING AND FOSSIL FUEL USE

    EPA Science Inventory

    Derived from corn, the biopolymer polylactic acid (PLA) has recently emerged in the marketplace and is advertised as a sustainable alternative to petroleum-based polymers. Research into the environmental implications of biobased production has focused primarily on global warming...

  3. Evolution of surface sensible heat over the Tibetan Plateau under the recent global warming hiatus

    NASA Astrophysics Data System (ADS)

    Zhu, Lihua; Huang, Gang; Fan, Guangzhou; Qu, Xia; Zhao, Guijie; Hua, Wei

    2017-10-01

    Based on regular surface meteorological observations and NCEP/DOE reanalysis data, this study investigates the evolution of surface sensible heat (SH) over the central and eastern Tibetan Plateau (CE-TP) under the recent global warming hiatus. The results reveal that the SH over the CE-TP presents a recovery since the slowdown of the global warming. The restored surface wind speed together with increased difference in ground-air temperature contribute to the recovery in SH. During the global warming hiatus, the persistent weakening wind speed is alleviated due to the variation of the meridional temperature gradient. Meanwhile, the ground surface temperature and the difference in ground-air temperature show a significant increasing trend in that period caused by the increased total cloud amount, especially at night. At nighttime, the increased total cloud cover reduces the surface effective radiation via a strengthening of atmospheric counter radiation and subsequently brings about a clear upward trend in ground surface temperature and the difference in ground-air temperature. Cloud-radiation feedback plays a significant role in the evolution of the surface temperature and even SH during the global warming hiatus. Consequently, besides the surface wind speed, the difference in ground-air temperature becomes another significant factor for the variation in SH since the slowdown of global warming, particularly at night.

  4. Global lake response to the recent warming hiatus

    NASA Astrophysics Data System (ADS)

    Winslow, Luke A.; Leach, Taylor H.; Rose, Kevin C.

    2018-05-01

    Understanding temporal variability in lake warming rates over decadal scales is important for understanding observed change in aquatic systems. We analyzed a global dataset of lake surface water temperature observations (1985‑2009) to examine how lake temperatures responded to a recent global air temperature warming hiatus (1998‑2012). Prior to the hiatus (1985‑1998), surface water temperatures significantly increased at an average rate of 0.532 °C decade‑1 (±0.214). In contrast, water temperatures did not change significantly during the hiatus (average rate ‑0.087 °C decade‑1 ±0.223). Overall, 83% of lakes in our dataset (129 of 155) had faster warming rates during the pre-hiatus period than during the hiatus period. These results demonstrate that lakes have exhibited decadal-scale variability in warming rates coherent with global air temperatures and represent an independent line of evidence for the recent warming hiatus. Our analyses provide evidence that lakes are sentinels of broader climatological processes and indicate that warming rates based on datasets where a large proportion of observations were collected during the hiatus period may underestimate longer-term trends.

  5. Global warming and obesity: a systematic review.

    PubMed

    An, R; Ji, M; Zhang, S

    2018-02-01

    Global warming and the obesity epidemic are two unprecedented challenges mankind faces today. A literature search was conducted in the PubMed, Web of Science, EBSCO and Scopus for articles published until July 2017 that reported findings on the relationship between global warming and the obesity epidemic. Fifty studies were identified. Topic-wise, articles were classified into four relationships - global warming and the obesity epidemic are correlated because of common drivers (n = 21); global warming influences the obesity epidemic (n = 13); the obesity epidemic influences global warming (n = 13); and global warming and the obesity epidemic influence each other (n = 3). We constructed a conceptual model linking global warming and the obesity epidemic - the fossil fuel economy, population growth and industrialization impact land use and urbanization, motorized transportation and agricultural productivity and consequently influences global warming by excess greenhouse gas emission and the obesity epidemic by nutrition transition and physical inactivity; global warming also directly impacts obesity by food supply/price shock and adaptive thermogenesis, and the obesity epidemic impacts global warming by the elevated energy consumption. Policies that endorse deployment of clean and sustainable energy sources, and urban designs that promote active lifestyles, are likely to alleviate the societal burden of global warming and obesity. © 2017 World Obesity Federation.

  6. Dynamical amplification of Arctic and global warming

    NASA Astrophysics Data System (ADS)

    Alekseev, Genrikh; Ivanov, Nikolai; Kharlanenkova, Natalia; Kuzmina, Svetlana; Bobylev, Leonid; Gnatiuk, Natalia; Urazgildeeva, Aleksandra

    2015-04-01

    The Arctic is coupled with global climate system by the atmosphere and ocean circulation that provides a major contribution to the Arctic energy budget. Therefore increase of meridional heat transport under global warming can impact on its Arctic amplification. Contribution of heat transport to the recent warming in the Arctic, Northern Hemisphere and the globe are estimated on base of reanalysis data, global climate model data and proposed special index. It is shown that significant part of linear trend during last four decades in average surface air temperature in these areas can be attributed to dynamical amplification. This attribution keeps until 400 mb height with progressive decreasing. The Arctic warming is amplified also due to an increase of humidity and cloudiness in the Arctic atmosphere that follow meridional transport gain. From October to January the Arctic warming trends are amplified as a result of ice edge retreat from the Siberian and Alaska coast and the heating of expanded volume of sea water. This investigation is supported with RFBR project 15-05-03512.

  7. Frequency of Deep Convective Clouds and Global Warming

    NASA Technical Reports Server (NTRS)

    Aumann, Hartmut H.; Teixeira, Joao

    2008-01-01

    This slide presentation reviews the effect of global warming on the formation of Deep Convective Clouds (DCC). It concludes that nature responds to global warming with an increase in strong convective activity. The frequency of DCC increases with global warming at the rate of 6%/decade. The increased frequency of DCC with global warming alone increases precipitation by 1.7%/decade. It compares the state of the art climate models' response to global warming, and concludes that the parametrization of climate models need to be tuned to more closely emulate the way nature responds to global warming.

  8. Exploring the Greenhouse Effect through Physics-Oriented Activities

    ERIC Educational Resources Information Center

    Browne, Kerry P.; Laws, Priscilla W.

    2003-01-01

    We are developing a new activity-based unit on global warming and the environment as part of the "Explorations in Physics Curriculum." We describe the current status of this unit, which focuses on helping students understand the greenhouse effect and its relationship to global warming. We outline several problems encountered in testing the unit…

  9. Students' Communication, Argumentation and Knowledge in a Citizens' Conference on Global Warming

    ERIC Educational Resources Information Center

    Albe, Virginie; Gombert, Marie-Jose

    2012-01-01

    An empirical study on 12th-grade students' engagement on a global warming debate as a citizens' conference is reported. Within the design-based research methodology, an interdisciplinary teaching sequence integrating an initiation to non-violent communication was developed. Students' debates were analyzed according to three dimensions:…

  10. Consequences of Global Warming of 1.5 °C and 2 °C for Regional Temperature and Precipitation Changes in the Contiguous United States

    PubMed Central

    Bradley, Raymond S.

    2017-01-01

    The differential warming of land and ocean leads to many continental regions in the Northern Hemisphere warming at rates higher than the global mean temperature. Adaptation and conservation efforts will, therefore, benefit from understanding regional consequences of limiting the global mean temperature increase to well below 2°C above pre-industrial levels, a limit agreed upon at the United Nations Climate Summit in Paris in December 2015. Here, we analyze climate model simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to determine the timing and magnitude of regional temperature and precipitation changes across the contiguous United States (US) for global warming of 1.5 and 2°C and highlight consensus and uncertainties in model projections and their implications for making decisions. The regional warming rates differ considerably across the contiguous US, but all regions are projected to reach 2°C about 10-20 years before the global mean temperature. Although there is uncertainty in the timing of exactly when the 1.5 and 2°C thresholds will be crossed regionally, over 80% of the models project at least 2°C warming by 2050 for all regions for the high emissions scenario. This threshold-based approach also highlights regional variations in the rate of warming across the US. The fastest warming region in the contiguous US is the Northeast, which is projected to warm by 3°C when global warming reaches 2°C. The signal-to-noise ratio calculations indicate that the regional warming estimates remain outside the envelope of uncertainty throughout the twenty-first century, making them potentially useful to planners. The regional precipitation projections for global warming of 1.5°C and 2°C are uncertain, but the eastern US is projected to experience wetter winters and the Great Plains and the Northwest US are projected to experience drier summers in the future. The impact of different scenarios on regional precipitation projections is negligible throughout the twenty-first century compared to uncertainties associated with internal variability and model diversity. PMID:28076360

  11. Consequences of Global Warming of 1.5 °C and 2 °C for Regional Temperature and Precipitation Changes in the Contiguous United States.

    PubMed

    Karmalkar, Ambarish V; Bradley, Raymond S

    2017-01-01

    The differential warming of land and ocean leads to many continental regions in the Northern Hemisphere warming at rates higher than the global mean temperature. Adaptation and conservation efforts will, therefore, benefit from understanding regional consequences of limiting the global mean temperature increase to well below 2°C above pre-industrial levels, a limit agreed upon at the United Nations Climate Summit in Paris in December 2015. Here, we analyze climate model simulations from the Coupled Model Intercomparison Project Phase 5 (CMIP5) to determine the timing and magnitude of regional temperature and precipitation changes across the contiguous United States (US) for global warming of 1.5 and 2°C and highlight consensus and uncertainties in model projections and their implications for making decisions. The regional warming rates differ considerably across the contiguous US, but all regions are projected to reach 2°C about 10-20 years before the global mean temperature. Although there is uncertainty in the timing of exactly when the 1.5 and 2°C thresholds will be crossed regionally, over 80% of the models project at least 2°C warming by 2050 for all regions for the high emissions scenario. This threshold-based approach also highlights regional variations in the rate of warming across the US. The fastest warming region in the contiguous US is the Northeast, which is projected to warm by 3°C when global warming reaches 2°C. The signal-to-noise ratio calculations indicate that the regional warming estimates remain outside the envelope of uncertainty throughout the twenty-first century, making them potentially useful to planners. The regional precipitation projections for global warming of 1.5°C and 2°C are uncertain, but the eastern US is projected to experience wetter winters and the Great Plains and the Northwest US are projected to experience drier summers in the future. The impact of different scenarios on regional precipitation projections is negligible throughout the twenty-first century compared to uncertainties associated with internal variability and model diversity.

  12. Thai Youths and Global Warming: Media Information, Awareness, and Lifestyle Activities

    ERIC Educational Resources Information Center

    Chokriensukchai, Kanchana; Tamang, Ritendra

    2010-01-01

    This study examines the exposure of Thai youths to media information on global warming, the relationship between exposure to global warming information and awareness of global warming, and the relationship between that awareness and lifestyle activities that contribute to global warming. A focus group of eight Thai youths provided information that…

  13. Germination shifts of C3 and C4 species under simulated global warming scenario.

    PubMed

    Zhang, Hongxiang; Yu, Qiang; Huang, Yingxin; Zheng, Wei; Tian, Yu; Song, Yantao; Li, Guangdi; Zhou, Daowei

    2014-01-01

    Research efforts around the world have been increasingly devoted to investigating changes in C3 and C4 species' abundance or distribution with global warming, as they provide important insight into carbon fluxes and linked biogeochemical cycles. However, changes in the early life stage (e.g. germination) of C3 and C4 species in response to global warming, particularly with respect to asymmetric warming, have received less attention. We investigated germination percentage and rate of C3 and C4 species under asymmetric (+3/+6°C at day/night) and symmetric warming (+5/+5°C at day/night), simulated by alternating temperatures. A thermal time model was used to calculate germination base temperature and thermal time constant. Two additional alternating temperature regimes were used to test temperature metrics effect. The germination percentage and rate increased continuously for C4 species, but increased and then decreased with temperature for C3 species under both symmetric and asymmetric warming. Compared to asymmetric warming, symmetric warming significantly overestimated the speed of germination percentage change with temperature for C4 species. Among the temperature metrics (minimum, maximum, diurnal temperature range and average temperature), maximum temperature was most correlated with germination of C4 species. Our results indicate that global warming may favour germination of C4 species, at least for the C4 species studied in this work. The divergent effects of asymmetric and symmetric warming on plant germination also deserve more attention in future studies.

  14. Prediction-Market-Based Quantification of Climate Change Consensus and Uncertainty

    NASA Astrophysics Data System (ADS)

    Boslough, M.

    2012-12-01

    Intrade is an online trading exchange that includes climate prediction markets. One such family of contracts can be described as "Global temperature anomaly for 2012 to be greater than x °C or more," where the figure x ranges in increments of .05 from .30 to 1.10 (relative to the 1951-1980 base period), based on data published by NASA GISS. Each market will settle at 10.00 if the published global temperature anomaly for 2012 is equal to or greater than x, and will otherwise settle at 0.00. Similar contracts will be available for 2013. Global warming hypotheses can be cast as probabilistic predictions for future temperatures. The first modern such climate prediction is that of Broecker (1975), whose temperatures are easily separable from his CO2 growth scenario—which he overestimated—by interpolating his table of temperature as a function of CO2 concentration and projecting the current trend into the near future. For the current concentration of 395 ppm, Broecker's equilibrium temperature anomaly prediction relative to pre-industrial is 1.05 °C, or about 0.75 °C relative to the GISS base period. His neglect of lag in response to the changes in radiative forcing was partially compensated by his low sensitivity of 2.4 °C, leading to a slight overestimate. Simple linear extrapolation of the current trend since 1975 yields an estimate of .65 ± .09 °C (net warming of .95 °C) for anthropogenic global warming with a normal distribution of random natural variability. To evaluate an extreme case, we can estimate the prediction Broecker would have made if he had used the Lindzen & Choi (2009) climate sensitivity of 0.5 °C. The net post-industrial warming by 2012 would have been 0.21 °C, for an expected change of -0.09 from the GISS base period. This is the temperature to which the Earth would be expected to revert if the observed warming since the 19th century was merely due to random natural variability that coincidentally mimicked Broecker's anthropogenic change prediction for the past 36 years. Assertions made outside the scientific literature can also be cast into predictions for 2012 temperatures, for example Carter's (2006) argument for a lack of warming since 1998 can be extrapolated to a 2012 value of 0.56 °C (net warming of .86 °C), and Easterbrook's (2010) claim of global cooling can be extrapolated to a 2012 value of .42 °C (net warming of .72 °C). All contracts in the current market ensembles are consistent with net warming from pre-industrial temperatures. They are also capable of distinguishing the level of acceptance of the various global warming hypotheses, even by their respective proponents. Moreover, they can be used as a market-based consensus estimate of future warming and climate variability that is weighted according to level of risk taken on by those providing the estimates, while filtering out the opinions of individuals unwilling to accept any financial risk associated with being wrong.

  15. Uncertainty propagation in life cycle assessment of biodiesel versus diesel: global warming and non-renewable energy.

    PubMed

    Hong, Jinglan

    2012-06-01

    Uncertainty information is essential for the proper use of life cycle assessment and environmental assessments in decision making. To investigate the uncertainties of biodiesel and determine the level of confidence in the assertion that biodiesel is more environmentally friendly than diesel, an explicit analytical approach based on the Taylor series expansion for lognormal distribution was applied in the present study. A biodiesel case study demonstrates the probability that biodiesel has a lower global warming and non-renewable energy score than diesel, that is 92.3% and 93.1%, respectively. The results indicate the level of confidence in the assertion that biodiesel is more environmentally friendly than diesel based on the global warming and non-renewable energy scores. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. Global Warming in Schools: An Inquiry about the Competing Conceptions of High School Social Studies and Science Curricula and Teachers

    NASA Astrophysics Data System (ADS)

    Meehan, Casey R.

    Despite the scientific consensus supporting the theory of anthropogenic (human-induced) global warming, whether global warming is a serious problem, whether human activity is the primary cause of it, and whether scientific consensus exists at all are controversial questions among the U.S. lay-public. The cultural theory of risk perception (Schwarz and Thompson, 1990) serves as the theoretical framework for this qualitative analysis in which I ask the question how do U.S. secondary school curricula and teachers deal with the disparity between the overwhelming scientific consensus and the lay-public's skepticism regarding global warming? I analyzed nine widely used social studies and science textbooks, eight sets of supplemental materials about global warming produced by a range of not-for-profit and governmental organizations, and interviewed fourteen high school teachers who had experience teaching formal lessons about global warming in their content area. Findings suggest: 1) the range of global warming content within social studies and science textbooks and supplemental curricula reflects the spectrum of conceptualizations found among members of the U.S. public; 2) global warming curricula communicate only a narrow range of strategies for dealing with global warming and its associated threats; and 3) social studies and science teachers report taking a range of stances about global warming in their classroom, but sometimes the stance they put forth to their students does not align with their personal beliefs about global warming. The findings pose a troubling conundrum. Some of the global warming curricula treat the cause of global warming--a question that is not scientifically controversial--as a question with multiple and competing "right" answers. At the same time, much of curricula position how we should address global warming--a question that is legitimately controversial--as a question with one correct answer despite there being many reasonable responses. Finally, I present the implications this conundrum has for teaching about global warming in a politically polarized atmosphere.

  17. How does the dengue vector mosquito Aedes albopictus respond to global warming?

    PubMed

    Jia, Pengfei; Chen, Xiang; Chen, Jin; Lu, Liang; Liu, Qiyong; Tan, Xiaoyue

    2017-03-11

    Global warming has a marked influence on the life cycle of epidemic vectors as well as their interactions with human beings. The Aedes albopictus mosquito as the vector of dengue fever surged exponentially in the last decade, raising ecological and epistemological concerns of how climate change altered its growth rate and population dynamics. As the global warming pattern is considerably uneven across four seasons, with a confirmed stronger effect in winter, an emerging need arises as to exploring how the seasonal warming effects influence the annual development of Ae. albopictus. The model consolidates a 35-year climate dataset and designs fifteen warming patterns that increase the temperature of selected seasons. Based on a recently developed mechanistic population model of Ae. albopictus, the model simulates the thermal reaction of blood-fed adults by systematically increasing the temperature from 0.5 to 5 °C at an interval of 0.5 °C in each warming pattern. The results show the warming effects are different across seasons. The warming effects in spring and winter facilitate the development of the species by shortening the diapause period. The warming effect in summer is primarily negative by inhibiting mosquito development. The warming effect in autumn is considerably mixed. However, these warming effects cannot carry over to the following year, possibly due to the fact that under the extreme weather in winter the mosquito fully ceases from development and survives in terms of diapause eggs. As the historical pattern of global warming manifests seasonal fluctuations, this study provides corroborating and previously ignored evidence of how such seasonality affects the mosquito development. Understanding this short-term temperature-driven mechanism as one chain of the transmission events is critical to refining the thermal reaction norms of the epidemic vector under global warming as well as developing effective mosquito prevention and control strategies.

  18. Public Perception of Climate Change and the New Climate Dice

    NASA Technical Reports Server (NTRS)

    Hansen, James; Sato, Makiko; Ruedy, Reto

    2012-01-01

    "Climate dice", describing the chance of unusually warm or cool seasons, have become more and more "loaded" in the past 30 years, coincident with rapid global warming. The distribution of seasonal mean temperature anomalies has shifted toward higher temperatures and the range of anomalies has increased. An important change is the emergence of a category of summertime extremely hot outliers, more than three standard deviations (3 sigma) warmer than the climatology of the 1951-1980 base period. This hot extreme, which covered much less than 1% of Earth's surface during the base period, now typically covers about 10% of the land area. It follows that we can state, with a high degree of confidence, that extreme anomalies such as those in Texas and Oklahoma in 2011 and Moscow in 2010 were a consequence of global warming, because their likelihood in the absence of global warming was exceedingly small. We discuss practical implications of this substantial, growing, climate change.

  19. Making sense of global warming: Norwegians appropriating knowledge of anthropogenic climate change.

    PubMed

    Ryghaug, Marianne; Sørensen, Knut Holtan; Naess, Robert

    2011-11-01

    This paper studies how people reason about and make sense of human-made global warming, based on ten focus group interviews with Norwegian citizens. It shows that the domestication of climate science knowledge was shaped through five sense-making devices: news media coverage of changes in nature, particularly the weather, the coverage of presumed experts' disagreement about global warming, critical attitudes towards media, observations of political inaction, and considerations with respect to everyday life. These sense-making devices allowed for ambiguous outcomes, and the paper argues four main outcomes with respect to the domestication processes: the acceptors, the tempered acceptors, the uncertain and the sceptics.

  20. 40 CFR Table A-1 to Subpart A of... - Global Warming Potentials

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 22 2013-07-01 2013-07-01 false Global Warming Potentials A Table A-1... A-1 to Subpart A of Part 98—Global Warming Potentials Global Warming Potentials [100-Year Time Horizon] Name CAS No. Chemical formula Global warming potential(100 yr.) Carbon dioxide 124-38-9 CO2 1...

  1. 40 CFR Table A-1 to Subpart A of... - Global Warming Potentials

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 21 2014-07-01 2014-07-01 false Global Warming Potentials A Table A-1... A-1 to Subpart A of Part 98—Global Warming Potentials Global Warming Potentials [100-Year Time Horizon] Name CAS No. Chemical formula Global warming potential(100 yr.) Carbon dioxide 124-38-9 CO2 1...

  2. Personal efficacy, the information environment, and attitudes toward global warming and climate change in the United States.

    PubMed

    Kellstedt, Paul M; Zahran, Sammy; Vedlitz, Arnold

    2008-02-01

    Despite the growing scientific consensus about the risks of global warming and climate change, the mass media frequently portray the subject as one of great scientific controversy and debate. And yet previous studies of the mass public's subjective assessments of the risks of global warming and climate change have not sufficiently examined public informedness, public confidence in climate scientists, and the role of personal efficacy in affecting global warming outcomes. By examining the results of a survey on an original and representative sample of Americans, we find that these three forces-informedness, confidence in scientists, and personal efficacy-are related in interesting and unexpected ways, and exert significant influence on risk assessments of global warming and climate change. In particular, more informed respondents both feel less personally responsible for global warming, and also show less concern for global warming. We also find that confidence in scientists has unexpected effects: respondents with high confidence in scientists feel less responsible for global warming, and also show less concern for global warming. These results have substantial implications for the interaction between scientists and the public in general, and for the public discussion of global warming and climate change in particular.

  3. Military Implications of Global Warming.

    DTIC Science & Technology

    1999-05-20

    U.S. environmental issues also have important global implications. This paper analyzes current U.S. Policy as it pertains to global warming and climate...for military involvement to reduce global warming . Global warming and other environmental issues are important to the U.S. military. As the United

  4. The asymmetric impact of global warming on US drought types and distributions in a large ensemble of 97 hydro-climatic simulations.

    PubMed

    Huang, Shengzhi; Leng, Guoyong; Huang, Qiang; Xie, Yangyang; Liu, Saiyan; Meng, Erhao; Li, Pei

    2017-07-19

    Projection of future drought is often involved large uncertainties from climate models, emission scenarios as well as drought definitions. In this study, we investigate changes in future droughts in the conterminous United States based on 97 1/8 degree hydro-climate model projections. Instead of focusing on a specific drought type, we investigate changes in meteorological, agricultural, and hydrological drought as well as the concurrences. Agricultural and hydrological droughts are projected to become more frequent with increase in global mean temperature, while less meteorological drought is expected. Changes in drought intensity scale linearly with global temperature rises under RCP8.5 scenario, indicating the potential feasibility to derive future drought severity given certain global warming amount under this scenario. Changing pattern of concurrent droughts generally follows that of agricultural and hydrological droughts. Under the 1.5 °C warming target as advocated in recent Paris agreement, several hot spot regions experiencing highest droughts are identified. Extreme droughts show similar patterns but with much larger magnitude than the climatology. This study highlights the distinct response of droughts of various types to global warming and the asymmetric impact of global warming on drought distribution resulting in a much stronger influence on extreme drought than on mean drought.

  5. Sea level change since 2005: importance of salinity

    NASA Astrophysics Data System (ADS)

    Llovel, W.; Purkey, S.; Meyssignac, B.; Kolodziejczyk, N.; Blazquez, A.; Bamber, J. L.

    2017-12-01

    Sea level rise is one of the most important consequences of the actual global warming. Global mean sea level has been rising at a faster rate since 1993 (over the satellite altimetry era) than previous decades. This rise is expected to accelerate over the coming decades and century. At global scale, sea level rise is caused by a combination of freshwater increase from land ice melting and land water changes (mass component) and ocean warming (thermal expansion). Estimating the causes is of great interest not only to understand the past sea level changes but also to validate projections based on climate models. In this study, we investigate the global mass contribution to recent sea level changes with an alternative approach by estimating the global ocean freshening. For that purpose, we consider the unprecedented amount of salinity measurements from Argo floats for the past decade (2005-2015). We compare our results to the ocean mass inferred by GRACE data and based on a sea level budget approach. Our results bring new constrains on the global water cycle (ocean freshening) and energy budget (ocean warming) as well as on the global ocean mass directly inferred from GRACE data.

  6. Global intensification in observed short-duration rainfall extremes

    NASA Astrophysics Data System (ADS)

    Fowler, H. J.; Lewis, E.; Guerreiro, S.; Blenkinsop, S.; Barbero, R.; Westra, S.; Lenderink, G.; Li, X.

    2017-12-01

    Extreme rainfall events are expected to intensify with a warming climate and this is currently driving extensive research. While daily rainfall extremes are widely thought to have increased globally in recent decades, changes in rainfall extremes on shorter timescales, often associated with flash flooding, have not been documented at global scale due to surface observational limitations and the lack of a global sub-daily rainfall database. The access to and use of such data remains a challenge. For the first time, we have synthesized across multiple data sources providing gauge-based sub-daily rainfall observations across the globe over the last 6 decades. This forms part of the INTENSE project (part of the World Climate Research Programme (WCRP)'s Grand Challenge on 'Understanding and Predicting Weather and Climate Extremes' and the Global Water and Energy Exchanges (GEWEX) Hydroclimate Project cross-cut on sub-daily rainfall). A set of global hydroclimatic indices have been produced based upon stakeholder recommendations including indices that describe maximum rainfall totals and timing, the intensity, duration and frequency of storms, frequency of storms above specific thresholds and information about the diurnal cycle. This will provide a unique global data resource on sub-daily precipitation whose derived indices will be freely available to the wider scientific community. Because of the physical connection between global warming and the moisture budget, we also sought to infer long-term changes in sub-daily rainfall extremes contingent on global mean temperature. Whereas the potential influence of global warming is uncertain at regional scales, where natural variability dominates, aggregating surface stations across parts of the world may increase the global warming-induced signal. Changes in terms of annual maximum rainfall across various resolutions ranging from 1-h to 24-h are presented and discussed.

  7. Analysing regional climate change in Africa in a 1.5 °C global warming world

    NASA Astrophysics Data System (ADS)

    Weber, Torsten; Haensler, Andreas; Jacob, Daniela

    2017-04-01

    At the 21st session of the UNFCCC Conference of the Parties (COP21) in Paris, a reaffirmation to strengthen the effort to limit the global temperature increase to 1.5 °C was decided. However, even if global warming is limited, some regions might still be substantially affected by climate change, especially for continents like Africa where the socio-economic conditions are strongly linked to the climatic conditions. Hence, providing a detailed analysis of the projected climate changes in a 1.5 °C global warming scenario will allow the African society to undertake measures for adaptation in order to mitigate potential negative consequences. In order to provide such climate change information, the existing CORDEX Africa ensemble for RCP2.6 scenario simulations has systematically been increased by conducting additional REMO simulations using data from various global circulation models (GCMs) as lateral boundary conditions. Based on this ensemble, which now consists of eleven CORDEX Africa RCP2.6 regional climate model simulations from three RCMs (forced with different GCMs), various temperature and precipitation indices such as number of cold/hot days and nights, duration of the rainy season, the amount of rainfall in the rainy seasons and the number of dry spells have been calculated for a 1.5 °C global warming scenario. The applied method to define the 1.5 °C global warming period has been already applied in the IMPACT2C project. In our presentation, we will discuss the analysis of the climate indices in a 1.5 °C global warming world for the CORDEX-Africa region. Amongst presenting the magnitude of projected changes, we will also address the question for selected indices if the changes projected in a 1.5 °C global warming scenario are already larger than the climate variability and we will also draw links to the changes projected under a more extreme scenario.

  8. The world at 1.5°C: Understanding its regional dimensions and driving processes

    NASA Astrophysics Data System (ADS)

    Seneviratne, S. I.; Wartenburger, R.; Vogel, M.; Hirsch, A.; Guillod, B.; Donat, M.; Pitman, A. J.; Davin, E.; Greve, P.; Hirschi, M.

    2017-12-01

    This presentation reviews the available evidence regarding projected regional changes in climate extremes at 1.5°C vs higher levels of warming based on recent analyses (Seneviratne et al. 2016; Wartenburger et al., submitted; Greve et al., submitted). In several regions, significant differences in the occurrence of climate extremes can be identified already for half a degree of warming when assessing changes at 1.5°C vs 2°C global warming. An important feature is the much stronger warming of hot extremes in several continental regions compared to the global mean warming, which implies that temperature extremes can warm regionally by much more than 1.5°C, even if global temperature warming is stabilized at this level (e.g. up to 6°C for certain models in the Arctic). This feature is due to a combination of feedbacks and internal climate variability. We highlight in particular the importance of land-climate feedbacks for projected changes in hot extremes in mid-latitude regions (Vogel et al. 2017). Because of the strong effects of land processes on regional changes in temperature extremes, changes in land surface properties, including land use changes, are found to be particularly important for projections in low-emissions scenarios (Hirsch et al. 2017; Guillod et al., submitted). References: Greve, P., et al.: Regional scaling of annual mean precipitation and water availability with global temperature change. Submitted. Guillod, B.P., et al.: Land use in low climate warming targets critical for hot extreme projections. Submitted. Hirsch, A.L., et al., 2017: Can climate-effective land management reduce regional warming? J. Geophys. Res. Atmos., 122, 2269-2288, doi:10.1002/2016JD026125. Seneviratne, S.I., et al., 2016: Allowable CO2 emissions based on regional and impact-related climate targets. Nature, 529, 477-483, doi:10.1038/nature16542. Vogel, M.M., et al., 2017: Regional amplification of projected changes in extreme temperatures strongly controlled by soil moisture-temperature feedbacks. Geophysical Research Letters, 44(3), 1511-1519. Wartenburger, R., et al.: Changes in regional climate extremes as a function of global mean temperature: an interactive plotting framework. Geosci. Model Dev. - Submitt.,

  9. Regional climate change study requires new temperature datasets

    NASA Astrophysics Data System (ADS)

    Wang, K.; Zhou, C.

    2016-12-01

    Analyses of global mean air temperature (Ta), i. e., NCDC GHCN, GISS, and CRUTEM4, are the fundamental datasets for climate change study and provide key evidence for global warming. All of the global temperature analyses over land are primarily based on meteorological observations of the daily maximum and minimum temperatures (Tmax and Tmin) and their averages (T2) because in most weather stations, the measurements of Tmax and Tmin may be the only choice for a homogenous century-long analysis of mean temperature. Our studies show that these datasets are suitable for long-term global warming studies. However, they may introduce substantial bias in quantifying local and regional warming rates, i.e., with a root mean square error of more than 25% at 5°x 5° grids. From 1973 to 1997, the current datasets tend to significantly underestimate the warming rate over the central U.S. and overestimate the warming rate over the northern high latitudes. Similar results revealed during the period 1998-2013, the warming hiatus period, indicate the use of T2 enlarges the spatial contrast of temperature trends. This because T2 over land only sample air temperature twice daily and cannot accurately reflect land-atmosphere and incoming radiation variations in the temperature diurnal cycle. For better regional climate change detection and attribution, we suggest creating new global mean air temperature datasets based on the recently available high spatiotemporal resolution meteorological observations, i.e., daily four observations weather station since 1960s, These datasets will not only help investigate dynamical processes on temperature variances but also help better evaluate the reanalyzed and modeled simulations of temperature and make some substantial improvements for other related climate variables in models, especially over regional and seasonal aspects.

  10. Regional climate change study requires new temperature datasets

    NASA Astrophysics Data System (ADS)

    Wang, Kaicun; Zhou, Chunlüe

    2017-04-01

    Analyses of global mean air temperature (Ta), i. e., NCDC GHCN, GISS, and CRUTEM4, are the fundamental datasets for climate change study and provide key evidence for global warming. All of the global temperature analyses over land are primarily based on meteorological observations of the daily maximum and minimum temperatures (Tmax and Tmin) and their averages (T2) because in most weather stations, the measurements of Tmax and Tmin may be the only choice for a homogenous century-long analysis of mean temperature. Our studies show that these datasets are suitable for long-term global warming studies. However, they may have substantial biases in quantifying local and regional warming rates, i.e., with a root mean square error of more than 25% at 5 degree grids. From 1973 to 1997, the current datasets tend to significantly underestimate the warming rate over the central U.S. and overestimate the warming rate over the northern high latitudes. Similar results revealed during the period 1998-2013, the warming hiatus period, indicate the use of T2 enlarges the spatial contrast of temperature trends. This is because T2 over land only samples air temperature twice daily and cannot accurately reflect land-atmosphere and incoming radiation variations in the temperature diurnal cycle. For better regional climate change detection and attribution, we suggest creating new global mean air temperature datasets based on the recently available high spatiotemporal resolution meteorological observations, i.e., daily four observations weather station since 1960s. These datasets will not only help investigate dynamical processes on temperature variances but also help better evaluate the reanalyzed and modeled simulations of temperature and make some substantial improvements for other related climate variables in models, especially over regional and seasonal aspects.

  11. Towards a physical understanding of stratospheric cooling under global warming through a process-based decomposition method

    NASA Astrophysics Data System (ADS)

    Yang, Yang; Ren, R.-C.; Cai, Ming

    2016-12-01

    The stratosphere has been cooling under global warming, the causes of which are not yet well understood. This study applied a process-based decomposition method (CFRAM; Coupled Surface-Atmosphere Climate Feedback Response Analysis Method) to the simulation results of a Coupled Model Intercomparison Project, phase 5 (CMIP5) model (CCSM4; Community Climate System Model, version 4), to demonstrate the responsible radiative and non-radiative processes involved in the stratospheric cooling. By focusing on the long-term stratospheric temperature changes between the "historical run" and the 8.5 W m-2 Representative Concentration Pathway (RCP8.5) scenario, this study demonstrates that the changes of radiative radiation due to CO2, ozone and water vapor are the main divers of stratospheric cooling in both winter and summer. They contribute to the cooling changes by reducing the net radiative energy (mainly downward radiation) received by the stratospheric layer. In terms of the global average, their contributions are around -5, -1.5, and -1 K, respectively. However, the observed stratospheric cooling is much weaker than the cooling by radiative processes. It is because changes in atmospheric dynamic processes act to strongly mitigate the radiative cooling by yielding a roughly 4 K warming on the global average base. In particular, the much stronger/weaker dynamic warming in the northern/southern winter extratropics is associated with an increase of the planetary-wave activity in the northern winter, but a slight decrease in the southern winter hemisphere, under global warming. More importantly, although radiative processes dominate the stratospheric cooling, the spatial patterns are largely determined by the non-radiative effects of dynamic processes.

  12. How much do direct livestock emissions actually contribute to global warming?

    PubMed

    Reisinger, Andy; Clark, Harry

    2018-04-01

    Agriculture directly contributes about 10%-12% of current global anthropogenic greenhouse gas emissions, mostly from livestock. However, such percentage estimates are based on global warming potentials (GWPs), which do not measure the actual warming caused by emissions and ignore the fact that methane does not accumulate in the atmosphere in the same way as CO 2 . Here, we employ a simple carbon cycle-climate model, historical estimates and future projections of livestock emissions to infer the fraction of actual warming that is attributable to direct livestock non-CO 2 emissions now and in future, and to CO 2 from pasture conversions, without relying on GWPs. We find that direct livestock non-CO 2 emissions caused about 19% of the total modelled warming of 0.81°C from all anthropogenic sources in 2010. CO 2 from pasture conversions contributed at least another 0.03°C, bringing the warming directly attributable to livestock to 23% of the total warming in 2010. The significance of direct livestock emissions to future warming depends strongly on global actions to reduce emissions from other sectors. Direct non-CO 2 livestock emissions would contribute only about 5% of the warming in 2100 if emissions from other sectors increase unabated, but could constitute as much as 18% (0.27°C) of the warming in 2100 if global CO 2 emissions from other sectors are reduced to near or below zero by 2100, consistent with the goal of limiting warming to well below 2°C. These estimates constitute a lower bound since indirect emissions linked to livestock feed production and supply chains were not included. Our estimates demonstrate that expanding the mitigation potential and realizing substantial reductions of direct livestock non-CO 2 emissions through demand and supply side measures can make an important contribution to achieve the stringent mitigation goals set out in the Paris Agreement, including by increasing the carbon budget consistent with the 1.5°C goal. © 2017 John Wiley & Sons Ltd.

  13. A Simple Climate Model Program for High School Education

    NASA Astrophysics Data System (ADS)

    Dommenget, D.

    2012-04-01

    The future climate change projections of the IPCC AR4 are based on GCM simulations, which give a distinct global warming pattern, with an arctic winter amplification, an equilibrium land sea contrast and an inter-hemispheric warming gradient. While these simulations are the most important tool of the IPCC predictions, the conceptual understanding of these predicted structures of climate change are very difficult to reach if only based on these highly complex GCM simulations and they are not accessible for ordinary people. In this study presented here we will introduce a very simple gridded globally resolved energy balance model based on strongly simplified physical processes, which is capable of simulating the main characteristics of global warming. The model shall give a bridge between the 1-dimensional energy balance models and the fully coupled 4-dimensional complex GCMs. It runs on standard PC computers computing globally resolved climate simulation with 2yrs per second or 100,000yrs per day. The program can compute typical global warming scenarios in a few minutes on a standard PC. The computer code is only 730 line long with very simple formulations that high school students should be able to understand. The simple model's climate sensitivity and the spatial structure of the warming pattern is within the uncertainties of the IPCC AR4 models simulations. It is capable of simulating the arctic winter amplification, the equilibrium land sea contrast and the inter-hemispheric warming gradient with good agreement to the IPCC AR4 models in amplitude and structure. The program can be used to do sensitivity studies in which students can change something (e.g. reduce the solar radiation, take away the clouds or make snow black) and see how it effects the climate or the climate response to changes in greenhouse gases. This program is available for every one and could be the basis for high school education. Partners for a high school project are wanted!

  14. The influence of global sea surface temperature variability on the large-scale land surface temperature

    NASA Astrophysics Data System (ADS)

    Tyrrell, Nicholas L.; Dommenget, Dietmar; Frauen, Claudia; Wales, Scott; Rezny, Mike

    2015-04-01

    In global warming scenarios, global land surface temperatures () warm with greater amplitude than sea surface temperatures (SSTs), leading to a land/sea warming contrast even in equilibrium. Similarly, the interannual variability of is larger than the covariant interannual SST variability, leading to a land/sea contrast in natural variability. This work investigates the land/sea contrast in natural variability based on global observations, coupled general circulation model simulations and idealised atmospheric general circulation model simulations with different SST forcings. The land/sea temperature contrast in interannual variability is found to exist in observations and models to a varying extent in global, tropical and extra-tropical bands. There is agreement between models and observations in the tropics but not the extra-tropics. Causality in the land-sea relationship is explored with modelling experiments forced with prescribed SSTs, where an amplification of the imposed SST variability is seen over land. The amplification of to tropical SST anomalies is due to the enhanced upper level atmospheric warming that corresponds with tropical moist convection over oceans leading to upper level temperature variations that are larger in amplitude than the source SST anomalies. This mechanism is similar to that proposed for explaining the equilibrium global warming land/sea warming contrast. The link of the to the dominant mode of tropical and global interannual climate variability, the El Niño Southern Oscillation (ENSO), is found to be an indirect and delayed connection. ENSO SST variability affects the oceans outside the tropical Pacific, which in turn leads to a further, amplified and delayed response of.

  15. A Robust Response of Precipitation to Global Warming from CMIP5 Models

    NASA Technical Reports Server (NTRS)

    Lau, K. -M.; Wu, H. -T.; Kim, K. -M.

    2012-01-01

    How precipitation responds to global warming is a major concern to society and a challenge to climate change research. Based on analyses of rainfall probability distribution functions of 14 state-of-the-art climate models, we find a robust, canonical global rainfall response to a triple CO2 warming scenario, featuring 100 250% more heavy rain, 5-10% less moderate rain, and 10-15% more very light or no-rain events. Regionally, a majority of the models project a consistent response with more heavy rain events over climatologically wet regions of the deep tropics, and more dry events over subtropical and tropical land areas. Results suggest that increased CO2 emissions induce basic structural changes in global rain systems, increasing risks of severe floods and droughts in preferred geographic locations worldwide.

  16. The role of atmospheric nuclear explosions on the stagnation of global warming in the mid 20th century

    NASA Astrophysics Data System (ADS)

    Fujii, Yoshiaki

    2011-04-01

    This study suggests that the cause of the stagnation in global warming in the mid 20th century was the atmospheric nuclear explosions detonated between 1945 and 1980. The estimated GST drop due to fine dust from the actual atmospheric nuclear explosions based on the published simulation results by other researchers (a single column model and Atmosphere-Ocean General Circulation Model) has served to explain the stagnation in global warming. Atmospheric nuclear explosions can be regarded as full-scale in situ tests for nuclear winter. The non-negligible amount of GST drop from the actual atmospheric explosions suggests that nuclear winter is not just a theory but has actually occurred, albeit on a small scale. The accuracy of the simulations of GST by IPCC would also be improved significantly by introducing the influence of fine dust from the actual atmospheric nuclear explosions into their climate models; thus, global warming behavior could be more accurately predicted.

  17. Identifying sensitive ranges in global warming precipitation change dependence on convective parameters

    DOE PAGES

    Bernstein, Diana N.; Neelin, J. David

    2016-04-28

    A branch-run perturbed-physics ensemble in the Community Earth System Model estimates impacts of parameters in the deep convection scheme on current hydroclimate and on end-of-century precipitation change projections under global warming. Regional precipitation change patterns prove highly sensitive to these parameters, especially in the tropics with local changes exceeding 3mm/d, comparable to the magnitude of the predicted change and to differences in global warming predictions among the Coupled Model Intercomparison Project phase 5 models. This sensitivity is distributed nonlinearly across the feasible parameter range, notably in the low-entrainment range of the parameter for turbulent entrainment in the deep convection scheme.more » This suggests that a useful target for parameter sensitivity studies is to identify such disproportionately sensitive dangerous ranges. Here, the low-entrainment range is used to illustrate the reduction in global warming regional precipitation sensitivity that could occur if this dangerous range can be excluded based on evidence from current climate.« less

  18. Identifying sensitive ranges in global warming precipitation change dependence on convective parameters

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bernstein, Diana N.; Neelin, J. David

    A branch-run perturbed-physics ensemble in the Community Earth System Model estimates impacts of parameters in the deep convection scheme on current hydroclimate and on end-of-century precipitation change projections under global warming. Regional precipitation change patterns prove highly sensitive to these parameters, especially in the tropics with local changes exceeding 3mm/d, comparable to the magnitude of the predicted change and to differences in global warming predictions among the Coupled Model Intercomparison Project phase 5 models. This sensitivity is distributed nonlinearly across the feasible parameter range, notably in the low-entrainment range of the parameter for turbulent entrainment in the deep convection scheme.more » This suggests that a useful target for parameter sensitivity studies is to identify such disproportionately sensitive dangerous ranges. Here, the low-entrainment range is used to illustrate the reduction in global warming regional precipitation sensitivity that could occur if this dangerous range can be excluded based on evidence from current climate.« less

  19. The Effectiveness of learning materials based on multiple intelligence on the understanding of global warming

    NASA Astrophysics Data System (ADS)

    Liliawati, W.; Purwanto; Zulfikar, A.; Kamal, R. N.

    2018-05-01

    This study aims to examine the effectiveness of the use of teaching materials based on multiple intelligences on the understanding of high school students’ material on the theme of global warming. The research method used is static-group pretest-posttest design. Participants of the study were 60 high school students of XI class in one of the high schools in Bandung. Participants were divided into two classes of 30 students each for the experimental class and control class. The experimental class uses compound-based teaching materials while the experimental class does not use a compound intelligence-based teaching material. The instrument used is a test of understanding of the concept of global warming with multiple choices form amounted to 15 questions and 5 essay items. The test is given before and after it is applied to both classes. Data analysis using N-gain and effect size. The results obtained that the N-gain for both classes is in the medium category and the effectiveness of the use of teaching materials based on the results of effect-size test results obtained in the high category.

  20. Global Warming: Its Implications for U.S. National Security Policy

    DTIC Science & Technology

    2009-03-19

    The approach to this topic will be to look at the science behind anthropogenic global warming . Is man largely responsible for causing global warming due...paper will then investigate the nexus between global warming and U.S. national security policy. It will address the challenges facing U.S. leaders and...policy makers as they tackle the issue of global warming and its implications for U.S. policy. Finally it will conclude with recommendations for those

  1. Effects of global warming on ancient mammalian communities and their environments.

    PubMed

    DeSantis, Larisa R G; Feranec, Robert S; MacFadden, Bruce J

    2009-06-03

    Current global warming affects the composition and dynamics of mammalian communities and can increase extinction risk; however, long-term effects of warming on mammals are less understood. Dietary reconstructions inferred from stable isotopes of fossil herbivorous mammalian tooth enamel document environmental and climatic changes in ancient ecosystems, including C(3)/C(4) transitions and relative seasonality. Here, we use stable carbon and oxygen isotopes preserved in fossil teeth to document the magnitude of mammalian dietary shifts and ancient floral change during geologically documented glacial and interglacial periods during the Pliocene (approximately 1.9 million years ago) and Pleistocene (approximately 1.3 million years ago) in Florida. Stable isotope data demonstrate increased aridity, increased C(4) grass consumption, inter-faunal dietary partitioning, increased isotopic niche breadth of mixed feeders, niche partitioning of phylogenetically similar taxa, and differences in relative seasonality with warming. Our data show that global warming resulted in dramatic vegetation and dietary changes even at lower latitudes (approximately 28 degrees N). Our results also question the use of models that predict the long term decline and extinction of species based on the assumption that niches are conserved over time. These findings have immediate relevance to clarifying possible biotic responses to current global warming in modern ecosystems.

  2. 78 FR 20632 - Mandatory Reporting of Greenhouse Gases: Notice of Data Availability Regarding Global Warming...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-05

    ... Greenhouse Gases: Notice of Data Availability Regarding Global Warming Potential Values for Certain... the availability of estimated global warming potentials, as well as data and analysis submitted in... global warming potentials and the data and analysis supporting them. We are also requesting comment on...

  3. Who decides who has won the bet? Total and Anthropogenic Warming Indices

    NASA Astrophysics Data System (ADS)

    Haustein, K.; Allen, M. R.; Otto, F. E. L.; Schmidt, A.; Frame, D. J.; Forster, P.; Matthews, D.

    2016-12-01

    An extension of the idea of betting markets as a means of revealing opinions about future climate are climate policies indexed to geophysical indicators: for example, to ensure net zero global carbon dioxide emissions by the time anthropogenic warming reaches 1.5 degrees above pre-industrial, given about 1 degree of warming already, emissions must fall, on average, by 20% of their current value for every tenth of a degree of anthropogenic warming from now on. In principle, policies conditioned on some measure of attributable warming are robust to uncertainty in the global climate response: the risk of a higher or lower response than expected is borne by those affected by climate change mitigation policy rather than those affected by climate change impacts, as is the case with emission targets for specific years based on "current understanding" of the response. To implement any indexed policy, or to agree payout terms for any bet on future climate, requires consensus on the definition of the index: how is it calculated, and who is responsible for releasing it? The global mean surface temperature of the current decade relative to pre-industrial may vary by 0.1 degree or more depending on precisely what is measured, what is defined as pre-industrial, and the treatment of regions with sparse data coverage in earlier years. Indices defined using different conventions, however, are all expected to evolve very similarly over the coming decades, so agreeing on a conservative, traceable index such as HadCRUT is more important than debating the "true" global temperature. A more important question is whether indexed policies and betting markets should focus on total warming, including natural and anthropogenic drivers and internal variability, or an Anthropogenic Warming Index (AWI) representing an unbiased estimate of warming attributable to human influence to date. We propose a simple AWI based solely on observed temperatures and global natural and anthropogenic forcing estimates. It is much less volatile than total observed warming, which might discourage participation in betting markets, but would be a substantial advantage for indexed policies. It is also much more relevant to the UNFCCC goal of limiting anthropogenic warming to "well below" 2 degrees. The 2016 value for the AWI will be announced at AGU.

  4. The asymmetric impact of global warming on US drought types and distributions in a large ensemble of 97 hydro-climatic simulations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huang, Shengzhi; Leng, Guoyong; Huang, Qiang

    Projection of future drought is often involved large uncertainties from climate models, emission scenarios as well as drought definitions. In this study, we investigate changes in future droughts in the conterminous United States based on 97 1/8 degree hydro-climate model projections. Instead of focusing on a specific drought type, we investigate changes in meteorological, agricultural, and hydrological drought as well as the concurrences. Agricultural and hydrological droughts are projected to become more frequent with increase in global mean temperature, while less meteorological drought is expected. Changes in drought intensity scale linearly with global temperature rises under RCP8.5 scenario, indicating themore » potential feasibility to derive future drought severity given certain global warming amount under this scenario. Changing pattern of concurrent droughts generally follows that of agricultural and hydrological droughts. Under the 1.5 °C warming target as advocated in recent Paris agreement, several hot spot regions experiencing highest droughts are identified. Extreme droughts show similar patterns but with much larger magnitude than the climatology. In conclusion, this study highlights the distinct response of droughts of various types to global warming and the asymmetric impact of global warming on drought distribution resulting in a much stronger influence on extreme drought than on mean drought.« less

  5. The asymmetric impact of global warming on US drought types and distributions in a large ensemble of 97 hydro-climatic simulations

    DOE PAGES

    Huang, Shengzhi; Leng, Guoyong; Huang, Qiang; ...

    2017-07-19

    Projection of future drought is often involved large uncertainties from climate models, emission scenarios as well as drought definitions. In this study, we investigate changes in future droughts in the conterminous United States based on 97 1/8 degree hydro-climate model projections. Instead of focusing on a specific drought type, we investigate changes in meteorological, agricultural, and hydrological drought as well as the concurrences. Agricultural and hydrological droughts are projected to become more frequent with increase in global mean temperature, while less meteorological drought is expected. Changes in drought intensity scale linearly with global temperature rises under RCP8.5 scenario, indicating themore » potential feasibility to derive future drought severity given certain global warming amount under this scenario. Changing pattern of concurrent droughts generally follows that of agricultural and hydrological droughts. Under the 1.5 °C warming target as advocated in recent Paris agreement, several hot spot regions experiencing highest droughts are identified. Extreme droughts show similar patterns but with much larger magnitude than the climatology. In conclusion, this study highlights the distinct response of droughts of various types to global warming and the asymmetric impact of global warming on drought distribution resulting in a much stronger influence on extreme drought than on mean drought.« less

  6. Past and future warming of a deep European lake (Lake Lugano): What are the climatic drivers?

    USGS Publications Warehouse

    Lepori, Fabio; Roberts, James J.

    2015-01-01

    We used four decades (1972–2013) of temperature data from Lake Lugano, Switzerland and Italy, to address the hypotheses that: [i] the lake has been warming; [ii] part of the warming reflects global trends and is independent from climatic oscillations and [iii] the lake will continue to warm until the end of the 21st century. During the time spanned by our data, the surface waters of the lake (0–5 m) warmed at rates of 0.2–0.9 °C per decade, depending on season. The temperature of the deep waters (50-m bottom) displayed a rising trend in a meromictic basin of the lake and a sawtooth pattern in the other basin, which is holomictic. Long-term variation in surfacewater temperature correlated to global warming and multidecadal variation in two climatic oscillations, the Atlantic Multidecadal Oscillation (AMO) and the East Atlantic Pattern (EA).However, we did not detect an influence of the EA on the lake's temperature (as separate from the effect of global warming). Moreover, the effect of the AMO, estimated to a maximum of +1 °C, was not sufficient to explain the observed temperature increase (+2–3 °C in summer). Based on regional climate projections, we predicted that the lake will continue to warm at least until the end of the 21st century. Our results strongly suggest that the warming of Lake Lugano is tied to globalclimate change. To sustain current ecosystem conditions in Lake Lugano, we suggest that manage- ment plans that curtail eutrophication and (or) mitigation of global warming be pursued.

  7. Delayed warming hiatus over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    An, Wenling; Hou, Shugui; Hu, Yongyun; Wu, Shuangye

    2017-03-01

    A reduction in the warming rate for the global surface temperature since the late 1990s has attracted much attention and caused a great deal of controversy. During the same time period, however, most previous studies have reported enhanced warming over the Tibetan Plateau (TP). In this study we further examined the temperature trend of the TP and surrounding areas based on the homogenized temperature records for the period 1980-2014, we found that for the TP regions lower than 4000 m the warming rate has started to slow down since the late 1990s, a similar pattern consistent with the whole China and the global temperature trend. However, for the TP regions higher than 4000 m, this reduction in warming rate did not occur until the mid-2000s. This delayed warming hiatus could be related to changes in regional radiative, energy, and land surface processes in recent years.

  8. Communicating the Science of Global Warming — the Role of Astronomers

    NASA Astrophysics Data System (ADS)

    Bennett, Jeffrey

    2018-06-01

    Global Warming is one of the most important and issues of our times, yet it is widely misunderstood among the general public (and politicians!). The American Astronomical Society has already joined many other scientific organizations in advocating for action on global warming (by supporting the AGU statement on global warming), but we as astronomers can do much more. The high public profile of astronomy gives us a unique platform — and credibility as scientists — for doing our part to educate the public about the underlying science of global warming. And while astronomers are not climate scientists, we use the same basic physics, and many aspects of global warming science come directly from astronomy, including the ways in which we measure the heat-absorbing potential of carbon dioxide and the hard evidence of greenhouse warming provided by studies of Venus. In this session, I will briefly introduce a few methods for communicating about global warming that I believe you will find effective in your own education efforts.

  9. CO2, the greenhouse effect and global warming: from the pioneering work of Arrhenius and Callendar to today's Earth System Models.

    PubMed

    Anderson, Thomas R; Hawkins, Ed; Jones, Philip D

    2016-09-01

    Climate warming during the course of the twenty-first century is projected to be between 1.0 and 3.7°C depending on future greenhouse gas emissions, based on the ensemble-mean results of state-of-the-art Earth System Models (ESMs). Just how reliable are these projections, given the complexity of the climate system? The early history of climate research provides insight into the understanding and science needed to answer this question. We examine the mathematical quantifications of planetary energy budget developed by Svante Arrhenius (1859-1927) and Guy Stewart Callendar (1898-1964) and construct an empirical approximation of the latter, which we show to be successful at retrospectively predicting global warming over the course of the twentieth century. This approximation is then used to calculate warming in response to increasing atmospheric greenhouse gases during the twenty-first century, projecting a temperature increase at the lower bound of results generated by an ensemble of ESMs (as presented in the latest assessment by the Intergovernmental Panel on Climate Change). This result can be interpreted as follows. The climate system is conceptually complex but has at its heart the physical laws of radiative transfer. This basic, or "core" physics is relatively straightforward to compute mathematically, as exemplified by Callendar's calculations, leading to quantitatively robust projections of baseline warming. The ESMs include not only the physical core but also climate feedbacks that introduce uncertainty into the projections in terms of magnitude, but not sign: positive (amplification of warming). As such, the projections of end-of-century global warming by ESMs are fundamentally trustworthy: quantitatively robust baseline warming based on the well-understood physics of radiative transfer, with extra warming due to climate feedbacks. These projections thus provide a compelling case that global climate will continue to undergo significant warming in response to ongoing emissions of CO 2 and other greenhouse gases to the atmosphere. Copyright © 2016 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Climate Change of 4°C GlobalWarming above Pre-industrial Levels

    NASA Astrophysics Data System (ADS)

    Wang, Xiaoxin; Jiang, Dabang; Lang, Xianmei

    2018-07-01

    Using a set of numerical experiments from 39 CMIP5 climate models, we project the emergence time for 4°C global warming with respect to pre-industrial levels and associated climate changes under the RCP8.5 greenhouse gas concentration scenario. Results show that, according to the 39 models, the median year in which 4°C global warming will occur is 2084. Based on the median results of models that project a 4°C global warming by 2100, land areas will generally exhibit stronger warming than the oceans annually and seasonally, and the strongest enhancement occurs in the Arctic, with the exception of the summer season. Change signals for temperature go outside its natural internal variabilities globally, and the signal-tonoise ratio averages 9.6 for the annual mean and ranges from 6.3 to 7.2 for the seasonal mean over the globe, with the greatest values appearing at low latitudes because of low noise. Decreased precipitation generally occurs in the subtropics, whilst increased precipitation mainly appears at high latitudes. The precipitation changes in most of the high latitudes are greater than the background variability, and the global mean signal-to-noise ratio is 0.5 and ranges from 0.2 to 0.4 for the annual and seasonal means, respectively. Attention should be paid to limiting global warming to 1.5°C, in which case temperature and precipitation will experience a far more moderate change than the natural internal variability. Large inter-model disagreement appears at high latitudes for temperature changes and at mid and low latitudes for precipitation changes. Overall, the intermodel consistency is better for temperature than for precipitation.

  11. Climate change, global warming and coral reefs: modelling the effects of temperature.

    PubMed

    Crabbe, M James C

    2008-10-01

    Climate change and global warming have severe consequences for the survival of scleractinian (reef-building) corals and their associated ecosystems. This review summarizes recent literature on the influence of temperature on coral growth, coral bleaching, and modelling the effects of high temperature on corals. Satellite-based sea surface temperature (SST) and coral bleaching information available on the internet is an important tool in monitoring and modelling coral responses to temperature. Within the narrow temperature range for coral growth, corals can respond to rate of temperature change as well as to temperature per se. We need to continue to develop models of how non-steady-state processes such as global warming and climate change will affect coral reefs.

