Sample records for globally distributed human

  1. Recent human history governs global ant invasion dynamics

    Treesearch

    Cleo Bertelsmeier; Sébastien Ollier; Andrew Liebhold; Laurent Keller

    2017-01-01

    Human trade and travel are breaking down biogeographic barriers, resulting in shifts in the geographical distribution of organisms, yet it remains largely unknown whether different alien species generally follow similar spatiotemporal colonization patterns and how such patterns are driven by trends in global trade. Here, we analyse the global distribution of 241 alien...

  2. Biogeography of Human Infectious Diseases: A Global Historical Analysis

    PubMed Central

    Cashdan, Elizabeth

    2014-01-01

    Objectives Human pathogen richness and prevalence vary widely across the globe, yet we know little about whether global patterns found in other taxa also predict diversity in this important group of organisms. This study (a) assesses the relative importance of temperature, precipitation, habitat diversity, and population density on the global distributions of human pathogens and (b) evaluates the species-area predictions of island biogeography for human pathogen distributions on oceanic islands. Methods Historical data were used in order to minimize the influence of differential access to modern health care on pathogen prevalence. The database includes coded data (pathogen, environmental and cultural) for a worldwide sample of 186 non-industrial cultures, including 37 on islands. Prevalence levels for 10 pathogens were combined into a pathogen prevalence index, and OLS regression was used to model the environmental determinants of the prevalence index and number of pathogens. Results Pathogens (number and prevalence index) showed the expected latitudinal gradient, but predictors varied by latitude. Pathogens increased with temperature in high-latitude zones, while mean annual precipitation was a more important predictor in low-latitude zones. Other environmental factors associated with more pathogens included seasonal dry extremes, frost-free climates, and human population density outside the tropics. Islands showed the expected species-area relationship for all but the smallest islands, and the relationship was not mediated by habitat diversity. Although geographic distributions of free-living and parasitic taxa typically have different determinants, these data show that variables that influence the distribution of free-living organisms also shape the global distribution of human pathogens. Understanding the cause of these distributions is potentially important, since geographical variation in human pathogens has an important influence on global disparities in human welfare. PMID:25271730

  3. Biogeography of human infectious diseases: a global historical analysis.

    PubMed

    Cashdan, Elizabeth

    2014-01-01

    Human pathogen richness and prevalence vary widely across the globe, yet we know little about whether global patterns found in other taxa also predict diversity in this important group of organisms. This study (a) assesses the relative importance of temperature, precipitation, habitat diversity, and population density on the global distributions of human pathogens and (b) evaluates the species-area predictions of island biogeography for human pathogen distributions on oceanic islands. Historical data were used in order to minimize the influence of differential access to modern health care on pathogen prevalence. The database includes coded data (pathogen, environmental and cultural) for a worldwide sample of 186 non-industrial cultures, including 37 on islands. Prevalence levels for 10 pathogens were combined into a pathogen prevalence index, and OLS regression was used to model the environmental determinants of the prevalence index and number of pathogens. Pathogens (number and prevalence index) showed the expected latitudinal gradient, but predictors varied by latitude. Pathogens increased with temperature in high-latitude zones, while mean annual precipitation was a more important predictor in low-latitude zones. Other environmental factors associated with more pathogens included seasonal dry extremes, frost-free climates, and human population density outside the tropics. Islands showed the expected species-area relationship for all but the smallest islands, and the relationship was not mediated by habitat diversity. Although geographic distributions of free-living and parasitic taxa typically have different determinants, these data show that variables that influence the distribution of free-living organisms also shape the global distribution of human pathogens. Understanding the cause of these distributions is potentially important, since geographical variation in human pathogens has an important influence on global disparities in human welfare.

  4. GlobAl Distribution of GEnetic Traits (GADGET) web server: polygenic trait scores worldwide.

    PubMed

    Chande, Aroon T; Wang, Lu; Rishishwar, Lavanya; Conley, Andrew B; Norris, Emily T; Valderrama-Aguirre, Augusto; Jordan, I King

    2018-05-18

    Human populations from around the world show striking phenotypic variation across a wide variety of traits. Genome-wide association studies (GWAS) are used to uncover genetic variants that influence the expression of heritable human traits; accordingly, population-specific distributions of GWAS-implicated variants may shed light on the genetic basis of human phenotypic diversity. With this in mind, we developed the GlobAl Distribution of GEnetic Traits web server (GADGET http://gadget.biosci.gatech.edu). The GADGET web server provides users with a dynamic visual platform for exploring the relationship between worldwide genetic diversity and the genetic architecture underlying numerous human phenotypes. GADGET integrates trait-implicated single nucleotide polymorphisms (SNPs) from GWAS, with population genetic data from the 1000 Genomes Project, to calculate genome-wide polygenic trait scores (PTS) for 818 phenotypes in 2504 individual genomes. Population-specific distributions of PTS are shown for 26 human populations across 5 continental population groups, with traits ordered based on the extent of variation observed among populations. Users of GADGET can also upload custom trait SNP sets to visualize global PTS distributions for their own traits of interest.

  5. Global Distribution of Alveolar and Cystic Echinococcosis.

    PubMed

    Deplazes, P; Rinaldi, L; Alvarez Rojas, C A; Torgerson, P R; Harandi, M F; Romig, T; Antolova, D; Schurer, J M; Lahmar, S; Cringoli, G; Magambo, J; Thompson, R C A; Jenkins, E J

    2017-01-01

    Alveolar echinococcosis (AE) and cystic echinococcosis (CE) are severe helminthic zoonoses. Echinococcus multilocularis (causative agent of AE) is widely distributed in the northern hemisphere where it is typically maintained in a wild animal cycle including canids as definitive hosts and rodents as intermediate hosts. The species Echinococcus granulosus, Echinococcus ortleppi, Echinococcus canadensis and Echinococcus intermedius are the causative agents of CE with a worldwide distribution and a highly variable human disease burden in the different endemic areas depending upon human behavioural risk factors, the diversity and ecology of animal host assemblages and the genetic diversity within Echinococcus species which differ in their zoonotic potential and pathogenicity. Both AE and CE are regarded as neglected zoonoses, with a higher overall burden of disease for CE due to its global distribution and high regional prevalence, but a higher pathogenicity and case fatality rate for AE, especially in Asia. Over the past two decades, numerous studies have addressed the epidemiology and distribution of these Echinococcus species worldwide, resulting in better-defined boundaries of the endemic areas. This chapter presents the global distribution of Echinococcus species and human AE and CE in maps and summarizes the global data on host assemblages, transmission, prevalence in animal definitive hosts, incidence in people and molecular epidemiology. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Myosin heavy chain isoform expression in human extraocular muscles: longitudinal variation and patterns of expression in global and orbital layers.

    PubMed

    Park, Kyung-Ah; Lim, Jeonghee; Sohn, Seongsoo; Oh, Sei Yeul

    2012-05-01

    We investigated the distribution of myosin heavy chain (MyHC) isoforms along the length of the global and orbital layers of human extraocular muscles (EOMs). Whole muscle tissue extracts of human EOMs were cross-sectioned consecutively and separated into orbital and global layers. The extracts from these layers were subjected to electrophoretic analysis, followed by quantification with scanning densitometry. MyHC isoforms displayed different distributions along the lengths of EOMs. In the orbital and global layers of all EOMs except for the superior oblique muscle, MyHCeom was enriched in the central regions. MyHCIIa and MyHCI were most abundant in the proximal and distal ends. A variation in MyHC isoform expression was apparent along the lengths of human EOMs. These results provide a basis for understanding the molecular mechanisms underlying the functional diversity of EOMs. Copyright © 2012 Wiley Periodicals, Inc.

  7. Neuropsychological constraints to human data production on a global scale

    NASA Astrophysics Data System (ADS)

    Gros, C.; Kaczor, G.; Marković, D.

    2012-01-01

    Which are the factors underlying human information production on a global level? In order to gain an insight into this question we study a corpus of 252-633 mil. publicly available data files on the Internet corresponding to an overall storage volume of 284-675 Terabytes. Analyzing the file size distribution for several distinct data types we find indications that the neuropsychological capacity of the human brain to process and record information may constitute the dominant limiting factor for the overall growth of globally stored information, with real-world economic constraints having only a negligible influence. This supposition draws support from the observation that the files size distributions follow a power law for data without a time component, like images, and a log-normal distribution for multimedia files, for which time is a defining qualia.

  8. Globalization and health care: global justice and the role of physicians.

    PubMed

    Toumi, Rabee

    2014-02-01

    In today's globalized world, nations cannot be totally isolated from or indifferent to their neighbors, especially in regards to medicine and health. While globalization has brought prosperity to millions, disparities among nations and nationals are growing raising once again the question of justice. Similarly, while medicine has developed dramatically over the past few decades, health disparities at the global level are staggering. Seemingly, what our humanity could achieve in matters of scientific development is not justly distributed to benefit everyone. In this paper, it will be argued that a global theoretical agreement on principles of justice may prove unattainable; however, a grass-roots change is warranted to change the current situation. The UNESCO Declaration on Bioethics and Human Rights will be considered as a starting point to achieve this change through extracting the main values embedded in its principles. These values, namely, respecting human dignity and tending to human vulnerability with a hospitable attitude, should then be revived in medical practice. Medical education will be one possible venue to achieve that, especially through role models. Future physicians will then become the fervent advocates for a global and just distribution of health care.

  9. Global Night-Time Lights for Observing Human Activity

    NASA Technical Reports Server (NTRS)

    Hipskind, Stephen R.; Elvidge, Chris; Gurney, K.; Imhoff, Mark; Bounoua, Lahouari; Sheffner, Edwin; Nemani, Ramakrishna R.; Pettit, Donald R.; Fischer, Marc

    2011-01-01

    We present a concept for a small satellite mission to make systematic, global observations of night-time lights with spatial resolution suitable for discerning the extent, type and density of human settlements. The observations will also allow better understanding of fine scale fossil fuel CO2 emission distribution. The NASA Earth Science Decadal Survey recommends more focus on direct observations of human influence on the Earth system. The most dramatic and compelling observations of human presence on the Earth are the night light observations taken by the Defence Meteorological System Program (DMSP) Operational Linescan System (OLS). Beyond delineating the footprint of human presence, night light data, when assembled and evaluated with complementary data sets, can determine the fine scale spatial distribution of global fossil fuel CO2 emissions. Understanding fossil fuel carbon emissions is critical to understanding the entire carbon cycle, and especially the carbon exchange between terrestrial and oceanic systems.

  10. Marine algal toxins: origins, health effects, and their increased occurrence.

    PubMed Central

    Van Dolah, F M

    2000-01-01

    Certain marine algae produce potent toxins that impact human health through the consumption of contaminated shellfish and finfish and through water or aerosol exposure. Over the past three decades, the frequency and global distribution of toxic algal incidents appear to have increased, and human intoxications from novel algal sources have occurred. This increase is of particular concern, since it parallels recent evidence of large-scale ecologic disturbances that coincide with trends in global warming. The extent to which human activities have contributed to their increase therefore comes into question. This review summarizes the origins and health effects of marine algal toxins, as well as changes in their current global distribution, and examines possible causes for the recent increase in their occurrence. Images Figure 2 Figure 3 PMID:10698729

  11. Global change and wilderness science

    Treesearch

    Peter M. Vitousek; John D. Aber; Christine L. Goodale; Gregory H. Aplet

    2000-01-01

    The breadth and scope of human-caused environmental change is well-established; the distribution and abundance of species, the vegetation cover of the land, and the chemistry of the atmosphere have been altered substantially and globally. How can science in wilderness areas contribute to the analysis of human-caused change? We use nitrate losses from forests to...

  12. Global biogeography of human infectious diseases.

    PubMed

    Murray, Kris A; Preston, Nicholas; Allen, Toph; Zambrana-Torrelio, Carlos; Hosseini, Parviez R; Daszak, Peter

    2015-10-13

    The distributions of most infectious agents causing disease in humans are poorly resolved or unknown. However, poorly known and unknown agents contribute to the global burden of disease and will underlie many future disease risks. Existing patterns of infectious disease co-occurrence could thus play a critical role in resolving or anticipating current and future disease threats. We analyzed the global occurrence patterns of 187 human infectious diseases across 225 countries and seven epidemiological classes (human-specific, zoonotic, vector-borne, non-vector-borne, bacterial, viral, and parasitic) to show that human infectious diseases exhibit distinct spatial grouping patterns at a global scale. We demonstrate, using outbreaks of Ebola virus as a test case, that this spatial structuring provides an untapped source of prior information that could be used to tighten the focus of a range of health-related research and management activities at early stages or in data-poor settings, including disease surveillance, outbreak responses, or optimizing pathogen discovery. In examining the correlates of these spatial patterns, among a range of geographic, epidemiological, environmental, and social factors, mammalian biodiversity was the strongest predictor of infectious disease co-occurrence overall and for six of the seven disease classes examined, giving rise to a striking congruence between global pathogeographic and "Wallacean" zoogeographic patterns. This clear biogeographic signal suggests that infectious disease assemblages remain fundamentally constrained in their distributions by ecological barriers to dispersal or establishment, despite the homogenizing forces of globalization. Pathogeography thus provides an overarching context in which other factors promoting infectious disease emergence and spread are set.

  13. Global avian influenza surveillance in wild birds: A strategy to capture viral diversity

    USDA-ARS?s Scientific Manuscript database

    Avian influenza (AI) is a global threat to food animal production and distribution systems as well as human health. However, a sustained, comprehensive and coordinated global effort to monitor the continually changing genetic diversity of AI viruses (AIVs) circulating in nature is lacking. Two strai...

  14. Access to medicines and distributive justice: breaching Doha's ethical threshold.

    PubMed

    Kiddell-Monroe, Rachel

    2014-08-01

    The global health crisis in non-communicable diseases (NCDs) reveals a deep global health inequity that lies at the heart of global justice concerns. Mirroring the HIV/AIDS epidemic, NCDs bring into stark relief once more the human consequences of trade policies that reinforce global inequities in treatment access. Recognising distributive justice issues in access to medicines for their populations, World Trade Organisation (WTO) members confirmed the primacy of access to medicines for all in trade and public health in the landmark Doha Declaration on the TRIPS Agreement and Public Health of 2001. © 2014 John Wiley & Sons Ltd.

  15. River Networks and Human Activities: Global Fractal Analysis Using Nightlight Data

    NASA Astrophysics Data System (ADS)

    McCurley, K. 4553; Fang, Y.; Ceola, S.; Paik, K.; McGrath, G. S.; Montanari, A.; Rao, P. S.; Jawitz, J. W.

    2016-12-01

    River networks hold an important historical role in affecting human population distribution. In this study, we link the geomorphological structure of river networks to the pattern of human activities at a global scale. We use nightlights as a valuable proxy for the presence of human settlements and economic activity, and we employ HydroSHEDS as the main data source on river networks. We test the hypotheses that, analogous to Horton's laws, human activities (magnitude of nightlights) also show scaling relationship with stream order, and that the intensity of human activities decrease as the distance from the basin outlet increase. Our results demonstrate that the distribution of human activities shows a fractal structure, with power-law scaling between human activities and stream order. This relationship is robust among global river basins. Human activities are more concentrated in larger order basins, but show large variation in equivalent order basins, with higher population density emergent in the basins connected with high-order rivers. For all global river basins longer than 400km, the average intensity of human activities decrease as the distance to the outlets increases, albeit with signatures of large cities at varied distances. The power spectrum of human width (area) function is found to exhibit power law scaling, with a scaling exponent that indicates enrichment of low frequency variation. The universal fractal structure of human activities may reflect an optimum arrangement for humans in river basins to better utilize the water resources, ecological assets, and geographic advantages. The generalized patterns of human activities could be applied to better understand hydrologic and biogeochemical responses in river basins, and to advance catchment management.

  16. Global marine bacterial diversity peaks at high latitudes in winter

    PubMed Central

    Ladau, Joshua; Sharpton, Thomas J; Finucane, Mariel M; Jospin, Guillaume; Kembel, Steven W; O'Dwyer, James; Koeppel, Alexander F; Green, Jessica L; Pollard, Katherine S

    2013-01-01

    Genomic approaches to characterizing bacterial communities are revealing significant differences in diversity and composition between environments. But bacterial distributions have not been mapped at a global scale. Although current community surveys are way too sparse to map global diversity patterns directly, there is now sufficient data to fit accurate models of how bacterial distributions vary across different environments and to make global scale maps from these models. We apply this approach to map the global distributions of bacteria in marine surface waters. Our spatially and temporally explicit predictions suggest that bacterial diversity peaks in temperate latitudes across the world's oceans. These global peaks are seasonal, occurring 6 months apart in the two hemispheres, in the boreal and austral winters. This pattern is quite different from the tropical, seasonally consistent diversity patterns observed for most macroorganisms. However, like other marine organisms, surface water bacteria are particularly diverse in regions of high human environmental impacts on the oceans. Our maps provide the first picture of bacterial distributions at a global scale and suggest important differences between the diversity patterns of bacteria compared with other organisms. PMID:23514781

  17. Global wetlands: Potential distribution, wetland loss, and status.

    PubMed

    Hu, Shengjie; Niu, Zhenguo; Chen, Yanfen; Li, Lifeng; Zhang, Haiying

    2017-05-15

    Even though researchers have paid a great deal of attention to wetland loss and status, the actual extent of wetland loss on a global scale, especially the loss caused directly by human activities, and the actual extent of currently surviving wetlands remains uncertain. This paper simulated the potential distribution of global wetlands by employing a new Precipitation Topographic Wetness Index (PTWI) and global remote sensing training samples. The results show earth would have approximately 29.83millionkm 2 of wetlands, if humans did not interfere with wetland ecosystems. By combining datasets related to global wetlands, we found that at least 33% of global wetlands had been lost as of 2009, including 4.58millionkm 2 of non-water wetlands and 2.64millionkm 2 of open water. The areal extent of wetland loss has been greatest in Asia, but Europe has experienced the most serious losses. Wetland-related datasets suffer from major inconsistencies, and estimates of the areal extent of the remaining global wetlands ranged from 1.53 to 14.86millionkm 2 . Therefore, although it is challenging, thematic mapping of global wetlands is necessary and urgently needed. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Distribution of recombination hotspots in the human genome--a comparison of computer simulations with real data.

    PubMed

    Mackiewicz, Dorota; de Oliveira, Paulo Murilo Castro; Moss de Oliveira, Suzana; Cebrat, Stanisław

    2013-01-01

    Recombination is the main cause of genetic diversity. Thus, errors in this process can lead to chromosomal abnormalities. Recombination events are confined to narrow chromosome regions called hotspots in which characteristic DNA motifs are found. Genomic analyses have shown that both recombination hotspots and DNA motifs are distributed unevenly along human chromosomes and are much more frequent in the subtelomeric regions of chromosomes than in their central parts. Clusters of motifs roughly follow the distribution of recombination hotspots whereas single motifs show a negative correlation with the hotspot distribution. To model the phenomena related to recombination, we carried out computer Monte Carlo simulations of genome evolution. Computer simulations generated uneven distribution of hotspots with their domination in the subtelomeric regions of chromosomes. They also revealed that purifying selection eliminating defective alleles is strong enough to cause such hotspot distribution. After sufficiently long time of simulations, the structure of chromosomes reached a dynamic equilibrium, in which number and global distribution of both hotspots and defective alleles remained statistically unchanged, while their precise positions were shifted. This resembles the dynamic structure of human and chimpanzee genomes, where hotspots change their exact locations but the global distributions of recombination events are very similar.

  19. Distribution of Recombination Hotspots in the Human Genome – A Comparison of Computer Simulations with Real Data

    PubMed Central

    Mackiewicz, Dorota; de Oliveira, Paulo Murilo Castro; Moss de Oliveira, Suzana; Cebrat, Stanisław

    2013-01-01

    Recombination is the main cause of genetic diversity. Thus, errors in this process can lead to chromosomal abnormalities. Recombination events are confined to narrow chromosome regions called hotspots in which characteristic DNA motifs are found. Genomic analyses have shown that both recombination hotspots and DNA motifs are distributed unevenly along human chromosomes and are much more frequent in the subtelomeric regions of chromosomes than in their central parts. Clusters of motifs roughly follow the distribution of recombination hotspots whereas single motifs show a negative correlation with the hotspot distribution. To model the phenomena related to recombination, we carried out computer Monte Carlo simulations of genome evolution. Computer simulations generated uneven distribution of hotspots with their domination in the subtelomeric regions of chromosomes. They also revealed that purifying selection eliminating defective alleles is strong enough to cause such hotspot distribution. After sufficiently long time of simulations, the structure of chromosomes reached a dynamic equilibrium, in which number and global distribution of both hotspots and defective alleles remained statistically unchanged, while their precise positions were shifted. This resembles the dynamic structure of human and chimpanzee genomes, where hotspots change their exact locations but the global distributions of recombination events are very similar. PMID:23776462

  20. Human-experienced temperature changes exceed global average climate changes for all income groups

    NASA Astrophysics Data System (ADS)

    Hsiang, S. M.; Parshall, L.

    2009-12-01

    Global climate change alters local climates everywhere. Many climate change impacts, such as those affecting health, agriculture and labor productivity, depend on these local climatic changes, not global mean change. Traditional, spatially averaged climate change estimates are strongly influenced by the response of icecaps and oceans, providing limited information on human-experienced climatic changes. If used improperly by decision-makers, these estimates distort estimated costs of climate change. We overlay the IPCC’s 20 GCM simulations on the global population distribution to estimate local climatic changes experienced by the world population in the 21st century. The A1B scenario leads to a well-known rise in global average surface temperature of +2.0°C between the periods 2011-2030 and 2080-2099. Projected on the global population distribution in 2000, the median human will experience an annual average rise of +2.3°C (4.1°F) and the average human will experience a rise of +2.4°C (4.3°F). Less than 1% of the population will experience changes smaller than +1.0°C (1.8°F), while 25% and 10% of the population will experience changes greater than +2.9°C (5.2°F) and +3.5°C (6.2°F) respectively. 67% of the world population experiences temperature changes greater than the area-weighted average change of +2.0°C (3.6°F). Using two approaches to characterize the spatial distribution of income, we show that the wealthiest, middle and poorest thirds of the global population experience similar changes, with no group dominating the global average. Calculations for precipitation indicate that there is little change in average precipitation, but redistributions of precipitation occur in all income groups. These results suggest that economists and policy-makers using spatially averaged estimates of climate change to approximate local changes will systematically and significantly underestimate the impacts of climate change on the 21st century population. Top: The distribution of temperature changes experienced by the world population between 2011-2030 and 2080-2099. Lower 3 panels: Temperatures experienced 2011-2030 (dashed, circle = mean) and 2080-2099 (solid, cross = mean) by income tercile. The poor do not experience larger changes than the wealthy. However, the poor begin the 21st century at higher temperatures.

  1. Measuring the Impact of the Human Rights on Health in Global Health Financing.

    PubMed

    Davis, Sara L M

    2015-12-10

    In response to new scientific developments, UNAIDS, WHO, and global health financing institutions have joined together to promote a "fast-track" global scale-up of testing and treatment programs. They have set ambitious targets toward the goal of ending the three diseases by 2030. These numerical indicators, based on infectious disease modeling, can assist in measuring countries' progressive realization of the right to health. However, they only nominally reference the catastrophic impact that human rights abuses have on access to health services; they also do not measure the positive impact provided by law reform, legal aid, and other health-related human rights programs. Drawing on experience at the Global Fund to Fight AIDS, Tuberculosis and Malaria, which has incorporated expanded stakeholder consultation and human rights programming into its grants, the article argues that addressing human rights barriers to access is often an ad hoc activity occurring on the sidelines of a health grantmaking process that has focused on the scale-up of biomedical programs to meet global health indicators. To ensure that these biomedical programs have impact, UN agencies and health financing mechanisms must begin to more systematically and proactively integrate human rights policy and practice into their modeling and measurement tools. Copyright © 2015 Davis. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

  2. Thinking Out of the Box: A Green and Social Climate Fund Comment on "Politics, Power, Poverty and Global Health: Systems and Frames".

    PubMed

    Ooms, Gorik; Pas, Remco van de; Decoster, Kristof; Hammonds, Rachel

    2016-12-28

    Solomon Benatar's paper "Politics, Power, Poverty and Global Health: Systems and Frames" examines the inequitable state of global health challenging readers to extend the discourse on global health beyond conventional boundaries by addressing the interconnectedness of planetary life. Our response explores existing models of international cooperation, assessing how modifying them may achieve the twin goals of ensuring healthy people and planet. First, we address why the inequality reducing post World War II European welfare model, if implemented state-by-state, is unfit for reducing global inequality and respecting environmental boundaries. Second, we argue that to advance beyond the 'Westphalian,' human centric thinking integral to global inequality and climate change requires challenging the logic of global economic integration and exploring the politically infeasible. In conclusion, we propose social policy focused changes to the World Trade Organisation (WTO) and a Green and Social Climate Fund, financed by new global greenhouse gas charges, both of which could advance human and planetary health. Recent global political developments may offer a small window of opportunity for out of the box proposals that could be advanced by concerted and united advocacy by global health activists, environmental activists, human rights activists, and trade unions. © 2017 The Author(s); Published by Kerman University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

  3. Prediction of the potential global distribution for Biomphalaria straminea, an intermediate host for Schistosoma mansoni

    PubMed Central

    Yang, Ya; Cheng, Wanting; Wu, Xiaoying; Huang, Shaoyu; Deng, Zhuohui; Zeng, Xin; Yang, Yu; Wu, Zhongdao; Chen, Yue; Zhou, Yibiao; Jiang, Qingwu

    2018-01-01

    Background Schistosomiasis is a snail-borne parasitic disease and is endemic in many tropical and subtropical countries. Biomphalaria straminea, an intermediate host for Schistosoma mansoni, is native to the southeastern part of South America and has established in other regions of South America, Central America and southern China during the last decades. S. mansoni is endemic in Africa, the Middle East, South America and the Caribbean. Knowledge of the potential global distribution of this snail is essential for risk assessment, monitoring, disease prevention and control. Methods and findings A comprehensive database of cross-continental occurrence for B. straminea was compiled to construct ecological models. We used several approaches to investigate the distribution of B. straminea, including direct comparison of climatic conditions, principal component analysis and niche overlap analyses to detect niche shifts. We also investigated the impacts of bioclimatic and human factors, and then used the bioclimatic and footprint layers to predict the potential distribution of B. straminea at global scale. We detected niche shifts accompanying the invasions of B. straminea in the Americas and China. The introduced populations had enlarged its habitats to subtropical regions where annual mean temperature is relatively low. Annual mean temperature, isothermality and temperature seasonality were identified as most important climatic features for the occurrence of B. straminea. Additionally, human factors improved the model prediction (P<0.001). Our model showed that under current climate conditions the snail should mostly be confined to the tropic and subtropic regions, including South America, Central America, Sub-Saharan Africa and Southeast Asia. Conclusions Our results confirmed that niche shifts took place in the invasions of B. straminea, in which bioclimatic and human factors played an important role. Our model predicted the global distribution of B. straminea based on habitat suitability, which would help for prioritizing monitoring and management efforts for B. straminea control in the context of ongoing climate change and human disturbances. PMID:29813073

  4. Avian abundance thresholds, human-altered landscapes, and the challenge of assemblage-level conservation

    Treesearch

    Kevin J. Gutzwiller; Samuel K. Riffell; Curtis H. Flather

    2015-01-01

    Context: Land-use change is a global phenomenon with potential to generate abrupt spatial changes in species’ distributions. Objectives: We assessed whether theory about the internal structure of bird species’ geographic ranges can be refined to reflect abrupt changes in distribution and abundance associated with human influences on landscapes, and whether the...

  5. Processionary Moths and Associated Urtication Risk: Global Change-Driven Effects.

    PubMed

    Battisti, Andrea; Larsson, Stig; Roques, Alain

    2017-01-31

    Processionary moths carry urticating setae, which cause health problems in humans and other warm-blooded animals. The pine processionary moth Thaumetopoea pityocampa has responded to global change (climate warming and increased global trade) by extending its distribution range. The subfamily Thaumetopoeinae consists of approximately 100 species. An important question is whether other processionary moth species will similarly respond to these specific dimensions of global change and thus introduce health hazards into new areas. We describe, for the first time, how setae are distributed on different life stages (adult, larva) of major groups within the subfamily. Using the available data, we conclude that there is little evidence that processionary moths as a group will behave like T. pityocampa and expand their distributional range. The health problems caused by setae strongly relate to population density, which may, or may not, be connected to global change.

  6. [SINEs in mammalian genomes can serve as additional signals in formation of facultative heterochromatin].

    PubMed

    Usmanova, N M; Kazakov, V I; Tomilin, N V

    2008-01-01

    Using computer-based methods we determined the global distribution of short interspersed nuclear elements (SINEs) in the human and mouse X chromosomes. It has been shown that this distributions is similar to the distributions of CpG islands and genes but is different from the distribution of LINE1 elements. Since SINEs (human Alu and mouse B2) may have binding sites for Polycomb protein YY1, we suggest that these repeats can serve as additional signals ("boosters") in Polycomb-dependent silencing of gene rich segments during X inactivation.

  7. Productivity, biodiversity, and pathogens influence the global hunter-gatherer population density.

    PubMed

    Tallavaara, Miikka; Eronen, Jussi T; Luoto, Miska

    2018-02-06

    The environmental drivers of species distributions and abundances are at the core of ecological research. However, the effects of these drivers on human abundance are not well-known. Here, we report how net primary productivity, biodiversity, and pathogen stress affect human population density using global ethnographic hunter-gatherer data. Our results show that productivity has significant effects on population density globally. The most important direct drivers, however, depend on environmental conditions: biodiversity influences population density exclusively in low-productivity regions, whereas pathogen stress does so in high-productivity regions. Our results also indicate that subtropical and temperate forest biomes provide the highest carrying capacity for hunter-gatherer populations. These findings document that environmental factors play a key role in shaping global population density patterns of preagricultural humans.

  8. Anthropogenics: Human influence on global and genetic homogenization of parasite populations

    USDA-ARS?s Scientific Manuscript database

    The distribution, abundance, and diversity of life on Earth have been greatly shaped by human activities. This is no truer than in the geographic expansion of parasites; however, measuring the extent to which humans have influenced the dissemination and population structure of parasites has been cha...

  9. Human and climate impact on global riverine water and sediment fluxes - a distributed analysis

    NASA Astrophysics Data System (ADS)

    Cohen, S.; Kettner, A.; Syvitski, J. P.

    2013-05-01

    Understanding riverine water and sediment dynamics is an important undertaking for both socially-relevant issues such as agriculture, water security and infrastructure management and for scientific analysis of climate, landscapes, river ecology, oceanography and other disciplines. Providing good quantitative and predictive tools in therefore timely particularly in light of predicted climate and landuse changes. The intensity and dynamics between man-made and climatic factors vary widely across the globe and are therefore hard to predict. Using sophisticated numerical models is therefore warranted. Here we use a distributed global riverine sediment and water discharge model (WBMsed) to simulate human and climate effect on our planet's large rivers.

  10. Global climate change and fragmentation of native brook trout distribution in the southern Appalachian Mountains

    Treesearch

    Patricia A. Flebbe

    1997-01-01

    Current distributions of native brook trout (Salvelinus fontinalis) in the Southern Appalachians are restricted to upper elevations by multiple factors, including habitat requirements, introduced rainbow (Oncorhynchus mykiss) and brown (Salmo trutta) trout, and other human activities. Present-day distribution of brook trout habitat is already fragmented. Increased...

  11. A Soil Service Index: Potential Soil Services to Society under Scenarios of Human Land Use and Population Growth

    NASA Astrophysics Data System (ADS)

    Hugelius, G.; Ahlström, A.; Loisel, J.; Harden, J. W.

    2017-12-01

    Soils provide numerous and indispensable services to ecological systems and human societies. As human populations and human land use changes, the capacity of soils to maintain these services may also change. To investigate this we provide the first global scale study based on the soil service index (SSI; see presentations by Harden et al. and Loisel et al. in this session for more details). In this index multiple soil services are numerically or quantitatively assessed, normalized to a unit-less scale for purposes of intercomparability. Soil services assessed under the SSI include organic matter and/or organic carbon storage; plant productivity; CO2 or GHG exchange with the atmosphere; water storage capacity; and nutrient storage and/or availability. The SSI may be applied at any scale. Here we present a first global application of the SSI and provide broad-scale analyses of soil service spatial distributions. We assess how the SSI will change under projected changes in human societies populations and human land use (following representative concentration pathway scenarios). Present and future potential utilization and vulnerability of soil resources are analyzed in the context of human population distributions and its projected changes. The SSI is designed to be broadly useful across scientific, governance and resource management organizations. To exemplify this, the parameterization of this is global soil service estimate is based on only open source input data.

  12. Over the hills and further away from coast: global geospatial patterns of human and environment over the 20th-21st centuries

    NASA Astrophysics Data System (ADS)

    Kummu, Matti; de Moel, Hans; Salvucci, Gianluigi; Viviroli, Daniel; Ward, Philip J.; Varis, Olli

    2016-03-01

    Proximity to the coast and elevation are important geographical considerations for human settlement. Little is known, however, about how spatial variation in these factors exactly relates to human settlements and activities, and how this has developed over time. Such knowledge is important for identifying vulnerable regions that are at risk from phenomena such as food shortages and water stress. Human activities are a key driving force in global change, and thus detailed information on population distribution is an important input to any research framework on global change. In this paper we assess the global geospatial patterns of the distribution of human population and related factors, with regard to the altitude above sea level and proximity to the coast. The investigated factors are physical conditions, urbanisation, agricultural practices, economy, and environmental stress. An important novel element in this study, is that we included the temporal evolution in various factors related to human settlements and agricultural practices over the 20th century, and used projections for some of these factors up to the year 2050. We found population pressure in the proximity of the coast to be somewhat greater than was found in other studies. Yet, the distribution of population, urbanisation and wealth are evolving to become more evenly spread across the globe than they were in the past. Therefore, the commonly believed tendency of accumulation of people and wealth along coasts is not supported by our results. At the same time, food production is becoming increasingly decoupled from the trends in population density. Croplands are spreading from highly populated coastal zones towards inland zones. Our results thus indicate that even though people and wealth continue to accumulate in proximity to the coast, population densities and economic productivity are becoming less diverse in relation to elevation and distance from the coast.

  13. Global rates of habitat loss and implications for amphibian conservation

    USGS Publications Warehouse

    Gallant, Alisa L.; Klaver, R.W.; Casper, G.S.; Lannoo, M.J.

    2007-01-01

    A large number of factors are known to affect amphibian population viability, but most authors agree that the principal causes of amphibian declines are habitat loss, alteration, and fragmentation. We provide a global assessment of land use dynamics in the context of amphibian distributions. We accomplished this by compiling global maps of amphibian species richness and recent rates of change in land cover, land use, and human population growth. The amphibian map was developed using a combination of published literature and digital databases. We used an ecoregion framework to help interpret species distributions across environmental, rather than political, boundaries. We mapped rates of land cover and use change with statistics from the World Resources Institute, refined with a global digital dataset on land cover derived from satellite data. Temporal maps of human population were developed from the World Resources Institute database and other published sources. Our resultant map of amphibian species richness illustrates that amphibians are distributed in an uneven pattern around the globe, preferring terrestrial and freshwater habitats in ecoregions that are warm and moist. Spatiotemporal patterns of human population show that, prior to the 20th century, population growth and spread was slower, most extensive in the temperate ecoregions, and largely exclusive of major regions of high amphibian richness. Since the beginning of the 20th century, human population growth has been exponential and has occurred largely in the subtropical and tropical ecoregions favored by amphibians. Population growth has been accompanied by broad-scale changes in land cover and land use, typically in support of agriculture. We merged information on land cover, land use, and human population growth to generate a composite map showing the rates at which humans have been changing the world. When compared with the map of amphibian species richness, we found that many of the regions of the earth supporting the richest assemblages of amphibians are currently undergoing the highest rates of landscape modification.

  14. Ecogeography, genetics, and the evolution of human body form.

    PubMed

    Roseman, Charles C; Auerbach, Benjamin M

    2015-01-01

    Genetic resemblances among groups are non-randomly distributed in humans. This population structure may influence the correlations between traits and environmental drivers of natural selection thus complicating the interpretation of the fossil record when modern human variation is used as a referential model. In this paper, we examine the effects of population structure and natural selection on postcranial traits that reflect body size and shape with application to the more general issue of how climate - using latitude as a proxy - has influenced hominin morphological variation. We compare models that include terms reflecting population structure, ascertained from globally distributed microsatellite data, and latitude on postcranial phenotypes derived from skeletal dimensions taken from a large global sample of modern humans. We find that models with a population structure term fit better than a model of natural selection along a latitudinal cline in all cases. A model including both latitude and population structure terms is a good fit to distal limb element lengths and bi-iliac breadth, indicating that multiple evolutionary forces shaped these morphologies. In contrast, a model that included only a population structure term best explained femoral head diameter and the crural index. The results demonstrate that population structure is an important part of human postcranial variation, and that clinally distributed natural selection is not sufficient to explain among-group differentiation. The distribution of human body form is strongly influenced by the contingencies of modern human origins, which calls for new ways to approach problems in the evolution of human variation, past and present. Copyright © 2014 Elsevier Ltd. All rights reserved.

  15. Primate malarias: Diversity, distribution and insights for zoonotic Plasmodium.

    PubMed

    Faust, Christina; Dobson, Andrew P

    2015-12-01

    Protozoans within the genus Plasmodium are well-known as the causative agents of malaria in humans. Numerous Plasmodium species parasites also infect a wide range of non-human primate hosts in tropical and sub-tropical regions worldwide. Studying this diversity can provide critical insight into our understanding of human malarias, as several human malaria species are a result of host switches from non-human primates. Current spillover of a monkey malaria, Plasmodium knowlesi , in Southeast Asia highlights the permeability of species barriers in Plasmodium . Also recently, surveys of apes in Africa uncovered a previously undescribed diversity of Plasmodium in chimpanzees and gorillas. Therefore, we carried out a meta-analysis to quantify the global distribution, host range, and diversity of known non-human primate malaria species. We used published records of Plasmodium parasites found in non-human primates to estimate the total diversity of non-human primate malarias globally. We estimate that at least three undescribed primate malaria species exist in sampled primates, and many more likely exist in unstudied species. The diversity of malaria parasites is especially uncertain in regions of low sampling such as Madagascar, and taxonomic groups such as African Old World Monkeys and gibbons. Presence-absence data of malaria across primates enables us to highlight the close association of forested regions and non-human primate malarias. This distribution potentially reflects a long coevolution of primates, forest-adapted mosquitoes, and malaria parasites. The diversity and distribution of primate malaria are an essential prerequisite to understanding the mechanisms and circumstances that allow Plasmodium to jump species barriers, both in the evolution of malaria parasites and current cases of spillover into humans.

  16. The global distribution of Crimean-Congo hemorrhagic fever

    PubMed Central

    Messina, Jane P.; Pigott, David M.; Golding, Nick; Duda, Kirsten A.; Brownstein, John S.; Weiss, Daniel J.; Gibson, Harry; Robinson, Timothy P.; Gilbert, Marius; William Wint, G. R.; Nuttall, Patricia A.; Gething, Peter W.; Myers, Monica F.; George, Dylan B.; Hay, Simon I.

    2015-01-01

    Background Crimean-Congo hemorrhagic fever (CCHF) is a tick-borne infection caused by a virus (CCHFV) from the Bunyaviridae family. Domestic and wild vertebrates are asymptomatic reservoirs for the virus, putting animal handlers, slaughter-house workers and agricultural labourers at highest risk in endemic areas, with secondary transmission possible through contact with infected blood and other bodily fluids. Human infection is characterized by severe symptoms that often result in death. While it is known that CCHFV transmission is limited to Africa, Asia and Europe, definitive global extents and risk patterns within these limits have not been well described. Methods We used an exhaustive database of human CCHF occurrence records and a niche modeling framework to map the global distribution of risk for human CCHF occurrence. Results A greater proportion of shrub or grass land cover was the most important contributor to our model, which predicts highest levels of risk around the Black Sea, Turkey, and some parts of central Asia. Sub-Saharan Africa shows more focalized areas of risk throughout the Sahel and the Cape region. Conclusions These new risk maps provide a valuable starting point for understanding the zoonotic niche of CCHF, its extent and the risk it poses to humans. PMID:26142451

  17. Analysis of human resources for oral health globally: inequitable distribution.

    PubMed

    Gallagher, Jennifer E; Hutchinson, Lynn

    2018-06-01

    Oral diseases affect most of the global population. The aim of this paper was to provide a contemporary analysis of 'human resources for oral health' (HROH) by examining the size and distribution of the dental workforce according to World Health Organization (WHO) region and in the most populous countries. Publically available data on HROH and population size were sourced from the WHO, Central Intelligence Agency, United Nations, World Bank and the UK registration body. Population-to-dentist and dental-workforce ratios were calculated according to WHO region and for the 25 most populous countries globally. Workforce trends over time were examined for one high-income country, the UK. The majority of the world's 1.6 million dentists are based in Europe and the Americas, such that 69% of the world's dentists serve 27% of the global population. Africa has only 1% of the global workforce and thus there are marked inequalities in access to dental personnel, as demonstrated by population to dental-workforce ratios. Gaps exist in dental-workforce data, most notably relating to mid-level clinical providers, such as dental hygienists and therapists, and HROH data are not regularly updated. Workforce expansion and migration may result in rapid changes in dentist numbers. Marked inequalities in the distribution of global HROH exist between regions and countries, with inequalities most apparent in areas of high population growth. Detailed contemporary data on all groups of HROH are required to inform global workforce reform in support of addressing population oral health needs. © 2018 FDI World Dental Federation.

  18. Modeling the impact of global warming on vector-borne infections

    NASA Astrophysics Data System (ADS)

    Massad, Eduardo; Coutinho, Francisco Antonio Bezerra; Lopez, Luis Fernandez; da Silva, Daniel Rodrigues

    2011-06-01

    Global warming will certainly affect the abundance and distribution of disease vectors. The effect of global warming, however, depends on the complex interaction between the human host population and the causative infectious agent. In this work we review some mathematical models that were proposed to study the impact of the increase in ambient temperature on the spread and gravity of some insect-transmitted diseases.

  19. Recent human-to-poultry host jump, adaptation, and pandemic spread of Staphylococcus aureus.

    PubMed

    Lowder, Bethan V; Guinane, Caitriona M; Ben Zakour, Nouri L; Weinert, Lucy A; Conway-Morris, Andrew; Cartwright, Robyn A; Simpson, A John; Rambaut, Andrew; Nübel, Ulrich; Fitzgerald, J Ross

    2009-11-17

    The impact of globalization on the emergence and spread of pathogens is an important veterinary and public health issue. Staphylococcus aureus is a notorious human pathogen associated with serious nosocomial and community-acquired infections. In addition, S. aureus is a major cause of animal diseases including skeletal infections of poultry, which are a large economic burden on the global broiler chicken industry. Here, we provide evidence that the majority of S. aureus isolates from broiler chickens are the descendants of a single human-to-poultry host jump that occurred approximately 38 years ago (range, 30 to 63 years ago) by a subtype of the worldwide human ST5 clonal lineage unique to Poland. In contrast to human subtypes of the ST5 radiation, which demonstrate strong geographic clustering, the poultry ST5 clade was distributed in different continents, consistent with wide dissemination via the global poultry industry distribution network. The poultry ST5 clade has undergone genetic diversification from its human progenitor strain by acquisition of novel mobile genetic elements from an avian-specific accessory gene pool, and by the inactivation of several proteins important for human disease pathogenesis. These genetic events have resulted in enhanced resistance to killing by chicken heterophils, reflecting avian host-adaptive evolution. Taken together, we have determined the evolutionary history of a major new animal pathogen that has undergone rapid avian host adaptation and intercontinental dissemination. These data provide a new paradigm for the impact of human activities on the emergence of animal pathogens.

  20. HERC1 polymorphisms: population-specific variations in haplotype composition.

    PubMed

    Yuasa, Isao; Umetsu, Kazuo; Nishimukai, Hiroaki; Fukumori, Yasuo; Harihara, Shinji; Saitou, Naruya; Jin, Feng; Chattopadhyay, Prasanta K; Henke, Lotte; Henke, Jürgen

    2009-08-01

    Human HERC1 is one of six HERC proteins and may play an important role in intracellular membrane trafficking. The human HERC1 gene is suggested to have been affected by local positive selection. To assess the global frequency distributions of coding and non-coding single nucleotide polymorphisms (SNPs) in the HERC1 gene, we developed a new simultaneous genotyping method for four SNPs, and applied this method to investigate 1213 individuals from 12 global populations. The results confirmed remarked differences in the allele and haplotype frequencies between East Asian and non-East Asian populations. One of the three common haplotypes observed was found to be characteristic of East Asians, who showed a relatively uniform distribution of haplotypes. Information on haplotypes would be useful for testing the function of polymorphisms in the HERC1 gene. This is the first study to investigate the distribution of HERC1 polymorphisms in various populations. (c) 2009 John Wiley & Sons, Ltd.

  1. Assessing the ability of plants to respond to climatic change through distribution shifts

    Treesearch

    Mark W. Schwartz

    1996-01-01

    Predictions of future global warming suggest northward shifts of up to 800 km in the equilibrium distributions of plant species. Historical data estimating the maximum rate of tree distribution shifts (migration) suggest that most species will not keep pace with future rates of human-induced climatic change. Previous plant migrations have occurred at rates typically...

  2. The Global Emergency Observation and Warning System

    NASA Technical Reports Server (NTRS)

    Bukley, Angelia P.; Mulqueen, John A.

    1994-01-01

    Based on an extensive characterization of natural hazards, and an evaluation of their impacts on humanity, a set of functional technical requirements for a global warning and relief system was developed. Since no technological breakthroughs are required to implement a global system capable of performing the functions required to provide sufficient information for prevention, preparedness, warning, and relief from natural disaster effects, a system is proposed which would combine the elements of remote sensing, data processing, information distribution, and communications support on a global scale for disaster mitigation.

  3. A distributed analysis of Human impact on global sediment dynamics

    NASA Astrophysics Data System (ADS)

    Cohen, S.; Kettner, A.; Syvitski, J. P.

    2012-12-01

    Understanding riverine sediment dynamics is an important undertaking for both socially-relevant issues such as agriculture, water security and infrastructure management and for scientific analysis of landscapes, river ecology, oceanography and other disciplines. Providing good quantitative and predictive tools in therefore timely particularly in light of predicted climate and landuse changes. Ever increasing human activity during the Anthropocene have affected sediment dynamics in two major ways: (1) an increase is hillslope erosion due to agriculture, deforestation and landscape engineering and (2) trapping of sediment in dams and other man-made reservoirs. The intensity and dynamics between these man-made factors vary widely across the globe and in time and are therefore hard to predict. Using sophisticated numerical models is therefore warranted. Here we use a distributed global riverine sediment flux and water discharge model (WBMsed) to compare a pristine (without human input) and disturbed (with human input) simulations. Using these 50 year simulations we will show and discuss the complex spatial and temporal patterns of human effect on riverine sediment flux and water discharge.

  4. Recent human-to-poultry host jump, adaptation, and pandemic spread of Staphylococcus aureus

    PubMed Central

    Lowder, Bethan V.; Guinane, Caitriona M.; Ben Zakour, Nouri L.; Weinert, Lucy A.; Conway-Morris, Andrew; Cartwright, Robyn A.; Simpson, A. John; Rambaut, Andrew; Nübel, Ulrich; Fitzgerald, J. Ross

    2009-01-01

    The impact of globalization on the emergence and spread of pathogens is an important veterinary and public health issue. Staphylococcus aureus is a notorious human pathogen associated with serious nosocomial and community-acquired infections. In addition, S. aureus is a major cause of animal diseases including skeletal infections of poultry, which are a large economic burden on the global broiler chicken industry. Here, we provide evidence that the majority of S. aureus isolates from broiler chickens are the descendants of a single human-to-poultry host jump that occurred approximately 38 years ago (range, 30 to 63 years ago) by a subtype of the worldwide human ST5 clonal lineage unique to Poland. In contrast to human subtypes of the ST5 radiation, which demonstrate strong geographic clustering, the poultry ST5 clade was distributed in different continents, consistent with wide dissemination via the global poultry industry distribution network. The poultry ST5 clade has undergone genetic diversification from its human progenitor strain by acquisition of novel mobile genetic elements from an avian-specific accessory gene pool, and by the inactivation of several proteins important for human disease pathogenesis. These genetic events have resulted in enhanced resistance to killing by chicken heterophils, reflecting avian host-adaptive evolution. Taken together, we have determined the evolutionary history of a major new animal pathogen that has undergone rapid avian host adaptation and intercontinental dissemination. These data provide a new paradigm for the impact of human activities on the emergence of animal pathogens. PMID:19884497

  5. Modeling the impact of global warming on vector-borne infections.

    PubMed

    Massad, Eduardo; Coutinho, Francisco Antonio Bezerra; Lopez, Luis Fernandez; da Silva, Daniel Rodrigues

    2011-06-01

    Global warming will certainly affect the abundance and distribution of disease vectors. The effect of global warming, however, depends on the complex interaction between the human host population and the causative infectious agent. In this work we review some mathematical models that were proposed to study the impact of the increase in ambient temperature on the spread and gravity of some insect-transmitted diseases. Copyright © 2011 Elsevier B.V. All rights reserved.

  6. Temporal dynamics influenced by global change: bee community phenology in urban, agricultural, and natural landscapes.

    PubMed

    Leong, Misha; Ponisio, Lauren C; Kremen, Claire; Thorp, Robbin W; Roderick, George K

    2016-03-01

    Urbanization and agricultural intensification of landscapes are important drivers of global change, which in turn have direct impacts on local ecological communities leading to shifts in species distributions and interactions. Here, we illustrate how human-altered landscapes, with novel ornamental and crop plant communities, result not only in changes to local community diversity of floral-dependent species, but also in shifts in seasonal abundance of bee pollinators. Three years of data on the spatio-temporal distributions of 91 bee species show that seasonal patterns of abundance and species richness in human-altered landscapes varied significantly less compared to natural habitats in which floral resources are relatively scarce in the dry summer months. These findings demonstrate that anthropogenic environmental changes in urban and agricultural systems, here mediated through changes in plant resources and water inputs, can alter the temporal dynamics of pollinators that depend on them. Changes in phenology of interactions can be an important, though frequently overlooked, mechanism of global change. © 2015 John Wiley & Sons Ltd.

  7. Increasing Potential Risk of a Global Aquatic Invader in Europe in Contrast to Other Continents under Future Climate Change

    PubMed Central

    Liu, Xuan; Guo, Zhongwei; Ke, Zunwei; Wang, Supen; Li, Yiming

    2011-01-01

    Background Anthropogenically-induced climate change can alter the current climatic habitat of non-native species and can have complex effects on potentially invasive species. Predictions of the potential distributions of invasive species under climate change will provide critical information for future conservation and management strategies. Aquatic ecosystems are particularly vulnerable to invasive species and climate change, but the effect of climate change on invasive species distributions has been rather neglected, especially for notorious global invaders. Methodology/Principal Findings We used ecological niche models (ENMs) to assess the risks and opportunities that climate change presents for the red swamp crayfish (Procambarus clarkii), which is a worldwide aquatic invasive species. Linking the factors of climate, topography, habitat and human influence, we developed predictive models incorporating both native and non-native distribution data of the crayfish to identify present areas of potential distribution and project the effects of future climate change based on a consensus-forecast approach combining the CCCMA and HADCM3 climate models under two emission scenarios (A2a and B2a) by 2050. The minimum temperature from the coldest month, the human footprint and precipitation of the driest quarter contributed most to the species distribution models. Under both the A2a and B2a scenarios, P. clarkii shifted to higher latitudes in continents of both the northern and southern hemispheres. However, the effect of climate change varied considerately among continents with an expanding potential in Europe and contracting changes in others. Conclusions/Significance Our findings are the first to predict the impact of climate change on the future distribution of a globally invasive aquatic species. We confirmed the complexities of the likely effects of climate change on the potential distribution of globally invasive species, and it is extremely important to develop wide-ranging and effective control measures according to predicted geographical shifts and changes. PMID:21479188

  8. Cryptococcus: from environmental saprophyte to global pathogen

    PubMed Central

    May, Robin C.; Stone, Neil R.H.; Wiesner, Darin L.; Bicanic, Tihana; Nielsen, Kirsten

    2016-01-01

    Cryptococcosis is a globally distributed invasive fungal infection that is caused by species within the genus Cryptococcus which presents substantial therapeutic challenges. Although natural human-to-human transmission has never been observed, recent work has identified multiple virulence mechanisms that enable cryptococci to infect, disseminate within and ultimately kill their human host. In this Review, we describe these recent discoveries that illustrate the intricacy of host-pathogen interactions and reveal new details about the host immune responses that either help to protect against disease or increase host susceptibility. In addition, we discuss how this improved understanding of both the host and the pathogen informs potential new avenues for therapeutic development. PMID:26685750

  9. Cryptococcus: from environmental saprophyte to global pathogen.

    PubMed

    May, Robin C; Stone, Neil R H; Wiesner, Darin L; Bicanic, Tihana; Nielsen, Kirsten

    2016-02-01

    Cryptococcosis is a globally distributed invasive fungal infection that is caused by species within the genus Cryptococcus which presents substantial therapeutic challenges. Although natural human-to-human transmission has never been observed, recent work has identified multiple virulence mechanisms that enable cryptococci to infect, disseminate within and ultimately kill their human host. In this Review, we describe these recent discoveries that illustrate the intricacy of host-pathogen interactions and reveal new details about the host immune responses that either help to protect against disease or increase host susceptibility. In addition, we discuss how this improved understanding of both the host and the pathogen informs potential new avenues for therapeutic development.

  10. Using Global and Regional Species Distribution Models (SDM) to Infer the Invasive Stage of Latrodectus geometricus (Araneae: Theridiidae) in the Americas.

    PubMed

    Taucare-Ríos, Andrés; Bizama, Gustavo; Bustamante, Ramiro O

    2016-12-01

    The brown widow spider, Latrodectus geometricus C. L. Koch, 1841, is a large spider of the family Theridiidae that belongs to a genus of medical interest owing to its potent neurotoxic venom, which causes severe pain in humans. In America, this alien spider has been found in virtually all countries in the region, mainly associated with human dwellings, but also in agricultural sectors. However, the invasive process and potential distribution of this invasive species across the American continent are completely unknown. In this context, using a combination of both global and regional niche models, it is possible to hypothesize the invasive phase of the species as well as the geographic space where these different phases occur. By comparing the global and regional niches of L. geometricus, we examined its invasive process and potential distribution across the American continent. This work is an innovative approach to understanding the invasion of the brown widow spider in this area and the ecological processes that underlie this invasion. In this context, the global and regional niche comparison constitutes an appropriate tool to account for the complexities of the invasive process, generating different hypotheses amenable to being tested in future studies. © The Authors 2016. Published by Oxford University Press on behalf of Entomological Society of America. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  11. In Situ Distribution And Speciation Of Toxic Copper, Nickel, And Zinc In Hydrated Roots Of Cowpea

    EPA Science Inventory

    The phytotoxicity of trace metals is of global concern due to contamination of the landscape by human activities. Using synchrotron-based X-ray fluorescence microscopy and X-ray absorption spectroscopy, the distribution and speciation of Cu, Ni, and Zn was examined in situ

  12. Political complexity predicts the spread of ethnolinguistic groups

    PubMed Central

    Currie, Thomas E.; Mace, Ruth

    2009-01-01

    Human languages show a remarkable degree of variation in the area they cover. However, the factors governing the distribution of human cultural groups such as languages are not well understood. While previous studies have examined the role of a number of environmental variables the importance of cultural factors has not been systematically addressed. Here we use a geographical information system (GIS) to integrate information about languages with environmental, ecological, and ethnographic data to test a number of hypotheses that have been proposed to explain the global distribution of languages. We show that the degree of political complexity and type of subsistence strategy exhibited by societies are important predictors of the area covered by a language. Political complexity is also strongly associated with the latitudinal gradient in language area, whereas subsistence strategy is not. We argue that a process of cultural group selection favoring more complex societies may have been important in shaping the present-day global distribution of language diversity. PMID:19380740

  13. Evaluation of Denoising Strategies to Address Motion-Correlated Artifacts in Resting-State Functional Magnetic Resonance Imaging Data from the Human Connectome Project

    PubMed Central

    Kandala, Sridhar; Nolan, Dan; Laumann, Timothy O.; Power, Jonathan D.; Adeyemo, Babatunde; Harms, Michael P.; Petersen, Steven E.; Barch, Deanna M.

    2016-01-01

    Abstract Like all resting-state functional connectivity data, the data from the Human Connectome Project (HCP) are adversely affected by structured noise artifacts arising from head motion and physiological processes. Functional connectivity estimates (Pearson's correlation coefficients) were inflated for high-motion time points and for high-motion participants. This inflation occurred across the brain, suggesting the presence of globally distributed artifacts. The degree of inflation was further increased for connections between nearby regions compared with distant regions, suggesting the presence of distance-dependent spatially specific artifacts. We evaluated several denoising methods: censoring high-motion time points, motion regression, the FMRIB independent component analysis-based X-noiseifier (FIX), and mean grayordinate time series regression (MGTR; as a proxy for global signal regression). The results suggest that FIX denoising reduced both types of artifacts, but left substantial global artifacts behind. MGTR significantly reduced global artifacts, but left substantial spatially specific artifacts behind. Censoring high-motion time points resulted in a small reduction of distance-dependent and global artifacts, eliminating neither type. All denoising strategies left differences between high- and low-motion participants, but only MGTR substantially reduced those differences. Ultimately, functional connectivity estimates from HCP data showed spatially specific and globally distributed artifacts, and the most effective approach to address both types of motion-correlated artifacts was a combination of FIX and MGTR. PMID:27571276

  14. Mapping Tree Density at the Global Scale

    NASA Astrophysics Data System (ADS)

    Covey, K. R.; Crowther, T. W.; Glick, H.; Bettigole, C.; Bradford, M.

    2015-12-01

    The global extent and distribution of forest trees is central to our understanding of the terrestrial biosphere. We provide the first spatially continuous map of forest tree density at a global-scale. This map reveals that the global number of trees is approximately 3.04 trillion, an order of magnitude higher than the previous estimate. Of these trees, approximately 1.39 trillion exist in tropical and subtropical regions, with 0.74, and 0.61 trillion in boreal and temperate regions, respectively. Biome-level trends in tree density demonstrate the importance of climate and topography in controlling local tree densities at finer scales, as well as the overwhelming impact of humans across most of the world. Based on our projected tree densities, we estimate that deforestation is currently responsible for removing over 15 billion trees each year, and the global number of trees has fallen by approximately 46% since the start of human civilization.

  15. Mapping tree density at a global scale

    NASA Astrophysics Data System (ADS)

    Crowther, T. W.; Glick, H. B.; Covey, K. R.; Bettigole, C.; Maynard, D. S.; Thomas, S. M.; Smith, J. R.; Hintler, G.; Duguid, M. C.; Amatulli, G.; Tuanmu, M.-N.; Jetz, W.; Salas, C.; Stam, C.; Piotto, D.; Tavani, R.; Green, S.; Bruce, G.; Williams, S. J.; Wiser, S. K.; Huber, M. O.; Hengeveld, G. M.; Nabuurs, G.-J.; Tikhonova, E.; Borchardt, P.; Li, C.-F.; Powrie, L. W.; Fischer, M.; Hemp, A.; Homeier, J.; Cho, P.; Vibrans, A. C.; Umunay, P. M.; Piao, S. L.; Rowe, C. W.; Ashton, M. S.; Crane, P. R.; Bradford, M. A.

    2015-09-01

    The global extent and distribution of forest trees is central to our understanding of the terrestrial biosphere. We provide the first spatially continuous map of forest tree density at a global scale. This map reveals that the global number of trees is approximately 3.04 trillion, an order of magnitude higher than the previous estimate. Of these trees, approximately 1.39 trillion exist in tropical and subtropical forests, with 0.74 trillion in boreal regions and 0.61 trillion in temperate regions. Biome-level trends in tree density demonstrate the importance of climate and topography in controlling local tree densities at finer scales, as well as the overwhelming effect of humans across most of the world. Based on our projected tree densities, we estimate that over 15 billion trees are cut down each year, and the global number of trees has fallen by approximately 46% since the start of human civilization.

  16. Mapping tree density at a global scale.

    PubMed

    Crowther, T W; Glick, H B; Covey, K R; Bettigole, C; Maynard, D S; Thomas, S M; Smith, J R; Hintler, G; Duguid, M C; Amatulli, G; Tuanmu, M-N; Jetz, W; Salas, C; Stam, C; Piotto, D; Tavani, R; Green, S; Bruce, G; Williams, S J; Wiser, S K; Huber, M O; Hengeveld, G M; Nabuurs, G-J; Tikhonova, E; Borchardt, P; Li, C-F; Powrie, L W; Fischer, M; Hemp, A; Homeier, J; Cho, P; Vibrans, A C; Umunay, P M; Piao, S L; Rowe, C W; Ashton, M S; Crane, P R; Bradford, M A

    2015-09-10

    The global extent and distribution of forest trees is central to our understanding of the terrestrial biosphere. We provide the first spatially continuous map of forest tree density at a global scale. This map reveals that the global number of trees is approximately 3.04 trillion, an order of magnitude higher than the previous estimate. Of these trees, approximately 1.39 trillion exist in tropical and subtropical forests, with 0.74 trillion in boreal regions and 0.61 trillion in temperate regions. Biome-level trends in tree density demonstrate the importance of climate and topography in controlling local tree densities at finer scales, as well as the overwhelming effect of humans across most of the world. Based on our projected tree densities, we estimate that over 15 billion trees are cut down each year, and the global number of trees has fallen by approximately 46% since the start of human civilization.