  12. Changes in Extremely Hot Summers over the Global Land Area under Various Warming Targets.

    PubMed

    Wang, Lei; Huang, Jianbin; Luo, Yong; Yao, Yao; Zhao, Zongci

    2015-01-01

    Summer temperature extremes over the global land area were investigated by comparing 26 models of the fifth phase of the Coupled Model Intercomparison Project (CMIP5) with observations from the Goddard Institute for Space Studies (GISS) and the Climate Research Unit (CRU). Monthly data of the observations and models were averaged for each season, and statistics were calculated for individual models before averaging them to obtain ensemble means. The summers with temperature anomalies (relative to 1951-1980) exceeding 3σ (σ is based on the local internal variability) are defined as "extremely hot". The models well reproduced the statistical characteristics evolution, and partly captured the spatial distributions of historical summer temperature extremes. If the global mean temperature increases 2°C relative to the pre-industrial level, "extremely hot" summers are projected to occur over nearly 40% of the land area (multi-model ensemble mean projection). Summers that exceed 5σ warming are projected to occur over approximately 10% of the global land area, which were rarely observed during the reference period. Scenarios reaching warming levels of 3°C to 5°C were also analyzed. After exceeding the 5°C warming target, "extremely hot" summers are projected to occur throughout the entire global land area, and summers that exceed 5σ warming would become common over 70% of the land area. In addition, the areas affected by "extremely hot" summers are expected to rapidly expand by more than 25%/°C as the global mean temperature increases by up to 3°C before slowing to less than 16%/°C as the temperature continues to increase by more than 3°C. The area that experiences summers with warming of 5σ or more above the warming target of 2°C is likely to maintain rapid expansion of greater than 17%/°C. To reduce the impacts and damage from severely hot summers, the global mean temperature increase should remain low.

  13. 40 CFR 52.223 - Approval status.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from paragraph (b)(4)(ii)(A) of... associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming...

  14. 40 CFR 52.1634 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gases in the pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from paragraph (b)(4... associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming...

  15. 40 CFR 52.223 - Approval status.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from paragraph (b)(4)(ii)(A) of... associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming...

  16. 40 CFR 52.223 - Approval status.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from paragraph (b)(4)(ii)(A) of... associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming...

  17. 40 CFR 52.223 - Approval status.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from paragraph (b)(4)(ii)(A) of... associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming...

  18. Apocalypse soon? Dire messages reduce belief in global warming by contradicting just-world beliefs.

    PubMed

    Feinberg, Matthew; Willer, Robb

    2011-01-01

    Though scientific evidence for the existence of global warming continues to mount, in the United States and other countries belief in global warming has stagnated or even decreased in recent years. One possible explanation for this pattern is that information about the potentially dire consequences of global warming threatens deeply held beliefs that the world is just, orderly, and stable. Individuals overcome this threat by denying or discounting the existence of global warming, and this process ultimately results in decreased willingness to counteract climate change. Two experiments provide support for this explanation of the dynamics of belief in global warming, suggesting that less dire messaging could be more effective for promoting public understanding of climate-change research.

  19. Competition between global warming and an abrupt collapse of the AMOC in Earth's energy imbalance.

    PubMed

    Drijfhout, Sybren

    2015-10-06

    A collapse of the Atlantic Meridional Overturning Circulation (AMOC) leads to global cooling through fast feedbacks that selectively amplify the response in the Northern Hemisphere (NH). How such cooling competes with global warming has long been a topic for speculation, but was never addressed using a climate model. Here it is shown that global cooling due to a collapsing AMOC obliterates global warming for a period of 15-20 years. Thereafter, the global mean temperature trend is reversed and becomes similar to a simulation without an AMOC collapse. The resulting surface warming hiatus lasts for 40-50 years. Global warming and AMOC-induced NH cooling are governed by similar feedbacks, giving rise to a global net radiative imbalance of similar sign, although the former is associated with surface warming, the latter with cooling. Their footprints in outgoing longwave and absorbed shortwave radiation are very distinct, making attribution possible.

  20. Global patterns in lake ecosystem responses to warming based on the temperature dependence of metabolism.

    PubMed

    Kraemer, Benjamin M; Chandra, Sudeep; Dell, Anthony I; Dix, Margaret; Kuusisto, Esko; Livingstone, David M; Schladow, S Geoffrey; Silow, Eugene; Sitoki, Lewis M; Tamatamah, Rashid; McIntyre, Peter B

    2017-05-01

    Climate warming is expected to have large effects on ecosystems in part due to the temperature dependence of metabolism. The responses of metabolic rates to climate warming may be greatest in the tropics and at low elevations because mean temperatures are warmer there and metabolic rates respond exponentially to temperature (with exponents >1). However, if warming rates are sufficiently fast in higher latitude/elevation lakes, metabolic rate responses to warming may still be greater there even though metabolic rates respond exponentially to temperature. Thus, a wide range of global patterns in the magnitude of metabolic rate responses to warming could emerge depending on global patterns of temperature and warming rates. Here we use the Boltzmann-Arrhenius equation, published estimates of activation energy, and time series of temperature from 271 lakes to estimate long-term (1970-2010) changes in 64 metabolic processes in lakes. The estimated responses of metabolic processes to warming were usually greatest in tropical/low-elevation lakes even though surface temperatures in higher latitude/elevation lakes are warming faster. However, when the thermal sensitivity of a metabolic process is especially weak, higher latitude/elevation lakes had larger responses to warming in parallel with warming rates. Our results show that the sensitivity of a given response to temperature (as described by its activation energy) provides a simple heuristic for predicting whether tropical/low-elevation lakes will have larger or smaller metabolic responses to warming than higher latitude/elevation lakes. Overall, we conclude that the direct metabolic consequences of lake warming are likely to be felt most strongly at low latitudes and low elevations where metabolism-linked ecosystem services may be most affected. © 2016 John Wiley & Sons Ltd.

  1. Role of Stratospheric Water Vapor in Global Warming from GCM Simulations Constrained by MLS Observation

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Stek, P. C.; Su, H.; Jiang, J. H.; Livesey, N. J.; Santee, M. L.

    2014-12-01

    Over the past century, global average surface temperature has warmed by about 0.16°C/decade, largely due to anthropogenic increases in well-mixed greenhouse gases. However, the trend in global surface temperatures has been nearly flat since 2000, raising a question regarding the exploration of the drivers of climate change. Water vapor is a strong greenhouse gas in the atmosphere. Previous studies suggested that the sudden decrease of stratospheric water vapor (SWV) around 2000 may have contributed to the stall of global warming. Since 2004, the SWV observed by Microwave Limb Sounder (MLS) on Aura satellite has shown a slow recovery. The role of recent SWV variations in global warming has not been quantified. We employ a coupled atmosphere-ocean climate model, the NCAR CESM, to address this issue. It is found that the CESM underestimates the stratospheric water vapor by about 1 ppmv due to limited representations of the stratospheric dynamic and chemical processes important for water vapor variabilities. By nudging the modeled SWV to the MLS observation, we find that increasing SWV by 1 ppmv produces a robust surface warming about 0.2°C in global-mean when the model reaches equilibrium. Conversely, the sudden drop of SWV from 2000 to 2004 would cause a surface cooling about -0.08°C in global-mean. On the other hand, imposing the observed linear trend of SWV based on the 10-year observation of MLS in the CESM yields a rather slow surface warming, about 0.04°C/decade. Our model experiments suggest that SWV contributes positively to the global surface temperature variation, although it may not be the dominant factor that drives the recent global warming hiatus. Additional sensitivity experiments show that the impact of SWV on surface climate is mostly governed by the SWV amount at 100 hPa in the tropics. Furthermore, the atmospheric model simulations driven by observed sea surface temperature (SST) show that the inter-annual variation of SWV follows that of SST, suggesting a close coupling between surface temperature and SWV.

  2. Cumulative carbon emissions budgets consistent with 1.5 °C global warming

    NASA Astrophysics Data System (ADS)

    Tokarska, Katarzyna B.; Gillett, Nathan P.

    2018-04-01

    The Paris Agreement1 commits ratifying parties to pursue efforts to limit the global temperature increase to 1.5 °C relative to pre-industrial levels. Carbon budgets2-5 consistent with remaining below 1.5 °C warming, reported in the IPCC Fifth Assessment Report (AR5)2,6,8, are directly based on Earth system model (Coupled Model Intercomparison Project Phase 5)7 responses, which, on average, warm more than observations in response to historical CO2 emissions and other forcings8,9. These models indicate a median remaining budget of 55 PgC (ref. 10, base period: year 1870) left to emit from January 2016, the equivalent to approximately five years of emissions at the 2015 rate11,12. Here we calculate warming and carbon budgets relative to the decade 2006-2015, which eliminates model-observation differences in the climate-carbon response over the historical period9, and increases the median remaining carbon budget to 208 PgC (33-66% range of 130-255 PgC) from January 2016 (with mean warming of 0.89 °C for 2006-2015 relative to 1861-188013-18). There is little sensitivity to the observational data set used to infer warming that has occurred, and no significant dependence on the choice of emissions scenario. Thus, although limiting median projected global warming to below 1.5 °C is undoubtedly challenging19-21, our results indicate it is not impossible, as might be inferred from the IPCC AR5 carbon budgets2,8.

  3. Local warming: daily temperature change influences belief in global warming.

    PubMed

    Li, Ye; Johnson, Eric J; Zaval, Lisa

    2011-04-01

    Although people are quite aware of global warming, their beliefs about it may be malleable; specifically, their beliefs may be constructed in response to questions about global warming. Beliefs may reflect irrelevant but salient information, such as the current day's temperature. This replacement of a more complex, less easily accessed judgment with a simple, more accessible one is known as attribute substitution. In three studies, we asked residents of the United States and Australia to report their opinions about global warming and whether the temperature on the day of the study was warmer or cooler than usual. Respondents who thought that day was warmer than usual believed more in and had greater concern about global warming than did respondents who thought that day was colder than usual. They also donated more money to a global-warming charity if they thought that day seemed warmer than usual. We used instrumental variable regression to rule out some alternative explanations.

  4. America’s Security Role in a Changing World: A Global Strategic Assessment

    DTIC Science & Technology

    2009-04-01

    actually three interrelated crises: a global warming crisis, fuel crisis, and diplomatic crisis. Global warming threatens to create an environmental...which is a diplomatic crisis, particularly for the United States. Global warming is already being used as a dip- lomatic wedge issue against America...mitigating or stopping transnational threats 4 INSS Proceedings April 7–8, 2009 actors, and effects of global warming . A result of these increasing

  5. Nonlinear climate sensitivity and its implications for future greenhouse warming.

    PubMed

    Friedrich, Tobias; Timmermann, Axel; Tigchelaar, Michelle; Elison Timm, Oliver; Ganopolski, Andrey

    2016-11-01

    Global mean surface temperatures are rising in response to anthropogenic greenhouse gas emissions. The magnitude of this warming at equilibrium for a given radiative forcing-referred to as specific equilibrium climate sensitivity ( S )-is still subject to uncertainties. We estimate global mean temperature variations and S using a 784,000-year-long field reconstruction of sea surface temperatures and a transient paleoclimate model simulation. Our results reveal that S is strongly dependent on the climate background state, with significantly larger values attained during warm phases. Using the Representative Concentration Pathway 8.5 for future greenhouse radiative forcing, we find that the range of paleo-based estimates of Earth's future warming by 2100 CE overlaps with the upper range of climate simulations conducted as part of the Coupled Model Intercomparison Project Phase 5 (CMIP5). Furthermore, we find that within the 21st century, global mean temperatures will very likely exceed maximum levels reconstructed for the last 784,000 years. On the basis of temperature data from eight glacial cycles, our results provide an independent validation of the magnitude of current CMIP5 warming projections.

  6. Nonlinear climate sensitivity and its implications for future greenhouse warming

    PubMed Central

    Friedrich, Tobias; Timmermann, Axel; Tigchelaar, Michelle; Elison Timm, Oliver; Ganopolski, Andrey

    2016-01-01

    Global mean surface temperatures are rising in response to anthropogenic greenhouse gas emissions. The magnitude of this warming at equilibrium for a given radiative forcing—referred to as specific equilibrium climate sensitivity (S)—is still subject to uncertainties. We estimate global mean temperature variations and S using a 784,000-year-long field reconstruction of sea surface temperatures and a transient paleoclimate model simulation. Our results reveal that S is strongly dependent on the climate background state, with significantly larger values attained during warm phases. Using the Representative Concentration Pathway 8.5 for future greenhouse radiative forcing, we find that the range of paleo-based estimates of Earth’s future warming by 2100 CE overlaps with the upper range of climate simulations conducted as part of the Coupled Model Intercomparison Project Phase 5 (CMIP5). Furthermore, we find that within the 21st century, global mean temperatures will very likely exceed maximum levels reconstructed for the last 784,000 years. On the basis of temperature data from eight glacial cycles, our results provide an independent validation of the magnitude of current CMIP5 warming projections. PMID:28861462

  7. An extreme climatic event alters marine ecosystem structure in a global biodiversity hotspot

    NASA Astrophysics Data System (ADS)

    Wernberg, Thomas; Smale, Dan A.; Tuya, Fernando; Thomsen, Mads S.; Langlois, Timothy J.; de Bettignies, Thibaut; Bennett, Scott; Rousseaux, Cecile S.

    2013-01-01

    Extreme climatic events, such as heat waves, are predicted to increase in frequency and magnitude as a consequence of global warming but their ecological effects are poorly understood, particularly in marine ecosystems. In early 2011, the marine ecosystems along the west coast of Australia--a global hotspot of biodiversity and endemism--experienced the highest-magnitude warming event on record. Sea temperatures soared to unprecedented levels and warming anomalies of 2-4°C persisted for more than ten weeks along >2,000km of coastline. We show that biodiversity patterns of temperate seaweeds, sessile invertebrates and demersal fish were significantly different after the warming event, which led to a reduction in the abundance of habitat-forming seaweeds and a subsequent shift in community structure towards a depauperate state and a tropicalization of fish communities. We conclude that extreme climatic events are key drivers of biodiversity patterns and that the frequency and intensity of such episodes have major implications for predictive models of species distribution and ecosystem structure, which are largely based on gradual warming trends.

  8. How Dry is the Tropical Free Troposphere? Implications for Global Warming Theory

    NASA Technical Reports Server (NTRS)

    Spencer, Roy W.; Braswell, William D.

    1997-01-01

    The humidity of the free troposphere is being increasingly scrutinized in climate research due to its central role in global warming theory through positive water vapor feedback. This feedback is the primary source of global warming in general circulation models (GCMs). Because the loss of infrared energy to space increases nonlinearly with decreases in relative humidity, the vast dry zones in the Tropics are of particular interest. These dry zones are nearly devoid of radiosonde stations, and most of those stations have, until recently, ignored the low humidity information from the sondes. This results in substantial uncertainty in GCM tuning and validation based on sonde data. While satellite infrared radiometers are now beginning to reveal some information about the aridity of the tropical free troposphere, the authors show that the latest microwave humidity sounder data suggests even drier conditions than have been previously reported. This underscores the importance of understanding how these low humidity levels are controlled in order to tune and validate GCMs, and to predict the magnitude of water vapor feedback and thus the magnitude of global warming.

  9. Global Warming: Understanding and Teaching the Forecast.

    ERIC Educational Resources Information Center

    Andrews, Bill

    1995-01-01

    A resource for teaching about the consequences of global warming. Discusses feedback from the temperature increase, changes in the global precipitation pattern, effects on agriculture, weather extremes, effects on forests, effects on biodiversity, effects on sea levels, and actions which will help the global community cope with global warming. (LZ)

  10. Trends in global warming and evolution of nucleoproteins from influenza A viruses since 1918.

    PubMed

    Yan, S; Wu, G

    2010-12-01

    Global warming affects not only the environment where we live, but also all living species to different degree, including influenza A virus. We recently conducted several studies on the possible impact of global warming on the protein families of influenza A virus. More studies are needed in order to have a full picture of the impact of global warming on living organisms, especially its effect on viruses. In this study, we correlate trends in global warming with evolution of the nucleoprotein from influenza A virus and then analyse the trends with respect to northern/southern hemispheres, virus subtypes and sampling species. The results suggest that global warming may have an impact on the evolution of the nucleoprotein from influenza A virus. © 2010 Blackwell Verlag GmbH.

  11. Does the projected pathway to global warming targets matter?

    NASA Astrophysics Data System (ADS)

    Bärring, Lars; Strandberg, Gustav

    2018-02-01

    Since the ‘Paris agreement’ in 2015 there has been much focus on what a +1.5 °C or +2 °C warmer world would look like. Since the focus lies on policy relevant global warming targets, or specific warming levels (SWLs), rather than a specific point in time, projections are pooled together to form SWL ensembles based on the target temperature rather than emission scenario. This study uses an ensemble of CMIP5 global model projections to analyse how well SWL ensembles represent the stabilized climate of global warming targets. The results show that the SWL ensembles exhibit significant trends that reflect the transient nature of the RCP scenarios. These trends have clear effect on the timing and clustering of monthly cold and hot extremes, even though the effect on the temperature of the extreme months is less visible. In many regions there is a link between choice of RCP scenario used in the SWL ensemble and climate change signal in the highest monthly temperatures. In other regions there is no such clear-cut link. From this we conclude that comprehensive analyses of what prospects the different global warming targets bring about will require stabilization scenarios. Awaiting such targeted scenarios we suggest that prudent use of SWL scenarios, taking their characteristics and limitations into account, may serve as reasonable proxies in many situations.

  12. Siberian gas venting and the end-Permian environmental crisis

    NASA Astrophysics Data System (ADS)

    Svensen, Henrik; Planke, Sverre; Polozov, Alexander G.; Schmidbauer, Norbert; Corfu, Fernando; Podladchikov, Yuri Y.; Jamtveit, Bjørn

    2009-01-01

    The end of the Permian period is marked by global warming and the biggest known mass extinction on Earth. The crisis is commonly attributed to the formation of the Siberian Traps Large Igneous Province although the causal mechanisms remain disputed. We show that heating of Tunguska Basin sediments by the ascending magma played a key role in triggering the crisis. Our conclusions are based on extensive field work in Siberia in 2004 and 2006. Heating of organic-rich shale and petroleum bearing evaporites around sill intrusions led to greenhouse gas and halocarbon generation in sufficient volumes to cause global warming and atmospheric ozone depletion. Basin scale gas production potential estimates show that metamorphism of organic matter and petroleum could have generated > 100,000 Gt CO 2. The gases were released to the end-Permian atmosphere partly through spectacular pipe structures with kilometre-sized craters. Dating of a sill intrusion by the U-Pb method shows that the gas release occurred at 252.0 ± 0.4 million years ago, overlapping in time with the end-Permian global warming and mass extinction. Heating experiments to 275 °C on petroleum-bearing rock salt from Siberia suggests that methyl chloride and methyl bromide were significant components of the erupted gases. The results indicate that global warming and ozone depletion were the two main drivers for the end-Permian environmental crisis. We demonstrate that the composition of the heated sedimentary rocks below the flood basalts is the most important factor in controlling whether a Large Igneous Provinces causes an environmental crisis or not. We propose that a similar mechanism could have been responsible for the Triassic-Jurassic (~ 200 Ma) global warming and mass extinction, based on the presence of thick sill intrusions in the evaporite deposits of the Amazon Basin in Brazil.

  13. Siberian Gas Venting and the End-Permian Environmental Crisis

    NASA Astrophysics Data System (ADS)

    Planke, S.; Svensen, H.; Polozov, A. G.; Schmidbauer, N.; Corfu, F.; Podladchikov, Y. Y.; Jamtveit, B.

    2008-12-01

    The end of the Permian period is marked by global warming and the largest known mass extinction on Earth. The crisis is commonly attributed to the formation of the Siberian Traps Large Igneous Province although the causal mechanisms remain disputed. We show that heating of Tunguska Basin sediments by the ascending magma played a key role in triggering the crisis. Our conclusions are based on extensive field work in Siberia in 2004 and 2006. Heating of organic-rich shale and petroleum bearing evaporites led to greenhouse gas and halocarbon generation in sufficient volumes to cause global warming and atmospheric ozone depletion. Basin scale gas production potential estimates show that metamorphism of organic matter and petroleum could have generated >50,000 Gt CO2. The greenhouse gases were released to the end-Permian atmosphere partly through spectacular pipe structures with kilometre-sized craters. Dating of a sill intrusion by the U-Pb method shows that the gas release occurred 252.0 ± 0.4 million years ago, overlapping in time with the end-Permian global warming and mass extinction. Heating experiments to 275°C on petroleum-bearing rock salt from Siberia suggests that methyl chloride and methyl bromide were significant components of the erupted gases. The results suggest that global warming and ozone depletion were the two main drivers for the end-Permian environmental crisis. We demonstrate that the composition of the heated sedimentary rocks below the flood basalts is the most important factor in controlling whether a Large Igneous Provinces causes an environmental crisis or not. We propose that a similar mechanism could have been responsible for the Triassic-Jurassic (~200 Ma) global warming and mass extinction, based on the presence of thick sill intrusions in the evaporite deposits of the Amazon Basin in Brazil.

  14. The Change in Oceanic O2 Inventory Associated with Recent Global Warming

    NASA Technical Reports Server (NTRS)

    Keeling, Ralph; Garcia, Hernan

    2002-01-01

    Oceans general circulation models predict that global warming may cause a decrease in the oceanic O2 inventory and an associated O2 outgassing. An independent argument is presented here in support of this prediction based on observational evidence of the ocean's biogeochemical response to natural warming. On time scales from seasonal to centennial, natural O2 flux/heat flux ratios are shown to occur in a range of 2 to 10 nmol O2 per Joule of warming, with larger ratios typically occurring at higher latitudes and over longer time scales. The ratios are several times larger than would be expected solely from the effect of heating on the O2 solubility, indicating that most of the O2 exchange is biologically mediated through links between heating and stratification. The change in oceanic O2 inventory through the 1990's is estimated to be 0.3 - 0.4 x 10(exp 14) mol O2 per year based on scaling the observed anomalous long-term ocean warming by natural O2 flux/heating ratios and allowing for uncertainty due to decadal variability. Implications are discussed for carbon budgets based on observed changes in atmospheric O2/N2 ratio and based on observed changes in ocean dissolved inorganic carbon.

  15. Global warming's five Germanys: A typology of Germans' views on climate change and patterns of media use and information.

    PubMed

    Metag, Julia; Füchslin, Tobias; Schäfer, Mike S

    2017-05-01

    People's attitudes toward climate change differ, and these differences may correspond to distinct patterns of media use and information seeking. However, studies extending analyses of attitude types and their specific media diets to countries beyond the United States are lacking. We use a secondary analysis of survey data from Germany to identify attitudes toward climate change among the German public and specify those segments of the population based on their media use and information seeking. Similar to the Global Warming's Six Americas study, we find distinct attitudes (Global Warming's Five Germanys) that differ in climate change-related perceptions as well as in media use and communicative behavior. These findings can help tailor communication campaigns regarding climate change to specific audiences.

  16. A Fuzzy mathematical model to estimate the effects of global warming on the vitality of Laelia purpurata orchids.

    PubMed

    Putti, Fernando Ferrari; Filho, Luis Roberto Almeida Gabriel; Gabriel, Camila Pires Cremasco; Neto, Alfredo Bonini; Bonini, Carolina Dos Santos Batista; Rodrigues Dos Reis, André

    2017-06-01

    This study aimed to develop a fuzzy mathematical model to estimate the impacts of global warming on the vitality of Laelia purpurata growing in different Brazilian environmental conditions. In order to develop the mathematical model was considered as intrinsic factors the parameters: temperature, humidity and shade conditions to determine the vitality of plants. Fuzzy model results could accurately predict the optimal conditions for cultivation of Laelia purpurata in several sites of Brazil. Based on fuzzy model results, we found that higher temperatures and lacking of properly shading can reduce the vitality of orchids. Fuzzy mathematical model could precisely detect the effect of higher temperatures causing damages on vitality of plants as a consequence of global warming. Copyright © 2017 Elsevier Inc. All rights reserved.

  17. Population risk perceptions of global warming in Australia.

    PubMed

    Agho, Kingsley; Stevens, Garry; Taylor, Mel; Barr, Margo; Raphael, Beverley

    2010-11-01

    According to the World Health Organisation (WHO), global warming has the potential to dramatically disrupt some of life's essential requirements for health, water, air and food. Understanding how Australians perceive the risk of global warming is essential for climate change policy and planning. The aim of this study was to determine the prevalence of, and socio-demographic factors associated with, high levels of perceived likelihood that global warming would worsen, concern for self and family and reported behaviour changes. A module of questions on global warming was incorporated into the New South Wales Population Health Survey in the second quarter of 2007. This Computer Assisted Telephone Interview (CATI) was completed by a representative sample of 2004 adults. The weighted sample was comparable to the Australian population. Bivariate and multivariate statistical analyses were conducted to examine the socio-demographic and general health factors. Overall 62.1% perceived that global warming was likely to worsen; 56.3% were very or extremely concerned that they or their family would be directly affected by global warming; and 77.6% stated that they had made some level of change to the way they lived their lives, because of the possibility of global warming. After controlling for confounding factors, multivariate analyses revealed that those with high levels of psychological distress were 2.17 (Adjusted Odds Ratio (AOR)=2.17; CI: 1.16-4.03; P=0.015) times more likely to be concerned about global warming than those with low psychological distress levels. Those with a University degree or equivalent and those who lived in urban areas were significantly more likely to think that global warming would worsen compared to those without a University degree or equivalent and those who lived in the rural areas. Females were significantly (AOR=1.69; CI: 1.23-2.33; P=0.001) more likely to report they had made changes to the way they lived their lives due to the risk of global warming. A high proportion of respondents reported that they perceived that global warming would worsen, were concerned that it would affect them and their families and had already made changes in their lives because of it. These findings support a readiness in the population to deal with global warming. Future research and programs are needed to investigate population-level strategies for future action. Crown Copyright © 2010. Published by Elsevier Inc. All rights reserved.

  18. 40 CFR Table A-1 to Subpart A of... - Global Warming Potentials

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... 40 Protection of Environment 20 2010-07-01 2010-07-01 false Global Warming Potentials A Table A-1... A-1 to Subpart A of Part 98—Global Warming Potentials [100-Year Time Horizon] Name CAS No. Chemical formula Global warming potential(100 yr.) Carbon dioxide 124-38-9 CO2 1 Methane 74-82-8 CH4 21 Nitrous...

  19. 40 CFR Table A-1 to Subpart A of... - Global Warming Potentials

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 21 2011-07-01 2011-07-01 false Global Warming Potentials A Table A-1... A-1 to Subpart A of Part 98—Global Warming Potentials [100-Year Time Horizon] Name CAS No. Chemical formula Global warming potential(100 yr.) Carbon dioxide 124-38-9 CO2 1 Methane 74-82-8 CH4 21 Nitrous...

  20. 40 CFR Table A-1 to Subpart A of... - Global Warming Potentials

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 22 2012-07-01 2012-07-01 false Global Warming Potentials A Table A-1... A-1 to Subpart A of Part 98—Global Warming Potentials [100-Year Time Horizon] Name CAS No. Chemical formula Global warming potential(100 yr.) Carbon dioxide 124-38-9 CO2 1 Methane 74-82-8 CH4 21 Nitrous...

  1. Clearing clouds of uncertainty

    NASA Astrophysics Data System (ADS)

    Zelinka, Mark D.; Randall, David A.; Webb, Mark J.; Klein, Stephen A.

    2017-10-01

    Since 1990, the wide range in model-based estimates of equilibrium climate warming has been attributed to disparate cloud responses to warming. However, major progress in our ability to understand, observe, and simulate clouds has led to the conclusion that global cloud feedback is likely positive.

  2. Assessing the impacts of 1.5 °C global warming - simulation protocol of the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP2b)

    NASA Astrophysics Data System (ADS)

    Frieler, Katja; Lange, Stefan; Piontek, Franziska; Reyer, Christopher P. O.; Schewe, Jacob; Warszawski, Lila; Zhao, Fang; Chini, Louise; Denvil, Sebastien; Emanuel, Kerry; Geiger, Tobias; Halladay, Kate; Hurtt, George; Mengel, Matthias; Murakami, Daisuke; Ostberg, Sebastian; Popp, Alexander; Riva, Riccardo; Stevanovic, Miodrag; Suzuki, Tatsuo; Volkholz, Jan; Burke, Eleanor; Ciais, Philippe; Ebi, Kristie; Eddy, Tyler D.; Elliott, Joshua; Galbraith, Eric; Gosling, Simon N.; Hattermann, Fred; Hickler, Thomas; Hinkel, Jochen; Hof, Christian; Huber, Veronika; Jägermeyr, Jonas; Krysanova, Valentina; Marcé, Rafael; Müller Schmied, Hannes; Mouratiadou, Ioanna; Pierson, Don; Tittensor, Derek P.; Vautard, Robert; van Vliet, Michelle; Biber, Matthias F.; Betts, Richard A.; Bodirsky, Benjamin Leon; Deryng, Delphine; Frolking, Steve; Jones, Chris D.; Lotze, Heike K.; Lotze-Campen, Hermann; Sahajpal, Ritvik; Thonicke, Kirsten; Tian, Hanqin; Yamagata, Yoshiki

    2017-11-01

    In Paris, France, December 2015, the Conference of the Parties (COP) to the United Nations Framework Convention on Climate Change (UNFCCC) invited the Intergovernmental Panel on Climate Change (IPCC) to provide a special report in 2018 on the impacts of global warming of 1.5 °C above pre-industrial levels and related global greenhouse gas emission pathways. In Nairobi, Kenya, April 2016, the IPCC panel accepted the invitation. Here we describe the response devised within the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) to provide tailored, cross-sectorally consistent impact projections to broaden the scientific basis for the report. The simulation protocol is designed to allow for (1) separation of the impacts of historical warming starting from pre-industrial conditions from impacts of other drivers such as historical land-use changes (based on pre-industrial and historical impact model simulations); (2) quantification of the impacts of additional warming up to 1.5 °C, including a potential overshoot and long-term impacts up to 2299, and comparison to higher levels of global mean temperature change (based on the low-emissions Representative Concentration Pathway RCP2.6 and a no-mitigation pathway RCP6.0) with socio-economic conditions fixed at 2005 levels; and (3) assessment of the climate effects based on the same climate scenarios while accounting for simultaneous changes in socio-economic conditions following the middle-of-the-road Shared Socioeconomic Pathway (SSP2, Fricko et al., 2016) and in particular differential bioenergy requirements associated with the transformation of the energy system to comply with RCP2.6 compared to RCP6.0. With the aim of providing the scientific basis for an aggregation of impacts across sectors and analysis of cross-sectoral interactions that may dampen or amplify sectoral impacts, the protocol is designed to facilitate consistent impact projections from a range of impact models across different sectors (global and regional hydrology, lakes, global crops, global vegetation, regional forests, global and regional marine ecosystems and fisheries, global and regional coastal infrastructure, energy supply and demand, temperature-related mortality, and global terrestrial biodiversity).

  3. Application of wavelet analysis in determining the periodicity of global warming

    NASA Astrophysics Data System (ADS)

    Feng, Xiao

    2018-04-01

    In the last two decades of the last century, the global average temperature has risen by 0.48 ° C over 100 years ago. Since then, global warming has become a hot topic. Global warming will have complex and potential impacts on humans and the Earth. However, the negative impacts far outweigh the positive impacts. The most obvious external manifestation of global warming is temperature. Therefore, this study uses wavelet analysis study the characteristics of temperature time series, solve the periodicity of the sequence, find out the trend of temperature change and predict the extent of global warming in the future, so as to take the necessary precautionary measures.

  4. Global warming and the possible globalization of vector-borne diseases: a call for increased awareness and action.

    PubMed

    Balogun, Emmanuel O; Nok, Andrew J; Kita, Kiyoshi

    2016-01-01

    Human activities such as burning of fossil fuels play a role in upsetting a previously more balanced and harmonious ecosystem. Climate change-a significant variation in the usual pattern of Earth's average weather conditions is a product of this ecosystem imbalance, and the rise in the Earth's average temperature (global warming) is a prominent evidence. There is a correlation between global warming and the ease of transmission of infectious diseases. Therefore, with global health in focus, we herein opine a stepping-up of research activities regarding global warming and infectious diseases globally.

  5. Potential impact of 1.5 °C and 2 °C global warming on consecutive dry and wet days over West Africa

    NASA Astrophysics Data System (ADS)

    Ama Browne Klutse, Nana; Ajayi, Vincent O.; Olabode Gbobaniyi, Emiola; Egbebiyi, Temitope S.; Kouadio, Kouakou; Nkrumah, Francis; Akumenyi Quagraine, Kwesi; Olusegun, Christiana; Diasso, Ulrich; Abiodun, Babatunde J.; Lawal, Kamoru; Nikulin, Grigory; Lennard, Christopher; Dosio, Alessandro

    2018-05-01

    We examine the impact of +1.5 °C and +2 °C global warming levels above pre-industrial levels on consecutive dry days (CDD) and consecutive wet days (CWD), two key indicators for extreme precipitation and seasonal drought. This is done using climate projections from a multi-model ensemble of 25 regional climate model (RCM) simulations. The RCMs take boundary conditions from ten global climate models (GCMs) under the RCP8.5 scenario. We define CDD as the maximum number of consecutive days with rainfall amount less than 1 mm and CWD as the maximum number of consecutive days with rainfall amount more than 1 mm. The differences in model representations of the change in CDD and CWD, at 1.5 °C and 2 °C global warming, and based on the control period 1971‑2000 are reported. The models agree on a noticeable response to both 1.5 °C and 2 °C warming for each index. Enhanced warming results in a reduction in mean rainfall across the region. More than 80% of ensemble members agree that CDD will increase over the Guinea Coast, in tandem with a projected decrease in CWD at both 1.5 °C and 2 °C global warming levels. These projected changes may influence already fragile ecosystems and agriculture in the region, both of which are strongly affected by mean rainfall and the length of wet and dry periods.

  6. Global Warming: Understanding and Teaching the Forecast. Part A The Greenhouse Effect.

    ERIC Educational Resources Information Center

    Andrews, Bill

    1993-01-01

    Provides information necessary for an interdisciplinary analysis of the greenhouse effect, enhanced greenhouse effect, global warming, global climate change, greenhouse gases, carbon dioxide, and scientific study of global warming for students grades 4-12. Several activity ideas accompany the information. (LZ)

  7. Competition between global warming and an abrupt collapse of the AMOC in Earth’s energy imbalance

    PubMed Central

    Drijfhout, Sybren

    2015-01-01

    A collapse of the Atlantic Meridional Overturning Circulation (AMOC) leads to global cooling through fast feedbacks that selectively amplify the response in the Northern Hemisphere (NH). How such cooling competes with global warming has long been a topic for speculation, but was never addressed using a climate model. Here it is shown that global cooling due to a collapsing AMOC obliterates global warming for a period of 15–20 years. Thereafter, the global mean temperature trend is reversed and becomes similar to a simulation without an AMOC collapse. The resulting surface warming hiatus lasts for 40–50 years. Global warming and AMOC-induced NH cooling are governed by similar feedbacks, giving rise to a global net radiative imbalance of similar sign, although the former is associated with surface warming, the latter with cooling. Their footprints in outgoing longwave and absorbed shortwave radiation are very distinct, making attribution possible. PMID:26437599

  8. Changes in yields and their variability at different levels of global warming

    NASA Astrophysics Data System (ADS)

    Childers, Katelin

    2015-04-01

    An assessment of climate change impacts at different levels of global warming is crucial to inform the political discussion about mitigation targets as well as for the inclusion of climate change impacts in Integrated Assessment Models (IAMs) that generally only provide global mean temperature change as an indicator of climate change. While there is a well-established framework for the scalability of regional temperature and precipitation changes with global mean temperature change we provide an assessment of the extent to which impacts such as crop yield changes can also be described in terms of global mean temperature changes without accounting for the specific underlying emissions scenario. Based on multi-crop-model simulations of the four major cereal crops (maize, rice, soy, and wheat) on a 0.5 x 0.5 degree global grid generated within ISI-MIP, we show the average spatial patterns of projected crop yield changes at one half degree warming steps. We find that emissions scenario dependence is a minor component of the overall variance of projected yield changes at different levels of global warming. Furthermore, scenario dependence can be reduced by accounting for the direct effects of CO2 fertilization in each global climate model (GCM)/impact model combination through an inclusion of the global atmospheric CO2 concentration as a second predictor. The choice of GCM output used to force the crop model simulations accounts for a slightly larger portion of the total yield variance, but the greatest contributor to variance in both global and regional crop yields and at all levels of warming, is the inter-crop-model spread. The unique multi impact model ensemble available with ISI-MIP data also indicates that the overall variability of crop yields is projected to increase in conjunction with increasing global mean temperature. This result is consistent throughout the ensemble of impact models and across many world regions. Such a hike in yield volatility could have significant policy implications by affecting food prices and supplies.

  9. Planning for Climate Change: What Should the Air Force Do

    DTIC Science & Technology

    2011-06-26

    cap that contains a patch depicting the world with a melting ice cube and the words ― Global Warming - It‘s Not Cool‖ embroidered on it. As I have...important to distinguish between these terms and the often used term ‗ global warming .‘ In a strict sense, global warming is defined as ―an average...longer).‖ 10 In common usage and popular discussion the terms ‗ global warming ‘ and ‗ global climate change‘ are often used interchangeably. The

  10. Bracketing mid-pliocene sea surface temperature: maximum and minimum possible warming

    USGS Publications Warehouse

    Dowsett, Harry

    2004-01-01

    Estimates of sea surface temperature (SST) from ocean cores reveal a warm phase of the Pliocene between about 3.3 and 3.0 Mega-annums (Ma). Pollen records from land based cores and sections, although not as well dated, also show evidence for a warmer climate at about the same time. Increased greenhouse forcing and altered ocean heat transport is the leading candidates for the underlying cause of Pliocene global warmth. However, despite being a period of global warmth, there exists considerable variability within this interval. Two new SST reconstructions have been created to provide a climatological error bar for warm peak phases of the Pliocene. These data represent the maximum and minimum possible warming recorded within the 3.3 to 3.0 Ma interval.

  11. 40 CFR Appendix I to Subpart A of... - Global Warming Potentials (Mass Basis), Referenced to the Absolute GWP for the Adopted Carbon...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... 40 Protection of Environment 17 2011-07-01 2011-07-01 false Global Warming Potentials (Mass Basis..., App. I Appendix I to Subpart A of Part 82—Global Warming Potentials (Mass Basis), Referenced to the... formula Global warming potential (time horizon) 20 years 100 years 500 years CFC-11 CFCl3 5000 4000 1400...

  12. 40 CFR Appendix I to Subpart A of... - Global Warming Potentials (Mass Basis), Referenced to the Absolute GWP for the Adopted Carbon...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... 40 Protection of Environment 18 2014-07-01 2014-07-01 false Global Warming Potentials (Mass Basis..., App. I Appendix I to Subpart A of Part 82—Global Warming Potentials (Mass Basis), Referenced to the... formula Global warming potential (time horizon) 20 years 100 years 500 years CFC-11 CFCl3 5000 4000 1400...

  13. 40 CFR Appendix I to Subpart A of... - Global Warming Potentials (Mass Basis), Referenced to the Absolute GWP for the Adopted Carbon...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... 40 Protection of Environment 18 2012-07-01 2012-07-01 false Global Warming Potentials (Mass Basis..., App. I Appendix I to Subpart A of Part 82—Global Warming Potentials (Mass Basis), Referenced to the... formula Global warming potential (time horizon) 20 years 100 years 500 years CFC-11 CFCl3 5000 4000 1400...

  14. 40 CFR Appendix I to Subpart A of... - Global Warming Potentials (Mass Basis), Referenced to the Absolute GWP for the Adopted Carbon...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... 40 Protection of Environment 18 2013-07-01 2013-07-01 false Global Warming Potentials (Mass Basis..., App. I Appendix I to Subpart A of Part 82—Global Warming Potentials (Mass Basis), Referenced to the... formula Global warming potential (time horizon) 20 years 100 years 500 years CFC-11 CFCl3 5000 4000 1400...

  15. Do Americans Understand That Global Warming Is Harmful to Human Health? Evidence From a National Survey.

    PubMed

    Maibach, Edward W; Kreslake, Jennifer M; Roser-Renouf, Connie; Rosenthal, Seth; Feinberg, Geoff; Leiserowitz, Anthony A

    2015-01-01

    Global warming has significant negative consequences for human health, with some groups at greater risk than others. The extent to which the public is aware of these risks is unclear; the limited extant research has yielded discrepant findings. This paper describes Americans' awareness of the health effects of global warming, levels of support for government funding and action on the issue, and trust in information sources. We also investigate the discrepancy in previous research findings between assessments based on open- versus closed-ended questions. A nationally representative survey of US adults (N = 1275) was conducted online in October 2014. Measures included general attitudes and beliefs about global warming, affective assessment of health effects, vulnerable populations and specific health conditions (open- and closed-ended), perceived risk, trust in sources, and support for government response. Most respondents (61%) reported that, before taking the survey, they had given little or no thought to how global warming might affect people's health. In response to a closed-ended question, many respondents (64%) indicated global warming is harmful to health, yet in response to an open-ended question, few (27%) accurately named one or more specific type of harm. In response to a closed-ended question, 33% indicated some groups are more affected than others, yet on an open-ended question only 25% were able to identify any disproportionately affected populations. Perhaps not surprising given these findings, respondents demonstrated only limited support for a government response: less than 50% of respondents said government should be doing more to protect against health harms from global warming, and about 33% supported increased funding to public health agencies for this purpose. Respondents said their primary care physician is their most trusted source of information on this topic, followed by the Centers for Disease Control and Prevention, the World Health Organization, and their local public health department. Most Americans report a general sense that global warming can be harmful to health, but relatively few understand the types of harm it causes or who is most likely to be affected. Perhaps as a result, there is only moderate support for an expanded public health response. Primary care physicians and public health officials appear well positioned to educate the public about the health relevance of climate change. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  16. Dynamical Downscaling of Climate Change over the Hawaiian Islands

    NASA Astrophysics Data System (ADS)

    Wang, Y.; Zhang, C.; Hamilton, K. P.; Lauer, A.

    2015-12-01

    The pseudo-global-warming (PGW) method was applied to the Hawaii Regional Climate Model (HRCM) to dynamically downscale the projected climate in the late 21st century over the Hawaiian Islands. The initial and boundary conditions were adopted from MERRA reanalysis and NOAA SST data for the present-day simulations. The global warming increments constructed from the CMIP3 multi-model ensemble mean were added to the reanalysis and SST data to perform the future climate simulations. We found that the Hawaiian Islands are vulnerable to global warming effects and the changes are diverse due to the varied topography. The windward side will have more clouds and receive more rainfall. The increase of the moisture in the boundary layer makes the major contribution. On the contrary, the leeward side will have less clouds and rainfall. The clouds and rain can slightly slow down the warming trend over the windward side. The temperature increases almost linearly with the terrain height. Cloud base and top heights will slightly decline in response to the slightly lower trade wind inversion base height, while the trade wind occurrence frequency will increase by about 8% in the future. More extreme rainfall events will occur in the warming climate over the Hawaiian Islands. And the snow cover on the top of Mauna Kea and Mauna Loa will nearly disappear in the future winter.

  17. Tropical Warm Semi-Arid Regions Expanding Over Temperate Latitudes In The Projected 21st Century

    NASA Astrophysics Data System (ADS)

    Rajaud, A.; de Noblet, N. I.

    2015-12-01

    Two billion people today live in drylands, where extreme climatic conditions prevail, and natural resources are limited. Drylands are expected to expand under several scenarios of climatic change. However, relevant adaptation strategies need to account for the aridity level: it conditions the equilibrium tree-cover density, ranging from deserts (hyper-arid) to dense savannas (sub-humid). Here we focus on the evolution of climatically defined warm semi-arid areas, where low-tree density covers can be maintained. We study the global repartition of these regions in the future and the bioclimatic shifts involved. We adopted a bioclimatological approach based on the Köppen climate classification. The warm semi-arid class is characterized by mean annual temperatures over 18°C and a rainfall-limitation criterion. A multi-model ensemble of CMIP5 projections for three representative concentration pathways was selected to analyze future conditions. The classification was first applied to the start, middle and end of the 20th and 21st centuries, in order to localize past and future warm semi-arid regions. Then, time-series for the classification were built to characterize trends and variability in the evolution of those regions. According to the CRU datasets, global expansion of the warm semi-arid area has already started (~+13%), following the global warming trend since the 1900s. This will continue according to all projections, most significantly so outside the tropical belt. Under the "business as usual" scenario, the global warm semi-arid area will increase by 30% and expand 12° poleward in the Northern Hemisphere, according to the multi-model mean. Drying drives the conversion from equatorial sub-humid conditions. Beyond 30° of latitude, cold semi-arid conditions become warm semi-arid through warming, and temperate conditions through combined warming and drying processes. Those various transitions may have drastic but also very distinct ecological and sociological impacts.

  18. Impacts of Dams and Global Warming on Fish Biodiversity in the Indo-Burma Hotspot

    PubMed Central

    Nam, So; Samejima, Hiromitsu; Watanabe, Katsutoshi; Grudpan, Chaiwut; Grudpan, Jarungjit; Magtoon, Wichan; Musikasinthorn, Prachya; Nguyen, Phuong Thanh; Praxaysonbath, Bounthob; Sato, Tomoyuki; Shimatani, Yukihiro; Suvarnaraksha, Apinun; Tanaka, Wataru; Thach, Phanara; Tran, Dac Dinh; Yamashita, Tomomi

    2016-01-01

    Both hydropower dams and global warming pose threats to freshwater fish diversity. While the extent of global warming may be reduced by a shift towards energy generation by large dams in order to reduce fossil-fuel use, such dams profoundly modify riverine habitats. Furthermore, the threats posed by dams and global warming will interact: for example, dams constrain range adjustments by fishes that might compensate for warming temperatures. Evaluation of their combined or synergistic effects is thus essential for adequate assessment of the consequences of planned water-resource developments. We made projections of the responses of 363 fish species within the Indo-Burma global biodiversity hotspot to the separate and joint impacts of dams and global warming. The hotspot encompasses the Lower Mekong Basin, which is the world’s largest freshwater capture fishery. Projections for 81 dam-building scenarios revealed progressive impacts upon projected species richness, habitable area, and the proportion of threatened species as generating capacity increased. Projections from 126 global-warming scenarios included a rise in species richness, a reduction in habitable area, and an increase in the proportion of threatened species; however, there was substantial variation in the extent of these changes among warming projections. Projections from scenarios that combined the effects of dams and global warming were derived either by simply adding the two threats, or by combining them in a synergistic manner that took account of the likelihood that habitat shifts under global warming would be constrained by river fragmentation. Impacts on fish diversity under the synergistic projections were 10–20% higher than those attributable to additive scenarios, and were exacerbated as generating capacity increased—particularly if CO2 emissions remained high. The impacts of dams, especially those on river mainstreams, are likely to be greater, more predictable and more immediately pressing for fishes than the consequences of global warming. Limits upon dam construction should therefore be a priority action for conserving fish biodiversity in the Indo-Burma hotspot. This would minimize synergistic impacts attributable to dams plus global warming, and help ensure the continued provision of ecosystem services represented by the Lower Mekong fishery. PMID:27532150

  19. Impacts of Dams and Global Warming on Fish Biodiversity in the Indo-Burma Hotspot.

    PubMed

    Kano, Yuichi; Dudgeon, David; Nam, So; Samejima, Hiromitsu; Watanabe, Katsutoshi; Grudpan, Chaiwut; Grudpan, Jarungjit; Magtoon, Wichan; Musikasinthorn, Prachya; Nguyen, Phuong Thanh; Praxaysonbath, Bounthob; Sato, Tomoyuki; Shibukawa, Koichi; Shimatani, Yukihiro; Suvarnaraksha, Apinun; Tanaka, Wataru; Thach, Phanara; Tran, Dac Dinh; Yamashita, Tomomi; Utsugi, Kenzo

    2016-01-01

    Both hydropower dams and global warming pose threats to freshwater fish diversity. While the extent of global warming may be reduced by a shift towards energy generation by large dams in order to reduce fossil-fuel use, such dams profoundly modify riverine habitats. Furthermore, the threats posed by dams and global warming will interact: for example, dams constrain range adjustments by fishes that might compensate for warming temperatures. Evaluation of their combined or synergistic effects is thus essential for adequate assessment of the consequences of planned water-resource developments. We made projections of the responses of 363 fish species within the Indo-Burma global biodiversity hotspot to the separate and joint impacts of dams and global warming. The hotspot encompasses the Lower Mekong Basin, which is the world's largest freshwater capture fishery. Projections for 81 dam-building scenarios revealed progressive impacts upon projected species richness, habitable area, and the proportion of threatened species as generating capacity increased. Projections from 126 global-warming scenarios included a rise in species richness, a reduction in habitable area, and an increase in the proportion of threatened species; however, there was substantial variation in the extent of these changes among warming projections. Projections from scenarios that combined the effects of dams and global warming were derived either by simply adding the two threats, or by combining them in a synergistic manner that took account of the likelihood that habitat shifts under global warming would be constrained by river fragmentation. Impacts on fish diversity under the synergistic projections were 10-20% higher than those attributable to additive scenarios, and were exacerbated as generating capacity increased-particularly if CO2 emissions remained high. The impacts of dams, especially those on river mainstreams, are likely to be greater, more predictable and more immediately pressing for fishes than the consequences of global warming. Limits upon dam construction should therefore be a priority action for conserving fish biodiversity in the Indo-Burma hotspot. This would minimize synergistic impacts attributable to dams plus global warming, and help ensure the continued provision of ecosystem services represented by the Lower Mekong fishery.

  20. Clearing clouds of uncertainty

    DOE PAGES

    Zelinka, Mark D.; Randall, David A.; Webb, Mark J.; ...

    2017-09-29

    We report that since 1990, the wide range in model-based estimates of equilibrium climate warming has been attributed to disparate cloud responses to warming. However, major progress in our ability to understand, observe, and simulate clouds has led to the conclusion that global cloud feedback is likely positive.

  1. The Global Environment

    NASA Astrophysics Data System (ADS)

    Moore, John W.

    2003-10-01

    What can we teachers do? For students we can provide a strong background in the process of science and in scientific ethics. We can encourage students to apply such knowledge wisely throughout their lives. For the public at large, we can speak out in favor of real science at every opportunity. It is possible that the current scientific consensus on global warming is based on incomplete evidence, but global warming ought not be dismissed as unscientific or a hoax, and scientists ought not allow that to happen. As we celebrate National Chemistry Week, we should resolve to support chemistry and science as strongly as we can.

  2. Weather it's Climate Change?

    NASA Astrophysics Data System (ADS)

    Bostrom, A.; Lashof, D.

    2004-12-01

    For almost two decades both national polls and in-depth studies of global warming perceptions have shown that people commonly conflate weather and global climate change. Not only are current weather events such as anecdotal heat waves, droughts or cold spells treated as evidence for or against global warming, but weather changes such as warmer weather and increased storm intensity and frequency are the consequences most likely to come to mind. Distinguishing weather from climate remains a challenge for many. This weather 'framing' of global warming may inhibit behavioral and policy change in several ways. Weather is understood as natural, on an immense scale that makes controlling it difficult to conceive. Further, these attributes contribute to perceptions that global warming, like weather, is uncontrollable. This talk presents an analysis of data from public opinion polls, focus groups, and cognitive studies regarding people's mental models of and 'frames' for global warming and climate change, and the role weather plays in these. This research suggests that priming people with a model of global warming as being caused by a "thickening blanket of carbon dioxide" that "traps heat" in the atmosphere solves some of these communications problems and makes it more likely that people will support policies to address global warming.

  3. Decadal evolution of the surface energy budget during the fast warming and global warming hiatus periods in the ERA-interim

    NASA Astrophysics Data System (ADS)

    Hu, Xiaoming; Sejas, Sergio A.; Cai, Ming; Taylor, Patrick C.; Deng, Yi; Yang, Song

    2018-05-01

    The global-mean surface temperature has experienced a rapid warming from the 1980s to early-2000s but a muted warming since, referred to as the global warming hiatus in the literature. Decadal changes in deep ocean heat uptake are thought to primarily account for the rapid warming and subsequent slowdown. Here, we examine the role of ocean heat uptake in establishing the fast warming and warming hiatus periods in the ERA-Interim through a decomposition of the global-mean surface energy budget. We find the increase of carbon dioxide alone yields a nearly steady increase of the downward longwave radiation at the surface from the 1980s to the present, but neither accounts for the fast warming nor warming hiatus periods. During the global warming hiatus period, the transfer of latent heat energy from the ocean to atmosphere increases and the total downward radiative energy flux to the surface decreases due to a reduction of solar absorption caused primarily by an increase of clouds. The reduction of radiative energy into the ocean and the surface latent heat flux increase cause the ocean heat uptake to decrease and thus contribute to the slowdown of the global-mean surface warming. Our analysis also finds that in addition to a reduction of deep ocean heat uptake, the fast warming period is also driven by enhanced solar absorption due predominantly to a decrease of clouds and by enhanced longwave absorption mainly attributed to the air temperature feedback.

  4. Global warming without global mean precipitation increase?

    PubMed Central

    Salzmann, Marc

    2016-01-01

    Global climate models simulate a robust increase of global mean precipitation of about 1.5 to 2% per kelvin surface warming in response to greenhouse gas (GHG) forcing. Here, it is shown that the sensitivity to aerosol cooling is robust as well, albeit roughly twice as large. This larger sensitivity is consistent with energy budget arguments. At the same time, it is still considerably lower than the 6.5 to 7% K−1 decrease of the water vapor concentration with cooling from anthropogenic aerosol because the water vapor radiative feedback lowers the hydrological sensitivity to anthropogenic forcings. When GHG and aerosol forcings are combined, the climate models with a realistic 20th century warming indicate that the global mean precipitation increase due to GHG warming has, until recently, been completely masked by aerosol drying. This explains the apparent lack of sensitivity of the global mean precipitation to the net global warming recently found in observations. As the importance of GHG warming increases in the future, a clear signal will emerge. PMID:27386558

  5. Global warming without global mean precipitation increase?

    PubMed

    Salzmann, Marc

    2016-06-01

    Global climate models simulate a robust increase of global mean precipitation of about 1.5 to 2% per kelvin surface warming in response to greenhouse gas (GHG) forcing. Here, it is shown that the sensitivity to aerosol cooling is robust as well, albeit roughly twice as large. This larger sensitivity is consistent with energy budget arguments. At the same time, it is still considerably lower than the 6.5 to 7% K(-1) decrease of the water vapor concentration with cooling from anthropogenic aerosol because the water vapor radiative feedback lowers the hydrological sensitivity to anthropogenic forcings. When GHG and aerosol forcings are combined, the climate models with a realistic 20th century warming indicate that the global mean precipitation increase due to GHG warming has, until recently, been completely masked by aerosol drying. This explains the apparent lack of sensitivity of the global mean precipitation to the net global warming recently found in observations. As the importance of GHG warming increases in the future, a clear signal will emerge.

  6. Scaling Potential Evapotranspiration with Greenhouse Warming (Invited)

    NASA Astrophysics Data System (ADS)

    Scheff, J.; Frierson, D. M.

    2013-12-01

    Potential evapotranspiration (PET) is a supply-independent measure of the evaporative demand of a terrestrial climate, of basic importance in climatology, hydrology, and agriculture. Future increases in PET from greenhouse warming are often cited as key drivers of global trends toward drought and aridity. The present work computes recent and business-as-usual-future Penman-Monteith (i.e. physically-based) PET fields at 3-hourly resolution in 14 modern global climate models. The %-change in local annual-mean PET over the upcoming century is almost always positive, modally low double-digit in magnitude, usually increasing with latitude, yet quite divergent between models. These patterns are understood as follows. In every model, the global field of PET %-change is found to be dominated by the direct, positive effects of constant-relative-humidity warming (via increasing vapor pressure deficit and increasing Clausius-Clapeyron slope.) This direct-warming term very accurately scales as the PET-weighted (warm-season daytime) local warming, times 5-6% per degree (related to the Clausius-Clapeyron equation), times an analytic factor ranging from about 0.25 in warm climates to 0.75 in cold climates, plus a small correction. With warming of several degrees, this product is of low double-digit magnitude, and the strong temperature dependence gives the latitude dependence. Similarly, the inter-model spread in the amount of warming gives most of the spread in this term. Additional spread in the total change comes from strong disagreement on radiation, relative-humidity, and windspeed changes, which make smaller yet substantial contributions to the full PET %-change fields.

  7. How much might additional half a degree from a global warming of 1.5°C affects the extreme precipitation change in China?

    NASA Astrophysics Data System (ADS)

    Li, W.; Jiang, Z.

    2017-12-01

    In order to strengthen the global respond to the dangerous of global warming, Paris Agreement sets out two long-term warming goals: limiting global warming to well below 2˚C and purse effort to below 1.5˚C above pre-industrial levels. However, future climate change risks in those two warming targets show significant regional differences. This article aims to study the intensity and frequency of extreme precipitation change over China under those two global warming targets by using CMIP5 models under RCP4.5 and RCP8.5 scenario. Focus is put on the effects of the additional half degree in changing the extreme precipitation. Results show that the changes of extreme precipitation are independent of the RCP scenarios when global warming reaches the same threshold. Intensity of extreme precipitation averaged over China increase by around 6% and 11% when global warming reaches 1.5˚C and 2˚C, respectively. The additional half a degree increase makes the intensity of extreme precipitation averaged over China to increase by 4.5%, which translates to an increase close to the Clausius-Clapeyron scaling. Return period decreases by 5 years for the extra half degree warming when the 20-year return values are considered at the reference level.

  8. Global Warming: How Much and Why?

    ERIC Educational Resources Information Center

    Lanouette, William

    1990-01-01

    Summarizes the history of the study of global warming and includes a discussion of the role of gases, like carbon dioxide, methane, and chlorofluorocarbon (CFC). Discusses modern research on the global warming, including computer modelling and the super-greenhouse effect. (YP)

  9. The tropical Pacific as a key pacemaker of the variable rates of global warming

    NASA Astrophysics Data System (ADS)

    Kosaka, Yu; Xie, Shang-Ping

    2016-09-01

    Global mean surface temperature change over the past 120 years resembles a rising staircase: the overall warming trend was interrupted by the mid-twentieth-century big hiatus and the warming slowdown since about 1998. The Interdecadal Pacific Oscillation has been implicated in modulations of global mean surface temperatures, but which part of the mode drives the variability in warming rates is unclear. Here we present a successful simulation of the global warming staircase since 1900 with a global ocean-atmosphere coupled model where tropical Pacific sea surface temperatures are forced to follow the observed evolution. Without prescribed tropical Pacific variability, the same model, on average, produces a continual warming trend that accelerates after the 1960s. We identify four events where the tropical Pacific decadal cooling markedly slowed down the warming trend. Matching the observed spatial and seasonal fingerprints we identify the tropical Pacific as a key pacemaker of the warming staircase, with radiative forcing driving the overall warming trend. Specifically, tropical Pacific variability amplifies the first warming epoch of the 1910s-1940s and determines the timing when the big hiatus starts and ends. Our method of removing internal variability from the observed record can be used for real-time monitoring of anthropogenic warming.

  10. Changes in Extremely Hot Summers over the Global Land Area under Various Warming Targets

    PubMed Central

    Wang, Lei; Huang, Jianbin; Luo, Yong; Yao, Yao; Zhao, Zongci

    2015-01-01

    Summer temperature extremes over the global land area were investigated by comparing 26 models of the fifth phase of the Coupled Model Intercomparison Project (CMIP5) with observations from the Goddard Institute for Space Studies (GISS) and the Climate Research Unit (CRU). Monthly data of the observations and models were averaged for each season, and statistics were calculated for individual models before averaging them to obtain ensemble means. The summers with temperature anomalies (relative to 1951–1980) exceeding 3σ (σ is based on the local internal variability) are defined as “extremely hot”. The models well reproduced the statistical characteristics evolution, and partly captured the spatial distributions of historical summer temperature extremes. If the global mean temperature increases 2°C relative to the pre-industrial level, “extremely hot” summers are projected to occur over nearly 40% of the land area (multi-model ensemble mean projection). Summers that exceed 5σ warming are projected to occur over approximately 10% of the global land area, which were rarely observed during the reference period. Scenarios reaching warming levels of 3°C to 5°C were also analyzed. After exceeding the 5°C warming target, “extremely hot” summers are projected to occur throughout the entire global land area, and summers that exceed 5σ warming would become common over 70% of the land area. In addition, the areas affected by “extremely hot” summers are expected to rapidly expand by more than 25%/°C as the global mean temperature increases by up to 3°C before slowing to less than 16%/°C as the temperature continues to increase by more than 3°C. The area that experiences summers with warming of 5σ or more above the warming target of 2°C is likely to maintain rapid expansion of greater than 17%/°C. To reduce the impacts and damage from severely hot summers, the global mean temperature increase should remain low. PMID:26090931

  11. Relationships Between Global Warming and Tropical Cyclone Activity in the Western North Pacific

    DTIC Science & Technology

    2007-09-01

    In this work, we investigate the relationships between global warming and tropical cyclone activity in the Western North Pacific (WNP). Our...hypothesis is that global warming impacts on TC activity occur through changes in the large scale environmental factors (LSEFs) known to be important in...averages. Using a least squares fit, we identify global warming signals in both the SST and vertical wind shear data across the WNP. These signals vary

  12. Policy on global warming: fiddling while the globe burns?

    PubMed

    Weston, Del

    2009-08-01

    To assess the extent that the health consequences of global warming and the responses to it take due account of its impact on poverty and inequality. Reviewing the relevant literature on global warming, proposed solutions and the impact. To date, too little attention has been paid to the health consequences arising from the increased poverty and inequality that global warming will bring. When these are combined with issues arising from the economic melt-down, food shortages, peak oil, etc. we are heading for a global public health crisis of immeasurable magnitude. Solutions lie in rethinking the global economic system that we have relied upon over the past several decades and the global institutions that have led and fed off that global system - the IMF, the World Bank and so on. Public health practitioners need to look and act globally more often. They need to better recognise the links between global warming and the global financial crisis. How the latter is dealt with will determine whether the former can be resolved. It is in this global political economy arena that future action in public health lies.

  13. Cool cuisine-feed your body, mind, and planet.

    PubMed

    Stec, Laura

    2012-03-01

    This paper combines information from the book, Cool Cuisine-Taking the Bite Out of Global Warming (Gibbs Smith, 2008) with notes from the World of Healthy Flavors Conference (Culinary Institute of America, St. Helena, CA, USA, 2011). Cool Cuisine reports on connections between food choices and global warming, (what we termed the Global Warming Diet), both from a culinary and science point of view. World of Healthy Flavors brought food industry professionals together to discuss ways the industry can collaborate on solutions to some of the most pressing health problems in the USA. Science now supports the fact that dietary choices that adversely effect human health have an equally detrimental effect on the health of the environment and our livestock. Therefore, eating a more diverse, plant-based, whole grain, and sodium-reduced diet not only improves human health, but also the health of the environment. What is good for humans to eat is the same food that is best for the environment to grow and manufacture. Understanding and then teaching the connection between the two is one more tool toward effective behavior change, especially in children. Easy suggestions on ways to cook healthfully and "fight the global warming diet with a cool cuisine" close out this work.

  14. Drylands face potential threat under 2 °C global warming target

    NASA Astrophysics Data System (ADS)

    Huang, Jianping; Yu, Haipeng; Dai, Aiguo; Wei, Yun; Kang, Litai

    2017-06-01

    The Paris Agreement aims to limit global mean surface warming to less than 2 °C relative to pre-industrial levels. However, we show this target is acceptable only for humid lands, whereas drylands will bear greater warming risks. Over the past century, surface warming over global drylands (1.2-1.3 °C) has been 20-40% higher than that over humid lands (0.8-1.0 °C), while anthropogenic CO2 emissions generated from drylands (~230 Gt) have been only ~30% of those generated from humid lands (~750 Gt). For the twenty-first century, warming of 3.2-4.0 °C (2.4-2.6 °C) over drylands (humid lands) could occur when global warming reaches 2.0 °C, indicating ~44% more warming over drylands than humid lands. Decreased maize yields and runoff, increased long-lasting drought and more favourable conditions for malaria transmission are greatest over drylands if global warming were to rise from 1.5 °C to 2.0 °C. Our analyses indicate that ~38% of the world's population living in drylands would suffer the effects of climate change due to emissions primarily from humid lands. If the 1.5 °C warming limit were attained, the mean warming over drylands could be within 3.0 °C therefore it is necessary to keep global warming within 1.5 °C to prevent disastrous effects over drylands.

  15. Stochastic Modeling and Global Warming Trend Extraction For Ocean Acoustic Travel Times.

    DTIC Science & Technology

    1995-01-06

    consideration and that these models can not currently be relied upon by themselves to predict global warming . Experimental data is most certainly needed, not...only to measure global warming itself, but to help improve the ocean model themselves. (AN)

  16. Assessing the impacts of 1.5°C of global warming - The Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) approach

    NASA Astrophysics Data System (ADS)

    Zhao, F.; Frieler, K.; Warszawski, L.; Lange, S.; Schewe, J.; Reyer, C.; Ostberg, S.; Piontek, F.; Betts, R. A.; Burke, E.; Ciais, P.; Deryng, D.; Ebi, K. L.; Emanuel, K.; Elliott, J. W.; Galbraith, E. D.; Gosling, S.; Hickler, T.; Hinkel, J.; Jones, C.; Krysanova, V.; Lotze-Campen, H.; Mouratiadou, I.; Popp, A.; Tian, H.; Tittensor, D.; Vautard, R.; van Vliet, M. T. H.; Eddy, T.; Hattermann, F.; Huber, V.; Mengel, M.; Stevanovic, M.; Kirsten, T.; Mueller Schmied, H.; Denvil, S.; Halladay, K.; Suzuki, T.; Lotze, H. K.

    2016-12-01

    In Paris, France, December 2015 the Conference of Parties (COP) to the United Nations Framework Convention on Climate Change (UNFCCC) invited the IPCC to provide a "special report in 2018 on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways". In Nairobi, Kenya, April 2016 the IPCC panel accepted the invitation. Here we describe the model simulations planned within the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) to address the request by providing tailored cross-sectoral consistent impacts projections. The protocol is designed to allow for 1) a separation of the impacts of the historical warming starting from pre-industrial conditions from other human drivers such as historical land use changes (based on pre-industrial and historical impact model simulations), 2) a quantification of the effects of an additional warming to 1.5°C including a potential overshoot and long term effects up to 2300 in comparison to a no-mitigation scenario (based on the low emissions Representative Concentration Pathway RCP2.6 and a no-mitigation scenario RCP6.0) keeping socio-economic conditions fixed at year 2005 levels, and 3) an assessment of the climate effects based on the same climate scenarios but accounting for parallel changes in socio-economic conditions following the middle of the road Shared Socioeconomic Pathway (SSP2) and differential bio-energy requirements associated with the transformation of the energy system to reach RCP2.6 compared to RCP6.0. To provide the scientific basis for an aggregation of impacts across sectors and an analysis of cross-sectoral interactions potentially damping or amplifying sectoral impacts the protocol is designed to provide consistent impacts projections across a range of impact models from different sectors (global and regional hydrological models, global gridded crop models, global vegetation models, regional forestry models, global and regional marine ecosystem and fisheries models, global and regional coastal infrastructure models, energy models, health models, and agro-economic models).

  17. Assessing the impacts of 1.5°C of global warming - The Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) approach

    NASA Astrophysics Data System (ADS)

    Frieler, Katja; Warszawski, Lila; Zhao, Fang

    2017-04-01

    In Paris, France, December 2015 the Conference of Parties (COP) to the United Nations Framework Convention on Climate Change (UNFCCC) invited the IPCC to provide a "special report in 2018 on the impacts of global warming of 1.5°C above pre-industrial levels and related global greenhouse gas emission pathways". In Nairobi, Kenya, April 2016 the IPCC panel accepted the invitation. Here we describe the model simulations planned within the Inter-Sectoral Impact Model Intercomparison Project (ISIMIP) to address the request by providing tailored cross-sectoral consistent impacts projections. The protocol is designed to allow for 1) a separation of the impacts of the historical warming starting from pre-industrial conditions from other human drivers such as historical land use changes (based on pre-industrial and historical impact model simulations), 2) a quantification of the effects of an additional warming to 1.5°C including a potential overshoot and long term effects up to 2300 in comparison to a no-mitigation scenario (based on the low emissions Representative Concentration Pathway RCP2.6 and a no-mitigation scenario RCP6.0) keeping socio-economic conditions fixed at year 2005 levels, and 3) an assessment of the climate effects based on the same climate scenarios but accounting for parallel changes in socio-economic conditions following the middle of the road Shared Socioeconomic Pathway (SSP2) and differential bio-energy requirements associated with the transformation of the energy system to reach RCP2.6 compared to RCP6.0. To provide the scientific basis for an aggregation of impacts across sectors and an analysis of cross-sectoral interactions potentially damping or amplifying sectoral impacts the protocol is designed to provide consistent impacts projections across a range of impact models from different sectors (global and regional hydrological models, global gridded crop models, global vegetation models, regional forestry models, global and regional marine ecosystem and fisheries models, global and regional coastal infrastructure models, energy models, health models, and agro-economic models).

  18. Global Soil Respiration: Interaction with Environmental Variables and Response to Climate Change

    NASA Astrophysics Data System (ADS)

    Jian, J.; Steele, M.

    2016-12-01

    Background, methods, objectivesTerrestrial ecosystems take up around 1.7 Pg C per year; however, the role of terrestrial ecosystems as a carbon sink may change to carbon source by 2050, as a result of positive feedback of soil respiration response to global warming. Nevertheless, limited evidence shows that soil carbon is decreasing and the role of terrestrial ecosystems is changing under warming. One possibility is the positive feedback may slow due to the acclimation of soil respiration as a result of decreasing temperature sensitivity (Q10) with warming. To verify and quantify the uncertainty in soil carbon cycling and feedbacks to climate change, we assembled soil respiration observations from 1961 to 2014 from 724 publications into a monthly global soil respiration database (MSRDB), which included 13482 soil respiration measurements together with 38 other ancillary measurements from 538 sites. Using this database we examined macroscale variation in the relationship between soil respiration and air temperature, precipitation, leaf area index and soil properties. We also quantified global soil respiration, the sources of uncertainty, and its feedback to warming based on climate region-oriented models with variant Q10function. Results and ConclusionsOur results showed substantial heterogeneity in the relationship between soil respiration and environmental factors across different climate regions. For example, soil respiration was strongly related to vegetation (via leaf area index) in colder regions, but not in tropical region. Only in tropical and arid regions did soil properties explain any variation in soil respiration. Global annual mean soil respiration from 1961 to 2014 was estimated to be 72.41 Pg C yr-1 based on monthly global soil respiration database, 25 Pg lower than estimated based on yearly soil respiration database. By using the variable Q10 models, we estimated that global soil respiration increased at a rate of 0.03 Pg C yr-1 from 1961 to 2014, smaller than previous studies ( 0.1 Pg C yr-1). The substantial variations in these relationships suggest that regional scales is important for understanding and prediction of global carbon cycling and how it response to climate change.

  19. Modeling intraspecific adaptation of Abies sachalinensis to local altitude and responses to global warming, based on a 36-year reciprocal transplant experiment.

    PubMed

    Ishizuka, Wataru; Goto, Susumu

    2012-04-01

    Intraspecific adaptation in Abies sachalinensis was examined using models based on long-term monitoring data gathered during a reciprocal transplant experiment with eight seed source populations and six transplantation sites along an altitudinal gradient. The consequence of local adaptation was evaluated by testing the home-site advantage for upslope and downslope transplants at five ages. The populations' fitness-linked trait was set as their productivity (tree height × survival rate) at each age. The effects of global warming were evaluated on the basis of the 36-year performance of downslope transplants. Evidence was found for adaptive genetic variation affecting both height and survival from an early age. Increasing the distance between seed source and planting site significantly reduced productivity for both upslope and downslope transplantation, demonstrating the existence of a significant home-site advantage. The decrease in productivity was most distinct for upslope transplantations, indicating strong local adaptation to high altitudes. Global warming is predicted to increase the productivity of high-altitude populations. However, owing to their existing local adaptation, all tested populations exhibited lower productivity under warming than demes that were optimal for the new climate. These negative predictions should be considered when planning the management of locally adapted plant species such as A. sachalinensis.

  20. Green-house gas mitigation capacity of a small scale rural biogas plant calculations for Bangladesh through a general life cycle assessment.

    PubMed

    Rahman, Khondokar M; Melville, Lynsey; Fulford, David; Huq, Sm Imamul

    2017-10-01

    Calculations towards determining the greenhouse gas mitigation capacity of a small-scale biogas plant (3.2 m 3 plant) using cow dung in Bangladesh are presented. A general life cycle assessment was used, evaluating key parameters (biogas, methane, construction materials and feedstock demands) to determine the net environmental impact. The global warming potential saving through the use of biogas as a cooking fuel is reduced from 0.40 kg CO 2 equivalent to 0.064 kg CO 2 equivalent per kilogram of dung. Biomethane used for cooking can contribute towards mitigation of global warming. Prior to utilisation of the global warming potential of methane (from 3.2 m 3 biogas plant), the global warming potential is 13 t of carbon dioxide equivalent. This reduced to 2 t as a result of complete combustion of methane. The global warming potential saving of a bioenergy plant across a 20-year life cycle is 217 t of carbon dioxide equivalent, which is 11 t per year. The global warming potential of the resultant digestate is zero and from construction materials is less than 1% of total global warming potential. When the biogas is used as a fuel for cooking, the global warming potential will reduce by 83% compare with the traditional wood biomass cooking system. The total 80 MJ of energy that can be produced from a 3.2 m 3 anaerobic digestion plant would replace 1.9 t of fuel wood or 632 kg of kerosene currently used annually in Bangladesh. The digestate can also be used as a nutrient rich fertiliser substituting more costly inorganic fertilisers, with no global warming potential impact.

  1. Potential impacts of global warming on the diversity and distribution of stream insects in South Korea.

    PubMed

    Li, Fengqing; Kwon, Yong-Su; Bae, Mi-Jung; Chung, Namil; Kwon, Tae-Sung; Park, Young-Seuk

    2014-04-01

    Globally, the East Asian monsoon region is one of the richest environments in terms of biodiversity. The region is undergoing rapid human development, yet its river ecosystems have not been well studied. Global warming represents a major challenge to the survival of species in this region and makes it necessary to assess and reduce the potential consequences of warming on species of conservation concern. We projected the effects of global warming on stream insect (Ephemeroptera, Odonata, Plecoptera, and Trichoptera [EOPT]) diversity and predicted the changes of geographical ranges for 121 species throughout South Korea. Plecoptera was the most sensitive (decrease of 71.4% in number of species from the 2000s through the 2080s) order, whereas Odonata benefited (increase of 66.7% in number of species from the 2000s through the 2080s) from the effects of global warming. The impact of global warming on stream insects was predicted to be minimal prior to the 2060s; however, by the 2080s, species extirpation of up to 20% in the highland areas and 2% in the lowland areas were predicted. The projected responses of stream insects under global warming indicated that species occupying specific habitats could undergo major reductions in habitat. Nevertheless, habitat of 33% of EOPT (including two-thirds of Odonata and one-third of Ephemeroptera, Plecoptera, and Trichoptera) was predicted to increase due to global warming. The community compositions predicted by generalized additive models varied over this century, and a large difference in community structure in the highland areas was predicted between the 2000s and the 2080s. However, stream insect communities, especially Odonata, Plecoptera, and Trichoptera, were predicted to become more homogenous under global warming. © 2013 Society for Conservation Biology.

  2. National Security Implications of Global Warming Policy

    DTIC Science & Technology

    2010-03-01

    Although numerous historical examples demonstrate how actual climate change has contributed to the rise and fall of powers, global warming , in and of...become convinced that global warming is universally bad and humans are the primary cause, political leaders may develop ill-advised policies restricting

  3. An attack on science? Media use, trust in scientists, and perceptions of global warming.

    PubMed

    Hmielowski, Jay D; Feldman, Lauren; Myers, Teresa A; Leiserowitz, Anthony; Maibach, Edward

    2014-10-01

    There is a growing divide in how conservatives and liberals in the USA understand the issue of global warming. Prior research suggests that the American public's reliance on partisan media contributes to this gap. However, researchers have yet to identify intervening variables to explain the relationship between media use and public opinion about global warming. Several studies have shown that trust in scientists is an important heuristic many people use when reporting their opinions on science-related topics. Using within-subject panel data from a nationally representative sample of Americans, this study finds that trust in scientists mediates the effect of news media use on perceptions of global warming. Results demonstrate that conservative media use decreases trust in scientists which, in turn, decreases certainty that global warming is happening. By contrast, use of non-conservative media increases trust in scientists, which, in turn, increases certainty that global warming is happening. © The Author(s) 2013.

  4. Increasing occurrence of cold and warm extremes during the recent global warming slowdown.

    PubMed

    Johnson, Nathaniel C; Xie, Shang-Ping; Kosaka, Yu; Li, Xichen

    2018-04-30

    The recent levelling of global mean temperatures after the late 1990s, the so-called global warming hiatus or slowdown, ignited a surge of scientific interest into natural global mean surface temperature variability, observed temperature biases, and climate communication, but many questions remain about how these findings relate to variations in more societally relevant temperature extremes. Here we show that both summertime warm and wintertime cold extreme occurrences increased over land during the so-called hiatus period, and that these increases occurred for distinct reasons. The increase in cold extremes is associated with an atmospheric circulation pattern resembling the warm Arctic-cold continents pattern, whereas the increase in warm extremes is tied to a pattern of sea surface temperatures resembling the Atlantic Multidecadal Oscillation. These findings indicate that large-scale factors responsible for the most societally relevant temperature variations over continents are distinct from those of global mean surface temperature.

  5. Reduced interdecadal variability of Atlantic Meridional Overturning Circulation under global warming.

    PubMed

    Cheng, Jun; Liu, Zhengyu; Zhang, Shaoqing; Liu, Wei; Dong, Lina; Liu, Peng; Li, Hongli

    2016-03-22

    Interdecadal variability of the Atlantic Meridional Overturning Circulation (AMOC-IV) plays an important role in climate variation and has significant societal impacts. Past climate reconstruction indicates that AMOC-IV has likely undergone significant changes. Despite some previous studies, responses of AMOC-IV to global warming remain unclear, in particular regarding its amplitude and time scale. In this study, we analyze the responses of AMOC-IV under various scenarios of future global warming in multiple models and find that AMOC-IV becomes weaker and shorter with enhanced global warming. From the present climate condition to the strongest future warming scenario, on average, the major period of AMOC-IV is shortened from ∼50 y to ∼20 y, and the amplitude is reduced by ∼60%. These reductions in period and amplitude of AMOC-IV are suggested to be associated with increased oceanic stratification under global warming and, in turn, the speedup of oceanic baroclinic Rossby waves.

  6. Future vegetation ecosystem response to warming climate over the Tibetan Plateau

    NASA Astrophysics Data System (ADS)

    Bao, Y.; Gao, Y.; Wang, Y.

    2017-12-01

    The amplified vegetation response to climate variability has been found over the Tibetan Plateau (TP) in recent decades. In this study, the potential impacts of 21st century climate change on the vegetation ecosystem over the TP are assessed based on the dynamic vegetation outputs of models from Coupled Model Intercomparison Project Phase 5 (CMIP5), and the sensitivity of the TP vegetation in response to warming climate was investigated. Models project a continuous and accelerating greening in future, especially in the eastern TP, which closely associates with the plant type upgrade due to the pronouncing warming in growing season.Vegetation leaf area index (LAI) increase well follows the global warming, suggesting the warming climate instead of co2 fertilization controlls the future TP plant growth. The warming spring may advance the start of green-up day and extend the growing season length. More carbon accumulation in vegetation and soil will intensify the TP carbon cycle and will keep it as a carbon sink in future. Keywords: Leaf Area Index (LAI), Climate Change, Global Dynamic Vegetation Models (DGVMs), CMIP5, Tibetan Plateau (TP)

  7. Ensemble reconstruction constraints on the global carbon cycle sensitivity to climate.

    PubMed

    Frank, David C; Esper, Jan; Raible, Christoph C; Büntgen, Ulf; Trouet, Valerie; Stocker, Benjamin; Joos, Fortunat

    2010-01-28

    The processes controlling the carbon flux and carbon storage of the atmosphere, ocean and terrestrial biosphere are temperature sensitive and are likely to provide a positive feedback leading to amplified anthropogenic warming. Owing to this feedback, at timescales ranging from interannual to the 20-100-kyr cycles of Earth's orbital variations, warming of the climate system causes a net release of CO(2) into the atmosphere; this in turn amplifies warming. But the magnitude of the climate sensitivity of the global carbon cycle (termed gamma), and thus of its positive feedback strength, is under debate, giving rise to large uncertainties in global warming projections. Here we quantify the median gamma as 7.7 p.p.m.v. CO(2) per degrees C warming, with a likely range of 1.7-21.4 p.p.m.v. CO(2) per degrees C. Sensitivity experiments exclude significant influence of pre-industrial land-use change on these estimates. Our results, based on the coupling of a probabilistic approach with an ensemble of proxy-based temperature reconstructions and pre-industrial CO(2) data from three ice cores, provide robust constraints for gamma on the policy-relevant multi-decadal to centennial timescales. By using an ensemble of >200,000 members, quantification of gamma is not only improved, but also likelihoods can be assigned, thereby providing a benchmark for future model simulations. Although uncertainties do not at present allow exclusion of gamma calculated from any of ten coupled carbon-climate models, we find that gamma is about twice as likely to fall in the lowermost than in the uppermost quartile of their range. Our results are incompatibly lower (P < 0.05) than recent pre-industrial empirical estimates of approximately 40 p.p.m.v. CO(2) per degrees C (refs 6, 7), and correspondingly suggest approximately 80% less potential amplification of ongoing global warming.

  8. Greenhouse-gas emission targets for limiting global warming to 2 degrees C.

    PubMed

    Meinshausen, Malte; Meinshausen, Nicolai; Hare, William; Raper, Sarah C B; Frieler, Katja; Knutti, Reto; Frame, David J; Allen, Myles R

    2009-04-30

    More than 100 countries have adopted a global warming limit of 2 degrees C or below (relative to pre-industrial levels) as a guiding principle for mitigation efforts to reduce climate change risks, impacts and damages. However, the greenhouse gas (GHG) emissions corresponding to a specified maximum warming are poorly known owing to uncertainties in the carbon cycle and the climate response. Here we provide a comprehensive probabilistic analysis aimed at quantifying GHG emission budgets for the 2000-50 period that would limit warming throughout the twenty-first century to below 2 degrees C, based on a combination of published distributions of climate system properties and observational constraints. We show that, for the chosen class of emission scenarios, both cumulative emissions up to 2050 and emission levels in 2050 are robust indicators of the probability that twenty-first century warming will not exceed 2 degrees C relative to pre-industrial temperatures. Limiting cumulative CO(2) emissions over 2000-50 to 1,000 Gt CO(2) yields a 25% probability of warming exceeding 2 degrees C-and a limit of 1,440 Gt CO(2) yields a 50% probability-given a representative estimate of the distribution of climate system properties. As known 2000-06 CO(2) emissions were approximately 234 Gt CO(2), less than half the proven economically recoverable oil, gas and coal reserves can still be emitted up to 2050 to achieve such a goal. Recent G8 Communiqués envisage halved global GHG emissions by 2050, for which we estimate a 12-45% probability of exceeding 2 degrees C-assuming 1990 as emission base year and a range of published climate sensitivity distributions. Emissions levels in 2020 are a less robust indicator, but for the scenarios considered, the probability of exceeding 2 degrees C rises to 53-87% if global GHG emissions are still more than 25% above 2000 levels in 2020.

  9. Global warming potential of pavements

    NASA Astrophysics Data System (ADS)

    Santero, Nicholas J.; Horvath, Arpad

    2009-09-01

    Pavements comprise an essential and vast infrastructure system supporting our transportation network, yet their impact on the environment is largely unquantified. Previous life-cycle assessments have only included a limited number of the applicable life-cycle components in their analysis. This research expands the current view to include eight different components: materials extraction and production, transportation, onsite equipment, traffic delay, carbonation, lighting, albedo, and rolling resistance. Using global warming potential as the environmental indicator, ranges of potential impact for each component are calculated and compared based on the information uncovered in the existing research. The relative impacts between components are found to be orders of magnitude different in some cases. Context-related factors, such as traffic level and location, are also important elements affecting the impacts of a given component. A strategic method for lowering the global warming potential of a pavement is developed based on the concept that environmental performance is improved most effectively by focusing on components with high impact potentials. This system takes advantage of the fact that small changes in high-impact components will have more effect than large changes in low-impact components.

  10. 40 CFR 82.178 - Information required to be submitted.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... chemicals. The submitter must also provide supporting documentation or references. (6) Global warming impacts. Data on the total global warming potential of the substitute, including information on the GWP index and the indirect contributions to global warming caused by the production or use of the substitute...

  11. 40 CFR 82.178 - Information required to be submitted.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... chemicals. The submitter must also provide supporting documentation or references. (6) Global warming impacts. Data on the total global warming potential of the substitute, including information on the GWP index and the indirect contributions to global warming caused by the production or use of the substitute...

  12. Proper accounting for time increases crop-based biofuels' greenhouse gas deficit versus petroleum

    NASA Astrophysics Data System (ADS)

    O'Hare, M.; Plevin, R. J.; Martin, J. I.; Jones, A. D.; Kendall, A.; Hopson, E.

    2009-04-01

    The global warming intensities of crop-based biofuels and fossil fuels differ not only in amount but also in their discharge patterns over time. Early discharges, for example, from market-mediated land use change, will have created more global warming by any time in the future than later discharges, owing to the slow decay of atmospheric CO2. A spreadsheet model of this process, BTIME, captures this important time pattern effect using the Bern CO2 decay model to allow fuels to be compared for policy decisions on the basis of their real warming effects with a variety of user-supplied parameter values. The model also allows economic discounting of climate effects extended far into the future. Compared to approaches that simply sum greenhouse gas emissions over time, recognizing the physics of atmospheric CO2 decay significantly increases the deficit relative to fossil fuel of any biofuel causing land use change.

  13. Understanding primary school science teachers' pedagogical content knowledge: The case of teaching global warming

    NASA Astrophysics Data System (ADS)

    Chordnork, Boonliang; Yuenyong, Chokchai

    2018-01-01

    This aim of this research was to investigate primary school science teachers understanding and teaching practice as well as the influence on teaching and learning a topic like global warming. The participants were four primary science teachers, who were not graduated in science education. Methodology was the case study method, which was under the qualitative research regarded from interpretive paradigm. Data were collected by openended questionnaire, semi-structure interview, and document colleting. The questionnaire examined teachers' background, teachers' understanding of problems and threats of science teaching, desiring of development their PCK, sharing the teaching approaches, and their ideas of strength and weakness. a semi-structured interview was conducted based on the approach for capturing PCK of Loughran [23] content representation (CoRe). And, the document was collected to clarify what evidence which was invented to effect on students' learning. These document included lesson plan, students' task, and painting about global warming, science projects, the picture of activities of science learning, the exercise and test. Data analysis employed multiple approach of evidence looking an issue from each primary science teachers and used triangulation method to analyze the data with aiming to make meaning of teachers' representation of teaching practice. These included descriptive statistics, CoRe interpretation, and document analysis. The results show that teachers had misunderstanding of science teaching practice and they has articulated the pedagogical content knowledge in terms of assessment, goal of teaching and linking to the context of socio cultural. In contrast, knowledge and belief of curriculum, students' understanding of content global warming, and strategies of teaching were articulated indistinct by non-graduate science teacher. Constructing opportunities for personal development, the curiosity of the student learning center, and linking context of socio-culture were the creative factor in the teaching global warming. On the other hand, the teachers had an idea that lack of technology and the defect of child's intelligence were hinder factors teaching global warming.

  14. Urbanization Causes Increased Cloud Base Height and Decreased Fog in Coastal Southern California

    NASA Technical Reports Server (NTRS)

    Williams, A. Park; Schwartz, Rachel E.; Iacobellis, Sam; Seager, Richard; Cook, Benjamin I.; Still, Christopher J.; Husak, Gregory; Michaelsen, Joel

    2015-01-01

    Subtropical marine stratus clouds regulate coastal and global climate, but future trends in these clouds are uncertain. In coastal Southern California (CSCA), interannual variations in summer stratus cloud occurrence are spatially coherent across 24 airfields and dictated by positive relationships with stability above the marine boundary layer (MBL) and MBL height. Trends, however, have been spatially variable since records began in the mid-1900s due to differences in nighttime warming. Among CSCA airfields, differences in nighttime warming, but not daytime warming, are strongly and positively related to fraction of nearby urban cover, consistent with an urban heat island effect. Nighttime warming raises the near-surface dew point depression, which lifts the altitude of condensation and cloud base height, thereby reducing fog frequency. Continued urban warming, rising cloud base heights, and associated effects on energy and water balance would profoundly impact ecological and human systems in highly populated and ecologically diverse CSCA.

  15. Warming caused by cumulative carbon emissions towards the trillionth tonne.

    PubMed

    Allen, Myles R; Frame, David J; Huntingford, Chris; Jones, Chris D; Lowe, Jason A; Meinshausen, Malte; Meinshausen, Nicolai

    2009-04-30

    Global efforts to mitigate climate change are guided by projections of future temperatures. But the eventual equilibrium global mean temperature associated with a given stabilization level of atmospheric greenhouse gas concentrations remains uncertain, complicating the setting of stabilization targets to avoid potentially dangerous levels of global warming. Similar problems apply to the carbon cycle: observations currently provide only a weak constraint on the response to future emissions. Here we use ensemble simulations of simple climate-carbon-cycle models constrained by observations and projections from more comprehensive models to simulate the temperature response to a broad range of carbon dioxide emission pathways. We find that the peak warming caused by a given cumulative carbon dioxide emission is better constrained than the warming response to a stabilization scenario. Furthermore, the relationship between cumulative emissions and peak warming is remarkably insensitive to the emission pathway (timing of emissions or peak emission rate). Hence policy targets based on limiting cumulative emissions of carbon dioxide are likely to be more robust to scientific uncertainty than emission-rate or concentration targets. Total anthropogenic emissions of one trillion tonnes of carbon (3.67 trillion tonnes of CO(2)), about half of which has already been emitted since industrialization began, results in a most likely peak carbon-dioxide-induced warming of 2 degrees C above pre-industrial temperatures, with a 5-95% confidence interval of 1.3-3.9 degrees C.

  16. Global Warming.

    ERIC Educational Resources Information Center

    Hileman, Bette

    1989-01-01

    States the foundations of the theory of global warming. Describes methodologies used to measure the changes in the atmosphere. Discusses steps currently being taken in the United States and the world to slow the warming trend. Recognizes many sources for the warming and the possible effects on the earth. (MVL)

  17. Turkish Students' Ideas about Global Warming

    ERIC Educational Resources Information Center

    Kilinc, Ahmet; Stanisstreet, Martin; Boyes, Edward

    2008-01-01

    A questionnaire was used to explore the prevalence of ideas about global warming in Year 10 (age 15-16 years) school students in Turkey. The frequencies of individual scientific ideas and misconceptions about the causes, consequences and "cures" of global warming were identified. In addition, several general findings emerged from this…

  18. Exploring the Sociopolitical Dimensions of Global Warming

    ERIC Educational Resources Information Center

    Sadler, Troy D.; Klosterman, Michelle L.

    2009-01-01

    The authors present an activity to help high school students conceptualize the sociopolitical complexity of global warming through an exploration of varied perspectives on the issue. They argue that socioscientific issues such as global warming present important contexts for learning science and that the social and political dimensions of these…

  19. 78 FR 21871 - Protection of Stratospheric Ozone: Revision of the Venting Prohibition for Specific Refrigerant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2013-04-12

    ... Register GWP--Global warming potential HCFC-22--the chemical chlorodifluoromethane, CAS Reg No. 75-45-6... global warming potential. Second, EPA determines whether and to what extent such venting, release, or... discussed four types of environmental risks: ozone depletion potential, global warming potential, volatile...

  20. Global Warming Threatens National Interests in the Arctic

    DTIC Science & Technology

    2009-03-26

    Global warming has impacted the Arctic Ocean by significantly reducing the extent of the summer ice cover allowing greater access to the region...increased operations in the Arctic region, and DoD must continue to research and develop new and alternate energy sources for its forces. Global warming is

  1. The Army’s Carbon Bootprint

    DTIC Science & Technology

    2009-05-06

    GWP relative to CO2 • GWP is determined by stability of the chemical in the atmosphere and its capacity to influence global warming Global Warming Potential...GWP) Mr. Larry Webber/(410)436-1231/ Lawrence.webber.us.army.mil 06MAY2009 The Army’s Carbon Bootprint Greenhouse Gas (GHG) Global Warming Potential

  2. Situational Influences upon Children's Beliefs about Global Warming and Energy

    ERIC Educational Resources Information Center

    Devine-Wright, Patrick; Devine-Wright, Hannah; Fleming, Paul

    2004-01-01

    This paper explores children's beliefs about global warming and energy sources from a psychological perspective, focusing upon situational influences upon subjective beliefs, including perceived self-efficacy. The context of the research is one of growing concern at the potential impacts of global warming, yet demonstrably low levels of…

  3. 40 CFR 1037.115 - Other requirements.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... rate by multiplying it by the global warming potential of your refrigerant and dividing the product by 1430 (which is the global warming potential of HFC-134a). Apply this adjustment before comparing your leakage rate to the standard. Determine global warming potentials consistent with 40 CFR 86.1866. Note...

  4. 40 CFR 1037.115 - Other requirements.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... rate by multiplying it by the global warming potential of your refrigerant and dividing the product by 1430 (which is the global warming potential of HFC-134a). Apply this adjustment before comparing your leakage rate to the standard. Determine global warming potentials consistent with 40 CFR 86.1866. Note...

  5. Why Popper can't resolve the debate over global warming: Problems with the uses of philosophy of science in the media and public framing of the science of global warming.

    PubMed

    Mercer, David

    2018-02-01

    A notable feature in the public framing of debates involving the science of Anthropogenic Global Warming are appeals to uncritical 'positivist' images of the ideal scientific method. Versions of Sir Karl Popper's philosophy of falsification appear most frequently, featuring in many Web sites and broader media. This use of pop philosophy of science forms part of strategies used by critics, mainly from conservative political backgrounds, to manufacture doubt, by setting unrealistic standards for sound science, in the veracity of science of Anthropogenic Global Warming. It will be shown, nevertheless, that prominent supporters of Anthropogenic Global Warming science also often use similar references to Popper to support their claims. It will also be suggested that this pattern reflects longer traditions of the use of Popperian philosophy of science in controversial settings, particularly in the United States, where appeals to the authority of science to legitimize policy have been most common. It will be concluded that studies of the science of Anthropogenic Global Warming debate would benefit from taking greater interest in questions raised by un-reflexive and politically expedient public understanding(s) of the philosophy of science of both critics and supporters of the science of Anthropogenic Global Warming.

  6. The effect of global warming on infectious diseases.

    PubMed

    Kurane, Ichiro

    2010-12-01

    Global warming has various effects on human health. The main indirect effects are on infectious diseases. Although the effects on infectious diseases will be detected worldwide, the degree and types of the effect are different, depending on the location of the respective countries and socioeconomical situations. Among infectious diseases, water- and foodborne infectious diseases and vector-borne infectious diseases are two main categories that are forecasted to be most affected. The effect on vector-borne infectious diseases such as malaria and dengue fever is mainly because of the expansion of the infested areas of vector mosquitoes and increase in the number and feeding activity of infected mosquitoes. There will be increase in the number of cases with water- and foodborne diarrhoeal diseases. Even with the strongest mitigation procedures, global warming cannot be avoided for decades. Therefore, implementation of adaptation measures to the effect of global warming is the most practical action we can take. It is generally accepted that the impacts of global warming on infectious diseases have not been apparent at this point yet in East Asia. However, these impacts will appear in one form or another if global warming continues to progress in future. Further research on the impacts of global warming on infectious diseases and on future prospects should be conducted.

  7. Unabated global surface temperature warming: evaluating the evidence

    NASA Astrophysics Data System (ADS)

    Karl, T. R.; Arguez, A.

    2015-12-01

    New insights related to time-dependent bias corrections in global surface temperatures have led to higher rates of warming over the past few decades than previously reported in the IPCC Fifth Assessment Report (2014). Record high global temperatures in the past few years have also contributed to larger trends. The combination of these factors and new analyses of the rate of temperature change show unabated global warming since at least the mid-Twentieth Century. New time-dependent bias corrections account for: (1) differences in temperatures measured from ships and drifting buoys; (2) improved corrections to ship measured temperatures; and (3) the larger rates of warming in polar regions (particularly the Arctic). Since 1951, the period over which IPCC (2014) attributes over half of the observed global warming to human causes, it is shown that there has been a remarkably robust and sustained warming, punctuated with inter-annual and decadal variability. This finding is confirmed through simple trend analysis and Empirical Mode Decomposition (EMD). Trend analysis however, especially for decadal trends, is sensitive to selection bias of beginning and ending dates. EMD has no selection bias. Additionally, it can highlight both short- and long-term processes affecting the global temperature times series since it addresses both non-linear and non-stationary processes. For the new NOAA global temperature data set, our analyses do not support the notion of a hiatus or slowing of long-term global warming. However, sub-decadal periods of little (or no warming) and rapid warming can also be found, clearly showing the impact of inter-annual and decadal variability that previously has been attributed to both natural and human-induced non-greenhouse forcings.

  8. The coastal ocean response to the global warming acceleration and hiatus

    PubMed Central

    Liao, Enhui; Lu, Wenfang; Yan, Xiao-Hai; Jiang, Yuwu; Kidwell, Autumn

    2015-01-01

    Coastlines are fundamental to humans for habitation, commerce, and natural resources. Many coastal ecosystem disasters, caused by extreme sea surface temperature (SST), were reported when the global climate shifted from global warming to global surface warming hiatus after 1998. The task of understanding the coastal SST variations within the global context is an urgent matter. Our study on the global coastal SST from 1982 to 2013 revealed a significant cooling trend in the low and mid latitudes (31.4% of the global coastlines) after 1998, while 17.9% of the global coastlines changed from a cooling trend to a warming trend concurrently. The trend reversals in the Northern Pacific and Atlantic coincided with the phase shift of Pacific Decadal Oscillation and North Atlantic Oscillation, respectively. These coastal SST changes are larger than the changes of the global mean and open ocean, resulting in a fast increase of extremely hot/cold days, and thus extremely hot/cold events. Meanwhile, a continuous increase of SST was detected for a considerable portion of coastlines (46.7%) with a strengthened warming along the coastlines in the high northern latitudes. This suggests the warming still continued and strengthened in some regions after 1998, but with a weaker pattern in the low and mid latitudes. PMID:26568024

  9. The coastal ocean response to the global warming acceleration and hiatus.

    PubMed

    Liao, Enhui; Lu, Wenfang; Yan, Xiao-Hai; Jiang, Yuwu; Kidwell, Autumn

    2015-11-16

    Coastlines are fundamental to humans for habitation, commerce, and natural resources. Many coastal ecosystem disasters, caused by extreme sea surface temperature (SST), were reported when the global climate shifted from global warming to global surface warming hiatus after 1998. The task of understanding the coastal SST variations within the global context is an urgent matter. Our study on the global coastal SST from 1982 to 2013 revealed a significant cooling trend in the low and mid latitudes (31.4% of the global coastlines) after 1998, while 17.9% of the global coastlines changed from a cooling trend to a warming trend concurrently. The trend reversals in the Northern Pacific and Atlantic coincided with the phase shift of Pacific Decadal Oscillation and North Atlantic Oscillation, respectively. These coastal SST changes are larger than the changes of the global mean and open ocean, resulting in a fast increase of extremely hot/cold days, and thus extremely hot/cold events. Meanwhile, a continuous increase of SST was detected for a considerable portion of coastlines (46.7%) with a strengthened warming along the coastlines in the high northern latitudes. This suggests the warming still continued and strengthened in some regions after 1998, but with a weaker pattern in the low and mid latitudes.

  10. Warm summers during the Younger Dryas cold reversal.

    PubMed

    Schenk, Frederik; Väliranta, Minna; Muschitiello, Francesco; Tarasov, Lev; Heikkilä, Maija; Björck, Svante; Brandefelt, Jenny; Johansson, Arne V; Näslund, Jens-Ove; Wohlfarth, Barbara

    2018-04-24

    The Younger Dryas (YD) cold reversal interrupts the warming climate of the deglaciation with global climatic impacts. The sudden cooling is typically linked to an abrupt slowdown of the Atlantic Meridional Overturning Circulation (AMOC) in response to meltwater discharges from ice sheets. However, inconsistencies regarding the YD-response of European summer temperatures have cast doubt whether the concept provides a sufficient explanation. Here we present results from a high-resolution global climate simulation together with a new July temperature compilation based on plant indicator species and show that European summers remain warm during the YD. Our climate simulation provides robust physical evidence that atmospheric blocking of cold westerly winds over Fennoscandia is a key mechanism counteracting the cooling impact of an AMOC-slowdown during summer. Despite the persistence of short warm summers, the YD is dominated by a shift to a continental climate with extreme winter to spring cooling and short growing seasons.

  11. Middle Pliocene sea surface temperature variability

    USGS Publications Warehouse

    Dowsett, H.J.; Chandler, M.A.; Cronin, T. M.; Dwyer, Gary S.

    2005-01-01

    Estimates of sea surface temperature (SST) based upon foraminifer, diatom, and ostracod assemblages from ocean cores reveal a warm phase of the Pliocene between about 3.3 and 3.0 Ma. Pollen records and plant megafossils, although not as well dated, show evidence for a warmer climate at about the same time. Increased greenhouse forcing and altered ocean heat transport are the leading candidates for the underlying cause of Pliocene global warmth. Despite being a period of global warmth, this interval encompasses considerable variability. Two new SST reconstructions are presented that are designed to provide a climatological error bar for warm peak phases of the Pliocene and to document the spatial distribution and magnitude of SST variability within the mid-Pliocene warm period. These data suggest long-term stability of low-latitude SST and document greater variability in regions of maximum warming. Copyright 2005 by the American Geophysical Union.

  12. Recent decrease in typhoon destructive potential and global warming implications.

    PubMed

    Lin, I-I; Chan, Johnny C L

    2015-05-20

    Typhoons (tropical cyclones) severely impact the half-billion population of the Asian Pacific. Intriguingly, during the recent decade, typhoon destructive potential (Power Dissipation Index, PDI) has decreased considerably (by ∼ 35%). This decrease, paradoxically, has occurred despite the increase in typhoon intensity and ocean warming. Using the method proposed by Emanuel (in 2007), we show that the stronger negative contributions from typhoon frequency and duration, decrease to cancel the positive contribution from the increasing intensity, controlling the PDI. Examining the typhoons' environmental conditions, we find that although the ocean condition became more favourable (warming) in the recent decade, the atmospheric condition 'worsened' at the same time. The 'worsened' atmospheric condition appears to effectively overpower the 'better' ocean conditions to suppress PDI. This stronger negative contribution from reduced typhoon frequency over the increased intensity is also present under the global warming scenario, based on analysis of the simulated typhoon data from high-resolution modelling.

  13. Global temperatures and the global warming ``debate''

    NASA Astrophysics Data System (ADS)

    Aubrecht, Gordon

    2009-04-01

    Many ordinary citizens listen to pronouncements on talk radio casting doubt on anthropogenic global warming. Some op-ed columnists likewise cast doubts, and are read by credulous citizens. For example, on 8 March 2009, the Boston Globe published a column by Jeff Jacoby, ``Where's global warming?'' According to Jacoby, ``But it isn't such hints of a planetary warming trend that have been piling up in profusion lately. Just the opposite.'' He goes on to write, ``the science of climate change is not nearly as important as the religion of climate change,'' and blamed Al Gore for getting his mistaken views accepted. George Will at the Washington Post also expressed denial. As a result, 44% of U.S. voters, according to the January 19 2009 Rasmussen Report, blame long-term planetary trends for global warming, not human beings. Is there global cooling, as skeptics claim? We examine the temperature record.

  14. Scale-dependency of the global mean surface temperature trend and its implication for the recent hiatus of global warming.

    PubMed

    Lin, Yong; Franzke, Christian L E

    2015-08-11

    Studies of the global mean surface temperature trend are typically conducted at a single (usually annual or decadal) time scale. The used scale does not necessarily correspond to the intrinsic scales of the natural temperature variability. This scale mismatch complicates the separation of externally forced temperature trends from natural temperature fluctuations. The hiatus of global warming since 1999 has been claimed to show that human activities play only a minor role in global warming. Most likely this claim is wrong due to the inadequate consideration of the scale-dependency in the global surface temperature (GST) evolution. Here we show that the variability and trend of the global mean surface temperature anomalies (GSTA) from January 1850 to December 2013, which incorporate both land and sea surface data, is scale-dependent and that the recent hiatus of global warming is mainly related to natural long-term oscillations. These results provide a possible explanation of the recent hiatus of global warming and suggest that the hiatus is only temporary.

  15. Black carbon reduction will weaken the aerosol net cooling effect

    NASA Astrophysics Data System (ADS)

    Wang, Z. L.; Zhang, H.; Zhang, X. Y.

    2014-12-01

    Black carbon (BC), a distinct type of carbonaceous material formed from the incomplete combustion of fossil and biomass based fuels under certain conditions, can interact with solar radiation and clouds through its strong light-absorption ability, thereby warming the Earth's climate system. Some studies have even suggested that global warming could be slowed down in a short term by eliminating BC emission due to its short lifetime. In this study, we estimate the influence of removing some sources of BC and other co-emitted species on the aerosol radiative effect by using an aerosol-climate coupled model BCC_AGCM2.0.1_CUACE/Aero, in combination with the aerosol emissions from the Representative Concentration Pathways (RCPs) scenarios. We find that the global annual mean aerosol net cooling effect at the top of the atmosphere (TOA) will be enhanced by 0.12 W m-2 compared with present-day conditions if the BC emission is reduced exclusively to the level projected for 2100 based on the RCP2.6 scenario. This will be beneficial for the mitigation of global warming. However, the global annual mean aerosol net cooling effect at the TOA will be weakened by 1.7-2.0 W m-2 relative to present-day conditions if emissions of BC and co-emitted sulfur dioxide and organic carbon are simultaneously reduced as the most close conditions to the actual situation to the level projected for 2100 in different ways based on the RCP2.6, RCP4.5, and RCP8.5 scenarios. Because there are no effective ways to remove the BC exclusively without influencing the other co-emitted components, our results therefore indicate that a reduction in BC emission can lead to an unexpected warming on the Earth's climate system in the future.

  16. Global Warming, Africa and National Security

    DTIC Science & Technology

    2008-01-15

    African populations. This includes awareness from a global perspective in line with The Army Strategy for the Environment, the UN’s Intergovernmental...2 attention. At the time, computer models did not indicate a significant issue with global warming suggesting only a modest increase of 2°C9...projected climate changes. Current Science The science surrounding climate change and global warming was, until recently, a point of

  17. Impaired ecosystem process despite little effects on populations: modeling combined effects of warming and toxicants.

    PubMed

    Galic, Nika; Grimm, Volker; Forbes, Valery E

    2017-08-01

    Freshwater ecosystems are exposed to many stressors, including toxic chemicals and global warming, which can impair, separately or in combination, important processes in organisms and hence higher levels of organization. Investigating combined effects of warming and toxicants has been a topic of little research, but neglecting their combined effects may seriously misguide management efforts. To explore how toxic chemicals and warming, alone and in combination, propagate across levels of biological organization, including a key ecosystem process, we developed an individual-based model (IBM) of a freshwater amphipod detritivore, Gammarus pseudolimnaeus, feeding on leaf litter. In this IBM, life history emerges from the individuals' energy budgets. We quantified, in different warming scenarios (+1-+4 °C), the effects of hypothetical toxicants on suborganismal processes, including feeding, somatic and maturity maintenance, growth, and reproduction. Warming reduced mean adult body sizes and population abundance and biomass, but only in the warmest scenarios. Leaf litter processing, a key contributor to ecosystem functioning and service delivery in streams, was consistently enhanced by warming, through strengthened interaction between the detritivorous consumer and its resource. Toxicant effects on feeding and maintenance resulted in initially small adverse effects on consumers, but ultimately led to population extinction and loss of ecosystem process. Warming in combination with toxicants had little effect at the individual and population levels, but ecosystem process was impaired in the warmer scenarios. Our results suggest that exposure to the same amount of toxicants can disproportionately compromise ecosystem processing depending on global warming scenarios; for example, reducing organismal feeding rates by 50% will reduce resource processing by 50% in current temperature conditions, but by up to 200% with warming of 4 °C. Our study has implications for assessing and monitoring impacts of chemicals on ecosystems facing global warming. We advise complementing existing monitoring approaches with directly quantifying ecosystem processes and services. © 2017 John Wiley & Sons Ltd.

  18. Projection of heat waves over China for eight different global warming targets using 12 CMIP5 models

    NASA Astrophysics Data System (ADS)

    Guo, Xiaojun; Huang, Jianbin; Luo, Yong; Zhao, Zongci; Xu, Ying

    2017-05-01

    Simulation and projection of the characteristics of heat waves over China were investigated using 12 CMIP5 global climate models and the CN05.1 observational gridded dataset. Four heat wave indices (heat wave frequency, longest heat wave duration, heat wave days, and high temperature days) were adopted in the analysis. Evaluations of the 12 CMIP5 models and their ensemble indicated that the multi-model ensemble could capture the spatiotemporal characteristics of heat wave variation over China. The inter-decadal variations of heat waves during 1961-2005 can be well simulated by multi-model ensemble. Based on model projections, the features of heat waves over China for eight different global warming targets (1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.5, and 5.0 °C) were explored. The results showed that the frequency and intensity of heat waves would increase more dramatically as the global mean temperature rise attained higher warming targets. Under the RCP8.5 scenario, the four China-averaged heat wave indices would increase from about 1.0 times/year, 2.5, 5.4, and 13.8 days/year to about 3.2 times/year, 14.0, 32.0, and 31.9 days/year for 1.5 and 5.0 °C warming targets, respectively. Those regions that suffer severe heat waves in the base climate would experience the heat waves with greater frequency and severity following global temperature rise. It is also noteworthy that the areas in which a greater number of severe heat waves occur displayed considerable expansion. Moreover, the model uncertainties exhibit a gradual enhancement with projected time extending from 2006 to 2099.

  19. The mid-Cretaceous super plume, carbon dioxide, and global warming

    NASA Technical Reports Server (NTRS)

    Caldeira, Ken; Rampino, Michael R.

    1991-01-01

    Carbon-dioxide releases associated with a mid-Cretaceous super plume and the emplacement of the Ontong-Java Plateau have been suggested as a principal cause of the mid-Cretaceous global warming. A carbonate-silicate cycle model is developed to quantify the possible climatic effects of these CO2 releases, utilizing four different formulations for the rate of silicate-rock weathering as a function of atmospheric CO2. CO2 emissions resulting from super-plume tectonics could have produced atmospheric CO2 levels from 3.7 to 14.7 times the modern preindustrial value of 285 ppm. Based on the temperature sensitivity to CO2 increases used in the weathering-rate formulations, this would cause a global warming of from 2.8 to 7.7 C over today's glogal mean temperature. Altered continental positions and higher sea level may have been contributed about 4.8 C to mid-Cretaceous warming. Thus, the combined effects of paleogeographic changes and super-plume related CO2 emissions could be in the range of 7.6 to 12.5 C, within the 6 to 14 C range previously estimated for mid-Cretaceous warming. CO2 releases from oceanic plateaus alone are unlikely to have been directly responsible for more than 20 percent of the mid-Cretaceous increase in atmospheric CO2.

  20. Global Warming: Lessons from Ozone Depletion

    ERIC Educational Resources Information Center

    Hobson, Art

    2010-01-01

    My teaching and textbook have always covered many physics-related social issues, including stratospheric ozone depletion and global warming. The ozone saga is an inspiring good-news story that's instructive for solving the similar but bigger problem of global warming. Thus, as soon as students in my physics literacy course at the University of…

  1. 40 CFR Appendix H to Subpart G of... - Substitutes Subject to Use Restrictions and Unacceptable Substitutes, Effective May 28, 1999

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    .... Actual contributions to global warming depend upon the quantities emitted. See additional comments 1, 2.... Actual contributions to global warming depend upon the quantities of PFCs emitted. See additional.... Actual contributions to global warming depend upon the quantities of PFCs emitted. See additional...

  2. Presenting Global Warming and Evolution as Public Health Issues to Encourage Acceptance of Scientific Evidence

    ERIC Educational Resources Information Center

    Stover, Shawn K.; McArthur, Laurence B.; Mabry, Michelle L.

    2013-01-01

    Although evidence supporting anthropogenic global warming and evolution by natural selection is considerable, the public does not embrace these concepts. The current study explores the hypothesis that individuals will become more receptive to scientific viewpoints if evidence for evolution and implications of global warming are presented as issues…

  3. A New Type of Debate for Global Warming and Scientific Literacy

    ERIC Educational Resources Information Center

    Gautier, Catherine

    2012-01-01

    Expanding on some ideas introduced in the paper by Albe and Gombert (2012) "Students' communication, argumentation and knowledge in a citizen' conference on global warming", I explore two issues relevant to their work: global warming (GW) as a socioscientific controversy and scientific literacy in regards to climate change science. For the first…

  4. 77 FR 23209 - Endangered and Threatened Species; Proposed Delisting of Eastern DPS of Steller Sea Lions

    Federal Register 2010, 2011, 2012, 2013, 2014

    2012-04-18

    ... five potential sources of threat under this factor: 1. Global Climate Warming and Ocean Acidification... 5. Oil and Gas Development. Global climate warming and ocean acidification pose a potential threat... information suggests it is likely that global warming and ocean acidification may affect eastern North Pacific...

  5. 40 CFR Appendix A to Subpart G of... - Substitutes Subject to Use Restrictions and Unacceptable Substitutes

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... characteristic of concern for PFCs is that they have long atmospheric lifetimes and high global warming potentials. Although actual contributions to global warming depend upon the quantities of PFCs emitted, the... characteristic of concern for PFCs is that they have long atmospheric lifetimes and high global warming...

  6. 40 CFR Appendix A to Subpart G of... - Substitutes Subject to Use Restrictions and Unacceptable Substitutes

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... characteristic of concern for PFCs is that they have long atmospheric lifetimes and high global warming potentials. Although actual contributions to global warming depend upon the quantities of PFCs emitted, the... for PFCs is that they have long atmospheric lifetimes and high global warming potentials. Although...

  7. 40 CFR Appendix A to Subpart G of... - Substitutes Subject to Use Restrictions and Unacceptable Substitutes

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... characteristic of concern for PFCs is that they have long atmospheric lifetimes and high global warming potentials. Although actual contributions to global warming depend upon the quantities of PFCs emitted, the... characteristic of concern for PFCs is that they have long atmospheric lifetimes and high global warming...

  8. 40 CFR Appendix A to Subpart G of... - Substitutes Subject to Use Restrictions and Unacceptable Substitutes

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... characteristic of concern for PFCs is that they have long atmospheric lifetimes and high global warming potentials. Although actual contributions to global warming depend upon the quantities of PFCs emitted, the... characteristic of concern for PFCs is that they have long atmospheric lifetimes and high global warming...

  9. Is Global Warming likely to cause an increased incidence of Malaria?

    PubMed

    Nabi, Sa; Qader, Ss

    2009-03-01

    The rise in the average temperature of earth has been described as global warming which is mainly attributed to the increasing phenomenon of the greenhouse effect. It is believed that global warming can have several harmful effects on human health, both directly and indirectly. Since malaria is greatly influenced by climatic conditions because of its direct relationship with the mosquito population, it is widely assumed that its incidence is likely to increase in a future warmer world.This review article discusses the two contradictory views regarding the association of global warming with an increased incidence of malaria. On one hand, there are many who believe that there is a strong association between the recent increase in malaria incidence and global warming. They predict that as global warming continues, malaria is set to spread in locations where previously it was limited, due to cooler climate. On the other hand, several theories have been put forward which are quite contrary to this prediction. There are multiple other factors which are accountable for the recent upsurge of malaria: for example drug resistance, mosquito control programs, public health facilities, and living standards.