  17. Progress and Challenges in Developing Reference Data Layers for Human Population Distribution and Built Infrastructure

    NASA Astrophysics Data System (ADS)

    Chen, R. S.; Yetman, G.; de Sherbinin, A. M.

    2015-12-01

    Understanding the interactions between environmental and human systems, and in particular supporting the applications of Earth science data and knowledge in place-based decision making, requires systematic assessment of the distribution and dynamics of human population and the built human infrastructure in conjunction with environmental variability and change. The NASA Socioeconomic Data and Applications Center (SEDAC) operated by the Center for International Earth Science Information Network (CIESIN) at Columbia University has had a long track record in developing reference data layers for human population and settlements and is expanding its efforts on topics such as intercity roads, reservoirs and dams, and energy infrastructure. SEDAC has set as a strategic priority the acquisition, development, and dissemination of data resources derived from remote sensing and socioeconomic data on urban land use change, including temporally and spatially disaggregated data on urban change and rates of change, the built infrastructure, and critical facilities. We report here on a range of past and ongoing activities, including the Global Human Settlements Layer effort led by the European Commission's Joint Research Centre (JRC), the Global Exposure Database for the Global Earthquake Model (GED4GEM) project, the Global Roads Open Access Data Working Group (gROADS) of the Committee on Data for Science and Technology (CODATA), and recent work with ImageCat, Inc. to improve estimates of the exposure and fragility of buildings, road and rail infrastructure, and other facilities with respect to selected natural hazards. New efforts such as the proposed Global Human Settlement indicators initiative of the Group on Earth Observations (GEO) could help fill critical gaps and link potential reference data layers with user needs. We highlight key sectors and themes that require further attention, and the many significant challenges that remain in developing comprehensive, high quality, up-to-date, and well maintained reference data layers on population and built infrastructure. The need for improved indicators of sustainable development in the context of the post-2015 development framework provides an opportunity to link data efforts directly with international development needs and investments.

  18. Global spatio-temporal patterns in human migration: a complex network perspective.

    PubMed

    Davis, Kyle F; D'Odorico, Paolo; Laio, Francesco; Ridolfi, Luca

    2013-01-01

    Migration is a powerful adaptive strategy for humans to navigate hardship and pursue a better quality of life. As a universal vehicle facilitating exchanges of ideas, culture, money and goods, international migration is a major contributor to globalization. Consisting of countries linked by multiple connections of human movements, global migration constitutes a network. Despite the important role of human migration in connecting various communities in different parts of the world, the topology and behavior of the international migration network and its changes through time remain poorly understood. Here we show that the global human migration network became more interconnected during the latter half of the twentieth century and that migrant destination choice partly reflects colonial and postcolonial histories, language, religion, and distances. From 1960 to 2000 we found a steady increase in network transitivity (i.e. connectivity between nodes connected to the same node), a decrease in average path length and an upward shift in degree distribution, all of which strengthened the 'small-world' behavior of the migration network. Furthermore, we found that distinct groups of countries preferentially interact to form migration communities based largely on historical, cultural and economic factors.

  19. Global assessment of human losses due to earthquakes

    USGS Publications Warehouse

    Silva, Vitor; Jaiswal, Kishor; Weatherill, Graeme; Crowley, Helen

    2014-01-01

    Current studies have demonstrated a sharp increase in human losses due to earthquakes. These alarming levels of casualties suggest the need for large-scale investment in seismic risk mitigation, which, in turn, requires an adequate understanding of the extent of the losses, and location of the most affected regions. Recent developments in global and uniform datasets such as instrumental and historical earthquake catalogues, population spatial distribution and country-based vulnerability functions, have opened an unprecedented possibility for a reliable assessment of earthquake consequences at a global scale. In this study, a uniform probabilistic seismic hazard assessment (PSHA) model was employed to derive a set of global seismic hazard curves, using the open-source software OpenQuake for seismic hazard and risk analysis. These results were combined with a collection of empirical fatality vulnerability functions and a population dataset to calculate average annual human losses at the country level. The results from this study highlight the regions/countries in the world with a higher seismic risk, and thus where risk reduction measures should be prioritized.

  20. Evaluating a Human Rights-Based Advocacy Approach to Expanding Access to Pain Medicines and Palliative Care: Global Advocacy and Case Studies from India, Kenya, and Ukraine.

    PubMed

    Lohman, Diederik; Amon, Joseph J

    2015-12-10

    Palliative care has been defined as care that is person-centered and attentive to physical symptoms and psychological, social, and existential distress in patients with severe or life-threatening illness. The identification of access to palliative care and pain treatment as a human rights issue first emerged among palliative care advocates, physicians, and lawyers in the 1990s, with a basis in the right to health and the right to be free from cruel, inhuman, and degrading treatment. Using a case study approach, we evaluate the results of a human rights-based advocacy approach on access to pain medicine and palliative care in India, Kenya, and Ukraine. In each country, human rights advocacy helped raise awareness of the issue, identify structural barriers to care, define government obligations, and contribute to the reform of laws, policies, and practices impeding the availability of palliative care services. In addition, advocacy efforts stimulated civil society engagement and high-level political leadership that fostered the implementation of human rights-based palliative care programs. Globally, access to palliative care was increasingly recognized by human rights bodies and within global health and drug policy organizations as a government obligation central to the right to health. Copyright © 2015 Lohman, Amon. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

  1. Estimating large carnivore populations at global scale based on spatial predictions of density and distribution – Application to the jaguar (Panthera onca)

    PubMed Central

    Robinson, Hugh S.; Abarca, Maria; Zeller, Katherine A.; Velasquez, Grisel; Paemelaere, Evi A. D.; Goldberg, Joshua F.; Payan, Esteban; Hoogesteijn, Rafael; Boede, Ernesto O.; Schmidt, Krzysztof; Lampo, Margarita; Viloria, Ángel L.; Carreño, Rafael; Robinson, Nathaniel; Lukacs, Paul M.; Nowak, J. Joshua; Salom-Pérez, Roberto; Castañeda, Franklin; Boron, Valeria; Quigley, Howard

    2018-01-01

    Broad scale population estimates of declining species are desired for conservation efforts. However, for many secretive species including large carnivores, such estimates are often difficult. Based on published density estimates obtained through camera trapping, presence/absence data, and globally available predictive variables derived from satellite imagery, we modelled density and occurrence of a large carnivore, the jaguar, across the species’ entire range. We then combined these models in a hierarchical framework to estimate the total population. Our models indicate that potential jaguar density is best predicted by measures of primary productivity, with the highest densities in the most productive tropical habitats and a clear declining gradient with distance from the equator. Jaguar distribution, in contrast, is determined by the combined effects of human impacts and environmental factors: probability of jaguar occurrence increased with forest cover, mean temperature, and annual precipitation and declined with increases in human foot print index and human density. Probability of occurrence was also significantly higher for protected areas than outside of them. We estimated the world’s jaguar population at 173,000 (95% CI: 138,000–208,000) individuals, mostly concentrated in the Amazon Basin; elsewhere, populations tend to be small and fragmented. The high number of jaguars results from the large total area still occupied (almost 9 million km2) and low human densities (< 1 person/km2) coinciding with high primary productivity in the core area of jaguar range. Our results show the importance of protected areas for jaguar persistence. We conclude that combining modelling of density and distribution can reveal ecological patterns and processes at global scales, can provide robust estimates for use in species assessments, and can guide broad-scale conservation actions. PMID:29579129

  2. ENDOCRINE DISRUPTORS IN THE ENVIRONMENT

    EPA Science Inventory

    The endocrine system produces hormones which are powerful natural chemicals that regulate important life processes. Endocrine disruptors are human-made chemicals distributed globally which have the potential to interfere with the endocrine system and produce serious biological e...

  3. A Framework for a Multi-State Human Capital Development Data System

    ERIC Educational Resources Information Center

    Prescott, Brian T.; Ewell, Peter

    2009-01-01

    The rise of a globalized knowledge economy requires nations to understand the distribution of skills and abilities in their populations. It is no longer sufficient to know how many resources are devoted to the development of nations' human capital. Today, nations also must be able to demonstrate and understand the outcomes of their educational…

  4. Domestic sheep show average coxiella burnetii seropositivity generations after a sheep-associated human Q fever outbreak and lack detectable shedding by placental, vaginal, and fecal routes

    USDA-ARS?s Scientific Manuscript database

    Coxiella burnetii is a globally distributed zoonotic bacterial pathogen that causes abortions in ruminant livestock. In humans, an influenza-like illness results with the potential for hospitalization, chronic infection, abortion, and fatal endocarditis. Ruminant livestock, particularly small rumina...

  5. Direct human impacts on the peatland carbon sink

    Treesearch

    Jukka Laine; Kari Minkkinen; Carl Trettin

    2009-01-01

    Northern peatlands occupy over 3 million km2 globally and contain the largest carbon (C) pool (typically >100 kg C m-2) among terrestrial ecosystems. Agriculture, forestry, and peat harvesting are the principal human-induced activities that alter the peatland and hence the distribution and flux of carbon. As a prerequisite to those uses, the peatland is usually...

  6. PERSISTENT PERFLUORINATED ORGANIC COMPOUNDS

    EPA Science Inventory

    Perfluorinated compounds (PFCs) have gained notoriety in the recent past. Global distribution of PFCs in wildlife, environmental samples and humans has sparked a recent increase in new investigations concerning PFCs. Historically PFCs have been used in a wide variety of consume...

  7. POPSCAN: A CNES Geo-Information Study for Re-Entry Risk Assessment

    NASA Astrophysics Data System (ADS)

    Fuentes, N.; Tholey, N.; Battiston, S.; Montabord, M.; Studer, M.

    2013-09-01

    Within the framework of the FSOA, French Space Operations Act (referred to as the "Loi relative aux Opérations Spatiales" or LOS in French), including in particular the monitoring of safety requirements for people and property, one major parameter to consider is Geographic Information (GI) on population distribution, human activity, and land occupation.This article gives an overview of the set of geographic and demographic data examined for CNES control offices, outlining the advantages and limits of each one : coverage, precision, update frequency, availability, distribution, ...It focuses on the two major available global population databases: GPW-GRUMP from CIESIN of COLUMBIA University and LandScan from ORNL. The work engaged on POPSCAN integrates digital analysis about these two world population grids and also comparisons on other databases such as GLOBAL- INSIGHT, VMAP0, ESRI, DMSP-ISA, GLOBCOVER, OpenFlights, ... for urban areas, communication networks, sensitive human activities and land use.

  8. Matching global and regional distribution models of the recluse spider Loxosceles rufescens: to what extent do these reflect niche conservatism?

    PubMed

    Taucare-Ríos, A; Nentwig, W; Bizama, G; Bustamante, R O

    2018-06-08

    The Mediterranean recluse spider, Loxosceles rufescens (Dufour, 1820) (Araneae: Sicariidae) is a cosmopolitan spider that has been introduced in many parts of the world. Its bite can be dangerous to humans. However, the potential distribution of this alien species, which is able to spread fairly quickly with human aid, is completely unknown. Using a combination of global and regional niche models, it is possible to analyse the spread of this species in relation to environmental conditions. This analysis found that the successful spreading of this species varies according to the region invaded. The majority of populations in Asia are stable and show niche conservatism, whereas in North America this spider is expected to be less successful in occupying niches that differ from those in its native region and that do not support its synanthropic way of living. © 2018 The Royal Entomological Society.

  9. Cylindrospermopsin: A Decade of Progress on Bioaccumulation Research

    PubMed Central

    Kinnear, Susan

    2010-01-01

    Cylindrospermopsin (CYN) is rapidly being recognised as one of the most globally important of the freshwater algal toxins. The ever-expanding distribution of CYN producers into temperate zones is heightening concern that this toxin will represent serious human, as well as environmental, health risks across many countries. Since 1999, a number of studies have demonstrated the ability for CYN to bioaccumulate in freshwater organisms. This paper synthesizes the most current information on CYN accumulation, including notes on the global distribution of CYN producers, and a précis of CYN’s ecological and human effects. Studies on the bioaccumulation of CYN are systematically reviewed, together with an analysis of patterns of accumulation. A discussion on the factors influencing bioaccumulation rates and potential is also provided, along with notes on detection, monitoring and risk assessments. Finally, key gaps in the existing research are identified for future study. PMID:20411114

  10. Climate Change and Global Food Systems: Potential Impacts on Food Security and Undernutrition.

    PubMed

    Myers, Samuel S; Smith, Matthew R; Guth, Sarah; Golden, Christopher D; Vaitla, Bapu; Mueller, Nathaniel D; Dangour, Alan D; Huybers, Peter

    2017-03-20

    Great progress has been made in addressing global undernutrition over the past several decades, in part because of large increases in food production from agricultural expansion and intensification. Food systems, however, face continued increases in demand and growing environmental pressures. Most prominently, human-caused climate change will influence the quality and quantity of food we produce and our ability to distribute it equitably. Our capacity to ensure food security and nutritional adequacy in the face of rapidly changing biophysical conditions will be a major determinant of the next century's global burden of disease. In this article, we review the main pathways by which climate change may affect our food production systems-agriculture, fisheries, and livestock-as well as the socioeconomic forces that may influence equitable distribution.

  11. Global Ozone Distribution relevant to Human Health: Metrics and present day levels from the Tropospheric Ozone Assessment Report (TOAR)

    NASA Astrophysics Data System (ADS)

    Fleming, Z. L.; Doherty, R. M.; von Schneidemesser, E.; Cooper, O. R.; Malley, C.; Colette, A.; Xu, X.; Pinto, J. P.; Simpson, D.; Schultz, M. G.; Hamad, S.; Moola, R.; Solberg, S.; Feng, Z.

    2017-12-01

    Using stations from the TOAR surface ozone database, this study quantifies present-day global and regional distributions of five ozone metrics relevant for both short-term and long-term human exposure. These metrics were explored at ozone monitoring sites globally, and re-classified for this project as urban or non-urban using population densities and night-time lights. National surface ozone limit values are usually related to an annual number of exceedances of daily maximum 8-hour running mean (MDA8), with many countries not even having any ozone limit values. A discussion and comparison of exceedances in the different ozone metrics, their locations and the seasonality of exceedances provides clues as to the regions that potentially have more serious ozone health implications. Present day ozone levels (2010-2014) have been compared globally and show definite geographical differences (see Figure showing the annual 4th highest MDA8 for present day ozone for all non-urban stations). Higher ozone levels are seen in western compared to eastern US, and between southern and northern Europe, and generally higher levels in east Asia. The metrics reflective of peak concentrations show highest values in western North America, southern Europe and East Asia. A number of the metrics show similar distributions of North-South gradients, most prominent across Europe and Japan. The interquartile range of the regional ozone metrics was largest in East Asia, higher for urban stations in Asia but higher for non-urban stations in Europe and North America. With over 3000 monitoring stations included in this analysis and despite the higher densities of monitoring stations in Europe, north America and East Asia, this study provides the most comprehensive global picture to date of surface ozone levels in terms of health-relevant metrics.

  12. Megafauna biomass tradeoff as a driver of Quaternary and future extinctions

    PubMed Central

    Barnosky, Anthony D.

    2008-01-01

    Earth's most recent major extinction episode, the Quaternary Megafauna Extinction, claimed two-thirds of mammal genera and one-half of species that weighed >44 kg between ≈50,000 and 3,000 years ago. Estimates of megafauna biomass (including humans as a megafauna species) for before, during, and after the extinction episode suggest that growth of human biomass largely matched the loss of non-human megafauna biomass until ≈12,000 years ago. Then, total megafauna biomass crashed, because many non-human megafauna species suddenly disappeared, whereas human biomass continued to rise. After the crash, the global ecosystem gradually recovered into a new state where megafauna biomass was concentrated around one species, humans, instead of being distributed across many species. Precrash biomass levels were finally reached just before the Industrial Revolution began, then skyrocketed above the precrash baseline as humans augmented the energy available to the global ecosystem by mining fossil fuels. Implications include (i) an increase in human biomass (with attendant hunting and other impacts) intersected with climate change to cause the Quaternary Megafauna Extinction and an ecological threshold event, after which humans became dominant in the global ecosystem; (ii) with continued growth of human biomass and today's unprecedented global warming, only extraordinary and stepped-up conservation efforts will prevent a new round of extinctions in most body-size and taxonomic spectra; and (iii) a near-future biomass crash that will unfavorably impact humans and their domesticates and other species is unavoidable unless alternative energy sources are developed to replace dwindling supplies of fossil fuels. PMID:18695222

  13. Common ecology quantifies human insurgency.

    PubMed

    Bohorquez, Juan Camilo; Gourley, Sean; Dixon, Alexander R; Spagat, Michael; Johnson, Neil F

    2009-12-17

    Many collective human activities, including violence, have been shown to exhibit universal patterns. The size distributions of casualties both in whole wars from 1816 to 1980 and terrorist attacks have separately been shown to follow approximate power-law distributions. However, the possibility of universal patterns ranging across wars in the size distribution or timing of within-conflict events has barely been explored. Here we show that the sizes and timing of violent events within different insurgent conflicts exhibit remarkable similarities. We propose a unified model of human insurgency that reproduces these commonalities, and explains conflict-specific variations quantitatively in terms of underlying rules of engagement. Our model treats each insurgent population as an ecology of dynamically evolving, self-organized groups following common decision-making processes. Our model is consistent with several recent hypotheses about modern insurgency, is robust to many generalizations, and establishes a quantitative connection between human insurgency, global terrorism and ecology. Its similarity to financial market models provides a surprising link between violent and non-violent forms of human behaviour.

  14. Global late Quaternary megafauna extinctions linked to humans, not climate change.

    PubMed

    Sandom, Christopher; Faurby, Søren; Sandel, Brody; Svenning, Jens-Christian

    2014-07-22

    The late Quaternary megafauna extinction was a severe global-scale event. Two factors, climate change and modern humans, have received broad support as the primary drivers, but their absolute and relative importance remains controversial. To date, focus has been on the extinction chronology of individual or small groups of species, specific geographical regions or macroscale studies at very coarse geographical and taxonomic resolution, limiting the possibility of adequately testing the proposed hypotheses. We present, to our knowledge, the first global analysis of this extinction based on comprehensive country-level data on the geographical distribution of all large mammal species (more than or equal to 10 kg) that have gone globally or continentally extinct between the beginning of the Last Interglacial at 132,000 years BP and the late Holocene 1000 years BP, testing the relative roles played by glacial-interglacial climate change and humans. We show that the severity of extinction is strongly tied to hominin palaeobiogeography, with at most a weak, Eurasia-specific link to climate change. This first species-level macroscale analysis at relatively high geographical resolution provides strong support for modern humans as the primary driver of the worldwide megafauna losses during the late Quaternary.

  15. Global late Quaternary megafauna extinctions linked to humans, not climate change

    PubMed Central

    Sandom, Christopher; Faurby, Søren; Sandel, Brody; Svenning, Jens-Christian

    2014-01-01

    The late Quaternary megafauna extinction was a severe global-scale event. Two factors, climate change and modern humans, have received broad support as the primary drivers, but their absolute and relative importance remains controversial. To date, focus has been on the extinction chronology of individual or small groups of species, specific geographical regions or macroscale studies at very coarse geographical and taxonomic resolution, limiting the possibility of adequately testing the proposed hypotheses. We present, to our knowledge, the first global analysis of this extinction based on comprehensive country-level data on the geographical distribution of all large mammal species (more than or equal to 10 kg) that have gone globally or continentally extinct between the beginning of the Last Interglacial at 132 000 years BP and the late Holocene 1000 years BP, testing the relative roles played by glacial–interglacial climate change and humans. We show that the severity of extinction is strongly tied to hominin palaeobiogeography, with at most a weak, Eurasia-specific link to climate change. This first species-level macroscale analysis at relatively high geographical resolution provides strong support for modern humans as the primary driver of the worldwide megafauna losses during the late Quaternary. PMID:24898370

  16. Estimation of global anthropogenic dust aerosol using CALIOP satellite

    NASA Astrophysics Data System (ADS)

    Chen, B.; Huang, J.; Liu, J.

    2014-12-01

    Anthropogenic dust aerosols are those produced by human activity, which mainly come from cropland, pasture, and urban in this paper. Because understanding of the emissions of anthropogenic dust is still very limited, a new technique for separating anthropogenic dust from natural dustusing CALIPSO dust and planetary boundary layer height retrievalsalong with a land use dataset is introduced. Using this technique, the global distribution of dust is analyzed and the relative contribution of anthropogenic and natural dust sources to regional and global emissions are estimated. Local anthropogenic dust aerosol due to human activity, such as agriculture, industrial activity, transportation, and overgrazing, accounts for about 22.3% of the global continentaldust load. Of these anthropogenic dust aerosols, more than 52.5% come from semi-arid and semi-wet regions. On the whole, anthropogenic dust emissions from East China and India are higher than other regions.

  17. Perceived temperature in the course of climate change: an analysis of global heat index from 1979 to 2013

    NASA Astrophysics Data System (ADS)

    Lee, D.; Brenner, T.

    2015-08-01

    The increase in global mean temperatures resulting from climate change has wide reaching consequences for the earth's ecosystems and other natural systems. Many studies have been devoted to evaluating the distribution and effects of these changes. We go a step further and propose the use of the heat index, a measure of the temperature as perceived by humans, to evaluate global changes. The heat index, which is computed from temperature and relative humidity, is more important than temperature for the health of humans and animals. Even in cases where the heat index does not reach dangerous levels from a health perspective, it has been shown to be an important factor in worker productivity and thus in economic productivity. We compute the heat index from dew point temperature and absolute temperature 2 m above ground from the ERA-Interim reanalysis data set for the years 1979-2013. The described data set provides global heat index aggregated to daily minima, means and maxima per day (doi:10.1594/PANGAEA.841057). This paper examines these data, as well as showing aggregations to monthly and yearly values. Furthermore, the data are spatially aggregated to the level of countries after being weighted by population density in order to facilitate the analysis of its impact on human health and productivity. The resulting data deliver insights into the spatiotemporal development of near-ground heat index during the course of the past three decades. It is shown that the impact of changing heat index is unevenly distributed through space and time, affecting some areas differently than others. The data can serve as a basis for evaluating and understanding the evolution of heat index in the course of climate change, as well as its impact on human health and productivity.

  18. Dryland photoautotrophic soil surface communities endangered by global change

    USGS Publications Warehouse

    Rodriguez-Caballero, Emilio; Belnap, Jayne; Büdel, Burkhard; Crutzen, Paul J.; Andreae, Meinrat O.; Pöschl, Ulrich; Weber, Bettina

    2018-01-01

    Photoautotrophic surface communities forming biological soil crusts (biocrusts) are crucial for soil stability as well as water, nutrient and trace gas cycling at regional and global scales. Quantitative information on their global coverage and the environmental factors driving their distribution patterns, however, are not readily available. We use observations and environmental modelling to estimate the global distribution of biocrusts and their response to global change using future projected scenarios. We find that biocrusts currently covering approximately 12% of Earth’s terrestrial surface will decrease by about 25–40% within 65 years due to anthropogenically caused climate change and land-use intensification, responding far more drastically than vascular plants. Our results illustrate that current biocrust occurrence is mainly driven by a combination of precipitation, temperature and land management, and future changes are expected to be affected by land-use and climate change in similar proportion. The predicted loss of biocrusts may substantially reduce the microbial contribution to nitrogen cycling and enhance the emissions of soil dust, which affects the functioning of ecosystems as well as human health and should be considered in the modelling, mitigation and management of global change.

  19. Dryland photoautotrophic soil surface communities endangered by global change

    NASA Astrophysics Data System (ADS)

    Rodriguez-Caballero, Emilio; Belnap, Jayne; Büdel, Burkhard; Crutzen, Paul J.; Andreae, Meinrat O.; Pöschl, Ulrich; Weber, Bettina

    2018-03-01

    Photoautotrophic surface communities forming biological soil crusts (biocrusts) are crucial for soil stability as well as water, nutrient and trace gas cycling at regional and global scales. Quantitative information on their global coverage and the environmental factors driving their distribution patterns, however, are not readily available. We use observations and environmental modelling to estimate the global distribution of biocrusts and their response to global change using future projected scenarios. We find that biocrusts currently covering approximately 12% of Earth's terrestrial surface will decrease by about 25-40% within 65 years due to anthropogenically caused climate change and land-use intensification, responding far more drastically than vascular plants. Our results illustrate that current biocrust occurrence is mainly driven by a combination of precipitation, temperature and land management, and future changes are expected to be affected by land-use and climate change in similar proportion. The predicted loss of biocrusts may substantially reduce the microbial contribution to nitrogen cycling and enhance the emissions of soil dust, which affects the functioning of ecosystems as well as human health and should be considered in the modelling, mitigation and management of global change.

  20. Molecular Epidemiology of Oyster-Related Human Noroviruses and Their Global Genetic Diversity and Temporal-Geographical Distribution from 1983 to 2014

    PubMed Central

    Yu, Yongxin; Cai, Hui; Hu, Linghao; Lei, Rongwei; Pan, Yingjie; Yan, Shuling

    2015-01-01

    Noroviruses (NoVs) are a leading cause of epidemic and sporadic cases of acute gastroenteritis worldwide. Oysters are well recognized as the main vectors of environmentally transmitted NoVs, and disease outbreaks linked to oyster consumption have been commonly observed. Here, to quantify the genetic diversity, temporal distribution, and circulation of oyster-related NoVs on a global scale, 1,077 oyster-related NoV sequences deposited from 1983 to 2014 were downloaded from both NCBI GenBank and the NoroNet outbreak database and were then screened for quality control. A total of 665 sequences with reliable information were obtained and were subsequently subjected to genotyping and phylogenetic analyses. The results indicated that the majority of oyster-related NoV sequences were obtained from coastal countries and regions and that the numbers of sequences in these regions were unevenly distributed. Moreover, >80% of human NoV genotypes were detected in oyster samples or oyster-related outbreaks. A higher proportion of genogroup I (GI) (34%) was observed for oyster-related sequences than for non-oyster-related outbreaks, where GII strains dominated with an overwhelming majority of >90%, indicating that the prevalences of GI and GII are different in humans and oysters. In addition, a related convergence of the circulation trend was found between oyster-related NoV sequences and human pandemic outbreaks. This suggests that oysters not only act as a vector of NoV through environmental transmission but also serve as an important reservoir of human NoVs. These results highlight the importance of oysters in the persistence and transmission of human NoVs in the environment and have important implications for the surveillance of human NoVs in oyster samples. PMID:26319869

  1. The global distribution of Banana bunchy top virus reveals little evidence for frequent recent, human-mediated long distance dispersal events

    PubMed Central

    Stainton, Daisy; Martin, Darren P.; Muhire, Brejnev M.; Lolohea, Samiuela; Halafihi, Mana’ia; Lepoint, Pascale; Blomme, Guy; Crew, Kathleen S.; Sharman, Murray; Kraberger, Simona; Dayaram, Anisha; Walters, Matthew; Collings, David A.; Mabvakure, Batsirai; Lemey, Philippe; Harkins, Gordon W.; Thomas, John E.; Varsani, Arvind

    2015-01-01

    Banana bunchy top virus (BBTV; family Nanoviridae, genus Babuvirus) is a multi-component single-stranded DNA virus, which infects banana plants in many regions of the world, often resulting in large-scale crop losses. We analyzed 171 banana leaf samples from fourteen countries and recovered, cloned, and sequenced 855 complete BBTV components including ninety-four full genomes. Importantly, full genomes were determined from eight countries, where previously no full genomes were available (Samoa, Burundi, Republic of Congo, Democratic Republic of Congo, Egypt, Indonesia, the Philippines, and the USA [HI]). Accounting for recombination and genome component reassortment, we examined the geographic structuring of global BBTV populations to reveal that BBTV likely originated in Southeast Asia, that the current global hotspots of BBTV diversity are Southeast Asia/Far East and India, and that BBTV populations circulating elsewhere in the world have all potentially originated from infrequent introductions. Most importantly, we find that rather than the current global BBTV distribution being due to increases in human-mediated movements of bananas over the past few decades, it is more consistent with a pattern of infrequent introductions of the virus to different parts of the world over the past 1,000 years. PMID:27774281

  2. The global distribution of Banana bunchy top virus reveals little evidence for frequent recent, human-mediated long distance dispersal events.

    PubMed

    Stainton, Daisy; Martin, Darren P; Muhire, Brejnev M; Lolohea, Samiuela; Halafihi, Mana'ia; Lepoint, Pascale; Blomme, Guy; Crew, Kathleen S; Sharman, Murray; Kraberger, Simona; Dayaram, Anisha; Walters, Matthew; Collings, David A; Mabvakure, Batsirai; Lemey, Philippe; Harkins, Gordon W; Thomas, John E; Varsani, Arvind

    2015-01-01

    Banana bunchy top virus (BBTV; family Nanoviridae, genus Babuvirus ) is a multi-component single-stranded DNA virus, which infects banana plants in many regions of the world, often resulting in large-scale crop losses. We analyzed 171 banana leaf samples from fourteen countries and recovered, cloned, and sequenced 855 complete BBTV components including ninety-four full genomes. Importantly, full genomes were determined from eight countries, where previously no full genomes were available (Samoa, Burundi, Republic of Congo, Democratic Republic of Congo, Egypt, Indonesia, the Philippines, and the USA [HI]). Accounting for recombination and genome component reassortment, we examined the geographic structuring of global BBTV populations to reveal that BBTV likely originated in Southeast Asia, that the current global hotspots of BBTV diversity are Southeast Asia/Far East and India, and that BBTV populations circulating elsewhere in the world have all potentially originated from infrequent introductions. Most importantly, we find that rather than the current global BBTV distribution being due to increases in human-mediated movements of bananas over the past few decades, it is more consistent with a pattern of infrequent introductions of the virus to different parts of the world over the past 1,000 years.

  3. Ancient, globally distributed lineage of Sarcocystis from sporocysts of the Eastern rat snake (Pantherophis alleghaniensis) and its relation to neurological sequalae in intermediate hosts

    USDA-ARS?s Scientific Manuscript database

    There is an emerging concern that snakes are definitive hosts of certain species of Sarcocystis that cause muscular sarcocystosis in human and non-human primates. Sarcocystis oocysts/sporocysts were found in the intestinal contents of 2 rat snakes (Pantherophis alleghaniensis) from Maryland, USA. Th...

  4. Human Rights Treaties Are an Important Part of the "International Health Instrumentariam" Comment on "The Legal Strength of International Health Instruments - What It Brings to Global Health Governance?"

    PubMed

    Forman, Lisa

    2017-10-02

    In their commentary, Haik Nikogosian and Ilona Kickbusch argue for the necessity of new binding international legal instruments for health to address complex health determinants and offer a cogent analysis of the implications of such treaties for future global health governance. Yet in doing so they pay no attention to the existing instrumentarium of international legally binding treaties relevant to health, in the form of human rights treaties. International human rights law has entrenched individual entitlements and state obligations in relation to individual and public health through iterative human rights treaties since 1946. These treaties offer normative specificity, institutional monitoring and the possibility of enforcement and accountability. If we are to build a new 'international health instrumentariam' we should not ignore existing and important tools that can assist in this endeavor. © 2018 The Author(s); Published by Kerman University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

  5. Estimating a Global Hydrological Carrying Capacity Using GRACE Observed Water Stress

    NASA Astrophysics Data System (ADS)

    An, K.; Reager, J. T.; Famiglietti, J. S.

    2013-12-01

    Global population is expected to reach 9 billion people by the year 2050, causing increased demands for water and potential threats to human security. This study attempts to frame the overpopulation problem through a hydrological resources lens by hypothesizing that observed groundwater trends should be directly attributed to human water consumption. This study analyzes the relationships between available blue water, population, and cropland area on a global scale. Using satellite data from NASA's Gravity Recovery and Climate Experiment (GRACE) along with land surface model data from the Global Land Data Assimilation System (GLDAS), a global groundwater depletion trend is isolated, the validity of which has been verified in many regional studies. By using the inherent distributions of these relationships, we estimate the regional populations that have exceeded their local hydrological carrying capacity. Globally, these populations sum to ~3.5 billion people that are living in presently water-stressed or potentially water-scarce regions, and we estimate total cropland is exceeding a sustainable threshold by about 80 million km^2. Key study areas such as the North China Plain, northwest India, and Mexico City were qualitatively chosen for further analysis of regional water resources and policies, based on our distributions of water stress. These case studies are used to verify the groundwater level changes seen in the GRACE trend . Tfor the many populous, arid regions of the world that have already begun to experience the strains of high water demand.he many populous, arid regions of the world have already begun to experience the strains of high water demand. It will take a global cooperative effort of improving domestic and agricultural use efficiency, and summoning a political will to prioritize environmental issues to adapt to a thirstier planet. Global Groundwater Depletion Trend (Mar 2003-Dec 2011)

  6. Public health preparedness for the impact of global warming on human health.

    PubMed

    Wassel, John J

    2009-01-01

    To assess the changes in weather and weather-associated disturbances related to global warming; the impact on human health of these changes; and the public health preparedness mandated by this impact. Qualitative review of the literature. Articles will be obtained by searching PubMed database, Google, and Google Scholar search engines using terms such as "global warming," "climate change," "human health," "public health," and "preparedness." Sixty-seven journal articles were reviewed. The projections and signs of global environmental changes are worrisome, and there are reasons to believe that related information may have been conservatively interpreted and presented in the recent past. Although the challenges are great, there are many opportunities for devising beneficial solutions at individual, community, and global levels. It is essential for public health professionals to become involved in advocating for change at all of these levels, as well as through professional organizations. We must begin "greening" our own lives and clinical practice, and start talking about these issues with patients. As we build walkable neighborhoods, change methods of energy production, and make water use and food production and distribution more sustainable, the benefits to improved air quality, a stabilized climate, social support, and individual and community health will be dramatic.

  7. Detection of anthropogenic dust using CALIPSO lidar measurements

    NASA Astrophysics Data System (ADS)

    Huang, J.; Liu, J.; Chen, B.; Nasiri, S. L.

    2015-04-01

    Anthropogenic dusts are those produced by human activities on disturbed soils, which are mainly cropland, pasture, and urbanized regions and are a subset of the total dust load which includes natural sources from desert regions. Our knowledge of anthropogenic dusts is still very limited due to a lack of data on source distribution and magnitude, and on their effect on radiative forcing which may be comparable to other anthropogenic aerosols. To understand the contribution of anthropogenic dust to the total global dust load and its effect on radiative transfer and climate, it is important to identify them from total dust. In this study, a new technique for distinguishing anthropogenic dust from natural dust is proposed by using Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) dust and planetary boundary layer (PBL) height retrievals along with a land use dataset. Using this technique, the global distribution of dust is analyzed and the relative contribution of anthropogenic and natural dust sources to regional and global emissions are estimated. Results reveal that local anthropogenic dust aerosol due to human activity, such as agriculture, industrial activity, transportation, and overgrazing, accounts for about 25% of the global continental dust load. Of these anthropogenic dust aerosols, more than 53% come from semi-arid and semi-wet regions. Annual mean anthropogenic dust column burden (DCB) values range from 0.42 g m-2 with a maximum in India to 0.12 g m-2 with a minimum in North America. A better understanding of anthropogenic dust emission will enable us to focus on human activities in these critical regions and with such knowledge we will be better able to improve global dust models and to explore the effects of anthropogenic emission on radiative forcing, climate change and air quality in the future.

  8. Ecological consequences of human niche construction: Examining long-term anthropogenic shaping of global species distributions

    PubMed Central

    Boivin, Nicole L.; Zeder, Melinda A.; Fuller, Dorian Q.; Crowther, Alison; Larson, Greger; Erlandson, Jon M.; Denham, Tim; Petraglia, Michael D.

    2016-01-01

    The exhibition of increasingly intensive and complex niche construction behaviors through time is a key feature of human evolution, culminating in the advanced capacity for ecosystem engineering exhibited by Homo sapiens. A crucial outcome of such behaviors has been the dramatic reshaping of the global biosphere, a transformation whose early origins are increasingly apparent from cumulative archaeological and paleoecological datasets. Such data suggest that, by the Late Pleistocene, humans had begun to engage in activities that have led to alterations in the distributions of a vast array of species across most, if not all, taxonomic groups. Changes to biodiversity have included extinctions, extirpations, and shifts in species composition, diversity, and community structure. We outline key examples of these changes, highlighting findings from the study of new datasets, like ancient DNA (aDNA), stable isotopes, and microfossils, as well as the application of new statistical and computational methods to datasets that have accumulated significantly in recent decades. We focus on four major phases that witnessed broad anthropogenic alterations to biodiversity—the Late Pleistocene global human expansion, the Neolithic spread of agriculture, the era of island colonization, and the emergence of early urbanized societies and commercial networks. Archaeological evidence documents millennia of anthropogenic transformations that have created novel ecosystems around the world. This record has implications for ecological and evolutionary research, conservation strategies, and the maintenance of ecosystem services, pointing to a significant need for broader cross-disciplinary engagement between archaeology and the biological and environmental sciences. PMID:27274046

  9. Ecological consequences of human niche construction: Examining long-term anthropogenic shaping of global species distributions.

    PubMed

    Boivin, Nicole L; Zeder, Melinda A; Fuller, Dorian Q; Crowther, Alison; Larson, Greger; Erlandson, Jon M; Denham, Tim; Petraglia, Michael D

    2016-06-07

    The exhibition of increasingly intensive and complex niche construction behaviors through time is a key feature of human evolution, culminating in the advanced capacity for ecosystem engineering exhibited by Homo sapiens A crucial outcome of such behaviors has been the dramatic reshaping of the global biosphere, a transformation whose early origins are increasingly apparent from cumulative archaeological and paleoecological datasets. Such data suggest that, by the Late Pleistocene, humans had begun to engage in activities that have led to alterations in the distributions of a vast array of species across most, if not all, taxonomic groups. Changes to biodiversity have included extinctions, extirpations, and shifts in species composition, diversity, and community structure. We outline key examples of these changes, highlighting findings from the study of new datasets, like ancient DNA (aDNA), stable isotopes, and microfossils, as well as the application of new statistical and computational methods to datasets that have accumulated significantly in recent decades. We focus on four major phases that witnessed broad anthropogenic alterations to biodiversity-the Late Pleistocene global human expansion, the Neolithic spread of agriculture, the era of island colonization, and the emergence of early urbanized societies and commercial networks. Archaeological evidence documents millennia of anthropogenic transformations that have created novel ecosystems around the world. This record has implications for ecological and evolutionary research, conservation strategies, and the maintenance of ecosystem services, pointing to a significant need for broader cross-disciplinary engagement between archaeology and the biological and environmental sciences.

  10. Health impact assessment, human rights and global public policy: a critical appraisal.

    PubMed

    Scott-Samuel, Alex; O'Keefe, Eileen

    2007-03-01

    Public policy decisions in both the social and economic spheres have enormous impact on global public health. As a result of this, and of the skewed global distribution of power and resources, health impact assessment (HIA) potentially has a key role to play in foreign policy-making and global public policy-making. Governments, multilateral bodies and transnational corporations need to be held to account for the health impacts of their policies and practices. One route towards achieving this objective involves the inclusion of human rights assessments within HIA. International commitments to human rights instruments and standards can be used as a global auditing tool. Methodological issues may limit the effectiveness of HIA in promoting health equity. These issues include the use of procedures that favour those holding power in the policy process or the use of procedures that fail to apply values of equity and participation. The identification and production of evidence that includes the interests of less powerful groups is a priority for HIA and would be furthered if a human rights-based method of HIA were developed. Because HIA considers all types of policies and examines all potential determinants of health, it can play a part when foreign policy is developed and global decisions are made to treat people as rights holders. Since the human right to health is shaped by the determinants of health, developing links between the right to health assessment (that is, an assessment of the impact of policies on the right to health) and HIA--as recently proposed by the United Nations Special Rapporteur on the right to health--could strengthen the development of foreign policy and global decisions. Such links should be pursued and applied to the development of foreign policy and to the operation of multilateral bodies.

  11. Perfluorinated Compounds in House Dust from Ohio and North Carolina, USA

    EPA Science Inventory

    The perfluoroalkyl acids (PFAAs), including perfluorooctanoic acid (PFOA) and perfluorooctane sulfonate (PFOS), have come under increasing scrutiny due to their persistence in the environment, global distribution, and animal toxicity. Given that human exposure routes for these c...

  12. Impacts of Groundwater Pumping on Regional and Global Water Resources

    NASA Technical Reports Server (NTRS)

    Wada, Yoshihide

    2016-01-01

    Except frozen water in ice and glaciers (68%), groundwater is the world's largest distributed store of freshwater (30%), and has strategic importance to global food and water security. In this chapter, the most recent advances assessing human impact on regional and global groundwater resources are reviewed. This chapter critically evaluates the recently advanced modeling approaches quantifying the effect of groundwater pumping in regional and global groundwater resources and the evidence of feedback to the Earth system including sea-level rise associated with groundwater use. At last, critical challenges and opportunities are identified in the use of groundwater to adapt to growing food demand and uncertain climate.

  13. The debt of nations and the distribution of ecological impacts from human activities

    PubMed Central

    Srinivasan, U. Thara; Carey, Susan P.; Hallstein, Eric; Higgins, Paul A. T.; Kerr, Amber C.; Koteen, Laura E.; Smith, Adam B.; Watson, Reg; Harte, John; Norgaard, Richard B.

    2008-01-01

    As human impacts to the environment accelerate, disparities in the distribution of damages between rich and poor nations mount. Globally, environmental change is dramatically affecting the flow of ecosystem services, but the distribution of ecological damages and their driving forces has not been estimated. Here, we conservatively estimate the environmental costs of human activities over 1961–2000 in six major categories (climate change, stratospheric ozone depletion, agricultural intensification and expansion, deforestation, overfishing, and mangrove conversion), quantitatively connecting costs borne by poor, middle-income, and rich nations to specific activities by each of these groups. Adjusting impact valuations for different standards of living across the groups as commonly practiced, we find striking imbalances. Climate change and ozone depletion impacts predicted for low-income nations have been overwhelmingly driven by emissions from the other two groups, a pattern also observed for overfishing damages indirectly driven by the consumption of fishery products. Indeed, through disproportionate emissions of greenhouse gases alone, the rich group may have imposed climate damages on the poor group greater than the latter's current foreign debt. Our analysis provides prima facie evidence for an uneven distribution pattern of damages across income groups. Moreover, our estimates of each group's share in various damaging activities are independent from controversies in environmental valuation methods. In a world increasingly connected ecologically and economically, our analysis is thus an early step toward reframing issues of environmental responsibility, development, and globalization in accordance with ecological costs. PMID:18212119

  14. Expanded algal cultivation can reverse key planetary boundary transgressions.

    PubMed

    Calahan, Dean; Osenbaugh, Edward; Adey, Walter

    2018-02-01

    Humanity is degrading multiple ecosystem services, potentially irreversibly. Two of the most important human impacts are excess agricultural nutrient loading in our fresh and estuarine waters and excess carbon dioxide in our oceans and atmosphere. Large-scale global intervention is required to slow, halt, and eventually reverse these stresses. Cultivating attached polyculture algae within controlled open-field photobioreactors is a practical technique for exploiting the ubiquity and high primary productivity of algae to capture and recycle the pollutants driving humanity into unsafe regimes of biogeochemical cycling, ocean acidification, and global warming. Expanded globally and appropriately distributed, algal cultivation is capable of removing excess nutrients from global environments, while additionally sequestering appreciable excess carbon. While obviously a major capital and operational investment, such a project is comparable in magnitude to the construction and maintenance of the global road transportation network. Beyond direct amelioration of critical threats, expanded algal cultivation would produce a major new commodity flow of biomass, potentially useful either as a valuable organic commodity itself, or used to reduce the scale of the problem by improving soils, slowing or reversing the loss of arable land. A 100 year project to expand algal cultivation to completely recycle excess global agricultural N and P would, when fully operational, require gross global expenses no greater than $2.3 × 10 12 yr -1 , (3.0% of the 2016 global domestic product) and less than 1.9 × 10 7 ha (4.7 × 10 7 ac), 0.38% of the land area used globally to grow food. The biomass generated embodies renewable energy equivalent to 2.8% of global primary energy production.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolf, Julie; West, Tristram O.; Le Page, Yannick LB

    Quantification of biogenic carbon fluxes from agricultural lands is needed to generate comprehensive bottom-up estimates of net carbon exchange for global and regional carbon monitoring. We estimated global agricultural carbon fluxes associated with annual crop net primary production (NPP), harvested biomass, and consumption of biomass by humans and livestock. These estimates were combined for a single estimate of net carbon exchange (NCE) and spatially distributed to 0.05 degree resolution using MODIS satellite land cover data. Global crop NPP in 2011 was estimated at 5.25 ± 0.46 Pg C yr-1, of which 2.05 ± 0.05 Pg C yr-1 was harvested andmore » 0.54 Pg C yr-1 was collected from crop residues for livestock fodder. Total livestock feed intake in 2011 was 2.42 ± 0.21 Pg C yr-1, of which 2.31 ± 0.21 Pg C yr-1 was emitted as CO2, 0.07 ± 0.01 Pg C yr-1 was emitted as CH4, and 0.04 Pg C yr-1 was contained within milk and egg production. Livestock grazed an estimated 1.27 Pg C yr-1 in 2011, which constituted 52.4% of total feed intake. Global human food intake was 0.57 ± 0.03 Pg C yr-1 in 2011, the majority of which is respired as CO2. Completed global cropland carbon budgets accounted for the ultimate use of ca. 80% of harvested biomass. The spatial distribution of these fluxes may be used for global carbon monitoring, estimation of regional uncertainty, and for use as input to Earth system models.« less

  16. Potential Environmental and Ecological Effects of Global Climate Change on Venomous Terrestrial Species in the Wilderness.

    PubMed

    Needleman, Robert K; Neylan, Isabelle P; Erickson, Timothy

    2018-06-01

    Climate change has been scientifically documented, and its effects on wildlife have been prognosticated. We sought to predict the overall impact of climate change on venomous terrestrial species. We hypothesize that given the close relationship between terrestrial venomous species and climate, a changing global environment may result in increased species migration, geographical redistribution, and longer seasons for envenomation, which would have repercussions on human health. A retrospective analysis of environmental, ecological, and medical literature was performed with a focus on climate change, toxinology, and future modeling specific to venomous terrestrial creatures. Species included venomous reptiles, snakes, arthropods, spiders, and Hymenoptera (ants and bees). Animals that are vectors of hemorrhagic infectious disease (eg, mosquitos, ticks) were excluded. Our review of the literature indicates that changes to climatic norms will have a potentially dramatic effect on terrestrial venomous creatures. Empirical evidence demonstrates that geographic distributions of many species have already shifted due to changing climatic conditions. Given that most terrestrial venomous species are ectotherms closely tied to ambient temperature, and that climate change is shifting temperature zones away from the equator, further significant distribution and population changes should be anticipated. For those species able to migrate to match the changing temperatures, new geographical locations may open. For those species with limited distribution capabilities, the rate of climate change may accelerate faster than species can adapt, causing population declines. Specifically, poisonous snakes and spiders will likely maintain their population numbers but will shift their geographic distribution to traditionally temperate zones more often inhabited by humans. Fire ants and Africanized honey bees are expected to have an expanded range distribution due to predicted warming trends. Human encounters with these types of creatures are likely to increase, resulting in potential human morbidity and mortality. Temperature extremes and changes to climatic norms may have a dramatic effect on venomous terrestrial species. As climate change affects the distribution, populations, and life histories of these organisms, the chance of encounters could be altered, thus affecting human health and the survivability of these creatures. Copyright © 2017 Wilderness Medical Society. Published by Elsevier Inc. All rights reserved.

  17. Global phylogeography and genetic diversity of the zoonotic tapeworm Echinococcus granulosus sensu stricto genotype G1.

    PubMed

    Kinkar, Liina; Laurimäe, Teivi; Acosta-Jamett, Gerardo; Andresiuk, Vanessa; Balkaya, Ibrahim; Casulli, Adriano; Gasser, Robin B; van der Giessen, Joke; González, Luis Miguel; Haag, Karen L; Zait, Houria; Irshadullah, Malik; Jabbar, Abdul; Jenkins, David J; Kia, Eshrat Beigom; Manfredi, Maria Teresa; Mirhendi, Hossein; M'rad, Selim; Rostami-Nejad, Mohammad; Oudni-M'rad, Myriam; Pierangeli, Nora Beatriz; Ponce-Gordo, Francisco; Rehbein, Steffen; Sharbatkhori, Mitra; Simsek, Sami; Soriano, Silvia Viviana; Sprong, Hein; Šnábel, Viliam; Umhang, Gérald; Varcasia, Antonio; Saarma, Urmas

    2018-05-19

    Echinococcus granulosus sensu stricto (s.s.) is the major cause of human cystic echinococcosis worldwide and is listed among the most severe parasitic diseases of humans. To date, numerous studies have investigated the genetic diversity and population structure of E. granulosus s.s. in various geographic regions. However, there has been no global study. Recently, using mitochondrial DNA, it was shown that E. granulosus s.s. G1 and G3 are distinct genotypes, but a larger dataset is required to confirm the distinction of these genotypes. The objectives of this study were to: (i) investigate the distinction of genotypes G1 and G3 using a large global dataset; and (ii) analyse the genetic diversity and phylogeography of genotype G1 on a global scale using near-complete mitogenome sequences. For this study, 222 globally distributed E. granulosus s.s. samples were used, of which 212 belonged to genotype G1 and 10 to G3. Using a total sequence length of 11,682 bp, we inferred phylogenetic networks for three datasets: E. granulosus s.s. (n = 222), G1 (n = 212) and human G1 samples (n = 41). In addition, the Bayesian phylogenetic and phylogeographic analyses were performed. The latter yielded several strongly supported diffusion routes of genotype G1 originating from Turkey, Tunisia and Argentina. We conclude that: (i) using a considerably larger dataset than employed previously, E. granulosus s.s. G1 and G3 are indeed distinct mitochondrial genotypes; (ii) the genetic diversity of E. granulosus s.s. G1 is high globally, with lower values in South America; and (iii) the complex phylogeographic patterns emerging from the phylogenetic and geographic analyses suggest that the current distribution of genotype G1 has been shaped by intensive animal trade. Copyright © 2018 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  18. HIV/AIDS: global trends, global funds and delivery bottlenecks

    PubMed Central

    Coovadia, Hoosen M; Hadingham, Jacqui

    2005-01-01

    Globalisation affects all facets of human life, including health and well being. The HIV/AIDS epidemic has highlighted the global nature of human health and welfare and globalisation has given rise to a trend toward finding common solutions to global health challenges. Numerous international funds have been set up in recent times to address global health challenges such as HIV. However, despite increasingly large amounts of funding for health initiatives being made available to poorer regions of the world, HIV infection rates and prevalence continue to increase world wide. As a result, the AIDS epidemic is expanding and intensifying globally. Worst affected are undoubtedly the poorer regions of the world as combinations of poverty, disease, famine, political and economic instability and weak health infrastructure exacerbate the severe and far-reaching impacts of the epidemic. One of the major reasons for the apparent ineffectiveness of global interventions is historical weaknesses in the health systems of underdeveloped countries, which contribute to bottlenecks in the distribution and utilisation of funds. Strengthening these health systems, although a vital component in addressing the global epidemic, must however be accompanied by mitigation of other determinants as well. These are intrinsically complex and include social and environmental factors, sexual behaviour, issues of human rights and biological factors, all of which contribute to HIV transmission, progression and mortality. An equally important factor is ensuring an equitable balance between prevention and treatment programmes in order to holistically address the challenges presented by the epidemic. PMID:16060961

  19. Biogenic carbon fluxes from global agricultural production and consumption

    NASA Astrophysics Data System (ADS)

    Wolf, Julie; West, Tristram O.; Le Page, Yannick; Kyle, G. Page; Zhang, Xuesong; Collatz, G. James; Imhoff, Marc L.

    2015-10-01

    Quantification of biogenic carbon fluxes from agricultural lands is needed to generate comprehensive bottom-up estimates of net carbon exchange for global and regional carbon monitoring. We estimated global agricultural carbon fluxes associated with annual crop net primary production (NPP), harvested biomass, and consumption of biomass by humans and livestock. These estimates were combined for a single estimate of net carbon exchange and spatially distributed to 0.05° resolution using Moderate Resolution Imaging Spectroradiometer satellite land cover data. Global crop NPP in 2011 was estimated at 5.25 ± 0.46 Pg C yr-1, of which 2.05 ± 0.05 Pg C yr-1 was harvested and 0.54 Pg C yr-1 was collected from crop residues for livestock fodder. Total livestock feed intake in 2011 was 2.42 ± 0.21 Pg C yr-1, of which 2.31 ± 0.21 Pg C yr-1 was emitted as CO2, 0.07 ± 0.01 Pg C yr-1 was emitted as CH4, and 0.04 Pg C yr-1 was contained within milk and egg production. Livestock grazed an estimated 1.27 Pg C yr-1 in 2011, which constituted 52.4% of total feed intake. Global human food intake was 0.57 ± 0.03 Pg C yr-1 in 2011, the majority of which was respired as CO2. Completed global cropland carbon budgets accounted for the ultimate use of approximately 80% of harvested biomass. The spatial distribution of these fluxes may be used for global carbon monitoring, estimation of regional uncertainty, and for use as input to Earth system models.

  20. Global mapping of Al, Cu, Fe, and Zn in-use stocks and in-ground resources

    PubMed Central

    Rauch, Jason N.

    2009-01-01

    Human activity has become a significant geomorphic force in modern times, resulting in unprecedented movements of material around Earth. An essential constituent of this material movement, the major industrial metals aluminium, copper, iron, and zinc in the human-built environment are mapped globally at 1-km nominal resolution for the year 2000 and compared with the locations of present-day in-ground resources. While the maps of in-ground resources generated essentially combine available databases, the mapping methodology of in-use stocks relies on the linear regression between gross domestic product and both in-use stock estimates and the Nighttime Lights of the World dataset. As the first global maps of in-use metal stocks, they reveal that a full 25% of the world's Fe, Al, Cu, and Zn in-use deposits are concentrated in three bands: (i) the Eastern seaboard from Washington, D.C. to Boston in the United States, (ii) England, Benelux into Germany and Northern Italy, and (iii) South Korea and Japan. This pattern is consistent across all metals investigated. In contrast, the global maps of primary metal resources reveal these deposits are more evenly distributed between the developed and developing worlds, with the distribution pattern differing depending on the metal. This analysis highlights the magnitude at which in-ground metal resources have been translocated to in-use stocks, largely from highly concentrated but globally dispersed in-ground deposits to more diffuse in-use stocks located primarily in developed urban regions. PMID:19858486

  1. Mapping Human-Dominated Landscapes: the Distribution and Yield of Major Crops of the World

    NASA Astrophysics Data System (ADS)

    Monfreda, C.; Ramankutty, N.; Foley, J. A.

    2005-12-01

    Croplands cover 18 million km2, an area the size of South America, and provide ecosystem goods and services essential to human well-being. Most global land-cover classifications group the diversity of croplands into a single or very few categories, thereby excluding critical information to answer key questions ranging from biodiversity conservation to food security to biogeochemical cycling. Information on land-use practices is even more limited. The relative lack of information about agricultural landscapes results partly from difficulties in using satellite data to identify individual crop types and land-use practices at a global scale. We address limitations common to remote-sensing classifications by distributing national, state, and county level statistics across a recently updated global dataset of cropland cover at 5 minute resolution. The resulting datasets depict the fractional harvested area and yield of twenty distinct crop types: maize, wheat, rice, sorghum, millet, barley, oats, soybeans, sunflower, rapeseed/canola, pulses, groundnuts/peanuts, oil palm, cassava, potatoes, sugar cane, sugar beets, tobacco, coffee, and cotton. These datasets represent the state of agriculture circa the year 2000 and will be made available for applications in ecological analysis, modeling, visualization, and education.

  2. Fluorine-Containing novel spatial and contact repellents

    USDA-ARS?s Scientific Manuscript database

    Mosquito-transmitted diseases such as malaria, dengue, and yellow fever, result in thousands of human deaths yearly. Climate change and global warming can enhance the vectorial capacity, and the temporal and spatial distribution of mosquito populations. To find more effective tools for mosquito and ...

  3. Satellite sensor requirements for monitoring essential biodiversity variables of coastal ecosystems

    EPA Science Inventory

    The biodiversity and high productivity of coastal terrestrial and aquatic habitats are the foundation for important benefits to human societies around the world. These globally distributed habitats need frequent and broad systematic assessments, but field surveys only cover a sma...

  4. Isomers/enantiomers of perfluorocarboxylic acids: Method development and detection in environmental samples

    EPA Science Inventory

    Perfluoroalkyl substances are globally distributed in both urban and remote settings, and routinely are detected in wildlife, humans, and the environment. One of the most prominent and routinely detected perfluoroalkyl substances is perfluorooctanoic acid (PFOA), which has been s...

  5. A multidisciplinary database for global distribution

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wolfe, P.J.

    The issue of selenium toxicity in the environment has been documented in the scientific literature for over 50 years. Recent studies reveal a complex connection between selenium and human and animal populations. This article introduces a bibliographic citation database on selenium in the environment developed for global distribution via the Internet by the University of Wyoming Libraries. The database incorporates material from commercial sources, print abstracts, indexes, and U.S. government literature, resulting in a multidisciplinary resource. Relevant disciplines include, biology, medicine, veterinary science, botany, chemistry, geology, pollution, aquatic sciences, ecology, and others. It covers the years 1985-1996 for most subjectmore » material, with additional years being added as resources permit.« less

  6. Biodiversity redistribution under climate change: Impacts on ecosystems and human well-being.

    PubMed

    Pecl, Gretta T; Araújo, Miguel B; Bell, Johann D; Blanchard, Julia; Bonebrake, Timothy C; Chen, I-Ching; Clark, Timothy D; Colwell, Robert K; Danielsen, Finn; Evengård, Birgitta; Falconi, Lorena; Ferrier, Simon; Frusher, Stewart; Garcia, Raquel A; Griffis, Roger B; Hobday, Alistair J; Janion-Scheepers, Charlene; Jarzyna, Marta A; Jennings, Sarah; Lenoir, Jonathan; Linnetved, Hlif I; Martin, Victoria Y; McCormack, Phillipa C; McDonald, Jan; Mitchell, Nicola J; Mustonen, Tero; Pandolfi, John M; Pettorelli, Nathalie; Popova, Ekaterina; Robinson, Sharon A; Scheffers, Brett R; Shaw, Justine D; Sorte, Cascade J B; Strugnell, Jan M; Sunday, Jennifer M; Tuanmu, Mao-Ning; Vergés, Adriana; Villanueva, Cecilia; Wernberg, Thomas; Wapstra, Erik; Williams, Stephen E

    2017-03-31

    Distributions of Earth's species are changing at accelerating rates, increasingly driven by human-mediated climate change. Such changes are already altering the composition of ecological communities, but beyond conservation of natural systems, how and why does this matter? We review evidence that climate-driven species redistribution at regional to global scales affects ecosystem functioning, human well-being, and the dynamics of climate change itself. Production of natural resources required for food security, patterns of disease transmission, and processes of carbon sequestration are all altered by changes in species distribution. Consideration of these effects of biodiversity redistribution is critical yet lacking in most mitigation and adaptation strategies, including the United Nation's Sustainable Development Goals. Copyright © 2017, American Association for the Advancement of Science.

  7. Inequality or injustice in water use for food?

    NASA Astrophysics Data System (ADS)

    Carr, J. A.; Seekell, D. A.; D'Odorico, P.

    2015-02-01

    The global distributions of water availability and population density are uneven and therefore inequality exists in human access to freshwater resources. Is this inequality unjust or only regrettable? To examine this question we formulated and evaluated elementary principles of water ethics relative to human rights for water, and the need for global trade to improve societal access to water by transferring ‘virtual water’ embedded in plant and animal commodities. We defined human welfare benchmarks and evaluated patterns of water use with and without trade over a 25-year period to identify the influence of trade and inequality on equitability of water use. We found that trade improves mean water use and wellbeing, relative to human welfare benchmarks, suggesting that inequality is regrettable but not necessarily unjust. However, trade has not significantly contributed to redressing inequality. Hence, directed trade decisions can improve future conditions of water and food scarcity through reduced inequality.

  8. Environmental changes impacting Echinococcus transmission: research to support predictive surveillance and control.

    PubMed

    Atkinson, Jo-An M; Gray, Darren J; Clements, Archie C A; Barnes, Tamsin S; McManus, Donald P; Yang, Yu R

    2013-03-01

    Echinococcosis, resulting from infection with tapeworms Echinococcus granulosus and E. multilocularis, has a global distribution with 2-3 million people affected and 200,000 new cases diagnosed annually. Costs of treatment for humans and economic losses to the livestock industry have been estimated to exceed $2 billion. These figures are likely to be an underestimation given the challenges with its early detection and the lack of mandatory official reporting policies in most countries. Despite this global burden, echinococcosis remains a neglected zoonosis. The importance of environmental factors in influencing the transmission intensity and distribution of Echinococcus spp. is increasingly being recognized. With the advent of climate change and the influence of global population expansion, food insecurity and land-use changes, questions about the potential impact of changing temperature, rainfall patterns, increasing urbanization, deforestation, grassland degradation and overgrazing on zoonotic disease transmission are being raised. This study is the first to comprehensively review how climate change and anthropogenic environmental factors contribute to the transmission of echinococcosis mediated by changes in animal population dynamics, spatial overlap of competent hosts and the creation of improved conditions for egg survival. We advocate rigorous scientific research to establish the causal link between specific environmental variables and echinococcosis in humans and the incorporation of environmental, animal and human data collection within a sentinel site surveillance network that will complement satellite remote-sensing information. Identifying the environmental determinants of transmission risk to humans will be vital for the design of more accurate predictive models to guide cost-effective pre-emptive public health action against echinococcosis. © 2012 Blackwell Publishing Ltd.

  9. Analysis of global and absorption, distribution, metabolism, and elimination gene expression in the progressive stages of human nonalcoholic fatty liver disease.

    PubMed

    Lake, April D; Novak, Petr; Fisher, Craig D; Jackson, Jonathan P; Hardwick, Rhiannon N; Billheimer, D Dean; Klimecki, Walter T; Cherrington, Nathan J

    2011-10-01

    Nonalcoholic fatty liver disease (NAFLD) is characterized by a series of pathological changes that range from simple fatty liver to nonalcoholic steatohepatitis (NASH). The objective of this study is to describe changes in global gene expression associated with the progression of human NAFLD. This study is focused on the expression levels of genes responsible for the absorption, distribution, metabolism, and elimination (ADME) of drugs. Differential gene expression between three clinically defined pathological groups-normal, steatosis, and NASH-was analyzed. Genome-wide mRNA levels in samples of human liver tissue were assayed with Affymetrix GeneChip Human 1.0ST arrays. A total of 11,633 genes exhibited altered expression out of 33,252 genes at a 5% false discovery rate. Most gene expression changes occurred in the progression from steatosis to NASH. Principal component analysis revealed that hepatic disease status was the major determinant of differential ADME gene expression rather than age or sex of sample donors. Among the 515 drug transporters and 258 drug-metabolizing enzymes (DMEs) examined, uptake transporters but not efflux transporters or DMEs were significantly over-represented in the number of genes down-regulated. These results suggest that uptake transporter genes are coordinately targeted for down-regulation at the global level during the pathological development of NASH and that these patients may have decreased drug uptake capacity. This coordinated regulation of uptake transporter genes is indicative of a hepatoprotective mechanism acting to prevent accumulation of toxic intermediates in disease-compromised hepatocytes.

  10. U.S. Domestic Cats as Sentinels for Perfluoroalkyl Substances: Possible Linkages with Housing, Obesity and Disease

    EPA Science Inventory

    Perfluoroalkyl substances (PFAS), such as perfluorooctane sulfonate (PFOS) and perfluorooctanoic acid (PFOA) , are persistent, globally distributed, anthropogenic compounds. The primary source(s) for human exposure are not well understood although within home exposure is likely i...

  11. Songbirds as Sentinels of Mercury in Terrestrial Foodwebs of Eastern North America

    EPA Science Inventory

    Mercury is a globally distributed environmental contaminant with a variety of deleterious effects in fish, wildlife, and humans. Breeding songbirds may be useful sentinels for mercury because they are relatively easy to sample, have well-defined and small territories, and integra...

  12. The global distribution of Martian permafrost

    NASA Technical Reports Server (NTRS)

    Paige, David A.

    1991-01-01

    Accurately determining the present global distribution of Martian ground ice will be an important step towards understanding the evolution of the Martian surface and atmosphere, and could greatly facilitate human and robotic exploration of the planet. The quantitative Mars permafrost studies demonstrated the potential importance of a number of factors determining the past and present distribution of subsurface ice on Mars, but have not considered the issue of regional variability. To consider the distribution of Mars permafrost in greater detail a new thermal model was developed that can calculate Martian surface and subsurface temperatures as a function of time-of-day and season. The results indicate that the distribution of Martian permafrost is highly sensitive to the bulk thermal properties of the overlying soil. Viking IRTM observations of diurnal surface temperature variations show that the bulk thermal properties of midlatitude surface materials exhibit a high degree of regional inhomogeneity. In general, the results show that the global distribution of permafrost is at least as sensitive to the thermal properties of the overlying surface material as it is to variations in surface isolation due to large scale variations in Mars' orbital and axial elements. In particular, they imply that subsurface ice may exist just a few centimeters below the surface in regions of low thermal inertia and high albedo, which are widespread at latitudes ranging from the equator to +60 degrees latitude.

  13. Mapping the Distribution of Anthrax in Mainland China, 2005-2013.

    PubMed

    Chen, Wan-Jun; Lai, Sheng-Jie; Yang, Yang; Liu, Kun; Li, Xin-Lou; Yao, Hong-Wu; Li, Yu; Zhou, Hang; Wang, Li-Ping; Mu, Di; Yin, Wen-Wu; Fang, Li-Qun; Yu, Hong-Jie; Cao, Wu-Chun

    2016-04-01

    Anthrax, a global re-emerging zoonotic disease in recent years is enzootic in mainland China. Despite its significance to the public health, spatiotemporal distributions of the disease in human and livestock and its potential driving factors remain poorly understood. Using the national surveillance data of human and livestock anthrax from 2005 to 2013, we conducted a retrospective epidemiological study and risk assessment of anthrax in mainland China. The potential determinants for the temporal and spatial distributions of human anthrax were also explored. We found that the majority of human anthrax cases were located in six provinces in western and northeastern China, and five clustering areas with higher incidences were identified. The disease mostly peaked in July or August, and males aged 30-49 years had higher incidence than other subgroups. Monthly incidence of human anthrax was positively correlated with monthly average temperature, relative humidity and monthly accumulative rainfall with lags of 0-2 months. A boosted regression trees (BRT) model at the county level reveals that densities of cattle, sheep and human, coverage of meadow, coverage of typical grassland, elevation, coverage of topsoil with pH > 6.1, concentration of organic carbon in topsoil, and the meteorological factors have contributed substantially to the spatial distribution of the disease. The model-predicted probability of occurrence of human cases in mainland China was mapped at the county level. Anthrax in China was characterized by significant seasonality and spatial clustering. The spatial distribution of human anthrax was largely driven by livestock husbandry, human density, land cover, elevation, topsoil features and climate. Enhanced surveillance and intervention for livestock and human anthrax in the high-risk regions, particularly on the Qinghai-Tibetan Plateau, is the key to the prevention of human infections.

  14. Mapping the Distribution of Anthrax in Mainland China, 2005–2013

    PubMed Central

    Yang, Yang; Liu, Kun; Li, Xin-Lou; Yao, Hong-Wu; Li, Yu; Zhou, Hang; Wang, Li-Ping; Mu, Di; Yin, Wen-Wu; Fang, Li-Qun; Yu, Hong-Jie; Cao, Wu-Chun

    2016-01-01

    Background Anthrax, a global re-emerging zoonotic disease in recent years is enzootic in mainland China. Despite its significance to the public health, spatiotemporal distributions of the disease in human and livestock and its potential driving factors remain poorly understood. Methodology/Principal Findings Using the national surveillance data of human and livestock anthrax from 2005 to 2013, we conducted a retrospective epidemiological study and risk assessment of anthrax in mainland China. The potential determinants for the temporal and spatial distributions of human anthrax were also explored. We found that the majority of human anthrax cases were located in six provinces in western and northeastern China, and five clustering areas with higher incidences were identified. The disease mostly peaked in July or August, and males aged 30–49 years had higher incidence than other subgroups. Monthly incidence of human anthrax was positively correlated with monthly average temperature, relative humidity and monthly accumulative rainfall with lags of 0–2 months. A boosted regression trees (BRT) model at the county level reveals that densities of cattle, sheep and human, coverage of meadow, coverage of typical grassland, elevation, coverage of topsoil with pH > 6.1, concentration of organic carbon in topsoil, and the meteorological factors have contributed substantially to the spatial distribution of the disease. The model-predicted probability of occurrence of human cases in mainland China was mapped at the county level. Conclusions/Significance Anthrax in China was characterized by significant seasonality and spatial clustering. The spatial distribution of human anthrax was largely driven by livestock husbandry, human density, land cover, elevation, topsoil features and climate. Enhanced surveillance and intervention for livestock and human anthrax in the high-risk regions, particularly on the Qinghai-Tibetan Plateau, is the key to the prevention of human infections. PMID:27097318

  15. A decade of insights into grassland ecosystem responses to global environmental change

    USGS Publications Warehouse

    Borer, Elizabeth T.; Grace, James B.; Harpole, W. Stanley; MacDougall, Andrew S.; Seabloom, Eric W.

    2017-01-01

    Earth’s biodiversity and carbon uptake by plants, or primary productivity, are intricately interlinked, underlie many essential ecosystem processes, and depend on the interplay among environmental factors, many of which are being changed by human activities. While ecological theory generalizes across taxa and environments, most empirical tests of factors controlling diversity and productivity have been observational, single-site experiments, or meta-analyses, limiting our understanding of variation among site-level responses and tests of general mechanisms. A synthesis of results from ten years of a globally distributed, coordinated experiment, the Nutrient Network (NutNet), demonstrates that species diversity promotes ecosystem productivity and stability, and that nutrient supply and herbivory control diversity via changes in composition, including invasions of non-native species and extinction of native species. Distributed experimental networks are a powerful tool for tests and integration of multiple theories and for generating multivariate predictions about the effects of global changes on future ecosystems.

  16. Improving Estimation of Ground Casualty Risk From Reentering Space Objects

    NASA Technical Reports Server (NTRS)

    Ostrom, Chris L.

    2017-01-01

    A recent improvement to the long-term estimation of ground casualties from reentering space debris is the further refinement and update to the human population distribution. Previous human population distributions were based on global totals with simple scaling factors for future years, or a coarse grid of population counts in a subset of the world's countries, each cell having its own projected growth rate. The newest population model includes a 5-fold refinement in both latitude and longitude resolution. All areas along a single latitude are combined to form a global population distribution as a function of latitude, creating a more accurate population estimation based on non-uniform growth at the country and area levels. Previous risk probability calculations used simplifying assumptions that did not account for the ellipsoidal nature of the Earth. The new method uses first, a simple analytical method to estimate the amount of time spent above each latitude band for a debris object with a given orbit inclination and second, a more complex numerical method that incorporates the effects of a non-spherical Earth. These new results are compared with the prior models to assess the magnitude of the effects on reentry casualty risk.

  17. Improving Estimation of Ground Casualty Risk from Reentering Space Objects

    NASA Technical Reports Server (NTRS)

    Ostrom, C.

    2017-01-01

    A recent improvement to the long-term estimation of ground casualties from reentering space debris is the further refinement and update to the human population distribution. Previous human population distributions were based on global totals with simple scaling factors for future years, or a coarse grid of population counts in a subset of the world's countries, each cell having its own projected growth rate. The newest population model includes a 5-fold refinement in both latitude and longitude resolution. All areas along a single latitude are combined to form a global population distribution as a function of latitude, creating a more accurate population estimation based on non-uniform growth at the country and area levels. Previous risk probability calculations used simplifying assumptions that did not account for the ellipsoidal nature of the earth. The new method uses first, a simple analytical method to estimate the amount of time spent above each latitude band for a debris object with a given orbit inclination, and second, a more complex numerical method that incorporates the effects of a non-spherical Earth. These new results are compared with the prior models to assess the magnitude of the effects on reentry casualty risk.

  18. Humans, Evolutionary and Ecologic Forces Shaped the Phylogeography of Recently Emerged Diseases

    PubMed Central

    Keim, Paul S.; Wagner, David M.

    2009-01-01

    Many infectious diseases have emerged and circulated around the world with the development of human civilizations and global commerce. Anthrax, plague and tularemia are three such zoonotic diseases that have been intensely studied through genome characterization and phylogeographic analyses. A few highly fit genotypes within each of the causative species represent the vast majority of observed disease cases. Mutational and selective forces working together create highly adapted pathogens, but this has to be coupled with ecological opportunities for global expansion. This Review describes the distributions of the bacteria that cause anthrax, plague and tularemia and investigates the forces that created a clonal structure in both these species, and specific groups within these species. PMID:19820723

  19. Surveillance of Human Rabies by National Authorities--A Global Survey.

    PubMed

    Taylor, L H; Knopf, L

    2015-11-01

    Effective prevention of deaths due to human rabies is currently hampered by a lack of understanding of the scale of the problem, and the distribution of both animal and human cases across countries, regions and continents. Unfortunately, despite the severity of the disease, accurate data on which to assess these questions and to prioritize and direct public health interventions are not available for many parts of the world. This survey sought to understand the current global situation regarding the surveillance of human rabies. Data were collected from 91 countries across all continents and all categories of human rabies risk, generating the most complete and representative global data set currently available. Respondents were asked key questions about whether human rabies was a notifiable disease, how the surveillance system for human rabies operated and whether the respondent considered that the surveillance system was working effectively. Across the 91 countries from which data were collated, human rabies was a notifiable disease in all but eight. Despite international guidance, surveillance systems were very varied. Even where rabies is a notifiable disease, many countries had surveillance system judged to be ineffective, almost all of these being high and moderate rabies risk countries in Africa and Asia. Overall, 41% of the population covered by this survey (around 2.5 billion people) live in countries where there is no or ineffective rabies surveillance. The lack of robust surveillance is hindering rabies control efforts. However, whilst worldwide rabies surveillance would be improved if rabies were notifiable in all countries, many other challenges to the implementation of effective global human rabies surveillance systems remain. © 2015 Blackwell Verlag GmbH.

  20. Opportunities drive the global distribution of protected areas.

    PubMed

    Baldi, Germán; Texeira, Marcos; Martin, Osvaldo A; Grau, H Ricardo; Jobbágy, Esteban G

    2017-01-01

    Protected areas, regarded today as a cornerstone of nature conservation, result from an array of multiple motivations and opportunities. We explored at global and regional levels the current distribution of protected areas along biophysical, human, and biological gradients, and assessed to what extent protection has pursued (i) a balanced representation of biophysical environments, (ii) a set of preferred conditions (biological, spiritual, economic, or geopolitical), or (iii) existing opportunities for conservation regardless of any representation or preference criteria. We used histograms to describe the distribution of terrestrial protected areas along biophysical, human, and biological independent gradients and linear and non-linear regression and correlation analyses to describe the sign, shape, and strength of the relationships. We used a random forest analysis to rank the importance of different variables related to conservation preferences and opportunity drivers, and an evenness metric to quantify representativeness. We find that protection at a global level is primarily driven by the opportunities provided by isolation and a low population density (variable importance = 34.6 and 19.9, respectively). Preferences play a secondary role, with a bias towards tourism attractiveness and proximity to international borders (variable importance = 12.7 and 3.4, respectively). Opportunities shape protection strongly in "North America & Australia-NZ" and "Latin America & Caribbean," while the importance of the representativeness of biophysical environments is higher in "Sub-Saharan Africa" (1.3 times the average of other regions). Environmental representativeness and biodiversity protection are top priorities in land conservation agendas. However, our results suggest that they have been minor players driving current protection at both global and regional levels. Attempts to increase their relevance will necessarily have to recognize the predominant opportunistic nature that the establishment of protected areas has had until present times.

  1. Opportunities drive the global distribution of protected areas

    PubMed Central

    Texeira, Marcos; Martin, Osvaldo A.; Grau, H. Ricardo; Jobbágy, Esteban G.

    2017-01-01

    Background Protected areas, regarded today as a cornerstone of nature conservation, result from an array of multiple motivations and opportunities. We explored at global and regional levels the current distribution of protected areas along biophysical, human, and biological gradients, and assessed to what extent protection has pursued (i) a balanced representation of biophysical environments, (ii) a set of preferred conditions (biological, spiritual, economic, or geopolitical), or (iii) existing opportunities for conservation regardless of any representation or preference criteria. Methods We used histograms to describe the distribution of terrestrial protected areas along biophysical, human, and biological independent gradients and linear and non-linear regression and correlation analyses to describe the sign, shape, and strength of the relationships. We used a random forest analysis to rank the importance of different variables related to conservation preferences and opportunity drivers, and an evenness metric to quantify representativeness. Results We find that protection at a global level is primarily driven by the opportunities provided by isolation and a low population density (variable importance = 34.6 and 19.9, respectively). Preferences play a secondary role, with a bias towards tourism attractiveness and proximity to international borders (variable importance = 12.7 and 3.4, respectively). Opportunities shape protection strongly in “North America & Australia–NZ” and “Latin America & Caribbean,” while the importance of the representativeness of biophysical environments is higher in “Sub-Saharan Africa” (1.3 times the average of other regions). Discussion Environmental representativeness and biodiversity protection are top priorities in land conservation agendas. However, our results suggest that they have been minor players driving current protection at both global and regional levels. Attempts to increase their relevance will necessarily have to recognize the predominant opportunistic nature that the establishment of protected areas has had until present times. PMID:28229022

  2. Local and global genetic diversity of protozoan parasites: Spatial distribution of Cryptosporidium and Giardia genotypes.

    PubMed

    Garcia-R, Juan C; French, Nigel; Pita, Anthony; Velathanthiri, Niluka; Shrestha, Rima; Hayman, David

    2017-07-01

    Cryptosporidiosis and giardiasis are recognized as significant enteric diseases due to their long-term health effects in humans and their economic impact in agriculture and medical care. Molecular analysis is essential to identify species and genotypes causing these infectious diseases and provides a potential tool for monitoring. This study uses information on species and genetic variants to gain insights into the geographical distribution and spatial patterns of Cryptosporidium and Giardia parasites. Here, we describe the population heterogeneity of genotypic groups within Cryptosporidium and Giardia present in New Zealand using gp60 and gdh markers to compare the observed variation with other countries around the globe. Four species of Cryptosporidium (C. hominis, C. parvum, C. cuniculus and C. erinacei) and one species of Giardia (G. intestinalis) were identified. These species have been reported worldwide and there are not unique Cryptosporidium gp60 subtype families and Giardia gdh assemblages in New Zealand, most likely due to high gene flow of historical and current human activity (travel and trade) and persistence of large host population sizes. The global analysis revealed that genetic variants of these pathogens are widely distributed. However, genetic variation is underestimated by data biases (e.g. neglected submission of sequences to genetic databases) and low sampling. New genotypes are likely to be discovered as sampling efforts increase according to accumulation prediction analyses, especially for C. parvum. Our study highlights the need for greater sampling and archiving of genotypes globally to allow comparative analyses that help understand the population dynamics of these protozoan parasites. Overall our study represents a comprehensive overview for exploring local and global protozoan genotype diversity and advances our understanding of the importance for surveillance and potential risk associated with these infectious diseases.

  3. 1-km Global Anthropogenic Heat Flux Database for Urban Climate Studies

    NASA Astrophysics Data System (ADS)

    Dong, Y.; Varquez, A. C. G.; Kanda, M.

    2016-12-01

    Among various factors contributing to warming in cities, anthropogenic heat emission (AHE), defined by heat fluxes arising from human consumption of energy, has the most obvious influence. Despite this, estimation of the AHE distribution is challenging and assumed almost uniform in investigations of the regional atmospheric environment. In this study, we introduce a top-down method for estimating a global distribution of AHE (see attachment), with a high spatial resolution of 30 arc-seconds and temporal resolution of 1 hour. Annual average AHE was derived from human metabolic heating and primary energy consumption, which was further divided into three components based on consumer sector: heat loss, heat emissions from industrial-related sectors and heat emissions from commercial, residential and transport sectors (CRT). The first and second components were equally distributed throughout the country and populated areas, respectively. Bulk AHE from the CRT was proportionally distributed using a global population dataset with a nighttime lights adjustment. An empirical function to estimate monthly fluctuations of AHE based on monthly temperatures was derived from various city measurements. Finally, a global AHE database was constructed for the year 2013. Comparisons between our proposed AHE and other existing datasets revealed that a problem of AHE underestimation at central urban areas existing in previous top-down models was significantly mitigated by the nighttime lights adjustment. A strong agreement in the monthly profiles of AHE between our database and other bottom-up datasets further proved the validity of our current methodology. Investigations of AHE in the 29 largest urban agglomerations globally highlighted that the share of heat emissions from CRT sectors to the total AHE at the city level was 40-95%, whereas the share of metabolic heating varied closely depending on the level of economic development in the city. Incorporation of our proposed AHE data into climate models will provide a more realistic representation of urban atmospheric environment, leading to a deeper understanding of urban climate change. Acknowledgment: This research was supported by the Environment Research and Technology Development Fund (S-14) of the Ministry of the Environment, Japan

  4. Global Distribution, Public Health and Clinical Impact of the Protozoan Pathogen Cryptosporidium

    PubMed Central

    Putignani, Lorenza; Menichella, Donato

    2010-01-01

    Cryptosporidium spp. are coccidians, oocysts-forming apicomplexan protozoa, which complete their life cycle both in humans and animals, through zoonotic and anthroponotic transmission, causing cryptosporidiosis. The global burden of this disease is still underascertained, due to a conundrum transmission modality, only partially unveiled, and on a plethora of detection systems still inadequate or only partially applied for worldwide surveillance. In children, cryptosporidiosis encumber is even less recorded and often misidentified due to physiological reasons such as early-age unpaired immunological response. Furthermore, malnutrition in underdeveloped countries or clinical underestimation of protozoan etiology in developed countries contribute to the underestimation of the worldwide burden. Principal key indicators of the parasite distribution were associated to environmental (e.g., geographic and temporal clusters, etc.) and host determinants of the infection (e.g., age, immunological status, travels, community behaviours). The distribution was geographically mapped to provide an updated picture of the global parasite ecosystems. The present paper aims to provide, by a critical analysis of existing literature, a link between observational epidemiological records and new insights on public health, and diagnostic and clinical impact of cryptosporidiosis. PMID:20706669

  5. What commodities and countries impact inequality in the global food system?

    NASA Astrophysics Data System (ADS)

    Carr, Joel A.; D'Odorico, Paolo; Suweis, Samir; Seekell, David A.

    2016-09-01

    The global distribution of food production is unequal relative to the distribution of human populations. International trade can increase or decrease inequality in food availability, but little is known about how specific countries and commodities contribute to this redistribution. We present a method based on the Gini coefficient for evaluating the contributions of country and commodity specific trade to inequality in the global food system. We applied the method to global food production and trade data for the years 1986-2011 to identify the specific countries and commodities that contribute to increasing and decreasing inequality in global food availability relative to food production. Overall, international trade reduced inequality in food availability by 25%-33% relative to the distribution of food production, depending on the year. Across all years, about 58% of the total trade links acted to reduce inequality with ˜4% of the links providing 95% of the reduction in inequality. Exports from United States of America, Malaysia, Argentina, and Canada are particularly important in decreasing inequality. Specific commodities that reduce inequality when traded include cereals and vegetables. Some trade connections contribute to increasing inequality, but this effect is mostly concentrated within a small number of commodities including fruits, stimulants, and nuts. In terms of specific countries, exports from Slovenia, Oman, Singapore, and Germany act to increase overall inequality. Collectively, our analysis and results represent an opportunity for building an enhanced understanding of global-scale patterns in food availability.

  6. Functional differentiation of the human lumbar perivertebral musculature revisited by means of muscle fibre type composition.

    PubMed

    Hesse, Bettina; Fröber, Rosemarie; Fischer, Martin S; Schilling, Nadja

    2013-12-01

    Human back muscles have been classified as local stabilizers, global stabilizers and global mobilizers. This concept is supported by the distribution of slow and fast muscle fibres in quadrupedal mammals, but has not been evaluated for humans because detailed information on the fibre type composition of their perivertebral musculature is rare. Moreover, such information is derived from spot samples, which are assumed to be representative for the respective muscle. In accordance with the proposed classification, numerous studies in animals indicate great differences in the fibre distribution within and among the muscles due to fibre type regionalization. The aims of this study were to (1) qualitatively explore the applicability of the proposed functional classification for human back muscles by studying their fibre type composition and (2) evaluate the representativeness of spot sampling techniques. For this, the fibre type distribution of the whole lumbar perivertebral musculature of two male cadavers was investigated three-dimensionally using immunohistochemistry. Despite great local variations (e.g., among fascicles), all muscles were composed of about 50% slow and 50% fast fibres. Thus, contradicting the concepts of lumbar muscle function, no functional differentiation of the muscles was observed in our study of the muscle contractile properties. The great similarity in fibre composition among the muscles equips each muscle equally well for a broad range of tasks and therefore has the potential to allow for great functional versatility of the human back musculature. Spot samples do not prove to be representative for the whole muscle. The great intraspecific variability observed previously in single-spot samples is potentially misleading. Copyright © 2013 Elsevier GmbH. All rights reserved.

  7. TOXICITY AND BIOACCUMULATION OF PFOS IN A PARTIAL LIFE CYCLE TEST WITH THE NORTHERN LEOPARD FROG

    EPA Science Inventory

    A number of recent monitoring studies have demonstrated elevated concentrations of perfluorooctane sulfonate (PFOS) in humans and wildlife throughout the world. Although no longer actively manufactured, the global distribution and relative persistence of PFOS indicates a need to...

  8. DISTRIBUTION AND CAUSES OF GLOBAL FOREST FRAGMENTATION

    EPA Science Inventory

    Because human land uses tend to expand over time, forests that share a high proportion of their borders with anthropogenic uses are at higher risk of further degradation than forests that share a high proportion of their borders with non-forest, natural land cover (e.g. wetland)....

  9. Globalization of water and food through international trade: impacts on food security, resilience and justice

    NASA Astrophysics Data System (ADS)

    D'Odorico, P.; Carr, J. A.; Seekell, D. A.; Suweis, S. S.

    2015-12-01

    The global distribution of water resources in general depends on geographic conditions but can be (virtually) modified by humans through mechanisms of globalization, such as trade, that make food commodities available to populations living far from the production regions. While trade is expected to improve access to food and (virtual) water, its impact on the global food system and its vulnerability to shocks remains poorly understood. It is also unclear who benefits from trade and whether it contributes to inequality and justice in resource redistribution. We reconstruct the global patterns of food trade and show with a simple model how the ongoing intensification of imports and exports has eroded the resilience of the global food system. Drawing on human rights theory, we investigate the relationship between inequality and injustice in access to water and food. We assess the fulfillment of positive and negative water and food rights and evaluate the obligations arising from the need to ensure that these rights are met throughout the world. We find that trade enhances the vulnerability to shocks but overall increase the number of people whose water and food rights are met.

  10. Establishing the Global Fresh Water Sensor Web

    NASA Technical Reports Server (NTRS)

    Hildebrand, Peter H.

    2005-01-01

    This paper presents an approach to measuring the major components of the water cycle from space using the concept of a sensor-web of satellites that are linked to a data assimilation system. This topic is of increasing importance, due to the need for fresh water to support the growing human population, coupled with climate variability and change. The net effect is that water is an increasingly valuable commodity. The distribution of fresh water is highly uneven over the Earth, with both strong latitudinal distributions due to the atmospheric general circulation, and even larger variability due to landforms and the interaction of land with global weather systems. The annual global fresh water budget is largely a balance between evaporation, atmospheric transport, precipitation and runoff. Although the available volume of fresh water on land is small, the short residence time of water in these fresh water reservoirs causes the flux of fresh water - through evaporation, atmospheric transport, precipitation and runoff - to be large. With a total atmospheric water store of approx. 13 x 10(exp 12)cu m, and an annual flux of approx. 460 x 10(exp 12)cu m/y, the mean atmospheric residence time of water is approx. 10 days. River residence times are similar, biological are approx. 1 week, soil moisture is approx. 2 months, and lakes and aquifers are highly variable, extending from weeks to years. The hypothesized potential for redistribution and acceleration of the global hydrological cycle is therefore of concern. This hypothesized speed-up - thought to be associated with global warming - adds to the pressure placed upon water resources by the burgeoning human population, the variability of weather and climate, and concerns about anthropogenic impacts on global fresh water availability.

  11. Epidemiological and clinical aspects on West Nile virus, a globally emerging pathogen.

    PubMed

    David, Shoba; Abraham, Asha Mary

    2016-08-01

    Since the isolation of West Nile virus (WNV) in 1937, in Uganda, it has spread globally, causing significant morbidity and mortality. While birds serve as amplifier hosts, mosquitoes of the Culex genus function as vectors. Humans and horses are dead end hosts. The clinical manifestations of West Nile infection in humans range from asymptomatic illness to West Nile encephalitis. The laboratory offers an array of tests, the preferred method being detection of RNA and serum IgM for WNV, which, if detected, confirms the clinical diagnosis. Although no definitive antiviral therapy and vaccine are available for humans, many approaches are being studied. This article will review the current literature of the natural cycle, geographical distribution, virology, replication cycle, molecular epidemiology, pathogenesis, laboratory diagnosis, clinical manifestations, blood donor screening for WNV, treatment, prevention and vaccines.

  12. Characterizing worldwide patterns of fluvial geomorphology and hydrology with the Global River Widths from Landsat (GRWL) database

    NASA Astrophysics Data System (ADS)

    Allen, G. H.; Pavelsky, T.

    2015-12-01

    The width of a river reflects complex interactions between river water hydraulics and other physical factors like bank erosional resistance, sediment supply, and human-made structures. A broad range of fluvial process studies use spatially distributed river width data to understand and quantify flood hazards, river water flux, or fluvial greenhouse gas efflux. Ongoing technological advances in remote sensing, computing power, and model sophistication are moving river system science towards global-scale studies that aim to understand the Earth's fluvial system as a whole. As such, a global spatially distributed database of river location and width is necessary to better constrain these studies. Here we present the Global River Width from Landsat (GRWL) Database, the first global-scale database of river planform at mean discharge. With a resolution of 30 m, GRWL consists of 58 million measurements of river centerline location, width, and braiding index. In total, GRWL measures 2.1 million km of rivers wider than 30 m, corresponding to 602 thousand km2 of river water surface area, a metric used to calculate global greenhouse gas emissions from rivers to the atmosphere. Using data from GRWL, we find that ~20% of the world's rivers are located above 60ºN where little high quality information exists about rivers of any kind. Further, we find that ~10% of the world's large rivers are multichannel, which may impact the development of the new generation of regional and global hydrodynamic models. We also investigate the spatial controls of global fluvial geomorphology and river hydrology by comparing climate, topography, geology, and human population density to GRWL measurements. The GRWL Database will be made publically available upon publication to facilitate improved understanding of Earth's fluvial system. Finally, GRWL will be used as an a priori data for the joint NASA/CNES Surface Water and Ocean Topography (SWOT) Satellite Mission, planned for launch in 2020.

  13. Molecular epidemiology of oyster-related human noroviruses and their global genetic diversity and temporal-geographical distribution from 1983 to 2014.

    PubMed

    Yu, Yongxin; Cai, Hui; Hu, Linghao; Lei, Rongwei; Pan, Yingjie; Yan, Shuling; Wang, Yongjie

    2015-11-01

    Noroviruses (NoVs) are a leading cause of epidemic and sporadic cases of acute gastroenteritis worldwide. Oysters are well recognized as the main vectors of environmentally transmitted NoVs, and disease outbreaks linked to oyster consumption have been commonly observed. Here, to quantify the genetic diversity, temporal distribution, and circulation of oyster-related NoVs on a global scale, 1,077 oyster-related NoV sequences deposited from 1983 to 2014 were downloaded from both NCBI GenBank and the NoroNet outbreak database and were then screened for quality control. A total of 665 sequences with reliable information were obtained and were subsequently subjected to genotyping and phylogenetic analyses. The results indicated that the majority of oyster-related NoV sequences were obtained from coastal countries and regions and that the numbers of sequences in these regions were unevenly distributed. Moreover, >80% of human NoV genotypes were detected in oyster samples or oyster-related outbreaks. A higher proportion of genogroup I (GI) (34%) was observed for oyster-related sequences than for non-oyster-related outbreaks, where GII strains dominated with an overwhelming majority of >90%, indicating that the prevalences of GI and GII are different in humans and oysters. In addition, a related convergence of the circulation trend was found between oyster-related NoV sequences and human pandemic outbreaks. This suggests that oysters not only act as a vector of NoV through environmental transmission but also serve as an important reservoir of human NoVs. These results highlight the importance of oysters in the persistence and transmission of human NoVs in the environment and have important implications for the surveillance of human NoVs in oyster samples. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  14. Validation of NH3 satellite observations by ground-based FTIR measurements

    NASA Astrophysics Data System (ADS)

    Dammers, Enrico; Palm, Mathias; Van Damme, Martin; Shephard, Mark; Cady-Pereira, Karen; Capps, Shannon; Clarisse, Lieven; Coheur, Pierre; Erisman, Jan Willem

    2016-04-01

    Global emissions of reactive nitrogen have been increasing to an unprecedented level due to human activities and are estimated to be a factor four larger than pre-industrial levels. Concentration levels of NOx are declining, but ammonia (NH3) levels are increasing around the globe. While NH3 at its current concentrations poses significant threats to the environment and human health, relatively little is known about the total budget and global distribution. Surface observations are sparse and mainly available for north-western Europe, the United States and China and are limited by the high costs and poor temporal and spatial resolution. Since the lifetime of atmospheric NH3 is short, on the order of hours to a few days, due to efficient deposition and fast conversion to particulate matter, the existing surface measurements are not sufficient to estimate global concentrations. Advanced space-based IR-sounders such as the Tropospheric Emission Spectrometer (TES), the Infrared Atmospheric Sounding Interferometer (IASI), and the Cross-track Infrared Sounder (CrIS) enable global observations of atmospheric NH3 that help overcome some of the limitations of surface observations. However, the satellite NH3 retrievals are complex requiring extensive validation. Presently there have only been a few dedicated satellite NH3 validation campaigns performed with limited spatial, vertical or temporal coverage. Recently a retrieval methodology was developed for ground-based Fourier Transform Infrared Spectroscopy (FTIR) instruments to obtain vertical concentration profiles of NH3. Here we show the applicability of retrieved columns from nine globally distributed stations with a range of NH3 pollution levels to validate satellite NH3 products.

  15. Perceived temperature in the course of climate change: an analysis of global heat index from 1979-2013

    NASA Astrophysics Data System (ADS)

    Lee, D.; Brenner, T.

    2015-03-01

    The increase in global mean temperatures resulting from climate change has wide reaching consequences for the earth's ecosystems and other natural systems. Many studies have been devoted to evaluating the distribution and effects of these changes. We go a step further and evaluate global changes to the heat index, a measure of temperature as perceived by humans. Heat index, which is computed from temperature and relative humidity, is more important than temperature for the health of humans and other animals. Even in cases where the heat index does not reach dangerous levels from a health perspective, it has been shown to be an important factor in worker productivity and thus in economic productivity. We compute heat index from dewpoint temperature and absolute temperature 2 m above ground from the ERA-Interim reanalysis dataset for the years 1979-2013. The data is provided aggregated to daily minima, means and maxima (doi:10.1594/PANGAEA.841057). Furthermore, the data is temporally aggregated to monthly and yearly values and spatially aggregated to the level of countries after being weighted by population density in order to demonstrate its usefulness for the analysis of its impact on human health and productivity. The resulting data deliver insights into the spatiotemporal development of near-ground heat index during the course of the past 3 decades. It is shown that the impact of changing heat index is unevenly distributed through space and time, affecting some areas differently than others. The likelihood of dangerous heat index events has increased globally. Also, heat index climate groups that would formerly be expected closer to the tropics have spread latitudinally to include areas closer to the poles. The data can serve in future studies as a basis for evaluating and understanding the evolution of heat index in the course of climate change, as well as its impact on human health and productivity.

  16. Synthesis and biology of cyclic imine toxins, an emerging class of potent, globally distributed marine toxins.

    PubMed

    Stivala, Craig E; Benoit, Evelyne; Aráoz, Rómulo; Servent, Denis; Novikov, Alexei; Molgó, Jordi; Zakarian, Armen

    2015-03-01

    From a small group of exotic compounds isolated only two decades ago, Cyclic Imine (CI) toxins have become a major class of marine toxins with global distribution. Their distinct chemical structure, biological mechanism of action, and intricate chemistry ensures that CI toxins will continue to be the subject of fascinating fundamental studies in the broad fields of chemistry, chemical biology, and toxicology. The worldwide occurrence of potent CI toxins in marine environments, their accumulation in shellfish, and chemical stability are important considerations in assessing risk factors for human health. This review article aims to provide an account of chemistry, biology, and toxicology of CI toxins from their discovery to the present day.

  17. Inter-Philosophies Dialogue: Creating a Paradigm for Global Health Ethics.

    PubMed

    Benatar, Solomon; Daibes, Ibrahim; Tomsons, Sandra

    While debate remains about the definition and goals of work on global health, there is growing agreement that our moral starting point is the reality of unjust inequalities in the distribution of the conditions necessary for human health and well-being. With the growth of multi-jurisdictional and multicultural global health partnerships, the adequacy of the prevailing bioethical paradigm guiding the conduct of global health research and practice is being increasingly challenged. In response to ethical challenges and conflicts confronted by decision-makers in global health research and practice, we propose an innovative methodology that could be developed to bridge the gap between polarized systems of ideas and values (metaphysical, epistemological, moral, and political). Our inter-philosophies methodology provides the potential to construct a new, shared paradigm for global health ethics, thereby increasing the capacity for solidarity and shared decision-making in global health research and practice.

  18. Medical Genetics and the First Studies of the Genetics of Populations in Mexico

    PubMed Central

    Barahona, Ana

    2016-01-01

    Following World War II (WWII), there was a new emphasis within genetics on studying the genetic composition of populations. This probably had a dual source in the growing strength of evolutionary biology and the new international interest in understanding the effects of radiation on human populations, following the atomic bombings in Japan. These global concerns were shared by Mexican physicians. Indeed, Mexico was one of the leading centers of this trend in human genetics. Three leading players in this story were Mario Salazar Mallén, Adolfo Karl, and Rubén Lisker. Their trajectories and the international networks in human genetics that were established after WWII, paved the way for the establishment of medical and population genetics in Mexico. Salazar Mallén’s studies on the distribution and characterization of ABO blood groups in indigenous populations were the starting point while Karl’s studies on the distribution of abnormal hemoglobin in Mexican indigenous populations showed the relationships observed in other laboratories at the time. It was Lisker’s studies, however, that were instrumental in the development of population genetics in the context of national public policies for extending health care services to the Mexican population. In particular, he conducted studies on Mexican indigenous groups contributing to the knowledge of the biological diversity of human populations according to international trends that focused on the variability of human populations in terms of genetic frequencies. From the start, however, Lisker was as committed to the reconstruction of shared languages and practices as he was to building networks of collaboration in order to guarantee the necessary groundwork for establishing the study of the genetics of human populations in Mexico. This study also allows us to place Mexican science within a global context in which connected narratives describe the interplay between global trends and national contexts. PMID:27601615

  19. Medical Genetics and the First Studies of the Genetics of Populations in Mexico.

    PubMed

    Barahona, Ana

    2016-09-01

    Following World War II (WWII), there was a new emphasis within genetics on studying the genetic composition of populations. This probably had a dual source in the growing strength of evolutionary biology and the new international interest in understanding the effects of radiation on human populations, following the atomic bombings in Japan. These global concerns were shared by Mexican physicians. Indeed, Mexico was one of the leading centers of this trend in human genetics. Three leading players in this story were Mario Salazar Mallén, Adolfo Karl, and Rubén Lisker. Their trajectories and the international networks in human genetics that were established after WWII, paved the way for the establishment of medical and population genetics in Mexico. Salazar Mallén's studies on the distribution and characterization of ABO blood groups in indigenous populations were the starting point while Karl's studies on the distribution of abnormal hemoglobin in Mexican indigenous populations showed the relationships observed in other laboratories at the time. It was Lisker's studies, however, that were instrumental in the development of population genetics in the context of national public policies for extending health care services to the Mexican population. In particular, he conducted studies on Mexican indigenous groups contributing to the knowledge of the biological diversity of human populations according to international trends that focused on the variability of human populations in terms of genetic frequencies. From the start, however, Lisker was as committed to the reconstruction of shared languages and practices as he was to building networks of collaboration in order to guarantee the necessary groundwork for establishing the study of the genetics of human populations in Mexico. This study also allows us to place Mexican science within a global context in which connected narratives describe the interplay between global trends and national contexts. Copyright © 2016 by the Genetics Society of America.

  20. Surveillance for antibodies to Leishmania spp. in dogs from Sri Lanka and India

    USDA-ARS?s Scientific Manuscript database

    The global distribution of leishmaniasis is rapidly expanding into new geographic regions. Dogs are the primary reservoir hosts for human visceral leishmaniasis (VL) caused by infection with Leishmania infantum. Natural infections with other Leishmania species can occur in dogs, but their role as re...

  1. PARTIAL LIFE-CYCLE TOXICITY AND BIOCONCENTRATION MODELLING OF PERFLUOROOCTANE SULFONATE (PFOS) IN THE NORTHERN LEOPARD FROG (RANA PIPIENS)

    EPA Science Inventory

    A number of recent monitoring studies have demonstrated elevated concentrations of perfluorooctane sulfonate (PFOS) in humans and wildlife throughout the world. Although no longer manufactured in the U.S., the global distribution and relative persistence of PFOS indicates a need ...

  2. Population structure and phylogenetic relationships in a diverse panel of Brassica rapa L

    USDA-ARS?s Scientific Manuscript database

    The crop species Brassica rapa L. has significant economic importance around the globe. Crop domestication and improvement has resulted in extreme phenotypic diversity and subspecies that are used for oilseed, food for human consumption and fodder for livestock. However, the global distribution and ...

  3. Global distribution of minerals in arid soils as lower boundary condition in dust models

    NASA Astrophysics Data System (ADS)

    Nickovic, Slobodan

    2010-05-01

    Mineral dust eroded from arid soils affects the radiation budget of the Earth system, modifies ocean bioproductivity and influences human health. Dust aerosol is a complex mixture of minerals. Dust mineral composition has several potentially important impacts to environment and society. Iron and phosphorus embedded in mineral aerosol are essential for the primary marine productivity when dust deposits over the open ocean. Dust also acts as efficient agent for heterogeneous ice nucleation and this process is dependent on mineralogical structure of dust. Recent findings in medical geology indicate possible role of minerals to human health. In this study, a new 1-km global database was developed for several minerals (Illite, Kaolinite, Smectite, Calcite, Quartz, Feldspar, Hematite and Gypsum) embedded in clay and silt populations of arid soils. For the database generation, high-resolution data sets on soil textures, soil types and land cover was used. Tin addition to the selected minerals, phosphorus was also added whose geographical distribution was specified from compiled literature and data on soil types. The developed global database was used to specify sources of mineral fractions in the DREAM dust model and to simulate atmospheric paths of minerals and their potential impacts on marine biochemistry and tropospheric ice nucleation.

  4. Innovative Use of the Law to Address Complex Global Health Problems Comment on "The Legal Strength of International Health Instruments - What It Brings toGlobal Health Governance?"

    PubMed

    Walls, Helen L; Ooms, Gorik

    2017-05-20

    Addressing the increasingly globalised determinants of many important problems affecting human health is a complex task requiring collective action. We suggest that part of the solution to addressing intractable global health issues indeed lies with the role of new legal instruments in the form of globally binding treaties, as described in the recent article of Nikogosian and Kickbusch. However, in addition to the use of international law to develop new treaties, another part of the solution may lie in innovative use of existing legal instruments. A 2015 court ruling in The Hague, which ordered the Dutch government to cut greenhouse gas emissions by at least 25% within five years, complements this perspective, suggesting a way forward for addressing global health problems that critically involves civil society and innovative use of existing domestic legal instruments. © 2017 The Author(s); Published by Kerman University of Medical Sciences. This is an open-access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

  5. A fast global fitting algorithm for fluorescence lifetime imaging microscopy based on image segmentation.

    PubMed

    Pelet, S; Previte, M J R; Laiho, L H; So, P T C

    2004-10-01

    Global fitting algorithms have been shown to improve effectively the accuracy and precision of the analysis of fluorescence lifetime imaging microscopy data. Global analysis performs better than unconstrained data fitting when prior information exists, such as the spatial invariance of the lifetimes of individual fluorescent species. The highly coupled nature of global analysis often results in a significantly slower convergence of the data fitting algorithm as compared with unconstrained analysis. Convergence speed can be greatly accelerated by providing appropriate initial guesses. Realizing that the image morphology often correlates with fluorophore distribution, a global fitting algorithm has been developed to assign initial guesses throughout an image based on a segmentation analysis. This algorithm was tested on both simulated data sets and time-domain lifetime measurements. We have successfully measured fluorophore distribution in fibroblasts stained with Hoechst and calcein. This method further allows second harmonic generation from collagen and elastin autofluorescence to be differentiated in fluorescence lifetime imaging microscopy images of ex vivo human skin. On our experimental measurement, this algorithm increased convergence speed by over two orders of magnitude and achieved significantly better fits. Copyright 2004 Biophysical Society

  6. World-size global markets lead to economic instability.

    PubMed

    Louzoun, Yoram; Solomon, Sorin; Goldenberg, Jacob; Mazursky, David

    2003-01-01

    Economic and cultural globalization is one of the most important processes humankind has been undergoing lately. This process is assumed to be leading the world into a wealthy society with a better life. However, the current trend of globalization is not unprecedented in human history, and has had some severe consequences in the past. By applying a quantitative analysis through a microscopic representation we show that globalization, besides being unfair (with respect to wealth distribution), is also unstable and potentially dangerous as one event may lead to a collapse of the system. It is proposed that the optimal solution in controlling the unwanted aspects and enhancing the advantageous ones lies in limiting competition to large subregions, rather than making it worldwide.

  7. Autonomous Robot Navigation in Human-Centered Environments Based on 3D Data Fusion

    NASA Astrophysics Data System (ADS)

    Steinhaus, Peter; Strand, Marcus; Dillmann, Rüdiger

    2007-12-01

    Efficient navigation of mobile platforms in dynamic human-centered environments is still an open research topic. We have already proposed an architecture (MEPHISTO) for a navigation system that is able to fulfill the main requirements of efficient navigation: fast and reliable sensor processing, extensive global world modeling, and distributed path planning. Our architecture uses a distributed system of sensor processing, world modeling, and path planning units. In this arcticle, we present implemented methods in the context of data fusion algorithms for 3D world modeling and real-time path planning. We also show results of the prototypic application of the system at the museum ZKM (center for art and media) in Karlsruhe.

  8. Biological diversity and public health.

    PubMed

    Bernstein, Aaron S

    2014-01-01

    In the wake of a species extinction event unprecedented in human history, how the variety, distribution, and abundance of life on earth may influence health has gained credence as a worthy subject for research and study at schools of public health and for consideration among policy makers. This article reviews a few of the principal ways in which health depends on biodiversity, including the discovery of new medicines, biomedical research, the provision of food, and the distribution and spread of infections. It also examines how changes in biological diversity underlie much of the global burden of disease and how a more thorough understanding of life on earth and its relationships has the potential to greatly alleviate and prevent human suffering.

  9. What is the cost of a life in a disaster? - Examples, Practice and Global Analysis

    NASA Astrophysics Data System (ADS)

    Daniell, James; Kunz-Plapp, Tina; Schaefer, Andreas; Wenzel, Friedemann; Khazai, Bijan

    2015-04-01

    An analysis is presented based on historical evidence and global exposure metrics using the CATDAT Socioeconomic databases, in order to create a global distribution of the cost of life in a disaster using various metrics. Casualty insurance models require a value of life & mitigation and cost-benefit studies require a value of life in order to make decisions and set premiums. Although this is a contentious concept, there are two general approaches to human life costing: the first is based on human capital which looks at the production capacity and potential output as a proxy for future earning; the second looks at willingness to pay which estimates people's value on reducing risk and compensation payouts. A combination approach is used. For each of the 245 nations, a value of life is estimated using the following parameters:- (1) Age of people in a country using the life expectancy and distribution data in CATDAT (2) Output of the economy and wage distribution (3) Household and community interactions (4) Lost quality of life The range of statistical life costs are examined globally from different sources, with the range of a life value being from 10,000 up to in the order of 10 million between different countries. The difference of the cost for a fatality vs. that of a severe injury is also discussed with a severe injury often having higher costs than a fatality for loss purposes. The losses in terms of historical disasters are looked at and examined with the percentage of life cost shown as a proportion of total losses. The losses of a future major earthquake in a low seismicity region show some of the largest potential life cost losses with that of a M6.8 in Adelaide, Australia; having around 160 billion in life costs (25,000 deaths, 15,000 severe injuries). This study has benefits post-disaster for quantification of human capital losses in major disasters, and pre-disaster for the analysis of insurance and mitigation options.

  10. Clonal group distribution of fluoroquinolone-resistant Escherichia coli among humans and companion animals in Australia.

    PubMed

    Platell, Joanne L; Cobbold, Rowland N; Johnson, James R; Trott, Darren J

    2010-09-01

    To determine the phylogenetic group distribution and prevalence of three major globally disseminated clonal groups [clonal group A (CGA) and O15:K52:H1, associated with phylogenetic group D, and sequence type ST131, associated with phylogenetic group B2] among fluoroquinolone-resistant extra-intestinal Escherichia coli isolates from humans and companion animals in Australia. Clinical extra-intestinal fluoroquinolone-resistant E. coli isolates were obtained from humans (n = 582) and companion animals (n = 125), on Australia's east coast (October 2007-October 2009). Isolates were tested for susceptibility to seven antimicrobial agents, and for phylogenetic group, O type and clonal-group-specific single nucleotide polymorphisms by PCR. The fluoroquinolone-resistant isolates were typically resistant to multiple agents (median of four). Analysis revealed that clonal group ST131 accounted for a large subset of the human isolates (202/585, 35%), but for a much smaller proportion of the companion animal isolates (9/125, 7.2%; P

  11. Genetic Diversity and Distribution of Blastocystis Subtype 3 in Human Populations, with Special Reference to a Rural Population in Central Mexico

    PubMed Central

    Serrano-Vázquez, Angélica; Pérez-Juárez, Horacio; Poot-Hernández, Augusto C.; González, Enrique; Hernández, Eric; Nieves-Ramírez, Miriam E.; Magaña, Ulises; Eguiarte, Luis E.; Piñero, Daniel

    2018-01-01

    Blastocystis subtype 3 (ST3) is a parasitic protist found in the digestive tract of symptomatic and asymptomatic humans around the world. While this parasite exhibits a high prevalence in the human population, its true geographic distribution and global genetic diversity are still unknown. This gap in knowledge limits the understanding of the spread mechanisms, epidemiology, and impact that this parasite has on human populations. Herein, we provided new data on the geographical distribution and genetic diversity of Blastocystis ST3 from a rural human population in Mexico. To do so, we collected and targeted the SSU-rDNA region in fecal samples from this population and further compared its genetic diversity and structure with that previously observed in populations of Blastocystis ST3 from other regions of the planet. Our analyses reveled that diversity of Blastocystis ST3 showed a high haplotype diversity and genetic structure to the world level; however, they were low in the Morelos population. The haplotype network revealed a common widespread haplotype from which the others were generated recently. Finally, our results suggested a recent expansion of the diversity of Blastocystis ST3 worldwide. PMID:29744356

  12. Genetic Diversity and Distribution of Blastocystis Subtype 3 in Human Populations, with Special Reference to a Rural Population in Central Mexico.

    PubMed

    Rojas-Velázquez, Liliana; Morán, Patricia; Serrano-Vázquez, Angélica; Fernández, Leonardo D; Pérez-Juárez, Horacio; Poot-Hernández, Augusto C; Portillo, Tobías; González, Enrique; Hernández, Eric; Partida-Rodríguez, Oswaldo; Nieves-Ramírez, Miriam E; Magaña, Ulises; Torres, Javier; Eguiarte, Luis E; Piñero, Daniel; Ximénez, Cecilia

    2018-01-01

    Blastocystis subtype 3 (ST3) is a parasitic protist found in the digestive tract of symptomatic and asymptomatic humans around the world. While this parasite exhibits a high prevalence in the human population, its true geographic distribution and global genetic diversity are still unknown. This gap in knowledge limits the understanding of the spread mechanisms, epidemiology, and impact that this parasite has on human populations. Herein, we provided new data on the geographical distribution and genetic diversity of Blastocystis ST3 from a rural human population in Mexico. To do so, we collected and targeted the SSU-rDNA region in fecal samples from this population and further compared its genetic diversity and structure with that previously observed in populations of Blastocystis ST3 from other regions of the planet. Our analyses reveled that diversity of Blastocystis ST3 showed a high haplotype diversity and genetic structure to the world level; however, they were low in the Morelos population. The haplotype network revealed a common widespread haplotype from which the others were generated recently. Finally, our results suggested a recent expansion of the diversity of Blastocystis ST3 worldwide.

  13. Hantavirus infection: a global zoonotic challenge.

    PubMed

    Jiang, Hong; Zheng, Xuyang; Wang, Limei; Du, Hong; Wang, Pingzhong; Bai, Xuefan

    2017-02-01

    Hantaviruses are comprised of tri-segmented negative sense single-stranded RNA, and are members of the Bunyaviridae family. Hantaviruses are distributed worldwide and are important zoonotic pathogens that can have severe adverse effects in humans. They are naturally maintained in specific reservoir hosts without inducing symptomatic infection. In humans, however, hantaviruses often cause two acute febrile diseases, hemorrhagic fever with renal syndrome (HFRS) and hantavirus cardiopulmonary syndrome (HCPS). In this paper, we review the epidemiology and epizootiology of hantavirus infections worldwide.

  14. Global Pyrogeography: the Current and Future Distribution of Wildfire

    PubMed Central

    Krawchuk, Meg A.; Moritz, Max A.; Parisien, Marc-André; Van Dorn, Jeff; Hayhoe, Katharine

    2009-01-01

    Climate change is expected to alter the geographic distribution of wildfire, a complex abiotic process that responds to a variety of spatial and environmental gradients. How future climate change may alter global wildfire activity, however, is still largely unknown. As a first step to quantifying potential change in global wildfire, we present a multivariate quantification of environmental drivers for the observed, current distribution of vegetation fires using statistical models of the relationship between fire activity and resources to burn, climate conditions, human influence, and lightning flash rates at a coarse spatiotemporal resolution (100 km, over one decade). We then demonstrate how these statistical models can be used to project future changes in global fire patterns, highlighting regional hotspots of change in fire probabilities under future climate conditions as simulated by a global climate model. Based on current conditions, our results illustrate how the availability of resources to burn and climate conditions conducive to combustion jointly determine why some parts of the world are fire-prone and others are fire-free. In contrast to any expectation that global warming should necessarily result in more fire, we find that regional increases in fire probabilities may be counter-balanced by decreases at other locations, due to the interplay of temperature and precipitation variables. Despite this net balance, our models predict substantial invasion and retreat of fire across large portions of the globe. These changes could have important effects on terrestrial ecosystems since alteration in fire activity may occur quite rapidly, generating ever more complex environmental challenges for species dispersing and adjusting to new climate conditions. Our findings highlight the potential for widespread impacts of climate change on wildfire, suggesting severely altered fire regimes and the need for more explicit inclusion of fire in research on global vegetation-climate change dynamics and conservation planning. PMID:19352494

  15. Demographic controls of future global fire risk

    NASA Astrophysics Data System (ADS)

    Knorr, W.; Arneth, A.; Jiang, L.

    2016-08-01

    Wildfires are an important component of terrestrial ecosystem ecology but also a major natural hazard to societies, and their frequency and spatial distribution must be better understood. At a given location, risk from wildfire is associated with the annual fraction of burned area, which is expected to increase in response to climate warming. Until recently, however, only a few global studies of future fire have considered the effects of other important global environmental change factors such as atmospheric CO2 levels and human activities, and how these influence fires in different regions. Here, we contrast the impact of climate change and increasing atmospheric CO2 content on burned area with that of demographic dynamics, using ensembles of climate simulations combined with historical and projected population changes under different socio-economic development pathways for 1901-2100. Historically, humans notably suppressed wildfires. For future scenarios, global burned area will continue to decline under a moderate emissions scenario, except for low population growth and fast urbanization, but start to increase again from around mid-century under high greenhouse gas emissions. Contrary to common perception, we find that human exposure to wildfires increases in the future mainly owing to projected population growth in areas with frequent wildfires, rather than by a general increase in burned area.

  16. Inbred rats as a model to study persistent renal colonization and associated cellular immune responsiveness

    USDA-ARS?s Scientific Manuscript database

    Pathogenic species of Leptospira cause leptospirosis, a bacterial zoonotic disease with a global distribution affecting over one million people annually. Rats are regarded as one of the most significant reservoir hosts of infection for human disease, and in the absence of clinical signs of infection...

  17. Biodiversity and productivity

    Treesearch

    M.R. Willig

    2011-01-01

    Researchers predict that human activities especially landscape modification and climate change will have a considerable impact on the distribution and abundance of species at local, regional, and global scales in the 21st century ( 1, 2). This is a concern for a number of reasons, including the potential loss of goods and services that biodiversity provides to people...

  18. AROMATASE-B (CYP 19B) EXPRESSION IN FATHEAD MINNOWS (PIMEPHALES PROMELAS) EXPOSED TO PERFLUOROOCTANE (PFOS) AND THE AROMATASE INHIBITOR FADROZOLE

    EPA Science Inventory

    Perfluorooctane sulfonate (PFOS) is a fluorinated organic contaminant that is globally distributed in both humans and wildlife. PFOS belongs to a family of perfluorinated sulfonates that are highly persistent in the environment and have been commercially produced for over 40 year...

  19. Distributed Leadership to Support PLCs in Asian Pragmatic Singapore Schools

    ERIC Educational Resources Information Center

    Hairon, Salleh; Goh, Jonathan Wee Pin; Lin, Tzu-Bin

    2014-01-01

    Nation states around the world, including Singapore, are endeavouring to reform their education systems in order to successfully compete in the global economy (Carnoy, 1999). With human capital as Singapore's primary resource, it is unsurprising that the state has placed great emphasis on strengthening the economic-education nexus. This tight…

  20. The effects of spatial population dataset choice on estimates of population at risk of disease

    PubMed Central

    2011-01-01

    Background The spatial modeling of infectious disease distributions and dynamics is increasingly being undertaken for health services planning and disease control monitoring, implementation, and evaluation. Where risks are heterogeneous in space or dependent on person-to-person transmission, spatial data on human population distributions are required to estimate infectious disease risks, burdens, and dynamics. Several different modeled human population distribution datasets are available and widely used, but the disparities among them and the implications for enumerating disease burdens and populations at risk have not been considered systematically. Here, we quantify some of these effects using global estimates of populations at risk (PAR) of P. falciparum malaria as an example. Methods The recent construction of a global map of P. falciparum malaria endemicity enabled the testing of different gridded population datasets for providing estimates of PAR by endemicity class. The estimated population numbers within each class were calculated for each country using four different global gridded human population datasets: GRUMP (~1 km spatial resolution), LandScan (~1 km), UNEP Global Population Databases (~5 km), and GPW3 (~5 km). More detailed assessments of PAR variation and accuracy were conducted for three African countries where census data were available at a higher administrative-unit level than used by any of the four gridded population datasets. Results The estimates of PAR based on the datasets varied by more than 10 million people for some countries, even accounting for the fact that estimates of population totals made by different agencies are used to correct national totals in these datasets and can vary by more than 5% for many low-income countries. In many cases, these variations in PAR estimates comprised more than 10% of the total national population. The detailed country-level assessments suggested that none of the datasets was consistently more accurate than the others in estimating PAR. The sizes of such differences among modeled human populations were related to variations in the methods, input resolution, and date of the census data underlying each dataset. Data quality varied from country to country within the spatial population datasets. Conclusions Detailed, highly spatially resolved human population data are an essential resource for planning health service delivery for disease control, for the spatial modeling of epidemics, and for decision-making processes related to public health. However, our results highlight that for the low-income regions of the world where disease burden is greatest, existing datasets display substantial variations in estimated population distributions, resulting in uncertainty in disease assessments that utilize them. Increased efforts are required to gather contemporary and spatially detailed demographic data to reduce this uncertainty, particularly in Africa, and to develop population distribution modeling methods that match the rigor, sophistication, and ability to handle uncertainty of contemporary disease mapping and spread modeling. In the meantime, studies that utilize a particular spatial population dataset need to acknowledge the uncertainties inherent within them and consider how the methods and data that comprise each will affect conclusions. PMID:21299885

  1. Testing the hypothesis on cognitive evolution of modern humans' learning ability: current status of past-climatic approaches.