  10. Consensus on consensus: a synthesis of consensus estimates on human-caused global warming

    NASA Astrophysics Data System (ADS)

    Cook, John; Oreskes, Naomi; Doran, Peter T.; Anderegg, William R. L.; Verheggen, Bart; Maibach, Ed W.; Carlton, J. Stuart; Lewandowsky, Stephan; Skuce, Andrew G.; Green, Sarah A.; Nuccitelli, Dana; Jacobs, Peter; Richardson, Mark; Winkler, Bärbel; Painting, Rob; Rice, Ken

    2016-04-01

    The consensus that humans are causing recent global warming is shared by 90%-100% of publishing climate scientists according to six independent studies by co-authors of this paper. Those results are consistent with the 97% consensus reported by Cook et al (Environ. Res. Lett. 8 024024) based on 11 944 abstracts of research papers, of which 4014 took a position on the cause of recent global warming. A survey of authors of those papers (N = 2412 papers) also supported a 97% consensus. Tol (2016 Environ. Res. Lett. 11 048001) comes to a different conclusion using results from surveys of non-experts such as economic geologists and a self-selected group of those who reject the consensus. We demonstrate that this outcome is not unexpected because the level of consensus correlates with expertise in climate science. At one point, Tol also reduces the apparent consensus by assuming that abstracts that do not explicitly state the cause of global warming (‘no position’) represent non-endorsement, an approach that if applied elsewhere would reject consensus on well-established theories such as plate tectonics. We examine the available studies and conclude that the finding of 97% consensus in published climate research is robust and consistent with other surveys of climate scientists and peer-reviewed studies.

  11. Considering time in LCA: dynamic LCA and its application to global warming impact assessments.

    PubMed

    Levasseur, Annie; Lesage, Pascal; Margni, Manuele; Deschênes, Louise; Samson, Réjean

    2010-04-15

    The lack of temporal information is an important limitation of life cycle assessment (LCA). A dynamic LCA approach is proposed to improve the accuracy of LCA by addressing the inconsistency of temporal assessment. This approach consists of first computing a dynamic life cycle inventory (LCI), considering the temporal profile of emissions. Then, time-dependent characterization factors are calculated to assess the dynamic LCI in real-time impact scores for any given time horizon. Although generally applicable to any impact category, this approach is developed here for global warming, based on the radiative forcing concept. This case study demonstrates that the use of global warming potentials for a given time horizon to characterize greenhouse gas emissions leads to an inconsistency between the time frame chosen for the analysis and the time period covered by the LCA results. Dynamic LCA is applied to the US EPA LCA on renewable fuels, which compares the life cycle greenhouse gas emissions of different biofuels with fossil fuels including land-use change emissions. The comparison of the results obtained with both traditional and dynamic LCA approaches shows that the difference can be important enough to change the conclusions on whether or not a biofuel meets some given global warming reduction targets.

  12. Alternative "global warming" metrics in life cycle assessment: a case study with existing transportation data.

    PubMed

    Peters, Glen P; Aamaas, Borgar; T Lund, Marianne; Solli, Christian; Fuglestvedt, Jan S

    2011-10-15

    The Life Cycle Assessment (LCA) impact category "global warming" compares emissions of long-lived greenhouse gases (LLGHGs) using Global Warming Potential (GWP) with a 100-year time-horizon as specified in the Kyoto Protocol. Two weaknesses of this approach are (1) the exclusion of short-lived climate forcers (SLCFs) and biophysical factors despite their established importance, and (2) the use of a particular emission metric (GWP) with a choice of specific time-horizons (20, 100, and 500 years). The GWP and the three time-horizons were based on an illustrative example with value judgments and vague interpretations. Here we illustrate, using LCA data of the transportation sector, the importance of SLCFs relative to LLGHGs, different emission metrics, and different treatments of time. We find that both the inclusion of SLCFs and the choice of emission metric can alter results and thereby change mitigation priorities. The explicit inclusion of time, both for emissions and impacts, can remove value-laden assumptions and provide additional information for impact assessments. We believe that our results show that a debate is needed in the LCA community on the impact category "global warming" covering which emissions to include, the emission metric(s) to use, and the treatment of time.

  13. Wetter subtropics in a warmer world: Contrasting past and future hydrological cycles

    NASA Astrophysics Data System (ADS)

    Burls, Natalie J.; Fedorov, Alexey V.

    2017-12-01

    During the warm Miocene and Pliocene Epochs, vast subtropical regions had enough precipitation to support rich vegetation and fauna. Only with global cooling and the onset of glacial cycles some 3 Mya, toward the end of the Pliocene, did the broad patterns of arid and semiarid subtropical regions become fully developed. However, current projections of future global warming caused by CO2 rise generally suggest the intensification of dry conditions over these subtropical regions, rather than the return to a wetter state. What makes future projections different from these past warm climates? Here, we investigate this question by comparing a typical quadrupling-of-CO2 experiment with a simulation driven by sea-surface temperatures closely resembling available reconstructions for the early Pliocene. Based on these two experiments and a suite of other perturbed climate simulations, we argue that this puzzle is explained by weaker atmospheric circulation in response to the different ocean surface temperature patterns of the Pliocene, specifically reduced meridional and zonal temperature gradients. Thus, our results highlight that accurately predicting the response of the hydrological cycle to global warming requires predicting not only how global mean temperature responds to elevated CO2 forcing (climate sensitivity) but also accurately quantifying how meridional sea-surface temperature patterns will change (structural climate sensitivity).

  14. Comparing the model-simulated global warming signal to observations using empirical estimates of unforced noise.

    PubMed

    Brown, Patrick T; Li, Wenhong; Cordero, Eugene C; Mauget, Steven A

    2015-04-21

    The comparison of observed global mean surface air temperature (GMT) change to the mean change simulated by climate models has received much public and scientific attention. For a given global warming signal produced by a climate model ensemble, there exists an envelope of GMT values representing the range of possible unforced states of the climate system (the Envelope of Unforced Noise; EUN). Typically, the EUN is derived from climate models themselves, but climate models might not accurately simulate the correct characteristics of unforced GMT variability. Here, we simulate a new, empirical, EUN that is based on instrumental and reconstructed surface temperature records. We compare the forced GMT signal produced by climate models to observations while noting the range of GMT values provided by the empirical EUN. We find that the empirical EUN is wide enough so that the interdecadal variability in the rate of global warming over the 20(th) century does not necessarily require corresponding variability in the rate-of-increase of the forced signal. The empirical EUN also indicates that the reduced GMT warming over the past decade or so is still consistent with a middle emission scenario's forced signal, but is likely inconsistent with the steepest emission scenario's forced signal.

  15. Comparing the model-simulated global warming signal to observations using empirical estimates of unforced noise

    PubMed Central

    Brown, Patrick T.; Li, Wenhong; Cordero, Eugene C.; Mauget, Steven A.

    2015-01-01

    The comparison of observed global mean surface air temperature (GMT) change to the mean change simulated by climate models has received much public and scientific attention. For a given global warming signal produced by a climate model ensemble, there exists an envelope of GMT values representing the range of possible unforced states of the climate system (the Envelope of Unforced Noise; EUN). Typically, the EUN is derived from climate models themselves, but climate models might not accurately simulate the correct characteristics of unforced GMT variability. Here, we simulate a new, empirical, EUN that is based on instrumental and reconstructed surface temperature records. We compare the forced GMT signal produced by climate models to observations while noting the range of GMT values provided by the empirical EUN. We find that the empirical EUN is wide enough so that the interdecadal variability in the rate of global warming over the 20th century does not necessarily require corresponding variability in the rate-of-increase of the forced signal. The empirical EUN also indicates that the reduced GMT warming over the past decade or so is still consistent with a middle emission scenario's forced signal, but is likely inconsistent with the steepest emission scenario's forced signal. PMID:25898351

  16. Potential impacts of global warming on water resources in southern California.

    PubMed

    Beuhler, M

    2003-01-01

    Global warming will have a significant impact on water resources within the 20 to 90-year planning period of many water projects. Arid and semi-arid regions such as Southern California are especially vulnerable to anticipated negative impacts of global warming on water resources. Long-range water facility planning must consider global climate change in the recommended mix of new facilities needed to meet future water requirements. The generally accepted impacts of global warming include temperature, rising sea levels, more frequent and severe floods and droughts, and a shift from snowfall to rain. Precipitation changes are more difficult to predict. For Southern California, these impacts will be especially severe on surface water supplies. Additionally, rising sea levels will exacerbate salt-water intrusion into freshwater and impact the quality of surface water supplies. Integrated water resources planning is emerging as a tool to develop water supplies and demand management strategies that are less vulnerable to the impacts of global warming. These tools include water conservation, conjunctive use of surface and groundwater and desalination of brackish water and possibly seawater. Additionally, planning for future water needs should include explicit consideration of the potential range of global warming impacts through techniques such as scenario planning.

  17. Reduced interdecadal variability of Atlantic Meridional Overturning Circulation under global warming

    PubMed Central

    Cheng, Jun; Liu, Zhengyu; Zhang, Shaoqing; Liu, Wei; Dong, Lina; Liu, Peng; Li, Hongli

    2016-01-01

    Interdecadal variability of the Atlantic Meridional Overturning Circulation (AMOC-IV) plays an important role in climate variation and has significant societal impacts. Past climate reconstruction indicates that AMOC-IV has likely undergone significant changes. Despite some previous studies, responses of AMOC-IV to global warming remain unclear, in particular regarding its amplitude and time scale. In this study, we analyze the responses of AMOC-IV under various scenarios of future global warming in multiple models and find that AMOC-IV becomes weaker and shorter with enhanced global warming. From the present climate condition to the strongest future warming scenario, on average, the major period of AMOC-IV is shortened from ∼50 y to ∼20 y, and the amplitude is reduced by ∼60%. These reductions in period and amplitude of AMOC-IV are suggested to be associated with increased oceanic stratification under global warming and, in turn, the speedup of oceanic baroclinic Rossby waves. PMID:26951654

  18. Sources of global warming in upper ocean temperature during El Niño

    USGS Publications Warehouse

    White, Warren B.; Cayan, Daniel R.; Dettinger, Mike; Auad, Guillermo

    2001-01-01

    Global average sea surface temperature (SST) from 40°S to 60°N fluctuates ±0.3°C on interannual period scales, with global warming (cooling) during El Niño (La Niña). About 90% of the global warming during El Niño occurs in the tropical global ocean from 20°S to 20°N, half because of large SST anomalies in the tropical Pacific associated with El Niño and the other half because of warm SST anomalies occurring over ∼80% of the tropical global ocean. From examination of National Centers for Environmental Prediction [Kalnay et al., 1996] and Comprehensive Ocean-Atmosphere Data Set [Woodruff et al., 1993] reanalyses, tropical global warming during El Niño is associated with higher troposphere moisture content and cloud cover, with reduced trade wind intensity occurring during the onset phase of El Niño. During this onset phase the tropical global average diabatic heat storage tendency in the layer above the main pycnocline is 1–3 W m−2above normal. Its principal source is a reduction in the poleward Ekman heat flux out of the tropical ocean of 2–5 W m−2. Subsequently, peak tropical global warming during El Niño is dissipated by an increase in the flux of latent heat to the troposphere of 2–5 W m−2, with reduced shortwave and longwave radiative fluxes in response to increased cloud cover tending to cancel each other. In the extratropical global ocean the reduction in poleward Ekman heat flux out of the tropics during the onset of El Niño tends to be balanced by reduction in the flux of latent heat to the troposphere. Thus global warming and cooling during Earth's internal mode of interannual climate variability arise from fluctuations in the global hydrological balance, not the global radiation balance. Since it occurs in the absence of extraterrestrial and anthropogenic forcing, global warming on decadal, interdecadal, and centennial period scales may also occur in association with Earth's internal modes of climate variability on those scales.

  19. An evaluation of applying the 'Critical thinking model' to teaching global warming to junior high school students

    NASA Astrophysics Data System (ADS)

    Huang, J.; Hong, C.; Hsu, Y.

    2013-12-01

    Climate change is a consequence of interaction among the biosphere, atmosphere, hydrosphere and geosphere. The causes of climate change are extremely complicated for scientists to explain. The fact that the global climate has kept warming in the past few decades is one example. It remains controversial for scientists whether this warming is the result of human activity or natural causes. This research aims to lead students to discuss the causes of global warming from distinct and controversial viewpoints to help the students realize the uncertainty and complicated characteristics of the global warming issue. The context of applying the critical thinking model to teaching the scientific concepts of climate change and global warming is designed for use in junior high schools. The videos of the upside concept 'An Inconvenient Truth' (a 2006 documentary film directed by Davis Guggenheim) and the reverse-side concept 'The Great Global Warming Swindle' (a 2007 documentary film made by British television producer/director Martin Durkin) about the global warming crisis are incorporated into lessons in order to guide students to make their own decisions appropriately when discussing the earth climate change crisis. A questionnaire, individual teacher interviews and observations in class were conducted to evaluate the curriculum. The pre-test and post-test questionnaires showed differences in the students' knowledge, attitudes and behavior towards the global warming phenomenon before and after attending the lessons. The results show that those students who attended the whole curriculum had a significant increase in their knowledge and behavior factors of global climate (P value <0.001*). However, there was no significant improvement in their attitudes between the pre-test and post-test questionnaires (P value=0.329). From the individual interviews, the teachers who gave the lessons indicated that this project could increase the interaction with their students during class and improve the efficiency of learning.

  20. Global Warming in the 21st Century: An Alternate Scenario

    NASA Technical Reports Server (NTRS)

    Hansen, James E.

    2000-01-01

    Evidence on a broad range of time scales, from Proterozoic to the most recent periods, shows that the Earth's climate responds sensitively to global forcings. In the past few decades the Earth's surface has warmed rapidly, apparently in response to increasing anthropogenic greenhouse gases in the atmosphere. The conventional view is that the current global warming rate will continue or accelerate in the 21st century. I will describe an alternate scenario that would slow the rate of global warming and reduce the danger of dramatic climate change. But reliable prediction of future climate change requires improved knowledge of the carbon cycle and global observations that allow interpretation of ongoing climate change.

  1. Tropical Pacific variability as a key pacemaker of the global warming staircase

    NASA Astrophysics Data System (ADS)

    Kosaka, Y.; Xie, S. P.

    2016-12-01

    Global-mean surface temperature (GMST) has increased since the 19th century with notable interdecadal accelerations and slowdowns, forming the global-warming "staircase". The last step of this staircase is the surface warming slowdown since the late 1990s, for which the transition of the Interdecadal Pacific Oscillation (IPO) from a positive to negative state has been suggested as the leading mechanism. To examine the role of IPO in the entire warming staircase, a long pacemaker experiment is performed with a coupled climate model where tropical Pacific sea surface temperatures are forced to follow the observed evolution since the late 19th century. The pacemaker experiment successfully reproduces the staircase-like global warming remarkably well since 1900. Without the tropical Pacific effect, the same model produces a continual warming from the 1900s to the 1960 followed by rapid warming. The successful reproduction identifies the tropical Pacific decadal variability as a key pacemaker of the GMST staircase. We further propose a method to remove internal variability from observed GMST changes for real-time monitoring of anthropogenic warming.

  2. Greater future global warming inferred from Earth’s recent energy budget

    NASA Astrophysics Data System (ADS)

    Brown, Patrick T.; Caldeira, Ken

    2017-12-01

    Climate models provide the principal means of projecting global warming over the remainder of the twenty-first century but modelled estimates of warming vary by a factor of approximately two even under the same radiative forcing scenarios. Across-model relationships between currently observable attributes of the climate system and the simulated magnitude of future warming have the potential to inform projections. Here we show that robust across-model relationships exist between the global spatial patterns of several fundamental attributes of Earth’s top-of-atmosphere energy budget and the magnitude of projected global warming. When we constrain the model projections with observations, we obtain greater means and narrower ranges of future global warming across the major radiative forcing scenarios, in general. In particular, we find that the observationally informed warming projection for the end of the twenty-first century for the steepest radiative forcing scenario is about 15 per cent warmer (+0.5 degrees Celsius) with a reduction of about a third in the two-standard-deviation spread (-1.2 degrees Celsius) relative to the raw model projections reported by the Intergovernmental Panel on Climate Change. Our results suggest that achieving any given global temperature stabilization target will require steeper greenhouse gas emissions reductions than previously calculated.

  3. Greater future global warming inferred from Earth's recent energy budget.

    PubMed

    Brown, Patrick T; Caldeira, Ken

    2017-12-06

    Climate models provide the principal means of projecting global warming over the remainder of the twenty-first century but modelled estimates of warming vary by a factor of approximately two even under the same radiative forcing scenarios. Across-model relationships between currently observable attributes of the climate system and the simulated magnitude of future warming have the potential to inform projections. Here we show that robust across-model relationships exist between the global spatial patterns of several fundamental attributes of Earth's top-of-atmosphere energy budget and the magnitude of projected global warming. When we constrain the model projections with observations, we obtain greater means and narrower ranges of future global warming across the major radiative forcing scenarios, in general. In particular, we find that the observationally informed warming projection for the end of the twenty-first century for the steepest radiative forcing scenario is about 15 per cent warmer (+0.5 degrees Celsius) with a reduction of about a third in the two-standard-deviation spread (-1.2 degrees Celsius) relative to the raw model projections reported by the Intergovernmental Panel on Climate Change. Our results suggest that achieving any given global temperature stabilization target will require steeper greenhouse gas emissions reductions than previously calculated.

  4. The Understandings of Global Warming and Learning Styles: A Phenomenographic Analysis of Prospective Primary School Teachers

    ERIC Educational Resources Information Center

    Demirkaya, Hilmi

    2008-01-01

    In this study, statements by prospective primary school teachers such as "I think the word global warming ..." or "I think the term global warming means ..." were analyzed by using qualitative phenomenographic research methods. 142 female (48.3%) and 152 male (51.7%) primary school teacher candidates (n = 294) participated in…

  5. Metaphors of Primary School Students Relating to the Concept of Global Warming

    ERIC Educational Resources Information Center

    Dogru, Mustafa; Sarac, Esra

    2013-01-01

    The purpose of this study is to reveal the metaphors of primary school students (n = 362) relating to the concept of global warming. Data collected by completing the expression of "global warming is like..., because..." of the students were analysed by use of qualitative and quantitative data analysis techniques. According to findings of…

  6. Senior Secondary Indian Students' Views about Global Warming, and Their Implications for Education

    ERIC Educational Resources Information Center

    Chhokar, Kiran; Dua, Shweta; Taylor, Neil; Boyes, Edward; Stanisstreet, Martin

    2012-01-01

    For individuals to make informed lifestyle choices that may help to reduce global warming, they need some understanding of this phenomenon and the factors that contribute to it. However, there is a "gap" between knowledge about global warming and willingness to take personal action. So, although education may be effective in enhancing…

  7. 76 FR 29649 - Approval and Promulgation of Air Quality Implementation Plans; Pennsylvania; Adoption of Control...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-05-23

    ... global warming, through regulations that will harm the economy of the United States,'' and asserts that EPA is attempting to take such action on the issue of global warming which Congress has ``decided that... purpose of addressing global warming. IV. Final Action EPA is approving Pennsylvania's adoption of the CTG...

  8. Global Warming Responses at the Primary Secondary Interface: 1. Students' Beliefs and Willingness to Act

    ERIC Educational Resources Information Center

    Skamp, Keith; Boyes, Eddie; Stannistreet, Martin

    2009-01-01

    Using survey methodology, students' beliefs, and willingness to act, about 16 specific actions related to global warming are compared across the primary secondary interface. More primary students believed in the effectiveness of most actions to reduce global warming and were willing to take those actions. In general there was a disparity between…

  9. Does Climate Literacy Matter? A Case Study of U.S. Students' Level of Concern about Anthropogenic Global Warming

    ERIC Educational Resources Information Center

    Bedford, Daniel

    2016-01-01

    Educators seeking to address global warming in their classrooms face numerous challenges, including the question of whether student opinions about anthropogenic global warming (AGW) can change in response to increased knowledge about the climate system. This article analyzes survey responses from 458 students at a primarily undergraduate…

  10. Using Interactive Technology to Support Students' Understanding of the Greenhouse Effect and Global Warming

    ERIC Educational Resources Information Center

    Varma, Keisha; Linn, Marcia C.

    2012-01-01

    In this work, we examine middle school students' understanding of the greenhouse effect and global warming. We designed and refined a technology-enhanced curriculum module called "Global Warming: Virtual Earth". In the module activities, students conduct virtual experiments with a visualization of the greenhouse effect. They analyze data and draw…

  11. Global Warming Responses at the Primary Secondary Interface: 2. Potential Effectiveness of Education

    ERIC Educational Resources Information Center

    Skamp, Keith; Boyes, Eddie; Stannistreet, Martin

    2009-01-01

    In an earlier paper (Skamp, Boyes, & Stanisstreet, 2009b), students' beliefs and willingness to act in relation to 16 specific actions related to global warming were compared across the primary secondary interface. More primary students believed in the effectiveness of most actions to reduce global warming and were willing to take those…

  12. 40 CFR 98.3 - What are the general monitoring, reporting, recordkeeping and verification requirements of this...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... request under this paragraph is approved by the Administrator. (k) Revised global warming potentials and... or more compounds in Table A-1 of this subpart, Global Warming Potentials, is not required to submit... to Table A-1 of this subpart, Global Warming Potentials. (1) Best available monitoring methods. From...

  13. Long-term warming trends in Korea and contribution of urbanization

    NASA Astrophysics Data System (ADS)

    Park, B.; Min, S. K.; Kim, Y. H.; Kim, M. K.; Choi, Y.; Boo, K. O.

    2016-12-01

    This study provides a systematic investigation of the long-term temperature trends over Korean peninsula in comparison with global temperature trends and presents an updated assessment of the contribution of urban effect. Linear trends are analyzed for three different periods over South Korea in order to consider inhomogeneity due to changes in number of stations: recent 103 years (1912-2014, 6 stations), 61 years (1954-2014, 12 stations) and 42 years (1973-2014, 48 stations). HadCRUT4, MLOST and GISS datasets are used to obtain temperature trends in global mean and each country scales for the same periods. The temperature over South Korea has increased by 1.90°C, 1.35°C, and 0.99°C during 103, 61, and 42 years, respectively. This is equivalent to 1.4-2.6 times larger warming than the global mean trends. The countries located in the Northern mid latitudes exhibit slightly weaker warming trends to Korea (about 1.5 times stronger than of global means), suggesting a considerable impact of urbanization on the local warming over Korea. Updated analyses of the urbanization effect on temperature trends over South Korea suggest that 10-45% of the warming trends are due to urbanization effect, with stronger contributions during the recent decades. First, we compared the recent 42-year temperature trends between city and rural stations using the two approaches based on previous studies. Results show that urbanization effect has contributed to 30-45% of the temperature trends. Secondly, the contribution of urbanization to the temperature increase over Korea has been indirectly estimated using 56 ensemble members of 20CRv2 reanalysis data that include no influence of urbanization. Analysis results for the three periods indicate that urbanization effect could have contributed to the local warming over Korea by 10-25%.

  14. Limiting global-mean temperature increase to 1.5-2 °C could reduce the incidence and spatial spread of dengue fever in Latin America.

    PubMed

    Colón-González, Felipe J; Harris, Ian; Osborn, Timothy J; Steiner São Bernardo, Christine; Peres, Carlos A; Hunter, Paul R; Lake, Iain R

    2018-06-12

    The Paris Climate Agreement aims to hold global-mean temperature well below 2 °C and to pursue efforts to limit it to 1.5 °C above preindustrial levels. While it is recognized that there are benefits for human health in limiting global warming to 1.5 °C, the magnitude with which those societal benefits will be accrued remains unquantified. Crucial to public health preparedness and response is the understanding and quantification of such impacts at different levels of warming. Using dengue in Latin America as a study case, a climate-driven dengue generalized additive mixed model was developed to predict global warming impacts using five different global circulation models, all scaled to represent multiple global-mean temperature assumptions. We show that policies to limit global warming to 2 °C could reduce dengue cases by about 2.8 (0.8-7.4) million cases per year by the end of the century compared with a no-policy scenario that warms by 3.7 °C. Limiting warming further to 1.5 °C produces an additional drop in cases of about 0.5 (0.2-1.1) million per year. Furthermore, we found that by limiting global warming we can limit the expansion of the disease toward areas where incidence is currently low. We anticipate our study to be a starting point for more comprehensive studies incorporating socioeconomic scenarios and how they may further impact dengue incidence. Our results demonstrate that although future climate change may amplify dengue transmission in the region, impacts may be avoided by constraining the level of warming. Copyright © 2018 the Author(s). Published by PNAS.

  15. Limiting global-mean temperature increase to 1.5–2 °C could reduce the incidence and spatial spread of dengue fever in Latin America

    PubMed Central

    Harris, Ian; Osborn, Timothy J.; Steiner São Bernardo, Christine; Peres, Carlos A.; Lake, Iain R.

    2018-01-01

    The Paris Climate Agreement aims to hold global-mean temperature well below 2 °C and to pursue efforts to limit it to 1.5 °C above preindustrial levels. While it is recognized that there are benefits for human health in limiting global warming to 1.5 °C, the magnitude with which those societal benefits will be accrued remains unquantified. Crucial to public health preparedness and response is the understanding and quantification of such impacts at different levels of warming. Using dengue in Latin America as a study case, a climate-driven dengue generalized additive mixed model was developed to predict global warming impacts using five different global circulation models, all scaled to represent multiple global-mean temperature assumptions. We show that policies to limit global warming to 2 °C could reduce dengue cases by about 2.8 (0.8–7.4) million cases per year by the end of the century compared with a no-policy scenario that warms by 3.7 °C. Limiting warming further to 1.5 °C produces an additional drop in cases of about 0.5 (0.2–1.1) million per year. Furthermore, we found that by limiting global warming we can limit the expansion of the disease toward areas where incidence is currently low. We anticipate our study to be a starting point for more comprehensive studies incorporating socioeconomic scenarios and how they may further impact dengue incidence. Our results demonstrate that although future climate change may amplify dengue transmission in the region, impacts may be avoided by constraining the level of warming. PMID:29844166

  16. JPRS Report, Environmental Issues, Japan: Response Strategies for Global Warming Studied

    DTIC Science & Technology

    1990-06-12

    views currently held both inside and outside of Japan. To cope with the global warming problem, considerations of more specific issues are needed...assessment of our common and needed efforts which are necessary in order to assess and deal with the issue of global warming more effectively....Advisory Committee on climate change. This volume contains summaries of the reports given by the members of the subgroups. Interest in the global

  17. The rise of global warming skepticism: exploring affective image associations in the United States over time.

    PubMed

    Smith, Nicholas; Leiserowitz, Anthony

    2012-06-01

    This article explores how affective image associations to global warming have changed over time. Four nationally representative surveys of the American public were conducted between 2002 and 2010 to assess public global warming risk perceptions, policy preferences, and behavior. Affective images (positive or negative feelings and cognitive representations) were collected and content analyzed. The results demonstrate a large increase in "naysayer" associations, indicating extreme skepticism about the issue of climate change. Multiple regression analyses found that holistic affect and "naysayer" associations were more significant predictors of global warming risk perceptions than cultural worldviews or sociodemographic variables, including political party and ideology. The results demonstrate the important role affective imagery plays in judgment and decision-making processes, how these variables change over time, and how global warming is currently perceived by the American public. © 2012 Society for Risk Analysis.

  18. Further evidence of the effects of global warming on lichens, particularly those with Trentepohlia phycobionts.

    PubMed

    Aptroot, A; van Herk, C M

    2007-03-01

    Increasing evidence suggests that lichens are responding to climate change in Western Europe. More epiphytic species appear to be increasing, rather than declining, as a result of global warming. Many terricolous species, in contrast, are declining. Changes to epiphytic floras are markedly more rapid in formerly heavily polluted, generally built-up or open rural areas, as compared to forested regions. Both the distribution (southern) and ecology (warmth-loving) of the newly established or increasing species seem to be determined by global warming. Epiphytic temperate to boreo-montane species appear to be relatively unaffected. Vacant niches caused by other environmental changes are showing the most pronounced effects of global warming. Species most rapidly increasing in forests, although taxonomically unrelated, all contain Trentepohlia as phycobiont in addition to having a southern distribution. This suggests that in this habitat, Trentepohlia algae, rather than the different lichen symbioses, are affected by global warming.

  19. On the differences between 1.5oC and 2oC of global warming

    NASA Astrophysics Data System (ADS)

    King, A.

    2017-12-01

    The Paris Agreement of 2015 has resulted in a drive to limit global warming to 2oC with an aim for a lower 1.5oC target. It is therefore vital that we understand some of the differences we would expect between these two levels of global warming. My research uses coupled climate model projections to investigate where and for what variables we can differentiate between worlds of 1.5oC and 2oC global warming. I place a particular focus on climate extremes and population exposure to those extremes. I have found that there are perceptible benefits in limiting global warming to 1.5oC as opposed to 2oC through reduced frequency and intensity of heat extremes, both over land and in ocean areas where thermal stress on coral has resulted in bleaching. Differences in high and low precipitation extremes between the 1.5oC and 2oC global warming levels are projected for some regions. I have also examined how "scalable" changes from the 1.5oC to 2oC level are. In areas of the world such as Eastern China I find that changes in anthropogenic aerosol concentrations will influence the level of change projected at 1.5oC and 2oC, such that past warming is likely to be a poor indicator of future changes. Overall, my research finds clear benefits to limiting global warming to 1.5oC relative to higher levels.

  20. Control of fossil-fuel particulate black carbon and organic matter, possibly the most effective method of slowing global warming

    NASA Astrophysics Data System (ADS)

    Jacobson, Mark Z.

    2002-10-01

    Under the 1997 Kyoto Protocol, no control of black carbon (BC) was considered. Here, it is found, through simulations in which 12 identifiable effects of aerosol particles on climate are treated, that any emission reduction of fossil-fuel (f.f.) particulate BC plus associated organic matter (OM) may slow global warming more than may any emission reduction of CO2 or CH4 for a specific period. When all f.f. BC + OM and anthropogenic CO2 and CH4 emissions are eliminated together, the period is 25-100 years. It is also estimated that historical net global warming can be attributed roughly to greenhouse gas plus f.f. BC + OM warming minus substantial cooling by other particles. Eliminating all f.f. BC + OM could eliminate 20-45% of net warming (8-18% of total warming before cooling is subtracted out) within 3-5 years if no other change occurred. Reducing CO2 emissions by a third would have the same effect, but after 50-200 years. Finally, diesel cars emitting continuously under the most recent U.S. and E.U. particulate standards (0.08 g/mi; 0.05 g/km) may warm climate per distance driven over the next 100+ years more than equivalent gasoline cars. Thus, fuel and carbon tax laws that favor diesel appear to promote global warming. Toughening vehicle particulate emission standards by a factor of 8 (0.01 g/mi; 0.006 g/km) does not change this conclusion, although it shortens the period over which diesel cars warm to 13-54 years. Although control of BC + OM can slow warming, control of greenhouse gases is necessary to stop warming. Reducing BC + OM will not only slow global warming but also improve human health.

  1. Estimations of global warming potentials from computational chemistry calculations for CH(2)F(2) and other fluorinated methyl species verified by comparison to experiment.

    PubMed

    Blowers, Paul; Hollingshead, Kyle

    2009-05-21

    In this work, the global warming potential (GWP) of methylene fluoride (CH(2)F(2)), or HFC-32, is estimated through computational chemistry methods. We find our computational chemistry approach reproduces well all phenomena important for predicting global warming potentials. Geometries predicted using the B3LYP/6-311g** method were in good agreement with experiment, although some other computational methods performed slightly better. Frequencies needed for both partition function calculations in transition-state theory and infrared intensities needed for radiative forcing estimates agreed well with experiment compared to other computational methods. A modified CBS-RAD method used to obtain energies led to superior results to all other previous heat of reaction estimates and most barrier height calculations when the B3LYP/6-311g** optimized geometry was used as the base structure. Use of the small-curvature tunneling correction and a hindered rotor treatment where appropriate led to accurate reaction rate constants and radiative forcing estimates without requiring any experimental data. Atmospheric lifetimes from theory at 277 K were indistinguishable from experimental results, as were the final global warming potentials compared to experiment. This is the first time entirely computational methods have been applied to estimate a global warming potential for a chemical, and we have found the approach to be robust, inexpensive, and accurate compared to prior experimental results. This methodology was subsequently used to estimate GWPs for three additional species [methane (CH(4)); fluoromethane (CH(3)F), or HFC-41; and fluoroform (CHF(3)), or HFC-23], where estimations also compare favorably to experimental values.

  2. Assessing the Global Potential and Regional Implications of Promoting Bioenergy

    EPA Science Inventory

    There is no simple answer to the question “are materials from bio-based feedstocks environmentally, and socially, preferable?” Bioenergy as an alternative energy source might be effective in reducing fossil fuel use, slowing global warming effects, and providing increased revenue...

  3. Assessing the global potential and regional implications of promoting bio-energy

    EPA Science Inventory

    There is no simple answer to the question “are materials from bio-based feedstocks environmentally, and socially, preferable?” Bioenergy as an alternative energy source might be effective in reducing fossil fuel use, slowing global warming effects, and providing increased revenue...

  4. Global warming, elevational range shifts, and lowland biotic attrition in the wet tropics.

    PubMed

    Colwell, Robert K; Brehm, Gunnar; Cardelús, Catherine L; Gilman, Alex C; Longino, John T

    2008-10-10

    Many studies suggest that global warming is driving species ranges poleward and toward higher elevations at temperate latitudes, but evidence for range shifts is scarce for the tropics, where the shallow latitudinal temperature gradient makes upslope shifts more likely than poleward shifts. Based on new data for plants and insects on an elevational transect in Costa Rica, we assess the potential for lowland biotic attrition, range-shift gaps, and mountaintop extinctions under projected warming. We conclude that tropical lowland biotas may face a level of net lowland biotic attrition without parallel at higher latitudes (where range shifts may be compensated for by species from lower latitudes) and that a high proportion of tropical species soon faces gaps between current and projected elevational ranges.

  5. The role of local sea surface temperature pattern changes in shaping climate change in the North Atlantic sector

    NASA Astrophysics Data System (ADS)

    Hand, Ralf; Keenlyside, Noel S.; Omrani, Nour-Eddine; Bader, Jürgen; Greatbatch, Richard J.

    2018-03-01

    Beside its global effects, climate change is manifested in many regionally pronounced features mainly resulting from changes in the oceanic and atmospheric circulation. Here we investigate the influence of the North Atlantic SST on shaping the winter-time response to global warming. Our results are based on a long-term climate projection with the Max Planck Institute Earth System Model (MPI-ESM) to investigate the influence of North Atlantic sea surface temperature pattern changes on shaping the atmospheric climate change signal. In sensitivity experiments with the model's atmospheric component we decompose the response into components controlled by the local SST structure and components controlled by global/remote changes. MPI-ESM simulates a global warming response in SST similar to other climate models: there is a warming minimum—or "warming hole"—in the subpolar North Atlantic, and the sharp SST gradients associated with the Gulf Stream and the North Atlantic Current shift northward by a few a degrees. Over the warming hole, global warming causes a relatively weak increase in rainfall. Beyond this, our experiments show more localized effects, likely resulting from future SST gradient changes in the North Atlantic. This includes a significant precipitation decrease to the south of the Gulf Stream despite increased underlying SSTs. Since this region is characterised by a strong band of precipitation in the current climate, this is contrary to the usual case that wet regions become wetter and dry regions become drier in a warmer climate. A moisture budget analysis identifies a complex interplay of various processes in the region of modified SST gradients: reduced surface winds cause a decrease in evaporation; and thermodynamic, modified atmospheric eddy transports, and coastal processes cause a change in the moisture convergence. The changes in the the North Atlantic storm track are mainly controlled by the non-regional changes in the forcing. The impact of the local SST pattern changes on regions outside the North Atlantic is small in our setup.

  6. A Canonical Response in Rainfall Characteristics to Global Warming: Projections by IPCC CMIP5 Models

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Wu, H. T.; Kim, K. M.

    2012-01-01

    Changes in rainfall characteristics induced by global warming are examined based on probability distribution function (PDF) analysis, from outputs of 14 IPCC (Intergovernmental Panel on Climate Change), CMIP (5th Coupled Model Intercomparison Project) models under various scenarios of increased CO2 emissions. Results show that collectively CMIP5 models project a robust and consistent global and regional rainfall response to CO2 warming. Globally, the models show a 1-3% increase in rainfall per degree rise in temperature, with a canonical response featuring large increase (100-250 %) in frequency of occurrence of very heavy rain, a reduction (5-10%) of moderate rain, and an increase (10-15%) of light rain events. Regionally, even though details vary among models, a majority of the models (>10 out of 14) project a consistent large scale response with more heavy rain events in climatologically wet regions, most pronounced in the Pacific ITCZ and the Asian monsoon. Moderate rain events are found to decrease over extensive regions of the subtropical and extratropical oceans, but increases over the extratropical land regions, and the Southern Oceans. The spatial distribution of light rain resembles that of moderate rain, but mostly with opposite polarity. The majority of the models also show increase in the number of dry events (absence or only trace amount of rain) over subtropical and tropical land regions in both hemispheres. These results suggest that rainfall characteristics are changing and that increased extreme rainfall events and droughts occurrences are connected, as a consequent of a global adjustment of the large scale circulation to global warming.

  7. Student Teachers' Conceptions about Global Warming and Changes in Their Conceptions during Pre-Service Education: A Cross Sectional Study

    ERIC Educational Resources Information Center

    Cimer, Sabiha Odabasi; Cimer, Atilla; Ursavas, Nazihan

    2011-01-01

    Global warming is one of the important environmental problems whose dangerous effects are increasing gradually. The study reported herein aimed to reveal student teachers' conceptions about global warming and the effect of biology teacher education program on their awareness of this environmental issue. An open-ended questionnaire was used to…

  8. The Effects of Instruction with Visual Materials on the Development of Preservice Elementary Teachers' Knowledge and Attitude towards Global Warming

    ERIC Educational Resources Information Center

    Bozdogan, Aykut Emre

    2011-01-01

    This study aimed to identify the erroneous knowledge and misconceptions of preservice elementary teachers about global warming and examine the effects of instruction with visual materials on rectifying these misconceptions and fostering a positive attitude towards the issue of global warming. Having a quasi-experimental design, the study made use…

  9. CO2 [Carbon Dioxide] Diet for a Greenhouse Planet: A Citizen's Guide for Slowing Global Warming.

    ERIC Educational Resources Information Center

    DeCicco, John; And Others

    This guide discusses the global warming issue and offers a plan to facilitate a decrease in the emissions of the major greenhouse gases in the United States, including those under the control of individual citizens. A letter from the organization's president describes its involvement with the global warming issue. A brief overview presented in the…

  10. "Global warming, continental drying? Interpreting projected aridity changes over land under climate change"

    NASA Astrophysics Data System (ADS)

    Berg, Alexis

    2017-04-01

    In recent years, a number of studies have suggested that, as climate warms, the land surface will globally become more arid. Such results usually rely on drought or aridity diagnostics, such as the Palmer Drought Severity Index or the Aridity Index (ratio of precipitation over potential evapotranspiration, PET), applied to climate model projections of surface climate. From a global perspective, the projected widespread drying of the land surface is generally interpreted as the result of the dominant, ubiquitous warming-induced PET increase, which overwhelms the slight overall precipitation increase projected over land. However, several lines of evidence, based on (paleo)observations and climate model projections, raise questions regarding this interpretation of terrestrial climate change. In this talk, I will review elements of the literature supporting these different perspectives, and will present recent results based on CMIP5 climate model projections regarding changes in aridity over land that shed some light on this discussion. Central to the interpretation of projected land aridity changes is the understanding of projected PET trends over land and their link with changes in other variables of the terrestrial water cycle (ET, soil moisture) and surface climate in the context of the coupled land-atmosphere system.

  11. Is Global Warming likely to cause an increased incidence of Malaria?

    PubMed Central

    Nabi, SA; Qader, SS

    2009-01-01

    The rise in the average temperature of earth has been described as global warming which is mainly attributed to the increasing phenomenon of the greenhouse effect. It is believed that global warming can have several harmful effects on human health, both directly and indirectly. Since malaria is greatly influenced by climatic conditions because of its direct relationship with the mosquito population, it is widely assumed that its incidence is likely to increase in a future warmer world. This review article discusses the two contradictory views regarding the association of global warming with an increased incidence of malaria. On one hand, there are many who believe that there is a strong association between the recent increase in malaria incidence and global warming. They predict that as global warming continues, malaria is set to spread in locations where previously it was limited, due to cooler climate. On the other hand, several theories have been put forward which are quite contrary to this prediction. There are multiple other factors which are accountable for the recent upsurge of malaria: for example drug resistance, mosquito control programs, public health facilities, and living standards. PMID:21483497

  12. Recent Decrease in Typhoon Destructive Potential and Global Warming Implications

    NASA Astrophysics Data System (ADS)

    Lin, I. I.

    2016-02-01

    Despite the severe impact of individual tropical cyclones like Sandy (2012) and Haiyan (2013), global TC activities as a whole have actually dropped considerably since the early 1990's. Especially over the most active and hazardous TC basin on earth, the Western North Pacific (WNP) typhoon Main Development Region (MDR), an evident decrease in TC activity has been observed, as characterised by the drop in the annual Power Dissipation Index (Emanuel 2005). Paradoxically, this decrease occurred despite evident ocean warming, with upper ocean heat content increased by 12% over the western North Pacific MDR (Pun et al. 2013; Lin et al. 2014). This study explores the interesting interplay between atmosphere and ocean on the WNP typhoons. Though ocean may become more favourable (warming) to fuel individual typhoon event through temporal relaxation in the atmosphere condition (e.g. Haiyan in 2013), the overall `worsened' atmospheric condition (e.g. increase in vertical wind shear) can `over-powers' the `better' ocean to suppress the overall WNP typhoon activities. This stronger negative contribution from reduced typhoon frequency over the increased intensity is also present under the global warming scenario, based on analysis of the simulated typhoon data from high-resolution modelling.

  13. Recent Decrease in Typhoon Destructive Potential and Global Warming Implications

    NASA Astrophysics Data System (ADS)

    Lin, I. I.

    2015-12-01

    Despite the severe impact of individual tropical cyclones like Sandy (2012) and Haiyan (2013), global TC activities as a whole have actually dropped considerably since the early 1990's. Especially over the most active and hazardous TC basin on earth, the Western North Pacific (WNP) typhoon Main Development Region (MDR), an evident decrease in TC activity has been observed, as characterised by the drop in the annual Power Dissipation Index (Emanuel 2005). Paradoxically, this decrease occurred despite evident ocean warming, with upper ocean heat content increased by ~ 12% over the western North Pacific MDR (Pun et al. 2013; Lin et al. 2014). This study explores the interesting interplay between atmosphere and ocean on the WNP typhoons. Though ocean may become more favourable (warming) to fuel individual typhoon event through temporal relaxation in the atmosphere condition (e.g. Haiyan in 2013), the overall 'worsened' atmospheric condition (e.g. increase in vertical wind shear) can 'over-powers' the 'better' ocean to suppress the overall WNP typhoon activities. This stronger negative contribution from reduced typhoon frequency over the increased intensity is also present under the global warming scenario, based on analysis of the simulated typhoon data from high-resolution modelling.

  14. Identifying Crucial Issues in Climate Science

    NASA Astrophysics Data System (ADS)

    Ikeda, Motoyoshi; Greve, Ralf; Hara, Toshika; Watanabe, Yutaka W.; Ohmura, Atsumu; Ito, Akihiko; Kawamiya, Michio

    2009-01-01

    Drastic Change in the Earth System During Global Warming; Sapporo, Japan, 24 June 2008; The Nobel Peace Prize awarded to the Intergovernmental Panel on Climate Change (IPCC) and former U.S. vice president Al Gore indicates that global warming is recognized as a real phenomenon critical to human beings. However, humanity's knowledge concerning global warming is based on an uncertainty larger than 50% in the warming rate during the past century. Therefore, scientific clarification is needed to understand important mechanisms that potentially produce positive feedbacks in the Earth system-such mechanisms must be better understood before scientists can develop more reliable predictions. To plan for the future, a symposium was organized at Japan's Hokkaido University in association with the G8 Summit, where the most recent updates on the five urgent issues in climate science were discussed. These issues, considered to be crucial as severe impacts on human society continue to rise, included (1) causes and magnitude of sea level rise; (2) decay of glaciers and the Greenland and Antarctic ice sheets; (3) disappearance of the summer Arctic sea ice; (4) carbon uptake or emission by the terrestrial ecosystem; and (5) marine ecosystem change resulting in carbon emissions.

  15. Impact of global warming on viral diseases: what is the evidence?

    PubMed

    Zell, Roland; Krumbholz, Andi; Wutzler, Peter

    2008-12-01

    Global warming is believed to induce a gradual climate change. Hence, it was predicted that tropical insects might expand their habitats thereby transmitting pathogens to humans. Although this concept is a conclusive presumption, clear evidence is still lacking--at least for viral diseases. Epidemiological data indicate that seasonality of many diseases is further influenced by strong single weather events, interannual climate phenomena, and anthropogenic factors. So far, emergence of new diseases was unlinked to global warming. Re-emergence and dispersion of diseases was correlated with translocation of pathogen-infected vectors or hosts. Coupled ocean/atmosphere circulations and 'global change' that also includes shifting of demographic, social, and economical conditions are important drivers of viral disease variability whereas global warming at best contributes.

  16. Global warming /climate change: Involving students using local example.

    NASA Astrophysics Data System (ADS)

    Isiorho, S. A.

    2016-12-01

    The current political climate has made it apparent that the general public does not believe in global warming. Also, there appears to be some confusion between global warming and climate change; global warming is one aspect of climate change. Most scientists believe there is climate change and global warming, although, there is still doubt among students on global warming. Some upper level undergraduate students are required to conduct water level/temperature measurements as part of their course grade. In addition to students having their individual projects, the various classes also utilize a well field within a wetland on campus to conduct group projects. Twelve wells in the well field on campus are used regularly by students to measure the depth of groundwater, the temperature of the waters and other basic water chemistry parameters like pH, conductivity and total dissolved solid (TDS) as part of the class group project. The data collected by each class is added to data from previous classes. Students work together as a group to interpret the data. More than 100 students have participated in this venture for more than 10 years of the four upper level courses: hydrogeology, environmental and urban geology, environmental conservation and wetlands. The temperature trend shows the seasonal variation as one would expect, but it also shows an upward trend (warming). These data demonstrate a change in climate and warming. Thus, the students participated in data collection, learn to write report and present their result to their peers in the classrooms.

  17. Global warming and neurodegenerative disorders: speculations on their linkage.

    PubMed

    Habibi, Laleh; Perry, George; Mahmoudi, Morteza

    2014-01-01

    Climate change is having considerable impact on biological systems. Eras of ice ages and warming shaped the contemporary earth and origin of creatures including humans. Warming forces stress conditions on cells. Therefore, cells evolved elaborate defense mechanisms, such as creation of heat shock proteins, to combat heat stress. Global warming is becoming a crisis and this process would yield an undefined increasing rate of neurodegenerative disorders in future decades. Since heat stress is known to have a degenerative effects on neurons and, conversely, cold conditions have protective effect on these cells, we hypothesize that persistent heat stress forced by global warming might play a crucial role in increasing neurodegenerative disorders.

  18. Multi-model ensemble simulations of low flows in Europe under a 1.5, 2, and 3 degree global warming

    NASA Astrophysics Data System (ADS)

    Marx, A.; Kumar, R.; Thober, S.; Zink, M.; Wanders, N.; Wood, E. F.; Pan, M.; Sheffield, J.; Samaniego, L. E.

    2017-12-01

    There is growing evidence that climate change will alter water availability in Europe. Here, we investigate how hydrological low flows are affected under different levels of future global warming (i.e., 1.5, 2 and 3 K). The analysis is based on a multi-model ensemble of 45 hydrological simulations based on three RCPs (rcp2p6, rcp6p0, rcp8p5), five CMIP5 GCMs (GFDL-ESM2M, HadGEM2-ES, IPSL-CM5A-LR, MIROC-ESM-CHEM, NorESM1-M) and three state-of-the-art hydrological models (HMs: mHM, Noah-MP, and PCR-GLOBWB). High resolution model results are available at the unprecedented spatial resolution of 5 km across the pan-European domain at daily temporal resolution. Low river flow is described as the percentile of daily streamflow that is exceeded 90% of the time. It is determined separately for each GCM/HM combinations and the warming scenarios. The results show that the change signal amplifies with increasing warming levels. Low flows decrease in the Mediterranean, while they increase in the Alpine and Northern regions. In the Mediterranean, the level of warming amplifies the signal from -12% under 1.5 K to -35% under 3 K global warming largely due to the projected decreases in annual precipitation. In contrast, the signal is amplified from +22% (1.5 K) to +45% (3 K) because of the reduced snow melt contribution. The changes in low flows are significant for regions with relatively large change signals and under higher levels of warming. Nevertheless, it is not possible to distinguish climate induced differences in low flows between 1.5 and 2 K warming because of the large variability inherent in the multi-model ensemble. The contribution by the GCMs to the uncertainty in the Alpine and Northern region as well as the Mediterranean, the uncertainty contribution by the HMs is partly higher than those by the GCMs due to different representations of processes such as snow, soil moisture and evapotranspiration.

  19. Disentangling Global Warming, Multidecadal Variability, and El Niño in Pacific Temperatures

    NASA Astrophysics Data System (ADS)

    Wills, Robert C.; Schneider, Tapio; Wallace, John M.; Battisti, David S.; Hartmann, Dennis L.

    2018-03-01

    A key challenge in climate science is to separate observed temperature changes into components due to internal variability and responses to external forcing. Extended integrations of forced and unforced climate models are often used for this purpose. Here we demonstrate a novel method to separate modes of internal variability from global warming based on differences in time scale and spatial pattern, without relying on climate models. We identify uncorrelated components of Pacific sea surface temperature variability due to global warming, the Pacific Decadal Oscillation (PDO), and the El Niño-Southern Oscillation (ENSO). Our results give statistical representations of PDO and ENSO that are consistent with their being separate processes, operating on different time scales, but are otherwise consistent with canonical definitions. We isolate the multidecadal variability of the PDO and find that it is confined to midlatitudes; tropical sea surface temperatures and their teleconnections mix in higher-frequency variability. This implies that midlatitude PDO anomalies are more persistent than previously thought.

  20. Spatial heterogeneity of climate change as an experiential basis for skepticism

    PubMed Central

    Kaufmann, Robert K.; Mann, Michael L.; Gopal, Sucharita; Liederman, Jackie A.; Howe, Peter D.; Pretis, Felix; Gilmore, Michelle

    2017-01-01

    We postulate that skepticism about climate change is partially caused by the spatial heterogeneity of climate change, which exposes experiential learners to climate heuristics that differ from the global average. This hypothesis is tested by formalizing an index that measures local changes in climate using station data and comparing this index with survey-based model estimates of county-level opinion about whether global warming is happening. Results indicate that more stations exhibit cooling and warming than predicted by random chance and that spatial variations in these changes can account for spatial variations in the percentage of the population that believes that “global warming is happening.” This effect is diminished in areas that have experienced more record low temperatures than record highs since 2005. Together, these results suggest that skepticism about climate change is driven partially by personal experiences; an accurate heuristic for local changes in climate identifies obstacles to communicating ongoing changes in climate to the public and how these communications might be improved. PMID:27994143

  1. Spatial heterogeneity of climate change as an experiential basis for skepticism.

    PubMed

    Kaufmann, Robert K; Mann, Michael L; Gopal, Sucharita; Liederman, Jackie A; Howe, Peter D; Pretis, Felix; Tang, Xiaojing; Gilmore, Michelle

    2017-01-03

    We postulate that skepticism about climate change is partially caused by the spatial heterogeneity of climate change, which exposes experiential learners to climate heuristics that differ from the global average. This hypothesis is tested by formalizing an index that measures local changes in climate using station data and comparing this index with survey-based model estimates of county-level opinion about whether global warming is happening. Results indicate that more stations exhibit cooling and warming than predicted by random chance and that spatial variations in these changes can account for spatial variations in the percentage of the population that believes that "global warming is happening." This effect is diminished in areas that have experienced more record low temperatures than record highs since 2005. Together, these results suggest that skepticism about climate change is driven partially by personal experiences; an accurate heuristic for local changes in climate identifies obstacles to communicating ongoing changes in climate to the public and how these communications might be improved.

  2. Robust Hadley Circulation Changes and Increasing Global Dryness Due to CO2 Warming from CMIP-5 Model Projections

    NASA Technical Reports Server (NTRS)

    Lau, William K. M.; Kim, K. M.

    2015-01-01

    In this paper, we investigate changes in the Hadley Circulation (HC) and their connections to increased global dryness under CO2 warming from CMIP-5 model projections. We find a strengthening of the ascending branch of the HC manifested in a deep-tropics squeeze (DTS), i.e., a deepening and narrowing of the convective zone, increased high clouds, and a rise of the level of maximum meridional mass outflow in the upper troposphere (200-100 hectopascals) of the deep tropics. The DTS induces atmospheric moisture divergence, reduces tropospheric relative humidity in the tropics and subtropics, in conjunction with a widening of the subsiding branches of the HC, resulting in increased frequency of dry events in preferred geographic locations worldwide. Among water cycle parameters examined, global dryness has the highest signal-to-noise ratio. Our results provide scientific bases for inferring that the observed tend of prolonged droughts in recent decades is likely attributable to greenhouse warming.

  3. Local cooling and warming effects of forests based on satellite observations.

    PubMed

    Li, Yan; Zhao, Maosheng; Motesharrei, Safa; Mu, Qiaozhen; Kalnay, Eugenia; Li, Shuangcheng

    2015-03-31

    The biophysical effects of forests on climate have been extensively studied with climate models. However, models cannot accurately reproduce local climate effects due to their coarse spatial resolution and uncertainties, and field observations are valuable but often insufficient due to their limited coverage. Here we present new evidence acquired from global satellite data to analyse the biophysical effects of forests on local climate. Results show that tropical forests have a strong cooling effect throughout the year; temperate forests show moderate cooling in summer and moderate warming in winter with net cooling annually; and boreal forests have strong warming in winter and moderate cooling in summer with net warming annually. The spatiotemporal cooling or warming effects are mainly driven by the two competing biophysical effects, evapotranspiration and albedo, which in turn are strongly influenced by rainfall and snow. Implications of our satellite-based study could be useful for informing local forestry policies.

  4. Local cooling and warming effects of forests based on satellite observations

    PubMed Central

    Li, Yan; Zhao, Maosheng; Motesharrei, Safa; Mu, Qiaozhen; Kalnay, Eugenia; Li, Shuangcheng

    2015-01-01

    The biophysical effects of forests on climate have been extensively studied with climate models. However, models cannot accurately reproduce local climate effects due to their coarse spatial resolution and uncertainties, and field observations are valuable but often insufficient due to their limited coverage. Here we present new evidence acquired from global satellite data to analyse the biophysical effects of forests on local climate. Results show that tropical forests have a strong cooling effect throughout the year; temperate forests show moderate cooling in summer and moderate warming in winter with net cooling annually; and boreal forests have strong warming in winter and moderate cooling in summer with net warming annually. The spatiotemporal cooling or warming effects are mainly driven by the two competing biophysical effects, evapotranspiration and albedo, which in turn are strongly influenced by rainfall and snow. Implications of our satellite-based study could be useful for informing local forestry policies. PMID:25824529

  5. Climate change and mosquito-borne disease.

    PubMed Central

    Reiter, P

    2001-01-01

    Global atmospheric temperatures are presently in a warming phase that began 250--300 years ago. Speculations on the potential impact of continued warming on human health often focus on mosquito-borne diseases. Elementary models suggest that higher global temperatures will enhance their transmission rates and extend their geographic ranges. However, the histories of three such diseases--malaria, yellow fever, and dengue--reveal that climate has rarely been the principal determinant of their prevalence or range; human activities and their impact on local ecology have generally been much more significant. It is therefore inappropriate to use climate-based models to predict future prevalence. PMID:11250812

  6. Evaluation of the Committed Carbon Emissions and Global Warming due to the Permafrost Carbon Feedback

    NASA Astrophysics Data System (ADS)

    Elshorbany, Y. F.; Schaefer, K. M.; Jafarov, E. E.; Yumashev, D.; Hope, C.

    2017-12-01

    We quantify the increase in carbon emissions and temperature due to Permafrost Carbon feedback (PCF), defined as the amplification of anthropogenic warming due to carbon emissions from thawing permafrost (i.e., of near-surface layers to 3 m depth). We simulate the Committed PCF emissions, the cumulative total emissions from thawing permafrost by 2300 for a given global temperature increase by 2100, and investigate the resulting global warming using the Simple Biosphere/Carnegie-Ames-Stanford Approach SiBCASA model. We estimate the committed PCF emissions and warming for the Fifth Assessment Report, Representative Concentration Pathway scenarios 4.5 and 8.5 using two ensembles of five projections. For the 2 °C warming target of the global climate change treaty, committed PCF emissions increase to 24 Gt C by 2100 and 76 Gt C by 2300 and the committed PCF warming is 0.23 °C by 2300. Our calculations show that as the global temperature increase by 2100 approaches 5.8 °C, the entire stock of frozen carbon thaws out, resulting in maximum committed PCF emissions of 560 Gt C by 2300.

  7. Projection of actual evapotranspiration using the COSMO-CLM regional climate model under global warming scenarios of 1.5 °C and 2.0 °C in the Tarim River basin, China

    NASA Astrophysics Data System (ADS)

    Su, Buda; Jian, Dongnan; Li, Xiucang; Wang, Yanjun; Wang, Anqian; Wen, Shanshan; Tao, Hui; Hartmann, Heike

    2017-11-01

    Actual evapotranspiration (ETa) is an important component of the water cycle. The goals for limiting global warming to below 2.0 °C above pre-industrial levels and aspiring to 1.5 °C were negotiated in the Paris Agreement in 2015. In this study, outputs from the regional climate model COSMO-CLM (CCLM) for the Tarim River basin (TRB) were used to calculate ETa with an advection-aridity model, and changes in ETa under global warming scenarios of 1.5 °C (2020 to 2039) and 2.0 °C (2040 to 2059) were analyzed. Comparison of warming at the global and regional scale showed that regional 1.5 °C warming would occur later than the global average, while regional 2.0 °C warming would occur earlier than the global average. For global warming of 1.5 °C, the average ETa in the TRB is about 222.7 mm annually, which represents an increase of 6.9 mm relative to the reference period (1986-2005), with obvious increases projected for spring and summer. The greatest increases in ETa were projected for the northeast and southwest. The increment in the annual ETa across the TRB considering a warming of 1.5 °C was 4.3 mm less than that for a warming of 2.0 °C, and the reduction between the two levels of warming was most pronounced in the summer, when ETa was 3.4 mm smaller. The reduction in the increment of annual ETa for warming of 1.5 °C relative to warming of 2.0 °C was most pronounced in the southwest and northeast, where it was projected to be 8.2 mm and 9.3 mm smaller, respectively. It is suggested that the higher ETa under a warming of 2.0 °C mainly results from an increase in the sunshine duration (net radiation) in the southwestern basin and an increase in precipitation in the northeastern basin. Vapor is removed from the limited surface water supplies by ETa. The results of this study are therefore particularly relevant for water resource planning in the TRB.