    NASA Astrophysics Data System (ADS)

    Yoneda, Minoru; Abe-Ouchi, Ayako; Kawahata, Hodaka; Yokoyama, Yusuke; Oguchi, Takashi

    2014-05-01

    The impact of climate change on human evolution is important and debating topic for many years. Since 2010, we have involved in a general joint project entitled "Replacement of Neanderthal by Modern Humans: Testing Evolutional Models of Learning", which based on a theoretical prediction that the cognitive ability related to individual and social learning divide fates of ancient humans in very unstable Late Pleistocene climate. This model predicts that the human populations which experienced a series of environmental changes would have higher rate of individual learners, while detailed reconstructions of global climate change have reported fluent and drastic change based on ice cores and stalagmites. However, we want to understand the difference between anatomically modern human which survived and the other archaic extinct humans including European Neanderthals and Asian Denisovans. For this purpose the global synchronized change is not useful for understanding but the regional difference in the amplitude and impact of climate change is the information required. Hence, we invited a geophysicist busing Global Circulation Model to reconstruct the climatic distribution and temporal change in a continental scale. At the same time, some geochemists and geographers construct a database of local climate changes recorded in different proxies. At last, archaeologists and anthropologists tried to interpret the emergence and disappearance of human species in Europe and Asia on the reconstructed past climate maps using some tools, such as Eco-cultural niche model. Our project will show the regional difference in climate change and related archaeological events and its impact on the evolution of learning ability of modern humans.

  2. A hydrological emulator for global applications - HE v1.0.0

    NASA Astrophysics Data System (ADS)

    Liu, Yaling; Hejazi, Mohamad; Li, Hongyi; Zhang, Xuesong; Leng, Guoyong

    2018-03-01

    While global hydrological models (GHMs) are very useful in exploring water resources and interactions between the Earth and human systems, their use often requires numerous model inputs, complex model calibration, and high computation costs. To overcome these challenges, we construct an efficient open-source and ready-to-use hydrological emulator (HE) that can mimic complex GHMs at a range of spatial scales (e.g., basin, region, globe). More specifically, we construct both a lumped and a distributed scheme of the HE based on the monthly abcd model to explore the tradeoff between computational cost and model fidelity. Model predictability and computational efficiency are evaluated in simulating global runoff from 1971 to 2010 with both the lumped and distributed schemes. The results are compared against the runoff product from the widely used Variable Infiltration Capacity (VIC) model. Our evaluation indicates that the lumped and distributed schemes present comparable results regarding annual total quantity, spatial pattern, and temporal variation of the major water fluxes (e.g., total runoff, evapotranspiration) across the global 235 basins (e.g., correlation coefficient r between the annual total runoff from either of these two schemes and the VIC is > 0.96), except for several cold (e.g., Arctic, interior Tibet), dry (e.g., North Africa) and mountainous (e.g., Argentina) regions. Compared against the monthly total runoff product from the VIC (aggregated from daily runoff), the global mean Kling-Gupta efficiencies are 0.75 and 0.79 for the lumped and distributed schemes, respectively, with the distributed scheme better capturing spatial heterogeneity. Notably, the computation efficiency of the lumped scheme is 2 orders of magnitude higher than the distributed one and 7 orders more efficient than the VIC model. A case study of uncertainty analysis for the world's 16 basins with top annual streamflow is conducted using 100 000 model simulations, and it demonstrates the lumped scheme's extraordinary advantage in computational efficiency. Our results suggest that the revised lumped abcd model can serve as an efficient and reasonable HE for complex GHMs and is suitable for broad practical use, and the distributed scheme is also an efficient alternative if spatial heterogeneity is of more interest.

  3. Brucellosis update in Libya and regional prospective

    PubMed Central

    Ahmed, Mohamed O; Abouzeed, Yousef M; Bennour, Emad M; van Velkinburgh, Jennifer C

    2015-01-01

    Brucellosis is a global bacterial zoonosis responsible for high morbidity in humans and significant livestock economic losses. While brucellosis remains a public health concern worldwide, its global geographic distribution is variable, largely due to different management schemes; however, paucity of information renders the status of brucellosis unclear and incomplete in many countries, especially those with low income and under-developed infrastructure. This short article summarizes and discusses recent important updates on brucellosis from the North African countries, with a particular brief emphasis on the current status and recent updates in Libya. PMID:25578285

  4. Brucellosis update in Libya and regional prospective.

    PubMed

    Ahmed, Mohamed O; Abouzeed, Yousef M; Bennour, Emad M; van Velkinburgh, Jennifer C

    2015-02-01

    Brucellosis is a global bacterial zoonosis responsible for high morbidity in humans and significant livestock economic losses. While brucellosis remains a public health concern worldwide, its global geographic distribution is variable, largely due to different management schemes; however, paucity of information renders the status of brucellosis unclear and incomplete in many countries, especially those with low income and under-developed infrastructure. This short article summarizes and discusses recent important updates on brucellosis from the North African countries, with a particular brief emphasis on the current status and recent updates in Libya.

  5. Scientific Assessment of the Effects of Global Change on the United States: A Report of the Committee on Environment and Natural Resources, National Science and Technology Council

    DTIC Science & Technology

    2008-05-01

    Combined heating and cooling 186 V.7.b Energy production and distribution 187 Fossil and nuclear energy 190 Renewable energy 191 Extreme events 193...Period’) and a relatively cold period (or ‘Little Ice Age ’) centered around 1700 are evident. (Figure IV.6 shows the aggregate results from several...warming leading out of ice ages (NRC, 2002). IV. Trends and Projections of Global Environmental Change 95 • Greenhouse warming and other human

  6. Global molecular epidemiology and genetic diversity of Fusarium, a significant emerging group of human opportunists from 1958 to 2015.

    PubMed

    Al-Hatmi, Abdullah Ms; Hagen, Ferry; Menken, Steph Bj; Meis, Jacques F; de Hoog, G Sybren

    2016-12-07

    Fusarium is a rapidly emerging, multidrug-resistant genus of fungal opportunists that was first identified in 1958 and is presently recognized in numerous cases of fusariosis each year. The authors examined trends in global Fusarium distribution, clinical presentation and prevalence since 1958 with the assumption that their distributions in each region had remained unaltered. The phylogeny and epidemiology of 127 geographically diverse isolates, representing 26 Fusarium species, were evaluated using partial sequences of the RPB2 and TEF1 genes, and compared with AFLP fingerprinting data. The molecular data of the Fusarium species were compared with archived data, which enabled the interpretation of hundreds of cases published in the literature. Our findings indicate that fusariosis is globally distributed with a focus in (sub)tropical areas. Considerable species diversity has been observed; genotypic features did not reveal any clustering with either the clinical data or environmental origins. This study suggests that infections with Fusarium species might be truly opportunistic. The three most common species are F. falciforme and F. keratoplasticum (members of F. solani species complex), followed by F. oxysporum (F. oxysporum species complex).

  7. Global molecular epidemiology and genetic diversity of Fusarium, a significant emerging group of human opportunists from 1958 to 2015

    PubMed Central

    Al-Hatmi, Abdullah MS; Hagen, Ferry; Menken, Steph BJ; Meis, Jacques F; de Hoog, G Sybren

    2016-01-01

    Fusarium is a rapidly emerging, multidrug-resistant genus of fungal opportunists that was first identified in 1958 and is presently recognized in numerous cases of fusariosis each year. The authors examined trends in global Fusarium distribution, clinical presentation and prevalence since 1958 with the assumption that their distributions in each region had remained unaltered. The phylogeny and epidemiology of 127 geographically diverse isolates, representing 26 Fusarium species, were evaluated using partial sequences of the RPB2 and TEF1 genes, and compared with AFLP fingerprinting data. The molecular data of the Fusarium species were compared with archived data, which enabled the interpretation of hundreds of cases published in the literature. Our findings indicate that fusariosis is globally distributed with a focus in (sub)tropical areas. Considerable species diversity has been observed; genotypic features did not reveal any clustering with either the clinical data or environmental origins. This study suggests that infections with Fusarium species might be truly opportunistic. The three most common species are F. falciforme and F. keratoplasticum (members of F. solani species complex), followed by F. oxysporum (F. oxysporum species complex). PMID:27924809

  8. Urbanization Impacts on River Landscapes in a Global Context

    NASA Astrophysics Data System (ADS)

    Chin, A.

    2005-12-01

    A half century ago, Strahler (1956) and Leopold (1956) pointed attention to the reality of human impacts on river systems, outlining erosion and aggradation as system responses when steady state is disturbed by human activity, and linking river channel adjustments to changes in sediment yield owing to land use alterations. Significant advances have been made along these lines in the years since, with intensified research efforts producing a voluminous literature documenting a range of human impacts on fluvial geomorphology. This paper summarizes the progress made on understanding the impacts of urban development on river landscapes, with emphasis on the distribution of such impacts in a global context. Drawing from a database developed from published literature representing a range of world areas, the analysis quantifies the magnitude and direction of urban-induced change in a comparative context, evaluates how impacts vary with locale and scale, and assesses the persistence of such impacts across locales and scales. Results indicate high variability both in magnitude and persistence of impacts. The spatial distribution of research investigations has also been markedly uneven, with input to theory development having come from a limited number of sites. Substantial areas across the earth surface remain blind spots in this context; future investigations might serve the science best if they are conducted in some of these locations.

  9. The constructal law and the evolution of design in nature.

    PubMed

    Bejan, Adrian; Lorente, Sylvie

    2011-10-01

    The constructal law accounts for the universal phenomenon of generation and evolution of design (configuration, shape, structure, pattern, rhythm). This phenomenon is observed across the board, in animate, inanimate and human systems. The constructal law states the time direction of the evolutionary design phenomenon. It defines the concept of design evolution in physics. Along with the first and second law, the constructal law elevates thermodynamics to a science of systems with configuration. In this article we review the more recent work of our group, with emphasis on the advances made with the constructal law in the natural sciences. Highlighted are the oneness of animate and inanimate designs, the origin of finite-size organs on animals and vehicles, the flow of stresses as the generator of design in solid structures (skeletons, vegetation), the universality and rigidity of hierarchy in all flow systems, and the global design of human flows. Noteworthy is the tapestry of distributed energy systems, which balances nodes of production with networks of distribution on the landscape, and serves as key to energy sustainability and empowerment. At the global level, the constructal law accounts for the geography and design of human movement, wealth and communications. Copyright © 2011 Elsevier B.V. All rights reserved.

  10. Assessing the risk zones of Chagas' disease in Chile, in a world marked by global climatic change

    PubMed Central

    Tapia-Garay, Valentina; Figueroa, Daniela P; Maldonado, Ana; Frías-Laserre, Daniel; Gonzalez, Christian R; Parra, Alonso; Canals, Lucia; Apt, Werner; Alvarado, Sergio; Cáceres, Dante; Canals, Mauricio

    2018-01-01

    BACKGROUND Vector transmission of Trypanosoma cruzi appears to be interrupted in Chile; however, data show increasing incidence of Chagas' disease, raising concerns that there may be a reemerging problem. OBJECTIVE To estimate the actual risk in a changing world it is necessary to consider the historical vector distribution and correlate this distribution with the presence of cases and climate change. METHODS Potential distribution models of Triatoma infestans and Chagas disease were performed using Maxent, a machine-learning method. FINDINGS Climate change appears to play a major role in the reemergence of Chagas' disease and T. infestans in Chile. The distribution of both T. infestans and Chagas' disease correlated with maximum temperature, and the precipitation during the driest month. The overlap of Chagas' disease and T. infestans distribution areas was high. The distribution of T. infestans, under two global change scenarios, showed a minimal reduction tendency in suitable areas. MAIN CONCLUSION The impact of temperature and precipitation on the distribution of T. infestans, as shown by the models, indicates the need for aggressive control efforts; the current control measures, including T. infestans control campaigns, should be maintained with the same intensity as they have at present, avoiding sylvatic foci, intrusions, and recolonisation of human dwellings. PMID:29211105

  11. Local Patterns to Global Architectures: Influences of Network Topology on Human Learning.

    PubMed

    Karuza, Elisabeth A; Thompson-Schill, Sharon L; Bassett, Danielle S

    2016-08-01

    A core question in cognitive science concerns how humans acquire and represent knowledge about their environments. To this end, quantitative theories of learning processes have been formalized in an attempt to explain and predict changes in brain and behavior. We connect here statistical learning approaches in cognitive science, which are rooted in the sensitivity of learners to local distributional regularities, and network science approaches to characterizing global patterns and their emergent properties. We focus on innovative work that describes how learning is influenced by the topological properties underlying sensory input. The confluence of these theoretical approaches and this recent empirical evidence motivate the importance of scaling-up quantitative approaches to learning at both the behavioral and neural levels. Copyright © 2016 Elsevier Ltd. All rights reserved.

  12. Resource acquisition, distribution and end-use efficiencies and the growth of industrial society

    NASA Astrophysics Data System (ADS)

    Jarvis, A. J.; Jarvis, S. J.; Hewitt, C. N.

    2015-10-01

    A key feature of the growth of industrial society is the acquisition of increasing quantities of resources from the environment and their distribution for end-use. With respect to energy, the growth of industrial society appears to have been near-exponential for the last 160 years. We provide evidence that indicates that the global distribution of resources that underpins this growth may be facilitated by the continual development and expansion of near-optimal directed networks (roads, railways, flight paths, pipelines, cables etc.). However, despite this continual striving for optimisation, the distribution efficiencies of these networks must decline over time as they expand due to path lengths becoming longer and more tortuous. Therefore, to maintain long-term exponential growth the physical limits placed on the distribution networks appear to be counteracted by innovations deployed elsewhere in the system, namely at the points of acquisition and end-use of resources. We postulate that the maintenance of the growth of industrial society, as measured by global energy use, at the observed rate of ~ 2.4 % yr-1 stems from an implicit desire to optimise patterns of energy use over human working lifetimes.

  13. Chemical, Mineralogical, and Physical Properties of Martian Dust and Soil

    NASA Technical Reports Server (NTRS)

    Ming, D. W.; Morris, R. V.

    2017-01-01

    Global and regional dust storms on Mars have been observed from Earth-based telescopes, Mars orbiters, and surface rovers and landers. Dust storms can be global and regional. Dust is material that is suspended into the atmosphere by winds and has a particle size of 1-3 micrometer. Planetary scientist refer to loose unconsolidated materials at the surface as "soil." The term ''soil'' is used here to denote any loose, unconsolidated material that can be distinguished from rocks, bedrock, or strongly cohesive sediments. No implication for the presence or absence of organic materials or living matter is intended. Soil contains local and regional materials mixed with the globally distributed dust by aeolian processes. Loose, unconsolidated surface materials (dust and soil) may pose challenges for human exploration on Mars. Dust will no doubt adhere to spacesuits, vehicles, habitats, and other surface systems. What will be the impacts on human activity? The objective of this paper is to review the chemical, mineralogical, and physical properties of the martian dust and soil.

  14. Imaging three-dimensional innervation zone distribution in muscles from M-wave recordings

    NASA Astrophysics Data System (ADS)

    Zhang, Chuan; Peng, Yun; Liu, Yang; Li, Sheng; Zhou, Ping; Zev Rymer, William; Zhang, Yingchun

    2017-06-01

    Objective. To localize neuromuscular junctions in skeletal muscles in vivo which is of great importance in understanding, diagnosing and managing of neuromuscular disorders. Approach. A three-dimensional global innervation zone imaging technique was developed to characterize the global distribution of innervation zones, as an indication of the location and features of neuromuscular junctions, using electrically evoked high-density surface electromyogram recordings. Main results. The performance of the technique was evaluated in the biceps brachii of six intact human subjects. The geometric centers of the distributions of the reconstructed innervation zones were determined with a mean distance of 9.4  ±  1.4 cm from the reference plane, situated at the medial epicondyle of the humerus. A mean depth was calculated as 1.5  ±  0.3 cm from the geometric centers to the closed points over the skin. The results are consistent with those reported in previous histology studies. It was also found that the volumes and distributions of the reconstructed innervation zones changed as the stimulation intensities increased until the supramaximal muscle response was achieved. Significance. Results have demonstrated the high performance of the proposed imaging technique in noninvasively imaging global distributions of the innervation zones in the three-dimensional muscle space in vivo, and the feasibility of its clinical applications, such as guiding botulinum toxin injections in spasticity management, or in early diagnosis of neurodegenerative progression of amyotrophic lateral sclerosis.

  15. Mic Flocks in the Cloud: Harnessing Mobile Ubiquitous Sensor Networks

    NASA Astrophysics Data System (ADS)

    Garces, M. A.; Christe, A.

    2015-12-01

    Smartphones provide a commercial, off-the-shelf solution to capture, store, analyze, and distribute infrasound using on-board or external microphones (mics) as well as on-board barometers. Free iOS infrasound apps can be readily downloaded from the Apple App Store, and Android versions are in progress. Infrasound propagates for great distances, has low sample rates, and provides a tractable pilot study scenario for open distributed sensor networks at regional and global scales using one of the most ubiquitous sensors on Earth - microphones. Data collection is no longer limited to selected vendors at exclusive prices: anybody on Earth can record and stream infrasound, and the diversity of recording systems and environments is rapidly expanding. Global deployment may be fast and easy (www.redvox.io), but comes with the cost of increasing data volume, velocity, variety, and complexity. Flocking - the collective motion of mobile agents - is a natural human response to threats or events of interest. Anticipating, modeling and harnessing flocking sensor topologies will be necessary for adaptive array and network processing. The increasing data quantity and complexity will exceed the processing capacity of human analysts and most research servers. We anticipate practical real-time applications will require the on-demand adaptive scalability and resources of the Cloud. Cloud architectures for such heterogeneous sensor networks will consider eventual integration into the Global Earth Observation System of Systems (GEOSS).

  16. The IUGS/IAGC Task Group on Global Geochemical Baselines

    USGS Publications Warehouse

    Smith, David B.; Wang, Xueqiu; Reeder, Shaun; Demetriades, Alecos

    2012-01-01

    The Task Group on Global Geochemical Baselines, operating under the auspices of both the International Union of Geological Sciences (IUGS) and the International Association of Geochemistry (IAGC), has the long-term goal of establishing a global geochemical database to document the concentration and distribution of chemical elements in the Earth’s surface or near-surface environment. The database and accompanying element distribution maps represent a geochemical baseline against which future human-induced or natural changes to the chemistry of the land surface may be recognized and quantified. In order to accomplish this long-term goal, the activities of the Task Group include: (1) developing partnerships with countries conducting broad-scale geochemical mapping studies; (2) providing consultation and training in the form of workshops and short courses; (3) organizing periodic international symposia to foster communication among the geochemical mapping community; (4) developing criteria for certifying those projects whose data are acceptable in a global geochemical database; (5) acting as a repository for data collected by those projects meeting the criteria for standardization; (6) preparing complete metadata for the certified projects; and (7) preparing, ultimately, a global geochemical database. This paper summarizes the history and accomplishments of the Task Group since its first predecessor project was established in 1988.

  17. Earth science information: Planning for the integration and use of global change information

    NASA Technical Reports Server (NTRS)

    Lousma, Jack R.

    1992-01-01

    Activities and accomplishments of the first six months of the Consortium for International Earth Science Information Network (CIESIN's) 1992 technical program have focused on four main missions: (1) the development and implementation of plans for initiation of the Socioeconomic Data and Applications Center (SEDAC) as part of the EOSDIS Program; (2) the pursuit and development of a broad-based global change information cooperative by providing systems analysis and integration between natural science and social science data bases held by numerous federal agencies and other sources; (3) the fostering of scientific research into the human dimensions of global change and providing integration between natural science and social science data and information; and (4) the serving of CIESIN as a gateway for global change data and information distribution through development of the Global Change Research Information Office and other comprehensive knowledge sharing systems.

  18. Global synthesis of the classifications, distributions, benefits and issues of terracing

    Treesearch

    Wei Wei; Die Chen; Lixin Wang; Stefani Daryanto; Liding Chen; Yang Yu; Yonglong Lu; Ge Sun; Tianjiao Feng

    2016-01-01

    For thousands of years, humans have created different types of terraces in different sloping conditions, meant to mitigate flood risks, reduce soil erosion and conserve water. These anthropogenic landscapes can be found in tropical and subtropical rainforests, deserts, and arid and semiarid mountains across the globe. Despite the long history, the roles of and the...

  19. Think Piece: Cognitive Justice and Integration without Duress. The Future of Development Education--Perspectives from the South

    ERIC Educational Resources Information Center

    Odora Hoppers, Catherine A.

    2015-01-01

    "In a time of unacceptable global injustice, growing inequalities in the distribution of power, accelerating climate change, and unwavering racism and social exclusion, we are today facing the biggest challenges of human history" (European Conference on Intercultural Dialogue in Development Education, 2008: 1). A favourable wind is…

  20. Distribution and Causes of Global Forest Fragmentation

    Treesearch

    Timothy G. Wade; Kurt H. Riitters; James D. Wickham; K. Bruce Jones

    2003-01-01

    Abstract Because human land uses tend to expand over time, forests that share a high proportion of their borders with anthropogenic uses are at higher risk of further degradation than forests that share a high proportion of their borders with non-forest, natural land cover (e.g., wetland). Using 1-km advanced very high resolution radiometer (AVHRR)...

  1. KSC-2014-3111

    NASA Image and Video Library

    2014-07-02

    VANDENBERG AIR FORCE BASE, Calif. – A United Launch Alliance Delta II rocket is seen eight minutes before launching from Space Launch Complex 2 at Vandenberg Air Force Base in California on Wednesday, July 2, 2014. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: NASA/Bill Ingalls

  2. The ROP18 and ROP5 allele types are highly predictive of mouse-virulence across globally distributed strains of Toxoplasma gondii

    USDA-ARS?s Scientific Manuscript database

    The protozoan parasite Toxoplasma gondii is one of the known most successful eukaryotic pathogens on Earth. Virulence of T. gondii strains varies greatly in mice, and mounting evidence suggests that such variations may be relevant to the manifestation of human toxoplasmosis. Polymorphic rhoptry-secr...

  3. International perspectives on the ethics and regulation of human cell and tissue transplantation.

    PubMed

    Schulz-Baldes, Annette; Biller-Andorno, Nikola; Capron, Alexander Morgan

    2007-12-01

    The transplantation of human cells and tissues has become a global enterprise for both life-saving and life-enhancing purposes. Yet current practices raise numerous ethical and policy issues relating to informed consent for donation, profit-making, and quality and safety in the procurement, processing, distribution, and international circulation of human cells and tissues. This paper reports on recent developments in the international debate surrounding these issues, and in particular on the attention cell and tissue transplantation has received in WHO's ongoing process of updating its 1991 Guiding principles on human organ transplantation. Several of the organizers of an international working group of stakeholders from a wide range of backgrounds that convened in Zurich in July 2006 summarize the areas of normative agreement and disagreement, and identify open questions regarding facts and fundamental concepts of potential normative significance. These issues must be addressed through development of common medical, scientific, legal and ethical requirements for human cell and tissue transplantation on a global basis. While guidance must accommodate the distinct ethical issues raised by activities involving human cells and tissues, consistency with normative frameworks for organ transplantation remains a prime objective.

  4. A synthesis of carbon dioxide emissions from fossil-fuel combustion

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Andres, Robert Joseph; Boden, Thomas A; Breon, F.-M.

    2012-01-01

    This synthesis discusses the emissions of carbon dioxide from fossil-fuel combustion and cement production. While much is known about these emissions, there is still much that is unknown about the details surrounding these emissions. This synthesis explores 5 our knowledge of these emissions in terms of why there is concern about them; how they are calculated; the major global efforts on inventorying them; their global, regional, and national totals at different spatial and temporal scales; how they are distributed on global grids (i.e. maps); how they are transported in models; and the uncertainties associated with these different aspects of themore » emissions. The magnitude of emissions 10 from the combustion of fossil fuels has been almost continuously increasing with time since fossil fuels were first used by humans. Despite events in some nations specifically designed to reduce emissions, or which have had emissions reduction as a byproduct of other events, global total emissions continue their general increase with time. Global total fossil-fuel carbon dioxide emissions are known to within 10% uncertainty (95% 15 confidence interval). Uncertainty on individual national total fossil-fuel carbon dioxide emissions range from a few percent to more than 50 %. The information discussed in this manuscript synthesizes global, regional and national fossil-fuel carbon dioxide emissions, their distributions, their transport, and the associated uncertainties.« less

  5. Globally Increased Crop Growth and Cropping Intensity from the Long-Term Satellite-Based Observations

    NASA Astrophysics Data System (ADS)

    Chen, Bin

    2018-04-01

    Understanding the spatiotemporal change trend of global crop growth and multiple cropping system under climate change scenarios is a critical requirement for supporting the food security issue that maintains the function of human society. Many studies have predicted the effects of climate changes on crop production using a combination of filed studies and models, but there has been limited evidence relating decadal-scale climate change to global crop growth and the spatiotemporal distribution of multiple cropping system. Using long-term satellite-derived Normalized Difference Vegetation Index (NDVI) and observed climate data from 1982 to 2012, we investigated the crop growth trend, spatiotemporal pattern trend of agricultural cropping intensity, and their potential correlations with respect to the climate change drivers at a global scale. Results show that 82.97 % of global cropland maximum NDVI witnesses an increased trend while 17.03 % of that shows a decreased trend over the past three decades. The spatial distribution of multiple cropping system is observed to expand from lower latitude to higher latitude, and the increased cropping intensity is also witnessed globally. In terms of regional major crop zones, results show that all nine selected zones have an obvious upward trend of crop maximum NDVI (p < 0.001), and as for climatic drivers, the gradual temperature and precipitation changes have had a measurable impact on the crop growth trend.

  6. Patterns of Spatial Variation of Assemblages Associated with Intertidal Rocky Shores: A Global Perspective

    PubMed Central

    Cruz-Motta, Juan José; Miloslavich, Patricia; Palomo, Gabriela; Iken, Katrin; Konar, Brenda; Pohle, Gerhard; Trott, Tom; Benedetti-Cecchi, Lisandro; Herrera, César; Hernández, Alejandra; Sardi, Adriana; Bueno, Andrea; Castillo, Julio; Klein, Eduardo; Guerra-Castro, Edlin; Gobin, Judith; Gómez, Diana Isabel; Riosmena-Rodríguez, Rafael; Mead, Angela; Bigatti, Gregorio; Knowlton, Ann; Shirayama, Yoshihisa

    2010-01-01

    Assemblages associated with intertidal rocky shores were examined for large scale distribution patterns with specific emphasis on identifying latitudinal trends of species richness and taxonomic distinctiveness. Seventy-two sites distributed around the globe were evaluated following the standardized sampling protocol of the Census of Marine Life NaGISA project (www.nagisa.coml.org). There were no clear patterns of standardized estimators of species richness along latitudinal gradients or among Large Marine Ecosystems (LMEs); however, a strong latitudinal gradient in taxonomic composition (i.e., proportion of different taxonomic groups in a given sample) was observed. Environmental variables related to natural influences were strongly related to the distribution patterns of the assemblages on the LME scale, particularly photoperiod, sea surface temperature (SST) and rainfall. In contrast, no environmental variables directly associated with human influences (with the exception of the inorganic pollution index) were related to assemblage patterns among LMEs. Correlations of the natural assemblages with either latitudinal gradients or environmental variables were equally strong suggesting that neither neutral models nor models based solely on environmental variables sufficiently explain spatial variation of these assemblages at a global scale. Despite the data shortcomings in this study (e.g., unbalanced sample distribution), we show the importance of generating biological global databases for the use in large-scale diversity comparisons of rocky intertidal assemblages to stimulate continued sampling and analyses. PMID:21179546

  7. Humans, water, and the colonization of Australia.

    PubMed

    Bird, Michael I; O'Grady, Damien; Ulm, Sean

    2016-10-11

    The Pleistocene global dispersal of modern humans required the transit of arid and semiarid regions where the distribution of potable water provided a primary constraint on dispersal pathways. Here, we provide a spatially explicit continental-scale assessment of the opportunities for Pleistocene human occupation of Australia, the driest inhabited continent on Earth. We establish the location and connectedness of persistent water in the landscape using the Australian Water Observations from Space dataset combined with the distribution of small permanent water bodies (springs, gnammas, native wells, waterholes, and rockholes). Results demonstrate a high degree of directed landscape connectivity during wet periods and a high density of permanent water points widely but unevenly distributed across the continental interior. A connected network representing the least-cost distance between water bodies and graded according to terrain cost shows that 84% of archaeological sites >30,000 y old are within 20 km of modern permanent water. We further show that multiple, well-watered routes into the semiarid and arid continental interior were available throughout the period of early human occupation. Depletion of high-ranked resources over time in these paleohydrological corridors potentially drove a wave of dispersal farther along well-watered routes to patches with higher foraging returns.

  8. Humans, water, and the colonization of Australia

    PubMed Central

    O’Grady, Damien

    2016-01-01

    The Pleistocene global dispersal of modern humans required the transit of arid and semiarid regions where the distribution of potable water provided a primary constraint on dispersal pathways. Here, we provide a spatially explicit continental-scale assessment of the opportunities for Pleistocene human occupation of Australia, the driest inhabited continent on Earth. We establish the location and connectedness of persistent water in the landscape using the Australian Water Observations from Space dataset combined with the distribution of small permanent water bodies (springs, gnammas, native wells, waterholes, and rockholes). Results demonstrate a high degree of directed landscape connectivity during wet periods and a high density of permanent water points widely but unevenly distributed across the continental interior. A connected network representing the least-cost distance between water bodies and graded according to terrain cost shows that 84% of archaeological sites >30,000 y old are within 20 km of modern permanent water. We further show that multiple, well-watered routes into the semiarid and arid continental interior were available throughout the period of early human occupation. Depletion of high-ranked resources over time in these paleohydrological corridors potentially drove a wave of dispersal farther along well-watered routes to patches with higher foraging returns. PMID:27671630

  9. Global monitoring of Salmonella serovar distribution from the World Health Organization Global Foodborne Infections Network Country Data Bank: results of quality assured laboratories from 2001 to 2007.

    PubMed

    Hendriksen, Rene S; Vieira, Antonio R; Karlsmose, Susanne; Lo Fo Wong, Danilo M A; Jensen, Arne B; Wegener, Henrik C; Aarestrup, Frank M

    2011-08-01

    Salmonella enterica is commonly acquired from contaminated food and is an important cause of illness worldwide. Interventions are needed to control Salmonella; subtyping Salmonella by serotyping is useful for targeting such interventions. We, therefore, analyzed the global distribution of the 15 most frequently identified serovars of Salmonella isolated from humans from 2001 to 2007 in laboratories from 37 countries that participated in World Health Organization Global Foodborne Infections Network and demonstrated serotyping proficiency in the Global Foodborne Infections Network External Quality Assurance System. In all regions throughout the study period, with the exception of the Oceania and North American regions, Salmonella serovars Enteritidis and Typhimurium ranked as the most common and second most common serovar, respectively. In the North American and Oceania (Australia and New Zealand) regions, Salmonella serovar Typhimurium was the most common serovar reported, and Salmonella serovar Enteritidis was the second most common serovar. During the study period, the proportion of Salmonella isolates reported from humans that were Salmonella serovar Enteritidis was 43.5% (range: 40.6% [2007] to 44.9% [2003]), and Salmonella serovar Typhimurium was 17.1% (range: 15% [2007] to 18.9% [2001]). Salmonella serovars Newport (mainly observed in Latin and North American and European countries), Infantis (dominating in all regions), Virchow (mainly observed in Asian, European, and Oceanic countries), Hadar (profound in European countries), and Agona (intense in Latin and North American and European countries) were also frequently isolated with an overall proportion of 3.5%, 1.8%, 1.5%, 1.5%, and 0.8%, respectively. There were large differences in the most commonly isolated serovars between regions, but lesser differences between countries within the same region. The results also highlight the complexity of the global epidemiology of Salmonella and the need and importance for improving monitoring data of those serovars of highest epidemiologic importance.

  10. Independent Origins of Yeast Associated with Coffee and Cacao Fermentation.

    PubMed

    Ludlow, Catherine L; Cromie, Gareth A; Garmendia-Torres, Cecilia; Sirr, Amy; Hays, Michelle; Field, Colburn; Jeffery, Eric W; Fay, Justin C; Dudley, Aimée M

    2016-04-04

    Modern transportation networks have facilitated the migration and mingling of previously isolated populations of plants, animals, and insects. Human activities can also influence the global distribution of microorganisms. The best-understood example is yeasts associated with winemaking. Humans began making wine in the Middle East over 9,000 years ago [1, 2]. Selecting favorable fermentation products created specialized strains of Saccharomyces cerevisiae [3, 4] that were transported along with grapevines. Today, S. cerevisiae strains residing in vineyards around the world are genetically similar, and their population structure suggests a common origin that followed the path of human migration [3-7]. Like wine, coffee and cacao depend on microbial fermentation [8, 9] and have been globally dispersed by humans. Theobroma cacao originated in the Amazon and Orinoco basins of Colombia and Venezuela [10], was cultivated in Central America by Mesoamerican peoples, and was introduced to Europeans by Hernán Cortés in 1530 [11]. Coffea, native to Ethiopia, was disseminated by Arab traders throughout the Middle East and North Africa in the 6(th) century and was introduced to European consumers in the 17(th) century [12]. Here, we tested whether the yeasts associated with coffee and cacao are genetically similar, crop-specific populations or genetically diverse, geography-specific populations. Our results uncovered populations that, while defined by niche and geography, also bear signatures of admixture between major populations in events independent of the transport of the plants. Thus, human-associated fermentation and migration may have affected the distribution of yeast involved in the production of coffee and chocolate. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Yes we can! The Raffles Dialogue on Human Wellbeing and Security.

    PubMed

    Pang, Tikki; Chong, Yap Seng; Fong, Hildy; Harris, Eva; Horton, Richard; Lee, Kelley; Liu, Eugene; Mahbubani, Kishore; Pangestu, Mari; Yeoh, Khay Guan; Wong, John Eu-Li

    2015-08-01

    The future of human wellbeing and security depends on our ability to deal with the multiple effects of globalisation and on adoption of a new paradigm and philosophy for living and for health that emphasises people's wellbeing and social justice. Such was the topic of the inaugural Raffles Dialogue on Human Wellbeing and Security held in Singapore on Feb 2-3, 2015. Participants agreed that, to achieve these goals, four conditions must be met. First, equity must be integral to the implementation of technology. Second, there is an urgent need for innovations within our global institutions to make them "fit for purpose" in a rapidly changing world. Third, we must find the right balance between the roles of government and markets so that all those in need can access affordable medicine and health care. Finally, we must realise that we live in a small and interdependent "global village", where Asian countries need to assume greater leadership of our global village councils. This is the great imperative of our times. Copyright © 2015 Pang et al. Open Access article distributed under the terms of CC BY-NC-ND. Published by Elsevier Ltd.. All rights reserved.

  12. Mercury as a Global Pollutant: Sources, Pathways, and Effects

    PubMed Central

    2013-01-01

    Mercury (Hg) is a global pollutant that affects human and ecosystem health. We synthesize understanding of sources, atmosphere-land-ocean Hg dynamics and health effects, and consider the implications of Hg-control policies. Primary anthropogenic Hg emissions greatly exceed natural geogenic sources, resulting in increases in Hg reservoirs and subsequent secondary Hg emissions that facilitate its global distribution. The ultimate fate of emitted Hg is primarily recalcitrant soil pools and deep ocean waters and sediments. Transfers of Hg emissions to largely unavailable reservoirs occur over the time scale of centuries, and are primarily mediated through atmospheric exchanges of wet/dry deposition and evasion from vegetation, soil organic matter and ocean surfaces. A key link between inorganic Hg inputs and exposure of humans and wildlife is the net production of methylmercury, which occurs mainly in reducing zones in freshwater, terrestrial, and coastal environments, and the subsurface ocean. Elevated human exposure to methylmercury primarily results from consumption of estuarine and marine fish. Developing fetuses are most at risk from this neurotoxin but health effects of highly exposed populations and wildlife are also a concern. Integration of Hg science with national and international policy efforts is needed to target efforts and evaluate efficacy. PMID:23590191

  13. Bioethics and the Right to Health: Advancing a Complementary Agenda.

    PubMed

    Gibson, Jennifer L; Forman, Lisa; Nixon, Stephanie A

    2015-06-11

    This special section in Health and Human Rights Journal explores the relationship between bioethics and the right to health. Although bioethics scholars may argue for a right to health, particularly in the domains of universal health coverage and global health governance, and human rights scholars may advance ethical norms in their work, there has been little scholarly attention to the intersections, synergies, and contrasts between these two areas of study. At first glance, this is surprising given that bioethics and human rights share conceptual and normative terrain in articulating guidance for action on health-related issues and international policy and practice is explicitly interrelating human rights and ethics. Copyright 2015 Gibson, Forman, Nixon. This is an open access article distributed under the terms of Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licences/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original authors and source are credited.

  14. The Global Food System as a Transport Pathway for Hazardous Chemicals: The Missing Link between Emissions and Exposure.

    PubMed

    Ng, Carla A; von Goetz, Natalie

    2017-01-01

    Food is a major pathway for human exposure to hazardous chemicals. The modern food system is becoming increasingly complex and globalized, but models for food-borne exposure typically assume locally derived diets or use concentrations directly measured in foods without accounting for food origin. Such approaches may not reflect actual chemical intakes because concentrations depend on food origin, and representative analysis is seldom available. Processing, packaging, storage, and transportation also impart different chemicals to food and are not yet adequately addressed. Thus, the link between environmental emissions and realistic human exposure is effectively broken. We discuss the need for a fully integrated treatment of the modern industrialized food system, and we propose strategies for using existing models and relevant supporting data sources to track chemicals during production, processing, packaging, storage, and transport. Fate and bioaccumulation models describe how chemicals distribute in the environment and accumulate through local food webs. Human exposure models can use concentrations in food to determine body burdens based on individual or population characteristics. New models now include the impacts of processing and packaging but are far from comprehensive. We propose to close the gap between emissions and exposure by utilizing a wider variety of models and data sources, including global food trade data, processing, and packaging models. A comprehensive approach that takes into account the complexity of the modern global food system is essential to enable better prediction of human exposure to chemicals in food, sound risk assessments, and more focused risk abatement strategies. Citation: Ng CA, von Goetz N. 2017. The global food system as a transport pathway for hazardous chemicals: the missing link between emissions and exposure. Environ Health Perspect 125:1-7; http://dx.doi.org/10.1289/EHP168.

  15. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhou, Yuyu; Smith, Steven J.; Zhao, Kaiguang

    Urbanization, one of the major human induced land-cover and land-use changes, has a profound impact on the Earth system including biodiversity, the cycling of water and carbon and exchange of energy and water between Earth’s surface and atmosphere, all affecting weather and climate. Accurate information on urban areas and their spatial distribution at the regional and global scales is important for scientific understanding of their contribution to the changing Earth system, and for practical management and policy decisions. We developed a method to map the urban extent from the Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) nighttime stable-light data atmore » the global level and derived a new global map of 1-km urban extent for year 2000. Based on this map, we found that globally, urban land area is about 0.5% of total land area but ranges widely at regional level from 0.1% in Oceania to 2.3% in Europe. At the country level, urban land area varies from lower than 0.01% to higher than 10%, but is lower than 1% for most (70%) countries. Urbanization follows land mass distribution, as anticipated, with the highest concentration found between 30°N to 45°N latitude and the largest longitudinal peak around 80°W. Based on a sensitivity analysis and comparison with other global urban area products, we found that our global product of urban area provides a reliable estimate of global urban areas and offer the potential of capturing more accurately their spatial and temporal dynamics.« less

  16. Why Geo-Humanities

    NASA Astrophysics Data System (ADS)

    Graells, Robert Casals i.; Sibilla, Anna; Bohle, Martin

    2016-04-01

    Anthropogenic global change is a composite process. It consists of societal processes (in the 'noosphere') and natural processes (in the 'bio-geosphere'). The 'noosphere' is the ensemble of social, cultural or political insights ('shared subjective mental concepts') of people. Understanding the composite of societal and natural processes ('human geo-biosphere intersections'), which shapes the features of anthropogenic global change, would benefit from a description that draws equally on natural sciences, social sciences and humanities. To that end it is suggested to develop a concept of 'geo-humanities': This essay presents some aspects of its scope, discussing "knowledge that is to manage", "intentions that are to shape", "choices that are to justify" and "complexity that is to handle". Managing knowledge: That people understand anthropogenic global change requires their insights into how 'human geosphere intersections' function. Insights are formed ('processed') in the noosphere by means of interactions between people. Understanding how 'human geosphere intersections' functions combines scientific, engineering and economic studies with studies of the dynamics of the noosphere. Shaping intentions: During the last century anthropogenic global change developed as the collateral outcome of humankind's accumulated actions. It is caused by the number of people, the patterns of their consumption of resources, and the alterations of their environments. Nowadays, anthropogenic global chance is either an intentional negligence or a conscious act. Justifying choices: Humanity has alternatives how to alter Earth at planetary scale consciously. For example, there is a choice to alter the geo-biosphere or to adjust the noosphere. Whatever the choice, it will depend on people's world-views, cultures and preferences. Thus beyond issues whether science and technology are 'sound' overarching societal issues are to tackle, such as: (i) how to appropriate and distribute natural resources for what cost, (ii) what are intended collateral effects, or (iii) what is the risk of non-intended collateral effects? Handling complexity: Consciously altering Earth at a planetary scale is ambitious, although it fits well into the historical development of industrialised societies and their paradigms how to handle change. Still, action at a planetary scale goes beyond any actual use-case that may serve as a reference. Furthermore, the available technological means, scientific understanding and resources impose limits, and, second, the noosphere is complex given the variety of interacting world-views, cultures and preferences. Summarizing, geo-humanities would study human geosphere intersections. Geo-humanities would address societal and natural process within one frame of reference to understand how attributes of the geo-biosphere and artefacts of the noosphere are aggregated to anthropogenic global change.

  17. Species richness, distribution and genetic diversity of Caenorhabditis nematodes in a remote tropical rainforest

    PubMed Central

    2013-01-01

    Background In stark contrast to the wealth of detail about C. elegans developmental biology and molecular genetics, biologists lack basic data for understanding the abundance and distribution of Caenorhabditis species in natural areas that are unperturbed by human influence. Methods Here we report the analysis of dense sampling from a small, remote site in the Amazonian rain forest of the Nouragues Natural Reserve in French Guiana. Results Sampling of rotting fruits and flowers revealed proliferating populations of Caenorhabditis, with up to three different species co-occurring within a single substrate sample, indicating remarkable overlap of local microhabitats. We isolated six species, representing the highest local species richness for Caenorhabditis encountered to date, including both tropically cosmopolitan and geographically restricted species not previously isolated elsewhere. We also documented the structure of within-species molecular diversity at multiple spatial scales, focusing on 57 C. briggsae isolates from French Guiana. Two distinct genetic subgroups co-occur even within a single fruit. However, the structure of C. briggsae population genetic diversity in French Guiana does not result from strong local patterning but instead presents a microcosm of global patterns of differentiation. We further integrate our observations with new data from nearly 50 additional recently collected C. briggsae isolates from both tropical and temperate regions of the world to re-evaluate local and global patterns of intraspecific diversity, providing the most comprehensive analysis to date for C. briggsae population structure across multiple spatial scales. Conclusions The abundance and species richness of Caenorhabditis nematodes is high in a Neotropical rainforest habitat that is subject to minimal human interference. Microhabitat preferences overlap for different local species, although global distributions include both cosmopolitan and geographically restricted groups. Local samples for the cosmopolitan C. briggsae mirror its pan-tropical patterns of intraspecific polymorphism. It remains an important challenge to decipher what drives Caenorhabditis distributions and diversity within and between species. PMID:23311925

  18. Local and global anatomy of antibody-protein antigen recognition.

    PubMed

    Wang, Meryl; Zhu, David; Zhu, Jianwei; Nussinov, Ruth; Ma, Buyong

    2018-05-01

    Deciphering antibody-protein antigen recognition is of fundamental and practical significance. We constructed an antibody structural dataset, partitioned it into human and murine subgroups, and compared it with nonantibody protein-protein complexes. We investigated the physicochemical properties of regions on and away from the antibody-antigen interfaces, including net charge, overall antibody charge distributions, and their potential role in antigen interaction. We observed that amino acid preference in antibody-protein antigen recognition is entropy driven, with residues having low side-chain entropy appearing to compensate for the high backbone entropy in interaction with protein antigens. Antibodies prefer charged and polar antigen residues and bridging water molecules. They also prefer positive net charge, presumably to promote interaction with negatively charged protein antigens, which are common in proteomes. Antibody-antigen interfaces have large percentages of Tyr, Ser, and Asp, but little Lys. Electrostatic and hydrophobic interactions in the Ag binding sites might be coupled with Fab domains through organized charge and residue distributions away from the binding interfaces. Here we describe some features of antibody-antigen interfaces and of Fab domains as compared with nonantibody protein-protein interactions. The distributions of interface residues in human and murine antibodies do not differ significantly. Overall, our results provide not only a local but also a global anatomy of antibody structures. Copyright © 2017 John Wiley & Sons, Ltd.

  19. Fire in the Earth system.

    PubMed

    Bowman, David M J S; Balch, Jennifer K; Artaxo, Paulo; Bond, William J; Carlson, Jean M; Cochrane, Mark A; D'Antonio, Carla M; Defries, Ruth S; Doyle, John C; Harrison, Sandy P; Johnston, Fay H; Keeley, Jon E; Krawchuk, Meg A; Kull, Christian A; Marston, J Brad; Moritz, Max A; Prentice, I Colin; Roos, Christopher I; Scott, Andrew C; Swetnam, Thomas W; van der Werf, Guido R; Pyne, Stephen J

    2009-04-24

    Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation distribution and structure, the carbon cycle, and climate. Although humans and fire have always coexisted, our capacity to manage fire remains imperfect and may become more difficult in the future as climate change alters fire regimes. This risk is difficult to assess, however, because fires are still poorly represented in global models. Here, we discuss some of the most important issues involved in developing a better understanding of the role of fire in the Earth system.

  20. Fire in the Earth system

    USGS Publications Warehouse

    Bowman, David M.J.S.; Balch, Jennifer; Artaxo, Paulo; Bond, William J.; Carlson, Jean M.; Cochrane, Mark A.; D'Antonio, Carla M.; DeFries, Ruth S.; Doyle, John C.; Harrison, Sandy P.; Johnston, Fay H.; Keeley, Jon E.; Krawchuk, Meg A.; Kull, Christian A.; Marston, J. Brad; Moritz, Max A.; Prentice, I. Colin; Roos, Christopher I.; Scott, Andrew C.; Swetnam, Thomas W.; van der Werf, Guido R.; Pyne, Stephen

    2009-01-01

    Fire is a worldwide phenomenon that appears in the geological record soon after the appearance of terrestrial plants. Fire influences global ecosystem patterns and processes, including vegetation distribution and structure, the carbon cycle, and climate. Although humans and fire have always coexisted, our capacity to manage fire remains imperfect and may become more difficult in the future as climate change alters fire regimes. This risk is difficult to assess, however, because fires are still poorly represented in global models. Here, we discuss some of the most important issues involved in developing a better understanding of the role of fire in the Earth system.

  1. The interplay between human population dynamics and flooding in Bangladesh: a spatial analysis

    NASA Astrophysics Data System (ADS)

    di Baldassarre, G.; Yan, K.; Ferdous, MD. R.; Brandimarte, L.

    2014-09-01

    In Bangladesh, socio-economic and hydrological processes are both extremely dynamic and inter-related. Human population patterns are often explained as a response, or adaptation strategy, to physical events, e.g. flooding, salt-water intrusion, and erosion. Meanwhile, these physical processes are exacerbated, or mitigated, by diverse human interventions, e.g. river diversion, levees and polders. In this context, this paper describes an attempt to explore the complex interplay between floods and societies in Bangladeshi floodplains. In particular, we performed a spatially-distributed analysis of the interactions between the dynamics of human settlements and flood inundation patterns. To this end, we used flooding simulation results from inundation modelling, LISFLOOD-FP, as well as global datasets of population distribution data, such as the Gridded Population of the World (20 years, from 1990 to 2010) and HYDE datasets (310 years, from 1700 to 2010). The outcomes of this work highlight the behaviour of Bangladeshi floodplains as complex human-water systems and indicate the need to go beyond the traditional narratives based on one-way cause-effects, e.g. climate change leading to migrations.

  2. A global map of urban extent from nightlights

    DOE PAGES

    Zhou, Yuyu; Smith, Steven J.; Zhao, Kaiguang; ...

    2015-05-13

    Urbanization, one of the major human induced land-cover and land-use changes, has a profound impact on the Earth system including biodiversity, the cycling of water and carbon and exchange of energy and water between Earth’s surface and atmosphere, all affecting weather and climate. Accurate information on urban areas and their spatial distribution at the regional and global scales is important for scientific understanding of their contribution to the changing Earth system, and for practical management and policy decisions. We developed a method to map the urban extent from the Defense Meteorological Satellite Program/Operational Linescan System (DMSP/OLS) nighttime stable-light data atmore » the global level and derived a new global map of 1-km urban extent for year 2000. Based on this map, we found that globally, urban land area is about 0.5% of total land area but ranges widely at regional level from 0.1% in Oceania to 2.3% in Europe. At the country level, urban land area varies from lower than 0.01% to higher than 10%, but is lower than 1% for most (70%) countries. Urbanization follows land mass distribution, as anticipated, with the highest concentration found between 30°N to 45°N latitude and the largest longitudinal peak around 80°W. Based on a sensitivity analysis and comparison with other global urban area products, we found that our global product of urban area provides a reliable estimate of global urban areas and offer the potential of capturing more accurately their spatial and temporal dynamics.« less

  3. Global tropospheric methane: An indication of atmosphere-biosphere-climate interactions?

    NASA Technical Reports Server (NTRS)

    Harriss, Robert C.; Sebacher, Daniel I.; Bartlett, Karen B.

    1985-01-01

    Methane is an important atmospheric gas with potentially critical roles in both photochemical and radiation transfer processes. A major natural source of atmospheric methane involves anaerobic fermentation of organic materials in wetland soils and sediments. A data base of field measurements of atmospheric methane was used in the development of a global methane emissions inventory. Calculations support the following hypotheses: (1) Human activities currently produce methane at a rate approximately equal to natural resources (these rapidly increasing anthropogenic sources can explain most of the recent increase observed in tropospheric methane); and (2) Prior to 200 B.P. (before the present), the influence of climate on wetland extent and distribution was probably a dominant factor controlling global biogenic methane emissions to the atmosphere.

  4. A global reference for human genetic variation

    PubMed Central

    2016-01-01

    The 1000 Genomes Project set out to provide a comprehensive description of common human genetic variation by applying whole-genome sequencing to a diverse set of individuals from multiple populations. Here we report completion of the project, having reconstructed the genomes of 2,504 individuals from 26 populations using a combination of low-coverage whole-genome sequencing, deep exome sequencing, and dense microarray genotyping. We characterized a broad spectrum of genetic variation, in total over 88 million variants (84.7 million single nucleotide polymorphisms (SNPs), 3.6 million short insertions/deletions (indels), and 60,000 structural variants), all phased onto high-quality haplotypes. This resource includes >99% of SNP variants with a frequency of >1% for a variety of ancestries. We describe the distribution of genetic variation across the global sample, and discuss the implications for common disease studies. PMID:26432245

  5. Global Spread of Human Chromoblastomycosis Is Driven by Recombinant Cladophialophora carrionii and Predominantly Clonal Fonsecaea Species.

    PubMed

    Deng, Shuwen; Tsui, Clement K M; Gerrits van den Ende, A H G; Yang, Liyue; Najafzadeh, Mohammad Javad; Badali, Hamid; Li, Ruoyu; Hagen, Ferry; Meis, Jacques F; Sun, Jiufeng; Dolatabadi, Somayeh; Papierok, Bernard; Pan, Weihua; de Hoog, G S; Liao, Wanqing

    2015-01-01

    Global distribution patterns of Cladophialophora carrionii, agent of human chromoblastomycosis in arid climates of Africa, Asia, Australia, Central-and South-America, were compared with similar data of the vicarious Fonsecaea spp., agents of the disease in tropical rain forests. Population diversities among 73 C. carrionii strains and 60 strains of three Fonsecaea species were analyzed for rDNA ITS, partial β-tubulin, and amplified fragment-length polymorphism (AFLP) fingerprints. Populations differed significantly between continents. Lowest haplotype diversity was found in South American populations, while African strains were the most diverse. Gene flow was noted between the African population and all other continents. The general pattern of Fonsecaea agents of chromoblastomycosis differed significantly from that of C. carrionii and revealed deeper divergence among three differentiated species with smaller numbers of haplotypes, indicating a longer evolutionary history.

  6. Epidemiological review of human and animal fascioliasis in Egypt.

    PubMed

    Soliman, Maha F M

    2008-06-01

    One of the neglected food-borne-diseases in the international public health arena is fascioliasis. It is a serious infectious parasitic disease infecting humans and animals worldwide and tops all the zoonotic helminthes. Human cases are being increasingly reported from Europe, the Americas, Oceania, Africa and Asia. Hence, human fascioliasis is considered now as a zoonosis of major global and regional importance. In Egypt, animal and human fascioliasis is an endemic clinical and epidemiological health problem. Doubtless, understanding the epidemiology of the parasitic diseases and factors affecting their incidence provides the foundation upon which effective prevention and control programs should be established. This article reviews the history, life cycles, transmission, incidence, geographical distribution, and environmental and human determinants that contribute to the epidemiological picture of fascioliasis with special reference to Egypt.

  7. A review on cylindrospermopsin: the global occurrence, detection, toxicity and degradation of a potent cyanotoxin

    USGS Publications Warehouse

    de la Cruz, Armah A.; Hiskia, Anastasia; Kaloudis, Triantafyllos; Chernoff, Neil; Hill, Donna; Antoniou, Maria G.; He, Xuexiang; Loftin, Keith; O'Shea, Kevin; Zhao, Cen; Pelaez, Miguel; Han, Changseok; Lynch, Trevor J.; Dionysiou, Dionysios D.

    2013-01-01

    Cylindrospermopsin is an important cyanobacterial toxin found in water bodies worldwide. The ever-increasing and global occurrence of massive and prolonged blooms of cylindrospermopsin-producing cyanobacteria poses a potential threat to both human and ecosystem health. Its toxicity is associated with metabolic activation and may involve mechanisms that adversely affect a wide variety of targets in an organism. Cylindrospermopsin has been shown to be cytotoxic, dermatotoxic, genotoxic, hepatotoxic in vivo, developmentally toxic, and may be carcinogenic. Human exposure may occur through drinking water, during recreational activities and by consuming foods in which the toxin may have bioaccumulated. Drinking water shortages of sufficient quality coupled with growing human pressures and climate variability and change necessitate an integrated and sustainable water management program. This review presents an overview of the importance of cylindrospermopsin, its detection, toxicity, worldwide distribution, and lastly, its chemical and biological degradation and removal by natural processes and drinking water treatment processes.

  8. Global change effects on biogeochemical processes of Argentinian estuaries: an overview of vulnerabilities and ecohydrological adaptive outlooks.

    PubMed

    Kopprio, Germán A; Biancalana, Florencia; Fricke, Anna; Garzón Cardona, John E; Martínez, Ana; Lara, Rubén J

    2015-02-28

    The aims of this work are to provide an overview of the current stresses of estuaries in Argentina and to propose adaptation strategies from an ecohydrological approach. Several Argentinian estuaries are impacted by pollutants, derived mainly from sewage discharge and agricultural or industrial activities. Anthropogenic impacts are expected to rise with increasing human population. Climate-driven warmer temperature and hydrological changes will alter stratification, residence time, oxygen content, salinity, pollutant distribution, organism physiology and ecology, and nutrient dynamics. Good water quality is essential in enhancing estuarine ecological resilience to disturbances brought on by global change. The preservation, restoration, and creation of wetlands will help to protect the coast from erosion, increase sediment accretion rates, and improve water quality by removing excess nutrients and pollutants. The capacity of hydrologic basin ecosystems to absorb human and natural impacts can be improved through holistic management, which should consider social vulnerability in complex human-natural systems. Copyright © 2014 Elsevier Ltd. All rights reserved.

  9. Next generation of global land cover characterization, mapping, and monitoring

    USGS Publications Warehouse

    Giri, Chandra; Pengra, Bruce; Long, J.; Loveland, Thomas R.

    2013-01-01

    Land cover change is increasingly affecting the biophysics, biogeochemistry, and biogeography of the Earth's surface and the atmosphere, with far-reaching consequences to human well-being. However, our scientific understanding of the distribution and dynamics of land cover and land cover change (LCLCC) is limited. Previous global land cover assessments performed using coarse spatial resolution (300 m–1 km) satellite data did not provide enough thematic detail or change information for global change studies and for resource management. High resolution (∼30 m) land cover characterization and monitoring is needed that permits detection of land change at the scale of most human activity and offers the increased flexibility of environmental model parameterization needed for global change studies. However, there are a number of challenges to overcome before producing such data sets including unavailability of consistent global coverage of satellite data, sheer volume of data, unavailability of timely and accurate training and validation data, difficulties in preparing image mosaics, and high performance computing requirements. Integration of remote sensing and information technology is needed for process automation and high-performance computing needs. Recent developments in these areas have created an opportunity for operational high resolution land cover mapping, and monitoring of the world. Here, we report and discuss these advancements and opportunities in producing the next generations of global land cover characterization, mapping, and monitoring at 30-m spatial resolution primarily in the context of United States, Group on Earth Observations Global 30 m land cover initiative (UGLC).

  10. Landsat Data Continuity Mission

    USGS Publications Warehouse

    ,

    2007-01-01

    The Landsat Data Continuity Mission (LDCM) is a partnership between the National Aeronautics and Space Administration (NASA) and the U.S. Geological Survey (USGS) to place the next Landsat satellite in orbit by late 2012. The Landsat era that began in 1972 will become a nearly 45-year global land record with the successful launch and operation of the LDCM. The LDCM will continue the acquisition, archival, and distribution of multispectral imagery affording global, synoptic, and repetitive coverage of the Earth's land surfaces at a scale where natural and human-induced changes can be detected, differentiated, characterized, and monitored over time. The mission objectives of the LDCM are to (1) collect and archive medium resolution (circa 30-m spatial resolution) multispectral image data affording seasonal coverage of the global landmasses for a period of no less than 5 years; (2) ensure that LDCM data are sufficiently consistent with data from the earlier Landsat missions, in terms of acquisition geometry, calibration, coverage characteristics, spectral characteristics, output product quality, and data availability to permit studies of land-cover and land-use change over time; and (3) distribute LDCM data products to the general public on a nondiscriminatory basis and at a price no greater than the incremental cost of fulfilling a user request. Distribution of LDCM data over the Internet at no cost to the user is currently planned.

  11. PFGE analysis of Listeria monocytogenes isolates of clinical, animal, food and environmental origin from Ireland.

    PubMed

    Fox, Edward M; deLappe, Niall; Garvey, Patricia; McKeown, Paul; Cormican, Martin; Leonard, Nola; Jordan, Kieran

    2012-04-01

    Listeria monocytogenes is an important foodborne human pathogen. Human infection is associated with high mortality rates. Epidemiological investigation and molecular subtyping can be useful in linking human illness with specific sources of infection. This retrospective study describes the use of PFGE to examine relationships of 222 isolates from human and non-human sources in Ireland. Human clinical isolates from other countries were also examined. Eight small clusters of human and non-human isolates (mostly serotype 4b) that were indistinguishable from one another were detected, suggesting potential sources for human infection. For non-human isolates, some PFGE types appeared to be exclusively associated with a single source, whereas other PFGE-types appeared to be more widely disseminated. Indistinguishable, or highly related clusters of isolates of Irish and non-Irish origin suggest that some PFGE patterns may be globally distributed.

  12. The economic and social burden of malaria.

    PubMed

    Sachs, Jeffrey; Malaney, Pia

    2002-02-07

    Where malaria prospers most, human societies have prospered least. The global distribution of per-capita gross domestic product shows a striking correlation between malaria and poverty, and malaria-endemic countries also have lower rates of economic growth. There are multiple channels by which malaria impedes development, including effects on fertility, population growth, saving and investment, worker productivity, absenteeism, premature mortality and medical costs.

  13. Orbiting Carbon Observatory-2 (OCO-2) Launch

    NASA Image and Video Library

    2014-07-02

    A United Launch Alliance Delta II rocket launches with the Orbiting Carbon Observatory-2 (OCO-2)satellite onboard from Space Launch Complex 2 at Vandenberg Air Force Base, Calif. on Wednesday, July 2, 2014. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: (NASA/Bill Ingalls)

  14. Pocket School: Exploring Mobile Technology as a Sustainable Literacy Education Option for Underserved Indigenous Children in Latin America

    ERIC Educational Resources Information Center

    Kim, Paul; Miranda, Talia; Olaciregui, Claudia

    2008-01-01

    Literacy is a human right unequally distributed among the world's population. Despite global efforts to fight illiteracy, high illiteracy rates continue to jeopardize access for many to basic schooling, life-long learning, health, and environment safety. Illiteracy also hinders the economic prosperity of the poorest societies in this digital age.…

  15. Groundwater recharge: The intersection between humanity and hydrogeology

    NASA Astrophysics Data System (ADS)

    Smerdon, Brian D.; Drewes, Jörg E.

    2017-12-01

    Groundwater recharge is an essential part of subsurface water circulation and the beginning of groundwater flow systems that can vary in duration from days to millennia. Globally, there is a growing body of evidence suggesting that many of Earth's aquifers contain 'fossil' groundwater that was recharged more than 12,000 years ago (Jasechko et al., 2017), and a very small portion of groundwater that was recharged within the last 50 years (Gleeson et al., 2015). Together, this information demonstrates the irregular distribution of groundwater circulation within the Earth and the wide variability of recharge conditions that replenish aquifer systems (Befus et al., 2017). Knowledge of groundwater recharge rates and distribution are needed for evaluating and regulating the quantity and quality of water resources, understanding consequences of landscapes use, identifying where managed aquifer recharge can augment supply, and predicting how groundwater systems will respond to a changing climate. In-turn, these topics are of central importance for the health of humans and ecosystems, and security of food and energy. Yet, despite the global importance, quantifying groundwater recharge remains challenging as it cannot be measured directly, and there is uncertainty associated with all currently known estimation methods (Scanlon et al., 2002).

  16. Beyond Population Distribution: Enhancing Sociocultural Resolution from Remote Sensing

    NASA Astrophysics Data System (ADS)

    Bhaduri, B. L.; Rose, A.

    2017-12-01

    At Oak Ridge National Laboratory, since late 1990s, we have focused on developing high resolution population distribution and dynamics data from local to global scales. Increasing resolutions of geographic data has been mirrored by population data sets developed across the community. However, attempts to increase temporal and sociocultural resolutions have been limited given the lack of high resolution data on human settlements and activities. While recent advancements in moderate to high resolution earth observation have led to better physiographic data, the approach of exploiting very high resolution (sub-meter resolution) imagery has also proven useful for generating accurate human settlement maps. It allows potential (social and vulnerability) characterization of population from settlement structures by exploiting image texture and spectral features. Our recent research utilizing machine learning and geocomputation has not only validated "poverty mapping from imagery" hypothesis, but has delineated a new paradigm of rapid analysis of high resolution imagery to enhance such "neighborhood" mapping techniques. Such progress in GIScience is allowing us to move towards the goal of creating a global foundation level database for impervious surfaces and "neighborhoods," and holds tremendous promise for key applications focusing on sustainable development including many social science applications.

  17. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions.

    PubMed

    Galloway, James N; Townsend, Alan R; Erisman, Jan Willem; Bekunda, Mateete; Cai, Zucong; Freney, John R; Martinelli, Luiz A; Seitzinger, Sybil P; Sutton, Mark A

    2008-05-16

    Humans continue to transform the global nitrogen cycle at a record pace, reflecting an increased combustion of fossil fuels, growing demand for nitrogen in agriculture and industry, and pervasive inefficiencies in its use. Much anthropogenic nitrogen is lost to air, water, and land to cause a cascade of environmental and human health problems. Simultaneously, food production in some parts of the world is nitrogen-deficient, highlighting inequities in the distribution of nitrogen-containing fertilizers. Optimizing the need for a key human resource while minimizing its negative consequences requires an integrated interdisciplinary approach and the development of strategies to decrease nitrogen-containing waste.

  18. A brief history of human blood groups.

    PubMed

    Farhud, Dariush D; Zarif Yeganeh, Marjan

    2013-01-01

    The evolution of human blood groups, without doubt, has a history as old as man himself. There are at least three hypotheses about the emergence and mutation of human blood groups. Global distribution pattern of blood groups depends on various environmental factors, such as disease, climate, altitude, humidity etc. In this survey, the collection of main blood groups ABO and Rh, along with some minor groups, are presented. Several investigations of blood groups from Iran, particularly a large sampling on 291857 individuals from Iran, including the main blood groups ABO and Rh, as well as minor blood groups such as Duffy, Lutheran, Kell, KP, Kidd, and Xg, have been reviewed.

  19. Spatio-Temporal Evolution and Scaling Properties of Human Settlements (Invited)

    NASA Astrophysics Data System (ADS)

    Small, C.; Milesi, C.; Elvidge, C.; Baugh, K.; Henebry, G. M.; Nghiem, S. V.

    2013-12-01

    Growth and evolution of cities and smaller settlements is usually studied in the context of population and other socioeconomic variables. While this is logical in the sense that settlements are groups of humans engaged in socioeconomic processes, our means of collecting information about spatio-temporal distributions of population and socioeconomic variables often lack the spatial and temporal resolution to represent the processes at scales which they are known to occur. Furthermore, metrics and definitions often vary with country and through time. However, remote sensing provides globally consistent, synoptic observations of several proxies for human settlement at spatial and temporal resolutions sufficient to represent the evolution of settlements over the past 40 years. We use several independent but complementary proxies for anthropogenic land cover to quantify spatio-temporal (ST) evolution and scaling properties of human settlements globally. In this study we begin by comparing land cover and night lights in 8 diverse settings - each spanning gradients of population density and degree of land surface modification. Stable anthropogenic night light is derived from multi-temporal composites of emitted luminance measured by the VIIRS and DMSP-OLS sensors. Land cover is represented as mixtures of sub-pixel fractions of rock, soil and impervious Substrates, Vegetation and Dark surfaces (shadow, water and absorptive materials) estimated from Landsat imagery with > 94% accuracy. Multi-season stability and variability of land cover fractions effectively distinguishes between spectrally similar land covers that corrupt thematic classifications based on single images. We find that temporal stability of impervious substrates combined with persistent shadow cast between buildings results in temporally stable aggregate reflectance across seasons at the 30 m scale of a Landsat pixel. Comparison of night light brightness with land cover composition, stability and variability yields several consistent relationships that persist across a variety of settlement types and physical environments. We use the multiple threshold method of Small et al (2011) to represent a continuum of settlement density by segmenting both night light brightness and multi-season land cover characteristics. Rank-size distributions of spatially contiguous segments quantify scaling and connectivity of land cover. Spatial and temporal evolution of rank-size distributions is consistent with power laws as suggested by Zipf's Law for city size based on population. However, unlike Zipf's Law, the observed distributions persist to global scales in which the larger agglomerations are much larger than individual cities. The scaling relations observed extend from the scale of cities and smaller settlements up to vast spatial networks of interconnected settlements.

  20. Lines of evidence for environmentally driven human migration

    NASA Astrophysics Data System (ADS)

    Davis, K. F.; D'Odorico, P.

    2012-12-01

    International human migration is an important mechanism that affects, and is affected by, various human and natural systems. With the number of people living outside their countries of origin currently estimated at 214 million people and projected to potentially reach more than 400 million people by mid-century, the topic of international human movements presents possible advantages and pitfalls for both sending and receiving countries on multiple fronts (e.g. economic, environmental, political and cultural). Understanding how human migration interacts with human and natural systems is therefore essential in realizing a sustainable and balanced future. While the study of international migration has historically been motivated largely by economic and political interests, the issue of environmentally induced migration has become increasingly important in light of a rapidly changing climate in conjunction with increasing population pressure on many important resources. Particularly in terms of theoretical and conceptual discussions, environmentally induced human migration has been receiving increased attention in the literature. To date, few studies - many of which focus on internal (intra-national) or regional migration - have attempted to quantify the interactions of human migration and the environment, with little attention paid to the global scale as a result of varying regional factors and lack of sufficient data. Recently available global bilateral migration datasets have been developed that allow for a more comprehensive understanding of human movements between all countries. With these datasets, we seek to elucidate environmental drivers of human migration over the past half-century using a multi-pronged approach. First, using a recently developed universal radiation model, we examine human movements based solely on global population distribution. Next, by comparison of migration movements with selected economic, environmental and human welfare indicators, we determine additional factors that may help explain migration at global, regional, continental and community-based (i.e. maximized module) scales. Lastly, we explore the relationship between migration and natural disasters (e.g. drought, flooding) to identify instances in which the environment is a proximate cause of human displacement and in turn use this information to determine if a subsequent cascade of human movements appears in neighboring countries as a result of the elevated inflow of migrants from the initial country of interest. In this way, we seek to gain a fuller picture of the environmental factors driving the dynamics of modern human migration.

  1. Effect of global climate on termites population. Effect of termites population on global climate

    NASA Astrophysics Data System (ADS)

    Sapunov, Valentin

    2010-05-01

    The global climate is under control of factors having both earth and space origin. Global warming took place from XVII century till 1997. Then global cold snap began. This dynamics had effect on global distribution of some animals including termites. Direct human effect on climate is not significant. At the same time man plays role of trigger switching on significant biosphere processes controlling climate. The transformation of marginal lands, development of industry and building, stimulated increase of termite niche and population. Termite role in green house gases production increases too. It may have regular effect on world climate. The dry wood is substrate for metabolism of termites living under symbiosis with bacteria Hypermastigina (Flagellata). The use of dry wood by humanity increased from 18 *108 ton in XVIII to 9*109 to the middle of XX century. Then use of wood decreased because of a new technology development. Hence termite population is controlled by microevolution depending on dry wood and climate dynamics. Producing by them green house gases had reciprocal effect on world climate. It is possible to describe and predict dynamic of termite population using methods of mathematical ecology and analogs with other well studied insects (Colorado potatoes beetle, Chrisomelid beetle Zygogramma and so on). Reclamation of new ecological niche for such insects as termites needs 70 - 75 years. That is delay of population dynamics in relation to dynamics of dry wood production. General principles of population growth were described by G.Gause (1934) and some authors of the end of XX century. This works and analogs with other insects suggest model of termite distribution during XXI century. The extremum of population and its green house gases production would be gotten during 8 - 10 years. Then the number of specimens and sum biological mass would be stabilized and decreased. Termite gas production is not priority for climate regulation, but it has importance as fine regulator of global temperature and climate stability. Key words: termites, green house gases, mathematical modeling. Union symposia Biogeoscience BG2.1

  2. A hydrological emulator for global applications – HE v1.0.0

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Liu, Yaling; Hejazi, Mohamad; Li, Hongyi

    While global hydrological models (GHMs) are very useful in exploring water resources and interactions between the Earth and human systems, their use often requires numerous model inputs, complex model calibration, and high computation costs. To overcome these challenges, we construct an efficient open-source and ready-to-use hydrological emulator (HE) that can mimic complex GHMs at a range of spatial scales (e.g., basin, region, globe). More specifically, we construct both a lumped and a distributed scheme of the HE based on the monthly abcd model to explore the tradeoff between computational cost and model fidelity. Model predictability and computational efficiency are evaluatedmore » in simulating global runoff from 1971 to 2010 with both the lumped and distributed schemes. The results are compared against the runoff product from the widely used Variable Infiltration Capacity (VIC) model. Our evaluation indicates that the lumped and distributed schemes present comparable results regarding annual total quantity, spatial pattern, and temporal variation of the major water fluxes (e.g., total runoff, evapotranspiration) across the global 235 basins (e.g., correlation coefficient r between the annual total runoff from either of these two schemes and the VIC is > 0.96), except for several cold (e.g., Arctic, interior Tibet), dry (e.g., North Africa) and mountainous (e.g., Argentina) regions. Compared against the monthly total runoff product from the VIC (aggregated from daily runoff), the global mean Kling–Gupta efficiencies are 0.75 and 0.79 for the lumped and distributed schemes, respectively, with the distributed scheme better capturing spatial heterogeneity. Notably, the computation efficiency of the lumped scheme is 2 orders of magnitude higher than the distributed one and 7 orders more efficient than the VIC model. A case study of uncertainty analysis for the world's 16 basins with top annual streamflow is conducted using 100 000 model simulations, and it demonstrates the lumped scheme's extraordinary advantage in computational efficiency. Lastly, our results suggest that the revised lumped abcd model can serve as an efficient and reasonable HE for complex GHMs and is suitable for broad practical use, and the distributed scheme is also an efficient alternative if spatial heterogeneity is of more interest.« less

  3. Economic growth, climate change, biodiversity loss: distributive justice for the global north and south.

    PubMed

    Rosales, Jon

    2008-12-01

    Economic growth-the increase in production and consumption of goods and services-must be considered within its biophysical context. Economic growth is fueled by biophysical inputs and its outputs degrade ecological processes, such as the global climate system. Economic growth is currently the principal cause of increased climate change, and climate change is a primary mechanism of biodiversity loss. Therefore, economic growth is a prime catalyst of biodiversity loss. Because people desire economic growth for dissimilar reasons-some for the increased accumulation of wealth, others for basic needs-how we limit economic growth becomes an ethical problem. Principles of distributive justice can help construct an international climate-change regime based on principles of equity. An equity-based framework that caps economic growth in the most polluting economies will lessen human impact on biodiversity. When coupled with a cap-and-trade mechanism, the framework can also provide a powerful tool for redistribution of wealth. Such an equity-based framework promises to be more inclusive and therefore more effective because it accounts for the disparate developmental conditions of the global north and south.

  4. Mapping the spatial distribution of Aedes aegypti and Aedes albopictus.

    PubMed

    Ding, Fangyu; Fu, Jingying; Jiang, Dong; Hao, Mengmeng; Lin, Gang

    2018-02-01

    Mosquito-borne infectious diseases, such as Rift Valley fever, Dengue, Chikungunya and Zika, have caused mass human death with the transnational expansion fueled by economic globalization. Simulating the distribution of the disease vectors is of great importance in formulating public health planning and disease control strategies. In the present study, we simulated the global distribution of Aedes aegypti and Aedes albopictus at a 5×5km spatial resolution with high-dimensional multidisciplinary datasets and machine learning methods Three relatively popular and robust machine learning models, including support vector machine (SVM), gradient boosting machine (GBM) and random forest (RF), were used. During the fine-tuning process based on training datasets of A. aegypti and A. albopictus, RF models achieved the highest performance with an area under the curve (AUC) of 0.973 and 0.974, respectively, followed by GBM (AUC of 0.971 and 0.972, respectively) and SVM (AUC of 0.963 and 0.964, respectively) models. The simulation difference between RF and GBM models was not statistically significant (p>0.05) based on the validation datasets, whereas statistically significant differences (p<0.05) were observed for RF and GBM simulations compared with SVM simulations. From the simulated maps derived from RF models, we observed that the distribution of A. albopictus was wider than that of A. aegypti along a latitudinal gradient. The discriminatory power of each factor in simulating the global distribution of the two species was also analyzed. Our results provided fundamental information for further study on disease transmission simulation and risk assessment. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Detection of anthropogenic dust using CALIPSO lidar measurements

    NASA Astrophysics Data System (ADS)

    Huang, J. P.; Liu, J. J.; Chen, B.; Nasiri, S. L.

    2015-10-01

    Anthropogenic dusts are those produced by human activities on disturbed soils, which are mainly cropland, pastureland, and urbanized regions, and are a subset of the total dust load which includes natural sources from desert regions. Our knowledge of anthropogenic dusts is still very limited due to a lack of data. To understand the contribution of anthropogenic dust to the total global dust load, it is important to identify it apart from total dust. In this study, a new technique for distinguishing anthropogenic dust from natural dust is proposed by using Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observation (CALIPSO) dust and planetary boundary layer (PBL) height retrievals along with a land use data set. Using this technique, the global distribution of dust is analyzed and the relative contribution of anthropogenic and natural dust sources to regional and global emissions are estimated. Results reveal that local anthropogenic dust aerosol due to human activity, such as agriculture, industrial activity, transportation, and overgrazing, accounts for about 25 % of the global continental dust load. Of these anthropogenic dust aerosols, more than 53 % come from semi-arid and semi-wet regions. Annual mean anthropogenic dust column burden (DCB) values range from 0.42 g m-2, with a maximum in India, to 0.12 g m-2, with a minimum in North America. A better understanding of anthropogenic dust emission will enable us to focus on human activities in these critical regions and with such knowledge we will be more able to improve global dust models and to explore the effects of anthropogenic emission on radiative forcing, climate change, and air quality in the future.

  6. Wormholes record species history in space and time.

    PubMed

    Hedges, S Blair

    2013-02-23

    Genetic and fossil data often lack the spatial and temporal precision for tracing the recent biogeographic history of species. Data with finer resolution are needed for studying distributional changes during modern human history. Here, I show that printed wormholes in rare books and artwork are trace fossils of wood-boring species with unusually accurate locations and dates. Analyses of wormholes printed in western Europe since the fifteenth century document the detailed biogeographic history of two putative species of invasive wood-boring beetles. Their distributions now overlap broadly, as an outcome of twentieth century globalization. However, the wormhole record revealed, unexpectedly, that their original ranges were contiguous and formed a stable line across central Europe, apparently a result of competition. Extension of the wormhole record, globally, will probably reveal other species and evolutionary insights. These data also provide evidence for historians in determining the place of origin or movement of a woodblock, book, document or art print.

  7. Resilience in the global food system

    NASA Astrophysics Data System (ADS)

    Seekell, David; Carr, Joel; Dell'Angelo, Jampel; D'Odorico, Paolo; Fader, Marianela; Gephart, Jessica; Kummu, Matti; Magliocca, Nicholas; Porkka, Miina; Puma, Michael; Ratajczak, Zak; Rulli, Maria Cristina; Suweis, Samir; Tavoni, Alessandro

    2017-02-01

    Ensuring food security requires food production and distribution systems function throughout disruptions. Understanding the factors that contribute to the global food system’s ability to respond and adapt to such disruptions (i.e. resilience) is critical for understanding the long-term sustainability of human populations. Variable impacts of production shocks on food supply between countries indicate a need for national-scale resilience indicators that can provide global comparisons. However, methods for tracking changes in resilience have had limited application to food systems. We developed an indicator-based analysis of food systems resilience for the years 1992-2011. Our approach is based on three dimensions of resilience: socio-economic access to food in terms of income of the poorest quintile relative to food prices, biophysical capacity to intensify or extensify food production, and the magnitude and diversity of current domestic food production. The socio-economic indicator has a large variability, but with low values concentrated in Africa and Asia. The biophysical capacity indicator is highest in Africa and Eastern Europe, in part because of a high potential for extensification of cropland and for yield gap closure in cultivated areas. However, the biophysical capacity indicator has declined globally in recent years. The production diversity indicator has increased slightly, with a relatively even geographic distribution. Few countries had exclusively high or low values for all indicators. Collectively, these results are the basis for global comparisons of resilience between countries, and provide necessary context for developing generalizations about resilience in the global food system.

  8. The Global Distribution and Drivers of Alien Bird Species Richness

    PubMed Central

    Dyer, Ellie E.; Cassey, Phillip; Redding, David W.; Collen, Ben; Franks, Victoria; Gaston, Kevin J.; Jones, Kate E.; Kark, Salit; Orme, C. David L.; Blackburn, Tim M.

    2017-01-01

    Alien species are a major component of human-induced environmental change. Variation in the numbers of alien species found in different areas is likely to depend on a combination of anthropogenic and environmental factors, with anthropogenic factors affecting the number of species introduced to new locations, and when, and environmental factors influencing how many species are able to persist there. However, global spatial and temporal variation in the drivers of alien introduction and species richness remain poorly understood. Here, we analyse an extensive new database of alien birds to explore what determines the global distribution of alien species richness for an entire taxonomic class. We demonstrate that the locations of origin and introduction of alien birds, and their identities, were initially driven largely by European (mainly British) colonialism. However, recent introductions are a wider phenomenon, involving more species and countries, and driven in part by increasing economic activity. We find that, globally, alien bird species richness is currently highest at midlatitudes and is strongly determined by anthropogenic effects, most notably the number of species introduced (i.e., “colonisation pressure”). Nevertheless, environmental drivers are also important, with native and alien species richness being strongly and consistently positively associated. Our results demonstrate that colonisation pressure is key to understanding alien species richness, show that areas of high native species richness are not resistant to colonisation by alien species at the global scale, and emphasise the likely ongoing threats to global environments from introductions of species. PMID:28081142

  9. North African dust emissions and transport

    NASA Astrophysics Data System (ADS)

    Engelstaedter, Sebastian; Tegen, Ina; Washington, Richard

    2006-11-01

    The need for a better understanding of the role of atmospheric dust in the climate system and its impact on the environment has led to research of the underlying causes of dust variability in space and time in recent decades. North Africa is one of the largest dust producing regions in the world with dust emissions being highly variable on time scales ranging from diurnal to multiannual. Changes in the dust loading are expected to have an impact on regional and global climate, the biogeochemical cycle, and human environments. The development of satellite derived products of global dust distributions has improved our understanding of dust source regions and transport pathways in the recent years. Dust models are now capable of reproducing more realistic patterns of dust distributions due to an improved parameterization of land surface conditions. A recent field campaign has improved our understanding of the natural environment and emission processes of the most intense and persistent dust sources in the world, the Bodélé Depression in Chad. In situ measurements of dust properties during air craft observations in and down wind of source regions have led to new estimates of the radiative forcing effects which are crucial in predicting future climate change. With a focus on the North African desert regions, this paper provides a review of the understanding of dust source regions, the variability of dust emissions, climatic controls of dust entrainment and transport, the role of human impact on dust emission, and recent developments of global and regional dust models.

  10. Local SAR in Parallel Transmission Pulse Design

    PubMed Central

    Lee, Joonsung; Gebhardt, Matthias; Wald, Lawrence L.; Adalsteinsson, Elfar

    2011-01-01

    The management of local and global power deposition in human subjects (Specific Absorption Rate, SAR) is a fundamental constraint to the application of parallel transmission (pTx) systems. Even though the pTx and single channel have to meet the same SAR requirements, the complex behavior of the spatial distribution of local SAR for transmission arrays poses problems that are not encountered in conventional single-channel systems and places additional requirements on pTx RF pulse design. We propose a pTx pulse design method which builds on recent work to capture the spatial distribution of local SAR in numerical tissue models in a compressed parameterization in order to incorporate local SAR constraints within computation times that accommodate pTx pulse design during an in vivo MRI scan. Additionally, the algorithm yields a Protocol-specific Ultimate Peak in Local SAR (PUPiL SAR), which is shown to bound the achievable peak local SAR for a given excitation profile fidelity. The performance of the approach was demonstrated using a numerical human head model and a 7T eight-channel transmit array. The method reduced peak local 10g SAR by 14–66% for slice-selective pTx excitations and 2D selective pTx excitations compared to a pTx pulse design constrained only by global SAR. The primary tradeoff incurred for reducing peak local SAR was an increase in global SAR, up to 34% for the evaluated examples, which is favorable in cases where local SAR constraints dominate the pulse applications. PMID:22083594

  11. Evolution of global cooperation driven by risks

    NASA Astrophysics Data System (ADS)

    Du, Jinming; Wu, Bin; Wang, Long

    2012-05-01

    Globalization facilitates our communication with each other, while it magnifies problems such as overharvesting of natural resources and human-induced climate change. Thus people all over the world are involved in a global social dilemma which calls for worldwide cooperation to reduce the risks of these extreme events and disasters. A collective target (threshold) is required to prevent such events. Everyone may lose their wealth once their total individual contributions fail to reach the threshold. To this end, we establish a model of threshold public goods games in a group-structured population and investigate its evolutionary process. We study multilevel public goods games with defectors, local cooperators, and global cooperators and are primarily concerned with how the global cooperative behavior evolves. We find that, compared with the standard public goods games, the strategy of global cooperation accounts for a bigger proportion in the stationary distribution of threshold public goods games. On the other hand, the fixation time of the global cooperation strategy is greatly shortened with increase of the probability of disaster striking. Therefore, global risks induced by the threshold can effectively promote global cooperation in environmental investment and the reduction of greenhouse gas emissions.

  12. Exploring Global Patterns in Human Appropriation of Net Primary Production Using Earth Observation Satellites and Statistical Data

    NASA Astrophysics Data System (ADS)

    Imhoff, M.; Bounoua, L.

    2004-12-01

    A unique combination of satellite and socio-economic data were used to explore the relationship between human consumption and the carbon cycle. Biophysical models were applied to consumption data to estimate the annual amount of Earth's terrestrial net primary production humans require for food, fiber and fuel using the same modeling architecture as satellite-supported NPP measurements. The amount of Earth's NPP required to support human activities is a powerful measure of the aggregate human impacts on the biosphere and indicator of societal vulnerability to climate change. Equations were developed estimating the amount of landscape-level NPP required to generate all the products consumed by 230 countries including; vegetal foods, meat, milk, eggs, wood, fuel-wood, paper and fiber. The amount of NPP required was calculated on a per capita basis and projected onto a global map of population to create a spatially explicit map of NPP-carbon demand in units of elemental carbon. NPP demand was compared to a map of Earth's average annual net primary production or supply created using 17 years (1982-1998) of AVHRR vegetation index to produce a geographically accurate balance sheet of terrestrial NPP-carbon supply and demand. Globally, humans consume 20 percent of Earth's total net primary production on land. Regionally the NPP-carbon balance percentage varies from 6 to over 70 percent and locally from near 0 to over 30,000 percent in major urban areas. The uneven distribution of NPP-carbon supply and demand, indicate the degree to which various human populations rely on NPP imports, are vulnerable to climate change and suggest policy options for slowing future growth in NPP demand.

  13. Ethics and governance of global health inequalities

    PubMed Central

    Ruger, J P

    2006-01-01

    Background A world divided by health inequalities poses ethical challenges for global health. International and national responses to health disparities must be rooted in ethical values about health and its distribution; this is because ethical claims have the power to motivate, delineate principles, duties and responsibilities, and hold global and national actors morally responsible for achieving common goals. Theories of justice are necessary to define duties and obligations of institutions and actors in reducing inequalities. The problem is the lack of a moral framework for solving problems of global health justice. Aim To study why global health inequalities are morally troubling, why efforts to reduce them are morally justified, how they should be measured and evaluated; how much priority disadvantaged groups should receive; and to delineate roles and responsibilities of national and international actors and institutions. Discussion and conclusions Duties and obligations of international and state actors in reducing global health inequalities are outlined. The ethical principles endorsed include the intrinsic value of health to well‐being and equal respect for all human life, the importance of health for individual and collective agency, the concept of a shortfall from the health status of a reference group, and the need for a disproportionate effort to help disadvantaged groups. This approach does not seek to find ways in which global and national actors address global health inequalities by virtue of their self‐interest, national interest, collective security or humanitarian assistance. It endorses the more robust concept of “human flourishing” and the desire to live in a world where all people have the capability to be healthy. Unlike cosmopolitan theory, this approach places the role of the nation‐state in the forefront with primary, though not sole, moral responsibility. Rather shared health governance is essential for delivering health equity on a global scale. PMID:17053290

  14. Achieving health equity: from root causes to fair outcomes.

    PubMed

    Marmot, Michael

    2007-09-29

    Health is a universal human aspiration and a basic human need. The development of society, rich or poor, can be judged by the quality of its population's health, how fairly health is distributed across the social spectrum, and the degree of protection provided from disadvantage due to ill-health. Health equity is central to this premise and to the work of the Commission on Social Determinants of Health. Strengthening health equity--globally and within countries--means going beyond contemporary concentration on the immediate causes of disease. More than any other global health endeavour, the Commission focuses on the "causes of the causes"--the fundamental structures of social hierarchy and the socially determined conditions these create in which people grow, live, work, and age. The time for action is now, not just because better health makes economic sense, but because it is right and just. The outcry against inequity has been intensifying for many years from country to country around the world. These cries are forming a global movement. The Commission on Social Determinants of Health places action to ensure fair health at the head and the heart of that movement.

  15. A changing climate: impacts on human exposures to O3 using ...

    EPA Pesticide Factsheets

    Predicting the impacts of changing climate on human exposure to air pollution requires future scenarios that account for changes in ambient pollutant concentrations, population sizes and distributions, and housing stocks. An integrated methodology to model changes in human exposures due to these impacts was developed by linking climate, air quality, land-use, and human exposure models. This methodology was then applied to characterize changes in predicted human exposures to O3 under multiple future scenarios. Regional climate projections for the U.S. were developed by downscaling global circulation model (GCM) scenarios for three of the Intergovernmental Panel on Climate Change’s (IPCC’s) Representative Concentration Pathways (RCPs) using the Weather Research and Forecasting (WRF) model. The regional climate results were in turn used to generate air quality (concentration) projections using the Community Multiscale Air Quality (CMAQ) model. For each of the climate change scenarios, future U.S. census-tract level population distributions from the Integrated Climate and Land Use Scenarios (ICLUS) model for four future scenarios based on the IPCC’s Special Report on Emissions Scenarios (SRES) storylines were used. These climate, air quality, and population projections were used as inputs to EPA’s Air Pollutants Exposure (APEX) model for 12 U.S. cities. Probability density functions show changes in the population distribution of 8 h maximum daily O3 exposur

  16. Multidigit force control during unconstrained grasping in response to object perturbations

    PubMed Central

    Haschke, Robert; Ritter, Helge; Santello, Marco; Ernst, Marc O.

    2017-01-01

    Because of the complex anatomy of the human hand, in the absence of external constraints, a large number of postures and force combinations can be used to attain a stable grasp. Motor synergies provide a viable strategy to solve this problem of motor redundancy. In this study, we exploited the technical advantages of an innovative sensorized object to study unconstrained hand grasping within the theoretical framework of motor synergies. Participants were required to grasp, lift, and hold the sensorized object. During the holding phase, we repetitively applied external disturbance forces and torques and recorded the spatiotemporal distribution of grip forces produced by each digit. We found that the time to reach the maximum grip force during each perturbation was roughly equal across fingers, consistent with a synchronous, synergistic stiffening across digits. We further evaluated this hypothesis by comparing the force distribution of human grasping vs. robotic grasping, where the control strategy was set by the experimenter. We controlled the global hand stiffness of the robotic hand and found that this control algorithm produced a force pattern qualitatively similar to human grasping performance. Our results suggest that the nervous system uses a default whole hand synergistic control to maintain a stable grasp regardless of the number of digits involved in the task, their position on the objects, and the type and frequency of external perturbations. NEW & NOTEWORTHY We studied hand grasping using a sensorized object allowing unconstrained finger placement. During object perturbation, the time to reach the peak force was roughly equal across fingers, consistently with a synergistic stiffening across fingers. Force distribution of a robotic grasping hand, where the control algorithm is based on global hand stiffness, was qualitatively similar to human grasping. This suggests that the central nervous system uses a default whole hand synergistic control to maintain a stable grasp. PMID:28228582

  17. The global distribution of bamboos: assessing correlates of introduction and invasion

    PubMed Central

    Richardson, David M.; Visser, Vernon; Le Roux, Johannes J.; Vorontsova, Maria S.; Wilson, John R. U.

    2017-01-01

    Abstract There is a long history of species being moved around the world by humans. These introduced species can provide substantial benefits, but they can also have undesirable consequences. We explore the importance of human activities on the processes of species dissemination and potential invasions using the Poaceae subfamily Bambusoideae (‘bamboos’), a group that contains taxa that are widely utilised and that are often perceived as weedy. We (1) compiled an inventory of bamboo species and their current distributions; (2) determined which species have been introduced and become invasive outside their native ranges; and (3) explored correlates of introduction and invasion. Distribution data were collated from Kew’s GrassBase, the Global Biodiversity Information Facility and other online herbarium information sources. Our list comprised 1662 species in 121 genera, of which 232 (14 %) have been introduced beyond their native ranges. Twelve (0.7 % of species) were found to be invasive. A non-random selection of bamboos have been introduced and become invasive. Asiatic species in particular have been widely introduced. There was a clear over-representation of introduced species in the genera Bambusa and Phyllostachys which also contain most of the listed invasive species. The introduction of species also correlated with certain traits: taxa with larger culm dimensions were significantly more likely to have been moved to new areas; and those with many cultivars had a higher rate of dissemination and invasion. It is difficult to determine whether the patterns of introduction and invasion are due simply to differences in propagule pressure, or whether humans have deliberately selected inherently invasive taxa. In general, we suggest that human usage is a stronger driver of introductions and invasions in bamboos than in other taxa that have been well studied. It is likely that as bamboos are used more widely, the number and impact of invasions will increase unless environmental risks are carefully managed. PMID:28013249

  18. Identifying species at extinction risk using global models of anthropogenic impact.

    PubMed

    Peters, Howard; O'Leary, Bethan C; Hawkins, Julie P; Roberts, Callum M

    2015-02-01

    The International Union for Conservation of Nature Red List of Endangered Species employs a robust, standardized approach to assess extinction threat focussed on taxa approaching an end-point in population decline. Used alone, we argue this enforces a reactive approach to conservation. Species not assessed as threatened but which occur predominantly in areas with high levels of anthropogenic impact may require proactive conservation management to prevent loss. We matched distribution and bathymetric range data from the global Red List assessment of 632 species of marine cone snails with human impacts and projected ocean thermal stress and aragonite saturation (a proxy for ocean acidification). Our results show 67 species categorized as 'Least Concern' have 70% or more of their occupancy in places subject to high and very high levels of human impact with 18 highly restricted species (range <100 km(2)) living exclusively in such places. Using a range-rarity scoring method we identified where clusters of endemic species are subject to all three stressors: high human impact, declining aragonite saturation levels and elevated thermal stress. Our approach reinforces Red List threatened status, highlights candidate species for reassessment, contributes important evidential data to minimize data deficiency and identifies regions and species for proactive conservation. © 2014 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  19. Selenium deficiency risk predicted to increase under future climate change

    PubMed Central

    Jones, Gerrad D.; Droz, Boris; Greve, Peter; Gottschalk, Pia; Poffet, Deyan; McGrath, Steve P.; Seneviratne, Sonia I.; Smith, Pete; Winkel, Lenny H. E.

    2017-01-01

    Deficiencies of micronutrients, including essential trace elements, affect up to 3 billion people worldwide. The dietary availability of trace elements is determined largely by their soil concentrations. Until now, the mechanisms governing soil concentrations have been evaluated in small-scale studies, which identify soil physicochemical properties as governing variables. However, global concentrations of trace elements and the factors controlling their distributions are virtually unknown. We used 33,241 soil data points to model recent (1980–1999) global distributions of Selenium (Se), an essential trace element that is required for humans. Worldwide, up to one in seven people have been estimated to have low dietary Se intake. Contrary to small-scale studies, soil Se concentrations were dominated by climate–soil interactions. Using moderate climate-change scenarios for 2080–2099, we predicted that changes in climate and soil organic carbon content will lead to overall decreased soil Se concentrations, particularly in agricultural areas; these decreases could increase the prevalence of Se deficiency. The importance of climate–soil interactions to Se distributions suggests that other trace elements with similar retention mechanisms will be similarly affected by climate change. PMID:28223487

  20. Vaccine production, distribution, access and uptake

    PubMed Central

    Smith, Jon; Lipsitch, Marc; Almond, Jeffrey W.

    2011-01-01

    Making human vaccines available on a global scale requires the use of complex production methods, meticulous quality control and reliable distribution channels that ensure the products are potent and effective at their point of use. The technologies involved in manufacturing different types of vaccines may strongly influence vaccine cost, ease of industrial scale-up, stability and ultimately world-wide availability. Manufacturing complexity is compounded by the need for different formulations for different countries and age groups. Reliable vaccine production in appropriate quantities and at affordable prices is the cornerstone of developing global vaccination policies. However, ensuring optimal access and uptake also requires strong partnerships between private manufacturers, regulatory authorities and national and international public health services. For vaccines whose supplies are limited, either due to rapidly emerging diseases or longer-term mismatch of supply and demand, prioritizing target groups can increase vaccine impact. Focusing on influenza vaccines as an example that well illustrates many of the relevant points, this article considers current production, distribution, access and other factors that ultimately impact on vaccine uptake and population-level effectiveness. PMID:21664680

  1. Vaccine production, distribution, access, and uptake.

    PubMed

    Smith, Jon; Lipsitch, Marc; Almond, Jeffrey W

    2011-07-30

    For human vaccines to be available on a global scale, complex production methods, meticulous quality control, and reliable distribution channels are needed to ensure that the products are potent and effective at the point of use. The technologies used to manufacture different types of vaccines can strongly affect vaccine cost, ease of industrial scale-up, stability, and, ultimately, worldwide availability. The complexity of manufacturing is compounded by the need for different formulations in different countries and age-groups. Reliable vaccine production in appropriate quantities and at affordable prices is the cornerstone of developing global vaccination policies. However, to ensure optimum access and uptake, strong partnerships are needed between private manufacturers, regulatory authorities, and national and international public health services. For vaccines whose supply is insufficient to meet demand, prioritisation of target groups can increase the effect of these vaccines. In this report, we draw from our experience of vaccine development and focus on influenza vaccines as an example to consider production, distribution, access, and other factors that affect vaccine uptake and population-level effectiveness. Copyright © 2011 Elsevier Ltd. All rights reserved.

  2. Selenium deficiency risk predicted to increase under future climate change.

    PubMed

    Jones, Gerrad D; Droz, Boris; Greve, Peter; Gottschalk, Pia; Poffet, Deyan; McGrath, Steve P; Seneviratne, Sonia I; Smith, Pete; Winkel, Lenny H E

    2017-03-14

    Deficiencies of micronutrients, including essential trace elements, affect up to 3 billion people worldwide. The dietary availability of trace elements is determined largely by their soil concentrations. Until now, the mechanisms governing soil concentrations have been evaluated in small-scale studies, which identify soil physicochemical properties as governing variables. However, global concentrations of trace elements and the factors controlling their distributions are virtually unknown. We used 33,241 soil data points to model recent (1980-1999) global distributions of Selenium (Se), an essential trace element that is required for humans. Worldwide, up to one in seven people have been estimated to have low dietary Se intake. Contrary to small-scale studies, soil Se concentrations were dominated by climate-soil interactions. Using moderate climate-change scenarios for 2080-2099, we predicted that changes in climate and soil organic carbon content will lead to overall decreased soil Se concentrations, particularly in agricultural areas; these decreases could increase the prevalence of Se deficiency. The importance of climate-soil interactions to Se distributions suggests that other trace elements with similar retention mechanisms will be similarly affected by climate change.

  3. Rapid multiplex PCR and Real-Time TaqMan PCR assays for detection of Salmonella enterica and the highly virulent serovars Choleraesuis and Paratyphi C

    USDA-ARS?s Scientific Manuscript database

    Salmonella enterica is a human pathogen with over 2,500 serovars characterized. S. enterica serovars Choleraesuis (Cs) and Paratyphi C (Pc) are two globally distributed serovars. We have developed a rapid molecular typing method to detect Cs and Pc in food samples by using a comparative genomics ap...

  4. Assessing the drivers shaping global patterns of urban vegetation landscape structure.

    PubMed

    Dobbs, C; Nitschke, C; Kendal, D

    2017-08-15

    Vegetation is one of the main resources involve in ecosystem functioning and providing ecosystem services in urban areas. Little is known on the landscape structure patterns of vegetation existing in urban areas at the global scale and the drivers of these patterns. We studied the landscape structure of one hundred cities around the globe, and their relation to demography (population), socioeconomic factors (GDP, Gini Index), climate factors (temperature and rain) and topographic characteristics (altitude, variation in altitude). The data revealed that the best descriptors of landscape structure were amount, fragmentation and spatial distribution of vegetation. Populated cities tend to have less, more fragmented, less connected vegetation with a centre of the city with low vegetation cover. Results also provided insights on the influence of socioeconomics at a global scale, as landscape structure was more fragmented in areas that are economically unequal and coming from emergent economies. This study shows the effects of the social system and climate on urban landscape patterns that gives useful insights for the distribution in the provision of ecosystem services in urban areas and therefore the maintenance of human well-being. This information can support local and global policy and planning which is committing our cities to provide accessible and inclusive green space for all urban inhabitants. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. The global distribution and dynamics of surface soil moisture

    NASA Astrophysics Data System (ADS)

    McColl, Kaighin A.; Alemohammad, Seyed Hamed; Akbar, Ruzbeh; Konings, Alexandra G.; Yueh, Simon; Entekhabi, Dara

    2017-01-01

    Surface soil moisture has a direct impact on food security, human health and ecosystem function. It also plays a key role in the climate system, and the development and persistence of extreme weather events such as droughts, floods and heatwaves. However, sparse and uneven observations have made it difficult to quantify the global distribution and dynamics of surface soil moisture. Here we introduce a metric of soil moisture memory and use a full year of global observations from NASA's Soil Moisture Active Passive mission to show that surface soil moisture--a storage believed to make up less than 0.001% of the global freshwater budget by volume, and equivalent to an, on average, 8-mm thin layer of water covering all land surfaces--plays a significant role in the water cycle. Specifically, we find that surface soil moisture retains a median 14% of precipitation falling on land after three days. Furthermore, the retained fraction of the surface soil moisture storage after three days is highest over arid regions, and in regions where drainage to groundwater storage is lowest. We conclude that lower groundwater storage in these regions is due not only to lower precipitation, but also to the complex partitioning of the water cycle by the surface soil moisture storage layer at the land surface.

  6. Addressing legal and political barriers to global pharmaceutical access: options for remedying the impact of the Agreement on Trade-Related Aspects of Intellectual Property Rights (TRIPS) and the imposition of TRIPS-plus standards.

    PubMed

    Cohen-Kohler, Jillian Clare; Forman, Lisa; Lipkus, Nathaniel

    2008-07-01

    Despite myriad programs aimed at increasing access to essential medicines in the developing world, the global drug gap persists. This paper focuses on the major legal and political constraints preventing implementation of coordinated global policy solutions - particularly, the Agreement on Trade-Related Aspects of Intellectual Property Rights (TRIPS) and bilateral and regional free trade agreements. We argue that several policy and research routes should be taken to mitigate the restrictive impact of TRIPS and TRIPS-plus rules, including greater use of TRIPS flexibilities, advancement of human rights, and an ethical framework for essential medicines distribution, and a broader campaign that debates the legitimacy of TRIPS and TRIPS-plus standards themselves.

  7. [Justice challenges of pharmaceutical industry global research].

    PubMed

    Páez Moreno, Ricardo

    2010-01-01

    International research projects sponsored by the pharmaceutical industry are a recent modality of biomedical research, which is driven by interests that are not only scientific, but also commercial. This combination of interests is one of the natural consequences of globalization, which has brought unquestionable benefits for the world, but has also created a wider gap between the wealthy and the poor. Given that globalization has been led by the the world's leading economies, the level of injustice in the world has increased, often to the favor of the already wealthy. Globalization has a well-established dynamics, whose main characteristic is domain over the following: technological innovation, the organization of the production of goods and services, human needs, and consumption. International biomedical research fits well in this dynamics, and the result is often a poor distribution of benefits, added to a loss of scientific integrity for the sake of commercial interests. This phenomenon raises many ethical questions and it demands a reflection from different bioethical points of view, particularly an economic ethics and a global justice.

  8. The contribution of lakes to global inland fisheries harvest

    USGS Publications Warehouse

    Deines, Andrew M.; Bunnell, David B.; Rogers, Mark W.; Bennion, David; Woelmer, Whitney; Sayers, Michael J.; Grimm, Amanda G.; Shuchman, Robert A.; Raymer, Zachary B.; Brooks, Colin N.; Mychek-Londer, Justin G.; Taylor, William W.; Beard, Douglas

    2017-01-01

    Freshwater ecosystems provide numerous services for communities worldwide, including irrigation, hydropower, and municipal water; however, the services provided by inland fisheries – nourishment, employment, and recreational opportunities – are often comparatively undervalued. We provide an independent estimate of global lake harvest to improve biological and socioeconomic assessments of inland fisheries. On the basis of satellite-derived estimates of chlorophyll concentration from 80,012 globally distributed lakes, lake-specific fishing effort based on human population, and output from a Bayesian hierarchical model, we estimated that the global lake fishery harvest in the year 2011 was 8.4 million tons (mt). Our calculations excluded harvests from highly productive rivers, wetlands, and very small lakes; therefore, the true cumulative global fishery harvest from all freshwater sources likely exceeded 11 mt as reported by the Food and Agriculture Organization of the United Nations (FAO). This putative underestimate by the FAO could diminish the perceived importance of inland fisheries and perpetuate decisions that adversely affect these fisheries and millions of people.

  9. Global warming and environmental contaminants in aquatic organisms: the need of the etho-toxicology approach.

    PubMed

    Manciocco, Arianna; Calamandrei, Gemma; Alleva, Enrico

    2014-04-01

    Environmental contaminants are associated with a wide spectrum of pathological effects. Temperature increase affects ambient distribution and toxicity of these chemicals in the water environment, representing a potentially emerging problem for aquatic species with short-, medium- and long-term repercussions on human health through the food chain. We assessed peer-reviewed literature, including primary studies, review articles and organizational reports available. We focused on studies concerning toxicity of environmental pollutants within a global warming scenario. Existing knowledge on the effects that the increase of water temperature in a contaminated situation has on physiological mechanisms of aquatic organisms is presented. Altogether we consider the potential consequences for the human beings due to fish and shellfish consumption. Finally, we propose an etho-toxicological approach to study the effects of toxicants in conditions of thermal increase, using aquatic organisms as experimental models under laboratory controlled conditions. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Water Security - National and Global Issues

    NASA Astrophysics Data System (ADS)

    Tindall, J. A.; Campbell, A. A.; Moran, E. H.

    2010-12-01

    Water is fundamental to human life. Disruption of water supplies by the Water Threats and Hazards Triad (WTHT) — man-made, natural, and technological hazards — could threaten the delivery of vital human services, endanger public health and the environment, potentially cause mass casualties, and threaten population sustainability, social stability, and homeland security. Water distribution systems extend over vast areas and are therefore vulnerable to a wide spectrum of threats — from natural hazards such as large forest fires that result in runoff and debris flow that clog reservoirs, and reduce, disrupt, or contaminate water supply and quality to threats from natural, man-made, or political extremist attacks. Our research demonstrates how devising concepts and counter measures to protect water supplies will assist the public, policy makers, and planners at local, Tribal, State, and Federal levels to develop solutions for national and international water-security and sustainability issues. Water security is an issue in which the entire global community is stakeholders.

  11. Overview: Global and Local Impact of Antibiotic Resistance.

    PubMed

    Watkins, Richard R; Bonomo, Robert A

    2016-06-01

    The rapid and ongoing spread of antibiotic resistance poses a serious threat to global public health. The indiscriminant use of antibiotics in agriculture and human medicine along with increasingly connected societies has fueled the distribution of antibiotic-resistant bacteria. These factors together have led to rising numbers of infections caused by multidrug-resistant and pan-resistant bacteria, with increases in morbidity and mortality. This article summarizes the trends in antibiotic resistance, discusses the impact of antibiotic resistance on society, and reviews the use of antibiotics in agriculture. Feasible ways to tackle antibiotic resistance to avert a post-antibiotic era are suggested. Copyright © 2016 Elsevier Inc. All rights reserved.

  12. Landsat: A Global Land-Imaging Project

    USGS Publications Warehouse

    Headley, Rachel

    2010-01-01

    Across nearly four decades since 1972, Landsat satellites continuously have acquired space-based images of the Earth's land surface, coastal shallows, and coral reefs. The Landsat Program, a joint effort of the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA), was established to routinely gather land imagery from space; consequently, NASA develops remote-sensing instruments and spacecraft, then launches and validates the satellites. The USGS then assumes ownership and operation of the satellites, in addition to managing all ground-data reception, archiving, product generation, and distribution. The result of this program is a visible, long-term record of natural and human-induced changes on the global landscape.

  13. Landsat: a global land imaging program

    USGS Publications Warehouse

    Byrnes, Raymond A.

    2012-01-01

    Landsat satellites have continuously acquired space-based images of the Earth's land surface, coastal shallows, and coral reefs across four decades. The Landsat Program, a joint effort of the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA), was established to routinely gather land imagery from space. In practice, NASA develops remote-sensing instruments and spacecraft, launches satellites, and validates their performance. The USGS then assumes ownership and operation of the satellites, in addition to managing all ground-data reception, archiving, product generation, and distribution. The result of this program is a visible, long-term record of natural and human-induced changes on the global landscape.

  14. Global Dispersal Pattern of HIV Type 1 Subtype CRF01_AE: A Genetic Trace of Human Mobility Related to Heterosexual Sexual Activities Centralized in Southeast Asia.

    PubMed

    Angelis, Konstantinos; Albert, Jan; Mamais, Ioannis; Magiorkinis, Gkikas; Hatzakis, Angelos; Hamouda, Osamah; Struck, Daniel; Vercauteren, Jurgen; Wensing, Annemarie M J; Alexiev, Ivailo; Åsjö, Birgitta; Balotta, Claudia; Camacho, Ricardo J; Coughlan, Suzie; Griskevicius, Algirdas; Grossman, Zehava; Horban, Andrzej; Kostrikis, Leondios G; Lepej, Snjezana; Liitsola, Kirsi; Linka, Marek; Nielsen, Claus; Otelea, Dan; Paredes, Roger; Poljak, Mario; Puchhammer-Stöckl, Elisabeth; Schmit, Jean-Claude; Sönnerborg, Anders; Staneková, Danica; Stanojevic, Maja; Boucher, Charles A B; Kaplan, Lauren; Vandamme, Anne-Mieke; Paraskevis, Dimitrios

    2015-06-01

    Human immunodeficiency virus type 1 (HIV-1) subtype CRF01_AE originated in Africa and then passed to Thailand, where it established a major epidemic. Despite the global presence of CRF01_AE, little is known about its subsequent dispersal pattern. We assembled a global data set of 2736 CRF01_AE sequences by pooling sequences from public databases and patient-cohort studies. We estimated viral dispersal patterns, using statistical phylogeographic analysis run over bootstrap trees estimated by the maximum likelihood method. We show that Thailand has been the source of viral dispersal to most areas worldwide, including 17 of 20 sampled countries in Europe. Japan, Singapore, Vietnam, and other Asian countries have played a secondary role in the viral dissemination. In contrast, China and Taiwan have mainly imported strains from neighboring Asian countries, North America, and Africa without any significant viral exportation. The central role of Thailand in the global spread of CRF01_AE can be probably explained by the popularity of Thailand as a vacation destination characterized by sex tourism and by Thai emigration to the Western world. Our study highlights the unique case of CRF01_AE, the only globally distributed non-B clade whose global dispersal did not originate in Africa. © The Author 2014. Published by Oxford University Press on behalf of the Infectious Diseases Society of America. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  15. Dynamic population mapping using mobile phone data.

    PubMed

    Deville, Pierre; Linard, Catherine; Martin, Samuel; Gilbert, Marius; Stevens, Forrest R; Gaughan, Andrea E; Blondel, Vincent D; Tatem, Andrew J

    2014-11-11

    During the past few decades, technologies such as remote sensing, geographical information systems, and global positioning systems have transformed the way the distribution of human population is studied and modeled in space and time. However, the mapping of populations remains constrained by the logistics of censuses and surveys. Consequently, spatially detailed changes across scales of days, weeks, or months, or even year to year, are difficult to assess and limit the application of human population maps in situations in which timely information is required, such as disasters, conflicts, or epidemics. Mobile phones (MPs) now have an extremely high penetration rate across the globe, and analyzing the spatiotemporal distribution of MP calls geolocated to the tower level may overcome many limitations of census-based approaches, provided that the use of MP data is properly assessed and calibrated. Using datasets of more than 1 billion MP call records from Portugal and France, we show how spatially and temporarily explicit estimations of population densities can be produced at national scales, and how these estimates compare with outputs produced using alternative human population mapping methods. We also demonstrate how maps of human population changes can be produced over multiple timescales while preserving the anonymity of MP users. With similar data being collected every day by MP network providers across the world, the prospect of being able to map contemporary and changing human population distributions over relatively short intervals exists, paving the way for new applications and a near real-time understanding of patterns and processes in human geography.

  16. Dynamic population mapping using mobile phone data

    PubMed Central

    Deville, Pierre; Martin, Samuel; Gilbert, Marius; Stevens, Forrest R.; Gaughan, Andrea E.; Blondel, Vincent D.; Tatem, Andrew J.

    2014-01-01

    During the past few decades, technologies such as remote sensing, geographical information systems, and global positioning systems have transformed the way the distribution of human population is studied and modeled in space and time. However, the mapping of populations remains constrained by the logistics of censuses and surveys. Consequently, spatially detailed changes across scales of days, weeks, or months, or even year to year, are difficult to assess and limit the application of human population maps in situations in which timely information is required, such as disasters, conflicts, or epidemics. Mobile phones (MPs) now have an extremely high penetration rate across the globe, and analyzing the spatiotemporal distribution of MP calls geolocated to the tower level may overcome many limitations of census-based approaches, provided that the use of MP data is properly assessed and calibrated. Using datasets of more than 1 billion MP call records from Portugal and France, we show how spatially and temporarily explicit estimations of population densities can be produced at national scales, and how these estimates compare with outputs produced using alternative human population mapping methods. We also demonstrate how maps of human population changes can be produced over multiple timescales while preserving the anonymity of MP users. With similar data being collected every day by MP network providers across the world, the prospect of being able to map contemporary and changing human population distributions over relatively short intervals exists, paving the way for new applications and a near real-time understanding of patterns and processes in human geography. PMID:25349388

  17. Exploring the impact of climate variability during the Last Glacial Maximum on the pattern of human occupation of Iberia.

    PubMed

    Burke, Ariane; Levavasseur, Guillaume; James, Patrick M A; Guiducci, Dario; Izquierdo, Manuel Arturo; Bourgeon, Lauriane; Kageyama, Masa; Ramstein, Gilles; Vrac, Mathieu

    2014-08-01

    The Last Glacial Maximum (LGM) was a global climate event, which had significant repercussions for the spatial distribution and demographic history of prehistoric populations. In Eurasia, the LGM coincides with a potential bottleneck for modern humans and may mark the divergence date for Asian and European populations (Keinan et al., 2007). In this research, the impact of climate variability on human populations in the Iberian Peninsula during the Last Glacial Maximum (LGM) is examined with the aid of downscaled high-resolution (16 × 16 km) numerical climate experiments. Human sensitivity to short time-scale (inter-annual) climate variability during this key time period, which follows the initial modern human colonisation of Eurasia and the extinction of the Neanderthals, is tested using the spatial distribution of archaeological sites. Results indicate that anatomically modern human populations responded to small-scale spatial patterning in climate variability, specifically inter-annual variability in precipitation levels as measured by the standard precipitation index. Climate variability at less than millennial scale, therefore, is shown to be an important component of ecological risk, one that played a role in regulating the spatial behaviour of prehistoric human populations and consequently affected their social networks. Copyright © 2014 Elsevier Ltd. All rights reserved.

  18. Social justice, climate change, and dengue.

    PubMed

    Chang, Aileen Y; Fuller, Douglas O; Carrasquillo, Olveen; Beier, John C

    2014-06-14

    Climate change should be viewed fundamentally as an issue of global justice. Understanding the complex interplay of climatic and socioeconomic trends is imperative to protect human health and lessen the burden of diseases such as dengue fever. Dengue fever is rapidly expanding globally. Temperature, rainfall, and frequency of natural disasters, as well as non-climatic trends involving population growth and migration, urbanization, and international trade and travel, are expected to increase the prevalence of mosquito breeding sites, mosquito survival, the speed of mosquito reproduction, the speed of viral incubation, the distribution of dengue virus and its vectors, human migration patterns towards urban areas, and displacement after natural disasters. The burden of dengue disproportionately affects the poor due to increased environmental risk and decreased health care. Mobilization of social institutions is needed to improve the structural inequalities of poverty that predispose the poor to increased dengue fever infection and worse outcomes. This paper reviews the link between dengue and climatic factors as a starting point to developing a comprehensive understanding of how climate change affects dengue risk and how institutions can address the issues of social justice and dengue outbreaks that increasingly affect vulnerable urban populations. Copyright © 2014 Chang, Fuller, Carrasquillo, Beier. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

  19. Hierarchical regulation of the genome: global changes in nucleosome organization potentiate genome response

    PubMed Central

    Sexton, Brittany S.; Druliner, Brooke R.; Vera, Daniel L.; Avey, Denis; Zhu, Fanxiu; Dennis, Jonathan H.

    2016-01-01

    Nucleosome occupancy is critically important in regulating access to the eukaryotic genome. Few studies in human cells have measured genome-wide nucleosome distributions at high temporal resolution during a response to a common stimulus. We measured nucleosome distributions at high temporal resolution following Kaposi's-sarcoma-associated herpesvirus (KSHV) reactivation using our newly developed mTSS-seq technology, which maps nucleosome distribution at the transcription start sites (TSS) of all human genes. Nucleosomes underwent widespread changes in organization 24 hours after KSHV reactivation and returned to their basal nucleosomal architecture 48 hours after KSHV reactivation. The widespread changes consisted of an indiscriminate remodeling event resulting in the loss of nucleosome rotational phasing signals. Additionally, one in six TSSs in the human genome possessed nucleosomes that are translationally remodeled. 72% of the loci with translationally remodeled nucleosomes have nucleosomes that moved to positions encoded by the underlying DNA sequence. Finally we demonstrated that these widespread alterations in nucleosomal architecture potentiated regulatory factor binding. These descriptions of nucleosomal architecture changes provide a new framework for understanding the role of chromatin in the genomic response, and have allowed us to propose a hierarchical model for chromatin-based regulation of genome response. PMID:26771136

  20. The impact of globalisation on the distribution of Echinococcus multilocularis.

    PubMed

    Davidson, Rebecca K; Romig, Thomas; Jenkins, Emily; Tryland, Morten; Robertson, Lucy J

    2012-06-01

    In the past three decades, Echinococcus multilocularis, the cause of human alveolar echinococcosis, has been reported in several new countries both in definitive hosts (canids) as well as in people. Unless treated, infection with this cestode in people is fatal. In previously endemic countries throughout the Northern Hemisphere, geographic ranges and human and animal prevalence levels seem to be increasing. Anthropogenic influences, including increased globalisation of animals and animal products, and altered human/animal interfaces are thought to play a vital role in the global emergence of this pathogenic cestode. Molecular epidemiological techniques are a useful tool for detecting and tracing introductions, and differentiating these from range expansions. Copyright © 2012 Elsevier Ltd. All rights reserved.

  1. Global Environmental Change: Modifying Human Contributions Through Education

    NASA Astrophysics Data System (ADS)

    Carter, Lynne M.

    1998-12-01

    The 1995 Intergovernmental Panel on Climate Change (IPCC, 1996) Science report concludes that evidence now available "points toward a discernible human influence on global climate" (p. 439). Reductions in emissions will require changes in human behavior. This study assessed whether gains in global environmental change knowledge would lead to changes in human behaviors that could be deemed environmentally responsible. The study assessed the impact on participant behavior of a two-and-one-half day National Informal Educators Workshop and Videoconference held November 14-16, 1994. The workshops were located in seven down-link sites around the continental U.S. and Hawaii. The program utilized a variety of pedagogical techniques during five hours of satellite programming with national expertise on global change topics (natural variability, greenhouse effect, ozone depletion, ecosystem response, and population and resource distribution) and applications of that information with local experts in regional workshops. Participants implemented many personal and professional behavior changes after participation in this program. Six behavior change scales were created from assessment of survey responses (four coefficient alphas were above .7, one was .68, and one was .58). Personal behavior changes grouped into three categories: Use of Fewer Resources (acts of everyday life generally under volitional control), Purchasing Choices/Options (less frequent acts, not under total volitional control, with significant environmental effect over the lifetime of the decision, e.g., an automobile) and Increased Awareness and Discussion (indicating changes in "habits of mind"). The professional behavior changes also grouped into three categories: Curriculum Development (developing/revising curricula including new knowledge); Networking (with colleagues from the program); and Office Procedures (reflecting environmentally responsible behavior). The statistically significant behavior changes implemented correspond with increases in content knowledge, confidence, a developing national network, regional applications, and satisfaction with the program.