  8. Climate change and the eco-hydrology of fire: Will area burned increase in a warming western USA?

    Treesearch

    Donald McKenzie; Jeremy S. Littell

    2017-01-01

    Wildfire area is predicted to increase with global warming. Empirical statistical models and process-based simulations agree almost universally. The key relationship for this unanimity, observed at multiple spatial and temporal scales, is between drought and fire. Predictive models often focus on ecosystems in which this relationship appears to be particularly strong,...

  9. Changes in regional heatwave characteristics as a function of increasing global temperature.

    PubMed

    Perkins-Kirkpatrick, S E; Gibson, P B

    2017-09-25

    The Paris Agreement calls for global warming to be limited to 1.5-2 °C. For the first time, this study investigates how different regional heatwave characteristics (intensity, frequency and duration) are projected to change relative to increasing global warming thresholds. Increases in heatwave days between 4-34 extra days per season are projected per °C of global warming. Some tropical regions could experience up to 120 extra heatwave days/season if 5 °C is reached. Increases in heatwave intensity are generally 0.5-1.5 °C above a given global warming threshold, however are higher over the Mediterranean and Central Asian regions. Between warming thresholds of 1.5 °C and 2.5 °C, the return intervals of intense heatwaves reduce by 2-3 fold. Heatwave duration is projected to increase by 2-10 days/°C, with larger changes over lower latitudes. Analysis of two climate model ensembles indicate that variation in the rate of heatwave changes is dependent on physical differences between different climate models, however internal climate variability bears considerable influence on the expected range of regional heatwave changes per warming threshold. The results of this study reiterate the potential for disastrous consequences associated with regional heatwaves if global mean warming is not limited to 2 degrees.

  10. Scenario dependence of future changes in climate extremes under 1.5 °C and 2 °C global warming

    NASA Astrophysics Data System (ADS)

    Wang, Zhili; Lin, Lei; Zhang, Xiaoye; Zhang, Hua; Liu, Liangke; Xu, Yangyang

    2017-04-01

    The 2015 Paris Agreement aims to limit global warming below 2 °C and pursue efforts to even limit it to 1.5 °C relative to pre-industrial levels. Decision makers need reliable information on the impacts caused by these warming levels for climate mitigation and adaptation measures. We explore the changes in climate extremes, which are closely tied to economic losses and casualties, under 1.5 °C and 2 °C global warming and their scenario dependence using three sets of ensemble global climate model simulations. A warming of 0.5 °C (from 1.5 °C to 2 °C) leads to significant increases in temperature and precipitation extremes in most regions. However, the projected changes in climate extremes under both warming levels highly depend on the pathways of emissions scenarios, with different greenhouse gas (GHG)/aerosol forcing ratio and GHG levels. Moreover, there are multifold differences in several heavily polluted regions, among the scenarios, in the changes in precipitation extremes due to an additional 0.5 °C warming from 1.5 °C to 2 °C. Our results demonstrate that the chemical compositions of emissions scenarios, not just the total radiative forcing and resultant warming level, must be considered when assessing the impacts of global 1.5/2 °C warming.

  11. Scenario dependence of future changes in climate extremes under 1.5 °C and 2 °C global warming.

    PubMed

    Wang, Zhili; Lin, Lei; Zhang, Xiaoye; Zhang, Hua; Liu, Liangke; Xu, Yangyang

    2017-04-20

    The 2015 Paris Agreement aims to limit global warming below 2 °C and pursue efforts to even limit it to 1.5 °C relative to pre-industrial levels. Decision makers need reliable information on the impacts caused by these warming levels for climate mitigation and adaptation measures. We explore the changes in climate extremes, which are closely tied to economic losses and casualties, under 1.5 °C and 2 °C global warming and their scenario dependence using three sets of ensemble global climate model simulations. A warming of 0.5 °C (from 1.5 °C to 2 °C) leads to significant increases in temperature and precipitation extremes in most regions. However, the projected changes in climate extremes under both warming levels highly depend on the pathways of emissions scenarios, with different greenhouse gas (GHG)/aerosol forcing ratio and GHG levels. Moreover, there are multifold differences in several heavily polluted regions, among the scenarios, in the changes in precipitation extremes due to an additional 0.5 °C warming from 1.5 °C to 2 °C. Our results demonstrate that the chemical compositions of emissions scenarios, not just the total radiative forcing and resultant warming level, must be considered when assessing the impacts of global 1.5/2 °C warming.

  12. Scenario dependence of future changes in climate extremes under 1.5 °C and 2 °C global warming

    PubMed Central

    Wang, Zhili; Lin, Lei; Zhang, Xiaoye; Zhang, Hua; Liu, Liangke; Xu, Yangyang

    2017-01-01

    The 2015 Paris Agreement aims to limit global warming below 2 °C and pursue efforts to even limit it to 1.5 °C relative to pre-industrial levels. Decision makers need reliable information on the impacts caused by these warming levels for climate mitigation and adaptation measures. We explore the changes in climate extremes, which are closely tied to economic losses and casualties, under 1.5 °C and 2 °C global warming and their scenario dependence using three sets of ensemble global climate model simulations. A warming of 0.5 °C (from 1.5 °C to 2 °C) leads to significant increases in temperature and precipitation extremes in most regions. However, the projected changes in climate extremes under both warming levels highly depend on the pathways of emissions scenarios, with different greenhouse gas (GHG)/aerosol forcing ratio and GHG levels. Moreover, there are multifold differences in several heavily polluted regions, among the scenarios, in the changes in precipitation extremes due to an additional 0.5 °C warming from 1.5 °C to 2 °C. Our results demonstrate that the chemical compositions of emissions scenarios, not just the total radiative forcing and resultant warming level, must be considered when assessing the impacts of global 1.5/2 °C warming. PMID:28425445

  13. An assessment of global meteorological droughts based on HAPPI experiments

    NASA Astrophysics Data System (ADS)

    Liu, Wenbin; Sun, Fubao; Lim, Wee Ho; Zhang, Jie

    2017-04-01

    Droughts caused water shortages could lead to serious consequences on the socioeconomic and environmental well-being. In the context of changing climate, droughts monitoring, attributions and impact assessments have been performed using observations (e.g., Sun et al., 2012; Zhang et al., 2016) and climate model projections (e.g., Liu et al., 2016, 2017); with expectation that such scientific knowledge would feed into long-term adaptation and mitigation plans to tackle potentially unfavorable future drought impacts in a warming world. Inspired by the 2015 Paris Agreement, the HAPPI (Half a degree Additional warming, Projections, Prognosis and Impacts) experiments were set up to better inform international policymakers about the socioeconomic and environmental impacts under less severe global warming conditions. This study aims to understand the potential shift in meteorological droughts from the past into the future on a global scale. Based on the HAPPI data, we evaluate the change in drought related indices (i.e., PET/P, PDSI) from the past to the future scenarios (1.5 and 2 degrees Celsius warming). Here we present some early results (MIROC5 as demonstration) on identified hotspots and discuss the differences in severity of droughts between these warming worlds and associated consequences. References: Liu W, and Sun F, 2017. Projecting and attributing future changes of evaporative demand over China in CMIP5 climate models, Journal of Hydrometeorology, doi: 10.1175/JHM-D-16-0204.1 Liu W, and Sun F, 2016. Assessing estimates of evaporative demand in climate models using observed pan evaporation over China. Journal of Geophysical Research-Atmosphere 121, 8329-8349 Zhang J, Sun F, Xu J, Chen Y, Sang Y, -F, and Liu C, 2016. Dependence of trends in and sensitivity of drought over China (1961-2013) on potential evaporation model. Geophysical Research Letters 43, 206-213 Sun F, Roderick M, Farquhar G, 2012. Changes in the variability of global land precipitation. Geophysical Research Letters 39, L19402

  14. Uncertainty in Indian Ocean Dipole response to global warming: the role of internal variability

    NASA Astrophysics Data System (ADS)

    Hui, Chang; Zheng, Xiao-Tong

    2018-01-01

    The Indian Ocean Dipole (IOD) is one of the leading modes of interannual sea surface temperature (SST) variability in the tropical Indian Ocean (TIO). The response of IOD to global warming is quite uncertain in climate model projections. In this study, the uncertainty in IOD change under global warming, especially that resulting from internal variability, is investigated based on the community earth system model large ensemble (CESM-LE). For the IOD amplitude change, the inter-member uncertainty in CESM-LE is about 50% of the intermodel uncertainty in the phase 5 of the coupled model intercomparison project (CMIP5) multimodel ensemble, indicating the important role of internal variability in IOD future projection. In CESM-LE, both the ensemble mean and spread in mean SST warming show a zonal positive IOD-like (pIOD-like) pattern in the TIO. This pIOD-like mean warming regulates ocean-atmospheric feedbacks of the interannual IOD mode, and weakens the skewness of the interannual variability. However, as the changes in oceanic and atmospheric feedbacks counteract each other, the inter-member variability in IOD amplitude change is not correlated with that of the mean state change. Instead, the ensemble spread in IOD amplitude change is correlated with that in ENSO amplitude change in CESM-LE, reflecting the close inter-basin relationship between the tropical Pacific and Indian Ocean in this model.

  15. Regional patterns of the change in annual-mean tropical rainfall under global warming

    NASA Astrophysics Data System (ADS)

    Huang, P.

    2013-12-01

    Projection of the change in tropical rainfall under global warming is a major challenge with great societal implications. The current study analyzes the 18 models from the Coupled Models Intercomparison Project, and investigates the regional pattern of annual-mean rainfall change under global warming. With surface warming, the climatological ascending pumps up increased surface moisture and leads rainfall increase over the tropical convergence zone (wet-get-wetter effect), while the pattern of sea surface temperature (SST) increase induces ascending flow and then increasing rainfall over the equatorial Pacific and the northern Indian Ocean where the local oceanic warming exceeds the tropical mean temperature increase (warmer-get-wetter effect). The background surface moisture and SST also can modify warmer-get-wetter effect: the former can influence the moisture change and contribute to the distribution of moist instability change, while the latter can suppress the role of instability change over the equatorial eastern Pacific due to the threshold effect of convection-SST relationship. The wet-get-wetter and modified warmer-get-wetter effects form a hook-like pattern of rainfall change over the tropical Pacific and an elliptic pattern over the northern Indian Ocean. The annual-mean rainfall pattern can be partly projected based on current rainfall climatology, while it also has great uncertainties due to the uncertain change in SST pattern.

  16. Improving the effectiveness of communication about climate science: Insights from the "Global Warming's Six Americas" audience segmentation research project

    NASA Astrophysics Data System (ADS)

    Maibach, E.; Roser-Renouf, C.

    2011-12-01

    That the climate science community has not been entirely effective in sharing what it knows about climate change with the broader public - and with policy makers and organizations that should be considering climate change when making decisions - is obvious. Our research shows that a large majority of the American public trusts scientists (76%) and science-based agencies (e.g., 76% trust NOAA) as sources of information about climate change. Yet, despite the widespread agreement in the climate science community that the climate is changing as a result of human activity, only 64% of the public understand that the world's average temperature has been increasing (and only about half of them are sure), less than half (47%) understand that the warming is caused mostly by human activity, and only 39% understand that most scientists think global warming is happening (in fact, only 13% understand that the large majority of climate scientists think global warming is happening). Less obvious is what the climate science community should do to become more effective in sharing what it knows. In this paper, we will use evidence from our "Global Warming's Six Americas" audience segmentation research project to suggest ways that individual climate scientists -- and perhaps more importantly, ways in which climate science agencies and professional societies -- can enhance the effectiveness of their communication efforts. We will conclude by challenging members of the climate science community to identify and convey "simple, clear messages, repeated often, by a variety of trusted sources" - an approach to communication repeatedly shown to be effective by the public health community.

  17. Decadal Variation's Offset of Global Warming in Recent Tropical Pacific Climate

    NASA Astrophysics Data System (ADS)

    Yeo, S. R.; Yeh, S. W.; Kim, K. Y.; Kim, W.

    2015-12-01

    Despite the increasing greenhouse gas concentration, there is no significant warming in the sea surface temperature (SST) over the tropical eastern Pacific since about 2000. This counterintuitive observation has generated substantial interest in the role of low-frequency variation over the Pacific Ocean such as Pacific Decadal Oscillation (PDO) or Interdecadal Pacific Oscillation (IPO). Therefore, it is necessary to appropriately separate low-frequency variability and global warming from SST records. Here we present three primary modes of global SST as a secular warming trend, a low-frequency variability, and a biennial oscillation through the use of novel statistical method. By analyzing temporal behavior of the three-mode, it is found that the opposite contributions of secular warming trend and cold phase of low-frequency variability since 1999 account for the warming hiatus in the tropical eastern Pacific. This result implies that the low-frequency variability modulates the manifestation of global warming signal in the tropical Pacific SST. Furthermore, if the low-frequency variability turns to a positive phase, warming in the tropical eastern Pacific will be amplified and also strong El Niño events will occur more frequently in the near future.

  18. I'll Save the World from Global Warming--Tomorrow: Using Procrastination Management to Combat Global Warming

    ERIC Educational Resources Information Center

    Malott, Richard W.

    2010-01-01

    In the provocatively titled "I'll Save the World from Global Warming--Tomorrow," Dick Malott says that although we all want to do the right thing to help the environment, whether it's buying and installing compact fluorescent light bulbs (CFLs) or replacing an energy-guzzling appliance with a more efficient one, we put it off because there's no…

  19. Global Warming in Schools: An Inquiry about the Competing Conceptions of High School Social Studies and Science Curricula and Teachers

    ERIC Educational Resources Information Center

    Meehan, Casey R.

    2012-01-01

    Despite the scientific consensus supporting the theory of anthropogenic (human-induced) global warming, whether global warming is a serious problem, whether human activity is the primary cause of it, and whether scientific consensus exists at all are controversial questions among the U.S. lay-public. The cultural theory of risk perception (Schwarz…

  20. Climate Change, Instability and a Full Spectrum Approach to Conflict Prevention in Africa

    DTIC Science & Technology

    2009-10-23

    commander to follow. 15. SUBJECT TERMS Climate Change, Global Warming , Security Cooperation, Stability, Instability, Stabilization, Security...note that global warming could also create similar impacts on resources.19 In modern times disputes over natural resources have erupted into conflict...16. Center for Naval Analysis, National Security and the Threat of Climate Change, 18. 17. Michael T. Klare, ― Global Warming Battlefields: How

  1. Protecting the Ozone Shield: A New Public Policy

    DTIC Science & Technology

    1991-04-01

    Public Policy Issue; Alterna- 11 tives; Risk Management; Clean Air Act; Global Warming 16. PRICE CODE 17. SECURITY CLASSIFICATION 𔄂. SECURITY...pattern of global warming , commonly known as "the greenhouse effect. 1 OVERVIEW OF THE OZONE DEPLETION PUBLIC POLICY ISSUE In 1974, two atmospheric...inhabitants from the harmful effects of increased UVb radiation and global warming . Another dilemma surrounds this public policy issue since the first

  2. Modeling the impact of global warming on vector-borne infections

    NASA Astrophysics Data System (ADS)

    Massad, Eduardo; Coutinho, Francisco Antonio Bezerra; Lopez, Luis Fernandez; da Silva, Daniel Rodrigues

    2011-06-01

    Global warming will certainly affect the abundance and distribution of disease vectors. The effect of global warming, however, depends on the complex interaction between the human host population and the causative infectious agent. In this work we review some mathematical models that were proposed to study the impact of the increase in ambient temperature on the spread and gravity of some insect-transmitted diseases.

  3. Climate Change: Understanding it Links Directly to Achieving National Space Policy Goals While Being Useful at Tactical and Strategic Levels

    DTIC Science & Technology

    2011-01-01

    change, but it is important to discern where the facts or commentary come from. Global Warming Global warming is a misnomer and a misunder- stood...second- guesses the observations and tries to prove one- self wrong. There are no beliefs, just conclusions. “Do you believe in global warming ” is a...forcing global temperatures to rise. Human factors include, but are not limited to, deforestation , agriculture and burning coal/wood/oil. Ocean

  4. Consequences of 1.5 °C and 2 °C global warming levels for temperature and precipitation changes over Central Africa

    NASA Astrophysics Data System (ADS)

    Pokam Mba, Wilfried; Longandjo, Georges-Noel T.; Moufouma-Okia, Wilfran; Bell, Jean-Pierre; James, Rachel; Vondou, Derbetini A.; Haensler, Andreas; Fotso-Nguemo, Thierry C.; Merlin Guenang, Guy; Djiotang Tchotchou, Angennes Lucie; Kamsu-Tamo, Pierre H.; Takong, Ridick R.; Nikulin, Grigory; Lennard, Christopher J.; Dosio, Alessandro

    2018-05-01

    Discriminating climate impacts between 1.5 °C and 2 °C warming levels is particularly important for Central Africa, a vulnerable region where multiple biophysical, political, and socioeconomic stresses interact to constrain the region’s adaptive capacity. This study uses an ensemble of 25 transient Regional Climate Model (RCM) simulations from the CORDEX initiative, forced with the Representative Concentration Pathway (RCP) 8.5, to investigate the potential temperature and precipitation changes in Central Africa corresponding to 1.5 °C and 2 °C global warming levels. Global climate model simulations from the Coupled Model Intercomparison Project phase 5 (CMIP5) are used to drive the RCMs and determine timing of the targeted global warming levels. The regional warming differs over Central Africa between 1.5 °C and 2 °C global warming levels. Whilst there are large uncertainties associated with projections at 1.5 °C and 2 °C, the 0.5 °C increase in global temperature is associated with larger regional warming response. Compared to changes in temperature, changes in precipitation are more heterogeneous and climate model simulations indicate a lack of consensus across the region, though there is a tendency towards decreasing seasonal precipitation in March–May, and a reduction of consecutive wet days. As a drought indicator, a significant increase in consecutive dry days was found. Consistent changes of maximum 5 day rainfall are also detected between 1.5 °C vs. 2 °C global warming levels.

  5. Asymmetric responses to simulated global warming by populations of Colobanthus quitensis along a latitudinal gradient.

    PubMed

    Acuña-Rodríguez, Ian S; Torres-Díaz, Cristian; Hereme, Rasme; Molina-Montenegro, Marco A

    2017-01-01

    The increase in temperature as consequence of the recent global warming has been reported to generate new ice-free areas in the Antarctic continent, facilitating the colonization and spread of plant populations. Consequently, Antarctic vascular plants have been observed extending their southern distribution. But as the environmental conditions toward southern localities become progressively more departed from the species' physiological optimum, the ecophysiological responses and survival to the expected global warming could be reduced. However, if processes of local adaptation are the main cause of the observed southern expansion, those populations could appear constrained to respond positively to the expected global warming. Using individuals from the southern tip of South America, the South Shetland Islands and the Antarctic Peninsula, we assess with a long term experiment (three years) under controlled conditions if the responsiveness of Colobanthus quitensis populations to the expected global warming, is related with their different foliar traits and photoprotective mechanisms along the latitudinal gradient. In addition, we tested if the release of the stress condition by the global warming in these cold environments increases the ecophysiological performance. For this, we describe the latitudinal pattern of net photosynthetic capacity, biomass accumulation, and number of flowers under current and future temperatures respective to each site of origin after three growing seasons. Overall, was found a clinal trend was found in the foliar traits and photoprotective mechanisms in the evaluated C. quitensis populations. On the other hand, an asymmetric response to warming was observed for southern populations in all ecophysiological traits evaluated, suggesting that low temperature is limiting the performance of C. quitensis populations. Our results suggest that under a global warming scenario, plant populations that inhabiting cold zones at high latitudes could increase in their ecophysiological performance, enhancing the size of populations or their spread.

  6. Control of Fossil-Fuel Particulate Black Carbon and Organic Matter, the Most Effective Method of Slowing Global Warming

    NASA Astrophysics Data System (ADS)

    Jacobson, M. Z.

    2001-12-01

    Under the 1997 Kyoto Protocol, no control of black carbon (BC) was considered. Here, it is found, through simulations in which seven new particles feedbacks to climate are identified, that any emission reduction of fossil-fuel (f.f.) particulate BC plus associated organic matter (OM) will slow global warming more than will any emission reduction of CO2 or CH4 for a definite time period. When all f.f. BC+OM and anthropogenic CO2 and CH4 emissions are eliminated together, that period is 20-90 years. It is also found that historical net global warming can be attributed roughly to greenhouse-gas plus f.f. BC+OM warming minus anthropogenic sulfate cooling. Eliminating all f.f. BC+OM could eliminate more than 40 percent of such net warming within three years if no other changes occurred. Reducing CO2 emissions by a third would have the same effect, but after 50-200 years. Finally, diesel cars warm climate more than do equivalent gasoline cars; thus, fuel- and carbon-tax laws that favor diesel promote global warming.

  7. Designing connected marine reserves in the face of global warming.

    PubMed

    Álvarez-Romero, Jorge G; Munguía-Vega, Adrián; Beger, Maria; Del Mar Mancha-Cisneros, Maria; Suárez-Castillo, Alvin N; Gurney, Georgina G; Pressey, Robert L; Gerber, Leah R; Morzaria-Luna, Hem Nalini; Reyes-Bonilla, Héctor; Adams, Vanessa M; Kolb, Melanie; Graham, Erin M; VanDerWal, Jeremy; Castillo-López, Alejandro; Hinojosa-Arango, Gustavo; Petatán-Ramírez, David; Moreno-Baez, Marcia; Godínez-Reyes, Carlos R; Torre, Jorge

    2018-02-01

    Marine reserves are widely used to protect species important for conservation and fisheries and to help maintain ecological processes that sustain their populations, including recruitment and dispersal. Achieving these goals requires well-connected networks of marine reserves that maximize larval connectivity, thus allowing exchanges between populations and recolonization after local disturbances. However, global warming can disrupt connectivity by shortening potential dispersal pathways through changes in larval physiology. These changes can compromise the performance of marine reserve networks, thus requiring adjusting their design to account for ocean warming. To date, empirical approaches to marine prioritization have not considered larval connectivity as affected by global warming. Here, we develop a framework for designing marine reserve networks that integrates graph theory and changes in larval connectivity due to potential reductions in planktonic larval duration (PLD) associated with ocean warming, given current socioeconomic constraints. Using the Gulf of California as case study, we assess the benefits and costs of adjusting networks to account for connectivity, with and without ocean warming. We compare reserve networks designed to achieve representation of species and ecosystems with networks designed to also maximize connectivity under current and future ocean-warming scenarios. Our results indicate that current larval connectivity could be reduced significantly under ocean warming because of shortened PLDs. Given the potential changes in connectivity, we show that our graph-theoretical approach based on centrality (eigenvector and distance-weighted fragmentation) of habitat patches can help design better-connected marine reserve networks for the future with equivalent costs. We found that maintaining dispersal connectivity incidentally through representation-only reserve design is unlikely, particularly in regions with strong asymmetric patterns of dispersal connectivity. Our results support previous studies suggesting that, given potential reductions in PLD due to ocean warming, future marine reserve networks would require more and/or larger reserves in closer proximity to maintain larval connectivity. © 2017 John Wiley & Sons Ltd.

  8. Global forest sector modeling: application to some impacts of climate change

    Treesearch

    Joseph Buongiorno

    2016-01-01

    This paper explored the potential long-term effects of a warming climate on the global wood sector, based on Way and Oren's synthesis (Tree Physiology 30,669-688) indicating positive responses of tree growth to higher temperature in boreal and temperative climates, and negative responses in the topics. Changes in forest productivity were introduced in the Global...

  9. Regional climate change and national responsibilities

    NASA Astrophysics Data System (ADS)

    Hansen, James; Sato, Makiko

    2016-03-01

    Global warming over the past several decades is now large enough that regional climate change is emerging above the noise of natural variability, especially in the summer at middle latitudes and year-round at low latitudes. Despite the small magnitude of warming relative to weather fluctuations, effects of the warming already have notable social and economic impacts. Global warming of 2 °C relative to preindustrial would shift the ‘bell curve’ defining temperature anomalies a factor of three larger than observed changes since the middle of the 20th century, with highly deleterious consequences. There is striking incongruity between the global distribution of nations principally responsible for fossil fuel CO2 emissions, known to be the main cause of climate change, and the regions suffering the greatest consequences from the warming, a fact with substantial implications for global energy and climate policies.

  10. Global warming and carbon dioxide through sciences.

    PubMed

    Florides, Georgios A; Christodoulides, Paul

    2009-02-01

    Increased atmospheric CO(2)-concentration is widely being considered as the main driving factor that causes the phenomenon of global warming. This paper attempts to shed more light on the role of atmospheric CO(2) in relation to temperature-increase and, more generally, in relation to Earth's life through the geological aeons, based on a review-assessment of existing related studies. It is pointed out that there has been a debate on the accuracy of temperature reconstructions as well as on the exact impact that CO(2) has on global warming. Moreover, using three independent sets of data (collected from ice-cores and chemistry) we perform a specific regression analysis which concludes that forecasts about the correlation between CO(2)-concentration and temperature rely heavily on the choice of data used, and one cannot be positive that indeed such a correlation exists (for chemistry data) or even, if existing (for ice-cores data), whether it leads to a "severe" or a "gentle" global warming. A very recent development on the greenhouse phenomenon is a validated adiabatic model, based on laws of physics, forecasting a maximum temperature-increase of 0.01-0.03 degrees C for a value doubling the present concentration of atmospheric CO(2). Through a further review of related studies and facts from disciplines like biology and geology, where CO(2)-change is viewed from a different perspective, it is suggested that CO(2)-change is not necessarily always a negative factor for the environment. In fact it is shown that CO(2)-increase has stimulated the growth of plants, while the CO(2)-change history has altered the physiology of plants. Moreover, data from palaeoclimatology show that the CO(2)-content in the atmosphere is at a minimum in this geological aeon. Finally it is stressed that the understanding of the functioning of Earth's complex climate system (especially for water, solar radiation and so forth) is still poor and, hence, scientific knowledge is not at a level to give definite and precise answers for the causes of global warming.

  11. Possible impact of global warming on the evolution of hemagglutinins from influenza a viruses.

    PubMed

    Yan, Shaomin; Wu, Guang

    2011-02-01

    To determine if global warming has an impact on the evolution of hemagglutinins from influenza A viruses, because both global warming and influenza pandemics/epidemics threaten the world. 4 706 hemagglutinins from influenza A viruses sampled from 1956 to 2009 were converted to a time-series to show their evolutionary process and compared with the global, northern hemisphere and southern hemisphere temperatures, to determine if their trends run in similar or opposite directions. Point-to-point comparisons between temperature and quantified hemagglutinins were performed for all species and for the major prevailing species. The comparisons show that the trends for both hemagglutinin evolution and temperature change run in a similar direction. Global warming has a consistent and progressive impact on the hemagglutinin evolution of influenza A viruses.

  12. Global surface temperature change analysis based on MODIS data in recent twelve years

    NASA Astrophysics Data System (ADS)

    Mao, K. B.; Ma, Y.; Tan, X. L.; Shen, X. Y.; Liu, G.; Li, Z. L.; Chen, J. M.; Xia, L.

    2017-01-01

    Global surface temperature change is one of the most important aspects in global climate change research. In this study, in order to overcome shortcomings of traditional observation methods in meteorology, a new method is proposed to calculate global mean surface temperature based on remote sensing data. We found that (1) the global mean surface temperature was close to 14.35 °C from 2001 to 2012, and the warmest and coldest surface temperatures of the global in the recent twelve years occurred in 2005 and 2008, respectively; (2) the warmest and coldest surface temperatures on the global land surface occurred in 2005 and 2001, respectively, and on the global ocean surface in 2010 and 2008, respectively; and (3) in recent twelve years, although most regions (especially the Southern Hemisphere) are warming, global warming is yet controversial because it is cooling in the central and eastern regions of Pacific Ocean, northern regions of the Atlantic Ocean, northern regions of China, Mongolia, southern regions of Russia, western regions of Canada and America, the eastern and northern regions of Australia, and the southern tip of Africa. The analysis of daily and seasonal temperature change indicates that the temperature change is mainly caused by the variation of orbit of celestial body. A big data model based on orbit position and gravitational-magmatic change of celestial body with the solar or the galactic system should be built and taken into account for climate and ecosystems change at a large spatial-temporal scale.

  13. Repetitive mammalian dwarfing during ancient greenhouse warming events

    PubMed Central

    D’Ambrosia, Abigail R.; Clyde, William C.; Fricke, Henry C.; Gingerich, Philip D.; Abels, Hemmo A.

    2017-01-01

    Abrupt perturbations of the global carbon cycle during the early Eocene are associated with rapid global warming events, which are analogous in many ways to present greenhouse warming. Mammal dwarfing has been observed, along with other changes in community structure, during the largest of these ancient global warming events, known as the Paleocene-Eocene Thermal Maximum [PETM; ~56 million years ago (Ma)]. We show that mammalian dwarfing accompanied the subsequent, smaller-magnitude warming event known as Eocene Thermal Maximum 2 [ETM2 (~53 Ma)]. Statistically significant decrease in body size during ETM2 is observed in two of four taxonomic groups analyzed in this study and is most clearly observed in early equids (horses). During ETM2, the best-sampled lineage of equids decreased in size by ~14%, as opposed to ~30% during the PETM. Thus, dwarfing appears to be a common evolutionary response of some mammals during past global warming events, and the extent of dwarfing seems related to the magnitude of the event. PMID:28345031

  14. Global warming -- Science and anti-science

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Preining, O.

    1995-06-01

    The global warming debate has sparked many facts activities in almost all sectors of human endeavors. There are the hard facts, the measurements of the greenhouse gases, the statistics of human activities responsible for emissions, the demographic figures. There are the soft facts, the interpretations of the hard facts requiring additional assumptions. There are the media, the press, television, for whom environmental problems make good stories, these can be used to rise emotions, to make heroes and antiheroes. There are politicians, the global warming debate can be used even in electron campaigns. Global warming is a topic within and beyondmore » science. The judgment (and hence use) of scientific facts is overwhelmingly influenced by the ``Weltbild`` (underlying beliefs how the world operates), and consequently opposing positions of well-known scientists arise. There are the attempts to invent futures of man on Earth: policies, regulations, laws on nation, international, and global levels shall facilitate a change in the basic behavior of all men. The global warming issue has many facets and cannot be successfully discussed without including, e.g., the North-South dialogue, world population, etc.« less

  15. Trends in global warming and evolution of matrix protein 2 family from influenza A virus.

    PubMed

    Yan, Shao-Min; Wu, Guang

    2009-12-01

    The global warming is an important factor affecting the biological evolution, and the influenza is an important disease that threatens humans with possible epidemics or pandemics. In this study, we attempted to analyze the trends in global warming and evolution of matrix protein 2 family from influenza A virus, because this protein is a target of anti-flu drug, and its mutation would have significant effect on the resistance to anti-flu drugs. The evolution of matrix protein 2 of influenza A virus from 1959 to 2008 was defined using the unpredictable portion of amino-acid pair predictability. Then the trend in this evolution was compared with the trend in the global temperature, the temperature in north and south hemispheres, and the temperature in influenza A virus sampling site, and species carrying influenza A virus. The results showed the similar trends in global warming and in evolution of M2 proteins although we could not correlate them at this stage of study. The study suggested the potential impact of global warming on the evolution of proteins from influenza A virus.

  16. Detecting anthropogenic climate forcing in the ocean

    NASA Astrophysics Data System (ADS)

    Wijffels, S. A.

    2016-12-01

    Owing to its immense heat capacity, the global ocean is the fly-wheel of the climate system, absorbing, redistributing and storing heat on long timescales and over great distances. Of the extra heat trapped in the Earth System due to rising greenhouse gases, over 90% is being stored in the global oceans. Tracking this warming has been challenging due to past changes in the coverage and technology used in past ocean observations. Here, I'll review progress in estimating past warming rates and patterns. The warming of Earth's surface is also driving changes in the global hydrological cycle, which also intimately involves the oceans. Global ocean salinity changes reveal another footprint of a warming Earth. Some simple model runs that give insight into observed subsurface changes will also be described, along with an update on current warming rates and patterns as tracked by the global Argo programme. The prospects for the next advances in broadscale ocean monitoring will also be discussed.

  17. Global warming and hepatotoxin production by cyanobacteria: what can we learn from experiments?

    PubMed

    El-Shehawy, Rehab; Gorokhova, Elena; Fernández-Piñas, Francisca; del Campo, Francisca F

    2012-04-01

    Global temperature is expected to rise throughout this century, and blooms of cyanobacteria in lakes and estuaries are predicted to increase with the current level of global warming. The potential environmental, economic and sanitation repercussions of these blooms have attracted considerable attention among the world's scientific communities, water management agencies and general public. Of particular concern is the worldwide occurrence of hepatotoxic cyanobacteria posing a serious threat to global public health. Here, we highlight plausible effects of global warming on physiological and molecular changes in these cyanobacteria and resulting effects on hepatotoxin production. We also emphasize the importance of understanding the natural biological function(s) of hepatotoxins, various mechanisms governing their synthesis, and climate-driven changes in food-web interactions, if we are to predict consequences of the current and projected levels of global warming for production and accumulation of hepatotoxins in aquatic ecosystems. Copyright © 2011 Elsevier Ltd. All rights reserved.

  18. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Waldhoff, Stephanie T.; Anthoff, David; Rose, Steven K.

    We use FUND 3.8 to estimate the social cost of four greenhouse gases: carbon dioxide, methane, nitrous oxide, and sulphur hexafluoride emissions. The damage potential for each gas—the ratio of the social cost of the non-carbon dioxide greenhouse gas to the social cost of carbon dioxide—is also estimated. The damage potentials are compared to several metrics, focusing in particular on the global warming potentials, which are frequently used to measure the trade-off between gases in the form of carbon dioxide equivalents. We find that damage potentials could be significantly higher than global warming potentials. This finding implies that previous papersmore » have underestimated the relative importance of reducing non-carbon dioxide greenhouse gas emissions from an economic damage perspective. We show results for a range of sensitivity analyses: carbon dioxide fertilization on agriculture productivity, terrestrial feedbacks, climate sensitivity, discounting, equity weighting, and socioeconomic and emissions scenarios. The sensitivity of the results to carbon dioxide fertilization is a primary focus as it is an important element of climate change that has not been considered in much of the previous literature. We estimate that carbon dioxide fertilization has a large positive impact that reduces the social cost of carbon dioxide with a much smaller effect on the other greenhouse gases. As a result, our estimates of the damage potentials of methane and nitrous oxide are much higher compared to estimates that ignore carbon dioxide fertilization. As a result, our base estimates of the damage potential for methane and nitrous oxide that include carbon dioxide fertilization are twice their respective global warming potentials. Our base estimate of the damage potential of sulphur hexafluoride is similar to the one previous estimate, both almost three times the global warming potential.« less

  19. Force Projection, Strategic Agility and the Big Meltdown

    DTIC Science & Technology

    2001-05-18

    UNLIMITED Number of Pages 29 ii Abstract of FORCE PROJECTION, STRATEGIC AGILITY AND THE BIG MELTDOWN Due to global warming , the polar icepack which...INTRODUCTION The polar icecap which covers the Arctic Ocean is melting. It is a well-known, scientific fact. Global warming is the generally...operational factors and functions, as applicable. 3 CHAPTER II BACKGROUND Global Warming and the Arctic During this and the last century, researchers have

  20. A reduction in the asymmetry of ENSO amplitude due to global warming: The role of atmospheric feedback

    NASA Astrophysics Data System (ADS)

    Ham, Yoo-Geun

    2017-08-01

    This study analyzes a reduction in the asymmetry of El Niño Southern-Oscillation (ENSO) amplitude due to global warming in Coupled Model Intercomparison Project Phase 5 models. The multimodel-averaged Niño3 skewness during December-February season decreased approximately 40% in the RCP4.5 scenario compared to that in the historical simulation. The change in the nonlinear relationship between sea surface temperature (SST) and precipitation is a key factor for understanding the reduction in ENSO asymmetry due to global warming. In the historical simulations, the background SST leading to the greatest precipitation sensitivity (SST for Maximum Precipitation Sensitivity, SST_MPS) occurs when the positive SST anomaly is located over the equatorial central Pacific. Therefore, an increase in climatological SST due to global warming weakens the atmospheric response during El Niño over the central Pacific. However, the climatological SST over this region in the historical simulation is still lower than the SST_MPS for the negative SST anomaly; therefore, a background SST increase due to global warming can further increase precipitation sensitivity. The atmospheric feedbacks during La Niña are enhanced and increase the La Niña amplitude due to global warming.

  1. How Climate Change Beliefs among U.S. Teachers Do and Do Not Translate to Students

    PubMed Central

    Peterson, M. Nils; Bradshaw, Amy

    2016-01-01

    Research suggests climate change beliefs among science teachers mirror those of the general public, raising questions of whether teachers may be perpetuating polarization of public opinion through their classrooms. We began answering these questions with a survey of middle school science teachers (n = 24) and their students (n = 369) in North Carolina, USA. Similar to previous studies, we found that though nearly all (92.1%) of students had teachers who believe that global warming is happening, few (12%) are in classrooms with teachers who recognize that global warming is anthropogenic. We found that teacher beliefs that global warming is happening and student climate change knowledge were the strongest predictors of student belief that global warming is happening and human caused. Conversely, teacher beliefs about human causes of global warming had no relationship with student beliefs, suggesting that science teachers’ low recognition of the causes of global warming is not necessarily problematic in terms of student outcomes. These findings may be explained by previous research suggesting adolescents interpret scientific information relatively independently of ideological constraints. Though teacher polarization may be problematic in its own right, it appears that as long as climate change information is presented in classrooms, students deduce anthropogenic causes. PMID:27603667

  2. How Climate Change Beliefs among U.S. Teachers Do and Do Not Translate to Students.

    PubMed

    Stevenson, Kathryn T; Peterson, M Nils; Bradshaw, Amy

    2016-01-01

    Research suggests climate change beliefs among science teachers mirror those of the general public, raising questions of whether teachers may be perpetuating polarization of public opinion through their classrooms. We began answering these questions with a survey of middle school science teachers (n = 24) and their students (n = 369) in North Carolina, USA. Similar to previous studies, we found that though nearly all (92.1%) of students had teachers who believe that global warming is happening, few (12%) are in classrooms with teachers who recognize that global warming is anthropogenic. We found that teacher beliefs that global warming is happening and student climate change knowledge were the strongest predictors of student belief that global warming is happening and human caused. Conversely, teacher beliefs about human causes of global warming had no relationship with student beliefs, suggesting that science teachers' low recognition of the causes of global warming is not necessarily problematic in terms of student outcomes. These findings may be explained by previous research suggesting adolescents interpret scientific information relatively independently of ideological constraints. Though teacher polarization may be problematic in its own right, it appears that as long as climate change information is presented in classrooms, students deduce anthropogenic causes.

  3. Comparison between project-based learning and discovery learning toward students' metacognitive strategies on global warming concept

    NASA Astrophysics Data System (ADS)

    Tumewu, Widya Anjelia; Wulan, Ana Ratna; Sanjaya, Yayan

    2017-05-01

    The purpose of this study was to know comparing the effectiveness of learning using Project-based learning (PjBL) and Discovery Learning (DL) toward students metacognitive strategies on global warming concept. A quasi-experimental research design with a The Matching-Only Pretest-Posttest Control Group Design was used in this study. The subjects were students of two classes 7th grade of one of junior high school in Bandung City, West Java of 2015/2016 academic year. The study was conducted on two experimental class, that were project-based learning treatment on the experimental class I and discovery learning treatment was done on the experimental class II. The data was collected through questionnaire to know students metacognitive strategies. The statistical analysis showed that there were statistically significant differences in students metacognitive strategies between project-based learning and discovery learning.

  4. Results from the BRACE 1.5 study: Climate change impacts of 1.5 C and 2 C warming

    NASA Astrophysics Data System (ADS)

    O'Neill, B. C.; Anderson, B.; Monaghan, A. J.; Ren, X.; Sanderson, B.; Tebaldi, C.

    2017-12-01

    In 2015, 195 countries negotiated the Paris Agreement on climate change, which set long-term goals of limiting global mean warming to well below 2 C and possibly 1.5 C. This event stimulated substantial scientific interest in climate outcomes and impacts on society associated with those levels of warming. Recently, the first set of global climate model simulations explicitly designed to meet those targets were undertaken with the Community Earth System Model (CESM) for use by the research community (Sanderson et al, accepted). The BRACE 1.5 project models societal impacts from these climate outcomes, combined with assumptions about future socioeconomic conditions according to the Shared Socioeconomic Pathways. These analyses build on a recently completed study of the Benefits of Reduced Anthropogenic Climate changE (BRACE), published as a set of 20 papers in Climatic Change, which examined the difference in impacts between two higher scenarios resulting in about 2.5 C and 3.7 C warming by late this century. BRACE 1.5 consists of a set of six papers to be submitted to a special collection in Environmental Research Letters that takes a similar approach but focuses on impacts at 1.5 and 2 C warming. We ask whether impacts differ substantially between the two climate scenarios, accounting for uncertainty in climate outcomes through the use of initial condition ensembles of CESM simulations, and in societal conditions by using alternative SSP-based development pathways. Impact assessment focuses on the health and agricultural sectors; modeling approaches include the use of a global mutli-region CGE model for economic analysis, both a process-based and an empirical crop model, a model of spatial population change, a model of climatic suitability for the aedes aegypti mosquito, and an epidemiological model of heat-related mortality. A methodological analysis also evaluates the use of climate model emulation techniques for providing climate information sufficient to support impact assessment in low warming scenarios.

  5. Enhanced terrestrial carbon uptake: global drivers and implications for the growth rate of atmospheric CO2.

    NASA Astrophysics Data System (ADS)

    Keenan, Trevor F.; Prentice, Colin; Canadell, Josep; Williams, Christopher; Han, Wang; Riley, William; Zhu, Qing; Koven, Charlie; Chambers, Jeff

    2017-04-01

    In this presentation we will focus on using decadal changes in the global carbon cycle to better understand how ecosystems respond to changes in CO2 concentration, temperature, and water and nutrient availability. Using global carbon budget estimates, ground, atmospheric and satellite observations, and multiple process-based global vegetation models, we examine the causes and consequences of the long-term changes in the terrestrial carbon sink. We show that over the past century the sink has been greatly enhanced, largely due to the effect of elevated CO2 on photosynthesis dominating over warming induced increases in respiration. We also examine the relative roles of greening, water and nutrients, along with individual events such as El Nino. We show that a slowdown in the rate of warming over land since the start of the 21st century likely led to a large increase in the sink, and that this increase was sufficient to lead to a pause in the growth rate of atmospheric CO2. We also show that the recent El Nino resulted in the highest growth rate of atmospheric CO2 ever recorded. Our results provide evidence of the relative roles of CO2 fertilization and warming induced respiration in the global carbon cycle, along with an examination of the impact of climate extremes.

  6. Quantifying global soil carbon losses in response to warming.

    PubMed

    Crowther, T W; Todd-Brown, K E O; Rowe, C W; Wieder, W R; Carey, J C; Machmuller, M B; Snoek, B L; Fang, S; Zhou, G; Allison, S D; Blair, J M; Bridgham, S D; Burton, A J; Carrillo, Y; Reich, P B; Clark, J S; Classen, A T; Dijkstra, F A; Elberling, B; Emmett, B A; Estiarte, M; Frey, S D; Guo, J; Harte, J; Jiang, L; Johnson, B R; Kröel-Dulay, G; Larsen, K S; Laudon, H; Lavallee, J M; Luo, Y; Lupascu, M; Ma, L N; Marhan, S; Michelsen, A; Mohan, J; Niu, S; Pendall, E; Peñuelas, J; Pfeifer-Meister, L; Poll, C; Reinsch, S; Reynolds, L L; Schmidt, I K; Sistla, S; Sokol, N W; Templer, P H; Treseder, K K; Welker, J M; Bradford, M A

    2016-11-30

    The majority of the Earth's terrestrial carbon is stored in the soil. If anthropogenic warming stimulates the loss of this carbon to the atmosphere, it could drive further planetary warming. Despite evidence that warming enhances carbon fluxes to and from the soil, the net global balance between these responses remains uncertain. Here we present a comprehensive analysis of warming-induced changes in soil carbon stocks by assembling data from 49 field experiments located across North America, Europe and Asia. We find that the effects of warming are contingent on the size of the initial soil carbon stock, with considerable losses occurring in high-latitude areas. By extrapolating this empirical relationship to the global scale, we provide estimates of soil carbon sensitivity to warming that may help to constrain Earth system model projections. Our empirical relationship suggests that global soil carbon stocks in the upper soil horizons will fall by 30 ± 30 petagrams of carbon to 203 ± 161 petagrams of carbon under one degree of warming, depending on the rate at which the effects of warming are realized. Under the conservative assumption that the response of soil carbon to warming occurs within a year, a business-as-usual climate scenario would drive the loss of 55 ± 50 petagrams of carbon from the upper soil horizons by 2050. This value is around 12-17 per cent of the expected anthropogenic emissions over this period. Despite the considerable uncertainty in our estimates, the direction of the global soil carbon response is consistent across all scenarios. This provides strong empirical support for the idea that rising temperatures will stimulate the net loss of soil carbon to the atmosphere, driving a positive land carbon-climate feedback that could accelerate climate change.

  7. Quantifying global soil carbon losses in response to warming

    NASA Astrophysics Data System (ADS)

    Crowther, T. W.; Todd-Brown, K. E. O.; Rowe, C. W.; Wieder, W. R.; Carey, J. C.; Machmuller, M. B.; Snoek, B. L.; Fang, S.; Zhou, G.; Allison, S. D.; Blair, J. M.; Bridgham, S. D.; Burton, A. J.; Carrillo, Y.; Reich, P. B.; Clark, J. S.; Classen, A. T.; Dijkstra, F. A.; Elberling, B.; Emmett, B. A.; Estiarte, M.; Frey, S. D.; Guo, J.; Harte, J.; Jiang, L.; Johnson, B. R.; Kröel-Dulay, G.; Larsen, K. S.; Laudon, H.; Lavallee, J. M.; Luo, Y.; Lupascu, M.; Ma, L. N.; Marhan, S.; Michelsen, A.; Mohan, J.; Niu, S.; Pendall, E.; Peñuelas, J.; Pfeifer-Meister, L.; Poll, C.; Reinsch, S.; Reynolds, L. L.; Schmidt, I. K.; Sistla, S.; Sokol, N. W.; Templer, P. H.; Treseder, K. K.; Welker, J. M.; Bradford, M. A.

    2016-12-01

    The majority of the Earth’s terrestrial carbon is stored in the soil. If anthropogenic warming stimulates the loss of this carbon to the atmosphere, it could drive further planetary warming. Despite evidence that warming enhances carbon fluxes to and from the soil, the net global balance between these responses remains uncertain. Here we present a comprehensive analysis of warming-induced changes in soil carbon stocks by assembling data from 49 field experiments located across North America, Europe and Asia. We find that the effects of warming are contingent on the size of the initial soil carbon stock, with considerable losses occurring in high-latitude areas. By extrapolating this empirical relationship to the global scale, we provide estimates of soil carbon sensitivity to warming that may help to constrain Earth system model projections. Our empirical relationship suggests that global soil carbon stocks in the upper soil horizons will fall by 30 ± 30 petagrams of carbon to 203 ± 161 petagrams of carbon under one degree of warming, depending on the rate at which the effects of warming are realized. Under the conservative assumption that the response of soil carbon to warming occurs within a year, a business-as-usual climate scenario would drive the loss of 55 ± 50 petagrams of carbon from the upper soil horizons by 2050. This value is around 12-17 per cent of the expected anthropogenic emissions over this period. Despite the considerable uncertainty in our estimates, the direction of the global soil carbon response is consistent across all scenarios. This provides strong empirical support for the idea that rising temperatures will stimulate the net loss of soil carbon to the atmosphere, driving a positive land carbon-climate feedback that could accelerate climate change.

  8. Physical mechanisms of spring and summertime drought related with the global warming over the northern America

    NASA Astrophysics Data System (ADS)

    Choi, W.; Kim, K. Y.

    2017-12-01

    Drought during the growing season (spring through summer) is severe natural hazard in the large cropland over the northern America. It is important to understand how the drought is related with the global warming and how it will change in the future. This study aims to investigate the physical mechanism of global warming impact on the spring and summertime drought over the northern America using Cyclostationary Empirical Orthogonal Function (CSEOF) analysis. The Northern Hemisphere surface warming, the most dominant mode of the surface air temperature, has resulted in decreased relative humidity and precipitation over the mid-latitude region of North America. For the viewpoint of atmospheric water demand, soil moisture and evaporation have also decreased significantly, exacerbating vulnerability of drought. These consistent features of changes in water demand and supply related with the global warming can provide a possibility of credible insight for future drought change.

  9. How warm days increase belief in global warming

    NASA Astrophysics Data System (ADS)

    Zaval, Lisa; Keenan, Elizabeth A.; Johnson, Eric J.; Weber, Elke U.

    2014-02-01

    Climate change judgements can depend on whether today seems warmer or colder than usual, termed the local warming effect. Although previous research has demonstrated that this effect occurs, studies have yet to explain why or how temperature abnormalities influence global warming attitudes. A better understanding of the underlying psychology of this effect can help explain the public's reaction to climate change and inform approaches used to communicate the phenomenon. Across five studies, we find evidence of attribute substitution, whereby individuals use less relevant but available information (for example, today's temperature) in place of more diagnostic but less accessible information (for example, global climate change patterns) when making judgements. Moreover, we rule out alternative hypotheses involving climate change labelling and lay mental models. Ultimately, we show that present temperature abnormalities are given undue weight and lead to an overestimation of the frequency of similar past events, thereby increasing belief in and concern for global warming.

  10. Increased evapotranspiration demand in a Mediterranean climate might cause a decline in fungal yields under global warming.

    PubMed

    Ágreda, Teresa; Águeda, Beatriz; Olano, José M; Vicente-Serrano, Sergio M; Fernández-Toirán, Marina

    2015-09-01

    Wild fungi play a critical role in forest ecosystems, and its recollection is a relevant economic activity. Understanding fungal response to climate is necessary in order to predict future fungal production in Mediterranean forests under climate change scenarios. We used a 15-year data set to model the relationship between climate and epigeous fungal abundance and productivity, for mycorrhizal and saprotrophic guilds in a Mediterranean pine forest. The obtained models were used to predict fungal productivity for the 2021-2080 period by means of regional climate change models. Simple models based on early spring temperature and summer-autumn rainfall could provide accurate estimates for fungal abundance and productivity. Models including rainfall and climatic water balance showed similar results and explanatory power for the analyzed 15-year period. However, their predictions for the 2021-2080 period diverged. Rainfall-based models predicted a maintenance of fungal yield, whereas water balance-based models predicted a steady decrease of fungal productivity under a global warming scenario. Under Mediterranean conditions fungi responded to weather conditions in two distinct periods: early spring and late summer-autumn, suggesting a bimodal pattern of growth. Saprotrophic and mycorrhizal fungi showed differences in the climatic control. Increased atmospheric evaporative demand due to global warming might lead to a drop in fungal yields during the 21st century. © 2015 John Wiley & Sons Ltd.

  11. Simultaneous reductions in emissions of black carbon and co-emitted species will weaken the aerosol net cooling effect

    NASA Astrophysics Data System (ADS)

    Wang, Z. L.; Zhang, H.; Zhang, X. Y.

    2015-04-01

    Black carbon (BC), a distinct type of carbonaceous material formed from the incomplete combustion of fossil and biomass based fuels under certain conditions, can interact with solar radiation and clouds through its strong light-absorption ability, thereby warming the Earth's climate system. Some studies have even suggested that global warming could be slowed down in the short term by eliminating BC emission due to its short lifetime. In this study, we estimate the influence of removing some sources of BC and other co-emitted species on the aerosol radiative effect by using an aerosol-climate atmosphere-only model BCC_AGCM2.0.1_CUACE/Aero with prescribed sea surface temperature and sea ice cover, in combination with the aerosol emissions from the Representative Concentration Pathways (RCPs) scenarios. We find that the global annual mean aerosol net cooling effect at the top of the atmosphere (TOA) will be enhanced by 0.12 W m-2 compared with recent past year 2000 levels if the emissions of only BC are reduced to the level projected for 2100 based on the RCP2.6 scenario. This will be beneficial~for the mitigation of global warming. However, both aerosol negative direct and indirect radiative effects are weakened when BC and its co-emitted species (sulfur dioxide and organic carbon) are simultaneously reduced. Relative to year 2000 levels, the global annual mean aerosol net cooling effect at the TOA will be weakened by 1.7-2.0 W m-2 if the emissions of all these aerosols are decreased to the levels projected for 2100 in different ways based on the RCP2.6, RCP4.5, and RCP8.5 scenarios. Because there are no effective ways to remove the BC exclusively without influencing the other co-emitted components, our results therefore indicate that a reduction in BC emission can lead to an unexpected warming on the Earth's climate system in the future.

  12. Global Warming: Understanding and Teaching the Forecast.

    ERIC Educational Resources Information Center

    Andrews, Bill

    1994-01-01

    A resource for the teaching of the history and causes of climate change. Discusses evidence of climate change from the Viking era, early ice ages, the most recent ice age, natural causes of climate change, human-made causes of climate change, projections of global warming, and unequal warming. (LZ)

  13. Global atmospheric changes.

    PubMed

    Piver, W T

    1991-12-01

    Increasing concentrations of CO2 and other greenhouse gases in the atmosphere can be directly related to global warming. In terms of human health, because a major cause of increasing atmospheric concentrations of CO2 is the increased combustion of fossil fuels, global warming also may result in increases in air pollutants, acid deposition, and exposure to ultraviolet (UV) radiation. To understand better the impacts of global warming phenomena on human health, this review emphasizes the processes that are responsible for the greenhouse effect, air pollution, acid deposition, and increased exposure to UV radiation.

  14. Change We Can Fight Over: The Relationship between Arable Land Supply and Substate Conflict

    DTIC Science & Technology

    2010-01-01

    environmental impact of global warming has spurred a parallel discussion among national security academics and policymakers about the security...consequences of climate change. Roughly speaking, there are two camps in this discussion -one that ominously predicts the potential for global warming to spark...future climate change, but the stark reality is that global warming is already upon us. Thus, policymakers need to know -both now and in the coming

  15. Worldwide Emerging Environmental Issues Affecting the U.S. Military. August 2005 Report

    DTIC Science & Technology

    2005-08-01

    Frozen Areas Accelerates Siberia’s melting accelerates global warming . Scientists recently discovered that in the last three or four years the...melting, considered to be partially caused by global warming , becomes in its turn an accelerating factor of it. This finding follows a similar...Greenland Conference on Global Warming Environmental ministers and other officials from 23 countries around the world and the EU met on the edge of a

  16. Modeling the impact of global warming on vector-borne infections.

    PubMed

    Massad, Eduardo; Coutinho, Francisco Antonio Bezerra; Lopez, Luis Fernandez; da Silva, Daniel Rodrigues

    2011-06-01

    Global warming will certainly affect the abundance and distribution of disease vectors. The effect of global warming, however, depends on the complex interaction between the human host population and the causative infectious agent. In this work we review some mathematical models that were proposed to study the impact of the increase in ambient temperature on the spread and gravity of some insect-transmitted diseases. Copyright © 2011 Elsevier B.V. All rights reserved.

  17. Large potential reduction in economic damages under UN mitigation targets.

    PubMed

    Burke, Marshall; Davis, W Matthew; Diffenbaugh, Noah S

    2018-05-01

    International climate change agreements typically specify global warming thresholds as policy targets 1 , but the relative economic benefits of achieving these temperature targets remain poorly understood 2,3 . Uncertainties include the spatial pattern of temperature change, how global and regional economic output will respond to these changes in temperature, and the willingness of societies to trade present for future consumption. Here we combine historical evidence 4 with national-level climate 5 and socioeconomic 6 projections to quantify the economic damages associated with the United Nations (UN) targets of 1.5 °C and 2 °C global warming, and those associated with current UN national-level mitigation commitments (which together approach 3 °C warming 7 ). We find that by the end of this century, there is a more than 75% chance that limiting warming to 1.5 °C would reduce economic damages relative to 2 °C, and a more than 60% chance that the accumulated global benefits will exceed US$20 trillion under a 3% discount rate (2010 US dollars). We also estimate that 71% of countries-representing 90% of the global population-have a more than 75% chance of experiencing reduced economic damages at 1.5 °C, with poorer countries benefiting most. Our results could understate the benefits of limiting warming to 1.5 °C if unprecedented extreme outcomes, such as large-scale sea level rise 8 , occur for warming of 2 °C but not for warming of 1.5 °C. Inclusion of other unquantified sources of uncertainty, such as uncertainty in secular growth rates beyond that contained in existing socioeconomic scenarios, could also result in less precise impact estimates. We find considerably greater reductions in global economic output beyond 2 °C. Relative to a world that did not warm beyond 2000-2010 levels, we project 15%-25% reductions in per capita output by 2100 for the 2.5-3 °C of global warming implied by current national commitments 7 , and reductions of more than 30% for 4 °C warming. Our results therefore suggest that achieving the 1.5 °C target is likely to reduce aggregate damages and lessen global inequality, and that failing to meet the 2 °C target is likely to increase economic damages substantially.

  18. Will Half a Degree Make a Difference? Robust Projections of Indices of Mean and Extreme Climate in Europe Under 1.5°C, 2°C, and 3°C Global Warming

    NASA Astrophysics Data System (ADS)

    Dosio, Alessandro; Fischer, Erich M.

    2018-01-01

    Based on high-resolution models, we investigate the change in climate extremes and impact-relevant indicators over Europe under different levels of global warming. We specifically assess the robustness of the changes and the benefits of limiting warming to 1.5°C instead of 2°C. Compared to 1.5°C world, a further 0.5°C warming results in a robust change of minimum summer temperature indices (mean, Tn10p, and Tn900p) over more than 70% of Europe. Robust changes (more than 0.5°C) in maximum temperature affect smaller areas (usually less than 20%). There is a substantial nonlinear change of fixed-threshold indices, with more than 60% increase of the number of tropical nights over southern Europe and more than 50% decrease in the number of frost days over central Europe. The change in mean precipitation due to 0.5°C warming is mostly nonsignificant at the grid point level, but, locally, it is accompanied by a more marked change in extreme rainfall.

  19. Impact of Ocean Warming on Tropical Cyclone Size and Its Destructiveness.

    PubMed

    Sun, Yuan; Zhong, Zhong; Li, Tim; Yi, Lan; Hu, Yijia; Wan, Hongchao; Chen, Haishan; Liao, Qianfeng; Ma, Chen; Li, Qihua

    2017-08-15

    The response of tropical cyclone (TC) destructive potential to global warming is an open issue. A number of previous studies have ignored the effect of TC size change in the context of global warming, which resulted in a significant underestimation of the TC destructive potential. The lack of reliable and consistent historical data on TC size limits the confident estimation of the linkage between the observed trend in TC size and that in sea surface temperature (SST) under the background of global climate warming. A regional atmospheric model is used in the present study to investigate the response of TC size and TC destructive potential to increases in SST. The results show that a large-scale ocean warming can lead to not only TC intensification but also TC expansion. The TC size increase in response to the ocean warming is possibly attributed to the increase in atmospheric convective instability in the TC outer region below the middle troposphere, which facilitates the local development of grid-scale ascending motion, low-level convergence and the acceleration of tangential winds. The numerical results indicate that TCs will become stronger, larger, and unexpectedly more destructive under global warming.

  20. Global Warming and Ozone Layer Depletion: STS Issues for Social Studies Classrooms.

    ERIC Educational Resources Information Center

    Rye, James A.; Strong, Donna D.; Rubba, Peter A.

    2001-01-01

    Explores the inclusion of science-technology-society (STS) education in social studies. Provides background information on global warming and the depletion of the ozone layer. Focuses on reasons for teaching global climate change in the social studies classroom and includes teaching suggestions. Offers a list of Web sites about global climate…

  1. Change of ENSO characteristics in response to global warming

    NASA Astrophysics Data System (ADS)

    Sun, X.; Xia, Y.; Yan, Y.; Feng, W.; Huang, F.; Yang, X. Q.

    2017-12-01

    By using datasets of HadISST monthly SST from 1895 to 2014 and 600-year simulations of two CESM model experiments with/without doubling of CO2 concentration, ENSO characteristics are compared pre- and post- global warming. The main results are as follows. Due to global warming, the maximum climatological SST warming occurs in the tropical western Pacific (La Niña-like background warming) and the tropical eastern Pacific (El Niño-like background warming) for observations and model, respectively, resulting in opposite zonal SST gradient anomalies in the tropical Pacific. The La Niña-like background warming induces intense surface divergence in the tropical central Pacific, which enhances the easterly trade winds in the tropical central-western Pacific and shifts the strongest ocean-atmosphere coupling westward, correspondingly. On the contrary, the El Niño-like background warming causes westerly winds in the whole tropical Pacific and moves the strongest ocean-atmosphere coupling eastward. Under the La Niña-like background warming, ENSO tends to develop and mature in the tropical central Pacific, because the background easterly wind anomaly weakens the ENSO-induced westerly wind anomaly in the tropical western Pacific, leading to the so-called "Central Pacific ENSO (CP ENSO)". However, the so-called "Eastern Pacific ENSO (EP ENSO)" is likely formed due to increased westerly wind anomaly by the El Niño-like background warming. ENSO lifetime is significantly extended under both the El Niño-like and the La Niña-like background warmings, and especially, it can be prolonged by up to 3 months in the situation of El Niño-like background warming. The prolonged El Nino lifetime mainly applies to extreme El Niño events, which is caused by earlier outbreak of the westerly wind bursts, shallower climatological thermocline depth and weaker "discharge" rate of the ENSO warm signal in response to global warming. Results from both observations and the model also show that the frequency of ENSO events greatly increases due to global warming, and many more extreme El Niño and La Niña events appear under the El Niño-like and the La Niña-like background warmings, respectively. This study reconciles the phenomena and mechanisms of different characteristics of ENSO changes in observations and models.

  2. Quantitative Analysis of Critical Factors for the Climate Impact of Landfill Mining.

    PubMed

    Laner, David; Cencic, Oliver; Svensson, Niclas; Krook, Joakim

    2016-07-05

    Landfill mining has been proposed as an innovative strategy to mitigate environmental risks associated with landfills, to recover secondary raw materials and energy from the deposited waste, and to enable high-valued land uses at the site. The present study quantitatively assesses the importance of specific factors and conditions for the net contribution of landfill mining to global warming using a novel, set-based modeling approach and provides policy recommendations for facilitating the development of projects contributing to global warming mitigation. Building on life-cycle assessment, scenario modeling and sensitivity analysis methods are used to identify critical factors for the climate impact of landfill mining. The net contributions to global warming of the scenarios range from -1550 (saving) to 640 (burden) kg CO2e per Mg of excavated waste. Nearly 90% of the results' total variation can be explained by changes in four factors, namely the landfill gas management in the reference case (i.e., alternative to mining the landfill), the background energy system, the composition of the excavated waste, and the applied waste-to-energy technology. Based on the analyses, circumstances under which landfill mining should be prioritized or not are identified and sensitive parameters for the climate impact assessment of landfill mining are highlighted.

  3. Changes in Intense Precipitation Events in West Africa and the central U.S. under Global Warming

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cook, Kerry H.; Vizy, Edward

    The purpose of the proposed project is to improve our understanding of the physical processes and large-scale connectivity of changes in intense precipitation events (high rainfall rates) under global warming in West Africa and the central U.S., including relationships with low-frequency modes of variability. This is in response to the requested subject area #2 “simulation of climate extremes under a changing climate … to better quantify the frequency, duration, and intensity of extreme events under climate change and elucidate the role of low frequency climate variability in modulating extremes.” We will use a regional climate model and emphasize an understandingmore » of the physical processes that lead to an intensification of rainfall. The project objectives are as follows: 1. Understand the processes responsible for simulated changes in warm-season rainfall intensity and frequency over West Africa and the Central U.S. associated with greenhouse gas-induced global warming 2. Understand the relationship between changes in warm-season rainfall intensity and frequency, which generally occur on regional space scales, and the larger-scale global warming signal by considering modifications of low-frequency modes of variability. 3. Relate changes simulated on regional space scales to global-scale theories of how and why atmospheric moisture levels and rainfall should change as climate warms.« less

  4. Geoengineering: An Idea Whose Time Has Come?

    PubMed

    Resnik, David B; Vallero, Daniel A

    2011-12-17

    Some engineers and scientists recently have suggested that it would be prudent to consider engaging in geoengineering to mitigate global warming. Geoengineering differs from other methods for mitigating global warming because it involves a deliberate effort to affect the climate at a global scale. Although geoengineering is not a new idea, it has taken on added significance as a result of difficulties with implementing other proposals to mitigate climate change. While proponents of geoengineering admit that it can have significant risks for the environment and public health, many maintain that it is worth pursuing, given the failure of other means of mitigating global warming. Some environmental groups have voiced strong opposition to all forms of geoengineering. In this article, we examine arguments for and against geoengineering and discuss some policy options. We argue that specific geoengineering proposals should not be implemented until there is good evidence concerning their safety, efficacy, and feasibility, as well as a plan for oversight. International cooperation and public input should also be sought. Other methods for mitigating global warming should be aggressively pursued while geoengineering is under consideration. The promise of an engineering solution to global warming should not be used as an excuse to abandon or cut back current, climate mitigation efforts.

  5. Native temperature regime influences soil response to simulated warming

    Treesearch

    Timothy G. Whitby; Michael D. Madritch

    2013-01-01

    Anthropogenic climate change is expected to increase global temperatures and potentially increase soil carbon (C) mineralization, which could lead to a positive feedback between global warming and soil respiration. However the magnitude and spatial variability of belowground responses to warming are not yet fully understood. Some of the variability may depend...

  6. Sensitivity of Arctic carbon in a changing climate

    Treesearch

    A. David McGuire; Henry P. Huntington; Simon Wilson

    2009-01-01

    The Arctic has been warming rapidly in the past few decades. A key question is how that warming will affect the cycling of carbon (C) in the Arctic system. At present, the Arctic is a global sink for C. If that changes and the Arctic becomes a carbon source, global climate warming may speed up.

  7. Sources of global warming of the upper ocean on decadal period scales

    USGS Publications Warehouse

    White, Warren B.; Dettinger, M.D.; Cayan, D.R.

    2003-01-01

    Recent studies find global climate variability in the upper ocean and lower atmosphere during the twentieth century dominated by quasi-biennial, interannual, quasi-decadal and interdecadal signals. The quasi-decadal signal in upper ocean temperature undergoes global warming/cooling of ???0.1??C, similar to that occuring with the interannual signal (i.e., El Nin??o-Southern Oscillation), both signals dominated by global warming/cooling in the tropics. From the National Centers for Environmental Prediction troposphere reanalysis and Scripps Institution of Oceanography upper ocean temperature reanalysis we examine the quasi-decadal global tropical diabetic heat storage (DHS) budget from 1975 to 2000. We find the anomalous DHS warming tendency of 0.3-0.9 W m-2 driven principally by a downward global tropical latent-plus-sensible heat flux anomaly into the ocean, overwhelming the tendency by weaker upward shortwave-minus-longwave heat flux anomaly to drive an anomalous DHS cooling tendency. During the peak quasi-decadal warming the estimated dissipation of DHS anomaly of 0.2-0.5 W m-2 into the deep ocean and a similar loss to the overlying atmosphere through air-sea heat flux anomaly are balanced by a decrease in the net poleward Ekman heat advection out of the tropics of 0.4-0.7 W m-2. This scenario is nearly the opposite of that accounting for global tropical warming during the El Nin??o. These diagnostics confirm that even though the global quasi-decadal signal is phase-locked to the 11-year signal in the Sun's surface radiative forcing of ???0.1 W m-2, the anomalous global tropical DHS tendency cannot be driven by it directly.

  8. The influence of global warming on natural disasters and their public health outcomes.

    PubMed

    Diaz, James H

    2007-01-01

    With a documented increase in average global surface temperatures of 0.6 degrees C since 1975, Earth now appears to be warming due to a variety of climatic effects, most notably the cascading effects of greenhouse gas emissions resulting from human activities. There remains, however, no universal agreement on how rapidly, regionally, or asymmetrically the planet will warm or on the true impact of global warming on natural disasters and public health outcomes. Most reports to date of the public health impact of global warming have been anecdotal and retrospective in design and have focused on the increase in heat-stroke deaths following heat waves and on outbreaks of airborne and arthropod-borne diseases following tropical rains and flooding that resulted from fluctuations in ocean temperatures. The effects of global warming on rainfall and drought, tropical cyclone and tsunami activity, and tectonic and volcanic activity will have far-reaching public health effects not only on environmentally associated disease outbreaks but also on global food supplies and population movements. As a result of these and other recognized associations between climate change and public health consequences, many of which have been confounded by deficiencies in public health infrastructure and scientific debates over whether climate changes are spawned by atmospheric cycles or anthropogenic influences, the active responses to progressive climate change must include combinations of economic, environmental, legal, regulatory, and, most importantly, public health measures.

  9. High-global warming potential F-gas emissions in California: comparison of ambient-based versus inventory-based emission estimates, and implications of refined estimates.

    PubMed

    Gallagher, Glenn; Zhan, Tao; Hsu, Ying-Kuang; Gupta, Pamela; Pederson, James; Croes, Bart; Blake, Donald R; Barletta, Barbara; Meinardi, Simone; Ashford, Paul; Vetter, Arnie; Saba, Sabine; Slim, Rayan; Palandre, Lionel; Clodic, Denis; Mathis, Pamela; Wagner, Mark; Forgie, Julia; Dwyer, Harry; Wolf, Katy

    2014-01-21

    To provide information for greenhouse gas reduction policies, the California Air Resources Board (CARB) inventories annual emissions of high-global-warming potential (GWP) fluorinated gases, the fastest growing sector of greenhouse gas (GHG) emissions globally. Baseline 2008 F-gas emissions estimates for selected chlorofluorocarbons (CFC-12), hydrochlorofluorocarbons (HCFC-22), and hydrofluorocarbons (HFC-134a) made with an inventory-based methodology were compared to emissions estimates made by ambient-based measurements. Significant discrepancies were found, with the inventory-based emissions methodology resulting in a systematic 42% under-estimation of CFC-12 emissions from older refrigeration equipment and older vehicles, and a systematic 114% overestimation of emissions for HFC-134a, a refrigerant substitute for phased-out CFCs. Initial, inventory-based estimates for all F-gas emissions had assumed that equipment is no longer in service once it reaches its average lifetime of use. Revised emission estimates using improved models for equipment age at end-of-life, inventories, and leak rates specific to California resulted in F-gas emissions estimates in closer agreement to ambient-based measurements. The discrepancies between inventory-based estimates and ambient-based measurements were reduced from -42% to -6% for CFC-12, and from +114% to +9% for HFC-134a.

  10. Northern Hemisphere Glaciation during the Globally Warm Early Late Pliocene

    PubMed Central

    De Schepper, Stijn; Groeneveld, Jeroen; Naafs, B. David A; Van Renterghem, Cédéric; Hennissen, Jan; Head, Martin J.; Louwye, Stephen; Fabian, Karl

    2013-01-01

    The early Late Pliocene (3.6 to ∼3.0 million years ago) is the last extended interval in Earth's history when atmospheric CO2 concentrations were comparable to today's and global climate was warmer. Yet a severe global glaciation during marine isotope stage (MIS) M2 interrupted this phase of global warmth ∼3.30 million years ago, and is seen as a premature attempt of the climate system to establish an ice-age world. Here we propose a conceptual model for the glaciation and deglaciation of MIS M2 based on geochemical and palynological records from five marine sediment cores along a Caribbean to eastern North Atlantic transect. Our records show that increased Pacific-to-Atlantic flow via the Central American Seaway weakened the North Atlantic Current and attendant northward heat transport prior to MIS M2. The consequent cooling of the northern high latitude oceans permitted expansion of the continental ice sheets during MIS M2, despite near-modern atmospheric CO2 concentrations. Sea level drop during this glaciation halted the inflow of Pacific water to the Atlantic via the Central American Seaway, allowing the build-up of a Caribbean Warm Pool. Once this warm pool was large enough, the Gulf Stream–North Atlantic Current system was reinvigorated, leading to significant northward heat transport that terminated the glaciation. Before and after MIS M2, heat transport via the North Atlantic Current was crucial in maintaining warm climates comparable to those predicted for the end of this century. PMID:24349081

  11. A Contribution by Ice Nuclei to Global Warming

    NASA Technical Reports Server (NTRS)

    Zeng, Xiping; Tao, Wei-Kuo; Zhang, Minghua; Hou, Arthur Y.; Xie, Shaocheng; Lang, Stephen; Li, Xiaowen; Starr, David O.; Li, Xiaofan

    2009-01-01

    Ice nuclei (IN) significantly affect clouds via supercooled droplets, that in turn modulate atmospheric radiation and thus climate change. Since the IN effect is relatively strong in stratiform clouds but weak in convective ones, the overall effect depends on the ratio of stratiform to convective cloud amount. In this paper, 10 years of TRMM (Tropical Rainfall Measuring Mission) satellite data are analyzed to confirm that stratiform precipitation fraction increases with increasing latitude, which implies that the IN effect is stronger at higher latitudes. To quantitatively evaluate the IN effect versus latitude, large-scale forcing data from ten field campaigns are used to drive a CRM (cloud-resolving model) to generate longterm cloud simulations. As revealed in the simulations, the increase in the net downward radiative flux at the TOA (top of the atmosphere) from doubling the current IN concentrations is larger at higher latitude, which is attributed to the meridional tendency in the stratiform precipitation fraction. Surface warming from doubling the IN concentrations, based on the radiative balance of the globe, is compared with that from anthropogenic COZ . It is found that the former effect is stronger than the latter in middle and high latitudes but not in the Tropics. With regard to the impact of IN on global warming, there are two factors to consider: the radiative effect from increasing the IN concentration and the increase in IN concentration itself. The former relies on cloud ensembles and thus varies mainly with latitude. In contrast, the latter relies on IN sources (e.g., the land surface distribution) and thus varies not only with latitude but also longitude. Global desertification and industrialization provide clues on the geographic variation of the increase in IN concentration since pre-industrial times. Thus, their effect on global warming can be inferred and then be compared with observations. A general match in geographic and seasonal variations between the inferred and observed warming suggests that IN may have contributed positively to global warming over the past decades, especially in middle and high latitudes.

  12. Redistribution of vegetation zones and populations of Larix sibirica Ledb. and Pinus sylvestris L. in central Siberia in a warming climate

    Treesearch

    N.M. Tchebakova; G.E. Rehfeldt; E.I. Parfenova

    2003-01-01

    Evidence for global warming over the past 200 years is overwhelming (Hulme et al. 1999), based on both direct weather observation and indirect physical and biological indicators such as retreating glaciers and snow/ice cover, increasing sea level, and longer growing seasons (IPCC 2001). Recent GCM projections of the Hadley Centre (Gordon et al. 2000) for Siberia show...

  13. Climates of U.S. cities in the 21st century

    NASA Astrophysics Data System (ADS)

    Krayenhoff, E. S.; Georgescu, M.; Moustaoui, M.

    2017-12-01

    Urban climates are projected to warm over the 21st century due to global climate change and urban development. To assess this projected warming, Weather Research and Forecasting (WRF) model simulations are performed at 20 km resolution over the contiguous U.S. for three 10-year periods: contemporary (2000-2009), mid-century (2050-2059), and end-of-century (2090-2099). Urban land use projections are derived from the EPA's ICLUS data set, and future climate projections are based on two global climate models and two greenhouse gas emissions scenarios. The potential for design implementations such as `green' roofs and high albedo roofs to offset the projected warming is considered. Effects of urban expansion, urban densification and infrastructure adaptation on urban climate are compared over the century. Assessment considers impacts at both seasonal and diurnal scales, isolates fair weather impacts, and considers multiple climate variables: air temperature, precipitation, humidity, wind speed, and surface energy budget partitioning.

  14. Potential effects of global warming on the distribution of a temperate univoltine insect

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Rooney, T.P.; Hurd, L.E.

    1993-06-01

    Poleward migration to remain within temperature tolerance ranges as the earth warms poses a problem for species with limited dispersal abilities. The life cycle of a typical temperate univoltine insect, Tenodera sinensis (Mantodea: Mantidae), is constrained by degree-days per season: too few prevent maturation before killing frost in the fall; too many allow egg hatch prior to killing frost. We combined field observations of dispersal ability with laboratory measurements of the relationship between temperature and maturation rate, and applied these to a global warming model to predict the effect of climate change on regional distribution of this insect by 2100more » A.D. Based on the simplified biological assumptions of our model, T, sinensis would be reduced to local populations in the northern portions and higher elevations of its present broadly contiguous range, and species with similar life histories may face regional or total extinction.« less

  15. Range-expanding pests and pathogens in a warming world.

    PubMed

    Bebber, Daniel Patrick

    2015-01-01

    Crop pests and pathogens (CPPs) present a growing threat to food security and ecosystem management. The interactions between plants and their natural enemies are influenced by environmental conditions and thus global warming and climate change could affect CPP ranges and impact. Observations of changing CPP distributions over the twentieth century suggest that growing agricultural production and trade have been most important in disseminating CPPs, but there is some evidence for a latitudinal bias in range shifts that indicates a global warming signal. Species distribution models using climatic variables as drivers suggest that ranges will shift latitudinally in the future. The rapid spread of the Colorado potato beetle across Eurasia illustrates the importance of evolutionary adaptation, host distribution, and migration patterns in affecting the predictions of climate-based species distribution models. Understanding species range shifts in the framework of ecological niche theory may help to direct future research needs.

  16. Global warming in the public sphere.

    PubMed

    Corfee-Morlot, Jan; Maslin, Mark; Burgess, Jacquelin

    2007-11-15

    Although the science of global warming has been in place for several decades if not more, only in the last decade and a half has the issue moved clearly into the public sphere as a public policy issue and a political priority. To understand how and why this has occurred, it is essential to consider the history of the scientific theory of the greenhouse effect, the evidence that supports it and the mechanisms through which science interacts with lay publics and other elite actors, such as politicians, policymakers and business decision makers. This article reviews why and how climate change has moved from the bottom to the top of the international political agenda. It traces the scientific discovery of global warming, political and institutional developments to manage it as well as other socially mediated pathways for understanding and promoting global warming as an issue in the public sphere. The article also places this historical overview of global warming as a public issue into a conceptual framework for understanding relationships between society and nature with emphasis on the co-construction of knowledge.

  17. Response of the North Pacific Oscillation to global warming in the models of the Intergovernmental Panel on Climate Change Fourth Assessment Report

    NASA Astrophysics Data System (ADS)

    Chen, Zheng; Gan, Bolan; Wu, Lixin

    2017-09-01

    Based on 22 of the climate models from phase 3 of the Coupled Model Intercomparison Project, we investigate the ability of the models to reproduce the spatiotemporal features of the wintertime North Pacific Oscillation (NPO), which is the second most important factor determining the wintertime sea level pressure field in simulations of the pre-industrial control climate, and evaluate the NPO response to the future most reasonable global warming scenario (the A1B scenario). We reveal that while most models simulate the geographic distribution and amplitude of the NPO pattern satisfactorily, only 13 models capture both features well. However, the temporal variability of the simulated NPO could not be significantly correlated with the observations. Further analysis indicates the weakened NPO intensity for a scenario of strong global warming is attributable to the reduced lower-tropospheric baroclinicity at mid-latitudes, which is anticipated to disrupt large-scale and low-frequency atmospheric variability, resulting in the diminished transfer of energy to the NPO, together with its northward shift.

  18. Asymmetric responses to simulated global warming by populations of Colobanthus quitensis along a latitudinal gradient

    PubMed Central

    Acuña-Rodríguez, Ian S.; Torres-Díaz, Cristian; Hereme, Rasme

    2017-01-01

    The increase in temperature as consequence of the recent global warming has been reported to generate new ice-free areas in the Antarctic continent, facilitating the colonization and spread of plant populations. Consequently, Antarctic vascular plants have been observed extending their southern distribution. But as the environmental conditions toward southern localities become progressively more departed from the species’ physiological optimum, the ecophysiological responses and survival to the expected global warming could be reduced. However, if processes of local adaptation are the main cause of the observed southern expansion, those populations could appear constrained to respond positively to the expected global warming. Using individuals from the southern tip of South America, the South Shetland Islands and the Antarctic Peninsula, we assess with a long term experiment (three years) under controlled conditions if the responsiveness of Colobanthus quitensis populations to the expected global warming, is related with their different foliar traits and photoprotective mechanisms along the latitudinal gradient. In addition, we tested if the release of the stress condition by the global warming in these cold environments increases the ecophysiological performance. For this, we describe the latitudinal pattern of net photosynthetic capacity, biomass accumulation, and number of flowers under current and future temperatures respective to each site of origin after three growing seasons. Overall, was found a clinal trend was found in the foliar traits and photoprotective mechanisms in the evaluated C. quitensis populations. On the other hand, an asymmetric response to warming was observed for southern populations in all ecophysiological traits evaluated, suggesting that low temperature is limiting the performance of C. quitensis populations. Our results suggest that under a global warming scenario, plant populations that inhabiting cold zones at high latitudes could increase in their ecophysiological performance, enhancing the size of populations or their spread. PMID:28948096

  19. 76 FR 15249 - Deferral for CO2

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-03-21

    ... Agency FR Federal Register GHG Greenhouse gas GWP Global warming potential HFC Hydrofluorocarbon ICR... year, weighted by the global warming potential (GWP) of the particular GHG pollutant, normalized to the... global GHG. Carbon dioxide emissions from a subset of bioenergy sources are reported as information items...

  20. Sources of Intermodel Spread in the Lapse Rate and Water Vapor Feedbacks

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Po-Chedley, Stephen; Armour, Kyle C.; Bitz, Cecilia M.

    Sources of intermodel differences in the global lapse rate (LR) and water vapor (WV) feedbacks are assessed using CO 2 forcing simulations from 28 general circulation models. Tropical surface warming leads to significant warming and moistening in the tropical and extratropical upper troposphere, signifying a nonlocal, tropical influence on extratropical radiation and feedbacks. Model spread in the locally defined LR and WV feedbacks is pronounced in the Southern Ocean because of large-scale ocean upwelling, which reduces surface warming and decouples the surface from the tropospheric response. The magnitude of local extratropical feedbacks across models and over time is well characterizedmore » using the ratio of tropical to extratropical surface warming. It is shown that model differences in locally defined LR and WV feedbacks, particularly over the southern extratropics, drive model variability in the global feedbacks. The cross-model correlation between the global LR and WV feedbacks therefore does not arise from their covariation in the tropics, but rather from the pattern of warming exerting a common control on extratropical feedback responses. Because local feedbacks over the Southern Hemisphere are an important contributor to the global feedback, the partitioning of surface warming between the tropics and the southern extratropics is a key determinant of the spread in the global LR and WV feedbacks. It is also shown that model Antarctic sea ice climatology influences sea ice area changes and southern extratropical surface warming. In conclusion, as a result, model discrepancies in climatological Antarctic sea ice area have a significant impact on the intermodel spread of the global LR and WV feedbacks.« less

  1. Sources of Intermodel Spread in the Lapse Rate and Water Vapor Feedbacks

    DOE PAGES

    Po-Chedley, Stephen; Armour, Kyle C.; Bitz, Cecilia M.; ...

    2018-03-23

    Sources of intermodel differences in the global lapse rate (LR) and water vapor (WV) feedbacks are assessed using CO 2 forcing simulations from 28 general circulation models. Tropical surface warming leads to significant warming and moistening in the tropical and extratropical upper troposphere, signifying a nonlocal, tropical influence on extratropical radiation and feedbacks. Model spread in the locally defined LR and WV feedbacks is pronounced in the Southern Ocean because of large-scale ocean upwelling, which reduces surface warming and decouples the surface from the tropospheric response. The magnitude of local extratropical feedbacks across models and over time is well characterizedmore » using the ratio of tropical to extratropical surface warming. It is shown that model differences in locally defined LR and WV feedbacks, particularly over the southern extratropics, drive model variability in the global feedbacks. The cross-model correlation between the global LR and WV feedbacks therefore does not arise from their covariation in the tropics, but rather from the pattern of warming exerting a common control on extratropical feedback responses. Because local feedbacks over the Southern Hemisphere are an important contributor to the global feedback, the partitioning of surface warming between the tropics and the southern extratropics is a key determinant of the spread in the global LR and WV feedbacks. It is also shown that model Antarctic sea ice climatology influences sea ice area changes and southern extratropical surface warming. In conclusion, as a result, model discrepancies in climatological Antarctic sea ice area have a significant impact on the intermodel spread of the global LR and WV feedbacks.« less

  2. Global Warming - Myth or Reality?, The Erring Ways of Climatology

    NASA Astrophysics Data System (ADS)

    Leroux, Marcel

    In the global-warming debate, definitive answers to questions about ultimate causes and effects remain elusive. In Global Warming: Myth or Reality? Marcel Leroux seeks to separate fact from fiction in this critical debate from a climatological perspective. Beginning with a review of the dire hypotheses for climate trends, the author describes the history of the 1998 Intergovernmental Panel on Climate Change (IPCC) and many subsequent conferences. He discusses the main conclusions of the three IPCC reports and the predicted impact on global temperatures, rainfall, weather and climate, while highlighting the mounting confusion and sensationalism of reports in the media.

  3. Hot Talk, Cold Science

    NASA Astrophysics Data System (ADS)

    Oglesby, Robert J.

    One of the hottest topics in climate science is understanding and evaluating the impacts of possible global warming caused by anthropogenic emissions of greenhouse gases. In Hot Talk, Cold Science, S. Fred Singer does not accept global warming. Singer says in his preface, “The purpose of this book is to demonstrate that the evidence [for global warming] is neither settled, nor compelling, nor even convincing. On the contrary, scientists continue to discover new mechanisms for climate change and to put forth new theories to try to account for the fact that global temperature is not rising, even though greenhouse theory says it should”.

  4. Global warming: a public health concern.

    PubMed

    Afzal, Brenda M

    2007-05-31

    Over the last 100 years the average temperature on the Earth has risen approximately 1ºFahrenheit (F), increasing at a rate twice as fast as has been noted for any period in the last 1,000 years. The Arctic ice cap is shrinking, glaciers are melting, and the Arctic permafrost is thawing. There is mounting evidence that these global climate changes are already affecting human health. This article provides a brief overview of global warming and climate changes, discusses effects of climate change on health, considers the factors which contribute to climate changes, and reviews individual and collective efforts related to reducing global warming.

  5. New climatic targets against global warming: will the maximum 2 °C temperature rise affect estuarine benthic communities?

    PubMed

    Crespo, Daniel; Grilo, Tiago Fernandes; Baptista, Joana; Coelho, João Pedro; Lillebø, Ana Isabel; Cássio, Fernanda; Fernandes, Isabel; Pascoal, Cláudia; Pardal, Miguel Ângelo; Dolbeth, Marina

    2017-06-20

    The Paris Agreement signed by 195 countries in 2015 sets out a global action plan to avoid dangerous climate change by limiting global warming to remain below 2 °C. Under that premise, in situ experiments were run to test the effects of 2 °C temperature increase on the benthic communities in a seagrass bed and adjacent bare sediment, from a temperate European estuary. Temperature was artificially increased in situ and diversity and ecosystem functioning components measured after 10 and 30 days. Despite some warmness effects on the analysed components, significant impacts were not verified on macro and microfauna structure, bioturbation or in the fluxes of nutrients. The effect of site/habitat seemed more important than the effects of the warmness, with the seagrass habitat providing more homogenous results and being less impacted by warmness than the adjacent bare sediment. The results reinforce that most ecological responses to global changes are context dependent and that ecosystem stability depends not only on biological diversity but also on the availability of different habitats and niches, highlighting the role of coastal wetlands. In the context of the Paris Agreement it seems that estuarine benthic ecosystems will be able to cope if global warming remains below 2 °C.

  6. Divergent global precipitation changes induced by natural versus anthropogenic forcing.

    PubMed

    Liu, Jian; Wang, Bin; Cane, Mark A; Yim, So-Young; Lee, June-Yi

    2013-01-31

    As a result of global warming, precipitation is likely to increase in high latitudes and the tropics and to decrease in already dry subtropical regions. The absolute magnitude and regional details of such changes, however, remain intensely debated. As is well known from El Niño studies, sea-surface-temperature gradients across the tropical Pacific Ocean can strongly influence global rainfall. Palaeoproxy evidence indicates that the difference between the warm west Pacific and the colder east Pacific increased in past periods when the Earth warmed as a result of increased solar radiation. In contrast, in most model projections of future greenhouse warming this gradient weakens. It has not been clear how to reconcile these two findings. Here we show in climate model simulations that the tropical Pacific sea-surface-temperature gradient increases when the warming is due to increased solar radiation and decreases when it is due to increased greenhouse-gas forcing. For the same global surface temperature increase the latter pattern produces less rainfall, notably over tropical land, which explains why in the model the late twentieth century is warmer than in the Medieval Warm Period (around AD 1000-1250) but precipitation is less. This difference is consistent with the global tropospheric energy budget, which requires a balance between the latent heat released in precipitation and radiative cooling. The tropospheric cooling is less for increased greenhouse gases, which add radiative absorbers to the troposphere, than for increased solar heating, which is concentrated at the Earth's surface. Thus warming due to increased greenhouse gases produces a climate signature different from that of warming due to solar radiation changes.

  7. Global Changes in Drought Conditions Under Different Levels of Warming

    NASA Astrophysics Data System (ADS)

    Naumann, G.; Alfieri, L.; Wyser, K.; Mentaschi, L.; Betts, R. A.; Carrao, H.; Spinoni, J.; Vogt, J.; Feyen, L.

    2018-04-01

    Higher evaporative demands and more frequent and persistent dry spells associated with rising temperatures suggest that drought conditions could worsen in many regions of the world. In this study, we assess how drought conditions may develop across the globe for 1.5, 2, and 3°C warming compared to preindustrial temperatures. Results show that two thirds of global population will experience a progressive increase in drought conditions with warming. For drying areas, drought durations are projected to rise at rapidly increasing rates with warming, averaged globally from 2.0 month/°C below 1.5°C to 4.2 month/°C when approaching 3°C. Drought magnitudes could double for 30% of global landmass under stringent mitigation. If contemporary warming rates continue, water supply-demand deficits could become fivefold in size for most of Africa, Australia, southern Europe, southern and central states of the United States, Central America, the Caribbean, north-west China, and parts of Southern America. In approximately 20% of the global land surface, drought magnitude will halve with warming of 1.5°C and higher levels, mainly most land areas north of latitude 55°N, but also parts of South America and Eastern and South-eastern Asia. A progressive and significant increase in frequency of droughts is projected with warming in the Mediterranean basin, most of Africa, West and Southern Asia, Central America, and Oceania, where droughts are projected to happen 5 to 10 times more frequent even under ambitious mitigation targets and current 100-year events could occur every two to five years under 3°C of warming.

  8. Understanding Recent Variability in the Arctic Sea Ice Cover -- Synthesis of Model Results and Observations

    DTIC Science & Technology

    2007-09-01

    ARCTIC SEA ICE RESEARCH The effects of global warming on the Arctic Ocean finally gained the American public’s full attention in early 2007 with the...Arctic (Brass, 2002). The observed global warming trend is most pronounced in the higher latitudes due to an effect known as the snow/ice-albedo...due to increased melting thus exposing greater areas of lower albedo land and open water areas. The effect of global warming will result in a

  9. Meeting the Energy Challenges of the 1990s. Experts Define the Key Policy Issues.

    DTIC Science & Technology

    1992-03-01

    Forecast of Low Emission Fuel Usage-Liquid 79 Fuels Figure 2.10: Forecast of Low Emission Fuel Usage- 81 Gaseous Fuels Figure 2.11: Global Warming From...environmental problems caused by acid rain, smog, and global warming , he said. According to Mr. Lovins, utilities as well as their customers benefit from...made in relation to these effects. The panel- ists addressed the links between global warming and the fossil fuels that now produce nearly 90 percent

  10. Canadian Unilateralism in the Arctic: Using Scenario Planning to Help Canada Achieve Its Strategic Goals in the North

    DTIC Science & Technology

    2013-05-23

    IN THE NORTH, by Major Sonny T. Hatton, 78 pages. Climate change and global warming could open up the Arctic to unprecedented energy and resource...heating up, both literally and figuratively. Climate change and global warming are melting the Polar ice cap in the North at an unprecedented rate...grow for Arctic nations as access increases due to global warming .35 Increased access and development in the Arctic will continue to encourage the

  11. Changes in Concurrent Risk of Warm and Dry Years under Impact of Climate Change

    NASA Astrophysics Data System (ADS)

    Sarhadi, A.; Wiper, M.; Touma, D. E.; Ausín, M. C.; Diffenbaugh, N. S.

    2017-12-01

    Anthropogenic global warming has changed the nature and the risk of extreme climate phenomena. The changing concurrence of multiple climatic extremes (warm and dry years) may result in intensification of undesirable consequences for water resources, human and ecosystem health, and environmental equity. The present study assesses how global warming influences the probability that warm and dry years co-occur in a global scale. In the first step of the study a designed multivariate Mann-Kendall trend analysis is used to detect the areas in which the concurrence of warm and dry years has increased in the historical climate records and also climate models in the global scale. The next step investigates the concurrent risk of the extremes under dynamic nonstationary conditions. A fully generalized multivariate risk framework is designed to evolve through time under dynamic nonstationary conditions. In this methodology, Bayesian, dynamic copulas are developed to model the time-varying dependence structure between the two different climate extremes (warm and dry years). The results reveal an increasing trend in the concurrence risk of warm and dry years, which are in agreement with the multivariate trend analysis from historical and climate models. In addition to providing a novel quantification of the changing probability of compound extreme events, the results of this study can help decision makers develop short- and long-term strategies to prepare for climate stresses now and in the future.

  12. Is "Warm Arctic, Cold Continent" A Fingerprint Pattern of Climate Change?

    NASA Astrophysics Data System (ADS)

    Hoerling, M. P.; Sun, L.; Perlwitz, J.

    2015-12-01

    Cold winters and cold waves have recently occurred in Europe, central Asia and the Midwest to eastern United States, even as global mean temperatures set record highs and Arctic amplification of surface warming continued. Since 1979, Central Asia winter temperatures have in fact declined. Conjecture has it that more cold extremes over the mid-latitude continents should occur due to global warming and the impacts of Arctic sea ice loss. A Northern Hemisphere temperature signal termed the "Warm Arctic, Cold Continent" pattern has thus been surmised. Here we use a multi-model approach to test the hypothesis that such a pattern is indeed symptomatic of climate change. Diagnosis of a large model ensemble of historical climate simulations shows some individual realizations to yield cooling trends over Central Asia, but importantly the vast majority show warming. The observed cooling has thus likely been a low probability state of internal variability, not a fingerprint of forced climate change. We show that daily temperature variations over continents decline in winter due to global warming, and cold waves become less likely. This is partly related to diminution of Arctic cold air reservoirs due to warming-induced sea ice loss. Nonetheless, we find some evidence and present a physical basis that Arctic sea ice loss alone can induce a winter cooling over Central Asia, though with a magnitude that is appreciably smaller than the overall radiative-forced warming signal. Our results support the argument that recent cooling trends over central Asia, and cold extreme events over the winter continents, have principally resulted from atmospheric internal variability and have been neither a forced response to Arctic seas ice loss nor a symptom of global warming. The paradigm of climate change is thus better expressed as "Warm Arctic, Warm Continent" for the NH winter.

  13. Extreme heat waves under 1.5 °C and 2 °C global warming

    NASA Astrophysics Data System (ADS)

    Dosio, Alessandro; Mentaschi, Lorenzo; Fischer, Erich M.; Wyser, Klaus

    2018-05-01

    Severe, extreme, and exceptional heat waves, such as those that occurred over the Balkans (2007), France (2003), or Russia (2010), are associated with increased mortality, human discomfort and reduced labour productivity. Based on the results of a very high-resolution global model, we show that, even at 1.5 °C warming, a significant increase in heat wave magnitude is expected over Africa, South America, and Southeast Asia. Compared to a 1.5 °C world, under 2 °C warming the frequency of extreme heat waves would double over most of the globe. In a 1.5 °C world, 13.8% of the world population will be exposed to severe heat waves at least once every 5 years. This fraction becomes nearly three times larger (36.9%) under 2 °C warming, i.e. a difference of around 1.7 billion people. Limiting global warming to 1.5 °C will also result in around 420 million fewer people being frequently exposed to extreme heat waves, and ~65 million to exceptional heat waves. Nearly 700 million people (9.0% of world population) will be exposed to extreme heat waves at least once every 20 years in a 1.5 °C world, but more than 2 billion people (28.2%) in a 2 °C world. With current emission trends threatening even the 2 °C target, our study is helpful to identify regions where limiting the warming to 1.5 °C would have the strongest benefits in reducing population exposure to extreme heat.

  14. Greenhouse warming and the tropical water budget

    NASA Technical Reports Server (NTRS)

    Betts, Alan K.

    1990-01-01

    The present work takes issue with some of the theses of Lindzen's (1990) work on global warming, arguing in particular that Lindzen's work is hampered by the use of oversimplified models. Lindzen then presents a detailed reply to these arguments, emphasizing the fundamental importance of the upper tropospheric water-vapor budget to the question of global warming.

  15. A global experiment suggests climate warming will not accelerate litter decomposition in streams but might reduce carbon sequestration.

    PubMed

    Boyero, Luz; Pearson, Richard G; Gessner, Mark O; Barmuta, Leon A; Ferreira, Verónica; Graça, Manuel A S; Dudgeon, David; Boulton, Andrew J; Callisto, Marcos; Chauvet, Eric; Helson, Julie E; Bruder, Andreas; Albariño, Ricardo J; Yule, Catherine M; Arunachalam, Muthukumarasamy; Davies, Judy N; Figueroa, Ricardo; Flecker, Alexander S; Ramírez, Alonso; Death, Russell G; Iwata, Tomoya; Mathooko, Jude M; Mathuriau, Catherine; Gonçalves, José F; Moretti, Marcelo S; Jinggut, Tajang; Lamothe, Sylvain; M'Erimba, Charles; Ratnarajah, Lavenia; Schindler, Markus H; Castela, José; Buria, Leonardo M; Cornejo, Aydeé; Villanueva, Verónica D; West, Derek C

    2011-03-01

    The decomposition of plant litter is one of the most important ecosystem processes in the biosphere and is particularly sensitive to climate warming. Aquatic ecosystems are well suited to studying warming effects on decomposition because the otherwise confounding influence of moisture is constant. By using a latitudinal temperature gradient in an unprecedented global experiment in streams, we found that climate warming will likely hasten microbial litter decomposition and produce an equivalent decline in detritivore-mediated decomposition rates. As a result, overall decomposition rates should remain unchanged. Nevertheless, the process would be profoundly altered, because the shift in importance from detritivores to microbes in warm climates would likely increase CO(2) production and decrease the generation and sequestration of recalcitrant organic particles. In view of recent estimates showing that inland waters are a significant component of the global carbon cycle, this implies consequences for global biogeochemistry and a possible positive climate feedback. © 2011 Blackwell Publishing Ltd/CNRS.

  16. Global warming and extinctions of endemic species from biodiversity hotspots.

    PubMed

    Malcolm, Jay R; Liu, Canran; Neilson, Ronald P; Hansen, Lara; Hannah, Lee

    2006-04-01

    Global warming is a key threat to biodiversity, but few researchers have assessed the magnitude of this threat at the global scale. We used major vegetation types (biomes) as proxies for natural habitats and, based on projected future biome distributions under doubled-CO2 climates, calculated changes in habitat areas and associated extinctions of endemic plant and vertebrate species in biodiversity hotspots. Because of numerous uncertainties in this approach, we undertook a sensitivity analysis of multiple factors that included (1) two global vegetation models, (2) different numbers of biome classes in our biome classification schemes, (3) different assumptions about whether species distributions were biome specific or not, and (4) different migration capabilities. Extinctions were calculated using both species-area and endemic-area relationships. In addition, average required migration rates were calculated for each hotspot assuming a doubled-CO2 climate in 100 years. Projected percent extinctions ranged from <1 to 43% of the endemic biota (average 11.6%), with biome specificity having the greatest influence on the estimates, followed by the global vegetation model and then by migration and biome classification assumptions. Bootstrap comparisons indicated that effects on hotpots as a group were not significantly different from effects on random same-biome collections of grid cells with respect to biome change or migration rates; in some scenarios, however, botspots exhibited relatively high biome change and low migration rates. Especially vulnerable hotspots were the Cape Floristic Region, Caribbean, Indo-Burma, Mediterranean Basin, Southwest Australia, and Tropical Andes, where plant extinctions per hotspot sometimes exceeded 2000 species. Under the assumption that projected habitat changes were attained in 100 years, estimated global-warming-induced rates of species extinctions in tropical hotspots in some cases exceeded those due to deforestation, supporting suggestions that global warming is one of the most serious threats to the planet's biodiversity.

  17. Global Warming And Meltwater

    NASA Astrophysics Data System (ADS)

    Bratu, S.

    2012-04-01

    In order to find new approaches and new ideas for my students to appreciate the importance of science in their daily life, I proposed a theme for them to debate. They had to search for global warming information and illustrations in the media, and discuss the articles they found in the classroom. This task inspired them to search for new information about this important and timely theme in science. I informed my students that all the best information about global warming and meltwater they found would be used in a poster that would help us to update the knowledge base of the Physics laboratory. I guided them to choose the most eloquent images and significant information. Searching and working to create this poster, the students arrived to better appreciate the importance of science in their daily life and to critically evaluate scientific information transmitted via the media. In the poster we created, one can find images, photos and diagrams and some interesting information: Global warming refers to the rising average temperature of the Earth's atmosphere and oceans and its projected evolution. In the last 100 years, the Earth's average surface temperature increased by about 0.8 °C with about two thirds of the increase occurring over just the last three decades. Warming of the climate system is unequivocal, and scientists are more than 90% certain most of it is caused by increasing concentrations of greenhouse gases produced by human activities such as deforestation and burning fossil fuel. They indicate that during the 21st century the global surface temperature is likely to rise a further 1.1 to 2.9 °C for the lowest emissions scenario and 2.4 to 6.4 °C for the highest predictions. An increase in global temperature will cause sea levels to rise and will change the amount and pattern of precipitation, and potentially result in expansion of subtropical deserts. Warming is expected to be strongest in the Arctic and would be associated with continuing decrease of glaciers, permafrost and sea ice. Other likely effects of the warming include more frequent occurrences of extreme weather events including heat waves, droughts and heavy rainfall events, species extinctions due to shifting temperature regimes, and changes in agricultural yields. Meltwater is the water released by the melting of snow or ice, including glacial ice and ice shelves in the oceans. Meltwater is often found in the ablation zone of glaciers, where the rate of snow cover is reduced. In a report published in June 2007, the United Nations Environment Program estimated that global warming could lead to 40% of the world's population being affected by the loss of glaciers, snow and the associated meltwater in Asia. This is one of many activities of the physics laboratory that the students of our high school are involved in.

  18. Rate of warming affects temperature sensitivity of anaerobic peat decomposition and greenhouse gas production.

    PubMed

    Sihi, Debjani; Inglett, Patrick W; Gerber, Stefan; Inglett, Kanika S

    2018-01-01

    Temperature sensitivity of anaerobic carbon mineralization in wetlands remains poorly represented in most climate models and is especially unconstrained for warmer subtropical and tropical systems which account for a large proportion of global methane emissions. Several studies of experimental warming have documented thermal acclimation of soil respiration involving adjustments in microbial physiology or carbon use efficiency (CUE), with an initial decline in CUE with warming followed by a partial recovery in CUE at a later stage. The variable CUE implies that the rate of warming may impact microbial acclimation and the rate of carbon-dioxide (CO 2 ) and methane (CH 4 ) production. Here, we assessed the effects of warming rate on the decomposition of subtropical peats, by applying either a large single-step (10°C within a day) or a slow ramping (0.1°C/day for 100 days) temperature increase. The extent of thermal acclimation was tested by monitoring CO 2 and CH 4 production, CUE, and microbial biomass. Total gaseous C loss, CUE, and MBC were greater in the slow (ramp) warming treatment. However, greater values of CH 4 -C:CO 2 -C ratios lead to a greater global warming potential in the fast (step) warming treatment. The effect of gradual warming on decomposition was more pronounced in recalcitrant and nutrient-limited soils. Stable carbon isotopes of CH 4 and CO 2 further indicated the possibility of different carbon processing pathways under the contrasting warming rates. Different responses in fast vs. slow warming treatment combined with different endpoints may indicate alternate pathways with long-term consequences. Incorporations of experimental results into organic matter decomposition models suggest that parameter uncertainties in CUE and CH 4 -C:CO 2 -C ratios have a larger impact on long-term soil organic carbon and global warming potential than uncertainty in model structure, and shows that particular rates of warming are central to understand the response of wetland soils to global climate change. © 2017 John Wiley & Sons Ltd.

  19. Community-Based Outdoor Education Using a Local Approach to Conservation

    ERIC Educational Resources Information Center

    Maeda, Kazushi

    2005-01-01

    Local people of a community interact with nature in a way that is mediated by their local cultures and shape their own environment. We need a local approach to conservation for the local environment adding to the political or technological approaches for global environmental problems such as the destruction of the ozone layer or global warming.…

  20. Global albedo change and radiative cooling from anthropogenic land-cover change, 1700 to 2005 based on MODIS, land-use harmonization and radiative kernels

    USDA-ARS?s Scientific Manuscript database

    Widespread anthropogenic land-cover change over the last five centuries has influenced the global climate system through both biogeochemical and biophysical processes. Models indicate that warming from carbon emissions associated with land cover conversion have been partially offset if not outweigh...

  1. Potential change in lodgepole pine site index and distribution under climatic change in Alberta.

    Treesearch

    Robert A. Monserud; Yuqing Yang; Shongming Huang; Nadja Tchebakova

    2008-01-01

    We estimated the impact of global climate change on lodgepole pine (Pinus contorta Dougl. ex. Loud. var. latifolia Engelm.) site productivity in Alberta based on the Alberta Climate Model and the A2 SRES climate change scenario projections from three global circulation models (CGCM2, HADCM3, and ECHAM4). Considerable warming is...

  2. How much CO2 can we still emit while limiting global warming to well below 2 °C?

    NASA Astrophysics Data System (ADS)

    Rahmstorf, S.

    2017-12-01

    In December 2015, the Paris Agreement signed by 195 nations agreed to limit global warming "to well below 2 °C above preindustrial levels and to pursue efforts to limit the temperature increase to 1.5 °C." Since the amount of global warming is approximately proportional to cumulative CO2 emissions, such a warming limit corresponds to a remaining "CO2 budget" - a total amount of CO2 that can still be emitted world-wide. I will discuss current estimates of the size of this CO2 budget and what this means for the emissions trajectories compatible with the Paris Agreement.

  3. The impact of global warming on Mount Everest.

    PubMed

    Moore, G W K; Semple, John L

    2009-01-01

    Global warming impacts a wide range of human activities and ecosystems. One unanticipated consequence of the warming is an increase in barometric pressure throughout the troposphere. Mount Everest's extreme height and resulting low barometric pressure places humans near its summit in an extreme state of hypoxia. Here we quantify the degree with which this warming is increasing the barometric pressure near Everest's summit and argue that it is of such a magnitude as to make the mountain, over time, easier to climb.

  4. Students' communication, argumentation and knowledge in a citizens' conference on global warming

    NASA Astrophysics Data System (ADS)

    Albe, Virginie; Gombert, Marie-José

    2012-09-01

    An empirical study on 12th-grade students' engagement on a global warming debate as a citizens' conference is reported. Within the design-based research methodology, an interdisciplinary teaching sequence integrating an initiation to non-violent communication was developed. Students' debates were analyzed according to three dimensions: communication, argumentation, and knowledge. Students regulated their oral contributions to the debate by identifying judgments in their discussions. Rhetorical processes developed by students were mainly related to the identity of debate protagonists with interest attributions, authority, and positions. Students' arguments also relied on empirical data. The students' knowledge focused on energy choices, economic, political, and science development issues. Implications for socioscientific issues integration in class are discussed.

  5. Geoengineering: An Idea Whose Time Has Come?

    PubMed Central

    Resnik, David B.; Vallero, Daniel A.

    2013-01-01

    Some engineers and scientists recently have suggested that it would be prudent to consider engaging in geoengineering to mitigate global warming. Geoengineering differs from other methods for mitigating global warming because it involves a deliberate effort to affect the climate at a global scale. Although geoengineering is not a new idea, it has taken on added significance as a result of difficulties with implementing other proposals to mitigate climate change. While proponents of geoengineering admit that it can have significant risks for the environment and public health, many maintain that it is worth pursuing, given the failure of other means of mitigating global warming. Some environmental groups have voiced strong opposition to all forms of geoengineering. In this article, we examine arguments for and against geoengineering and discuss some policy options. We argue that specific geoengineering proposals should not be implemented until there is good evidence concerning their safety, efficacy, and feasibility, as well as a plan for oversight. International cooperation and public input should also be sought. Other methods for mitigating global warming should be aggressively pursued while geoengineering is under consideration. The promise of an engineering solution to global warming should not be used as an excuse to abandon or cut back current, climate mitigation efforts. PMID:23502911

  6. Climatic irregular staircases: generalized acceleration of global warming

    PubMed Central

    De Saedeleer, Bernard

    2016-01-01

    Global warming rates mentioned in the literature are often restricted to a couple of arbitrary periods of time, or of isolated values of the starting year, lacking a global view. In this study, we perform on the contrary an exhaustive parametric analysis of the NASA GISS LOTI data, and also of the HadCRUT4 data. The starting year systematically varies between 1880 and 2002, and the averaging period from 5 to 30 yr — not only decades; the ending year also varies . In this way, we uncover a whole unexplored space of values for the global warming rate, and access the full picture. Additionally, stairstep averaging and linear least squares fitting to determine climatic trends have been sofar exclusive. We propose here an original hybrid method which combines both approaches in order to derive a new type of climatic trend. We find that there is an overall acceleration of the global warming whatever the value of the averaging period, and that 99.9% of the 3029 Earth’s climatic irregular staircases are rising. Graphical evidence is also given that choosing an El Niño year as starting year gives lower global warming rates — except if there is a volcanic cooling in parallel. Our rates agree and generalize several results mentioned in the literature. PMID:26813867

  7. Climatic irregular staircases: generalized acceleration of global warming.

    PubMed

    De Saedeleer, Bernard

    2016-01-27

    Global warming rates mentioned in the literature are often restricted to a couple of arbitrary periods of time, or of isolated values of the starting year, lacking a global view. In this study, we perform on the contrary an exhaustive parametric analysis of the NASA GISS LOTI data, and also of the HadCRUT4 data. The starting year systematically varies between 1880 and 2002, and the averaging period from 5 to 30 yr - not only decades; the ending year also varies . In this way, we uncover a whole unexplored space of values for the global warming rate, and access the full picture. Additionally, stairstep averaging and linear least squares fitting to determine climatic trends have been sofar exclusive. We propose here an original hybrid method which combines both approaches in order to derive a new type of climatic trend. We find that there is an overall acceleration of the global warming whatever the value of the averaging period, and that 99.9% of the 3029 Earth's climatic irregular staircases are rising. Graphical evidence is also given that choosing an El Niño year as starting year gives lower global warming rates - except if there is a volcanic cooling in parallel. Our rates agree and generalize several results mentioned in the literature.

  8. Algae-Based Carbon Sequestration

    NASA Astrophysics Data System (ADS)

    Haoyang, Cai

    2018-03-01

    Our civilization is facing a series of environmental problems, including global warming and climate change, which are caused by the accumulation of green house gases in the atmosphere. This article will briefly analyze the current global warming problem and propose a method that we apply algae cultivation to absorb carbon and use shellfish to sequestrate it. Despite the importance of decreasing CO2 emissions or developing carbon-free energy sources, carbon sequestration should be a key issue, since the amount of carbon dioxide that already exists in the atmosphere is great enough to cause global warming. Algae cultivation would be a good choice because they have high metabolism rates and provides shellfish with abundant food that contains carbon. Shellfish’s shells, which are difficult to be decomposed, are reliable storage of carbon, compared to dead organisms like trees and algae. The amount of carbon that can be sequestrated by shellfish is considerable. However, the sequestrating rate of algae and shellfish is not high enough to affect the global climate. Research on algae and shellfish cultivation, including gene technology that aims to create “super plants” and “super shellfish”, is decisive to the solution. Perhaps the baton of history will shift to gene technology, from nuclear physics that has lost appropriate international environment after the end of the Cold War. Gene technology is vital to human survival.

  9. CLIMATE CHANGE. Possible artifacts of data biases in the recent global surface warming hiatus.

    PubMed

    Karl, Thomas R; Arguez, Anthony; Huang, Boyin; Lawrimore, Jay H; McMahon, James R; Menne, Matthew J; Peterson, Thomas C; Vose, Russell S; Zhang, Huai-Min

    2015-06-26

    Much study has been devoted to the possible causes of an apparent decrease in the upward trend of global surface temperatures since 1998, a phenomenon that has been dubbed the global warming "hiatus." Here, we present an updated global surface temperature analysis that reveals that global trends are higher than those reported by the Intergovernmental Panel on Climate Change, especially in recent decades, and that the central estimate for the rate of warming during the first 15 years of the 21st century is at least as great as the last half of the 20th century. These results do not support the notion of a "slowdown" in the increase of global surface temperature. Copyright © 2015, American Association for the Advancement of Science.

  10. Soil warming effect on net ecosystem exchange of carbon dioxide during the transition from winter carbon source to spring carbon sink in a temperate urban lawn.

    PubMed

    Zhou, Xiaoping; Wang, Xiaoke; Tong, Lei; Zhang, Hongxing; Lu, Fei; Zheng, Feixiang; Hou, Peiqiang; Song, Wenzhi; Ouyang, Zhiyun

    2012-01-01

    The significant warming in urban environment caused by the combined effects of global warming and heat island has stimulated widely development of urban vegetations. However, it is less known of the climate feedback of urban lawn in warmed environment. Soil warming effect on net ecosystem exchange (NEE) of carbon dioxide during the transition period from winter to spring was investigated in a temperate urban lawn in Beijing, China. The NEE (negative for uptake) under soil warming treatment (temperature was about 5 degrees C higher than the ambient treatment as a control) was -0.71 micromol/(m2 x sec), the ecosytem was a CO2 sink under soil warming treatment, the lawn ecosystem under the control was a CO2 source (0.13 micromol/(m2 x sec)), indicating that the lawn ecosystem would provide a negative feedback to global warming. There was no significant effect of soil warming on nocturnal NEE (i.e., ecosystem respiration), although the soil temperature sensitivity (Q10) of ecosystem respiration under soil warming treatment was 3.86, much lower than that in the control (7.03). The CO2 uptake was significantly increased by soil warming treatment that was attributed to about 100% increase of alpha (apparent quantum yield) and Amax (maximum rate of photosynthesis). Our results indicated that the response of photosynthesis in urban lawn is much more sensitive to global warming than respiration in the transition period.

  11. Prediction Markets and Beliefs about Climate: Results from Agent-Based Simulations

    NASA Astrophysics Data System (ADS)

    Gilligan, J. M.; John, N. J.; van der Linden, M.

    2015-12-01

    Climate scientists have long been frustrated by persistent doubts a large portion of the public expresses toward the scientific consensus about anthropogenic global warming. The political and ideological polarization of this doubt led Vandenbergh, Raimi, and Gilligan [1] to propose that prediction markets for climate change might influence the opinions of those who mistrust the scientific community but do trust the power of markets.We have developed an agent-based simulation of a climate prediction market in which traders buy and sell future contracts that will pay off at some future year with a value that depends on the global average temperature at that time. The traders form a heterogeneous population with different ideological positions, different beliefs about anthropogenic global warming, and different degrees of risk aversion. We also vary characteristics of the market, including the topology of social networks among the traders, the number of traders, and the completeness of the market. Traders adjust their beliefs about climate according to the gains and losses they and other traders in their social network experience. This model predicts that if global temperature is predominantly driven by greenhouse gas concentrations, prediction markets will cause traders' beliefs to converge toward correctly accepting anthropogenic warming as real. This convergence is largely independent of the structure of the market and the characteristics of the population of traders. However, it may take considerable time for beliefs to converge. Conversely, if temperature does not depend on greenhouse gases, the model predicts that traders' beliefs will not converge. We will discuss the policy-relevance of these results and more generally, the use of agent-based market simulations for policy analysis regarding climate change, seasonal agricultural weather forecasts, and other applications.[1] MP Vandenbergh, KT Raimi, & JM Gilligan. UCLA Law Rev. 61, 1962 (2014).