  2. Human and Animal Dirofilariasis: the Emergence of a Zoonotic Mosaic

    PubMed Central

    Siles-Lucas, Mar; Morchón, Rodrigo; González-Miguel, Javier; Mellado, Isabel; Carretón, Elena; Montoya-Alonso, Jose Alberto

    2012-01-01

    Summary: Dirofilariasis represents a zoonotic mosaic, which includes two main filarial species (Dirofilaria immitis and D. repens) that have adapted to canine, feline, and human hosts with distinct biological and clinical implications. At the same time, both D. immitis and D. repens are themselves hosts to symbiotic bacteria of the genus Wolbachia, the study of which has resulted in a profound shift in the understanding of filarial biology, the mechanisms of the pathologies that they produce in their hosts, and issues related to dirofilariasis treatment. Moreover, because dirofilariasis is a vector-borne transmitted disease, their distribution and infection rates have undergone significant modifications influenced by global climate change. Despite advances in our knowledge of D. immitis and D. repens and the pathologies that they inflict on different hosts, there are still many unknown aspects of dirofilariasis. This review is focused on human and animal dirofilariasis, including the basic morphology, biology, protein composition, and metabolism of Dirofilaria species; the climate and human behavioral factors that influence distribution dynamics; the disease pathology; the host-parasite relationship; the mechanisms involved in parasite survival; the immune response and pathogenesis; and the clinical management of human and animal infections. PMID:22763636

  3. Empirical Distributions of F ST from Large-Scale Human Polymorphism Data

    PubMed Central

    Elhaik, Eran

    2012-01-01

    Studies of the apportionment of human genetic variation have long established that most human variation is within population groups and that the additional variation between population groups is small but greatest when comparing different continental populations. These studies often used Wright’s F ST that apportions the standardized variance in allele frequencies within and between population groups. Because local adaptations increase population differentiation, high-F ST may be found at closely linked loci under selection and used to identify genes undergoing directional or heterotic selection. We re-examined these processes using HapMap data. We analyzed 3 million SNPs on 602 samples from eight worldwide populations and a consensus subset of 1 million SNPs found in all populations. We identified four major features of the data: First, a hierarchically F ST analysis showed that only a paucity (12%) of the total genetic variation is distributed between continental populations and even a lesser genetic variation (1%) is found between intra-continental populations. Second, the global F ST distribution closely follows an exponential distribution. Third, although the overall F ST distribution is similarly shaped (inverse J), F ST distributions varies markedly by allele frequency when divided into non-overlapping groups by allele frequency range. Because the mean allele frequency is a crude indicator of allele age, these distributions mark the time-dependent change in genetic differentiation. Finally, the change in mean-F ST of these groups is linear in allele frequency. These results suggest that investigating the extremes of the F ST distribution for each allele frequency group is more efficient for detecting selection. Consequently, we demonstrate that such extreme SNPs are more clustered along the chromosomes than expected from linkage disequilibrium for each allele frequency group. These genomic regions are therefore likely candidates for natural selection. PMID:23185452

  4. Empirical distributions of F(ST) from large-scale human polymorphism data.

    PubMed

    Elhaik, Eran

    2012-01-01

    Studies of the apportionment of human genetic variation have long established that most human variation is within population groups and that the additional variation between population groups is small but greatest when comparing different continental populations. These studies often used Wright's F(ST) that apportions the standardized variance in allele frequencies within and between population groups. Because local adaptations increase population differentiation, high-F(ST) may be found at closely linked loci under selection and used to identify genes undergoing directional or heterotic selection. We re-examined these processes using HapMap data. We analyzed 3 million SNPs on 602 samples from eight worldwide populations and a consensus subset of 1 million SNPs found in all populations. We identified four major features of the data: First, a hierarchically F(ST) analysis showed that only a paucity (12%) of the total genetic variation is distributed between continental populations and even a lesser genetic variation (1%) is found between intra-continental populations. Second, the global F(ST) distribution closely follows an exponential distribution. Third, although the overall F(ST) distribution is similarly shaped (inverse J), F(ST) distributions varies markedly by allele frequency when divided into non-overlapping groups by allele frequency range. Because the mean allele frequency is a crude indicator of allele age, these distributions mark the time-dependent change in genetic differentiation. Finally, the change in mean-F(ST) of these groups is linear in allele frequency. These results suggest that investigating the extremes of the F(ST) distribution for each allele frequency group is more efficient for detecting selection. Consequently, we demonstrate that such extreme SNPs are more clustered along the chromosomes than expected from linkage disequilibrium for each allele frequency group. These genomic regions are therefore likely candidates for natural selection.

  5. The Impact of Heterogeneity on Threshold-Limited Social Contagion, and on Crowd Decision-Making

    NASA Astrophysics Data System (ADS)

    Karampourniotis, Panagiotis Dimitrios

    Recent global events and their poor predictability are often attributed to the complexity of the world event dynamics. A key factor generating the turbulence is human diversity. Here, we study the impact of heterogeneity of individuals on opinion formation and emergence of global biases. In the case of opinion formation, we focus on the heterogeneity of individuals' susceptibility to new ideas. In the case of global biases, we focus on the aggregated heterogeneity of individuals in a country. First, to capture the complex nature of social influencing we use a simple but classic model of contagion spreading in complex social systems, namely the threshold model. We investigate numerically and analytically the transition in the behavior of threshold-limited cascades in the presence of multiple initiators as the distribution of thresholds is varied between the two extreme cases of identical thresholds and a uniform distribution. We show that individuals' heterogeneity of susceptibility governs the dynamics, resulting in different sizes of initiators needed for consensus. Furthermore, given the impact of heterogeneity on the cascade dynamics, we investigate selection strategies for accelerating consensus. To this end, we introduce two new selection strategies for Influence Maximization. One of them focuses on finding the balance between targeting nodes which have high resistance to adoptions versus nodes positioned in central spots in networks. The second strategy focuses on the combination of nodes for reaching consensus, by targeting nodes which increase the group's influence. Our strategies outperform other existing strategies regardless of the susceptibility diversity and network degree assortativity. Finally, we study the aggregated biases of humans in a global setting. The emergence of technology and globalization gives raise to the debate on whether the world moves towards becoming flat, a world where preferential attachment does not govern economic growth. By studying the data from a global lending platform we discover that geographical proximity and cultural affinity are highly negatively correlated with levels of flatness of the world. Furthermore, we investigate the robustness of the flatness of the world against sudden catastrophic national events such as political disruptions, by removing countries (nodes) or connections (edges) between them.

  6. The risk of water scarcity at different levels of global warming

    NASA Astrophysics Data System (ADS)

    Schewe, Jacob; Sharpe, Simon

    2015-04-01

    Water scarcity is a threat to human well-being and economic development in many countries today. Future climate change is expected to exacerbate the global water crisis by reducing renewable freshwater resources different world regions, many of which are already dry. Studies of future water scarcity often focus on most-likely, or highest-confidence, scenarios. However, multi-model projections of water resources reveal large uncertainty ranges, which are due to different types of processes (climate, hydrology, human) and are therefore not easy to reduce. Thus, central estimates or multi-model mean results may be insufficient to inform policy and management. Here we present an alternative, risk-based approach. We use an ensemble of multiple global climate and hydrological models to quantify the likelihood of crossing a given water scarcity threshold under different levels of global warming. This approach allows assessing the risk associated with any particular, pre-defined threshold (or magnitude of change that must be avoided), regardless of whether it lies in the center or in the tails of the uncertainty distribution. We show applications of this method on the country and river basin scale, illustrate the effects of societal processes on the resulting risk estimates, and discuss the further potential of this approach for research and stakeholder dialogue.

  7. Mission operations update for the restructured Earth Observing System (EOS) mission

    NASA Technical Reports Server (NTRS)

    Kelly, Angelita Castro; Chang, Edward S.

    1993-01-01

    The National Aeronautics and Space Administration's (NASA) Earth Observing System (EOS) will provide a comprehensive long term set of observations of the Earth to the Earth science research community. The data will aid in determining global changes caused both naturally and through human interaction. Understanding man's impact on the global environment will allow sound policy decisions to be made to protect our future. EOS is a major component of the Mission to Planet Earth program, which is NASA's contribution to the U.S. Global Change Research Program. EOS consists of numerous instruments on multiple spacecraft and a distributed ground system. The EOS Data and Information System (EOSDIS) is the major ground system developed to support EOS. The EOSDIS will provide EOS spacecraft command and control, data processing, product generation, and data archival and distribution services for EOS spacecraft. Data from EOS instruments on other Earth science missions (e.g., Tropical Rainfall Measuring Mission (TRMM)) will also be processed, distributed, and archived in EOSDIS. The U.S. and various International Partners (IP) (e.g., the European Space Agency (ESA), the Ministry of International Trade and Industry (MITI) of Japan, and the Canadian Space Agency (CSA)) participate in and contribute to the international EOS program. The EOSDIS will also archive processed data from other designated NASA Earth science missions (e.g., UARS) that are under the broad umbrella of Mission to Planet Earth.

  8. Geographical limits to species-range shifts are suggested by climate velocity.

    PubMed

    Burrows, Michael T; Schoeman, David S; Richardson, Anthony J; Molinos, Jorge García; Hoffmann, Ary; Buckley, Lauren B; Moore, Pippa J; Brown, Christopher J; Bruno, John F; Duarte, Carlos M; Halpern, Benjamin S; Hoegh-Guldberg, Ove; Kappel, Carrie V; Kiessling, Wolfgang; O'Connor, Mary I; Pandolfi, John M; Parmesan, Camille; Sydeman, William J; Ferrier, Simon; Williams, Kristen J; Poloczanska, Elvira S

    2014-03-27

    The reorganization of patterns of species diversity driven by anthropogenic climate change, and the consequences for humans, are not yet fully understood or appreciated. Nevertheless, changes in climate conditions are useful for predicting shifts in species distributions at global and local scales. Here we use the velocity of climate change to derive spatial trajectories for climatic niches from 1960 to 2009 (ref. 7) and from 2006 to 2100, and use the properties of these trajectories to infer changes in species distributions. Coastlines act as barriers and locally cooler areas act as attractors for trajectories, creating source and sink areas for local climatic conditions. Climate source areas indicate where locally novel conditions are not connected to areas where similar climates previously occurred, and are thereby inaccessible to climate migrants tracking isotherms: 16% of global surface area for 1960 to 2009, and 34% of ocean for the 'business as usual' climate scenario (representative concentration pathway (RCP) 8.5) representing continued use of fossil fuels without mitigation. Climate sink areas are where climate conditions locally disappear, potentially blocking the movement of climate migrants. Sink areas comprise 1.0% of ocean area and 3.6% of land and are prevalent on coasts and high ground. Using this approach to infer shifts in species distributions gives global and regional maps of the expected direction and rate of shifts of climate migrants, and suggests areas of potential loss of species richness.

  9. Human population, urban settlement patterns and their impact on Plasmodium falciparum malaria endemicity.

    PubMed

    Tatem, Andrew J; Guerra, Carlos A; Kabaria, Caroline W; Noor, Abdisalan M; Hay, Simon I

    2008-10-27

    The efficient allocation of financial resources for malaria control and the optimal distribution of appropriate interventions require accurate information on the geographic distribution of malaria risk and of the human populations it affects. Low population densities in rural areas and high population densities in urban areas can influence malaria transmission substantially. Here, the Malaria Atlas Project (MAP) global database of Plasmodium falciparum parasite rate (PfPR) surveys, medical intelligence and contemporary population surfaces are utilized to explore these relationships and other issues involved in combining malaria risk maps with those of human population distribution in order to define populations at risk more accurately. First, an existing population surface was examined to determine if it was sufficiently detailed to be used reliably as a mask to identify areas of very low and very high population density as malaria free regions. Second, the potential of international travel and health guidelines (ITHGs) for identifying malaria free cities was examined. Third, the differences in PfPR values between surveys conducted in author-defined rural and urban areas were examined. Fourth, the ability of various global urban extent maps to reliably discriminate these author-based classifications of urban and rural in the PfPR database was investigated. Finally, the urban map that most accurately replicated the author-based classifications was analysed to examine the effects of urban classifications on PfPR values across the entire MAP database. Masks of zero population density excluded many non-zero PfPR surveys, indicating that the population surface was not detailed enough to define areas of zero transmission resulting from low population densities. In contrast, the ITHGs enabled the identification and mapping of 53 malaria free urban areas within endemic countries. Comparison of PfPR survey results showed significant differences between author-defined 'urban' and 'rural' designations in Africa, but not for the remainder of the malaria endemic world. The Global Rural Urban Mapping Project (GRUMP) urban extent mask proved most accurate for mapping these author-defined rural and urban locations, and further sub-divisions of urban extents into urban and peri-urban classes enabled the effects of high population densities on malaria transmission to be mapped and quantified. The availability of detailed, contemporary census and urban extent data for the construction of coherent and accurate global spatial population databases is often poor. These known sources of uncertainty in population surfaces and urban maps have the potential to be incorporated into future malaria burden estimates. Currently, insufficient spatial information exists globally to identify areas accurately where population density is low enough to impact upon transmission. Medical intelligence does however exist to reliably identify malaria free cities. Moreover, in Africa, urban areas that have a significant effect on malaria transmission can be mapped.

  10. Atlas of the global distribution of atmospheric heating during the global weather experiment

    NASA Technical Reports Server (NTRS)

    Schaack, Todd K.; Johnson, Donald R.

    1991-01-01

    Global distributions of atmospheric heating for the annual cycle of the Global Weather Experiment are estimated from the European Centre for Medium-Range Weather Forecasts (ECMWF) Level 3b data set. Distributions of monthly, seasonally, and annually averaged heating are presented for isentropic and isobaric layers within the troposphere and for the troposphere as a whole. The distributions depict a large-scale structure of atmospheric heating that appears spatially and temporally consistent with known features of the global circulation and the seasonal evolution.

  11. Science priorities for seamounts: research links to conservation and management.

    PubMed

    Clark, Malcolm R; Schlacher, Thomas A; Rowden, Ashley A; Stocks, Karen I; Consalvey, Mireille

    2012-01-01

    Seamounts shape the topography of all ocean basins and can be hotspots of biological activity in the deep sea. The Census of Marine Life on Seamounts (CenSeam) was a field program that examined seamounts as part of the global Census of Marine Life (CoML) initiative from 2005 to 2010. CenSeam progressed seamount science by collating historical data, collecting new data, undertaking regional and global analyses of seamount biodiversity, mapping species and habitat distributions, challenging established paradigms of seamount ecology, developing new hypotheses, and documenting the impacts of human activities on seamounts. However, because of the large number of seamounts globally, much about the structure, function and connectivity of seamount ecosystems remains unexplored and unknown. Continual, and potentially increasing, threats to seamount resources from fishing and seabed mining are creating a pressing demand for research to inform conservation and management strategies. To meet this need, intensive science effort in the following areas will be needed: 1) Improved physical and biological data; of particular importance is information on seamount location, physical characteristics (e.g. habitat heterogeneity and complexity), more complete and intensive biodiversity inventories, and increased understanding of seamount connectivity and faunal dispersal; 2) New human impact data; these shall encompass better studies on the effects of human activities on seamount ecosystems, as well as monitoring long-term changes in seamount assemblages following impacts (e.g. recovery); 3) Global data repositories; there is a pressing need for more comprehensive fisheries catch and effort data, especially on the high seas, and compilation or maintenance of geological and biodiversity databases that underpin regional and global analyses; 4) Application of support tools in a data-poor environment; conservation and management will have to increasingly rely on predictive modelling techniques, critical evaluation of environmental surrogates as faunal "proxies", and ecological risk assessment.

  12. Climate change and skin.

    PubMed

    Balato, N; Ayala, F; Megna, M; Balato, A; Patruno, C

    2013-02-01

    Global climate appears to be changing at an unprecedented rate. Climate change can be caused by several factors that include variations in solar radiation received by earth, oceanic processes (such as oceanic circulation), plate tectonics, and volcanic eruptions, as well as human-induced alterations of the natural world. Many human activities, such as the use of fossil fuel and the consequent accumulation of greenhouse gases in the atmosphere, land consumption, deforestation, industrial processes, as well as some agriculture practices are contributing to global climate change. Indeed, many authors have reported on the current trend towards global warming (average surface temperature has augmented by 0.6 °C over the past 100 years), decreased precipitation, atmospheric humidity changes, and global rise in extreme climatic events. The magnitude and cause of these changes and their impact on human activity have become important matters of debate worldwide, representing climate change as one of the greatest challenges of the modern age. Although many articles have been written based on observations and various predictive models of how climate change could affect social, economic and health systems, only few studies exist about the effects of this change on skin physiology and diseases. However, the skin is the most exposed organ to environment; therefore, cutaneous diseases are inclined to have a high sensitivity to climate. For example, global warming, deforestation and changes in precipitation have been linked to variations in the geographical distribution of vectors of some infectious diseases (leishmaniasis, lyme disease, etc) by changing their spread, whereas warm and humid environment can also encourage the colonization of the skin by bacteria and fungi. The present review focuses on the wide and complex relationship between climate change and dermatology, showing the numerous factors that are contributing to modify the incidence and the clinical pattern of many dermatoses.

  13. Universal scaling of the distribution of land in urban areas

    NASA Astrophysics Data System (ADS)

    Riascos, A. P.

    2017-09-01

    In this work, we explore the spatial structure of built zones and green areas in diverse western cities by analyzing the probability distribution of areas and a coefficient that characterize their respective shapes. From the analysis of diverse datasets describing land lots in urban areas, we found that the distribution of built-up areas and natural zones in cities obey inverse power laws with a similar scaling for the cities explored. On the other hand, by studying the distribution of shapes of lots in urban regions, we are able to detect global differences in the spatial structure of the distribution of land. Our findings introduce information about spatial patterns that emerge in the structure of urban settlements; this knowledge is useful for the understanding of urban growth, to improve existing models of cities, in the context of sustainability, in studies about human mobility in urban areas, among other applications.

  14. The Global Food System as a Transport Pathway for Hazardous Chemicals: The Missing Link between Emissions and Exposure

    PubMed Central

    Ng, Carla A.; von Goetz, Natalie

    2016-01-01

    Background: Food is a major pathway for human exposure to hazardous chemicals. The modern food system is becoming increasingly complex and globalized, but models for food-borne exposure typically assume locally derived diets or use concentrations directly measured in foods without accounting for food origin. Such approaches may not reflect actual chemical intakes because concentrations depend on food origin, and representative analysis is seldom available. Processing, packaging, storage, and transportation also impart different chemicals to food and are not yet adequately addressed. Thus, the link between environmental emissions and realistic human exposure is effectively broken. Objectives: We discuss the need for a fully integrated treatment of the modern industrialized food system, and we propose strategies for using existing models and relevant supporting data sources to track chemicals during production, processing, packaging, storage, and transport. Discussion: Fate and bioaccumulation models describe how chemicals distribute in the environment and accumulate through local food webs. Human exposure models can use concentrations in food to determine body burdens based on individual or population characteristics. New models now include the impacts of processing and packaging but are far from comprehensive. We propose to close the gap between emissions and exposure by utilizing a wider variety of models and data sources, including global food trade data, processing, and packaging models. Conclusions: A comprehensive approach that takes into account the complexity of the modern global food system is essential to enable better prediction of human exposure to chemicals in food, sound risk assessments, and more focused risk abatement strategies. Citation: Ng CA, von Goetz N. 2017. The global food system as a transport pathway for hazardous chemicals: the missing link between emissions and exposure. Environ Health Perspect 125:1–7; http://dx.doi.org/10.1289/EHP168 PMID:27384039

  15. Monitoring the Carbon Cycle: Improving Our Ability to Proved Policy Relevant Information

    NASA Astrophysics Data System (ADS)

    Bruhwiler, L.

    2017-12-01

    Humans have altered the energy balance of the climate system mainly by producing and consuming fossil fuels, but also by emissions from food production. Manufacture and use of halocarbons, many of which are also strong greenhouse gases (GHGs) have added to anthropogenic radiative forcing. In response, the global atmosphere has warmed over the last half century at a rate of 0.17°C. The largest contribution to radiative forcing is due to CO2, and at present, about half of all anthropogenic CO2 emissions have been taken up by the oceans and terrestrial biosphere. The size of this "carbon emission discount" may change in the future as more carbon accumulates in the oceans, as human alter landscapes, and as climate changes. Efforts to limit global average temperature increases to 2°C and avoid the most catastrophic consequences of climate change depend on keeping track of both human emissions of greenhouse gases and changes in natural fluxes of carbon and nitrogen that occur in response to human activities and changing climate. Global in situ network observations provide information about changes in global GHG abundances over recent decades, as well as changing distributions between hemispheres. This information gives insight into changes in global and hemispheric sources and sinks of GHGs. It is, however, currently difficult to obtain robust information about regional sources and to discriminate between natural and anthropogenic fluxes. Information about regional sources is needed for GHG policymaking, while discrimination of natural sources is necessary for detection of trends in GHG fluxes and evaluation of coupled carbon cycle climate models. Although column average GHG abundances from space-based remote sensing data could provide considerable constraints on GHG budgets, there are still technical challenges to be overcome. Possible strategies for making progress involve greater increased observational coverage and more international collaboration, as well as improved modeling and assimilation techniques for estimating fluxes from observations.

  16. Impending extinction crisis of the world's primates: Why primates matter.

    PubMed

    Estrada, Alejandro; Garber, Paul A; Rylands, Anthony B; Roos, Christian; Fernandez-Duque, Eduardo; Di Fiore, Anthony; Nekaris, K Anne-Isola; Nijman, Vincent; Heymann, Eckhard W; Lambert, Joanna E; Rovero, Francesco; Barelli, Claudia; Setchell, Joanna M; Gillespie, Thomas R; Mittermeier, Russell A; Arregoitia, Luis Verde; de Guinea, Miguel; Gouveia, Sidney; Dobrovolski, Ricardo; Shanee, Sam; Shanee, Noga; Boyle, Sarah A; Fuentes, Agustin; MacKinnon, Katherine C; Amato, Katherine R; Meyer, Andreas L S; Wich, Serge; Sussman, Robert W; Pan, Ruliang; Kone, Inza; Li, Baoguo

    2017-01-01

    Nonhuman primates, our closest biological relatives, play important roles in the livelihoods, cultures, and religions of many societies and offer unique insights into human evolution, biology, behavior, and the threat of emerging diseases. They are an essential component of tropical biodiversity, contributing to forest regeneration and ecosystem health. Current information shows the existence of 504 species in 79 genera distributed in the Neotropics, mainland Africa, Madagascar, and Asia. Alarmingly, ~60% of primate species are now threatened with extinction and ~75% have declining populations. This situation is the result of escalating anthropogenic pressures on primates and their habitats-mainly global and local market demands, leading to extensive habitat loss through the expansion of industrial agriculture, large-scale cattle ranching, logging, oil and gas drilling, mining, dam building, and the construction of new road networks in primate range regions. Other important drivers are increased bushmeat hunting and the illegal trade of primates as pets and primate body parts, along with emerging threats, such as climate change and anthroponotic diseases. Often, these pressures act in synergy, exacerbating primate population declines. Given that primate range regions overlap extensively with a large, and rapidly growing, human population characterized by high levels of poverty, global attention is needed immediately to reverse the looming risk of primate extinctions and to attend to local human needs in sustainable ways. Raising global scientific and public awareness of the plight of the world's primates and the costs of their loss to ecosystem health and human society is imperative.

  17. Impending extinction crisis of the world’s primates: Why primates matter

    PubMed Central

    Estrada, Alejandro; Garber, Paul A.; Rylands, Anthony B.; Roos, Christian; Fernandez-Duque, Eduardo; Di Fiore, Anthony; Nekaris, K. Anne-Isola; Nijman, Vincent; Heymann, Eckhard W.; Lambert, Joanna E.; Rovero, Francesco; Barelli, Claudia; Setchell, Joanna M.; Gillespie, Thomas R.; Mittermeier, Russell A.; Arregoitia, Luis Verde; de Guinea, Miguel; Gouveia, Sidney; Dobrovolski, Ricardo; Shanee, Sam; Shanee, Noga; Boyle, Sarah A.; Fuentes, Agustin; MacKinnon, Katherine C.; Amato, Katherine R.; Meyer, Andreas L. S.; Wich, Serge; Sussman, Robert W.; Pan, Ruliang; Kone, Inza; Li, Baoguo

    2017-01-01

    Nonhuman primates, our closest biological relatives, play important roles in the livelihoods, cultures, and religions of many societies and offer unique insights into human evolution, biology, behavior, and the threat of emerging diseases. They are an essential component of tropical biodiversity, contributing to forest regeneration and ecosystem health. Current information shows the existence of 504 species in 79 genera distributed in the Neotropics, mainland Africa, Madagascar, and Asia. Alarmingly, ~60% of primate species are now threatened with extinction and ~75% have declining populations. This situation is the result of escalating anthropogenic pressures on primates and their habitats—mainly global and local market demands, leading to extensive habitat loss through the expansion of industrial agriculture, large-scale cattle ranching, logging, oil and gas drilling, mining, dam building, and the construction of new road networks in primate range regions. Other important drivers are increased bushmeat hunting and the illegal trade of primates as pets and primate body parts, along with emerging threats, such as climate change and anthroponotic diseases. Often, these pressures act in synergy, exacerbating primate population declines. Given that primate range regions overlap extensively with a large, and rapidly growing, human population characterized by high levels of poverty, global attention is needed immediately to reverse the looming risk of primate extinctions and to attend to local human needs in sustainable ways. Raising global scientific and public awareness of the plight of the world’s primates and the costs of their loss to ecosystem health and human society is imperative. PMID:28116351

  18. Human Resources for Health Challenges in Nigeria and Nurse Migration.

    PubMed

    Salami, Bukola; Dada, Foluke O; Adelakun, Folake E

    2016-05-01

    The emigration of sub-Saharan African health professionals to developed Western nations is an aspect of increasing global mobility. This article focuses on the human resources for health challenges in Nigeria and the emigration of nurses from Nigeria as the country faces mounting human resources for health challenges. Human resources for health issues in Nigeria contribute to poor population health in the country, alongside threats from terrorism, infectious disease outbreaks, and political corruption. Health inequities within Nigeria mirror the geographical disparities in human resources for health distribution and are worsened by the emigration of Nigerian nurses to developed countries such as the United States and the United Kingdom. Nigerian nurses are motivated to emigrate to work in healthier work environments, improve their economic prospects, and advance their careers. Like other migrant African nurses, they experience barriers to integration, including racism and discrimination, in receiving countries. We explore the factors and processes that shape this migration. Given the forces of globalization, source countries and destination countries must implement policies to more responsibly manage migration of nurses. This can be done by implementing measures to retain nurses, promote the return migration of expatriate nurses, and ensure the integration of migrant nurses upon arrival in destination countries. © The Author(s) 2016.

  19. DoD Global, Laboratory-Based, Influenza Surveillance Program, End-of-Year Report, 2014-2015

    DTIC Science & Technology

    2016-01-01

    DeMarcus January 2016 Air Force Research Laboratory 711th Human Performance Wing U.S. Air Force School of Aerospace Medicine ...Public Health and Preventive Medicine Dept 2510 Fifth St. Wright-Patterson AFB, OH 45433-7913 DISTRIBUTION STATEMENT A. Approved for public release...PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) USAF School of Aerospace Medicine Public Health and Preventive Medicine Dept/PHR 2510 Fifth St

  20. The Human Right to Water--Market Allocations and Subsistence in a World of Scarcity

    ERIC Educational Resources Information Center

    McAdam, Kevin C.

    2005-01-01

    More than one billion people do not have access to an adequate water supply. In Gambia and Haiti, people live on less than 4 liters of water per day. By contrast, most toilets in the West use several times that amount of water for a single flush. The global distribution of water is making it increasingly difficult for poor people to access it, and…

  1. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    Ken Jucks, OCO-2 program scientist, NASA Headquarters talks during an Orbiting Carbon Observatory-2 (OCO-2) science briefing, Sunday, June 29, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  2. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    Dave Crisp, OCO-2 science team leader, JPL talks during an Orbiting Carbon Observatory-2 (OCO-2) science briefing, Sunday, June 29, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  3. OCO-2 Post Launch Briefing

    NASA Image and Video Library

    2014-07-02

    NASA Kennedy Space Center Public Affairs Officer George Diller, moderates a post-launch press briefing, following the successful launch of the Orbiting Carbon Observatory-2 (OCO-2), NASA’s first spacecraft dedicated to studying carbon dioxide, Wednesday, July 2, 2014, at the Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: (NASA/Bill Ingalls)

  4. Orbiting Carbon Observatory-2 (OCO-2) Launch

    NASA Image and Video Library

    2014-07-02

    Lights shine on the umbilical tower shortly after a United Launch Alliance Delta II rocket launched with the Orbiting Carbon Observatory-2 (OCO-2)satellite onboard from Space Launch Complex 2 at Vandenberg Air Force Base, Calif. on Wednesday, July 2, 2014. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: (NASA/Bill Ingalls)

  5. OCO-2 Post Launch Briefing

    NASA Image and Video Library

    2014-07-02

    Ralph Basilio, OCO-2 project manager, Jet Propulsion Laboratory, discusses the successful launch of the Orbiting Carbon Observatory-2 (OCO-2), NASA’s first spacecraft dedicated to studying carbon dioxide, during a press briefing, Wednesday, July 2, 2014, at the Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: (NASA/Bill Ingalls)

  6. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    Annmarie Eldering, OCO-2 deputy project scientist, JPL talks during an Orbiting Carbon Observatory-2 (OCO-2) science briefing, Sunday, June 29, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  7. Ecological Catastrophes and Disturbance Relicts: A Case Study from Easter Island

    NASA Astrophysics Data System (ADS)

    Wynne, J.

    2014-12-01

    Caves are often considered buffered environments in terms of their ability to sustain near constant microclimatic conditions. However, environments within cave entrances are expected to respond most quickly to changing surface conditions. We cataloged a relict assemblage of at least 10 endemic arthropods likely restricted to caves and occurring primarily within cave entranceways. Of these animals, eight were considered new undescribed species. These endemic arthropods have persisted in Rapa Nui (Easter Island) caves despite a catastrophic ecological shift induced by island-wide deforestation, fire intolerance, and drought, as well as intensive livestock grazing and surface ecosystems dominated by invasive species. We consider these animals to be "disturbance relicts" - species whose distributions are now limited to areas that experienced minimal human disturbance historically. Today, these species represent one-third of the Rapa Nui's known endemic arthropods. Given the island's severely depauperate native fauna, these arthropods should be considered among the highest priority targets for biological conservation. In other regions globally, epigean examples of imperiled disturbance relicts persisting within narrow distributional ranges have been documented. As human activity intensifies, and habitat loss and fragmentation continues worldwide, additional disturbance relicts will be identified. We expect extinction debts, global climate change and interactions with invasive species will challenge the persistence of both hypogean and epigean disturbance relict species.

  8. Interactions of cultures and top people of Wikipedia from ranking of 24 language editions.

    PubMed

    Eom, Young-Ho; Aragón, Pablo; Laniado, David; Kaltenbrunner, Andreas; Vigna, Sebastiano; Shepelyansky, Dima L

    2015-01-01

    Wikipedia is a huge global repository of human knowledge that can be leveraged to investigate interwinements between cultures. With this aim, we apply methods of Markov chains and Google matrix for the analysis of the hyperlink networks of 24 Wikipedia language editions, and rank all their articles by PageRank, 2DRank and CheiRank algorithms. Using automatic extraction of people names, we obtain the top 100 historical figures, for each edition and for each algorithm. We investigate their spatial, temporal, and gender distributions in dependence of their cultural origins. Our study demonstrates not only the existence of skewness with local figures, mainly recognized only in their own cultures, but also the existence of global historical figures appearing in a large number of editions. By determining the birth time and place of these persons, we perform an analysis of the evolution of such figures through 35 centuries of human history for each language, thus recovering interactions and entanglement of cultures over time. We also obtain the distributions of historical figures over world countries, highlighting geographical aspects of cross-cultural links. Considering historical figures who appear in multiple editions as interactions between cultures, we construct a network of cultures and identify the most influential cultures according to this network.

  9. Interactions of Cultures and Top People of Wikipedia from Ranking of 24 Language Editions

    PubMed Central

    Eom, Young-Ho; Aragón, Pablo; Laniado, David; Kaltenbrunner, Andreas; Vigna, Sebastiano; Shepelyansky, Dima L.

    2015-01-01

    Wikipedia is a huge global repository of human knowledge that can be leveraged to investigate interwinements between cultures. With this aim, we apply methods of Markov chains and Google matrix for the analysis of the hyperlink networks of 24 Wikipedia language editions, and rank all their articles by PageRank, 2DRank and CheiRank algorithms. Using automatic extraction of people names, we obtain the top 100 historical figures, for each edition and for each algorithm. We investigate their spatial, temporal, and gender distributions in dependence of their cultural origins. Our study demonstrates not only the existence of skewness with local figures, mainly recognized only in their own cultures, but also the existence of global historical figures appearing in a large number of editions. By determining the birth time and place of these persons, we perform an analysis of the evolution of such figures through 35 centuries of human history for each language, thus recovering interactions and entanglement of cultures over time. We also obtain the distributions of historical figures over world countries, highlighting geographical aspects of cross-cultural links. Considering historical figures who appear in multiple editions as interactions between cultures, we construct a network of cultures and identify the most influential cultures according to this network. PMID:25738291

  10. The offer network protocol: Mathematical foundations and a roadmap for the development of a global brain

    NASA Astrophysics Data System (ADS)

    Heylighen, Francis

    2017-01-01

    The world is confronted with a variety of interdependent problems, including scarcity, unsustainability, inequality, pollution and poor governance. Tackling such complex challenges requires coordinated action. The present paper proposes the development of a self-organizing system for coordination, called an "offer network", that would use the distributed intelligence of the Internet to match the offers and needs of all human, technological and natural agents on the planet. This would maximize synergy and thus minimize waste and scarcity of resources. Implementing such coordination requires a protocol that formally defines agents, offers, needs, and the network of condition-action rules or reactions that interconnect them. Matching algorithms can then determine self-sustaining subnetworks in which each consumed resource (need) is also produced (offer). After sketching the elements of a mathematical foundation for offer networks, the paper proposes a roadmap for their practical implementation. This includes step-by-step integration with technologies such as the Semantic Web, ontologies, the Internet of Things, reputation and recommendation systems, reinforcement learning, governance through legal constraints and nudging, and ecosystem modeling. The resulting intelligent platform should be able to tackle nearly all practical and theoretical problems in a bottom-up, distributed manner, thus functioning like a Global Brain for humanity.

  11. Observing Tropospheric Ozone From Space

    NASA Technical Reports Server (NTRS)

    Fishman, Jack

    2000-01-01

    The importance of tropospheric ozone embraces a spectrum of relevant scientific issues ranging from local environmental concerns, such as damage to the biosphere and human health, to those that impact global change questions, Such is climate warming. From an observational perspective, the challenge is to determine the tropospheric ozone global distribution. Because its lifetime is short compared with other important greenhouse gases that have been monitored over the past several decades, the distribution of tropospheric ozone cannot be inferred from a relatively small set of monitoring stations. Therefore, the best way to obtain a true global picture is from the use of space-based instrumentation where important spatial gradients over vast ocean expanses and other uninhabited areas can be properly characterized. In this paper, the development of the capability to measure tropospheric ozone from space over the past 15 years is summarized. Research in the late 1980s successfully led to the determination of the climatology of tropospheric ozone as a function of season; more recently, the methodology has improved to the extent where regional air pollution episodes can be characterized. The most recent modifications now provide quasi-global (50 N) to 50 S) maps on a daily basis. Such a data set would allow for the study of long-range (intercontinental) transport of air pollution and the quantification of how regional emissions feed into the global tropospheric ozone budget. Future measurement capabilities within this decade promise to offer the ability to provide Concurrent maps of the precursors to the in situ formation of tropospheric ozone from which the scientific community will gain unprecedented insight into the processes that control global tropospheric chemistry

  12. Goddard Cumulus Ensemble (GCE) Model: Application for Understanding Preciptation Processes

    NASA Technical Reports Server (NTRS)

    Tao, Wei-Kuo; Einaudi, Franco (Technical Monitor)

    2000-01-01

    The global hydrological cycle is central to climate system interactions and the key to understanding their behavior. Rainfall and its associated precipitation processes are a key link in the hydrologic cycle. Fresh water provided by tropical rainfall and its variability can exert a large impact upon the structure of the upper ocean layer. In addition, approximately two-thirds of the global rain falls in the Tropics, while the associated latent heat release accounts for about three-fourths of the total heat energy for the Earth's atmosphere. Precipitation from convective cloud systems comprises a large portion of tropical heating and rainfall. Furthermore, the vertical distribution of convective latent-heat releases modulates large-scale tropical circulations (e.g., the 30-60-day intraseasonal oscillation), which, in turn, impacts midlatitude weather through teleconnection patterns such as those associated with El Nino. Shifts in these global circulations can result in prolonged periods of droughts and floods, thereby exerting a tremendous impact upon the biosphere and human habitation. And yet, monthly rainfall over the tropical oceans is still not known within a factor of two over large (5 degrees latitude by 5 degrees longitude) areas. Hence, the Tropical Rainfall Measuring Mission (TRMM), a joint U.S./Japan space project, can provide a more accurate measurement of rainfall as well as estimate the four-dimensional structure of diabatic heating over the global tropics. The distributions of rainfall and inferred heating can be used to advance our understanding of the global energy and water cycle. In addition, this information can be used for global circulation and climate models for testing and improving their parameterizations.

  13. The dominant Anopheles vectors of human malaria in the Americas: occurrence data, distribution maps and bionomic précis

    PubMed Central

    2010-01-01

    Background An increasing knowledge of the global risk of malaria shows that the nations of the Americas have the lowest levels of Plasmodium falciparum and P. vivax endemicity worldwide, sustained, in part, by substantive integrated vector control. To help maintain and better target these efforts, knowledge of the contemporary distribution of each of the dominant vector species (DVS) of human malaria is needed, alongside a comprehensive understanding of the ecology and behaviour of each species. Results A database of contemporary occurrence data for 41 of the DVS of human malaria was compiled from intensive searches of the formal and informal literature. The results for the nine DVS of the Americas are described in detail here. Nearly 6000 occurrence records were gathered from 25 countries in the region and were complemented by a synthesis of published expert opinion range maps, refined further by a technical advisory group of medical entomologists. A suite of environmental and climate variables of suspected relevance to anopheline ecology were also compiled from open access sources. These three sets of data were then combined to produce predictive species range maps using the Boosted Regression Tree method. The predicted geographic extent for each of the following species (or species complex*) are provided: Anopheles (Nyssorhynchus) albimanus Wiedemann, 1820, An. (Nys.) albitarsis*, An. (Nys.) aquasalis Curry, 1932, An. (Nys.) darlingi Root, 1926, An. (Anopheles) freeborni Aitken, 1939, An. (Nys.) marajoara Galvão & Damasceno, 1942, An. (Nys.) nuneztovari*, An. (Ano.) pseudopunctipennis* and An. (Ano.) quadrimaculatus Say, 1824. A bionomics review summarising ecology and behaviour relevant to the control of each of these species was also compiled. Conclusions The distribution maps and bionomics review should both be considered as a starting point in an ongoing process of (i) describing the distributions of these DVS (since the opportunistic sample of occurrence data assembled can be substantially improved) and (ii) documenting their contemporary bionomics (since intervention and control pressures can act to modify behavioural traits). This is the first in a series of three articles describing the distribution of the 41 global DVS worldwide. The remaining two publications will describe those vectors found in (i) Africa, Europe and the Middle East and (ii) in Asia. All geographic distribution maps are being made available in the public domain according to the open access principles of the Malaria Atlas Project. PMID:20712879

  14. Assessing the Impact of a Human Rights-Based Approach across a Spectrum of Change for Women's, Children's, and Adolescents' Health.

    PubMed

    Thomas, Rebekah; Kuruvilla, Shyama; Hinton, Rachel; Jensen, Steven L B; Magar, Veronica; Bustreo, Flavia

    2015-12-10

    Global momentum around women's, children's, and adolescents' health, coupled with the ambitious and equalizing agenda of the Sustainable Development Goals (SDGs), has exposed a tension between the need for comprehensive, multi-actor, rights-based approaches that seek to "close the gaps" and a growing economic and political imperative to demonstrate efficiency, effectiveness, and returns on specific investments. To address this challenge, this paper proposes a framework to measure "results" in a way that offers a more nuanced understanding of the impact of human rights-based approaches and their complexity, as well as their contextual, multi-sectoral, and evolving nature. We argue that the impact of human rights-based approaches is best measured across a spectrum of change-at the individual, programmatic, structural, and societal levels. Such an analysis would allow for more accurate assessments of the cumulative effect of these changes. The paper also underscores the long-overdue need to better define the parameters of a human rights-based approach to health. This is an important part of the research agenda on human rights and health in the context of the SDGs and the Global Strategy for Women's, Children's and Adolescents' Health, and amid calls for better measurement and greater accountability for resources, results, and rights at all levels. While this paper focuses on women's, children's, and adolescents' health, the proposed framework can apply as readily to other areas of health and provides a new frame of reference for assessing the impact of human rights-based approaches. Copyright © 2015 Thomas, Kuruvilla, Hinton, Jensen, Magar, Bustreo. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

  15. Trends and Variability of Global Fire Emissions Due To Historical Anthropogenic Activities

    NASA Astrophysics Data System (ADS)

    Ward, Daniel S.; Shevliakova, Elena; Malyshev, Sergey; Rabin, Sam

    2018-01-01

    Globally, fires are a major source of carbon from the terrestrial biosphere to the atmosphere, occurring on a seasonal cycle and with substantial interannual variability. To understand past trends and variability in sources and sinks of terrestrial carbon, we need quantitative estimates of global fire distributions. Here we introduce an updated version of the Fire Including Natural and Agricultural Lands model, version 2 (FINAL.2), modified to include multiday burning and enhanced fire spread rate in forest crowns. We demonstrate that the improved model reproduces the interannual variability and spatial distribution of fire emissions reported in present-day remotely sensed inventories. We use FINAL.2 to simulate historical (post-1700) fires and attribute past fire trends and variability to individual drivers: land use and land cover change, population growth, and lightning variability. Global fire emissions of carbon increase by about 10% between 1700 and 1900, reaching a maximum of 3.4 Pg C yr-1 in the 1910s, followed by a decrease to about 5% below year 1700 levels by 2010. The decrease in emissions from the 1910s to the present day is driven mainly by land use change, with a smaller contribution from increased fire suppression due to increased human population and is largest in Sub-Saharan Africa and South Asia. Interannual variability of global fire emissions is similar in the present day as in the early historical period, but present-day wildfires would be more variable in the absence of land use change.

  16. Global biodiversity, stoichiometry and ecosystem function responses to human-induced C-N-P imbalances.

    PubMed

    Carnicer, Jofre; Sardans, Jordi; Stefanescu, Constantí; Ubach, Andreu; Bartrons, Mireia; Asensio, Dolores; Peñuelas, Josep

    2015-01-01

    Global change analyses usually consider biodiversity as a global asset that needs to be preserved. Biodiversity is frequently analysed mainly as a response variable affected by diverse environmental drivers. However, recent studies highlight that gradients of biodiversity are associated with gradual changes in the distribution of key dominant functional groups characterized by distinctive traits and stoichiometry, which in turn often define the rates of ecosystem processes and nutrient cycling. Moreover, pervasive links have been reported between biodiversity, food web structure, ecosystem function and species stoichiometry. Here we review current global stoichiometric gradients and how future distributional shifts in key functional groups may in turn influence basic ecosystem functions (production, nutrient cycling, decomposition) and therefore could exert a feedback effect on stoichiometric gradients. The C-N-P stoichiometry of most primary producers (phytoplankton, algae, plants) has been linked to functional trait continua (i.e. to major axes of phenotypic variation observed in inter-specific analyses of multiple traits). In contrast, the C-N-P stoichiometry of higher-level consumers remains less precisely quantified in many taxonomic groups. We show that significant links are observed between trait continua across trophic levels. In spite of recent advances, the future reciprocal feedbacks between key functional groups, biodiversity and ecosystem functions remain largely uncertain. The reported evidence, however, highlights the key role of stoichiometric traits and suggests the need of a progressive shift towards an ecosystemic and stoichiometric perspective in global biodiversity analyses. Copyright © 2014 Elsevier GmbH. All rights reserved.

  17. Limited geographic distribution of the novel cyclovirus CyCV-VN.

    PubMed

    Le, Van Tan; de Jong, Menno D; Nguyen, Van Kinh; Nguyen, Vu Trung; Taylor, Walter; Wertheim, Heiman F L; van der Ende, Arie; van der Hoek, Lia; Canuti, Marta; Crusat, Martin; Sona, Soeng; Nguyen, Hanh Uyen; Giri, Abhishek; Nguyen, Thi Thuy Chinh Bkrong; Ho, Dang Trung Nghia; Farrar, Jeremy; Bryant, Juliet E; Tran, Tinh Hien; Nguyen, Van Vinh Chau; van Doorn, H Rogier

    2014-02-05

    A novel cyclovirus, CyCV-VN, was recently identified in cerebrospinal fluid (CSF) from patients with central nervous system (CNS) infections in central and southern Vietnam. To explore the geographic distribution of this novel virus, more than 600 CSF specimens from patients with suspected CNS infections in northern Vietnam, Cambodia, Nepal and The Netherlands were screened for the presence of CyCV-VN but all were negative. Sequence comparison and phylogenetic analysis between CyCV-VN and another novel cyclovirus recently identified in CSF from Malawian patients indicated that these represent distinct cycloviral species, albeit phylogenetically closely related. The data suggest that CyCV-VN has a limited geographic distribution within southern and central Vietnam. Further research is needed to determine the global distribution and diversity of cycloviruses and importantly their possible association with human disease.

  18. The Story of a Hitchhiker: Population Genetic Patterns in the Invasive Barnacle Balanus(Amphibalanus) improvisus Darwin 1854

    PubMed Central

    Wrange, Anna-Lisa; Charrier, Gregory; Thonig, Anne; Alm Rosenblad, Magnus; Blomberg, Anders; Havenhand, Jonathan N.; Jonsson, Per R.; André, Carl

    2016-01-01

    Understanding the ecological and evolutionary forces that determine the genetic structure and spread of invasive species is a key component of invasion biology. The bay barnacle, Balanus improvisus (= Amphibalanus improvisus), is one of the most successful aquatic invaders worldwide, and is characterised by broad environmental tolerance. Although the species can spread through natural larval dispersal, human-mediated transport through (primarily) shipping has almost certainly contributed to the current global distribution of this species. Despite its worldwide distribution, little is known about the phylogeography of this species. Here, we characterize the population genetic structure and model dispersal dynamics of the barnacle B. improvisus, and describe how human-mediated spreading via shipping as well as natural larval dispersal may have contributed to observed genetic variation. We used both mitochondrial DNA (cytochrome c oxidase subunit I: COI) and nuclear microsatellites to characterize the genetic structure in 14 populations of B. improvisus on a global and regional scale (Baltic Sea). Genetic diversity was high in most populations, and many haplotypes were shared among populations on a global scale, indicating that long-distance dispersal (presumably through shipping and other anthropogenic activities) has played an important role in shaping the population genetic structure of this cosmopolitan species. We could not clearly confirm prior claims that B. improvisus originates from the western margins of the Atlantic coasts; although there were indications that Argentina could be part of a native region. In addition to dispersal via shipping, we show that natural larval dispersal may play an important role for further colonisation following initial introduction. PMID:26821161

  19. Local SAR in parallel transmission pulse design.

    PubMed

    Lee, Joonsung; Gebhardt, Matthias; Wald, Lawrence L; Adalsteinsson, Elfar

    2012-06-01

    The management of local and global power deposition in human subjects (specific absorption rate, SAR) is a fundamental constraint to the application of parallel transmission (pTx) systems. Even though the pTx and single channel have to meet the same SAR requirements, the complex behavior of the spatial distribution of local SAR for transmission arrays poses problems that are not encountered in conventional single-channel systems and places additional requirements on pTx radio frequency pulse design. We propose a pTx pulse design method which builds on recent work to capture the spatial distribution of local SAR in numerical tissue models in a compressed parameterization in order to incorporate local SAR constraints within computation times that accommodate pTx pulse design during an in vivo magnetic resonance imaging scan. Additionally, the algorithm yields a protocol-specific ultimate peak in local SAR, which is shown to bound the achievable peak local SAR for a given excitation profile fidelity. The performance of the approach was demonstrated using a numerical human head model and a 7 Tesla eight-channel transmit array. The method reduced peak local 10 g SAR by 14-66% for slice-selective pTx excitations and 2D selective pTx excitations compared to a pTx pulse design constrained only by global SAR. The primary tradeoff incurred for reducing peak local SAR was an increase in global SAR, up to 34% for the evaluated examples, which is favorable in cases where local SAR constraints dominate the pulse applications. Copyright © 2011 Wiley Periodicals, Inc.

  20. Landsat Data Continuity Mission

    USGS Publications Warehouse

    ,

    2012-01-01

    The Landsat Data Continuity Mission (LDCM) is a partnership formed between the National Aeronautics and Space Administration (NASA) and the U.S. Geological Survey (USGS) to place the next Landsat satellite in orbit in January 2013. The Landsat era that began in 1972 will become a nearly 41-year global land record with the successful launch and operation of the LDCM. The LDCM will continue the acquisition, archiving, and distribution of multispectral imagery affording global, synoptic, and repetitive coverage of the Earth's land surfaces at a scale where natural and human-induced changes can be detected, differentiated, characterized, and monitored over time. The mission objectives of the LDCM are to (1) collect and archive medium resolution (30-meter spatial resolution) multispectral image data affording seasonal coverage of the global landmasses for a period of no less than 5 years; (2) ensure that LDCM data are sufficiently consistent with data from the earlier Landsat missions in terms of acquisition geometry, calibration, coverage characteristics, spectral characteristics, output product quality, and data availability to permit studies of landcover and land-use change over time; and (3) distribute LDCM data products to the general public on a nondiscriminatory basis at no cost to the user.

  1. How is water-use efficiency of terrestrial ecosystems distributed and changing on Earth?

    PubMed

    Tang, Xuguang; Li, Hengpeng; Desai, Ankur R; Nagy, Zoltan; Luo, Juhua; Kolb, Thomas E; Olioso, Albert; Xu, Xibao; Yao, Li; Kutsch, Werner; Pilegaard, Kim; Köstner, Barbara; Ammann, Christof

    2014-12-15

    A better understanding of ecosystem water-use efficiency (WUE) will help us improve ecosystem management for mitigation as well as adaption to global hydrological change. Here, long-term flux tower observations of productivity and evapotranspiration allow us to detect a consistent latitudinal trend in WUE, rising from the subtropics to the northern high-latitudes. The trend peaks at approximately 51°N, and then declines toward higher latitudes. These ground-based observations are consistent with global-scale estimates of WUE. Global analysis of WUE reveals existence of strong regional variations that correspond to global climate patterns. The latitudinal trends of global WUE for Earth's major plant functional types reveal two peaks in the Northern Hemisphere not detected by ground-based measurements. One peak is located at 20° ~ 30°N and the other extends a little farther north than 51°N. Finally, long-term spatiotemporal trend analysis using satellite-based remote sensing data reveals that land-cover and land-use change in recent years has led to a decline in global WUE. Our study provides a new framework for global research on the interactions between carbon and water cycles as well as responses to natural and human impacts.

  2. Spotted in the News: Using Media Reports to Examine Leopard Distribution, Depredation, and Management Practices outside Protected Areas in Southern India

    PubMed Central

    Athreya, Vidya; Srivathsa, Arjun; Puri, Mahi; Karanth, Krithi K.; Kumar, N. Samba; Karanth, K. Ullas

    2015-01-01

    There is increasing evidence of large carnivore presence outside protected areas, globally. Although this spells conservation success through population recoveries, it makes carnivore persistence in human-use landscapes tenuous. The widespread distribution of leopards in certain regions of India typifies this problem. We obtained information on leopard-human interactions at a regional scale in Karnataka State, India, based on systematic surveys of local media reports. We applied an innovative occupancy modelling approach to map their distribution patterns and identify hotspots of livestock/human depredation. We also evaluated management responses like removals of ‘problem’ leopards through capture and translocations. Leopards occupied around 84,000 km2 or 47% of the State’s geographic area, outside designated national parks and wildlife sanctuaries. Their presence was facilitated by extent of vegetative cover- including irrigated croplands, rocky escarpments, and prey base in the form of feral and free-ranging dogs. Higher probabilities of livestock/human attacks by leopards were associated with similar ecological features as well as with capture/removals of leopards. Of the 56 cases of leopard removals reported, 91% did not involve human attacks, but followed livestock predation or only leopard sightings. The lack of knowledge on leopard ecology in human-use areas has resulted in unscientific interventions, which could aggravate the problem rather than mitigating it. Our results establish the presence of resident, breeding leopards in human-use areas. We therefore propose a shift in management focus, from current reactive practices like removal and translocation of leopards, to proactive measures that ensure safety of human lives and livelihoods. PMID:26556229

  3. Climate envelope predictions indicate an enlarged suitable wintering distribution for Great Bustards (Otis tarda dybowskii) in China for the 21st century

    PubMed Central

    Mi, Chunrong; Falk, Huettmann

    2016-01-01

    The rapidly changing climate makes humans realize that there is a critical need to incorporate climate change adaptation into conservation planning. Whether the wintering habitats of Great Bustards (Otis tarda dybowskii), a globally endangered migratory subspecies whose population is approximately 1,500–2,200 individuals in China, would be still suitable in a changing climate environment, and where this could be found, is an important protection issue. In this study, we selected the most suitable species distribution model for bustards using climate envelopes from four machine learning models, combining two modelling approaches (TreeNet and Random Forest) with two sets of variables (correlated variables removed or not). We used common evaluation methods area under the receiver operating characteristic curves (AUC) and the True Skill Statistic (TSS) as well as independent test data to identify the most suitable model. As often found elsewhere, we found Random Forest with all environmental variables outperformed in all assessment methods. When we projected the best model to the latest IPCC-CMIP5 climate scenarios (Representative Concentration Pathways (RCPs) 2.6, 4.5 and 8.5 in three Global Circulation Models (GCMs)), and averaged the project results of the three models, we found that suitable wintering habitats in the current bustard distribution would increase during the 21st century. The Northeast Plain and the south of North China were projected to become two major wintering areas for bustards. However, the models suggest that some currently suitable habitats will experience a reduction, such as Dongting Lake and Poyang Lake in the Middle and Lower Yangtze River Basin. Although our results suggested that suitable habitats in China would widen with climate change, greater efforts should be undertaken to assess and mitigate unstudied human disturbance, such as pollution, hunting, agricultural development, infrastructure construction, habitat fragmentation, and oil and mine exploitation. All of these are negatively and intensely linked with global change. PMID:26855870

  4. Climate envelope predictions indicate an enlarged suitable wintering distribution for Great Bustards (Otis tarda dybowskii) in China for the 21st century.

    PubMed

    Mi, Chunrong; Falk, Huettmann; Guo, Yumin

    2016-01-01

    The rapidly changing climate makes humans realize that there is a critical need to incorporate climate change adaptation into conservation planning. Whether the wintering habitats of Great Bustards (Otis tarda dybowskii), a globally endangered migratory subspecies whose population is approximately 1,500-2,200 individuals in China, would be still suitable in a changing climate environment, and where this could be found, is an important protection issue. In this study, we selected the most suitable species distribution model for bustards using climate envelopes from four machine learning models, combining two modelling approaches (TreeNet and Random Forest) with two sets of variables (correlated variables removed or not). We used common evaluation methods area under the receiver operating characteristic curves (AUC) and the True Skill Statistic (TSS) as well as independent test data to identify the most suitable model. As often found elsewhere, we found Random Forest with all environmental variables outperformed in all assessment methods. When we projected the best model to the latest IPCC-CMIP5 climate scenarios (Representative Concentration Pathways (RCPs) 2.6, 4.5 and 8.5 in three Global Circulation Models (GCMs)), and averaged the project results of the three models, we found that suitable wintering habitats in the current bustard distribution would increase during the 21st century. The Northeast Plain and the south of North China were projected to become two major wintering areas for bustards. However, the models suggest that some currently suitable habitats will experience a reduction, such as Dongting Lake and Poyang Lake in the Middle and Lower Yangtze River Basin. Although our results suggested that suitable habitats in China would widen with climate change, greater efforts should be undertaken to assess and mitigate unstudied human disturbance, such as pollution, hunting, agricultural development, infrastructure construction, habitat fragmentation, and oil and mine exploitation. All of these are negatively and intensely linked with global change.

  5. Mobile genes in the human microbiome are structured from global to individual scales

    PubMed Central

    Brito, IL; Jupiter, SD; Jenkins, AP; Naisilisili, W; Tamminen, M; Smillie, CS; Wortman, JR; Birren, BW; Xavier, RJ; Blainey, PC; Singh, AK; Gevers, D; Alm, EJ

    2016-01-01

    Recent work has underscored the importance of the microbiome in human health, largely attributing differences in phenotype to differences in the species present across individuals1,2,3,4,5. But mobile genes can confer profoundly different phenotypes on different strains of the same species. Little is known about the function and distribution of mobile genes in the human microbiome, and in particular whether the gene pool is globally homogenous or constrained by human population structure. Here, we investigate this question by comparing the mobile genes found in the microbiomes of 81 metropolitan North Americans with that of 172 agrarian Fiji islanders using a combination of single-cell genomics and metagenomics. We find large differences in mobile gene content between the Fijian and North American microbiomes, with functional variation that mirrors known dietary differences such as the excess of plant-based starch degradation genes. Remarkably, differences are also observed between the mobile gene pools of proximal Fijian villages, even though microbiome composition across villages is similar. Finally, we observe high rates of recombination leading to individual-specific mobile elements, suggesting that the abundance of some genes may reflect environmental selection rather than dispersal limitation. Together, these data support the hypothesis that human activities and behaviors provide selective pressures that shape mobile gene pools, and that acquisition of mobile genes is important to colonizing specific human populations. PMID:27409808

  6. Space-based Remote Sensing: A Tool for Studying Bird Migration Across Multiple Scales

    NASA Technical Reports Server (NTRS)

    Smith, James A.

    2005-01-01

    The study of bird migration on a global scale is one of the compelling and challenging problems of modern biology with major implications for human health and conservation biology. Migration and conservation efforts cross national boundaries and are subject to numerous international agreements and treaties. Space based technology offers new opportunities to shed understanding on the distribution and migration of organisms on the planet and their sensitivity to human disturbances and environmental changes. Our working hypothesis is that individual organism biophysical models of energy and water balance, driven by satellite measurements of spatio-temporal gradients in climate and habitat, will help us to explain the variability in avian species richness and distribution. Further, these models provide an ecological forecasting tool for science and application users to visualize the possible consequences of loss of wetlands, flooding, or other natural disasters such as hurricanes on avian biodiversity and bird migration.

  7. Hypsographic demography: The distribution of human population by altitude

    PubMed Central

    Cohen, Joel E.; Small, Christopher

    1998-01-01

    The global distribution of the human population by elevation is quantified here. As of 1994, an estimated 1.88 × 109 people, or 33.5% of the world’s population, lived within 100 vertical meters of sea level, but only 15.6% of all inhabited land lies below 100 m elevation. The median person lived at an elevation of 194 m above sea level. Numbers of people decreased faster than exponentially with increasing elevation. The integrated population density (IPD, the number of people divided by the land area) within 100 vertical meters of sea level was significantly larger than that of any other range of elevations and represented far more people. A significant percentage of the low-elevation population lived at moderate population densities rather than at the highest densities of central large cities. Assessments of coastal hazards that focus only on large cities may substantially underestimate the number of people who could be affected. PMID:9826643

  8. Comparison of Campylobacter jejuni isolates from human, food, veterinary and environmental sources in Iceland using PFGE, MLST and fla-SVR sequencing.

    PubMed

    Magnússon, S H; Guðmundsdóttir, S; Reynisson, E; Rúnarsson, A R; Harðardóttir, H; Gunnarson, E; Georgsson, F; Reiersen, J; Marteinsson, V Th

    2011-10-01

    Campylobacter jejuni isolates from various sources in Iceland were genotyped with the aim of assessing the genetic diversity, population structure, source distribution and campylobacter transmission routes to humans. A collection of 584 Campylobacter isolates were collected from clinical cases, food, animals and environment in Iceland in 1999-2002, during a period of national Campylobacter epidemic in Iceland. All isolates were characterized by pulse field gel electrophoresis (PFGE), and selected subset of 52 isolates representing the diversity of the identified PFGE types was further genotyped using multilocus sequence typing (MLST) and fla-SVR sequencing to gain better insight into the population structure. The results show a substantial diversity within the Icelandic Campylobacter population. Majority of the human Campylobacter infections originated from domestic chicken and cattle isolates. MLST showed the isolates to be distributed among previously reported and common sequence type complexes in the MLST database. The genotyping of Campylobacter from various sources has not previously been reported from Iceland, and the results of the study gave a valuable insight into the population structure of Camp. jejuni in Iceland, source distribution and transmission routes to humans. The geographical isolation of Iceland in the north Atlantic provides new information on Campylobacter population dynamics on a global scale. Journal of Applied Microbiology © 2011 The Society for Applied Microbiology No claim to Icelandic Government works.

  9. Landsat: A global land-imaging mission

    USGS Publications Warehouse

    ,

    2012-01-01

    Across four decades since 1972, Landsat satellites have continuously acquired space-based images of the Earth's land surface, coastal shallows, and coral reefs. The Landsat Program, a joint effort of the U.S. Geological Survey (USGS) and the National Aeronautics and Space Administration (NASA), was established to routinely gather land imagery from space. NASA develops remote-sensing instruments and spacecraft, then launches and validates the performance of the instruments and satellites. The USGS then assumes ownership and operation of the satellites, in addition to managing all ground reception, data archiving, product generation, and distribution. The result of this program is a long-term record of natural and human induced changes on the global landscape.

  10. Migratory potential of transplanted glial progenitors as critical factor for successful translation of glia replacement therapy: The gap between mice and men.

    PubMed

    Srivastava, Rohit K; Bulte, Jeff W M; Walczak, Piotr; Janowski, Miroslaw

    2018-05-01

    Neurological disorders are a major threat to public health. Stem cell-based regenerative medicine is now a promising experimental paradigm for its treatment, as shown in pre-clinical animal studies. Initial attempts have been on the replacement of neuronal cells only, but glial progenitors (GPs) are now becoming strong alternative cellular therapeutic candidates to replace oligodendrocytes and astrocytes as knowledge accumulates about their important emerging role in various disease processes. There are many examples of successful therapeutic outcomes for transplanted GPs in small animal models, but clinical translation has proved to be challenging due to the 1,000-fold larger volume of the human brain compared to mice. Human GPs transplanted into the mouse brain migrate extensively and can induce global cell replacement, but a similar extent of migration in the human brain would only allow for local rather than global cell replacement. We review here the mechanisms that govern cell migration, which could potentially be exploited to enhance the migratory properties of GPs through cell engineering pre-transplantation. We furthermore discuss the (dis)advantages of the various cell delivery routes that are available, with particular emphasis on intra-arterial injection as the most suitable route for achieving global cell distribution in the larger brain. Now that therapeutic success has proven to be feasible in small animal models, future efforts will need to be directed to enhance global cell delivery and migration to make bench-to-bedside translation a reality. © 2017 Wiley Periodicals, Inc.