  12. Multi-model ensemble projections of European river floods and high flows at 1.5, 2, and 3 degree global warming

    NASA Astrophysics Data System (ADS)

    Thober, S.; Kumar, R.; Wanders, N.; Marx, A.; Pan, M.; Rakovec, O.; Samaniego, L. E.; Sheffield, J.; Wood, E. F.; Zink, M.

    2017-12-01

    Severe river floods often result in huge economic losses and fatalities. Since 1980, almost 1500 such events have been reported in Europe. This study investigates climate change impacts on European floods under 1.5, 2, and 3 K global warming. The impacts are assessed employing a multi-model ensemble containing three hydrologic models (HMs: mHM, Noah-MP, PCR-GLOBWB) forced by five CMIP5 General Circulation Models (GCMs) under three Representative Concentration Pathways (RCPs 2.6, 6.0, and 8.5). This multi-model ensemble is unprecedented with respect to the combination of its size (45 realisations) and its spatial resolution, which is 5 km over entire Europe. Climate change impacts are quantified for high flows and flood events, represented by 10% exceedance probability and annual maxima of daily streamflow, respectively. The multi-model ensemble points to the Mediterranean region as a hotspot of changes with significant decrements in high flows from -11% at 1.5 K up to -30% at 3 K global warming mainly resulting from reduced precipitation. Small changes (< ±10%) are observed for river basins in Central Europe and the British Isles under different levels of warming. Projected higher annual precipitation increases high flows in Scandinavia, but reduced snow water equivalent decreases flood events in this region. The contribution by the GCMs to the overall uncertainties of the ensemble is in general higher than that by the HMs. The latter, however, have a substantial share of the overall uncertainty and exceed GCM uncertainty in the Mediterranean and Scandinavia. Adaptation measures for limiting the impacts of global warming could be similar under 1.5 K and 2 K global warming, but has to account for significantly higher changes under 3 K global warming.

  13. Nonlinear regional warming with increasing CO2 concentrations

    NASA Astrophysics Data System (ADS)

    Good, Peter; Lowe, Jason A.; Andrews, Timothy; Wiltshire, Andrew; Chadwick, Robin; Ridley, Jeff K.; Menary, Matthew B.; Bouttes, Nathaelle; Dufresne, Jean Louis; Gregory, Jonathan M.; Schaller, Nathalie; Shiogama, Hideo

    2015-02-01

    When considering adaptation measures and global climate mitigation goals, stakeholders need regional-scale climate projections, including the range of plausible warming rates. To assist these stakeholders, it is important to understand whether some locations may see disproportionately high or low warming from additional forcing above targets such as 2 K (ref. ). There is a need to narrow uncertainty in this nonlinear warming, which requires understanding how climate changes as forcings increase from medium to high levels. However, quantifying and understanding regional nonlinear processes is challenging. Here we show that regional-scale warming can be strongly superlinear to successive CO2 doublings, using five different climate models. Ensemble-mean warming is superlinear over most land locations. Further, the inter-model spread tends to be amplified at higher forcing levels, as nonlinearities grow--especially when considering changes per kelvin of global warming. Regional nonlinearities in surface warming arise from nonlinearities in global-mean radiative balance, the Atlantic meridional overturning circulation, surface snow/ice cover and evapotranspiration. For robust adaptation and mitigation advice, therefore, potentially avoidable climate change (the difference between business-as-usual and mitigation scenarios) and unavoidable climate change (change under strong mitigation scenarios) may need different analysis methods.

  14. A KNOWLEDGE DISCOVERY STRATEGY FOR RELATING SEA SURFACE TEMPERATURES TO FREQUENCIES OF TROPICAL STORMS AND GENERATING PREDICTIONS OF HURRICANES UNDER 21ST-CENTURY GLOBAL WARMING SCENARIOS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Race, Caitlin; Steinbach, Michael; Ganguly, Auroop R

    2010-01-01

    The connections among greenhouse-gas emissions scenarios, global warming, and frequencies of hurricanes or tropical cyclones are among the least understood in climate science but among the most fiercely debated in the context of adaptation decisions or mitigation policies. Here we show that a knowledge discovery strategy, which leverages observations and climate model simulations, offers the promise of developing credible projections of tropical cyclones based on sea surface temperatures (SST) in a warming environment. While this study motivates the development of new methodologies in statistics and data mining, the ability to solve challenging climate science problems with innovative combinations of traditionalmore » and state-of-the-art methods is demonstrated. Here we develop new insights, albeit in a proof-of-concept sense, on the relationship between sea surface temperatures and hurricane frequencies, and generate the most likely projections with uncertainty bounds for storm counts in the 21st-century warming environment based in turn on the Intergovernmental Panel on Climate Change Special Report on Emissions Scenarios. Our preliminary insights point to the benefits that can be achieved for climate science and impacts analysis, as well as adaptation and mitigation policies, by a solution strategy that remains tailored to the climate domain and complements physics-based climate model simulations with a combination of existing and new computational and data science approaches.« less

  15. Is the World in a State of Climate Change Planetary Emergency?

    NASA Astrophysics Data System (ADS)

    Carter, Peter

    2013-04-01

    Leading climate change experts have made public statements that the world is beyond dangerous interference with the climate system, committed to a warming of 3-5°C, facing a risk of global climate catastrophe, and in a state of planetary emergency, but these conclusions are not informing climate change policy. The evidence for these statements is examined and presented in this paper. The main parameters considered are world food security and carbon feedback "runaway" or rapid global warming. 2012 was a record year for Arctic albedo loss, which amplifies Arctic warming and drives Arctic methane feedback emissions. Since 2007, atmospheric methane is experiencing a renewed, sustained increase due to feedback emissions. All potentially large positive Arctic feedbacks are operant. These include albedo loss from disappearing snow and summer sea ice; methane released from peatlands, thawing permafrost and sea floor methane hydrates; and nitrous oxide from cryoperturbed permafrost. Increasing extreme weather events have caused regional crop productivity losses on many continents since 2000. The loss of Arctic albedo might be driving extreme heat and drought in the northern hemisphere. Today the formal national pledges for emissions reductions filed with the UN, combined, commit humanity to a warming of 4.4°C (Climate Interactive) by 2100, which is more than 8°C eventually after 2100, and there are no initiatives to change this. The International Energy Agency warns that the current global economy is on track for a warming of 6°C by 2100. A simple yet novel summation approach of all unavoidable sources of warming estimates the committed unavoidable warming to be 3°C by 2100. What are the implications of these future commitments for world food security and the risk of runaway climate change? The paper considers how these commitments and the policy-relevant research findings can inform policy making with respect to an appropriate science-based mitigation response.

  16. Global temperature monitoring from space

    NASA Technical Reports Server (NTRS)

    Spencer, R. W.

    1994-01-01

    Global and regional temperature variations in the lower troposphere and lower stratosphere are examined for the period 1979-92 from Microwave Sounder Unit (MSU) data obtained by the Television Infrared Observation Satellite (TIROS)-N series of National Oceanic and Atmospheric Administration (NOAA) operational satellites. In the lower troposphere, globally-averaged temperature variations appear to be dominated by tropical El Nino (warm) and La Nina (cool) events and volcanic eruptions. The Pinatubo volcanic eruption in June 1991 appears to have initiated a cooling trend which persisted through the most recent data analyzed (July, 1992), and largely overwhelmed the warming from the 1991-92 El Nino. The cooling has been stronger in the Northern Hemisphere than in the Southern Hemisphere. The temperature trend over the 13.5 year satellite record is small (+0.03 C) compared to the year-to-year variability (0.2-0.4 C), making detection of any global warming signal fruitless to date. However, the future global warming trend, currently predicted to be around 0.3 C/decade, will be much easier to discern should it develop. The lower stratospheric temperature record is dominated by warm episodes from the Pinatubo eruption and the March 1982 eruption of El Chichon volcano.

  17. Ecosystem shifts under climate change - a multi-model analysis from ISI-MIP

    NASA Astrophysics Data System (ADS)

    Warszawski, Lila; Beerling, David; Clark, Douglas; Friend, Andrew; Ito, Akihito; Kahana, Ron; Keribin, Rozenn; Kleidon, Axel; Lomas, Mark; Lucht, Wolfgang; Nishina, Kazuya; Ostberg, Sebastian; Pavlick, Ryan; Tito Rademacher, Tim; Schaphoff, Sibyll

    2013-04-01

    Dramatic ecosystem shifts, relating to vegetation composition and water and carbon stocks and fluxes, are potential consequences of climate change in the twenty-first century. Shifting climatic conditions, resulting in changes in biogeochemical properties of the ecosystem, will render it difficult for endemic plant and animal species to continue to survive in their current habitat. The potential for major shifts in biomes globally will also have severe consequences for the humans who rely on vital ecosystem services. Here we employ a novel metric of ecosystem shift to quantify the magnitude and uncertainty in these shifts at different levels of global warming, based on the response of seven biogeochemical Earth models to different future climate scenarios, in the context of the Intersectoral Impact Model Intercomparison Project (ISI-MIP). Based on this ensemble, 15% of the Earth's land surface will experience severe ecosystem shifts at 2°C degrees of global warming above 1980-2010 levels. This figure rises monotonically with global mean temperature for all models included in this study, reaching a median value of 60% of the land surface in a 4°C warmer world. At both 2°C and 4°C of warming, the most pronounced shifts occur in south-eastern India and south-western China, large swathes of the northern lattitudes above 60°N, the Amazon region and sub-Saharan Africa. Where dynamic vegetation composition is modelled, these shifts correspond to significant reductions in the land surface of vunerable vegetation types. We show that global mean temperature is a robust predictor of ecosystem shifts, whilst the spread across impact models is the greatest contributor to uncertainty.

  18. Extreme temperatures in Southeast Asia caused by El Niño and worsened by global warming

    NASA Astrophysics Data System (ADS)

    Thirumalai, Kaustubh; Dinezio, Pedro N.; Okumura, Yuko; Deser, Clara

    2017-06-01

    In April 2016, southeast Asia experienced surface air temperatures (SATs) that surpassed national records, exacerbated energy consumption, disrupted agriculture and caused severe human discomfort. Here we show using observations and an ensemble of global warming simulations the combined impact of the El Niño/Southern Oscillation (ENSO) phenomenon and long-term warming on regional SAT extremes. We find a robust relationship between ENSO and southeast Asian SATs wherein virtually all April extremes occur during El Niño years. We then quantify the relative contributions of long-term warming and the 2015-16 El Niño to the extreme April 2016 SATs. The results indicate that global warming increases the likelihood of record-breaking April extremes where we estimate that 29% of the 2016 anomaly was caused by warming and 49% by El Niño. These post-Niño Aprils can potentially be anticipated a few months in advance, and thus, help societies prepare for the projected continued increases in extremes.

  19. Extreme temperatures in Southeast Asia caused by El Niño and worsened by global warming.

    PubMed

    Thirumalai, Kaustubh; DiNezio, Pedro N; Okumura, Yuko; Deser, Clara

    2017-06-06

    In April 2016, southeast Asia experienced surface air temperatures (SATs) that surpassed national records, exacerbated energy consumption, disrupted agriculture and caused severe human discomfort. Here we show using observations and an ensemble of global warming simulations the combined impact of the El Niño/Southern Oscillation (ENSO) phenomenon and long-term warming on regional SAT extremes. We find a robust relationship between ENSO and southeast Asian SATs wherein virtually all April extremes occur during El Niño years. We then quantify the relative contributions of long-term warming and the 2015-16 El Niño to the extreme April 2016 SATs. The results indicate that global warming increases the likelihood of record-breaking April extremes where we estimate that 29% of the 2016 anomaly was caused by warming and 49% by El Niño. These post-Niño Aprils can potentially be anticipated a few months in advance, and thus, help societies prepare for the projected continued increases in extremes.

  20. Plausible rice yield losses under future climate warming.

    PubMed

    Zhao, Chuang; Piao, Shilong; Wang, Xuhui; Huang, Yao; Ciais, Philippe; Elliott, Joshua; Huang, Mengtian; Janssens, Ivan A; Li, Tao; Lian, Xu; Liu, Yongwen; Müller, Christoph; Peng, Shushi; Wang, Tao; Zeng, Zhenzhong; Peñuelas, Josep

    2016-12-19

    Rice is the staple food for more than 50% of the world's population 1-3 . Reliable prediction of changes in rice yield is thus central for maintaining global food security. This is an extraordinary challenge. Here, we compare the sensitivity of rice yield to temperature increase derived from field warming experiments and three modelling approaches: statistical models, local crop models and global gridded crop models. Field warming experiments produce a substantial rice yield loss under warming, with an average temperature sensitivity of -5.2 ± 1.4% K -1 . Local crop models give a similar sensitivity (-6.3 ± 0.4% K -1 ), but statistical and global gridded crop models both suggest less negative impacts of warming on yields (-0.8 ± 0.3% and -2.4 ± 3.7% K -1 , respectively). Using data from field warming experiments, we further propose a conditional probability approach to constrain the large range of global gridded crop model results for the future yield changes in response to warming by the end of the century (from -1.3% to -9.3% K -1 ). The constraint implies a more negative response to warming (-8.3 ± 1.4% K -1 ) and reduces the spread of the model ensemble by 33%. This yield reduction exceeds that estimated by the International Food Policy Research Institute assessment (-4.2 to -6.4% K -1 ) (ref. 4). Our study suggests that without CO 2 fertilization, effective adaptation and genetic improvement, severe rice yield losses are plausible under intensive climate warming scenarios.

  1. 40 CFR 52.1873 - Approval status.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... greenhouse gases in the pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from...

  2. 40 CFR 52.2222 - Approval status.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... greenhouse gases in the pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from...

  3. 40 CFR 52.2372 - Approval status.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... greenhouse gases in the pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from...

  4. 40 CFR 52.2072 - Approval status.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... greenhouse gases in the pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from...

  5. 40 CFR 52.1772 - Approval status.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... greenhouse gases in the pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from...

  6. 40 CFR 52.773 - Approval status.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... greenhouse gases in the pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from...

  7. 40 CFR 52.1323 - Approval status.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... greenhouse gases in the pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from...

  8. 40 CFR 52.822 - Approval status.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... greenhouse gases in the pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from...

  9. 40 CFR 52.2072 - Approval status.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... greenhouse gases in the pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from...

  10. 40 CFR 52.2372 - Approval status.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... greenhouse gases in the pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from...

  11. 40 CFR 52.2122 - Approval status.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... greenhouse gases in the pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from...

  12. 40 CFR 52.1873 - Approval status.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... greenhouse gases in the pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from...

  13. 40 CFR 52.1873 - Approval status.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... greenhouse gases in the pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from...

  14. 40 CFR 52.2072 - Approval status.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... greenhouse gases in the pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from...

  15. Helping Kids Handle Worry

    MedlinePlus

    ... or at school. Things like terrorism, war, pollution, global warming, endangered animals, and natural disasters can become a ... worry about big stuff — like terrorism, war, or global warming — that they hear about at school or on ...

  16. 40 CFR 52.1873 - Approval status.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... greenhouse gases in the pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from...

  17. Plasticity in habitat use determines metabolic response of fish to global warming in stratified lakes.

    PubMed

    Busch, Susan; Kirillin, Georgiy; Mehner, Thomas

    2012-09-01

    We used a coupled lake physics and bioenergetics-based foraging model to evaluate how the plasticity in habitat use modifies the seasonal metabolic response of two sympatric cold-water fishes (vendace and Fontane cisco, Coregonus spp.) under a global warming scenario for the year 2100. In different simulations, the vertically migrating species performed either a plastic strategy (behavioral thermoregulation) by shifting their population depth at night to maintain the temperatures occupied at current in-situ observations, or a fixed strategy (no thermoregulation) by keeping their occupied depths at night but facing modified temperatures. The lake physics model predicted higher temperatures above 20 m and lower temperatures below 20 m in response to warming. Using temperature-zooplankton relationships, the density of zooplankton prey was predicted to increase at the surface, but to decrease in hypolimnetic waters. Simulating the fixed strategy, growth was enhanced only for the deeper-living cisco due to the shift in thermal regime at about 20 m. In contrast, simulating the plastic strategy, individual growth of cisco and young vendace was predicted to increase compared to growth currently observed in the lake. Only growth rates of older vendace are reduced under future global warming scenarios irrespective of the behavioral strategy. However, performing behavioral thermoregulation would drive both species into the same depth layers, and hence will erode vertical microhabitat segregation and intensify inter-specific competition between the coexisting coregonids.

  18. Forestry and global warming: the physical and policy linkages

    NASA Astrophysics Data System (ADS)

    Trexler, M. C.

    1992-03-01

    The potential for biotically mitigating global warming is receiving a great deal of policy and technical attention around the world. Elements of the political community are drawn to the notion that land-use patterns can be modified more easily than energy consumption patterns, and some modelers suggest that the potential for storing carbon in terrestrial ecosystems is very large. Most work to date, however, uses only physical criteria in estimating how much land might be available for reforestation. Accounting for social and economic constraints is much more difficult, resulting in daunting uncertainty about what could actually be accomplished. Furthermore, our relative ignorance of the functioning of the global carbon cycle makes attempting to manipulate it for human purposes questionable at best. Nevertheless, there are many reasons besides global warming to pursue a radical restructuring of land-use patterns around the world. Such a restructuring should be undertaken in conjunction with many other measures to slow global warming, most immediately in the energy sector.

  19. European freshwater vulnerability under high rates of global warming and plausible socio-economic narratives.

    NASA Astrophysics Data System (ADS)

    Koutroulis, Aristeidis; Papadimitriou, Lamprini; Grillakis, Manolis; Tsanis, Ioannis

    2017-04-01

    Recent developments could postpone climate actions in the frame of the global climate deal of the Paris Agreement, making higher-end global warming increasingly plausible. Although not clear in the COP21 water security is fundamental to achieving low-carbon ambitions, thus climate and water policies are closely related. The projection of the relationship between global warming, water availability and water stress through their complex interactions among different sectors, along with the synergies and trade-offs between adaptation and mitigation actions, is a rather challenging task under the prism of climate change. Here we try to develop and apply a simple, transparent conceptual framework describing European vulnerability to hydrological drought of current hydro-climatic and socioeconomic status as well as projected vulnerability at specific levels of global warming (1.5oC, 2oC and 4oC) following highly rates of climatic change (RCP8.5) and considering different levels of adaptation associated to specific socioeconomic pathways (SSP2, SSP3 and SSP5).

  20. Radiative efficiencies for fluorinated esters: indirect global warming potentials of hydrofluoroethers.

    PubMed

    Bravo, Iván; Díaz-de-Mera, Yolanda; Aranda, Alfonso; Moreno, Elena; Nutt, David R; Marston, George

    2011-10-14

    Density Functional Theory (DFT) has been used with an empirically-derived correction for the wavenumbers of vibrational band positions to predict the infrared spectra of several fluorinated esters (FESs). Radiative efficiencies (REs) were then determined using the method of Pinnock et al. and these were used with atmospheric lifetimes from the literature to determine the direct global warming potentials of FESs. FESs, in particular fluoroalkylacetates, alkylfluoroacetates and fluoroalkylformates, are potential greenhouse gases and their likely long atmospheric lifetimes and relatively large REs, compared to their parent HFEs, make them active contributors to global warming. Here, we use the concept of indirect global warming potential (indirect GWP) to assess the contribution to the warming of several commonly used HFEs emitted from the Earth's surface, explicitly taking into account that these HFEs will be converted into the corresponding FESs in the troposphere. The indirect GWP can be calculated using the radiative efficiencies and lifetimes of the HFE and its degradation FES products. We found that the GWPs of those studied HFEs which have the smallest direct GWP can be increased by 100-1600% when taking account of the cumulative effect due to the secondary FESs formed during HFE atmospheric oxidation. This effect may be particularly important for non-segregated HFEs and some segregated HFEs, which may contribute significantly more to global warming than can be concluded from examination of their direct GWPs.

  1. The Role of Atmospheric Heating over the South China Sea and Western Pacific Regions in Modulating Asian Summer Climate under the Global Warming Background

    NASA Astrophysics Data System (ADS)

    He, B.

    2015-12-01

    Global warming is one of the most significant climate change signals at the earth's surface. However, the responses of monsoon precipitation to global warming show very distinct regional features, especially over the South China Sea (SCS) and surrounding regions during boreal summer. To understand the possible dynamics in these specific regions under the global warming background, the changes in atmospheric latent heating and their possible influences on global climate are investigated by both observational diagnosis and numerical sensitivity simulations. Results indicate that summertime latent heating has intensified in the SCS and western Pacific, accompanied by increased precipitation, cloud cover, lower-tropospheric convergence, and decreased sea level pressure. Sensitivity experiments show that middle and upper tropospheric heating causes an east-west feedback pattern between SCS-western Pacific and South Asia, which strengthens the South Asian High in the upper troposphere and moist convergence in the lower troposphere, consequently forcing a descending motion and adiabatic warming over continental South Asia and leading to a warm and dry climate. When air-sea interaction is considered, the simulation results are overall more similar to observations, and in particular the bias of precipitation over the Indian Ocean simulated by AGCMs has been reduced. The results highlight the important role of latent heating in adjusting the changes in sea surface temperature through atmospheric dynamics.

  2. Atmospheric/oceanic influence on climate in the southern Appalachians

    Treesearch

    Mark S. Riedel

    2006-01-01

    Despite a wealth of research, scientists still disagree about the existence, magnitude, duration and potential causes of global warming and climate change. For example, only recently have we recognized that, given historical global climate patterns, much of the global warming trend we are experiencing appears to be natural. We analyzed long-term climatologic records...

  3. Genetic strategies for reforestation in the face of global climate change

    Treesearch

    F. Thomas Ledig; J.H. Kitzmiller

    1992-01-01

    If global warming materializes as projected, natural or artificial regeneration of forests with local seed sources will become increasingly difficult. However, global warming is far from a certainty and predictions of its magnitude and timing vary at least twofold, In the face of such uncertainty, reforestation strategies should emphasize conservation, diversification...

  4. Comparing the model-simulated global warming signal to observations using empirical estimates of unforced noise

    USDA-ARS?s Scientific Manuscript database

    The comparison of observed global mean surface air temperature (GMT) change to the mean change simulated by climate models has received much attention. For a given global warming signal produced by a climate model ensemble, there exists an envelope of GMT values representing the range of possible un...

  5. Characterization factors for water consumption and greenhouse gas emissions based on freshwater fish species extinction.

    PubMed

    Hanafiah, Marlia M; Xenopoulos, Marguerite A; Pfister, Stephan; Leuven, Rob S E W; Huijbregts, Mark A J

    2011-06-15

    Human-induced changes in water consumption and global warming are likely to reduce the species richness of freshwater ecosystems. So far, these impacts have not been addressed in the context of life cycle assessment (LCA). Here, we derived characterization factors for water consumption and global warming based on freshwater fish species loss. Calculation of characterization factors for potential freshwater fish losses from water consumption were estimated using a generic species-river discharge curve for 214 global river basins. We also derived characterization factors for potential freshwater fish species losses per unit of greenhouse gas emission. Based on five global climate scenarios, characterization factors for 63 greenhouse gas emissions were calculated. Depending on the river considered, characterization factors for water consumption can differ up to 3 orders of magnitude. Characterization factors for greenhouse gas emissions can vary up to 5 orders of magnitude, depending on the atmospheric residence time and radiative forcing efficiency of greenhouse gas emissions. An emission of 1 ton of CO₂ is expected to cause the same impact on potential fish species disappearance as the water consumption of 10-1000 m³, depending on the river basin considered. Our results make it possible to compare the impact of water consumption with greenhouse gas emissions.

  6. A real-time Global Warming Index.

    PubMed

    Haustein, K; Allen, M R; Forster, P M; Otto, F E L; Mitchell, D M; Matthews, H D; Frame, D J

    2017-11-13

    We propose a simple real-time index of global human-induced warming and assess its robustness to uncertainties in climate forcing and short-term climate fluctuations. This index provides improved scientific context for temperature stabilisation targets and has the potential to decrease the volatility of climate policy. We quantify uncertainties arising from temperature observations, climate radiative forcings, internal variability and the model response. Our index and the associated rate of human-induced warming is compatible with a range of other more sophisticated methods to estimate the human contribution to observed global temperature change.

  7. Worldwide Emerging Environmental Issues Affecting the U.S. Military. January 2006 Report

    DTIC Science & Technology

    2006-01-01

    8 10.3.2 Global Warming Threshold Might Have Been Crossed…………………………..8 10.3.3 Several Small Asia/Pacific Countries at Risk because of Rising Sea... Global Warming Threshold Might Have Been Crossed In the preamble to his upcoming book, ’The Revenge of Gaia’, James Lovelock, who formulated the Gaia...intense actions are needed to curb global warming . Scientists studying the Arctic are also noting that the polar region is close to or on the edge of the

  8. Regional Contrasts of the Warming Rate over Land Significantly Depend on the Calculation Methods of Mean Air Temperature

    NASA Astrophysics Data System (ADS)

    Wang, Kaicun; Zhou, Chunlüe

    2016-04-01

    Global analyses of surface mean air temperature (Tm) are key datasets for climate change studies and provide fundamental evidences for global warming. However, the causes of regional contrasts in the warming rate revealed by such datasets, i.e., enhanced warming rates over the northern high latitudes and the "warming hole" over the central U.S., are still under debate. Here we show these regional contrasts depends on the calculation methods of Tm. Existing global analyses calculated Tm from daily minimum and maximum temperatures (T2). We found that T2 has a significant standard deviation error of 0.23 °C/decade in depicting the regional warming rate from 2000 to 2013 but can be reduced by two-thirds using Tm calculated from observations at four specific times (T4), which samples diurnal cycle of land surface air temperature more often. From 1973 to 1997, compared with T4, T2 significantly underestimated the warming rate over the central U.S. and overestimated the warming rate over the northern high latitudes. The ratio of the warming rate over China to that over the U.S. reduces from 2.3 by T2 to 1.4 by T4. This study shows that the studies of regional warming can be substantially improved by T4 instead of T2.

  9. Economic impacts of climate change on agriculture: a comparison of process-based and statistical yield models

    NASA Astrophysics Data System (ADS)

    Moore, Frances C.; Baldos, Uris Lantz C.; Hertel, Thomas

    2017-06-01

    A large number of studies have been published examining the implications of climate change for agricultural productivity that, broadly speaking, can be divided into process-based modeling and statistical approaches. Despite a general perception that results from these methods differ substantially, there have been few direct comparisons. Here we use a data-base of yield impact studies compiled for the IPCC Fifth Assessment Report (Porter et al 2014) to systematically compare results from process-based and empirical studies. Controlling for differences in representation of CO2 fertilization between the two methods, we find little evidence for differences in the yield response to warming. The magnitude of CO2 fertilization is instead a much larger source of uncertainty. Based on this set of impact results, we find a very limited potential for on-farm adaptation to reduce yield impacts. We use the Global Trade Analysis Project (GTAP) global economic model to estimate welfare consequences of yield changes and find negligible welfare changes for warming of 1 °C-2 °C if CO2 fertilization is included and large negative effects on welfare without CO2. Uncertainty bounds on welfare changes are highly asymmetric, showing substantial probability of large declines in welfare for warming of 2 °C-3 °C even including the CO2 fertilization effect.

  10. First cellular approach of the effects of global warming on groundwater organisms: a study of the HSP70 gene expression.

    PubMed

    Colson-Proch, Céline; Morales, Anne; Hervant, Frédéric; Konecny, Lara; Moulin, Colette; Douady, Christophe J

    2010-05-01

    Whereas the consequences of global warming at population or community levels are well documented, studies at the cellular level are still scarce. The study of the physiological or metabolic effects of such small increases in temperature (between +2 degrees C and +6 degrees C) is difficult because they are below the amplitude of the daily or seasonal thermal variations occurring in most environments. In contrast, subterranean biotopes are highly thermally buffered (+/-1 degrees C within a year), and underground water organisms could thus be particularly well suited to characterise cellular responses of global warming. To this purpose, we studied genes encoding chaperone proteins of the HSP70 family in amphipod crustaceans belonging to the ubiquitous subterranean genus Niphargus. An HSP70 sequence was identified in eight populations of two complexes of species of the Niphargus genus (Niphargus rhenorhodanensis and Niphargus virei complexes). Expression profiles were determined for one of these by reverse transcription and quantitative polymerase chain reaction, confirming the inducible nature of this gene. An increase in temperature of 2 degrees C seemed to be without effect on N. rhenorhodanensis physiology, whereas a heat shock of +6 degrees C represented an important thermal stress for these individuals. Thus, this study shows that although Niphargus individuals do not undergo any daily or seasonal thermal variations in underground water, they display an inducible HSP70 heat shock response. This controlled laboratory-based physiological experiment constitutes a first step towards field investigations of the cellular consequences of global warming on subterranean organisms.

  11. Feedback attribution of the land-sea warming contrast in a global warming simulation of the NCAR CCSM4

    DOE PAGES

    Sejas, Sergio A.; Albert, Oriene S.; Cai, Ming; ...

    2014-12-02

    One of the salient features in both observations and climate simulations is a stronger land warming than sea. This paper provides a quantitative understanding of the main processes that contribute to the land-sea warming asymmetry in a global warming simulation of the NCAR CCSM4. The CO 2 forcing alone warms the surface nearly the same for both land and sea, suggesting that feedbacks are responsible for the warming contrast. Our analysis on one hand confirms that the principal contributor to the above-unity land-to-sea warming ratio is the evaporation feedback; on the other hand the results indicate that the sensible heatmore » flux feedback has the largest land-sea warming difference that favors a greater ocean than land warming. Furthermore, the results uniquely highlight the importance of other feedbacks in establishing the above-unity land-to-sea warming ratio. Particularly, the SW cloud feedback and the ocean heat storage in the transient response are key contributors to the greater warming over land than sea.« less

  12. Feedback attribution of the land-sea warming contrast in a global warming simulation of the NCAR CCSM4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sejas, Sergio A.; Albert, Oriene S.; Cai, Ming

    One of the salient features in both observations and climate simulations is a stronger land warming than sea. This paper provides a quantitative understanding of the main processes that contribute to the land-sea warming asymmetry in a global warming simulation of the NCAR CCSM4. The CO 2 forcing alone warms the surface nearly the same for both land and sea, suggesting that feedbacks are responsible for the warming contrast. Our analysis on one hand confirms that the principal contributor to the above-unity land-to-sea warming ratio is the evaporation feedback; on the other hand the results indicate that the sensible heatmore » flux feedback has the largest land-sea warming difference that favors a greater ocean than land warming. Furthermore, the results uniquely highlight the importance of other feedbacks in establishing the above-unity land-to-sea warming ratio. Particularly, the SW cloud feedback and the ocean heat storage in the transient response are key contributors to the greater warming over land than sea.« less

  13. Communicating the Dangers of Global Warming

    NASA Astrophysics Data System (ADS)

    Hansen, J. E.

    2006-12-01

    So far, in my opinion, we scientists have not done a good job of communicating the imminent threat posed by global warming, yet I believe there is still time for that if we work efficiently now to overcome existing obstacles. Several of those obstacles are illustrated by contrasting the roles of scientists, the media, special interests, politicians and the public in the ozone depletion and global warming crises. Scientists in America are further challenged by a decline in public science education, a perceived gap between science and religion, increasing politicization of public affairs offices in the government, and accumulation of power by a unitary executive. First order communication tasks are illustrated by a need for improved exchange and understanding, among scientists as well as with the public, of fundamental climate facts: (1) additional global warming exceeding 1C will yield large climate effects, (2) paleoclimate changes contain quantitatively specific information about climate sensitivity that is not widely appreciated, (3) carbon cycle facts, such as the substantial portion of carbon dioxide emissions that will remain in the air "forever", for practical purposes, (4) fossil fuel facts such as the dominant role of coal and unconventional fuels in all business-as-usual scenarios for future energy sources. The facts graphically illustrate the need for prompt actions to avoid disastrous climate change, yet they also reveal the feasibility of a course that minimizes global warming and yields other benefits. Perhaps the greatest challenge is posed by an inappropriate casting of the topic as a dichotomy between those who deny that there is a global warming problem and those who either are exceedingly pessimistic about the prospects for minimizing climate change or believe that solutions would be very expensive. Sensible evaluation of the situation, in my opinion, suggests a strategy for dealing with global warming that is not costly and has many subsidiary benefits, but it does require leadership. Practical difficulties in communicating this story will be illustrated with some personal experiences.

  14. Global warming: knowledge and views of Iranian students.

    PubMed

    Yazdanparast, Taraneh; Salehpour, Sousan; Masjedi, Mohammad Reza; Seyedmehdi, Seyed Mohammad; Boyes, Eddie; Stanisstreet, Martin; Attarchi, Mirsaeed

    2013-04-06

    Study of students' knowledge about global warming can help authorities to have better imagination of this critical environmental problem. This research examines high school students' ideas about greenhouse effect and the results may be useful for the respective authorities to improve cultural and educational aspects of next generation. In this cross-sectional study, a 42 question questionnaire with mix of open and closed questions was used to evaluate high school students' view about the mechanism, consequences, causes and cures of global warming. To assess students' knowledge, cognitive score was also calculated. 1035 students were randomly selected from 19 educational districts of Tehran. Sampling method was multi stage. Only 5.1% of the students could explain greenhouse effect correctly and completely. 88.8% and 71.2% respectively believed "if the greenhouse effect gets bigger the Earth will get hotter" and "incidence of more skin cancers is a consequence of global warming". 69.6% and 68.8% respectively thought "the greenhouse effect is made worse by too much carbon dioxide" and "presence of ozone holes is a cause of greenhouse effect". 68.4% believed "not using cars so much is a cure for global warming". While a student's 'cognitive score' could range from -36 to +36, Students' mean cognitive score was equal to +1.64. Mean cognitive score of male students and grade 2 & 3 students was respectively higher than female ones (P<0.01) and grade 1 students (P<0.001) but there was no statistically significant difference between students of different regions (P>0.05). In general, students' knowledge about global warming was not acceptable and there were some misconceptions in the students' mind, such as supposing ozone holes as a cause and more skin cancer as a consequence of global warming. The Findings of this survey indicate that, this important stratum of society have been received no sufficient and efficient education and sensitization on this matter.

  15. Does the climate warming hiatus exist over the Tibetan Plateau?

    PubMed

    Duan, Anmin; Xiao, Zhixiang

    2015-09-02

    The surface air temperature change over the Tibetan Plateau is determined based on historical observations from 1980 to 2013. In contrast to the cooling trend in the rest of China, and the global warming hiatus post-1990s, an accelerated warming trend has appeared over the Tibetan Plateau during 1998-2013 (0.25 °C decade(-1)), compared with that during 1980-1997 (0.21 °C decade(-1)). Further results indicate that, to some degree, such an accelerated warming trend might be attributable to cloud-radiation feedback. The increased nocturnal cloud over the northern Tibetan Plateau would warm the nighttime temperature via enhanced atmospheric back-radiation, while the decreased daytime cloud over the southern Tibetan Plateau would induce the daytime sunshine duration to increase, resulting in surface air temperature warming. Meanwhile, the in situ surface wind speed has recovered gradually since 1998, and thus the energy concentration cannot explain the accelerated warming trend over the Tibetan Plateau after the 1990s. It is suggested that cloud-radiation feedback may play an important role in modulating the recent accelerated warming trend over the Tibetan Plateau.

  16. Paleobotany and Global Change: Important Lessons for Species to Biomes from Vegetation Responses to Past Global Change.

    PubMed

    McElwain, Jennifer C

    2018-04-29

    Human carbon use during the next century will lead to atmospheric carbon dioxide concentrations (pCO 2 ) that have been unprecedented for the past 50-100+ million years according to fossil plant-based CO 2 estimates. The paleobotanical record of plants offers key insights into vegetation responses to past global change, including suitable analogs for Earth's climatic future. Past global warming events have resulted in transient poleward migration at rates that are equivalent to the lowest climate velocities required for current taxa to keep pace with climate change. Paleobiome reconstructions suggest that the current tundra biome is the biome most threatened by global warming. The common occurrence of paleoforests at high polar latitudes when pCO 2 was above 500 ppm suggests that the advance of woody shrub and tree taxa into tundra environments may be inevitable. Fossil pollen studies demonstrate the resilience of wet tropical forests to global change up to 700 ppm CO 2 , contrary to modeled predictions of the future. The paleobotanical record also demonstrates a high capacity for functional trait evolution as an additional strategy to migration and maintenance of a species' climate envelope in response to global change.

  17. Simulating global and local surface temperature changes due to Holocene anthropogenic land cover change

    NASA Astrophysics Data System (ADS)

    He, F.; Vavrus, S. J.; Kutzbach, J. E.; Ruddiman, W. F.; Kaplan, J. O.; Krumhardt, K. M.

    2015-12-01

    Surface albedo changes from anthropogenic land cover change (ALCC) represent the second-largest negative radiative forcing behind aerosol during the industrial era. Using a new reconstruction of ALCC during the Holocene era by Kaplan et al. [2011], we quantify the local and global temperature response induced by Holocene ALCC in the Community Climate System Model, version 4 (CCSM4). With 1-degree resolution of the CCSM4 slab-ocean model,we find that Holocene ALCC cause a global cooling of 0.17 °C due to the biogeophysical effects of land-atmosphere exchange of momentum, moisture, radiative and heat fluxes. On the global scale, the biogeochemical effects of Holocene ALCC from carbon emissions dominate the biogeophysical effects by causing 0.9 °C global warming. The net effects of Holocene ALCC amount to a global warming of 0.73 °C during the pre-industrial era, which is comparable to the ~0.8 °C warming during industrial times. On local to regional scales, such as parts of Europe, North America and Asia, the biogeophysical effects of Holocene ALCC are significant and comparable to the biogeochemical effect. The lack of ocean dynamics in the 1° CCSM4 slab-ocean simulations could underestimate the climate sensitivity because of the lack of feedbacks from ocean heat transport [Kutzbach et al., 2013; Manabe and Bryan, 1985]. In 1° CCSM4 fully coupled simulations, the climate sensitivity is ~65% larger than the 1° CCSM4 slab-ocean simulations during the Holocene (5.3 °C versus 3.2 °C) [Kutzbach et al., 2013]. With this greater climate sensitivity, the biogeochemical effects of Holocene ALCC could have caused a global warming of ~1.5 °C, and the net biogeophysical and biogeochemical effects of Holocene ALCC could cause a global warming of 1.2 °C during the preindustrial era in our simulations, which is 50% higher than the global warming of ~0.8 °C during industrial times.

  18. The hydroclimatological response to global warming based on the dynamically downscaled climate change scenario

    NASA Astrophysics Data System (ADS)

    Im, Eun-Soon; Coppola, Erika; Giorgi, Felippo

    2010-05-01

    Given the discernable evidences of climate changes due to human activity, there is a growing demand for the reliable climate change scenario in response to future emission forcing. One of the most significant impacts of climate changes can be that on the hydrological process. Changes in the seasonality and increase in the low and high rainfall extremes can severely influence the water balance of river basin, with serious consequences for societies and ecosystems. In fact, recent studies have reported that East Asia including the Korean peninsula is regarded to be a highly vulnerability region under global warming, in particular for water resources. As an attempt accurately assess the impact of climate change over Korea, we performed a downscaling of the ECAHM5-MPI/OM global projection under the A1B emission scenario for the period 1971-2100 using the RegCM3 one-way double-nested system. Physically based long-term (130 years) fine-scale (20 km) climate information is appropriate for analyzing the detailed structure of the hydroclimatological response to climate change. Changes in temperature and precipitation are translated to the hydrological condition in a direct or indirect way. The change in precipitation shows a distinct seasonal variations and a complicated spatial pattern. While changes in total precipitation do not show any relevant trend, the change patterns in daily precipitation clearly show an enhancement of high intensity precipitation and a reduction of weak intensity precipitation. The increase of temperature enhances the evapotranspiration, and hence the actual water stress becomes more pronounced in the future climate. Precipitation, snow, and runoff changes show the relevant topographical modulation under global warming. This study clearly demonstrates the importance of a refined topography for improving the accuracy of the local climatology. Improved accuracy of regional climate projection could lead to an enhanced reliability of the interpretation of the warming effect, especially when viewed in the linkage climate change information and impact assessment studies.

  19. Hydrocarbon bio-jet fuel from bioconversion of poplar biomass: life cycle assessment.

    PubMed

    Budsberg, Erik; Crawford, Jordan T; Morgan, Hannah; Chin, Wei Shan; Bura, Renata; Gustafson, Rick

    2016-01-01

    Bio-jet fuels compatible with current aviation infrastructure are needed as an alternative to petroleum-based jet fuel to lower greenhouse gas emissions and reduce dependence on fossil fuels. Cradle to grave life cycle analysis is used to investigate the global warming potential and fossil fuel use of converting poplar biomass to drop-in bio-jet fuel via a novel bioconversion platform. Unique to the biorefinery designs in this research is an acetogen fermentation step. Following dilute acid pretreatment and enzymatic hydrolysis, poplar biomass is fermented to acetic acid and then distilled, hydroprocessed, and oligomerized to jet fuel. Natural gas steam reforming and lignin gasification are proposed to meet hydrogen demands at the biorefineries. Separate well to wake simulations are performed using the hydrogen production processes to obtain life cycle data. Both biorefinery designs are assessed using natural gas and hog fuel to meet excess heat demands. Global warming potential of the natural gas steam reforming and lignin gasification bio-jet fuel scenarios range from CO2 equivalences of 60 to 66 and 32 to 73 g MJ(-1), respectively. Fossil fuel usage of the natural gas steam reforming and lignin gasification bio-jet fuel scenarios range from 0.78 to 0.84 and 0.71 to 1.0 MJ MJ(-1), respectively. Lower values for each impact category result from using hog fuel to meet excess heat/steam demands. Higher values result from using natural gas to meet the excess heat demands. Bio-jet fuels produced from the bioconversion of poplar biomass reduce the global warming potential and fossil fuel use compared with petroleum-based jet fuel. Production of hydrogen is identified as a major source of greenhouse gas emissions and fossil fuel use in both the natural gas steam reforming and lignin gasification bio-jet simulations. Using hog fuel instead of natural gas to meet heat demands can help lower the global warming potential and fossil fuel use at the biorefineries.

  20. Conflict or Cooperation Over Global Warming Policy? AN Analysis Based on the Interaction of Countries

    NASA Astrophysics Data System (ADS)

    Ihara, Daniel Michael

    Response to climatic change due to global warming, rather than being the common response of humankind to a common problem, may well be the product of decisions made by countries with diverse and possibly divergent interests. This dissertation analyzes the interactions of countries with diverse interests. Each country's economic production is assumed to increase at a decreasing rate with respect to the country's own fossil fuel use and the country's climatic damage is assumed to increase at an increasing rate with respect to the sum of all countries' fossil fuel uses. Each country is assumed to seek to maximize its production minus its climatic damage. The analysis begins with a one-period, two-country case with a single fossil fuel and without binding agreements, without side-payments between countries, and without prior history of fossil fuel use. The cases implied by relaxing restrictions are then analyzed. The dissertation shows explictly how countries' global warming policy decisions could define a prisoners' dilemma game. It characterizes "cooperative" outcomes such as the Nash bargaining solution and Coasean bargaining. The dissertation compares non-side-payment outcomes with the side-payment outcomes implied by tradeable carbon emission quotas. In addition to qualitative results, the dissertation has the following quantitative analysis. First, it conducts a two-country simulation of a tradeable emission quota agreement. The simulation illustrates a case where reduction in carbon emissions, even with significant increase in world population, results in economic growth and manageable climatic damage. Second, based on World Resource Institute data on carbon emissions, carbon elasticities of GNP are estimated for 138 countries. The small estimated elasticities suggest that economic growth may not be greatly reduced by restricting fossil fuel use and that economic growth may depend primarily on non-fossil fuel factors. Overall, the dissertation creates a conceptual framework that analyses the interactions among countries' global warming policy decisions and suggests areas for future research.

  1. 40 CFR 52.1073 - Approval status.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from paragraph (h)(4)(ii)(A) of...

  2. 40 CFR 52.1272 - Approval status.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from paragraph (b)(4)(ii)(A) of...

  3. 40 CFR 52.2172 - Approval status.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from paragraph (b)(4)(ii)(A) of...

  4. 40 CFR 52.323 - Approval status.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from paragraph (b)(4)(ii)(A) of...

  5. 40 CFR 52.2323 - Approval status.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from paragraph (b)(4)(ii)(A) of...

  6. 40 CFR 52.1522 - Approval status.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... gases in the pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from paragraph (c)(4...

  7. 40 CFR 52.572 - Approval status.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from paragraph (b)(4)(ii)(A) of...

  8. 40 CFR 52.1929 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... greenhouse gases in the pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from...

  9. Teaching cases on transportation and global warming.

    DOT National Transportation Integrated Search

    2013-03-01

    This project developed a series of three teaching cases that explore the implications of global : warming for transportation policy in the United States. The cases are intended to be used in : graduate and undergraduate courses on transportation poli...

  10. 40 CFR 52.1022 - Approval status.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from paragraph (b)(4)(ii)(A) of...

  11. 40 CFR 52.1929 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... greenhouse gases in the pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from...

  12. 40 CFR 52.1929 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... greenhouse gases in the pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from...

  13. 40 CFR 52.2323 - Approval status.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from paragraph (b)(4)(ii)(A) of...

  14. 40 CFR 52.323 - Approval status.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from paragraph (b)(4)(ii)(A) of...

  15. 40 CFR 52.1022 - Approval status.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from paragraph (b)(4)(ii)(A) of...

  16. 40 CFR 52.1272 - Approval status.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from paragraph (b)(4)(ii)(A) of...

  17. 40 CFR 52.323 - Approval status.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from paragraph (b)(4)(ii)(A) of...

  18. 40 CFR 52.1272 - Approval status.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from paragraph (b)(4)(ii)(A) of...

  19. 40 CFR 52.2172 - Approval status.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from paragraph (b)(4)(ii)(A) of...

  20. 40 CFR 52.1929 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... greenhouse gases in the pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from...

  1. 40 CFR 52.2323 - Approval status.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from paragraph (b)(4)(ii)(A) of...

  2. 40 CFR 52.1022 - Approval status.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from paragraph (b)(4)(ii)(A) of...

  3. 40 CFR 52.1022 - Approval status.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from paragraph (b)(4)(ii)(A) of...

  4. 40 CFR 52.2323 - Approval status.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from paragraph (b)(4)(ii)(A) of...

  5. 40 CFR 52.2172 - Approval status.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from paragraph (b)(4)(ii)(A) of...

  6. 40 CFR 52.2172 - Approval status.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from paragraph (b)(4)(ii)(A) of...

  7. 40 CFR 52.1073 - Approval status.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from paragraph (h)(4)(ii)(A) of...

  8. 40 CFR 52.323 - Approval status.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from paragraph (b)(4)(ii)(A) of...

  9. Changes in tropical cyclones under stabilized 1.5 and 2.0°C global warming scenarios as simulated by the Community Atmospheric Model under the HAPPI protocols

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wehner, Michael F.; Reed, Kevin A.; Loring, Burlen

    The United Nations Framework Convention on Climate Change (UNFCCC) invited the scientific community to explore the impacts of a world in which anthropogenic global warming is stabilized at only 1.5°C above preindustrial average temperatures. In this paper, we present a projection of future tropical cyclone statistics for both 1.5 and 2.0°C stabilized warming scenarios with direct numerical simulation using a high-resolution global climate model. As in similar projections at higher warming levels, we find that even at these low warming levels the most intense tropical cyclones become more frequent and more intense, while simultaneously the frequency of weaker tropical stormsmore » is decreased. We also conclude that in the 1.5°C stabilization, the effect of aerosol forcing changes complicates the interpretation of greenhouse gas forcing changes.« less

  10. Changes in tropical cyclones under stabilized 1.5 and 2.0 °C global warming scenarios as simulated by the Community Atmospheric Model under the HAPPI protocols

    NASA Astrophysics Data System (ADS)

    Wehner, Michael F.; Reed, Kevin A.; Loring, Burlen; Stone, Dáithí; Krishnan, Harinarayan

    2018-02-01

    The United Nations Framework Convention on Climate Change (UNFCCC) invited the scientific community to explore the impacts of a world in which anthropogenic global warming is stabilized at only 1.5 °C above preindustrial average temperatures. We present a projection of future tropical cyclone statistics for both 1.5 and 2.0 °C stabilized warming scenarios with direct numerical simulation using a high-resolution global climate model. As in similar projections at higher warming levels, we find that even at these low warming levels the most intense tropical cyclones become more frequent and more intense, while simultaneously the frequency of weaker tropical storms is decreased. We also conclude that in the 1.5 °C stabilization, the effect of aerosol forcing changes complicates the interpretation of greenhouse gas forcing changes.

  11. Changes in tropical cyclones under stabilized 1.5 and 2.0°C global warming scenarios as simulated by the Community Atmospheric Model under the HAPPI protocols

    DOE PAGES

    Wehner, Michael F.; Reed, Kevin A.; Loring, Burlen; ...

    2018-02-28

    The United Nations Framework Convention on Climate Change (UNFCCC) invited the scientific community to explore the impacts of a world in which anthropogenic global warming is stabilized at only 1.5°C above preindustrial average temperatures. In this paper, we present a projection of future tropical cyclone statistics for both 1.5 and 2.0°C stabilized warming scenarios with direct numerical simulation using a high-resolution global climate model. As in similar projections at higher warming levels, we find that even at these low warming levels the most intense tropical cyclones become more frequent and more intense, while simultaneously the frequency of weaker tropical stormsmore » is decreased. We also conclude that in the 1.5°C stabilization, the effect of aerosol forcing changes complicates the interpretation of greenhouse gas forcing changes.« less

  12. Biogeochemical potential of biomass pyrolysis systems for limiting global warming to 1.5 °C

    NASA Astrophysics Data System (ADS)

    Werner, C.; Schmidt, H.-P.; Gerten, D.; Lucht, W.; Kammann, C.

    2018-04-01

    Negative emission (NE) technologies are recognized to play an increasingly relevant role in strategies limiting mean global warming to 1.5 °C as specified in the Paris Agreement. The potentially significant contribution of pyrogenic carbon capture and storage (PyCCS) is, however, highly underrepresented in the discussion. In this study, we conduct the first quantitative assessment of the global potential of PyCCS as a NE technology based on biomass plantations. Using a process-based biosphere model, we calculate the land use change required to reach specific climate mitigation goals while observing biodiversity protection guardrails. We consider NE targets of 100–300 GtC following socioeconomic pathways consistent with a mean global warming of 1.5 °C as well as the option of additional carbon balancing required in case of failure or delay of decarbonization measures. The technological opportunities of PyCCS are represented by three tracks accounting for the sequestration of different pyrolysis products: biochar (as soil amendment), bio-oil (pumped into geological storages) and permanent-pyrogas (capture and storage of CO2 from gas combustion). In addition, we analyse how the gain in land induced by biochar-mediated yield increases on tropical cropland may reduce the pressure on land. Our results show that meeting the 1.5 °C goal through mitigation strategies including large-scale NE with plantation-based PyCCS may require conversion of natural vegetation to biomass plantations in the order of 133–3280 Mha globally, depending on the applied technology and the NE demand. Advancing towards additional bio-oil sequestration reduces land demand considerably by potentially up to 60%, while the benefits from yield increases account for another 3%–38% reduction (equalling 82–362 Mha). However, when mitigation commitments are increased by high balancing claims, even the most advanced PyCCS technologies and biochar-mediated co-benefits cannot compensate for delayed action towards phasing-out fossil fuels.

  13. Global Warming and Energy Transition: A Public Policy Imperative

    NASA Astrophysics Data System (ADS)

    Stone, G. T.

    2006-12-01

    The historic transition from fossil fuels to alternative energy resources has begun. This development is commonly attributed to increasing energy costs and the need for energy security. Looming ever larger, however, is the issue that will soon drive the third energy revolution: global warming. A preponderance of evidence documents accelerating warming, enlarging impacts, and human causes -- principally combustion of fossil fuels. The carbon dioxide (C02) content of Earth's atmosphere has increased more than 35 percent since the beginning of the industrial revolution and is the highest in 650,000 years. This dramatic rise of C02 and attendant positive feedbacks are already forcing significant impacts worldwide. These include atmospheric warming with shifting climatic and habitat zones, spreading tropical disease, and more extreme weather events; rapid ice loss at high latitude and high altitude; ocean warming and acidification with coral reef bleaching and intensifying tropical storms; rising sea level; and accelerating extinction rates. The 2007 draft report of the Intergovernmental Panel on Climate Change (IPCC) predicts greater warming than in previous models. A tipping point to abrupt climate change may be imminent. It is incumbent upon geoscientists and geoscience educators to assume leadership in addressing this challenge through public outreach and general education. The following topics should be integrated into all appropriate courses: the evidence of global warming and its causes; observed present and predicted future impacts of global warming; mitigation and adaptation strategies; and implications for energy policies and economic opportunities. New entry-level science and general education courses -- such as Climate Change Fundamentals and Energy in Nature, Technology, and Society -- are proving to be effective should be widely developed In addition, by workshops and presentations to civic and business organizations and by demonstrated examples of institutional commitment to energy conservation, energy efficiency, and renewable energy resources, colleges and universities must focus public and professional attention on the imperative for action and the means of reducing greenhouse gas emissions and countering global warming.

  14. Convection-Permitting Regional Climate Simulations over the Contiguous United States Including Potential Climate Change Scenarios

    NASA Astrophysics Data System (ADS)

    Liu, Changhai; Rasmussen, Roy; Ikeda, Kyoko; Barlage, Michael; Chen, Fei; Clark, Martyn; Dai, Aiguo; Dudhia, Jimy; Gochis, David; Gutmann, Ethan; Li, Yanping; Newman, Andrew; Thompson, Gregory

    2016-04-01

    The WRF model with a domain size of 1360x1016x51 points, using a 4 km spacing to encompass most of North America, is employed to investigate the water cycle and climate change impacts over the Contiguous United States (CONUS). Four suites of numerical experiments are being conducted, consisting of a 13-year retrospective simulation forced with ERA-I reanalysis, a 13-year climate sensitivity or Pseudo-Global Warming (PGW) simulation, and two 10-year CMIP5-based historical/future period simulations based on a revised bias-correction method. The major objectives are: 1) to evaluate high-resolution WRF's capability to capture orographic precipitation and snow mass balance over the western CONUS and convective precipitation over the eastern CONUS; 2) to assess future changes of seasonal snowfall and snowpack and associated hydrological cycles along with their regional variability across the different mountain barriers and elevation dependency, in response to the CMIP5 projected 2071-2100 climate warming; 3) to examine the precipitation changes under the projected global warming, with an emphasis on precipitation extremes and the warm-season precipitation corridor in association with MCS tracks in the central US; and 4) to provide a valuable community dataset for regional climate change and impact studies. Preliminary analysis of the retrospective simulation shows both seasonal/sub-seasonal precipitation and temperature are well reproduced, with precipitation bias being within 10% of the observations and temperature bias being below 1 degree C in most seasons and locations. The observed annual cycle of snow water equivalent (SWE), such as peak time and disappearance time, is also realistically replicated, even though the peak value is somewhat underestimated. The PGW simulation shows a large cold-season warming in northeast US and eastern Canada, possibly associated with snow albedo feedback, and a strong summer warming in north central US in association with precipitation reduction. There is an increase in annual rainfall/precipitation, but a sharp reduction in snowfall/snowpack in response to the global warming. A pronounced seasonal feature is the suppressed summertime precipitation in central US for the warmer climate. More detailed analysis of the modeling results is presently under way and will be presented in the meeting.

  15. Warming Climate and Changing Societies - a Challenge or an Opportunity for Reindeer Herding?

    NASA Astrophysics Data System (ADS)

    Käyhkö, J.; Horstkotte, T.; Kivinen, S.; Vehmas, J.; Oksanen, L.; Forbes, B. C.; Johansen, B.; Jepsen, J. U.; Markkola, A.; Pulliainen, J.; Olofsson, J.; Oksanen, T.; Utsi, T. A.; Korpimäki, E.; Menard, C.; Ericson, L.

    2015-12-01

    The Arctic region will warm more rapidly than the global mean, influencing dramatically the northern ecosystems. Simultaneously, our societies transform towards urbanized, highly educated, service-based culture, where a decreasing population will gain its livelihood from primary production. We study various ecosystem interactions in a changing climate and integrate these with reindeer husbandry and the indigenous Sámi culture dependent on it1. Potential climate impacts include the transformation of arctic-alpine tundra to dense scrubland with conceivable consequences to reindeer husbandry, but also global warming due to decreasing albedo. The social-ecological system (SES) of reindeer husbandry includes administrative and ecological processes that do not always correspond (Figure 1). Consequently, management priorities and administration may conflict with local social and ecological processes, bringing about risks of environmental degradation, loss of biodiversity and defeat of traditional livelihoods. We hypothesize the plausibility to support the indigenous reindeer herding livelihood against rapid external changes by utilizing the migratory reindeer grazing system of the Sámi as a management tool for sustaining the high-albedo tundra and mitigating global warming. Our first-of-a-kind satellite-based high resolution vegetation map covering Northern Fennoscandia allows detailed management plans. Our ecological research demonstrates the important role of herbivory on arctic vegetation communities. Interactive workshops with reindeer herders offer indigenous knowledge of state and changes of the ecosystems, and reflect the threats and expectations of the herders. We are currently building models of the complex social-ecological system of Northern Fennoscandia and will report the first findings of the exercise. 1 www.ncoetundra.utu.fi Figure 1. The scales of administrative and ecological processes do not always coincide. This may bring about challenges in managing the social-ecological systems.

  16. Perceptions of Global Warming Among the Poorest Counties in the Southeastern United States.

    PubMed

    Kearney, Gregory D; Bell, Ronny A

    2018-03-07

    The geographic position and high level of poverty in the southeastern United States are significant risk factors that contribute to the region's high vulnerability to climate change. The goal of this study was to evaluate beliefs and perceptions of global warming among those living in poverty in the poorest counties in the southeastern United States. Results from this project may be used to support public health efforts to increase climate-related messaging to vulnerable and underserved communities. This was an ecological study that analyzed public opinion poll estimates from previously gathered national level survey data (2016). Responses to 5 questions related to beliefs, attitudes, and perceptions of global warming were evaluated. Counties below the national average poverty level (13.5%) were identified among 11 southeastern US states (Alabama, Arkansas, Florida, Georgia, Kentucky, Louisiana, Michigan, North Carolina, South Carolina, Tennessee, Virginia). Student t tests were used to compare public perceptions of global warming among the poorest urban and rural counties with national-level public opinion estimates. Overall, counties below the national poverty level in the southeastern US were significantly less likely to believe that global warming was happening compared with national-level estimates. The poorest rural counties were less likely to believe that global warming was happening than the poorest urban counties. Health care providers and public health leaders at regional and local levels are in ideal positions to raise awareness and advocate the health implications of climate change to decision makers for the benefit of helping underserved communities mitigate and adequately adapt to climate-related threats.

  17. The effects of 1.5 and 2 degrees of global warming on Africa in the CORDEX ensemble

    NASA Astrophysics Data System (ADS)

    Nikulin, Grigory; Lennard, Chris; Dosio, Alessandro; Kjellström, Erik; Chen, Youmin; Hänsler, Andreas; Kupiainen, Marco; Laprise, René; Mariotti, Laura; Fox Maule, Cathrine; van Meijgaard, Erik; Panitz, Hans-Jürgen; Scinocca, John F.; Somot, Samuel

    2018-06-01

    There is a general lack of information about the potential effects of 1.5, 2 or more degrees of global warming on the regional climates within Africa, and most studies that address this use data from coarse resolution global models. Using a large ensemble of CORDEX Africa simulations, we present a pan-African overview of the effects of 1.5 and 2 °C global warming levels (GWLs) on the African climate. The CORDEX simulations, consistent with their driving global models, show a robust regional warming exceeding the mean global one over most of Africa. The highest increase in annual mean temperature is found over the subtropics and the smallest one over many coastal regions. Projected changes in annual mean precipitation have a tendency to wetter conditions in some parts of Africa (e.g. central/eastern Sahel and eastern Africa) at both GWLs, but models’ agreement on the sign of change is low. In contrast to mean precipitation, there is a consistent increase in daily precipitation intensity of wet days over a large fraction of tropical Africa emerging already at 1.5 °C GWL and strengthening at 2 °C. A consistent difference between 2 °C and 1.5 °C warmings is also found for projected changes in annual mean temperature and daily precipitation intensity. Our study indicates that a 0.5 °C further warming (from 1.5 °C–2 °C) can indeed produce a robust change in some aspects of the African climate and its extremes.

  18. Simulation of future global warming scenarios in rice paddies with an open-field warming facility

    PubMed Central

    2011-01-01

    To simulate expected future global warming, hexagonal arrays of infrared heaters have previously been used to warm open-field canopies of upland crops such as wheat. Through the use of concrete-anchored posts, improved software, overhead wires, extensive grounding, and monitoring with a thermal camera, the technology was safely and reliably extended to paddy rice fields. The system maintained canopy temperature increases within 0.5°C of daytime and nighttime set-point differences of 1.3 and 2.7°C 67% of the time. PMID:22145582

  19. Enhancing Primary School Students' Knowledge about Global Warming and Environmental Attitude Using Climate Change Activities

    NASA Astrophysics Data System (ADS)

    Karpudewan, Mageswary; Roth, Wolff-Michael; Abdullah, Mohd Nor Syahrir Bin

    2015-01-01

    Climate change generally and global warming specifically have become a common feature of the daily news. Due to widespread recognition of the adverse consequences of climate change on human lives, concerted societal effort has been taken to address it (e.g. by means of the science curriculum). This study was designed to test the effect that child-centred, 5E learning cycle-based climate change activities would have over more traditional teacher-centred activities on Malaysian Year 5 primary students (11 years). A quasi-experimental design involving a treatment (n = 55) and a group representing typical teaching method (n = 60) was used to measure the effectiveness of these activities on (a) increasing children's knowledge about global warming; (b) changing their attitudes to be more favourable towards the environment and (c) identify the relationship between knowledge and attitude that exist in this study. Statistically significant differences in favour of the treatment group were detected for both knowledge and environmental attitudes. Non-significant relationship was identified between knowledge and attitude in this study. Interviews with randomly selected students from treatment and comparison groups further underscore these findings. Implications are discussed.

  20. Local food web management increases resilience and buffers against global change effects on freshwaters

    NASA Astrophysics Data System (ADS)

    Urrutia-Cordero, Pablo; Ekvall, Mattias K.; Hansson, Lars-Anders

    2016-07-01

    A major challenge for ecological research is to identify ways to improve resilience to climate-induced changes in order to secure the ecosystem functions of natural systems, as well as ecosystem services for human welfare. With respect to aquatic ecosystems, interactions between climate warming and the elevated runoff of humic substances (brownification) may strongly affect ecosystem functions and services. However, we hitherto lack the adaptive management tools needed to counteract such global-scale effects on freshwater ecosystems. Here we show, both experimentally and using monitoring data, that predicted climatic warming and brownification will reduce freshwater quality by exacerbating cyanobacterial growth and toxin levels. Furthermore, in a model based on long-term data from a natural system, we demonstrate that food web management has the potential to increase the resilience of freshwater systems against the growth of harmful cyanobacteria, and thereby that local efforts offer an opportunity to secure our water resources against some of the negative impacts of climate warming and brownification. This allows for novel policy action at a local scale to counteract effects of global-scale environmental change, thereby providing a buffer period and a safer operating space until climate mitigation strategies are effectively established.

  1. Understanding the effect of an excessive cold tongue bias on projecting the tropical Pacific SST warming pattern in CMIP5 models

    NASA Astrophysics Data System (ADS)

    Ying, Jun; Huang, Ping; Lian, Tao; Tan, Hongjian

    2018-05-01

    An excessive cold tongue is a common bias among current climate models, and considered an important source of bias in projections of tropical Pacific climate change under global warming. Specifically, the excessive cold tongue bias is closely related to the tropical Pacific SST warming (TPSW) pattern. In this study, we reveal that two processes are the critical mechanisms by which the excessive cold tongue bias influences the projection of the TPSW pattern, based on 32 models from phase 5 of Coupled Model Intercomparison Projection (CMIP5). On the one hand, by assuming that the shortwave (SW) radiation to SST feedback is linearly correlated to the cold tongue SST, the excessive cold tongue bias can induce an overly weak negative SW-SST feedback in the central Pacific, which can lead to a positive SST warming bias in the central to western Pacific (around 150°E-140°W). Moreover, the overly weak local atmospheric dynamics response to SST is a key process of the overly weak SW-SST feedback, compared with the cloud response to atmospheric dynamics and the SW radiation response to cloud. On the other hand, the overly strong ocean zonal overturning circulation associated with the excessive cold tongue bias results in an overestimation of the ocean dynamical thermostat effect, with enhanced ocean stratification under global warming, leading to a negative SST warming bias in the central and eastern Pacific (around 170°W-120°W). These two processes jointly form a positive SST warming bias in the western Pacific, contributing to a La Niña-like warming bias. Therefore, we suggest a more realistic climatological cold tongue SST is needed for a more reliable projection of the TPSW pattern.

  2. Recent global-warming hiatus tied to equatorial Pacific surface cooling.

    PubMed

    Kosaka, Yu; Xie, Shang-Ping

    2013-09-19

    Despite the continued increase in atmospheric greenhouse gas concentrations, the annual-mean global temperature has not risen in the twenty-first century, challenging the prevailing view that anthropogenic forcing causes climate warming. Various mechanisms have been proposed for this hiatus in global warming, but their relative importance has not been quantified, hampering observational estimates of climate sensitivity. Here we show that accounting for recent cooling in the eastern equatorial Pacific reconciles climate simulations and observations. We present a novel method of uncovering mechanisms for global temperature change by prescribing, in addition to radiative forcing, the observed history of sea surface temperature over the central to eastern tropical Pacific in a climate model. Although the surface temperature prescription is limited to only 8.2% of the global surface, our model reproduces the annual-mean global temperature remarkably well with correlation coefficient r = 0.97 for 1970-2012 (which includes the current hiatus and a period of accelerated global warming). Moreover, our simulation captures major seasonal and regional characteristics of the hiatus, including the intensified Walker circulation, the winter cooling in northwestern North America and the prolonged drought in the southern USA. Our results show that the current hiatus is part of natural climate variability, tied specifically to a La-Niña-like decadal cooling. Although similar decadal hiatus events may occur in the future, the multi-decadal warming trend is very likely to continue with greenhouse gas increase.

  3. 40 CFR 52.986 - Significant deterioration of air quality.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from paragraph (c)(4)(ii)(A) of...

  4. 40 CFR 52.2122 - Approval status.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming... emit 100,000 tpy CO2e, when such stationary source undertakes a physical change or change in the method...

  5. 40 CFR 52.2122 - Approval status.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming... emit 100,000 tpy CO2e, when such stationary source undertakes a physical change or change in the method...

  6. 40 CFR 52.2122 - Approval status.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming... emit 100,000 tpy CO2e, when such stationary source undertakes a physical change or change in the method...

  7. 40 CFR 52.986 - Significant deterioration of air quality.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from paragraph (c)(4)(ii)(A) of...

  8. 40 CFR 52.986 - Significant deterioration of air quality.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from paragraph (c)(4)(ii)(A) of...

  9. 40 CFR 52.986 - Significant deterioration of air quality.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... pollutant GHGs, by the gas's associated global warming potential published at Table A-1 to subpart A of 40 CFR part 98—Global Warming Potentials. (B) Sum the resultant value from paragraph (c)(4)(ii)(A) of...

  10. The challenge to keep global warming below 2 °C

    NASA Astrophysics Data System (ADS)

    Peters, Glen P.; Andrew, Robbie M.; Boden, Tom; Canadell, Josep G.; Ciais, Philippe; Le Quéré, Corinne; Marland, Gregg; Raupach, Michael R.; Wilson, Charlie

    2013-01-01

    The latest carbon dioxide emissions continue to track the high end of emission scenarios, making it even less likely global warming will stay below 2 °C. A shift to a 2 °C pathway requires immediate significant and sustained global mitigation, with a probable reliance on net negative emissions in the longer term.

  11. Teachers and Students Knowledge about Global Warming: A Study in Smoke Disaster Area of Indonesia

    ERIC Educational Resources Information Center

    Rosidin, Undang; Suyatna, Agus

    2017-01-01

    The average temperature on the Earth's surface has globally increased. This issue was generally caused by the increasing of greenhouse gases concentrations due to human activities. Therefore, the knowledge about global warming becomes major topics for students and educators. This research aimed to investigate how the teachers and students…

  12. Long-term no-till and stover retention each decrease the global warming potential of irrigated continuous corn

    USDA-ARS?s Scientific Manuscript database

    Over the last 50 years, the most increase in cultivated land area globally has been due to a doubling of irrigated land. Long-term agronomic management impacts on soil organic carbon (SOC) stocks, soil greenhouse gas (GHG) emis-sions, and global warming potential (GWP) in irrigated systems, however,...

  13. Geobiological constraints on Earth system sensitivity to CO₂ during the Cretaceous and Cenozoic.

    PubMed

    Royer, D L; Pagani, M; Beerling, D J

    2012-07-01

    Earth system climate sensitivity (ESS) is the long-term (>10³ year) response of global surface temperature to doubled CO₂ that integrates fast and slow climate feedbacks. ESS has energy policy implications because global temperatures are not expected to decline appreciably for at least 10³ year, even if anthropogenic greenhouse gas emissions drop to zero. We report provisional ESS estimates of 3 °C or higher for some of the Cretaceous and Cenozoic based on paleo-reconstructions of CO₂ and temperature. These estimates are generally higher than climate sensitivities simulated from global climate models for the same ancient periods (approximately 3 °C). Climate models probably do not capture the full suite of positive climate feedbacks that amplify global temperatures during some globally warm periods, as well as other characteristic features of warm climates such as low meridional temperature gradients. These absent feedbacks may be related to clouds, trace greenhouse gases (GHGs), seasonal snow cover, and/or vegetation, especially in polar regions. Better characterization and quantification of these feedbacks is a priority given the current accumulation of atmospheric GHGs. © 2012 Blackwell Publishing Ltd.

  14. Climate change : observations on federal efforts to adapt to a changing climate

    DOT National Transportation Integrated Search

    2009-03-25

    Based on preliminary observations from GAOs ongoing adaptation work for the Select Committee on Energy Independence and Global Warming, certain federal, state, local, and international government authorities are beginning to consider and implement...

  15. Would limiting global warming to 1.5 or 2°C prevent an ice-free Arctic?

    NASA Astrophysics Data System (ADS)

    Screen, James; Williamson, Daniel

    2017-04-01

    The Paris Agreement to combat climate change includes an aspirational goal to limit global warming to 1.5°C above pre-industrial levels, substantially more ambitious than the previous target of 2°C. One of the most visible and iconic aspects of recent climate change is the dramatic loss of Arctic sea-ice, which is having profound implications on the environment, ecosystems and human inhabitants of this region and beyond. The concept of an 'ice-free Arctic' has captured scientific attention and public imagination. Scientists commonly define this as when the Arctic first becomes ice-free at the end of summer. Without efforts to slow manmade global warming, an ice-free Arctic would likely occur in summer by the middle of this century. But would limiting warming to 1.5°C, or even 2°C, prevent the Arctic ever going ice-free? Different climate models give vastly different projections of the lowest sea-ice extent given global warming of up to 1.5°C or up to 2°C. Models that over-estimate (or under-estimate) sea-ice extent in the last ten years are also those that project more ice (or less ice) remaining into the future. Here we use this relationship to observationally constrain climate model projections of future Arctic sea-ice cover. We obtain an observationally-constrained central prediction of 2.9 million square kilometres for the minimum sea-ice extent if global warming is limited to 1.5°C, or 1.2 million square kilometres if global warming remains below 2°C. Using Bayesian statistics allows us to compare estimates of the probability of an ice-free Arctic for the 1.5°C or 2°C target. We estimate there is less than a 1-in-100000 (exceptionally unlikely in IPCC parlance) chance of an ice-free Arctic if global warming is stays below 1.5°C, and around a 1-in-3 chance (39%; about as likely as not) if global warming is limited to 2.0°C. We suppose then that a summer ice-free Arctic is virtually certain to be avoided if the 1.5°C target of the Paris Agreement is met. However, the 2°C target may be insufficient to prevent an ice-free Arctic. Furthermore, our analysis suggests that the Intended Nationally Determined Contributions submitted by countries to support the Paris Agreement (which imply warming of 2.6 to 3.1°C) would likely (66 to 74%) lead to the Arctic going ice-free.

  16. Global metabolic impacts of recent climate warming.

    PubMed

    Dillon, Michael E; Wang, George; Huey, Raymond B

    2010-10-07

    Documented shifts in geographical ranges, seasonal phenology, community interactions, genetics and extinctions have been attributed to recent global warming. Many such biotic shifts have been detected at mid- to high latitudes in the Northern Hemisphere-a latitudinal pattern that is expected because warming is fastest in these regions. In contrast, shifts in tropical regions are expected to be less marked because warming is less pronounced there. However, biotic impacts of warming are mediated through physiology, and metabolic rate, which is a fundamental measure of physiological activity and ecological impact, increases exponentially rather than linearly with temperature in ectotherms. Therefore, tropical ectotherms (with warm baseline temperatures) should experience larger absolute shifts in metabolic rate than the magnitude of tropical temperature change itself would suggest, but the impact of climate warming on metabolic rate has never been quantified on a global scale. Here we show that estimated changes in terrestrial metabolic rates in the tropics are large, are equivalent in magnitude to those in the north temperate-zone regions, and are in fact far greater than those in the Arctic, even though tropical temperature change has been relatively small. Because of temperature's nonlinear effects on metabolism, tropical organisms, which constitute much of Earth's biodiversity, should be profoundly affected by recent and projected climate warming.

  17. Spectral Dependence of MODIS Cloud Droplet Effective Radius Retrievals for Marine Boundary Layer Clouds

    NASA Technical Reports Server (NTRS)

    Zhang, Zhibo; Platnick, Steven E.; Ackerman, Andrew S.; Cho, Hyoun-Myoung

    2014-01-01

    Low-level warm marine boundary layer (MBL) clouds cover large regions of Earth's surface. They have a significant role in Earth's radiative energy balance and hydrological cycle. Despite the fundamental role of low-level warm water clouds in climate, our understanding of these clouds is still limited. In particular, connections between their properties (e.g. cloud fraction, cloud water path, and cloud droplet size) and environmental factors such as aerosol loading and meteorological conditions continue to be uncertain or unknown. Modeling these clouds in climate models remains a challenging problem. As a result, the influence of aerosols on these clouds in the past and future, and the potential impacts of these clouds on global warming remain open questions leading to substantial uncertainty in climate projections. To improve our understanding of these clouds, we need continuous observations of cloud properties on both a global scale and over a long enough timescale for climate studies. At present, satellite-based remote sensing is the only means of providing such observations.

  18. Influence of January 2009 stratospheric warming on HF radio wave propagation in the low-latitude ionosphere

    NASA Astrophysics Data System (ADS)

    Kotova, Darya; Klimenko, Maksim; Klimenko, Vladimir; Zaharov, Veniamin; Bessarab, Fedor; Korenkov, Yuriy

    2016-12-01

    We have considered the influence of the January 23-27, 2009 sudden stratospheric warming (SSW) event on HF radio wave propagation in the equatorial ionosphere. This event took place during extremely low solar and geomagnetic activity. We use the simulation results obtained with the Global Self-consistent Model of the Thermosphere, Ionosphere and Protonosphere (GSM TIP) for simulating environmental changes during the SSW event. We both qualitatively and quantitatively reproduced total electron content disturbances obtained from global ground network receiver observations of GPS navigation satellite signals, by setting an additional electric potential and TIME-GCM model output at a height of 80 km. In order to study the influence of this SSW event on HF radio wave propagation and attenuation, we used the numerical model of radio wave propagation based on geometrical optics approximation. It is shown that the sudden stratospheric warming leads to radio signal attenuation and deterioration of radio communication in the daytime equatorial ionosphere.

  19. Impacts of half a degree additional warming on the Asian summer monsoon rainfall characteristics

    NASA Astrophysics Data System (ADS)

    Lee, Donghyun; Min, Seung-Ki; Fischer, Erich; Shiogama, Hideo; Bethke, Ingo; Lierhammer, Ludwig; Scinocca, John F.

    2018-04-01

    This study investigates the impacts of global warming of 1.5 °C and 2.0 °C above pre-industrial conditions (Paris Agreement target temperatures) on the South Asian and East Asian monsoon rainfall using five atmospheric global climate models participating in the ‘Half a degree Additional warming, Prognosis and Projected Impacts’ (HAPPI) project. Mean and extreme precipitation is projected to increase under warming over the two monsoon regions, more strongly in the 2.0 °C warmer world. Moisture budget analysis shows that increases in evaporation and atmospheric moisture lead to the additional increases in mean precipitation with good inter-model agreement. Analysis of daily precipitation characteristics reveals that more-extreme precipitation will have larger increase in intensity and frequency responding to the half a degree additional warming, which is more clearly seen over the South Asian monsoon region, indicating non-linear scaling of precipitation extremes with temperature. Strong inter-model relationship between temperature and precipitation intensity further demonstrates that the increased moisture with warming (Clausius-Clapeyron relation) plays a critical role in the stronger intensification of more-extreme rainfall with warming. Results from CMIP5 coupled global climate models under a transient warming scenario confirm that half a degree additional warming would bring more frequent and stronger heavy precipitation events, exerting devastating impacts on the human and natural system over the Asian monsoon region.

  20. Global climate change and vector-borne diseases

    USGS Publications Warehouse

    Ginsberg, H.S.

    2002-01-01

    Global warming will have different effects on different diseases because of the complex and idiosynchratic interactions between vectors, hosts, and pathogens that influence transmission dynamics of each pathogen. Human activities, including urbanization, rapid global travel, and vector management, have profound effects on disease transmission that can operate on more rapid time scales than does global climate change. The general concern about global warming encouraging the spread of tropical diseases is legitimate, but the effects vary among diseases, and the ecological implications are difficult to predict.

  1. Could cirrus clouds have warmed early Mars?

    NASA Astrophysics Data System (ADS)

    Ramirez, Ramses M.; Kasting, James F.

    2017-01-01

    The presence of the ancient valley networks on Mars indicates that the climate at 3.8 Ga was warm enough to allow substantial liquid water to flow on the martian surface for extended periods of time. However, the mechanism for producing this warming continues to be debated. One hypothesis is that Mars could have been kept warm by global cirrus cloud decks in a CO2sbnd H2O atmosphere containing at least 0.25 bar of CO2 (Urata and Toon, 2013). Initial warming from some other process, e.g., impacts, would be required to make this model work. Those results were generated using the CAM 3-D global climate model. Here, we use a single-column radioactive-convective climate model to further investigate the cirrus cloud warming hypothesis. Our calculations indicate that cirrus cloud decks could have produced global mean surface temperatures above freezing, but only if cirrus cloud cover approaches ∼75 - 100% and if other cloud properties (e.g., height, optical depth, particle size) are chosen favorably. However, at more realistic cirrus cloud fractions, or if cloud parameters are not optimal, cirrus clouds do not provide the necessary warming, suggesting that other greenhouse mechanisms are needed.

  2. Changes in Tropical Cyclone Intensity Over the Past 30 Years: A Global and Dynamic Perspective

    NASA Technical Reports Server (NTRS)

    Wu, Liguang; Wang, Bin; Braun, Scott A.

    2006-01-01

    The hurricane season of 2005 was the busiest on record and Hurricane Katrina (2005) is believed to be the costliest hurricane in U. S. history. There are growing concerns regarding whether this increased tropical cyclone activity is a result of global warming, as suggested by Emanuel(2005) and Webster et al. (2005), or just a natural oscillation (Goldenberg et al. 2001). This study examines the changes in tropical cyclone intensity to see what were really responsible for the changes in tropical cyclone activity over the past 30 years. Since the tropical sea surface temperature (SST) warming also leads to the response of atmospheric circulation, which is not solely determined by the local SST warming, this study suggests that it is better to take the tropical cyclone activities in the North Atlantic (NA), western North Pacific (WNP) and eastern North Pacific (ENP) basins as a whole when searching for the influence of the global-scale SST warming on tropical cyclone intensity. Over the past 30 years, as the tropical SST increased by about 0.5 C, the linear trends indicate 6%, 16% and 15% increases in the overall average intensity and lifetime and the annual frequency. Our analysis shows that the increased annual destructiveness of tropical cyclones reported by Emanuel(2005) resulted mainly from the increases in the average lifetime and annual frequency in the NA basin and from the increases in the average intensity and lifetime in the WNP basin, while the annual destructiveness in the ENP basin generally decreased over the past 30 years. The changes in the proportion of intense tropical cyclones reported by Webster et a1 (2005) were due mainly to the fact that increasing tropical cyclones took the tracks that favor for the development of intense tropical cyclones in the NA and WNP basins over the past 30 years. The dynamic influence associated with the tropical SST warming can lead to the impact of global warming on tropical cyclone intensity that may be very different from our current assessments, which were mainly based on the thermodynamic theory of tropical cyclone intensity.

  3. Extreme warming, photic zone euxinia and sea level rise during the Paleocene/Eocene Thermal Maximum on the Gulf of Mexico Coastal Plain; connecting marginal marine biotic signals, nutrient cycling and ocean deoxygenation

    NASA Astrophysics Data System (ADS)

    Sluijs, A.; van Roij, L.; Harrington, G. J.; Schouten, S.; Sessa, J. A.; LeVay, L. J.; Reichart, G.-J.; Slomp, C. P.

    2013-12-01

    The Paleocene/Eocene Thermal Maximum (PETM, ~56 Ma) was a ~200 kyr episode of global warming, associated with massive injections of 13C-depleted carbon into the ocean-atmosphere system. Although climate change during the PETM is relatively well constrained, effects on marine oxygen and nutrient cycling remain largely unclear. We identify the PETM in a sediment core from the US margin of the Gulf of Mexico. Biomarker-based paleotemperature proxies (MBT/CBT and TEX86) indicate that continental air and sea surface temperatures warmed from 27-29 °C to ~35 °C, although variations in the relative abundances of terrestrial and marine biomarkers may have influenced the record. Vegetation changes as recorded from pollen assemblages supports profound warming. Lithology, relative abundances of terrestrial vs. marine palynomorphs as well as dinoflagellate cyst and biomarker assemblages indicate sea level rise during the PETM, consistent with previously recognized eustatic rise. The recognition of a maximum flooding surface during the PETM changes regional sequence stratigraphic interpretations, which allows us to exclude the previously posed hypothesis that a nearby fossil found in PETM-deposits represents the first North American primate. Within the PETM we record the biomarker isorenieratane, diagnostic of euxinic photic zone conditions. A global data compilation indicates that deoxygenation occurred in large regions of the global ocean in response to warming, hydrological change, and carbon cycle feedbacks, particularly along continental margins, analogous to modern trends. Seafloor deoxygenation and widespread anoxia likely caused phosphorus regeneration from suboxic and anoxic sediments. We argue that this fuelled shelf eutrophication, as widely recorded from microfossil studies, increasing organic carbon burial along continental margins as a negative feedback to carbon input and global warming. If properly quantified with future work, the PETM offers the opportunity to assess the biogeochemical effects of enhanced phosphorus regeneration, as well as the time-scales on which this feedback operates in view of modern and future ocean deoxygenation.

  4. Climate change and the northern Russian treeline zone.

    PubMed

    MacDonald, G M; Kremenetski, K V; Beilman, D W

    2008-07-12

    The Russian treeline is a dynamic ecotone typified by steep gradients in summer temperature and regionally variable gradients in albedo and heat flux. The location of the treeline is largely controlled by summer temperatures and growing season length. Temperatures have responded strongly to twentieth-century global warming and will display a magnified response to future warming. Dendroecological studies indicate enhanced conifer recruitment during the twentieth century. However, conifers have not yet recolonized many areas where trees were present during the Medieval Warm period (ca AD 800-1,300) or the Holocene Thermal Maximum (HTM; ca 10,000-3,000 years ago). Reconstruction of tree distributions during the HTM suggests that the future position of the treeline due to global warming may approximate its former Holocene maximum position. An increased dominance of evergreen tree species in the northern Siberian forests may be an important difference between past and future conditions. Based on the slow rates of treeline expansion observed during the twentieth century, the presence of steep climatic gradients associated with the current Arctic coastline and the prevalence of organic soils, it is possible that rates of treeline expansion will be regionally variable and transient forest communities with species abundances different from today's may develop.

  5. Beyond equilibrium climate sensitivity

    NASA Astrophysics Data System (ADS)

    Knutti, Reto; Rugenstein, Maria A. A.; Hegerl, Gabriele C.

    2017-10-01

    Equilibrium climate sensitivity characterizes the Earth's long-term global temperature response to increased atmospheric CO2 concentration. It has reached almost iconic status as the single number that describes how severe climate change will be. The consensus on the 'likely' range for climate sensitivity of 1.5 °C to 4.5 °C today is the same as given by Jule Charney in 1979, but now it is based on quantitative evidence from across the climate system and throughout climate history. The quest to constrain climate sensitivity has revealed important insights into the timescales of the climate system response, natural variability and limitations in observations and climate models, but also concerns about the simple concepts underlying climate sensitivity and radiative forcing, which opens avenues to better understand and constrain the climate response to forcing. Estimates of the transient climate response are better constrained by observed warming and are more relevant for predicting warming over the next decades. Newer metrics relating global warming directly to the total emitted CO2 show that in order to keep warming to within 2 °C, future CO2 emissions have to remain strongly limited, irrespective of climate sensitivity being at the high or low end.

  6. Now what do people know about global climate change? Survey studies of educated laypeople.

    PubMed

    Reynolds, Travis William; Bostrom, Ann; Read, Daniel; Morgan, M Granger

    2010-10-01

    In 1992, a mental-models-based survey in Pittsburgh, Pennsylvania, revealed that educated laypeople often conflated global climate change and stratospheric ozone depletion, and appeared relatively unaware of the role of anthropogenic carbon dioxide emissions in global warming. This study compares those survey results with 2009 data from a sample of similarly well-educated laypeople responding to the same survey instrument. Not surprisingly, following a decade of explosive attention to climate change in politics and in the mainstream media, survey respondents in 2009 showed higher awareness and comprehension of some climate change causes. Most notably, unlike those in 1992, 2009 respondents rarely mentioned ozone depletion as a cause of global warming. They were also far more likely to correctly volunteer energy use as a major cause of climate change; many in 2009 also cited natural processes and historical climatic cycles as key causes. When asked how to address the problem of climate change, while respondents in 1992 were unable to differentiate between general "good environmental practices" and actions specific to addressing climate change, respondents in 2009 have begun to appreciate the differences. Despite this, many individuals in 2009 still had incorrect beliefs about climate change, and still did not appear to fully appreciate key facts such as that global warming is primarily due to increased concentrations of carbon dioxide in the atmosphere, and the single most important source of this carbon dioxide is the combustion of fossil fuels. © 2010 Society for Risk Analysis.

  7. 75 FR 70657 - Approval and Promulgation of Implementation Plans; Kansas: Prevention of Significant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-18

    ... Global Warming Potential (GWP) was developed to compare the heat- trapping capacity and atmospheric... CH 4 emissions would have 21 times as much impact on global warming over a 100-year time horizon as 1...

  8. 76 FR 752 - Approval and Promulgation of Implementation Plans; Connecticut: Prevention of Significant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-06

    ... Global Warming Potential (GWP) was developed to compare the heat- trapping capacity and atmospheric... CH 4 emissions would have 21 times as much impact on global warming over a 100-year time horizon as 1...

  9. 75 FR 68285 - Approval and Promulgation of Implementation Plans; Alabama: Prevention of Significant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-05

    ... Global Warming Potential (GWP) was developed to compare the heat- trapping capacity and atmospheric... CH 4 emissions would have 21 times as much impact on global warming over a 100-year time horizon as 1...

  10. 75 FR 68279 - Approval and Promulgation of Implementation Plans; North Carolina: Prevention of Significant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-05

    ... Global Warming Potential (GWP) was developed to compare the heat- trapping capacity and atmospheric..., meaning each ton of CH 4 emissions would have 21 times as much impact on global warming over a 100-year...

  11. 75 FR 68272 - Approval and Promulgation of Implementation Plans; Kentucky: Prevention of Significant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-05

    ... Global Warming Potential (GWP) was developed to compare the heat- trapping capacity and atmospheric... CH 4 emissions would have 21 times as much impact on global warming over a 100-year time horizon as 1...

  12. 76 FR 2070 - Approval and Promulgation of Air Quality Implementation Plans; Virginia; Prevention of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-12

    ... capacities. The concept of Global Warming Potential (GWP) was developed to compare the heat- trapping... GWP of 21, meaning each ton of CH 4 emissions would have 21 times as much impact on global warming...

  13. 75 FR 68265 - Approval and Promulgation of Implementation Plans; Tennessee: Prevention of Significant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-05

    .... Different GHGs have different heat-trapping capacities. The concept of Global Warming Potential (GWP) was... as much impact on global warming over a 100-year time horizon as 1 ton of CO 2 emissions. Thus, on...

  14. 75 FR 68259 - Approval and Promulgation of Implementation Plans; Mississippi: Prevention of Significant...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-11-05

    ... different heat-trapping capacities. The concept of Global Warming Potential (GWP) was developed to compare... global warming over a 100-year time horizon as 1 ton of CO 2 emissions. Thus, on the basis of heat...

  15. Global Warming?

    ERIC Educational Resources Information Center

    Eichman, Julia Christensen; Brown, Jeff A.

    1994-01-01

    Presents information and data on an experiment designed to test whether different atmosphere compositions are affected by light and temperature during both cooling and heating. Although flawed, the experiment should help students appreciate the difficulties that researchers face when trying to find evidence of global warming. (PR)

  16. Worldwide Emerging Environmental Issues Affecting the U.S. Military. December 2005 Report

    DTIC Science & Technology

    2005-12-01

    6 7.1 Climate Change……………..………………………………………………………..6 7.1.1 Melting Permafrost Releases Methane Twenty Times More Dangerous for Global Warming than...Dangerous for Global Warming than CO2 Permafrost covers much of Russia, Canada, and Alaska. As it melts, trapped methane gas is released, which is...period of time; however, the phenomenon has not been properly factored into global warming forecasts. With less snow and ice, solar radiation that used

  17. The Inequality of Climate Change From 1.5 to 2°C of Global Warming

    NASA Astrophysics Data System (ADS)

    King, Andrew D.; Harrington, Luke J.

    2018-05-01

    The Paris Agreement aims to keep global warming well below 2°C above preindustrial levels with a preferred ambitious 1.5°C target. Developing countries, especially small island nations, pressed for the 1.5°C target to be adopted, but who will suffer the largest changes in climate if we miss this target? Here we show that exceeding the 1.5°C global warming target would lead to the poorest experiencing the greatest local climate changes. Under these circumstances greater support for climate adaptation to prevent poverty growth would be required.

  18. Changes in aridity in response to the global warming hiatus

    NASA Astrophysics Data System (ADS)

    Guan, Xiaodan; Huang, Jianping; Guo, Ruixia

    2017-02-01

    The global warming slowdown or warming hiatus, began around the year 2000 and has persisted for nearly 15 years. Most studies have focused on the interpretation of the hiatus in temperature. In this study, changes in a global aridity index (AI) were analyzed by using a newly developed dynamical adjustment method that can successfully identify and separate dynamically induced and radiatively forced aridity changes in the raw data. The AI and Palmer Drought Severity Index produced a wetting zone over the mid-to-high latitudes of the Northern Hemisphere in recent decades. The dynamical adjustment analysis suggested that this wetting zone occurred in response to the global warming hiatus. The dynamically induced AI (DAI) played a major role in the AI changes during the hiatus period, and its relationships with the North Atlantic Oscillation (NAO), Pacific Decadal Oscillation (PDO), and Atlantic Multi-decadal Oscillation (AMO) also indicated that different phases of the NAO, PDO, and AMO contributed to different performances of the DAI over the Northern Hemisphere. Although the aridity wetting over the mid-to-high latitudes may relieve long-term drying in certain regions, the hiatus is temporary, and so is the relief. Accelerated global warming will return when the NAO, PDO, and AMO revert to their opposite phases in the future, and the wetting zone is likely to disappear.

  19. Accelerated warming and emergent trends in fisheries biomass yields of the world's large marine ecosystems.

    PubMed

    Sherman, Kenneth; Belkin, Igor M; Friedland, Kevin D; O'Reilly, John; Hyde, Kimberly

    2009-06-01

    Information on the effects of global climate change on trends in global fisheries biomass yields has been limited in spatial and temporal scale. Results are presented of a global study of the impact of sea surface temperature (SST) changes over the last 25 years on the fisheries yields of 63 large marine ecosystems (LMEs) that annually produce 80% of the world's marine fisheries catches. Warming trends were observed in 61 LMEs around the globe. In 18 of the LMEs, rates of SST warming were two to four times faster during the past 25 years than the globally averaged rates of SST warming reported by the Intergovernmental Panel on Climate Change in 2007. Effects of warming on fisheries biomass yields were greatest in the fast-warming northern Northeast Atlantic LMEs, where increasing trends in fisheries biomass yields were related to zooplankton biomass increases. In contrast, fisheries biomass yields of LMEs in the fast-warming, more southerly reaches of the Northeast Atlantic were declining in response to decreases in zooplankton abundance. The LMEs around the margins of the Indian Ocean, where SSTs were among the world's slowest warming, revealed a consistent pattern of fisheries biomass increases during the past 25 years, driven principally by human need for food security from fisheries resources. As a precautionary approach toward more sustainable fisheries utilization, management measures to limit the total allowable catch through a cap-and-sustain approach are suggested for the developing nations recently fishing heavily on resources of the Agulhas Current, Somali Current, Arabian Sea, and Bay of Bengal LMEs.

  20. Temperature response of soil respiration largely unaltered with experimental warming.

    PubMed

    Carey, Joanna C; Tang, Jianwu; Templer, Pamela H; Kroeger, Kevin D; Crowther, Thomas W; Burton, Andrew J; Dukes, Jeffrey S; Emmett, Bridget; Frey, Serita D; Heskel, Mary A; Jiang, Lifen; Machmuller, Megan B; Mohan, Jacqueline; Panetta, Anne Marie; Reich, Peter B; Reinsch, Sabine; Wang, Xin; Allison, Steven D; Bamminger, Chris; Bridgham, Scott; Collins, Scott L; de Dato, Giovanbattista; Eddy, William C; Enquist, Brian J; Estiarte, Marc; Harte, John; Henderson, Amanda; Johnson, Bart R; Larsen, Klaus Steenberg; Luo, Yiqi; Marhan, Sven; Melillo, Jerry M; Peñuelas, Josep; Pfeifer-Meister, Laurel; Poll, Christian; Rastetter, Edward; Reinmann, Andrew B; Reynolds, Lorien L; Schmidt, Inger K; Shaver, Gaius R; Strong, Aaron L; Suseela, Vidya; Tietema, Albert

    2016-11-29

    The respiratory release of carbon dioxide (CO 2 ) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation of soil respiration to experimental warming in several major biome types, contrary to the results from multiple single-site studies. Moreover, across all nondesert biomes, respiration rates with and without experimental warming follow a Gaussian response, increasing with soil temperature up to a threshold of ∼25 °C, above which respiration rates decrease with further increases in temperature. This consistent decrease in temperature sensitivity at higher temperatures demonstrates that rising global temperatures may result in regionally variable responses in soil respiration, with colder climates being considerably more responsive to increased ambient temperatures compared with warmer regions. Our analysis adds a unique cross-biome perspective on the temperature response of soil respiration, information critical to improving our mechanistic understanding of how soil carbon dynamics change with climatic warming.

  1. Temperature response of soil respiration largely unaltered with experimental warming

    USGS Publications Warehouse

    Carey, Joanna C.; Tang, Jianwu; Templer, Pamela H.; Kroeger, Kevin D.; Crowther, Thomas W.; Burton, Andrew J.; Dukes, Jeffrey S.; Emmett, Bridget; Frey, Serita D.; Heskel, Mary A.; Jiang, Lifen; Machmuller, Megan B.; Mohan, Jacqueline; Panetta, Anne Marie; Reich, Peter B.; Reinsch, Sabine; Wang, Xin; Allison, Steven D.; Bamminger, Chris; Bridgham, Scott; Collins, Scott L.; de Dato, Giovanbattista; Eddy, William C.; Enquist, Brian J.; Estiarte, Marc; Harte, John; Henderson, Amanda; Johnson, Bart R.; Steenberg Larsen, Klaus; Luo, Yiqi; Marhan, Sven; Melillo, Jerry M.; Penuelas, Josep; Pfeifer-Meister, Laurel; Poll, Christian; Rastetter, Edward B.; Reinmann, Andrew B.; Reynolds, Lorien L.; Schmidt, Inger K.; Shaver, Gaius R.; Strong, Aaron L.; Suseela, Vidya; Tietema, Albert

    2016-01-01

    The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation of soil respiration to experimental warming in several major biome types, contrary to the results from multiple single-site studies. Moreover, across all nondesert biomes, respiration rates with and without experimental warming follow a Gaussian response, increasing with soil temperature up to a threshold of ∼25 °C, above which respiration rates decrease with further increases in temperature. This consistent decrease in temperature sensitivity at higher temperatures demonstrates that rising global temperatures may result in regionally variable responses in soil respiration, with colder climates being considerably more responsive to increased ambient temperatures compared with warmer regions. Our analysis adds a unique cross-biome perspective on the temperature response of soil respiration, information critical to improving our mechanistic understanding of how soil carbon dynamics change with climatic warming.

  2. Temperature response of soil respiration largely unaltered with experimental warming

    PubMed Central

    Carey, Joanna C.; Tang, Jianwu; Templer, Pamela H.; Kroeger, Kevin D.; Crowther, Thomas W.; Burton, Andrew J.; Dukes, Jeffrey S.; Emmett, Bridget; Frey, Serita D.; Heskel, Mary A.; Jiang, Lifen; Machmuller, Megan B.; Mohan, Jacqueline; Panetta, Anne Marie; Reich, Peter B.; Reinsch, Sabine; Wang, Xin; Allison, Steven D.; Bamminger, Chris; Bridgham, Scott; de Dato, Giovanbattista; Eddy, William C.; Enquist, Brian J.; Estiarte, Marc; Harte, John; Henderson, Amanda; Johnson, Bart R.; Luo, Yiqi; Marhan, Sven; Melillo, Jerry M.; Peñuelas, Josep; Pfeifer-Meister, Laurel; Poll, Christian; Rastetter, Edward; Reinmann, Andrew B.; Reynolds, Lorien L.; Schmidt, Inger K.; Shaver, Gaius R.; Strong, Aaron L.; Suseela, Vidya; Tietema, Albert

    2016-01-01

    The respiratory release of carbon dioxide (CO2) from soil is a major yet poorly understood flux in the global carbon cycle. Climatic warming is hypothesized to increase rates of soil respiration, potentially fueling further increases in global temperatures. However, despite considerable scientific attention in recent decades, the overall response of soil respiration to anticipated climatic warming remains unclear. We synthesize the largest global dataset to date of soil respiration, moisture, and temperature measurements, totaling >3,800 observations representing 27 temperature manipulation studies, spanning nine biomes and over 2 decades of warming. Our analysis reveals no significant differences in the temperature sensitivity of soil respiration between control and warmed plots in all biomes, with the exception of deserts and boreal forests. Thus, our data provide limited evidence of acclimation of soil respiration to experimental warming in several major biome types, contrary to the results from multiple single-site studies. Moreover, across all nondesert biomes, respiration rates with and without experimental warming follow a Gaussian response, increasing with soil temperature up to a threshold of ∼25 °C, above which respiration rates decrease with further increases in temperature. This consistent decrease in temperature sensitivity at higher temperatures demonstrates that rising global temperatures may result in regionally variable responses in soil respiration, with colder climates being considerably more responsive to increased ambient temperatures compared with warmer regions. Our analysis adds a unique cross-biome perspective on the temperature response of soil respiration, information critical to improving our mechanistic understanding of how soil carbon dynamics change with climatic warming. PMID:27849609

  3. Reconciling controversies about the ‘global warming hiatus’

    NASA Astrophysics Data System (ADS)

    Medhaug, Iselin; Stolpe, Martin B.; Fischer, Erich M.; Knutti, Reto

    2017-05-01

    Between about 1998 and 2012, a time that coincided with political negotiations for preventing climate change, the surface of Earth seemed hardly to warm. This phenomenon, often termed the ‘global warming hiatus’, caused doubt in the public mind about how well anthropogenic climate change and natural variability are understood. Here we show that apparently contradictory conclusions stem from different definitions of ‘hiatus’ and from different datasets. A combination of changes in forcing, uptake of heat by the oceans, natural variability and incomplete observational coverage reconciles models and data. Combined with stronger recent warming trends in newer datasets, we are now more confident than ever that human influence is dominant in long-term warming.

  4. Reconciling controversies about the 'global warming hiatus'.

    PubMed

    Medhaug, Iselin; Stolpe, Martin B; Fischer, Erich M; Knutti, Reto

    2017-05-03

    Between about 1998 and 2012, a time that coincided with political negotiations for preventing climate change, the surface of Earth seemed hardly to warm. This phenomenon, often termed the 'global warming hiatus', caused doubt in the public mind about how well anthropogenic climate change and natural variability are understood. Here we show that apparently contradictory conclusions stem from different definitions of 'hiatus' and from different datasets. A combination of changes in forcing, uptake of heat by the oceans, natural variability and incomplete observational coverage reconciles models and data. Combined with stronger recent warming trends in newer datasets, we are now more confident than ever that human influence is dominant in long-term warming.

  5. Urban warming reduces aboveground carbon storage.

    PubMed

    Meineke, Emily; Youngsteadt, Elsa; Dunn, Robert R; Frank, Steven D

    2016-10-12

    A substantial amount of global carbon is stored in mature trees. However, no experiments to date test how warming affects mature tree carbon storage. Using a unique, citywide, factorial experiment, we investigated how warming and insect herbivory affected physiological function and carbon sequestration (carbon stored per year) of mature trees. Urban warming increased herbivorous arthropod abundance on trees, but these herbivores had negligible effects on tree carbon sequestration. Instead, urban warming was associated with an estimated 12% loss of carbon sequestration, in part because photosynthesis was reduced at hotter sites. Ecosystem service assessments that do not consider urban conditions may overestimate urban tree carbon storage. Because urban and global warming are becoming more intense, our results suggest that urban trees will sequester even less carbon in the future. © 2016 The Author(s).

  6. Extreme temperatures in Southeast Asia caused by El Niño and worsened by global warming

    PubMed Central

    Thirumalai, Kaustubh; DiNezio, Pedro N.; Okumura, Yuko; Deser, Clara

    2017-01-01

    In April 2016, southeast Asia experienced surface air temperatures (SATs) that surpassed national records, exacerbated energy consumption, disrupted agriculture and caused severe human discomfort. Here we show using observations and an ensemble of global warming simulations the combined impact of the El Niño/Southern Oscillation (ENSO) phenomenon and long-term warming on regional SAT extremes. We find a robust relationship between ENSO and southeast Asian SATs wherein virtually all April extremes occur during El Niño years. We then quantify the relative contributions of long-term warming and the 2015–16 El Niño to the extreme April 2016 SATs. The results indicate that global warming increases the likelihood of record-breaking April extremes where we estimate that 29% of the 2016 anomaly was caused by warming and 49% by El Niño. These post-Niño Aprils can potentially be anticipated a few months in advance, and thus, help societies prepare for the projected continued increases in extremes. PMID:28585927

  7. The potential of land management to decrease global warming from climate change

    NASA Astrophysics Data System (ADS)

    Mayer, A.; Hausfather, Z.; Jones, A. D.; Silver, W. L.

    2016-12-01

    Recent evidence suggests that negative emissions (i.e. sequestration) is critical to slow climate change (IPCC, 2013; Gasser et al, 2015). Agricultural (crop and grazing) lands have the potential to act as a significant carbon sink. These ecosystems cover a significant proportion of the global land surface, and are largely degraded with regard to soil carbon due to previous management practices (Bai et al, 2008). However, few studies have examined the required scale of land management interventions that would be required to make a significant contribution to a portfolio of efforts aimed at limiting anthropogenic influences on global mean temperature. To address this, we modelled the quantitative effect of a range of soil carbon sequestration rates on global temperature to 2100. Results showed that by assuming a baseline emissions scenario outlined in RCP 2.6, the sequestration of an additional 0.7 Pg C per year through improved agricultural land management practices would produce a reduction of 0.1 degrees C from predicted global temperatures by the year 2100. We also compiled previous estimates of global carbon sequestration potential of agricultural soils to compare with our theoretical prediction to determine whether carbon sequestration through existing land management practices has potential to significantly reduce global temperatures. Assuming long-term soil carbon uptake, the combined potential of agricultural land management-based mitigation approaches exceeded 0.25 degrees C warming reduction by the year 2100. However, results were highly sensitive to potential carbon saturation, defined as the maximum threshold for carbon storage in soil. Our results suggest that current land management technologies and available land area exist and could make a measureable impact on warming reduction. Results also highlighted potential carbon saturation as a key gap in knowledge.

  8. What is "good reasoning" about global warming? A comparison of high school students and specialists

    NASA Astrophysics Data System (ADS)

    Adams, Stephen Thomas

    This study compares the knowledge and reasoning about global warming of 10 twelfth grade students and 6 specialists, including scientists and policy analysts. The study uses global warming as a context for addressing the broad objective of formulating goals for scientific literacy. Subjects evaluated a set of articles about global warming and evaluated policies proposed to ameliorate global warming, including a gasoline tax and a "feebate" system of fees and rebates on automobiles. All students and one scientist participated in a full treatment involving interviews and activities with a computer program (discussed below), averaging about 3.75 hours. In addition, five specialists participated in interviews only, averaging one hour. One line of analysis focuses on knowledge content, examining how subjects applied perspectives from both natural and social sciences. This analysis is positioned as an empirical component to the movement to develop content standards for science education, as exemplified by the recommendations of Science for All Americans (SFAA). Some aspects of competent performance in the present study hinged upon knowledge and skills advocated by SFAA (e.g., fluency with themes of science such as scale). Other aspects involved such skills as evaluating economic interests behind a scientific argument in the media or considering hidden costs in a policy area. By characterizing a range of approaches to how students and specialists performed the experimental tasks, the present study affords a view of scientific literacy not possible without this type of information. Another line of analysis investigates a measure of coherent argumentation from a computer program, Convince Me, in relation to policy reasoning. The program is based on a connectionist model, ECHO. Subjects used the program to create arguments about the aforementioned policies. The study compares Convince Me's Model's Fit argumentation measure to other measures, including ratings of 6 human judges about the quality of the arguments, a measure of the stability of subjects' views, and the number of statements in subjects' arguments. The pattern of significant correlations among several of these measures, plus interview findings, help to clarify cognitive and educational issues involved with using Convince Me (or related programs) in this area.

  9. Impacts of Large-Scale Circulation on Convection: A 2-D Cloud Resolving Model Study

    NASA Technical Reports Server (NTRS)

    Li, X; Sui, C.-H.; Lau, K.-M.

    1999-01-01

    Studies of impacts of large-scale circulation on convection, and the roles of convection in heat and water balances over tropical region are fundamentally important for understanding global climate changes. Heat and water budgets over warm pool (SST=29.5 C) and cold pool (SST=26 C) were analyzed based on simulations of the two-dimensional cloud resolving model. Here the sensitivity of heat and water budgets to different sizes of warm and cold pools is examined.

  10. Environmental impact assessment of the incineration of municipal solid waste with auxiliary coal in China.

    PubMed

    Zhao, Yan; Xing, Wei; Lu, Wenjing; Zhang, Xu; Christensen, Thomas H

    2012-10-01

    The environmental impacts of waste incineration with auxiliary coal were investigated using the life-cycle-based software, EASEWASTE, based on the municipal solid waste (MSW) management system in Shuozhou City. In the current system, MSW is collected, transported, and incinerated with 250 kg of coal per ton of waste. Based on observed environmental impacts of incineration, fossil CO(2) and heavy metals were primary contributors to global warming and ecotoxicity in soil, respectively. Compared with incinerators using excess coal, incineration with adequate coal presents significant benefits in mitigating global warming, whereas incineration with a mass of coal can avoid more impacts to acidification, photochemical ozone and nutrient enrichment because of increased electricity substitution and reduced emission from coal power plants. The "Emission standard of air pollutants for thermal power plants (GB13223-2011)" implemented in 2012 introduced stricter policies on controlling SO(2) and NO(x) emissions from coal power plants. Thus, increased use of auxiliary coal during incineration yields fewer avoided impacts on acidification and nutrient enrichment. When two-thirds of ash is source-separated and landfilled, the incineration of rest-waste presents better results on global warming, acidification, nutrient enrichment, and even ecotoxicity in soil. This process is considered a promising solution for MSW management in Shuozhou City. Weighted normalized environmental impacts were assessed based on Chinese political reduction targets. Results indicate that heavy metal and acidic gas emissions should be given more attention in waste incineration. This study provides scientific support for the management of MSW systems dominated by incineration with auxiliary coal in China. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. 75 FR 41311 - Approval and Promulgation of Implementation Plans; Texas; Revisions to the New Source Review (NSR...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-07-15

    ... polluting with global warming emissions. The commenters further state that Texas: (1) Has more proposed coal... on global warming, lack of commitment by TCEQ to protect air quality, the need for clean energy... applications in accordance with the Federal CAA; and putting stronger rules in place in order to reduce global...

  12. A global meta-analysis on the impact of management practices on net global warming potential and greenhouse gas intensity from cropland soils

    USDA-ARS?s Scientific Manuscript database

    Agricultural practices contribute significant amount of greenhouse gas (GHG) emissions, but little is known about their effects on net global warming potential (GWP) and greenhouse gas intensity (GHGI) that account for all sources and sinks of carbon dioxide emissions per unit area or crop yield. Se...

  13. The biogeophysical effects of extreme afforestation in modeling future climate

    NASA Astrophysics Data System (ADS)

    Wang, Ye; Yan, Xiaodong; Wang, Zhaomin

    2014-11-01

    Afforestation has been deployed as a mitigation strategy for global warming due to its substantial carbon sequestration, which is partly counterbalanced with its biogeophysical effects through modifying the fluxes of energy, water, and momentum at the land surface. To assess the potential biophysical effects of afforestation, a set of extreme experiments in an Earth system model of intermediate complexity, the McGill Paleoclimate Model-2 (MPM-2), is designed. Model results show that latitudinal afforestation not only has a local warming effect but also induces global and remote warming over regions beyond the forcing originating areas. Precipitation increases in the northern hemisphere and decreases in southern hemisphere in response to afforestation. The local surface warming over the forcing originating areas in northern hemisphere is driven by decreases in surface albedo and increases in precipitation. The remote surface warming in southern hemisphere is induced by decreases in surface albedo and precipitation. The results suggest that the potential impact of afforestation on regional and global climate depended critically on the location of the forest expansion. That is, afforestation in 0°-15°N leaves a relatively minor impact on global and regional temperature; afforestation in 45°-60°N results in a significant global warming, while afforestation in 30°-45°N results in a prominent regional warming. In addition, the afforestation leads to a decrease in annual mean meridional oceanic heat transport with a maximum decrease in forest expansion of 30°-45°N. These results can help to compare afforestation effects and find areas where afforestation mitigates climate change most effectively combined with its carbon drawdown effects.

  14. Responses of ecosystem CO 2 fluxes to short-term experimental warming and nitrogen enrichment in an Alpine meadow, northern Tibet Plateau.

    PubMed

    Zong, Ning; Shi, Peili; Jiang, Jing; Song, Minghua; Xiong, Dingpeng; Ma, Weiling; Fu, Gang; Zhang, Xianzhou; Shen, Zhenxi

    2013-01-01

    Over the past decades, the Tibetan Plateau has experienced pronounced warming, yet the extent to which warming will affect alpine ecosystems depends on how warming interacts with other influential global change factors, such as nitrogen (N) deposition. A long-term warming and N manipulation experiment was established to investigate the interactive effects of warming and N deposition on alpine meadow. Open-top chambers were used to simulate warming. N addition, warming, N addition × warming, and a control were set up. In OTCs, daytime air and soil temperature were warmed by 2.0°C and 1.6°C above ambient conditions, but soil moisture was decreased by 4.95 m(3) m(-3). N addition enhanced ecosystem respiration (Reco); nevertheless, warming significantly decreased Reco. The decline of Reco resulting from warming was cancelled out by N addition in late growing season. Our results suggested that N addition enhanced Reco by increasing soil N availability and plant production, whereas warming decreased Reco through lowering soil moisture, soil N supply potential, and suppression of plant activity. Furthermore, season-specific responses of Reco indicated that warming and N deposition caused by future global change may have complicated influence on carbon cycles in alpine ecosystems.

  15. Responses of Ecosystem CO2 Fluxes to Short-Term Experimental Warming and Nitrogen Enrichment in an Alpine Meadow, Northern Tibet Plateau

    PubMed Central

    Shi, Peili; Jiang, Jing; Song, Minghua; Xiong, Dingpeng; Ma, Weiling; Fu, Gang; Zhang, Xianzhou; Shen, Zhenxi

    2013-01-01

    Over the past decades, the Tibetan Plateau has experienced pronounced warming, yet the extent to which warming will affect alpine ecosystems depends on how warming interacts with other influential global change factors, such as nitrogen (N) deposition. A long-term warming and N manipulation experiment was established to investigate the interactive effects of warming and N deposition on alpine meadow. Open-top chambers were used to simulate warming. N addition, warming, N addition × warming, and a control were set up. In OTCs, daytime air and soil temperature were warmed by 2.0°C and 1.6°C above ambient conditions, but soil moisture was decreased by 4.95 m3 m−3. N addition enhanced ecosystem respiration (Reco); nevertheless, warming significantly decreased Reco. The decline of Reco resulting from warming was cancelled out by N addition in late growing season. Our results suggested that N addition enhanced Reco by increasing soil N availability and plant production, whereas warming decreased Reco through lowering soil moisture, soil N supply potential, and suppression of plant activity. Furthermore, season-specific responses of Reco indicated that warming and N deposition caused by future global change may have complicated influence on carbon cycles in alpine ecosystems. PMID:24459432

  16. 40 CFR 1037.101 - Overview of emission standards for heavy-duty vehicles.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... necessarily have negligible global warming potential. As described in § 1037.102, standards for these... based on their impact on the climate. These standards are provided in §§ 1037.104 through 1037.106. (3...

  17. 40 CFR 1037.101 - Overview of emission standards for heavy-duty vehicles.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... necessarily have negligible global warming potential. As described in § 1037.102, standards for these... based on their impact on the climate. These standards are provided in §§ 1037.104 through 1037.106. (3...

  18. 40 CFR 1037.101 - Overview of emission standards for heavy-duty vehicles.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... necessarily have negligible global warming potential. As described in § 1037.102, standards for these... based on their impact on the climate. These standards are provided in §§ 1037.104 through 1037.106. (3...

  19. Investigation of Antarctic Sea Ice Concentration by Means of Selected Algorithms

    DTIC Science & Technology

    1992-05-08

    Changes in areal extent and concentration of sea ice around Antarctica may serve as sensitive indicators of global warming . A comparison study was...occurred from July, 1987 through June, 1990. Antarctic Ocean, Antarctic regions, Global warming , Sea ice-Antarctic regions.

  20. Changes in the Arctic: Background and Issues for Congress

    DTIC Science & Technology

    2012-02-27

    that most of the global warming of the last three decades is very likely caused by human-related emissions of greenhouse gases (GHG, mostly carbon...such warming is projected by most models throughout the Arctic, some models project slight cooling localized in the North Atlantic Ocean just south of...found that period to be distinctly different from the recent multi-decadal warming , in part because the current warmth is global . Changes in the

Top