  11. Historical biome distribution and recent human disturbance shape the diversity of arbuscular mycorrhizal fungi.

    PubMed

    Pärtel, Meelis; Öpik, Maarja; Moora, Mari; Tedersoo, Leho; Szava-Kovats, Robert; Rosendahl, Søren; Rillig, Matthias C; Lekberg, Ylva; Kreft, Holger; Helgason, Thorunn; Eriksson, Ove; Davison, John; de Bello, Francesco; Caruso, Tancredi; Zobel, Martin

    2017-10-01

    The availability of global microbial diversity data, collected using standardized metabarcoding techniques, makes microorganisms promising models for investigating the role of regional and local factors in driving biodiversity. Here we modelled the global diversity of symbiotic arbuscular mycorrhizal (AM) fungi using currently available data on AM fungal molecular diversity (small subunit (SSU) ribosomal RNA (rRNA) gene sequences) in field samples. To differentiate between regional and local effects, we estimated species pools (sets of potentially suitable taxa) for each site, which are expected to reflect regional processes. We then calculated community completeness, an index showing the fraction of the species pool present, which is expected to reflect local processes. We found significant spatial variation, globally in species pool size, as well as in local and dark diversity (absent members of the species pool). Species pool size was larger close to areas containing tropical grasslands during the last glacial maximum, which are possible centres of diversification. Community completeness was greater in regions of high wilderness (remoteness from human disturbance). Local diversity was correlated with wilderness and current connectivity to mountain grasslands. Applying the species pool concept to symbiotic fungi facilitated a better understanding of how biodiversity can be jointly shaped by large-scale historical processes and recent human disturbance. © 2017 The Authors. New Phytologist © 2017 New Phytologist Trust.

  12. Sea-Level Rise and Land Subsidence in Deltas: Estimating Future Flood Risk Through Integrated Natural and Human System Modeling

    NASA Astrophysics Data System (ADS)

    Tessler, Z. D.; Vorosmarty, C. J.

    2016-12-01

    Deltas are highly sensitive to local human activities, land subsidence, regional water management, global sea-level rise, and climate extremes. We present a new delta flood exposure and risk framework for estimating the sensitivity of deltas to relative sea-level rise. We have applied this framework to a set of global environmental, geophysical, and social indicators over 48 major river deltas to quantify how contemporary risks vary across delta systems. The risk modeling framework incorporates upstream sediment flux and coastal land subsidence models, global empirical estimates of contemporary storm surge exposure, and population distribution and growth. Future scenarios are used to test the impacts on coastal flood risk of upstream dam construction, coastal population growth, accelerated sea-level rise, and enhanced storm surge. Results suggest a wide range of outcomes across different delta systems within each scenario. Deltas in highly engineered watersheds (Mississippi, Rhine) exhibit less sensitivity to increased dams due to saturation of sediment retention effects, though planned or under-construction dams are expected to have a substantial impact in the Yangtze, Irrawaddy, and Magdalena deltas. Population growth and sea-level rise are expected to be the dominant drivers of increased human risk in most deltas, with important exceptions in several countries, particularly China, where population are forecast to contract over the next several decades.

  13. Geographical Analysis of the Distribution and Spread of Human Rabies in China from 2005 to 2011

    PubMed Central

    Yin, Wenwu; Yu, Hongjie; Si, Yali; Li, Jianhui; Zhou, Yuanchun; Zhou, Xiaoyan; Magalhães, Ricardo J. Soares.

    2013-01-01

    Background Rabies is a significant public health problem in China in that it records the second highest case incidence globally. Surveillance data on canine rabies in China is lacking and human rabies notifications can be a useful indicator of areas where animal and human rabies control could be integrated. Previous spatial epidemiological studies lacked adequate spatial resolution to inform targeted rabies control decisions. We aimed to describe the spatiotemporal distribution of human rabies and model its geographical spread to provide an evidence base to inform future integrated rabies control strategies in China. Methods We geo-referenced a total of 17,760 human rabies cases of China from 2005 to 2011. In our spatial analyses we used Gaussian kernel density analysis, average nearest neighbor distance, Spatial Temporal Density-Based Spatial Clustering of Applications with Noise and developed a model of rabies spatiotemporal spread. Findings Human rabies cases increased from 2005 to 2007 and decreased during 2008 to 2011 companying change of the spatial distribution. The ANN distance among human rabies cases increased between 2005 and 2011, and the degree of clustering of human rabies cases decreased during that period. A total 480 clusters were detected by ST-DBSCAN, 89.4% clusters initiated before 2007. Most of clusters were mainly found in South of China. The number and duration of cluster decreased significantly after 2008. Areas with the highest density of human rabies cases varied spatially each year and in some areas remained with high outbreak density for several years. Though few places have recovered from human rabies, most of affected places are still suffering from the disease. Conclusion Human rabies in mainland China is geographically clustered and its spatial extent changed during 2005 to 2011. The results provide a scientific basis for public health authorities in China to improve human rabies control and prevention program. PMID:23991098

  14. Global prevalence and distribution of genes and microorganisms involved in mercury methylation

    DOE PAGES

    Podar, Mircea; Gilmour, C. C.; Brandt, Craig C.; ...

    2015-10-09

    Mercury methylation produces the neurotoxic, highly bioaccumulative methylmercury (MeHg). Recent identification of the methylation genes (hgcAB) provides the foundation for broadly evaluating microbial Hg-methylation potential in nature without making explicit rate measurements. We first queried hgcAB diversity and distribution in all available microbial metagenomes, encompassing most environments. The genes were found in nearly all anaerobic, but not in aerobic, environments including oxygenated layers of the open ocean. Critically, hgcAB was effectively absent in ~1500 human microbiomes, suggesting a low risk of endogenous MeHg production. New potential methylation habitats were identified, including invertebrate guts, thawing permafrost, coastal dead zones, soils, sediments,more » and extreme environments, suggesting multiple routes for MeHg entry into food webs. Several new taxonomic groups potentially capable of Hg-methylation emerged, including lineages having no cultured representatives. We then begin to address long-standing evolutionary questions about Hg-methylation and ancient carbon fixation mechanisms while generating a new global view of Hg-methylation potential.« less

  15. Probabilistic attribution of individual unprecedented extreme events

    NASA Astrophysics Data System (ADS)

    Diffenbaugh, N. S.

    2016-12-01

    The last decade has seen a rapid increase in efforts to understand the influence of global warming on individual extreme climate events. Although trends in the distributions of climate observations have been thoroughly analyzed, rigorously quantifying the contribution of global-scale warming to individual events that are unprecedented in the observed record presents a particular challenge. This paper describes a method for leveraging observations and climate model ensembles to quantify the influence of historical global warming on the severity and probability of unprecedented events. This approach uses formal inferential techniques to quantify four metrics: (1) the contribution of the observed trend to the event magnitude, (2) the contribution of the observed trend to the event probability, (3) the probability of the observed trend in the current climate and a climate without human influence, and (4) the probability of the event magnitude in the current climate and a climate without human influence. Illustrative examples are presented, spanning a range of climate variables, timescales, and regions. These examples illustrate that global warming can influence the severity and probability of unprecedented extremes. In some cases - particularly high temperatures - this change is indicated by changes in the mean. However, changes in probability do not always arise from changes in the mean, suggesting that global warming can alter the frequency with which complex physical conditions co-occur. Because our framework is transparent and highly generalized, it can be readily applied to a range of climate events, regions, and levels of climate forcing.

  16. OCO-2 Post Launch Briefing

    NASA Image and Video Library

    2014-07-02

    Mike Miller, senior vice president, Science and Environmental Satellite Programs, Orbital Sciences Space Systems Group, discusses the successful launch of the Orbiting Carbon Observatory-2 (OCO-2), NASA’s first spacecraft dedicated to studying carbon dioxide, during a press briefing, Wednesday, July 2, 2014, at the Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: (NASA/Bill Ingalls)

  17. Orbiting Carbon Observatory-2 (OCO-2)

    NASA Image and Video Library

    2014-06-30

    The United Launch Alliance Delta II rocket with the Orbiting Carbon Observatory-2 (OCO-2) satellite onboard, is seen as the launch gantry is moved at the Space Launch Complex 2, Monday, June 30, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set for a July 1, 2014 launch. Photo Credit: (NASA/Bill Ingalls)

  18. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    Annmarie Eldering, OCO-2 deputy project scientist, JPL is seen talking on the monitors during an Orbiting Carbon Observatory-2 (OCO-2) science briefing, Sunday, June 29, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  19. Orbiting Carbon Observatory-2 (OCO-2)

    NASA Image and Video Library

    2014-06-29

    The launch gantry, surrounding the United Launch Alliance Delta II rocket with the Orbiting Carbon Observatory-2 (OCO-2) satellite onboard, is seen at the Space Launch Complex 2, Sunday, June 29, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set for a July 1, 2014 launch. Photo Credit: (NASA/Bill Ingalls)

  20. OCO-2 Post Launch Briefing

    NASA Image and Video Library

    2014-07-02

    Geoff Yoder, deputy associate administrator for programs, Science Mission Directorate, NASA Headquarters, discusses the successful launch of the Orbiting Carbon Observatory-2 (OCO-2), NASA’s first spacecraft dedicated to studying carbon dioxide, during a press briefing, Wednesday, July 2, 2014, at the Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: (NASA/Bill Ingalls)

  1. Orbiting Carbon Observatory-2 (OCO-2)

    NASA Image and Video Library

    2014-06-30

    The launch gantry is rolled back to reveal the United Launch Alliance Delta II rocket with the Orbiting Carbon Observatory-2 (OCO-2) satellite onboard, at the Space Launch Complex 2, Monday, June 30, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set for a July 1, 2014 launch. Photo Credit: (NASA/Bill Ingalls)

  2. Pace of shifts in climate regions increases with global temperature

    NASA Astrophysics Data System (ADS)

    Mahlstein, Irina; Daniel, John S.; Solomon, Susan

    2013-08-01

    Human-induced climate change causes significant changes in local climates, which in turn lead to changes in regional climate zones. Large shifts in the world distribution of Köppen-Geiger climate classifications by the end of this century have been projected. However, only a few studies have analysed the pace of these shifts in climate zones, and none has analysed whether the pace itself changes with increasing global mean temperature. In this study, pace refers to the rate at which climate zones change as a function of amount of global warming. Here we show that present climate projections suggest that the pace of shifting climate zones increases approximately linearly with increasing global temperature. Using the RCP8.5 emissions pathway, the pace nearly doubles by the end of this century and about 20% of all land area undergoes a change in its original climate. This implies that species will have increasingly less time to adapt to Köppen zone changes in the future, which is expected to increase the risk of extinction.

  3. Global land ice measurements from space (GLIMS): remote sensing and GIS investigations of the Earth's cryosphere

    USGS Publications Warehouse

    Bishop, Michael P.; Olsenholler, Jeffrey A.; Shroder, John F.; Barry, Roger G.; Rasup, Bruce H.; Bush, Andrew B. G.; Copland, Luke; Dwyer, John L.; Fountain, Andrew G.; Haeberli, Wilfried; Kääb, Andreas; Paul, Frank; Hall, Dorothy K.; Kargel, Jeffrey S.; Molnia, Bruce F.; Trabant, Dennis C.; Wessels, Rick L.

    2004-01-01

    Concerns over greenhouse‐gas forcing and global temperatures have initiated research into understanding climate forcing and associated Earth‐system responses. A significant component is the Earth's cryosphere, as glacier‐related, feedback mechanisms govern atmospheric, hydrospheric and lithospheric response. Predicting the human and natural dimensions of climate‐induced environmental change requires global, regional and local information about ice‐mass distribution, volumes, and fluctuations. The Global Land‐Ice Measurements from Space (GLIMS) project is specifically designed to produce and augment baseline information to facilitate glacier‐change studies. This requires addressing numerous issues, including the generation of topographic information, anisotropic‐reflectance correction of satellite imagery, data fusion and spatial analysis, and GIS‐based modeling. Field and satellite investigations indicate that many small glaciers and glaciers in temperate regions are downwasting and retreating, although detailed mapping and assessment are still required to ascertain regional and global patterns of ice‐mass variations. Such remote sensing/GIS studies, coupled with field investigations, are vital for producing baseline information on glacier changes, and improving our understanding of the complex linkages between atmospheric, lithospheric, and glaciological processes.

  4. Generalized Drivers in the Mammalian Endangerment Process

    PubMed Central

    González-Suárez, Manuela; Revilla, Eloy

    2014-01-01

    An important challenge for conservation today is to understand the endangerment process and identify any generalized patterns in how threats occur and aggregate across taxa. Here we use a global database describing main current external threats in mammals to evaluate the prevalence of distinct threatening processes, primarily of anthropogenic origin, and to identify generalized drivers of extinction and their association with vulnerability status and intrinsic species' traits. We detect several primary threat combinations that are generally associated with distinct species. In particular, large and widely distributed mammals are affected by combinations of direct exploitation and threats associated with increasing landscape modification that go from logging to intense human land-use. Meanwhile, small, narrowly distributed species are affected by intensifying levels of landscape modification but are not directly exploited. In general more vulnerable species are affected by a greater number of threats, suggesting increased extinction risk is associated with the accumulation of external threats. Overall, our findings show that endangerment in mammals is strongly associated with increasing habitat loss and degradation caused by human land-use intensification. For large and widely distributed mammals there is the additional risk of being hunted. PMID:24587315

  5. The Human Carbon Budget: An Estimate of the Spatial Distribution of Metabolic Carbon Consumption and Release in the United States

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    West, Tristram O.; Singh, Nagendra; Marland, Gregg

    Carbon dioxide is taken up by agricultural crops and released soon after during the consumption of agricultural commodities. The global net impact of this process on carbon flux to the atmosphere is negligible, but impact on the spatial distribution of carbon dioxide uptake and release across regions and continents is significant. To estimate the consumption and release of carbon by humans over the landscape, we developed a carbon budget for humans in the United States. The budget was derived from food commodity intake data for the US and from algorithms representing the metabolic processing of carbon by humans. Data onmore » consumption, respiration, and waste of carbon by humans were distributed over the US using geospatial population data with a resolution of approximately 450 x 450 m. The average adult in the US contains about 21 kg C and consumes about 67 kg C yr-1 which is balanced by the annual release of about 59 kg C as expired CO2, 7 kg C as feces and urine, and less than 1 kg C as flatus, sweat, and aromatic compounds. In 2000, an estimated 17.2 Tg C were consumed by the US population and 15.2 Tg C were expired to the atmosphere as CO2. Historically, carbon stock in the US human population has increased between 1790-2006 from 0.06 Tg to 5.37 Tg. Displacement and release of total harvested carbon per capita in the US is nearly 12% of per capita fossil fuel emissions. Humans are using, storing, and transporting carbon about the Earth s surface. Inclusion of these carbon dynamics in regional carbon budgets can improve our understanding of carbon sources and sinks.« less

  6. European derived Saccharomyces cerevisiae colonisation of New Zealand vineyards aided by humans

    PubMed Central

    Gayevskiy, Velimir; Lee, Soon

    2016-01-01

    Humans have acted as vectors for species and expanded their ranges since at least the dawn of agriculture. While relatively well characterised for macrofauna and macroflora, the extent and dynamics of human-aided microbial dispersal is poorly described. We studied the role which humans have played in manipulating the distribution of Saccharomyces cerevisiae, one of the world's most important microbes, using whole genome sequencing. We include 52 strains representative of the diversity in New Zealand to the global set of genomes for this species. Phylogenomic approaches show an exclusively European origin of the New Zealand population, with a minimum of 10 founder events mostly taking place over the last 1000 years. Our results show that humans have expanded the range of S. cerevisiae and transported it to New Zealand where it was not previously present, where it has now become established in vineyards, but radiation to native forests appears limited. PMID:27744274

  7. Invasive termites in a changing climate: A global perspective.

    PubMed

    Buczkowski, Grzegorz; Bertelsmeier, Cleo

    2017-02-01

    Termites are ubiquitous insects in tropical, subtropical, and warm temperate regions and play an important role in ecosystems. Several termite species are also significant economic pests, mainly in urban areas where they attack human-made structures, but also in natural forest habitats. Worldwide, approximately 28 termite species are considered invasive and have spread beyond their native ranges, often with significant economic consequences. We used predictive climate modeling to provide the first global risk assessment for 13 of the world's most invasive termites. We modeled the future distribution of 13 of the most serious invasive termite species, using two different Representative Concentration Pathways (RCPs), RCP 4.5 and RCP 8.5, and two projection years (2050 and 2070). Our results show that all but one termite species are expected to significantly increase in their global distribution, irrespective of the climatic scenario and year. The range shifts by species (shift vectors) revealed a complex pattern of distributional changes across latitudes rather than simple poleward expansion. Mapping of potential invasion hotspots in 2050 under the RCP 4.5 scenario revealed that the most suitable areas are located in the tropics. Substantial parts of all continents had suitable environmental conditions for more than four species simultaneously. Mapping of changes in the number of species revealed that areas that lose many species (e.g., parts of South America) are those that were previously very species-rich, contrary to regions such as Europe that were overall not among the most important invasion hotspots, but that showed a great increase in the number of potential invaders. The substantial economic and ecological damage caused by invasive termites is likely to increase in response to climate change, increased urbanization, and accelerating economic globalization, acting singly or interactively.

  8. Global-minded Human Resources and Expectations for Universities

    NASA Astrophysics Data System (ADS)

    Inoue, Hiroshi

    Under the globalized economy, Japanese corporations compete with rivals of the western countries and emerging economies. And domestically, they face with deflation, falling birth-rate, an aging society, and shrinking market. So they need to foster and retain global-minded human resources who can play an active role in global business, and who can drive innovation. What Japanese corporations expect for global-minded human resources are ability to meet challenges, ability to think independently free from conventional wisdom, communication skills in foreign languages, interests in foreign cultures and different values, and so on. In order to foster global-minded human resources, Keidanren work with the 13 universities selected under the Japanese Government‧s “Global 30” projects to undertake “Global-minded Human Resources Development Projects” .

  9. Essential ocean variables for global sustained observations of biodiversity and ecosystem changes.

    PubMed

    Miloslavich, Patricia; Bax, Nicholas J; Simmons, Samantha E; Klein, Eduardo; Appeltans, Ward; Aburto-Oropeza, Octavio; Andersen Garcia, Melissa; Batten, Sonia D; Benedetti-Cecchi, Lisandro; Checkley, David M; Chiba, Sanae; Duffy, J Emmett; Dunn, Daniel C; Fischer, Albert; Gunn, John; Kudela, Raphael; Marsac, Francis; Muller-Karger, Frank E; Obura, David; Shin, Yunne-Jai

    2018-04-05

    Sustained observations of marine biodiversity and ecosystems focused on specific conservation and management problems are needed around the world to effectively mitigate or manage changes resulting from anthropogenic pressures. These observations, while complex and expensive, are required by the international scientific, governance and policy communities to provide baselines against which the effects of human pressures and climate change may be measured and reported, and resources allocated to implement solutions. To identify biological and ecological essential ocean variables (EOVs) for implementation within a global ocean observing system that is relevant for science, informs society, and technologically feasible, we used a driver-pressure-state-impact-response (DPSIR) model. We (1) examined relevant international agreements to identify societal drivers and pressures on marine resources and ecosystems, (2) evaluated the temporal and spatial scales of variables measured by 100+ observing programs, and (3) analysed the impact and scalability of these variables and how they contribute to address societal and scientific issues. EOVs were related to the status of ecosystem components (phytoplankton and zooplankton biomass and diversity, and abundance and distribution of fish, marine turtles, birds and mammals), and to the extent and health of ecosystems (cover and composition of hard coral, seagrass, mangrove and macroalgal canopy). Benthic invertebrate abundance and distribution and microbe diversity and biomass were identified as emerging EOVs to be developed based on emerging requirements and new technologies. The temporal scale at which any shifts in biological systems will be detected will vary across the EOVs, the properties being monitored and the length of the existing time-series. Global implementation to deliver useful products will require collaboration of the scientific and policy sectors and a significant commitment to improve human and infrastructure capacity across the globe, including the development of new, more automated observing technologies, and encouraging the application of international standards and best practices. © 2018 The Authors. Global Change Biology Published by John Wiley & Sons Ltd.

  10. Income Disparities and the Global Distribution of Intensively Farmed Chicken and Pigs

    PubMed Central

    Gilbert, Marius; Conchedda, Giulia; Van Boeckel, Thomas P.; Cinardi, Giuseppina; Linard, Catherine; Nicolas, Gaëlle; Thanapongtharm, Weerapong; D'Aietti, Laura; Wint, William; Newman, Scott H.; Robinson, Timothy P.

    2015-01-01

    The rapid transformation of the livestock sector in recent decades brought concerns on its impact on greenhouse gas emissions, disruptions to nitrogen and phosphorous cycles and on land use change, particularly deforestation for production of feed crops. Animal and human health are increasingly interlinked through emerging infectious diseases, zoonoses, and antimicrobial resistance. In many developing countries, the rapidity of change has also had social impacts with increased risk of marginalisation of smallholder farmers. However, both the impacts and benefits of livestock farming often differ between extensive (backyard farming mostly for home-consumption) and intensive, commercial production systems (larger herd or flock size, higher investments in inputs, a tendency towards market-orientation). A density of 10,000 chickens per km2 has different environmental, epidemiological and societal implications if these birds are raised by 1,000 individual households or in a single industrial unit. Here, we introduce a novel relationship that links the national proportion of extensively raised animals to the gross domestic product (GDP) per capita (in purchasing power parity). This relationship is modelled and used together with the global distribution of rural population to disaggregate existing 10 km resolution global maps of chicken and pig distributions into extensive and intensive systems. Our results highlight countries and regions where extensive and intensive chicken and pig production systems are most important. We discuss the sources of uncertainties, the modelling assumptions and ways in which this approach could be developed to forecast future trajectories of intensification. PMID:26230336

  11. Income Disparities and the Global Distribution of Intensively Farmed Chicken and Pigs.

    PubMed

    Gilbert, Marius; Conchedda, Giulia; Van Boeckel, Thomas P; Cinardi, Giuseppina; Linard, Catherine; Nicolas, Gaëlle; Thanapongtharm, Weerapong; D'Aietti, Laura; Wint, William; Newman, Scott H; Robinson, Timothy P

    2015-01-01

    The rapid transformation of the livestock sector in recent decades brought concerns on its impact on greenhouse gas emissions, disruptions to nitrogen and phosphorous cycles and on land use change, particularly deforestation for production of feed crops. Animal and human health are increasingly interlinked through emerging infectious diseases, zoonoses, and antimicrobial resistance. In many developing countries, the rapidity of change has also had social impacts with increased risk of marginalisation of smallholder farmers. However, both the impacts and benefits of livestock farming often differ between extensive (backyard farming mostly for home-consumption) and intensive, commercial production systems (larger herd or flock size, higher investments in inputs, a tendency towards market-orientation). A density of 10,000 chickens per km2 has different environmental, epidemiological and societal implications if these birds are raised by 1,000 individual households or in a single industrial unit. Here, we introduce a novel relationship that links the national proportion of extensively raised animals to the gross domestic product (GDP) per capita (in purchasing power parity). This relationship is modelled and used together with the global distribution of rural population to disaggregate existing 10 km resolution global maps of chicken and pig distributions into extensive and intensive systems. Our results highlight countries and regions where extensive and intensive chicken and pig production systems are most important. We discuss the sources of uncertainties, the modelling assumptions and ways in which this approach could be developed to forecast future trajectories of intensification.

  12. Deficiencies in drinking water distribution systems in developing countries.

    PubMed

    Lee, Ellen J; Schwab, Kellogg J

    2005-06-01

    Rapidly growing populations and migration to urban areas in developing countries has resulted in a vital need for the establishment of centralized water systems to disseminate potable water to residents. Protected source water and modern, well-maintained drinking water treatment plants can provide water adequate for human consumption. However, ageing, stressed or poorly maintained distribution systems can cause the quality of piped drinking water to deteriorate below acceptable levels and pose serious health risks. This review will outline distribution system deficiencies in developing countries caused by: the failure to disinfect water or maintain a proper disinfection residual; low pipeline water pressure; intermittent service; excessive network leakages; corrosion of parts; inadequate sewage disposal; and inequitable pricing and usage of water. Through improved research, monitoring and surveillance, increased understanding of distribution system deficiencies may focus limited resources on key areas in an effort to improve public health and decrease global disease burden.

  13. The anthropogenic influence on heat and humidity in the US Midwest

    NASA Astrophysics Data System (ADS)

    Inda Diaz, H. A.; O'Brien, T. A.; Stone, D. A.

    2016-12-01

    Heatwaves, and extreme temperatures in general, have a wide range of negative impacts on society, and particularly on human health. In addition to temperature, humidity plays a key role in regulating human body temperature, with higher humidities tending to reduce the effectiveness of perspiration. There is recent theoretical and observational evidence that co-occurring extreme heat and humidity can potentially have a much more dramatic impact on human health than either extreme in isolation. There is an abundance of observational evidence indicating that anthropogenic increases in greenhouse gas (GHG) forcing have contributed to an increase in the intensity and frequency of temperature extremes on a global scale. However, aside from purely thermodynamically-driven increases in near-surface humidity, there is a paucity of similar evidence for anthropogenic impacts on humidity. Thermodynamic scaling would suggest that air masses originating from the ocean would be associated with higher specific humidity in a warmer world, and transpiration from irrigated crops could further increase humidity in warm air masses. In order to explore the role of anthropogenic GHG forcing on the co-occurrence of temperature and humidity extremes in the Midwestern United States (US), we evaluate a large ensemble of global climate model simulations with and without anthropogenic GHG forcing. In particular, we examine differences between the probability distributions of near-surface temperature, humidity, wet-bulb temperature, and the joint distribution of temperature and humidity in this ensemble. Finally, we explore augmenting this experimental framework with additional simulations to explore the role of anthropogenic changes in the land surface, and in particular irrigated crops, on co-occurring extreme heat and humidity.

  14. Identifying external influences on global precipitation

    PubMed Central

    Marvel, Kate; Bonfils, Céline

    2013-01-01

    Changes in global (ocean and land) precipitation are among the most important and least well-understood consequences of climate change. Increasing greenhouse gas concentrations are thought to affect the zonal-mean distribution of precipitation through two basic mechanisms. First, increasing temperatures will lead to an intensification of the hydrological cycle (“thermodynamic” changes). Second, changes in atmospheric circulation patterns will lead to poleward displacement of the storm tracks and subtropical dry zones and to a widening of the tropical belt (“dynamic” changes). We demonstrate that both these changes are occurring simultaneously in global precipitation, that this behavior cannot be explained by internal variability alone, and that external influences are responsible for the observed precipitation changes. Whereas existing model experiments are not of sufficient length to differentiate between natural and anthropogenic forcing terms at the 95% confidence level, we present evidence that the observed trends result from human activities. PMID:24218561

  15. Identifying external influences on global precipitation.

    PubMed

    Marvel, Kate; Bonfils, Céline

    2013-11-26

    Changes in global (ocean and land) precipitation are among the most important and least well-understood consequences of climate change. Increasing greenhouse gas concentrations are thought to affect the zonal-mean distribution of precipitation through two basic mechanisms. First, increasing temperatures will lead to an intensification of the hydrological cycle ("thermodynamic" changes). Second, changes in atmospheric circulation patterns will lead to poleward displacement of the storm tracks and subtropical dry zones and to a widening of the tropical belt ("dynamic" changes). We demonstrate that both these changes are occurring simultaneously in global precipitation, that this behavior cannot be explained by internal variability alone, and that external influences are responsible for the observed precipitation changes. Whereas existing model experiments are not of sufficient length to differentiate between natural and anthropogenic forcing terms at the 95% confidence level, we present evidence that the observed trends result from human activities.

  16. Hyperactive Around the World? The History of ADHD in Global Perspective

    PubMed Central

    Smith, Matthew

    2017-01-01

    Summary A recent study has claimed that the global rate of Attention Deficit Hyperactivity Disorder (ADHD) is 5.29%. Any variation in such rates in specific studies, argue the authors, was due to methodological problems, rather than differences in the actual distribution of ADHD. Such reports strengthen the flawed notion that ADHD is a universal and essential disorder, found in all human populations across time and place. While it is true that the concept of ADHD has spread from the USA, where it emerged during the late 1950s, to most corners of the globe, such superficial pronouncements mask profound differences in how ADHD has been interpreted in different countries and regions. In this paper, I compare ADHD's emergence in Canada, the UK, Scandinavia, China and India, arguing that, while ADHD can be considered a global phenomenon, behavioural and educational imperfections remain very much a product of local historical, cultural and political factors. PMID:29670320

  17. Local and global epidemic outbreaks in populations moving in inhomogeneous environments

    NASA Astrophysics Data System (ADS)

    Buscarino, Arturo; Fortuna, Luigi; Frasca, Mattia; Rizzo, Alessandro

    2014-10-01

    We study disease spreading in a system of agents moving in a space where the force of infection is not homogeneous. Agents are random walkers that additionally execute long-distance jumps, and the plane in which they move is divided into two regions where the force of infection takes different values. We show the onset of a local epidemic threshold and a global one and explain them in terms of mean-field approximations. We also elucidate the critical role of the agent velocity, jump probability, and density parameters in achieving the conditions for local and global outbreaks. Finally, we show that the results are independent of the specific microscopic rules adopted for agent motion, since a similar behavior is also observed for the distribution of agent velocity based on a truncated power law, which is a model often used to fit real data on motion patterns of animals and humans.

  18. Fire as a global ‘herbivore’: the ecology and evolution of flammable ecosystems

    USGS Publications Warehouse

    Bond, William J.; Keeley, Jon E.

    2005-01-01

    It is difficult to find references to fire in general textbooks on ecology, conservation biology or biogeography, in spite of the fact that large parts of the world burn on a regular basis, and that there is a considerable literature on the ecology of fire and its use for managing ecosystems. Fire has been burning ecosystems for hundreds of millions of years, helping to shape global biome distribution and to maintain the structure and function of fire-prone communities. Fire is also a significant evolutionary force, and is one of the first tools that humans used to re-shape their world. Here, we review the recent literature, drawing parallels between fire and herbivores as alternative consumers of vegetation. We point to the common questions, and some surprisingly different answers, that emerge from viewing fire as a globally significant consumer that is analogous to herbivory.

  19. Remoteness from sources of persistent organic pollutants in the multi-media global environment.

    PubMed

    Göktaş, Recep Kaya; MacLeod, Matthew

    2016-10-01

    Quantifying the remoteness from sources of persistent organic pollutants (POPs) can inform the design of monitoring studies and the interpretation of measurement data. Previous work on quantifying remoteness has not explicitly considered partitioning between the gas phase and aerosols, and between the atmosphere and the Earth's surface. The objective of this study is to present a metric of remoteness for POPs transported through the atmosphere calculated with a global multimedia fate model, BETR-Research. We calculated the remoteness of regions covering the entire globe from emission sources distributed according to light emissions, and taking into account the multimedia partitioning properties of chemicals and using averaged global climate data. Remoteness for hypothetical chemicals with distinct partitioning properties (volatile, semi-volatile, hydrophilic, low-volatility) and having two different half-lives in air (60-day and 2-day) are presented. Differences in remoteness distribution among the hypothetical chemicals are most pronounced in scenarios assuming 60-day half-life in air. In scenarios with a 2-day half-life in air, degradation dominates over wet and dry deposition processes as a pathway for atmospheric removal of all chemicals except the low-volatility chemical. The remoteness distribution of the low-volatility chemical is strongly dependent on assumptions about degradability on atmospheric aerosols. Calculations that considered seasonal variability in temperature, hydroxyl radical concentrations in the atmosphere and global atmospheric and oceanic circulation patterns indicate that variability in hydroxyl radical concentrations largely determines the seasonal variability of remoteness. Concentrations of polybrominated diphenyl ethers (PBDEs) measured in tree bark from around the world are more highly correlated with remoteness calculated using our methods than with proximity to human population, and we see considerable potential to apply remoteness calculations for interpretation of monitoring data collected under programs such as the Stockholm Convention Global Monitoring Plan. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  20. Identifying and characterizing major emission point sources as a basis for geospatial distribution of mercury emissions inventories

    NASA Astrophysics Data System (ADS)

    Steenhuisen, Frits; Wilson, Simon J.

    2015-07-01

    Mercury is a global pollutant that poses threats to ecosystem and human health. Due to its global transport, mercury contamination is found in regions of the Earth that are remote from major emissions areas, including the Polar regions. Global anthropogenic emission inventories identify important sectors and industries responsible for emissions at a national level; however, to be useful for air transport modelling, more precise information on the locations of emission is required. This paper describes the methodology applied, and the results of work that was conducted to assign anthropogenic mercury emissions to point sources as part of geospatial mapping of the 2010 global anthropogenic mercury emissions inventory prepared by AMAP/UNEP. Major point-source emission sectors addressed in this work account for about 850 tonnes of the emissions included in the 2010 inventory. This work allocated more than 90% of these emissions to some 4600 identified point source locations, including significantly more point source locations in Africa, Asia, Australia and South America than had been identified during previous work to geospatially-distribute the 2005 global inventory. The results demonstrate the utility and the limitations of using existing, mainly public domain resources to accomplish this work. Assumptions necessary to make use of selected online resources are discussed, as are artefacts that can arise when these assumptions are applied to assign (national-sector) emissions estimates to point sources in various countries and regions. Notwithstanding the limitations of the available information, the value of this procedure over alternative methods commonly used to geo-spatially distribute emissions, such as use of 'proxy' datasets to represent emissions patterns, is illustrated. Improvements in information that would facilitate greater use of these methods in future work to assign emissions to point-sources are discussed. These include improvements to both national (geo-referenced) emission inventories and also to other resources that can be employed when such national inventories are lacking.

  1. Global climate and infectious disease: The cholera paradigm

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Colwell, R.R.

    1996-12-20

    Historically, infectious diseases have had a profound effect on human populations, including their evolution and cultural development. Despite significant advances in medical science, infectious diseases continue to impact human populations in many parts of the world. Emerging diseases are considered to be those infections that either are newly appearing in the population or are rapidly increasing in incidence or expanding in geographic range. Emergence of disease is not a simple phenomenon, mainly because infectious diseases are dynamic. Most new infections are not caused by truly new pathogens but are microorganisms (viruses, bacteria, fungi, protozoa, and helminths) that find a newmore » way to enter a susceptible host and are newly recognized because of recently developed, sensitive techniques. Human activities drive emergence of disease and a variety of social, economic, political, climatic, technological, and environmental factors can shape the pattern of a disease and influence its emergence into populations. For example, travel affects emergence of disease, and human migrations have been the main source of epidemics throughout history. Trade caravans, religious pilgrimage, and military campaigns facilitated the spread of plague, smallpox, and cholera. Global travel is a fact of modern life and, equally so, the continued evolution of microorganisms; therefore, new infections will continue to emerge, and known infections will change in distribution, frequency, and severity. 88 refs., 1 fig.« less

  2. Pest Cockroaches May Overcome Environmental Restriction Due to Anthropization.

    PubMed

    Schapheer, Constanza; Sandoval, Gino; Villagra, Cristian A

    2018-06-08

    Our species have altered their surroundings since its early dispersion on Earth. Unfortunately, thanks to human-modified habitats, several pest organisms such as domiciliary insects have expanded their distributions. Moreover, pest-related microorganisms may also be aided by anthropization. Pest cockroaches are globally distributed and capable of carrying several diseases. We explored if urbanization may buffer environmental conditions allowing pest insects to expand their distribution. Specifically, we suggest that human settlements may generate suitable microhabitats for synanthropic cockroaches, helping them to survive and establish with disregard to overall climatic restrictions. To test this idea we studied the distribution of pest cockroaches spanning the length of Chilean territory. Chile, along its 4270 km length north to south extent, is a country offering a formidable sampling of Earth's climatic diversity accompanied by dense urbanizations. We studied entomological collections and spatially analyzed pest cockroach distribution found in Chile and discovered that synanthropic cockroach populations are consistently concentrated near most urban developed zones of the country and not limited by overall temperature. Furthermore, health-concern pest cockroach species were widely distributed in Chilean territory, found even in its most southern urban centers as well as Easter Island. Therefore, these disease vectors could exist even in isolated and extreme climatic zones as long as urbanization provides the adequate microhabitat. We discuss the need for further research in order to assess if these distributions can be extrapolated to the pathogenic strains these pest insects may be carrying as reported in other regions of the planet.

  3. Diphyllobothriasis: update on human cases, foci, patterns and sources of human infections and future considerations.

    PubMed

    Dick, T A; Nelson, P A; Choudhury, A

    2001-01-01

    Diphylobothriasis is a well documented disease of humans. On a world scale new infections are reported regularly, especially from Russia and parts of Japan. Globally, new species have been discovered and the etiology of the disease may be changing. Human infections appear to be in decline but it is not clear if the sources of infection are also in decline or if public health awareness has improved. In North America there has been a decline in human cases while in South America an increase in reports from fish, especially salmonids suggests high levels in these fish species. The history of human infections of Diphyllobothrium latum is primarily associated with the consumption of the northern circumpolar distributed pike and percids and is often considered a parasite of humans only. Indeed some researchers believe that D. latum was introduced to North America by northern European immigrants. The more benign human infections of D. dendriticum appears to be primarily associated with salmonids and coregonid fishes and fish eating birds. Although the early cases of diphyllobothriasis in the 1930s in North America came from fish originating in Lake Winnipeg, Manitoba, there was general belief that it was declining in fish populations and therefore of little significance to humans in the area. However, high levels of a plerocercoid in the flesh of walleyes and pike led to rejection of commercially harvested walleye and pike in Manitoba and northern Ontario, Canada, and a financial loss to Aboriginal fishers. D. latum is widely distributed in fishes of Manitoba and is infective to humans where it is not pathogenic and has a life span up to 4.5 years. The distribution and potential infection routes has not changed in a century and is still well established in natural hosts in the boreal regions of North America. Evidence is building for an old pre-European presence in North America, involving the Beringian land bridge and later involvement of susceptible hosts (northern European immigrants).

  4. Scanning 3D full human bodies using Kinects.

    PubMed

    Tong, Jing; Zhou, Jin; Liu, Ligang; Pan, Zhigeng; Yan, Hao

    2012-04-01

    Depth camera such as Microsoft Kinect, is much cheaper than conventional 3D scanning devices, and thus it can be acquired for everyday users easily. However, the depth data captured by Kinect over a certain distance is of extreme low quality. In this paper, we present a novel scanning system for capturing 3D full human body models by using multiple Kinects. To avoid the interference phenomena, we use two Kinects to capture the upper part and lower part of a human body respectively without overlapping region. A third Kinect is used to capture the middle part of the human body from the opposite direction. We propose a practical approach for registering the various body parts of different views under non-rigid deformation. First, a rough mesh template is constructed and used to deform successive frames pairwisely. Second, global alignment is performed to distribute errors in the deformation space, which can solve the loop closure problem efficiently. Misalignment caused by complex occlusion can also be handled reasonably by our global alignment algorithm. The experimental results have shown the efficiency and applicability of our system. Our system obtains impressive results in a few minutes with low price devices, thus is practically useful for generating personalized avatars for everyday users. Our system has been used for 3D human animation and virtual try on, and can further facilitate a range of home–oriented virtual reality (VR) applications.

  5. The current biodiversity extinction event: scenarios for mitigation and recovery.

    PubMed

    Novacek, M J; Cleland, E E

    2001-05-08

    The current massive degradation of habitat and extinction of species is taking place on a catastrophically short timescale, and their effects will fundamentally reset the future evolution of the planet's biota. The fossil record suggests that recovery of global ecosystems has required millions or even tens of millions of years. Thus, intervention by humans, the very agents of the current environmental crisis, is required for any possibility of short-term recovery or maintenance of the biota. Many current recovery efforts have deficiencies, including insufficient information on the diversity and distribution of species, ecological processes, and magnitude and interaction of threats to biodiversity (pollution, overharvesting, climate change, disruption of biogeochemical cycles, introduced or invasive species, habitat loss and fragmentation through land use, disruption of community structure in habitats, and others). A much greater and more urgently applied investment to address these deficiencies is obviously warranted. Conservation and restoration in human-dominated ecosystems must strengthen connections between human activities, such as agricultural or harvesting practices, and relevant research generated in the biological, earth, and atmospheric sciences. Certain threats to biodiversity require intensive international cooperation and input from the scientific community to mitigate their harmful effects, including climate change and alteration of global biogeochemical cycles. In a world already transformed by human activity, the connection between humans and the ecosystems they depend on must frame any strategy for the recovery of the biota.

  6. Open Earth Observation Data for Measuring Anthropogenic Development in Coastal Zones at Continental Scales

    NASA Astrophysics Data System (ADS)

    Du, X.; Leinenkugel, P.; Guo, H.; Kuenzer, C.

    2017-12-01

    During the recent decades, global coasts are undergoing tremendous change due to accelerating socio-economic growth, which has severe effects on the functioning of global coastal systems. In view of this, accurate, timely, and area-wide global information on natural as well as anthropogenic processes in the coastal zone are of paramount importance for sustainable coastal development. A broad range of freely available satellite derived products, and open geo-datasets, as well as statistics with global coverage exist that have not yet been fully exploited to evaluate human development patterns in coastal areas. In this study, we demonstrate the potential of freely and openly available EO and GEO data sets for characterizing and evaluating human development in coastal zones on large scales. Therefore, different geo-spatial dataset such as Global Urban Footprint (GUF), Open Street Map (OSM), time series of Global Human Settlement Layer (GHSL) and Climate Change Initiative (CCI) Land cover were acquired for the entire continental coast of Asia, defined as the terrestrial area 100 km from the coastline. In order to extract indices for the coastline, a reference structure was developed allowing the integration of a 2D spatial pattern of a given parameter to a certain location along the coast line. Based on this reference structure statistics for the coast were calculated every 5 km parallel to the coast line as well as for four different distance intervals from the coast. The results demonstrate the highly unequal distribution of coastal development with respect to urban and agricultural usage in Asia, with large differences between and within different countries. China coasts show the highest overall patterns of urban development, while countries such as Pakistan and Myanmar show comparably low levels with nearly no development evident absence from coastal metropolitan areas. Furthermore, a clear trend of decreasing urban development is evident with increasing distance from the coast. This study highlights the potential of global geo-spatial data products for deriving anthropogenic development indicators that can support the evaluation and monitoring for sustainable development of coastal zones, while also discussing the shortcomings of these datasets for such purposes.

  7. A global, 30-m resolution land-surface water body dataset for 2000

    NASA Astrophysics Data System (ADS)

    Feng, M.; Sexton, J. O.; Huang, C.; Song, D. X.; Song, X. P.; Channan, S.; Townshend, J. R.

    2014-12-01

    Inland surface water is essential to terrestrial ecosystems and human civilization. The distribution of surface water in space and its change over time are related to many agricultural, environmental and ecological issues, and are important factors that must be considered in human socioeconomic development. Accurate mapping of surface water is essential for both scientific research and policy-driven applications. Satellite-based remote sensing provides snapshots of Earth's surface and can be used as the main input for water mapping, especially in large areas. Global water areas have been mapped with coarse resolution remotely sensed data (e.g., the Moderate Resolution Imaging Spectroradiometer (MODIS)). However, most inland rivers and water bodies, as well as their changes, are too small to map at such coarse resolutions. Landsat TM (Thematic Mapper) and ETM+ (Enhanced Thematic Mapper Plus) imagery has a 30m spatial resolution and provides decades of records (~40 years). Since 2008, the opening of the Landsat archive, coupled with relatively lower costs associated with computing and data storage, has made comprehensive study of the dynamic changes of surface water over large even global areas more feasible. Although Landsat images have been used for regional and even global water mapping, the method can hardly be automated due to the difficulties on distinguishing inland surface water with variant degrees of impurities and mixing of soil background with only Landsat data. The spectral similarities to other land cover types, e.g., shadow and glacier remnants, also cause misidentification. We have developed a probabilistic based automatic approach for mapping inland surface water bodies. Landsat surface reflectance in multiple bands, derived water indices, and data from other sources are integrated to maximize the ability of identifying water without human interference. The approach has been implemented with open-source libraries to facilitate processing large amounts of Landsat images on high-performance computing machines. It has been applied to the ~9,000 Landsat scenes of the Global Land Survey (GLS) 2000 data collection to produce a global, 30m resolution inland surface water body data set, which will be made available on the Global Land Cover Facility (GLCF) website (http://www.landcover.org).

  8. Distribution of N2O in the atmosphere under global warming - a simulation study with the MPI Earth System Model

    NASA Astrophysics Data System (ADS)

    Kracher, Daniela; Manzini, Elisa; Reick, Christian H.; Schultz, Martin; Stein, Olaf

    2014-05-01

    Climate change is driven by an increasing release of anthropogenic greenhouse gases (GHGs) such as carbon dioxide and nitrous oxide (N2O). Besides fossil fuel burning, also land use change and land management are anthropogenic sources of GHGs. Especially inputs of reactive nitrogen via fertilizer and deposition lead to enhanced emissions of N2O. One effect of a drastic future increase in surface temperature is a modification of atmospheric circulation, e.g. an accelerated Brewer Dobson circulation affecting the exchange between troposphere and stratosphere. N2O is inert in the troposphere and decayed only in the stratosphere. Thus, changes in atmospheric circulation, especially changes in the exchange between troposphere and stratosphere, will affect the atmospheric transport, decay, and distribution of N2O. In our study we assess the impact of global warming on atmospheric circulation and implied effects on the distribution and lifetime of atmospheric N2O. As terrestrial N2O emissions are highly determined by inputs of reactive nitrogen - the location of which being determined by human choice - we examine in particular the importance of latitudinal source regions of N2O for its global distribution. For this purpose we apply the Max Planck Institute Earth System Model, MPI-ESM. MPI-ESM consists of the atmospheric general circulation model ECHAM, the land surface model JSBACH, and MPIOM/HAMOCC representing ocean circulation and ocean biogeochemistry. Prognostic atmospheric N2O concentrations in MPI-ESM are determined by land N2O emissions, ocean N2O exchange and atmospheric tracer transport. As stratospheric chemistry is not explicitly represented in MPI-ESM, stratospheric decay rates of N2O are prescribed from a MACC MOZART simulation.

  9. Expansion of a globally pervasive grass occurs without substantial trait differences between home and away populations.

    PubMed

    Leifso, A; MacDougall, A S; Husband, B; Hierro, J L; Köchy, M; Pärtel, M; Peltzer, D A

    2012-12-01

    The global expansion of species beyond their ancestral ranges can derive from mechanisms that are trait-based (e.g., post-establishment evolved differences compared to home populations) or circumstantial (e.g., propagule pressure, with no trait-based differences). These mechanisms can be difficult to distinguish following establishment, but each makes unique predictions regarding trait similarity between ancestral ('home') and introduced ('away') populations. Here, we tested for trait-based population differences across four continents for the globally distributed grass Dactylis glomerata, to assess the possible role of trait evolution in its worldwide expansion. We used a common-environment glasshouse experiment to quantify trait differences among home and away populations, and the potential relevance of these differences for competitive interactions. Few significant trait differences were found among continents, suggesting minimal change during global expansion. All populations were polyploids, with similar foliar carbon:nitrogen ratios (a proxy for defense), chlorophyll content, and biomass. Emergence time and growth rate favored home populations, resulting in their competitive superiority over away populations. Small but significant trait differences among away populations suggest different introductory histories or local adaptive responses following establishment. In summary, the worldwide distribution of this species appears to have arisen from its pre-adapted traits promoting growth, and its repeated introduction with cultivation and intense propagule pressure. Global expansion can thus occur without substantial shifts in growth, reproduction, or defense. Rather than focusing strictly on the invader, invasion success may also derive from the traits found (or lacking) in the recipient community and from environmental context including human disturbance.

  10. Respecting the right to access to medicines: Implications of the UN Guiding Principles on Business and Human Rights for the pharmaceutical industry.

    PubMed

    Moon, Suerie

    2013-06-14

    What are the human rights responsibilities of pharmaceutical companies with regard to access to medicines? The state-based international human rights framework has long struggled with the issue of the human rights obligations of non-state actors, a question sharpened by economic globalization and the concomitant growing power of private for-profit actors ("business"). In 2011, after a six-year development process, the UN Human Rights Council unanimously endorsed the Guiding Principles advanced by the UN Secretary General's Special Representative on Business and Human Rights, John Ruggie. The Ruggie Principles sought to clarify and differentiate the responsibilities of states and non-state actors-in this case, "business" -with respect to human rights. The framework centered on "three core principles: the state duty to protect against human rights abuses by third parties, including business; the corporate responsibility to respect human rights; and the need for more effective access to remedies." The "Protect, Respect, and Remedy" Framework emerged from a review of many industrial sectors operating from local to global scales, in many regions of the world, and involving multiple stakeholder consultations. However, their implications for the pharmaceutical industry regarding access to medicines remain unclear. This article analyzes the 2008 Human Rights Guidelines for Pharmaceutical Companies in relation to Access to Medicines advanced by then-UN Special Rapporteur on the Right to Health, Paul Hunt, in light of the Ruggie Principles. It concludes that some guidelines relate directly to the industry's responsibility to respect the right to access to medicines, and form a normative baseline to which firms should be held accountable. It also finds that responsibility for other guidelines may better be ascribed to states than to private actors, based on conceptual and practical considerations. While not discouraging the pharmaceutical industry from making additional contributions to fulfilling the right to health, this analysis concludes that greater attention is merited to ensure that, first and foremost, the industry demonstrates baseline respect for the right to access to medicines. Copyright © 2013 Moon. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

  11. Modeling the human body/seat system in a vibration environment.

    PubMed

    Rosen, Jacob; Arcan, Mircea

    2003-04-01

    The vibration environment is a common man-made artificial surrounding with which humans have a limited tolerance to cope due to their body dynamics. This research studied the dynamic characteristics of a seated human body/seat system in a vibration environment. The main result is a multi degrees of freedom lumped parameter model that synthesizes two basic dynamics: (i) global human dynamics, the apparent mass phenomenon, including a systematic set of the model parameters for simulating various conditions like body posture, backrest, footrest, muscle tension, and vibration directions, and (ii) the local human dynamics, represented by the human pelvis/vibrating seat contact, using a cushioning interface. The model and its selected parameters successfully described the main effects of the apparent mass phenomenon compared to experimental data documented in the literature. The model provided an analytical tool for human body dynamics research. It also enabled a primary tool for seat and cushioning design. The model was further used to develop design guidelines for a composite cushion using the principle of quasi-uniform body/seat contact force distribution. In terms of evenly distributing the contact forces, the best result for the different materials and cushion geometries simulated in the current study was achieved using a two layer shaped geometry cushion built from three materials. Combining the geometry and the mechanical characteristics of a structure under large deformation into a lumped parameter model enables successful analysis of the human/seat interface system and provides practical results for body protection in dynamic environment.

  12. The effects of variable biome distribution on global climate

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Noever, D.A.; Brittain, A.; Matsos, H.C.

    1996-12-31

    In projecting climatic adjustments to anthropogenically elevated atmospheric carbon dioxide, most global climate models fix biome distribution to current geographic conditions. The authors develop a model that examines the albedo-related effects of biome distribution on global temperature. The model was tested on historical biome changes since 1860 and the results fit both the observed trend and order of magnitude change in global temperature. Once backtested in this way on historical data, the model is then used to generate an optimized future biome distribution which minimizes projected greenhouse effects on global temperature. Because of the complexity of this combinatorial search anmore » artificial intelligence method, the genetic algorithm, was employed. The genetic algorithm assigns various biome distributions to the planet, then adjusts their percentage area and albedo effects to regulate or moderate temperature changes.« less

  13. Mission Profiles and Evidential Reasoning for Estimating Information Relevancy in Multi-Agent Supervisory Control Applications

    DTIC Science & Technology

    2010-06-01

    artificial agents, their limited scope and singular purpose lead us to believe that human-machine trust will be very portable. That is, if one operator... Artificial Intelligence Review 2(2), 1988. [E88] M.R. Endsley. Situation awareness global assessment technique (SAGAT). In Proceedings of the National...1995. [F98] J. Ferber, Multi-Agent Systems: An Introduction to Distributed Artificial Intelligence, Addison- Wesley, 1998. [NP01] I. Niles and A

  14. Orbiting Carbon Observatory-2 (OCO-2)

    NASA Image and Video Library

    2014-06-27

    The launch gantry, surrounding the United Launch Alliance Delta II rocket with the Orbiting Carbon Observatory-2 (OCO-2) satellite onboard, is seen in this black and white infrared view at Space Launch Complex 2, Friday, June 27, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set for a July 1, 2014 launch. Photo Credit: (NASA/Bill Ingalls)

  15. Orbiting Carbon Observatory-2 (OCO-2)

    NASA Image and Video Library

    2014-06-30

    NASA Administrator Charles Bolden, left, talks with an engineer at the base of the United Launch Alliance Delta II rocket with the Orbiting Carbon Observatory-2 (OCO-2) satellite onboard, Monday, June 30, 2014, Space Launch Complex 2, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set for a July 1, 2014 launch. Photo Credit: (NASA/Bill Ingalls)

  16. Orbiting Carbon Observatory-2 (OCO-2)

    NASA Image and Video Library

    2014-06-30

    Workers monitor the progress of the rollback of the launch gantry from the United Launch Alliance Delta II rocket with the Orbiting Carbon Observatory-2 (OCO-2) satellite onboard, at Space Launch Complex 2, Monday, June 30, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set for a July 1, 2014 launch. Photo Credit: (NASA/Bill Ingalls)

  17. Orbiting Carbon Observatory-2 (OCO-2)

    NASA Image and Video Library

    2014-06-30

    The United Launch Alliance Delta II rocket with the Orbiting Carbon Observatory-2 (OCO-2) satellite onboard, is seen moments after the launch gantry was moved at the Space Launch Complex 2, Monday, June 30, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set for a July 1, 2014 launch. Photo Credit: (NASA/Bill Ingalls)

  18. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    NASA Kennedy Space Center Public Affairs Officer George Diller, moderates a briefing ahead of the planned launch of the Orbiting Carbon Observatory-2 (OCO-2), Sunday, June 29, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  19. Orbiting Carbon Observatory-2 (OCO-2) Launch

    NASA Image and Video Library

    2014-07-02

    Members of the media are unable to see the launch of the United Launch Alliance Delta II rocket with the Orbiting Carbon Observatory-2 (OCO-2) satellite onboard due to heavy fog at Vandenberg Air Force Base, Calif. on Wednesday, July 2, 2014. OCO-2 launched at 2:56 a.m. PDT. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. Photo Credit: (NASA/Bill Ingalls)

  20. Orbiting Carbon Observatory-2 (OCO-2)

    NASA Image and Video Library

    2014-06-29

    The upper levels of the launch gantry, surrounding the United Launch Alliance Delta II rocket with the Orbiting Carbon Observatory-2 (OCO-2) satellite onboard, are seen at the Space Launch Complex 2, Sunday, June 29, 2014, Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set for a July 1, 2014 launch. Photo Credit: (NASA/Bill Ingalls)

  1. Bioethics, Human Rights, and Childbirth.

    PubMed

    Erdman, Joanna

    2015-06-11

    The global reproductive justice community has turned its attention to the abuse and disrespect that many women suffer during facility-based childbirth. In 2014, the World Health Organization released a statement on the issue, endorsed by more than 80 civil society and health professional organizations worldwide.The statement acknowledges a growing body of research that shows widespread patterns of women's mistreatment during labor and delivery-physical and verbal abuse, neglect and abandonment, humiliation and punishment, coerced and forced care-in a range of health facilities from basic rural health centers to tertiary care hospitals. Moreover, the statement characterizes this mistreatment as a human rights violation. It affirms: "Every woman has the right to the highest attainable standard of health, which includes the right to dignified, respectful health care throughout pregnancy and childbirth."The WHO statement and the strong endorsement of it mark a critical turn in global maternal rights advocacy. It is a turn from the public health world of systems and resources in preventing mortality to the intimate clinical setting of patient and provider in ensuring respectful care. Copyright 2015 Erdman. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

  2. "Global Human Resource Development" and Japanese University Education: "Localism" in Actor Discussions

    ERIC Educational Resources Information Center

    Yoshida, Aya

    2017-01-01

    The aim of this paper is to analyse the actions of various actors involved in "global human resource development" and to clarify whether discussions on global human resources are based on local perspectives. The results of the analysis are as follows: 1) after the year 2000 began, industry started discussions on global human resources in…

  3. Plio-Pleistocene vegetation response on orbitally forced climatic cycles in Southern Europe - implications for early human environments

    NASA Astrophysics Data System (ADS)

    Bruch, Angela; Bertini, Adele

    2013-04-01

    The pace and causes of the early human colonization, in one or several migratory waves from Africa in new environments of the Eurasian continent during the Early Pleistocene, are still a matter of debate. However, climate change is considered a major driving factor of hominin evolution and dispersal patterns. In fact directly or indirectly by its severe influence on vegetation, physiography of landscape, and animal distribution, climate modulates the availability of resources. Plant fossils usually are rare or even absent at hominin sites. Thus, direct evidence on local vegetation and environment is generally missing. Independent from such localities, pollen profiles from the Mediterranean realm show the response of regional vegetation on global climate changes and cyclicity, with distinct spatial and temporal differences. Furthermore, plant fossils provide proxies for climate quantification that can be compared to the global signal, and add data to understanding the regional differentiation of Mediterranean environments. In this presentation we will discuss various palaeobotanical data from Southern Europe to assess Early Pleistocene climate and vegetation in time and space as part of the environment during the first expansions of early humans out of Africa.

  4. High endemicity of human fascioliasis between Lake Titicaca and La Paz valley, Bolivia.

    PubMed

    Esteban, J G; Flores, A; Angles, R; Mas-Coma, S

    1999-01-01

    Over a 6-year period, an epidemiological study of human infection by Fasciola hepatica in the Northern Bolivian Altiplano was carried out. Prevalences and intensities were analysed from coprological results obtained in 31 surveys performed in 24 localities and proved to be the highest known so far. The global prevalence was 15.4%, with local prevalences ranging from 0% to 68.2%. Significant differences between prevalence rates were detected and the highest prevalences were in subjects aged < 20 years. However, prevalences showed no gender difference. The global intensity (eggs per gram of faeces, epg) ranged from 24 to 5064 epg and showed arithmetic and geometric means respectively of 446 and 191 epg, with highest local arithmetic and geometric means of 1345 and 678 epg. Significant differences in mean egg output were detected between localities. The significantly higher F. hepatica egg counts shown by girls in school surveys is worth mentioning. Although the distributions of intensities according to age-groups did not show any significant difference, a decrease of egg output counts with an increase of age was detected. It is concluded that fascioliasis is a very important human health problem in this region.

  5. Resource acquisition, distribution and end-use efficiencies and the growth of industrial society

    NASA Astrophysics Data System (ADS)

    Jarvis, A.; Jarvis, S.; Hewitt, N.

    2015-01-01

    A key feature of the growth of industrial society is the acquisition of increasing quantities of resources from the environment and their distribution for end use. With respect to energy, growth has been near exponential for the last 160 years. We attempt to show that the global distribution of resources that underpins this growth may be facilitated by the continual development and expansion of near optimal directed networks. If so, the distribution efficiencies of these networks must decline as they expand due to path lengths becoming longer and more tortuous. To maintain long-term exponential growth the physical limits placed on the distribution networks appear to be counteracted by innovations deployed elsewhere in the system: namely at the points of acquisition and end use. We postulate that the maintenance of growth at the specific rate of ~2.4% yr-1 stems from an implicit desire to optimise patterns of energy use over human working lifetimes.

  6. Global divergence of the human follicle mite Demodex folliculorum: Persistent associations between host ancestry and mite lineages

    PubMed Central

    Palopoli, Michael F.; Fergus, Daniel J.; Minot, Samuel; Pei, Dorothy T.; Simison, W. Brian; Fernandez-Silva, Iria; Thoemmes, Megan S.; Dunn, Robert R.; Trautwein, Michelle

    2015-01-01

    Microscopic mites of the genus Demodex live within the hair follicles of mammals and are ubiquitous symbionts of humans, but little molecular work has been done to understand their genetic diversity or transmission. Here we sampled mite DNA from 70 human hosts of diverse geographic ancestries and analyzed 241 sequences from the mitochondrial genome of the species Demodex folliculorum. Phylogenetic analyses recovered multiple deep lineages including a globally distributed lineage common among hosts of European ancestry and three lineages that primarily include hosts of Asian, African, and Latin American ancestry. To a great extent, the ancestral geography of hosts predicted the lineages of mites found on them; 27% of the total molecular variance segregated according to the regional ancestries of hosts. We found that D. folliculorum populations are stable on an individual over the course of years and that some Asian and African American hosts maintain specific mite lineages over the course of years or generations outside their geographic region of birth or ancestry. D. folliculorum haplotypes were much more likely to be shared within families and between spouses than between unrelated individuals, indicating that transmission requires close contact. Dating analyses indicated that D. folliculorum origins may predate modern humans. Overall, D. folliculorum evolution reflects ancient human population divergences, is consistent with an out-of-Africa dispersal hypothesis, and presents an excellent model system for further understanding the history of human movement. PMID:26668374

  7. LDCM Ground System. Network Lesson Learned

    NASA Technical Reports Server (NTRS)

    Gal-Edd, Jonathan

    2010-01-01

    This slide presentation reviews the Landsat Data Continuity Mission (LDCM) and the lessons learned in implementing the network that was assembled to allow for the acquisition, archiving and distribution of the data from the Landsat mission. The objective of the LDCM is to continue the acquisition, archiving, and distribution of moderate-resolution multispectral imagery affording global, synoptic, and repetitive coverage of the earth's land surface at a scale where natural and human-induced changes can be detected, differentiated, characterized, and monitored over time. It includes a review of the ground network, including a block diagram of the ground network elements (GNE) and a review of the RF design and testing. Also included is a listing of the lessons learned.

  8. The future distribution of the savannah biome: model-based and biogeographic contingency

    PubMed Central

    Scheiter, Simon; Langan, Liam; Trabucco, Antonio; Higgins, Steven I.

    2016-01-01

    The extent of the savannah biome is expected to be profoundly altered by climatic change and increasing atmospheric CO2 concentrations. Contrasting projections are given when using different modelling approaches to estimate future distributions. Furthermore, biogeographic variation within savannahs in plant function and structure is expected to lead to divergent responses to global change. Hence the use of a single model with a single savannah tree type will likely lead to biased projections. Here we compare and contrast projections of South American, African and Australian savannah distributions from the physiologically based Thornley transport resistance statistical distribution model (TTR-SDM)—and three versions of a dynamic vegetation model (DVM) designed and parametrized separately for specific continents. We show that attempting to extrapolate any continent-specific model globally biases projections. By 2070, all DVMs generally project a decrease in the extent of savannahs at their boundary with forests, whereas the TTR-SDM projects a decrease in savannahs at their boundary with aridlands and grasslands. This difference is driven by forest and woodland expansion in response to rising atmospheric CO2 concentrations in DVMs, unaccounted for by the TTR-SDM. We suggest that the most suitable models of the savannah biome for future development are individual-based dynamic vegetation models designed for specific biogeographic regions. This article is part of the themed issue ‘Tropical grassy biomes: linking ecology, human use and conservation’. PMID:27502376

  9. The future distribution of the savannah biome: model-based and biogeographic contingency.

    PubMed

    Moncrieff, Glenn R; Scheiter, Simon; Langan, Liam; Trabucco, Antonio; Higgins, Steven I

    2016-09-19

    The extent of the savannah biome is expected to be profoundly altered by climatic change and increasing atmospheric CO2 concentrations. Contrasting projections are given when using different modelling approaches to estimate future distributions. Furthermore, biogeographic variation within savannahs in plant function and structure is expected to lead to divergent responses to global change. Hence the use of a single model with a single savannah tree type will likely lead to biased projections. Here we compare and contrast projections of South American, African and Australian savannah distributions from the physiologically based Thornley transport resistance statistical distribution model (TTR-SDM)-and three versions of a dynamic vegetation model (DVM) designed and parametrized separately for specific continents. We show that attempting to extrapolate any continent-specific model globally biases projections. By 2070, all DVMs generally project a decrease in the extent of savannahs at their boundary with forests, whereas the TTR-SDM projects a decrease in savannahs at their boundary with aridlands and grasslands. This difference is driven by forest and woodland expansion in response to rising atmospheric CO2 concentrations in DVMs, unaccounted for by the TTR-SDM. We suggest that the most suitable models of the savannah biome for future development are individual-based dynamic vegetation models designed for specific biogeographic regions.This article is part of the themed issue 'Tropical grassy biomes: linking ecology, human use and conservation'. © 2016 The Author(s).

  10. Global projections of drought hazard in a warming climate: a prime for disaster risk management

    NASA Astrophysics Data System (ADS)

    Carrão, Hugo; Naumann, Gustavo; Barbosa, Paulo

    2018-03-01

    Projections of drought hazard ( dH) changes have been mapped from five bias-corrected climate models and analyzed at the global level under three representative concentration pathways (RCPs). The motivation for this study is the observation that drought risk is increasing globally and the effective regulation of prevention and adaptation measures depends on dH magnitude and its distribution for the future. Based on the Weighted Anomaly of Standardized Precipitation index, dH changes have been assessed for mid-(2021-2050) and late-century (2071-2099). With a few exceptions, results show a likely increase in global dH between the historical years (1971-2000) and both future time periods under all RCPs. Notwithstanding this worsening trend, it was found that projections of dH changes for most regions are neither robust nor significant in the near-future. By the end of the century, greater increases are projected for RCPs describing stronger radiative forcing. Under RCP8.5, statistically significant dH changes emerge for global Mediterranean ecosystems and the Amazon region, which are identified as possible hotspots for future water security issues. Taken together, projections of dH changes point towards two dilemmas: (1) in the near-term, stake-holders are left worrying about projected increasing dH over large regions, but lack of actionable model agreement to take effective decisions related to local prevention and adaptation initiatives; (2) in the long-term, models demonstrate remarkable agreement, but stake-holders lack actionable knowledge to manage potential impacts far distant from actual human-dominated environments. We conclude that the major challenge for risk management is not to adapt human populations or their activities to dH changes, but to progress on global initiatives that mitigate their impacts in the whole carbon cycle by late-century.

  11. Reductions in labour capacity from heat stress under climate warming

    NASA Astrophysics Data System (ADS)

    Dunne, John P.; Stouffer, Ronald J.; John, Jasmin G.

    2013-06-01

    A fundamental aspect of greenhouse-gas-induced warming is a global-scale increase in absolute humidity. Under continued warming, this response has been shown to pose increasingly severe limitations on human activity in tropical and mid-latitudes during peak months of heat stress. One heat-stress metric with broad occupational health applications is wet-bulb globe temperature. We combine wet-bulb globe temperatures from global climate historical reanalysis and Earth System Model (ESM2M) projections with industrial and military guidelines for an acclimated individual's occupational capacity to safely perform sustained labour under environmental heat stress (labour capacity)--here defined as a global population-weighted metric temporally fixed at the 2010 distribution. We estimate that environmental heat stress has reduced labour capacity to 90% in peak months over the past few decades. ESM2M projects labour capacity reduction to 80% in peak months by 2050. Under the highest scenario considered (Representative Concentration Pathway 8.5), ESM2M projects labour capacity reduction to less than 40% by 2200 in peak months, with most tropical and mid-latitudes experiencing extreme climatological heat stress. Uncertainties and caveats associated with these projections include climate sensitivity, climate warming patterns, CO2 emissions, future population distributions, and technological and societal change.

  12. Population-specific variation in haplotype composition and heterozygosity at the POLB locus.

    PubMed

    Yamtich, Jennifer; Speed, William C; Straka, Eva; Kidd, Judith R; Sweasy, Joann B; Kidd, Kenneth K

    2009-05-01

    DNA polymerase beta plays a central role in base excision repair (BER), which removes large numbers of endogenous DNA lesions from each cell on a daily basis. Little is currently known about germline polymorphisms within the POLB locus, making it difficult to study the association of variants at this locus with human diseases such as cancer. Yet, approximately thirty percent of human tumor types show variants of DNA polymerase beta. We have assessed the global frequency distributions of coding and common non-coding SNPs in and flanking the POLB gene for a total of 14 sites typed in approximately 2400 individuals from anthropologically defined human populations worldwide. We have found a marked difference between haplotype frequencies in African populations and in non-African populations.

  13. The Global Ecology and Epidemiology of West Nile Virus

    PubMed Central

    Rios, Maria

    2015-01-01

    Since its initial isolation in Uganda in 1937 through the present, West Nile virus (WNV) has become an important cause of human and animal disease worldwide. WNV, an enveloped virus of the genus Flavivirus, is naturally maintained in an enzootic cycle between birds and mosquitoes, with occasional epizootic spillover causing disease in humans and horses. The mosquito vectors for WNV are widely distributed worldwide, and the known geographic range of WNV transmission and disease has continued to increase over the past 77 years. While most human infections with WNV are asymptomatic, severe neurological disease may develop resulting in long-term sequelae or death. Surveillance and preventive measures are an ongoing need to reduce the public health impact of WNV in areas with the potential for transmission. PMID:25866777

  14. Conservation of soil organic carbon, biodiversity and the provision of other ecosystem services along climatic gradients in West Africa

    NASA Astrophysics Data System (ADS)

    Marks, E.; Aflakpui, G. K. S.; Nkem, J.; Poch, R. M.; Khouma, M.; Kokou, K.; Sagoe, R.; Sebastiã, M.-T.

    2009-08-01

    Terrestrial carbon resources are major drivers of development in West Africa. The distribution of these resources co-varies with ecosystem type and rainfall along a strong Northeast-Southwest climatic gradient. Soil organic carbon, a strong indicator of soil quality, has been severely depleted in some areas by human activities, which leads to issues of soil erosion and desertification, but this trend can be altered with appropriate management. There is significant potential to enhance existing soil carbon stores in West Africa, with benefits at the global and local scale, for atmospheric CO2 mitigation as well as supporting and provisioning ecosystem services. Three key factors impacting carbon stocks are addressed in this review: climate, biotic factors, and human activities. Climate risks must be considered in a framework of global change, especially in West Africa, where landscape managers have few resources available to adapt to climatic perturbations. Among biotic factors, biodiversity conservation paired with carbon conservation may provide a pathway to sustainable development, and biodiversity conservation is also a global priority with local benefits for ecosystem resilience, biomass productivity, and provisioning services such as foodstuffs. Finally, human management has largely been responsible for reduced carbon stocks, but this trend can be reversed through the implementation of appropriate carbon conservation strategies in the agricultural sector, as shown by multiple studies. Owing to the strong regional climatic gradient, country-level initiatives will need to consider carbon sequestration approaches for multiple ecosystem types. Given the diversity of environments, global policies must be adapted and strategies developed at the national or sub-national levels to improve carbon storage above and belowground. Initiatives of this sort must act locally at farmer scale, and focus on ecosystem services rather than on carbon sequestration solely.

  15. The Role of Artificial Atmospheric CO2 Removal in Stabilizing Earth's Climate

    NASA Astrophysics Data System (ADS)

    Tokarska, Katarzyna; Zickfeld, Kirsten

    2014-05-01

    Recent research showed that global mean temperature remains approximately constant for several centuries after complete cessation of CO2 emissions, while global mean thermosteric sea level continues to rise. This implies that a net artificial removal of CO2 from the atmosphere may be necessary to decrease the atmospheric CO2 concentrations more rapidly and bring the climate system components to their previous states on human timescales. The purpose of this study is to explore the reversibility of climate responses to a range of realistic CO2 emission scenarios, which follow a gradual transition from fossil-fuel driven economy to a zero-emission energy system with implementation of negative CO2 emissions, using the University of Victoria Earth System Climate Model of intermediate complexity (UVic ESCM 2.9). The CO2 emission pathways were designed to meet constraints related to the implementation of negative emission technologies derived from the integrated assessment literature. Our simulations show that while it is possible, in principle, to revert the global mean temperature after a phase of overshoot, the thermosteric sea level rise is not reversible on human timescales for the range of emission scenarios considered. During the negative emission phase, CO2 is released form the natural (terrestrial and marine) carbon sinks, which diminishes the efficiency of negative emissions implemented. In addition, spatial changes of vegetation distribution patterns are not entirely reversible on human timescales. We suggest that while negative emissions could potentially stabilize the global mean temperature at a desired level, such technology does not supersede reductions in fossil fuel emissions, as the artificial CO2 capture at large scale has many limitations and is unable to stabilize other climate system components (e.g. sea level) at desired levels.

  16. Avian and human influenza virus compatible sialic acid receptors in little brown bats.

    PubMed

    Chothe, Shubhada K; Bhushan, Gitanjali; Nissly, Ruth H; Yeh, Yin-Ting; Brown, Justin; Turner, Gregory; Fisher, Jenny; Sewall, Brent J; Reeder, DeeAnn M; Terrones, Mauricio; Jayarao, Bhushan M; Kuchipudi, Suresh V

    2017-04-06

    Influenza A viruses (IAVs) continue to threaten animal and human health globally. Bats are asymptomatic reservoirs for many zoonotic viruses. Recent reports of two novel IAVs in fruit bats and serological evidence of avian influenza virus (AIV) H9 infection in frugivorous bats raise questions about the role of bats in IAV epidemiology. IAVs bind to sialic acid (SA) receptors on host cells, and it is widely believed that hosts expressing both SA α2,3-Gal and SA α2,6-Gal receptors could facilitate genetic reassortment of avian and human IAVs. We found abundant co-expression of both avian (SA α2,3-Gal) and human (SA α2,6-Gal) type SA receptors in little brown bats (LBBs) that were compatible with avian and human IAV binding. This first ever study of IAV receptors in a bat species suggest that LBBs, a widely-distributed bat species in North America, could potentially be co-infected with avian and human IAVs, facilitating the emergence of zoonotic strains.

  17. The impact of residential combustion emissions on atmospheric aerosol, human health, and climate

    NASA Astrophysics Data System (ADS)

    Butt, E. W.; Rap, A.; Schmidt, A.; Scott, C. E.; Pringle, K. J.; Reddington, C. L.; Richards, N. A. D.; Woodhouse, M. T.; Ramirez-Villegas, J.; Yang, H.; Vakkari, V.; Stone, E. A.; Rupakheti, M.; Praveen, P. S.; van Zyl, P. G.; Beukes, J. P.; Josipovic, M.; Mitchell, E. J. S.; Sallu, S. M.; Forster, P. M.; Spracklen, D. V.

    2016-01-01

    Combustion of fuels in the residential sector for cooking and heating results in the emission of aerosol and aerosol precursors impacting air quality, human health, and climate. Residential emissions are dominated by the combustion of solid fuels. We use a global aerosol microphysics model to simulate the impact of residential fuel combustion on atmospheric aerosol for the year 2000. The model underestimates black carbon (BC) and organic carbon (OC) mass concentrations observed over Asia, Eastern Europe, and Africa, with better prediction when carbonaceous emissions from the residential sector are doubled. Observed seasonal variability of BC and OC concentrations are better simulated when residential emissions include a seasonal cycle. The largest contributions of residential emissions to annual surface mean particulate matter (PM2.5) concentrations are simulated for East Asia, South Asia, and Eastern Europe. We use a concentration response function to estimate the human health impact due to long-term exposure to ambient PM2.5 from residential emissions. We estimate global annual excess adult (> 30 years of age) premature mortality (due to both cardiopulmonary disease and lung cancer) to be 308 000 (113 300-497 000, 5th to 95th percentile uncertainty range) for monthly varying residential emissions and 517 000 (192 000-827 000) when residential carbonaceous emissions are doubled. Mortality due to residential emissions is greatest in Asia, with China and India accounting for 50 % of simulated global excess mortality. Using an offline radiative transfer model we estimate that residential emissions exert a global annual mean direct radiative effect between -66 and +21 mW m-2, with sensitivity to the residential emission flux and the assumed ratio of BC, OC, and SO2 emissions. Residential emissions exert a global annual mean first aerosol indirect effect of between -52 and -16 mW m-2, which is sensitive to the assumed size distribution of carbonaceous emissions. Overall, our results demonstrate that reducing residential combustion emissions would have substantial benefits for human health through reductions in ambient PM2.5 concentrations.

  18. The thermal environment of the human being on the global scale.

    PubMed

    Jendritzky, Gerd; Tinz, Birger

    2009-11-11

    The close relationship between human health, performance, well-being and the thermal environment is obvious. Nevertheless, most studies of climate and climate change impacts show amazing shortcomings in the assessment of the environment. Populations living in different climates have different susceptibilities, due to socio-economic reasons, and different customary behavioural adaptations. The global distribution of risks of hazardous thermal exposure has not been analysed before. To produce maps of the baseline and future bioclimate that allows a direct comparison of the differences in the vulnerability of populations to thermal stress across the world. The required climatological data fields are obtained from climate simulations with the global General Circulation Model ECHAM4 in T106-resolution. For the thermo-physiologically relevant assessment of these climate data a complete heat budget model of the human being, the 'Perceived Temperature' procedure has been applied which already comprises adaptation by clothing to a certain degree. Short-term physiological acclimatisation is considered via Health Related Assessment of the Thermal Environment. The global maps 1971-1980 (control run, assumed as baseline climate) show a pattern of thermal stress intensities as frequencies of heat. The heat load for people living in warm-humid climates is the highest. Climate change will lead to clear differences in health-related thermal stress between baseline climate and the future bioclimate 2041-2050 based on the 'business-as-usual' greenhouse gas scenario IS92a. The majority of the world's population will be faced with more frequent and more intense heat strain in spite of an assumed level of acclimatisation. Further adaptation measures are crucial in order to reduce the vulnerability of the populations. This bioclimatology analysis provides a tool for various questions in climate and climate change impact research. Considerations of regional or local scale require climate simulations with higher resolution. As adaptation is the key term in understanding the role of climate/climate change for human health, performance and well-being, further research in this field is crucial.

  19. Climate Change, Climate Justice, and Environmental Health: Implications for the Nursing Profession.

    PubMed

    Nicholas, Patrice K; Breakey, Suellen

    2017-11-01

    Climate change is an emerging challenge linked to negative outcomes for the environment and human health. Since the 1960s, there has been a growing recognition of the need to address climate change and the impact of greenhouse gas emissions implicated in the warming of our planet. There are also deleterious health outcomes linked to complex climate changes that are emerging in the 21st century. This article addresses the social justice issues associated with climate change and human health and discussion of climate justice. Discussion paper. A literature search of electronic databases was conducted for articles, texts, and documents related to climate change, climate justice, and human health. The literature suggests that those who contribute least to global warming are those who will disproportionately be affected by the negative health outcomes of climate change. The concept of climate justice and the role of the Mary Robinson Foundation-Climate Justice are discussed within a framework of nursing's professional responsibility and the importance of social justice for the world's people. The nursing profession must take a leadership role in engaging in policy and advocacy discussions in addressing the looming problems associated with climate change. Nursing organizations have adopted resolutions and engaged in leadership roles to address climate change at the local, regional, national, and global level. It is essential that nurses embrace concepts related to social justice and engage in the policy debate regarding the deleterious effects on human health related to global warming and climate change. Nursing's commitment to social justice offers an opportunity to offer significant global leadership in addressing the health implications related to climate change. Recognizing the negative impacts of climate change on well-being and the underlying socioeconomic reasons for their disproportionate and inequitable distribution can expand and optimize the profession's role in education, practice, research, and policy-making efforts to address climate change. © 2017 Sigma Theta Tau International.

  20. Data Information for Global Change Studies: NASA's Distributed Active Archive Centers and Cooperating Data Centers

    NASA Technical Reports Server (NTRS)

    2000-01-01

    The Earth Observing System (EOS) is an integral part of the National Aeronautics and Space Administration's (NASA's) Earth Science Enterprise (ESE). ESE is a long-term global change research program designed to improve our understanding of the Earth's interrelated processes involving the atmosphere, oceans, land surfaces, and polar regions. Data from EOS instruments and other Earth science measurement systems are useful in understanding the causes and processes of global climate change and the consequences of human activities. The EOS Data and Information System (EOSDIS) provides a structure for data management and user services for products derived from EOS satellite instruments and other NASA Earth science data. Within the EOSDIS framework, the Distributed Active Archive Centers (DAACs) have been established to provide expertise in one or more Earth science disciplines. The DAACs and cooperating data centers provide data and information services to support the global change research community. Much of the development of the DAACs has been in anticipation of the enormous amount of data expected from EOS instruments to be launched within the next two decades. Terra, the EOS flagship launched in December 1999, is the first of a series of EOS satellites to carry several instruments with multispectral capabilities. Some data products from these instruments are now available from several of the DAACs. These and other data products can be ordered through the EOS Data Gateway (EDG) and DAAC-specific online ordering systems.

  1. Evaluating simplistic methods to understand current distributions and forecast distribution changes under climate change scenarios: An example with coypu (Myocastor coypus)

    USGS Publications Warehouse

    Jarnevich, Catherine S.; Young, Nicholas E; Sheffels, Trevor R.; Carter, Jacoby; Systma, Mark D.; Talbert, Colin

    2017-01-01

    Invasive species provide a unique opportunity to evaluate factors controlling biogeographic distributions; we can consider introduction success as an experiment testing suitability of environmental conditions. Predicting potential distributions of spreading species is not easy, and forecasting potential distributions with changing climate is even more difficult. Using the globally invasive coypu (Myocastor coypus [Molina, 1782]), we evaluate and compare the utility of a simplistic ecophysiological based model and a correlative model to predict current and future distribution. The ecophysiological model was based on winter temperature relationships with nutria survival. We developed correlative statistical models using the Software for Assisted Habitat Modeling and biologically relevant climate data with a global extent. We applied the ecophysiological based model to several global circulation model (GCM) predictions for mid-century. We used global coypu introduction data to evaluate these models and to explore a hypothesized physiological limitation, finding general agreement with known coypu distribution locally and globally and support for an upper thermal tolerance threshold. Global circulation model based model results showed variability in coypu predicted distribution among GCMs, but had general agreement of increasing suitable area in the USA. Our methods highlighted the dynamic nature of the edges of the coypu distribution due to climate non-equilibrium, and uncertainty associated with forecasting future distributions. Areas deemed suitable habitat, especially those on the edge of the current known range, could be used for early detection of the spread of coypu populations for management purposes. Combining approaches can be beneficial to predicting potential distributions of invasive species now and in the future and in exploring hypotheses of factors controlling distributions.

  2. Distribution of Cr, Pb, Cd, Zn, Fe and Mn in Lake Victoria sediments, East Africa

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Onyari, J.M.; Wandiga, S.O.

    1989-06-01

    The presence of many metals at trace or ultra-trace levels in the human environment has received increased global attention. Sediments as a sink for pollutants are widely recognized pollution sources and diagenesis and biochemical transformations within the sediment may mobilize pollutants posing a threat to a wider biological community. The natural (background) concentrations of heavy metals in lake sediments can be estimated either by analysis of surface sediments in non-polluted regions or by analysis of core samples antedating modern pollution. The distribution pattern of heavy metals in tropical freshwater systems has been little studied. The authors found increased concentrations ofmore » lead and other trace metals in Lake Victoria. Thus this study was initiated in order to further investigate the distribution patterns of lead and other metals in Lake Victoria.« less

  3. How Far Could the Alien Boatman Trichocorixa verticalis verticalis Spread? Worldwide Estimation of Its Current and Future Potential Distribution

    PubMed Central

    Guareschi, Simone; Coccia, Cristina; Sánchez-Fernández, David; Carbonell, José Antonio; Velasco, Josefa; Boyero, Luz; Green, Andy J.; Millán, Andrés

    2013-01-01

    Invasions of alien species are considered among the least reversible human impacts, with diversified effects on aquatic ecosystems. Since prevention is the most cost-effective way to avoid biodiversity loss and ecosystem problems, one challenge in ecological research is to understand the limits of the fundamental niche of the species in order to estimate how far invasive species could spread. Trichocorixa verticalis verticalis (Tvv) is a corixid (Hemiptera) originally distributed in North America, but cited as an alien species in three continents. Its impact on native communities is under study, but it is already the dominant species in several saline wetlands and represents a rare example of an aquatic alien insect. This study aims: i) to estimate areas with suitable environmental conditions for Tvv at a global scale, thus identifying potential new zones of invasion; and ii) to test possible changes in this global potential distribution under a climate change scenario. Potential distributions were estimated by applying a multidimensional envelope procedure based on both climatic data, obtained from observed occurrences, and thermal physiological data. Our results suggest Tvv may expand well beyond its current range and find inhabitable conditions in temperate areas along a wide range of latitudes, with an emphasis on coastal areas of Europe, Northern Africa, Argentina, Uruguay, Australia, New Zealand, Myanmar, India, the western boundary between USA and Canada, and areas of the Arabian Peninsula. When considering a future climatic scenario, the suitability area of Tvv showed only limited changes compared with the current potential distribution. These results allow detection of potential contact zones among currently colonized areas and potential areas of invasion. We also identified zones with a high level of suitability that overlap with areas recognized as global hotspots of biodiversity. Finally, we present hypotheses about possible means of spread, focusing on different geographical scales. PMID:23555771

  4. The astysphere and urban geochemistry-a new approach to integrate urban systems into the geoscientific concept of spheres and a challenging concept of modern geochemistry supporting the sustainable development of planet earth.

    PubMed

    Norra, Stefan

    2009-07-01

    In 1875, the geoscientist Walter Suess introduced several spheres, such as the lithosphere and the atmosphere to promote a comprehensive understanding of the system earth. Since then, this idea became the dominating concept for the understanding of the distribution of chemical elements in the system earth. Meanwhile, due to the importance of human beings on global element fluxes, the term anthroposphere was introduced. Nevertheless, in face of the ongoing urbanization of the earth, this concept is not any more adequate enough to develop a comprehensive understanding of global element fluxes in and between solid, liquid, and gaseous phases. This article discusses a new concept integrating urbanization into the geoscientific concept of spheres. No geological exogenic force has altered the earth's surface during the last centuries in such an extent as human activity. Humans have altered the morphology and element balances of the earth by establishing agrosystems first and urban systems later. Currently, urban systems happen to become the main regulators for fluxes of many elements on a global scale due to ongoing industrial and economic development and a growing number of inhabitants. Additionally, urban systems are constantly expanding and cover more and more former natural and agricultural areas. For nature, urban systems are new phenomena, which never existed in previous geological eras. The process of the globe's urbanization concurrently is active with the global climate change. In fact, urban systems are a major emitter for climate active gases. Thus, beside the global changes in economy and society, urbanization is an important factor within the global change of nature as is already accepted for climate, ecosystems, and biodiversity. Due to the fact that urbanization has become a global process shaping the earth and that the urban systems are globally cross-linked among each other, a new geoscientific sphere has to be introduced: the astysphere. This sphere comprises the parts of the earth influenced by urban systems. Accepting urbanization as global ongoing process forming the astysphere comprehensively copes with the growing importance of urbanization on the creation of present geologic formations. Anthropogenic activities occur mainly in rural and urban environments. For long lasting periods of human history, human activities mainly were focused on hunting and agriculture, but since industrialization, urbanized areas became increasingly important for the material and energy fluxes of earth. Thus, it seems appropriate to classify the anthroposphere into an agriculturally and an urban-dominated sphere, which are the agrosphere (Krishna 2003) and the astysphere (introduced by Norra 2007). We have to realize that urban systems are deposits, consumers, and transformers of resources interacting among each other and forming a network around the globe. Since the future of human mankind depends on the sustainable use of available resources, only a global and holistic view of the cross-linked urban systems forming together the astysphere provide the necessary geoscientific background understanding for global urban material and energy fluxes. If we want to ensure worth-living conditions for future generations of mankind, we have to develop global models of the future needs for resources by the global metasystem of urban systems, called astysphere. The final vision for geoscientific research on the astysphere must be to design models describing the global process of urbanization of the earth and the development of the astysphere with respect to fluxes of materials, elements, and energy as well as with respect to the forming of the earth's face. Besides that, just from the viewpoint of fundamental research, the geoscientific concept of spheres has to be complemented by the astysphere if this concept shall fully represent the system earth.

  5. A global look into human T cell subsets before and after cryopreservation using multiparametric flow cytometry and two-dimensional visualization analysis.

    PubMed

    Lemieux, Jennifer; Jobin, Christine; Simard, Carl; Néron, Sonia

    2016-07-01

    The cryopreservation of human lymphocytes is an essential step for the achievement of several cellular therapies. Besides, T cells are considered as promising actors in cancer therapy for their cytotoxic and regulatory properties. Consequently, the development of tools to monitor the impact of freezing and thawing processes on their fine distribution may be an asset to achieve quality control in cellular therapy. In this study, the phenotypes of freshly isolated human mononuclear cells were compared to those observed following one cycle of cryopreservation and rest periods 0h, 1h and 24h after thawing but before staining. T cells were scrutinized for their distribution according to naive, memory effector, regulatory and helper subsets. Flow cytometry analyses were done using eight-color antibody panels as proposed by the Human Immunophenotyping Consortium. Data were further analyzed by using conventional directed gating and clustering software, namely SPADE and viSNE. Overall, SPADE and viSNE tools were very efficient to monitor the outcome of PBMC populations and T cell subsets. T cells were more sensitive to cryopreservation than other cells. Our results indicated that submitting the thawed cells to a 1h rest period improved the detection of some cell markers when compared to fresh samples. In contrast, cells submitted to a 24h rest period, or to none, were less representative of fresh sample distribution. The heterogeneity of PBMC, as well as the effects of freeze-thaw cycle on their distribution, can be easily monitored by using SPADE and viSNE. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Tapeworm Diphyllobothrium dendriticum (Cestoda)—Neglected or Emerging Human Parasite?

    PubMed Central

    Kuchta, Roman; Brabec, Jan; Kubáčková, Petra; Scholz, Tomáš

    2013-01-01

    Background A total number of 14 valid species of Diphyllobothrium tapeworms have been described in literature to be capable of causing diphyllobothriosis, with D. latum being the major causative agent of all human infections. However, recent data indicate that some of these infections, especially when diagnosed solely on the basis of morphology, have been identified with this causative agent incorrectly, confusing other Diphyllobothrium species with D. latum. Another widely distributed species, D. dendriticum, has never been considered as a frequent parasite of man, even though it is found commonly throughout arctic and subarctic regions parasitizing piscivorous birds and mammals. Recent cases of Europeans infected with this cestode called into question the actual geographic distribution of this tapeworm, largely ignored by medical parasitologists. Methodology and Results On the basis of revision of more than 900 available references and a description and revision of recent European human cases using morphological and molecular (cox1) data supplemented by newly characterized D. dendriticum sequences, we updated the current knowledge of the life-cycle, geographic distribution, epidemiological status, and molecular diagnostics of this emerging causal agent of zoonotic disease of man. Conclusions The tapeworm D. dendriticum represents an example of a previously neglected, probably underdiagnosed parasite of man with a potential to spread globally. Recent cases of diphyllobothriosis caused by D. dendriticum in Europe (Netherlands, Switzerland and Czech Republic), where the parasite has not been reported previously, point out that causative agents of diphyllobothriosis and other zoonoses can be imported throughout the world. Molecular tools should be used for specific and reliable parasite diagnostics, and also rare or non-native species should be considered. This will considerably help improve our knowledge of the distribution and epidemiology of these human parasites. PMID:24386497

  7. Tapeworm Diphyllobothrium dendriticum (Cestoda)--neglected or emerging human parasite?

    PubMed

    Kuchta, Roman; Brabec, Jan; Kubáčková, Petra; Scholz, Tomáš

    2013-01-01

    A total number of 14 valid species of Diphyllobothrium tapeworms have been described in literature to be capable of causing diphyllobothriosis, with D. latum being the major causative agent of all human infections. However, recent data indicate that some of these infections, especially when diagnosed solely on the basis of morphology, have been identified with this causative agent incorrectly, confusing other Diphyllobothrium species with D. latum. Another widely distributed species, D. dendriticum, has never been considered as a frequent parasite of man, even though it is found commonly throughout arctic and subarctic regions parasitizing piscivorous birds and mammals. Recent cases of Europeans infected with this cestode called into question the actual geographic distribution of this tapeworm, largely ignored by medical parasitologists. On the basis of revision of more than 900 available references and a description and revision of recent European human cases using morphological and molecular (cox1) data supplemented by newly characterized D. dendriticum sequences, we updated the current knowledge of the life-cycle, geographic distribution, epidemiological status, and molecular diagnostics of this emerging causal agent of zoonotic disease of man. The tapeworm D. dendriticum represents an example of a previously neglected, probably underdiagnosed parasite of man with a potential to spread globally. Recent cases of diphyllobothriosis caused by D. dendriticum in Europe (Netherlands, Switzerland and Czech Republic), where the parasite has not been reported previously, point out that causative agents of diphyllobothriosis and other zoonoses can be imported throughout the world. Molecular tools should be used for specific and reliable parasite diagnostics, and also rare or non-native species should be considered. This will considerably help improve our knowledge of the distribution and epidemiology of these human parasites.

  8. Science Priorities for Seamounts: Research Links to Conservation and Management

    PubMed Central

    Clark, Malcolm R.; Schlacher, Thomas A.; Rowden, Ashley A.; Stocks, Karen I.; Consalvey, Mireille

    2012-01-01

    Seamounts shape the topography of all ocean basins and can be hotspots of biological activity in the deep sea. The Census of Marine Life on Seamounts (CenSeam) was a field program that examined seamounts as part of the global Census of Marine Life (CoML) initiative from 2005 to 2010. CenSeam progressed seamount science by collating historical data, collecting new data, undertaking regional and global analyses of seamount biodiversity, mapping species and habitat distributions, challenging established paradigms of seamount ecology, developing new hypotheses, and documenting the impacts of human activities on seamounts. However, because of the large number of seamounts globally, much about the structure, function and connectivity of seamount ecosystems remains unexplored and unknown. Continual, and potentially increasing, threats to seamount resources from fishing and seabed mining are creating a pressing demand for research to inform conservation and management strategies. To meet this need, intensive science effort in the following areas will be needed: 1) Improved physical and biological data; of particular importance is information on seamount location, physical characteristics (e.g. habitat heterogeneity and complexity), more complete and intensive biodiversity inventories, and increased understanding of seamount connectivity and faunal dispersal; 2) New human impact data; these shall encompass better studies on the effects of human activities on seamount ecosystems, as well as monitoring long-term changes in seamount assemblages following impacts (e.g. recovery); 3) Global data repositories; there is a pressing need for more comprehensive fisheries catch and effort data, especially on the high seas, and compilation or maintenance of geological and biodiversity databases that underpin regional and global analyses; 4) Application of support tools in a data-poor environment; conservation and management will have to increasingly rely on predictive modelling techniques, critical evaluation of environmental surrogates as faunal “proxies”, and ecological risk assessment. PMID:22279531

  9. Modeling Human Dynamics of Face-to-Face Interaction Networks

    NASA Astrophysics Data System (ADS)

    Starnini, Michele; Baronchelli, Andrea; Pastor-Satorras, Romualdo

    2013-04-01

    Face-to-face interaction networks describe social interactions in human gatherings, and are the substrate for processes such as epidemic spreading and gossip propagation. The bursty nature of human behavior characterizes many aspects of empirical data, such as the distribution of conversation lengths, of conversations per person, or of interconversation times. Despite several recent attempts, a general theoretical understanding of the global picture emerging from data is still lacking. Here we present a simple model that reproduces quantitatively most of the relevant features of empirical face-to-face interaction networks. The model describes agents that perform a random walk in a two-dimensional space and are characterized by an attractiveness whose effect is to slow down the motion of people around them. The proposed framework sheds light on the dynamics of human interactions and can improve the modeling of dynamical processes taking place on the ensuing dynamical social networks.

  10. Assessing global radiative forcing due to regional emissions of tropospheric ozone precursors: a step towards climate credit for ozone reductions

    NASA Astrophysics Data System (ADS)

    Mauzerall, D. L.; Naik, V.; Horowitz, L. W.; Schwarzkopf, D.; Ramaswamy, V.; Oppenheimer, M.

    2005-05-01

    Carbon dioxide emissions from fossil-fuel consumption are presented for the five Asian countries that are among the global leaders in anthropogenic carbon emissions: China (13% of global total), Japan (5% of global total), India (5% of global total), South Korea (2% of global total), and Indonesia (1% of global total). Together, these five countries represent over a quarter of the world's fossil-fuel based carbon emissions. Moreover, these countries are rapidly developing and energy demand has grown dramatically in the last two decades. A method is developed to estimate the spatial and seasonal flux of fossil-fuel consumption, thereby greatly improving the temporal and spatial resolution of anthropogenic carbon dioxide emissions. Currently, only national annual data for anthropogenic carbon emissions are available, and as such, no understanding of seasonal or sub-national patterns of emissions are possible. This methodology employs fuel distribution data from representative sectors of the fossil-fuel market to determine the temporal and spatial patterns of fuel consumption. These patterns of fuel consumption are then converted to patterns of carbon emissions. The annual total emissions estimates produced by this method are consistent to those maintained by the United Nations. Improved estimates of temporal and spatial resolution of the human based carbon emissions allows for better projections about future energy demands, carbon emissions, and ultimately the global carbon cycle.

  11. Global Preparedness and Human Resources: College and Corporate Perspectives.

    ERIC Educational Resources Information Center

    Bikson, T. K.; Law, S. A.

    A research study explored the human resource implications of the emerging economic globalism, including the following questions: How is globalism understood by corporations and colleges in the United States? What are the perceived human resource implications of globalism? and What are corporations and colleges doing today to meet these human…

  12. Breaking new ground in mapping human settlements from space - The Global Urban Footprint

    NASA Astrophysics Data System (ADS)

    Esch, Thomas; Heldens, Wieke; Hirner, Andreas; Keil, Manfred; Marconcini, Mattia; Roth, Achim; Zeidler, Julian; Dech, Stefan; Strano, Emanuele

    2017-12-01

    Today, approximately 7.2 billion people inhabit the Earth and by 2050 this number will have risen to around nine billion, of which about 70% will be living in cities. The population growth and the related global urbanization pose one of the major challenges to a sustainable future. Hence, it is essential to understand drivers, dynamics, and impacts of the human settlements development. A key component in this context is the availability of an up-to-date and spatially consistent map of the location and distribution of human settlements. It is here that the Global Urban Footprint (GUF) raster map can make a valuable contribution. The new global GUF binary settlement mask shows a so far unprecedented spatial resolution of 0.4″ (∼ 12m) that provides - for the first time - a complete picture of the entirety of urban and rural settlements. The GUF has been derived by means of a fully automated processing framework - the Urban Footprint Processor (UFP) - that was used to analyze a global coverage of more than 180,000 TanDEM-X and TerraSAR-X radar images with 3 m ground resolution collected in 2011-2012. The UFP consists of five main technical modules for data management, feature extraction, unsupervised classification, mosaicking and post-editing. Various quality assessment studies to determine the absolute GUF accuracy based on ground truth data on the one hand and the relative accuracies compared to established settlements maps on the other hand, clearly indicate the added value of the new global GUF layer, in particular with respect to the representation of rural settlement patterns. The Kappa coefficient of agreement compared to absolute ground truth data, for instance, shows GUF accuracies which are frequently twice as high as those of established low resolution maps. Generally, the GUF layer achieves an overall absolute accuracy of about 85%, with observed minima around 65% and maxima around 98%. The GUF will be provided open and free for any scientific use in the full resolution and for any non-profit (but also non-scientific) use in a generalized version of 2.8″ (∼ 84m). Therewith, the new GUF layer can be expected to break new ground with respect to the analysis of global urbanization and peri-urbanization patterns, population estimation, vulnerability assessment, or the modeling of diseases and phenomena of global change in general.

  13. Emerging arboviruses and public health challenges in Brazil

    PubMed Central

    Lima-Camara, Tamara Nunes

    2016-01-01

    ABSTRACT Environmental modification by anthropogenic actions, disordered urban growth, globalization of international exchange and climate change are some factors that help the emergence and dissemination of human infectious diseases transmitted by vectors. This review discusses the recent entry of three arboviruses in Brazil: Chikungunya, West Nile, and Zika virus, focusing on the challenges for the Country’s public health. The Brazilian population is exposed to infections caused by these three arboviruses widely distributed on the national territory and associated with humans. Without effective vaccine and specific treatment, the maintainance and integration of a continuos entomological and epidemiological surveillance are important so we can set methods to control and prevent these arboviruses in the Country. PMID:27355468

  14. Genetics, commodification, and social justice in the globalization era.

    PubMed

    Cahill, L S

    2001-09-01

    The commercialization of biotechnology, especially research and development by transnational pharmaceutical companies, is already excessive and is increasingly dangerous to distributive justice, human rights, and access of marginal populations to basic human goods. Focusing on gene patenting, this article employs the work of Margaret Jane Radin and others to argue that gene patenting ought to be more highly regulated and that it ought to be regulated with international participation and in view of concerns about solidarity and the common good. The mode of argument called for on this issue is more pragmatic than logical, emphasizing persuasion based on evidence about the reality and effects of control of genetic research by profit-driven biotech companies.

  15. From the Myth of Level Playing Fields to the Reality of a Finite Planet: Comment on "A Global Social Support System: What the International Community Could Learn From the United States' National Basketball Association's Scheme for Redistribution of New Talent".

    PubMed

    Labonté, Ronald

    2015-11-19

    Despite the mythology that the global economy with its trade rules creates a 'level playing field,' international trade has never involved 'level players.' The inequalities in outcomes generated by the more powerful winning more frequently has led to innovative ideas for ex post redistribution to make the matches between the players both fairer, and in the analogy to basketball used by the authors, more interesting and even more competitive. The proposal for a Global Social Protection Fund, financed by a small tax on the winners to enhance social protection spending for the losers, presumably increasing the latter's capabilities to compete more effectively in the global market game, is one such idea. It has much to commend it. Several problems, however, stand in its way, apart from those inherent within nations themselves and to which the authors give some attention. First, much global trade is now intra-firm rather than international, making calculations of which nations win or lose exceedingly difficult. Second, tax havens persist without the transparency and global regulatory oversights that would allow a better rendering of where winnings are stashed. Third, pre-distribution inequalities (those arising from market activities before government tax and transfer measures apply) are still increasing as labour's power to wrestle global capital into some ameliorative social contract diminishes. Fourth, there are finite limits to a planet on the cusp of multiple environmental crises. These problems do not diminish the necessity of alternative policy playbooks such as the proposed Fund, but point to the need to embrace the new Sustainable Development Goals (SDGs) as a single set, such that economic growth for the bottom half of humanity includes deep structural reforms to both pre-distribution and redistribution, if the targets for environmental survival are to be met. © 2016 by Kerman University of Medical Sciences.

  16. Differences Between S/X and VLBI2010 Operation

    NASA Technical Reports Server (NTRS)

    Hase, Hayo; Himwich, Ed; Neidhardt, Alexander

    2010-01-01

    The intended VLBI2010 operation has some significant differences to the current S/X operation. The presentation focuses on the problem of extending the operation of a global VLBI network to continuous operation within the frame of the same given amount of human resources. Remote control operation is a suitable solution to minimize operational expenses. The implementation of remote control operation requires more site specific information. A concept of a distributed-centralized remote control of the operation and its implications is presented.

  17. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    Betsy Edwards, OCO-2 program executive, NASA Headquarters, discusses the Orbiting Carbon Observatory-2 (OCO-2), NASA’s first spacecraft dedicated to studying carbon dioxide, during a press briefing, Sunday, June 29, 2014, at the Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  18. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    Ralph Basilio, OCO-2 project manager, JPL, discusses the Orbiting Carbon Observatory-2 (OCO-2), NASA’s first spacecraft dedicated to studying carbon dioxide, during a press briefing, Sunday, June 29, 2014, at the Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  19. Orbiting Carbon Observatory-2 (OCO-2)

    NASA Image and Video Library

    2014-06-30

    NASA Administrator Charles Bolden answers social media attendees questions from just outside the launch pad where the United Launch Alliance Delta II rocket with the Orbiting Carbon Observatory-2 (OCO-2) satellite onboard sits ready to launch, Monday, June 30, 2014, Space Launch Complex 2 Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set for a July 1, 2014 launch. Photo Credit: (NASA/Bill Ingalls)

  20. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    Vern Thorp, United Launch Alliance program manager, NASA missions, discusses the launch of NASA’s Orbiting Carbon Observatory-2 (OCO-2) onboard a ULA Delta II rocket, during a press briefing, Sunday, June 29, 2014, at the Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  1. Orbiting Carbon Observatory-2 (OCO-2) Briefing

    NASA Image and Video Library

    2014-06-29

    Tim Dunn, NASA launch director, Kennedy Space Center, discusses the Orbiting Carbon Observatory-2 (OCO-2), NASA’s first spacecraft dedicated to studying carbon dioxide, during a press briefing, Sunday, June 29, 2014, at the Vandenberg Air Force Base, Calif. OCO-2 will measure the global distribution of carbon dioxide, the leading human-produced greenhouse gas driving changes in Earth’s climate. OCO-2 is set to launch on July 1, 2014 at 2:59 a.m. PDT. Photo Credit: (NASA/Bill Ingalls)

  2. KSC-2009-1739

    NASA Image and Video Library

    2009-02-19

    VANDENBERG AIR FORCE BASE, Calif. -- On Launch Complex 576-E at Vandenberg Air Force Base in California, NASA's Orbiting Carbon Observatory, or OCO, has been erected atop Orbital Sciences' Taurus XL rocket for a Feb. 24 launch. OCO will collect precise global measurements of carbon dioxide (CO2) in the Earth's atmosphere. Scientists will analyze OCO data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. Photo credit: NASA/Randy Beaudoin, VAFB

  3. KSC-2009-1738

    NASA Image and Video Library

    2009-02-19

    VANDENBERG AIR FORCE BASE, Calif. -- On Launch Complex 576-E at Vandenberg Air Force Base in California, NASA's Orbiting Carbon Observatory, or OCO, has been erected atop Orbital Sciences' Taurus XL rocket for a Feb. 24 launch. OCO will collect precise global measurements of carbon dioxide (CO2) in the Earth's atmosphere. Scientists will analyze OCO data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. Photo credit: NASA/Randy Beaudoin, VAFB

  4. KSC-2009-1733

    NASA Image and Video Library

    2009-02-11

    VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base in California, the transporter holding NASA's Orbiting Carbon Observatory, or OCO, arrives on Launch Complex 576-E. OCO will collect precise global measurements of carbon dioxide (CO2) in the Earth's atmosphere. Scientists will analyze OCO data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. OCO is scheduled to launch Feb. 24 aboard an Orbital Sciences' Taurus XL rocket. Photo credit: NASA/VAFB

  5. KSC-2009-1732

    NASA Image and Video Library

    2009-02-11

    VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base in California, the transporter holding NASA's Orbiting Carbon Observatory, or OCO, heads for Launch Complex 576-E. OCO will collect precise global measurements of carbon dioxide (CO2) in the Earth's atmosphere. Scientists will analyze OCO data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. OCO is scheduled to launch Feb. 24 aboard an Orbital Sciences' Taurus XL rocket. Photo credit: NASA/VAFB

  6. KSC-2009-1731

    NASA Image and Video Library

    2009-02-11

    VANDENBERG AIR FORCE BASE, Calif. -- At Vandenberg Air Force Base in California, the transporter holding NASA's Orbiting Carbon Observatory, or OCO, heads for Launch Complex 576-E. OCO will collect precise global measurements of carbon dioxide (CO2) in the Earth's atmosphere. Scientists will analyze OCO data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. OCO is scheduled to launch Feb. 24 aboard an Orbital Sciences' Taurus XL rocket. Photo credit: NASA/VAFB

  7. KSC-2009-1721

    NASA Image and Video Library

    2009-02-18

    VANDENBERG AIR FORCE BASE, Calif. -- On Launch Complex 576-E at Vandenberg Air Force Base in California, NASA's Orbiting Carbon Observatory, or OCO, spacecraft waits atop Orbital Sciences' Taurus XL rocket to launch Feb. 24. The spacecraft will collect precise global measurements of carbon dioxide (CO2) in the Earth's atmosphere. Scientists will analyze OCO data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. Photo courtesy of Glenn Weigle, Orbital Sciences

  8. Fine Scale Spatiotemporal Clustering of Dengue Virus Transmission in Children and Aedes aegypti in Rural Thai Villages

    DTIC Science & Technology

    2012-07-01

    as an ‘‘index’’ case to initiate a positive cluster investigation around the index case house. Cohort children who were dengue PCR-negative from an ...were collected on days 0 and 15. Paired day 0 and 15 blood samples from child contacts were tested by both dengue PCR and an in-house dengue /Japanese...viral infections globally. An improved understanding of the spatial and temporal distribution of dengue virus (DENV) transmission between humans and

  9. The origin and phylogeography of dog rabies virus

    PubMed Central

    Bourhy, Hervé; Reynes, Jean-Marc; Dunham, Eleca J.; Dacheux, Laurent; Larrous, Florence; Huong, Vu Thi Que; Xu, Gelin; Yan, Jiaxin; Miranda, Mary Elizabeth G.; Holmes, Edward C.

    2012-01-01

    Rabies is a progressively fatal and incurable viral encephalitis caused by a lyssavirus infection. Almost all of the 55 000 annual rabies deaths in humans result from infection with dog rabies viruses (RABV). Despite the importance of rabies for human health, little is known about the spread of RABV in dog populations, and patterns of biodiversity have only been studied in limited geographical space. To address these questions on a global scale, we sequenced 62 new isolates and performed an extensive comparative analysis of RABV gene sequence data, representing 192 isolates sampled from 55 countries. From this, we identified six clades of RABV in non-flying mammals, each of which has a distinct geographical distribution, most likely reflecting major physical barriers to gene flow. Indeed, a detailed analysis of phylogeographic structure revealed only limited viral movement among geographical localities. Using Bayesian coalescent methods we also reveal that the sampled lineages of canid RABV derive from a common ancestor that originated within the past 1500 years. Additionally, we found no evidence for either positive selection or widespread population bottlenecks during the global expansion of canid RABV. Overall, our study reveals that the stochastic processes of genetic drift and population subdivision are the most important factors shaping the global phylogeography of canid RABV. PMID:18931062

  10. β-Thalassemia Distribution in the Old World: an Ancient Disease Seen from a Historical Standpoint

    PubMed Central

    De Sanctis, Vincenzo; Kattamis, Christos; Canatan, Duran; Soliman, Ashraf T.; Elsedfy, Heba; Karimi, Mehran; Daar, Shahina; Wali, Yasser; Yassin, Mohamed; Soliman, Nada; Sobti, Praveen; Al Jaouni, Soad; El Kholy, Mohamed; Fiscina, Bernadette; Angastiniotis, Michael

    2017-01-01

    Background Haemoglobinopathies constitute the commonest recessive monogenic disorders worldwide, and the treatment of affected individuals presents a substantial global disease burden. β-thalassaemia is characterised by the reduced synthesis (β+) or absence (βo) of the β-globin chains in the HbA molecule, resulting in accumulation of excess unbound α-globin chains that precipitate in erythroid precursors in the bone marrow and in the mature erythrocytes, leading to ineffective erythropoiesis and peripheral haemolysis. Approximately 1.5% of the global population are heterozygotes (carriers) of the β-thalassemias; there is a high incidence in populations from the Mediterranean basin, throughout the Middle East, the Indian subcontinent, Southeast Asia, and Melanesia to the Pacific Islands. Aim The principal aim of this paper is to review, from a historical standpoint, our knowledge about an ancient disease, the β-thalassemias, and in particular, when, how and in what way β-thalassemia spread worldwide to reach such high incidences in certain populations. Results Mutations involving the β-globin gene are the most common cause of genetic disorders in humans. To date, more than 350 β-thalassaemia mutations have been reported. Considering the current distribution of β- thalassemia, the wide diversity of mutations and the small number of specific mutations in individual populations, it seems unlikely that β-thalassemia originated in a single place and time. Conclusions Various processes are known to determine the frequency of genetic disease in human populations. However, it is almost impossible to decide to what extent each process is responsible for the presence of a particular genetic disease. The wide spectrum of β-thalassemia mutations could well be explained by looking at their geographical distribution, the history of malaria, wars, invasions, mass migrations, consanguinity, and settlements. An analysis of the distribution of the molecular spectrum of haemoglobinopathies allows for the development and improvement of diagnostic tests and management of these disorders. PMID:28293406

  11. A Systematic Review of the Comparative Epidemiology of Avian and Human Influenza A H5N1 and H7N9 - Lessons and Unanswered Questions.

    PubMed

    Bui, C; Bethmont, A; Chughtai, A A; Gardner, L; Sarkar, S; Hassan, S; Seale, H; MacIntyre, C R

    2016-12-01

    The aim of this work was to explore the comparative epidemiology of influenza viruses, H5N1 and H7N9, in both bird and human populations. Specifically, the article examines similarities and differences between the two viruses in their genetic characteristics, distribution patterns in human and bird populations and postulated mechanisms of global spread. In summary, H5N1 is pathogenic in birds, while H7N9 is not. Yet both have caused sporadic human cases, without evidence of sustained, human-to-human spread. The number of H7N9 human cases in the first year following its emergence far exceeded that of H5N1 over the same time frame. Despite the higher incidence of H7N9, the spatial distribution of H5N1 within a comparable time frame is considerably greater than that of H7N9, both within China and globally. The pattern of spread of H5N1 in humans and birds around the world is consistent with spread through wild bird migration and poultry trade activities. In contrast, human cases of H7N9 and isolations of H7N9 in birds and the environment have largely occurred in a number of contiguous provinces in south-eastern China. Although rates of contact with birds appear to be similar in H5N1 and H7N9 cases, there is a predominance of incidental contact reported for H7N9 as opposed to close, high-risk contact for H5N1. Despite the high number of human cases of H7N9 and the assumed transmission being from birds, the corresponding level of H7N9 virus in birds in surveillance studies has been low, particularly in poultry farms. H7N9 viruses are also diversifying at a much greater rate than H5N1 viruses. Analyses of certain H7N9 strains demonstrate similarities with engineered transmissible H5N1 viruses which make it more adaptable to the human respiratory tract. These differences in the human and bird epidemiology of H5N1 and H7N9 raise unanswered questions as to how H7N9 has spread, which should be investigated further. © 2015 The Authors. Transboundary and Emerging Diseases Published by Blackwell Verlag GmbH.

  12. Is agriculture driving the diversification of the Bemisia tabaci species complex (Hemiptera: Sternorrhyncha: Aleyrodidae)?: Dating, diversification and biogeographic evidence revealed.

    PubMed

    Boykin, Laura M; Bell, Charles D; Evans, Gregory; Small, Ian; De Barro, Paul J

    2013-10-18

    Humans and insect herbivores are competing for the same food crops and have been for thousands of years. Despite considerable advances in crop pest management, losses due to insects remain considerable. The global homogenisation of agriculture has supported the range expansion of numerous insect pests and has been driven in part by human-assisted dispersal supported through rapid global trade and low-cost air passenger transport. One of these pests, is the whitefly, Bemisia tabaci, a cryptic species complex that contains some of the world's most damaging pests of agriculture. The complex shows considerable genetic diversity and strong phylogeographic relationships. One consequence of the considerable impact that members of the B. tabaci complex have on agriculture, is the view that human activity, particularly in relation to agricultural practices, such as use of insecticides, has driven the diversification found within the species complex. This has been particularly so in the case of two members of the complex, Middle East-Asia Minor 1 (MEAM1) and Mediterranean (MED), which have become globally distributed invasive species. An alternative hypothesis is that diversification is due to paleogeographic and paleoclimatological changes. The idea that human activity is driving speciation within the B. tabaci complex has never been tested, but the increased interest in fossil whiteflies and the growth in molecular data have enabled us to apply a relaxed molecular clock and so estimate divergence dates for the major lineages within the B. tabaci species complex. The divergence estimates do not support the view that human activity has been a major driver of diversification. Our analysis suggests that the major lineages within the complex arose approximately 60-30 mya and the highly invasive MED and MEAM1 split from the rest of the species complex around 12 mya well before the evolution of Homo sapiens and agriculture. Furthermore, the divergence dates coincide with a period of global diversification that occurred broadly across the plant and animal kingdoms and was most likely associated with major climatic and tectonic events.

  13. Sustainable fuel, food, fertilizer and ecosystems through a global artificial photosynthetic system: overcoming anticompetitive barriers.

    PubMed

    Bruce, Alex; Faunce, Thomas

    2015-06-06

    This article discusses challenges that artificial photosynthetic (AP) systems will face when entering and competing in a global market characterized by established fossil fuel technology. It provides a perspective on the neoliberal principles underpinning much policy entrenching such environmentally destructive technology and outlines how competition law could aid overcoming these hurdles for AP development. In particular, it critiques the potential for competition law to promote a global AP initiative with greater emphasis on atmospheric carbon dioxide and nitrogen fixation (as well as solar-driven water splitting) to produce an equitable, globally distributed source of human food, fertilizer and biosphere sustainability, as well as hydrogen-based fuel. Some relevant strategies of competition law evaluated in this context include greater citizen-consumer involvement in shaping market values, legal requirements to factor services from the natural environment (i.e. provision of clean air, water, soil pollution degradation) into corporate costs, reform of corporate taxation and requirements to balance maximization of shareholder profit with contribution to a nominated public good, a global financial transactions tax, as well as prohibiting horizontal cartels, vertical agreements and unilateral misuse of market power.

  14. The Influence of Low-carbon Economy on Global Trade Pattern

    NASA Astrophysics Data System (ADS)

    Xiao-jing, Guo

    Since global warming has seriously endangered the living environment of human being and their health and safety, the development of low-carbon economy has become an irreversible global trend. Under the background of economic globalization, low-carbon economy will surely exert a significant impact on global trade pattern. Countries are paying more and more attention to the green trade. The emission permits trade of carbon between the developed countries and the developing countries has become more mature than ever. The carbon tariff caused by the distribution of the "big cake" will make the low-cost advantage in developing countries cease to exist, which will, in turn, affect the foreign trade, economic development, employment and people's living in developing countries. Therefore, under the background of this trend, we should perfect the relevant laws and regulations on trade and environment as soon as possible, optimize trade structure, promote greatly the development of service trade, transform thoroughly the mode of development in foreign trade, take advantage of the international carbon trading market by increasing the added value of export products resulted from technological innovation to achieve mutual benefit and win-win results and promote common development.

  15. Sustainable fuel, food, fertilizer and ecosystems through a global artificial photosynthetic system: overcoming anticompetitive barriers

    PubMed Central

    Bruce, Alex; Faunce, Thomas

    2015-01-01

    This article discusses challenges that artificial photosynthetic (AP) systems will face when entering and competing in a global market characterized by established fossil fuel technology. It provides a perspective on the neoliberal principles underpinning much policy entrenching such environmentally destructive technology and outlines how competition law could aid overcoming these hurdles for AP development. In particular, it critiques the potential for competition law to promote a global AP initiative with greater emphasis on atmospheric carbon dioxide and nitrogen fixation (as well as solar-driven water splitting) to produce an equitable, globally distributed source of human food, fertilizer and biosphere sustainability, as well as hydrogen-based fuel. Some relevant strategies of competition law evaluated in this context include greater citizen–consumer involvement in shaping market values, legal requirements to factor services from the natural environment (i.e. provision of clean air, water, soil pollution degradation) into corporate costs, reform of corporate taxation and requirements to balance maximization of shareholder profit with contribution to a nominated public good, a global financial transactions tax, as well as prohibiting horizontal cartels, vertical agreements and unilateral misuse of market power. PMID:26052427

  16. Viral Diversity of House Mice in New York City

    PubMed Central

    Williams, Simon H.; Che, Xiaoyu; Garcia, Joel A.; Klena, John D.; Lee, Bohyun; Muller, Dorothy; Ulrich, Werner; Corrigan, Robert M.; Nichol, Stuart; Jain, Komal

    2018-01-01

    ABSTRACT The microbiome of wild Mus musculus (house mouse), a globally distributed invasive pest that resides in close contact with humans in urban centers, is largely unexplored. Here, we report analysis of the fecal virome of house mice in residential buildings in New York City, NY. Mice were collected at seven sites in Manhattan, Queens, Brooklyn, and the Bronx over a period of 1 year. Unbiased high-throughput sequencing of feces revealed 36 viruses from 18 families and 21 genera, including at least 6 novel viruses and 3 novel genera. A representative screen of 15 viruses by PCR confirmed the presence of 13 of these viruses in liver. We identified an uneven distribution of diversity, with several viruses being associated with specific locations. Higher mouse weight was associated with an increase in the number of viruses detected per mouse, after adjusting for site, sex, and length. We found neither genetic footprints to known human viral pathogens nor antibodies to lymphocytic choriomeningitis virus. PMID:29666290

  17. Pilot Scale Application of a Method for the Analysis of ...

    EPA Pesticide Factsheets

    A growing number of studies now indicate that perfluorinated compounds (PFCs) are globally distributed in the environment. Their widespread distribution and presence in remote locations has led to questions about the importance of atmospheric and oceanic transport. Describing their distribution in surface soils is also an essential but neglected element in developing a comprehensive understanding of their occurrence in the environment. Soils are the critical link between global atmospheric and hydrologic processes where both local and distant contaminants can accumulate and be released into aquatic and terrestrial communities. Because PFC concentrations in soils will influence ground and surface water, wildlife, and crops, methods to accurately measure PFCs in soil are clearly needed. To help answer this need, we developed a method for the analysis of nine perfluorinated carboxylic acids and four perfluorinated sulfonic acids in soil. Samples from six nations (n = 10 per nation) were analyzed by LC-MS/MS to demonstrate the method performance parameters and to make preliminary observations about the occurrence of the PFCs in soils in different parts of the world. The resulting method shows acceptable performance characteristics for the target compounds in most soils while documenting the widespread occurrence of PFCs in surface soils The National Exposure Research Laboratory′s (NERL) Human Exposure and Atmospheric Sciences Division (HEASD) conducts research in

  18. Parasite epidemiology in a changing world: can molecular phylogeography help us tell the wood from the trees?

    PubMed

    Morgan, E R; Clare, E L; Jefferies, R; Stevens, J R

    2012-12-01

    SUMMARY Molecular phylogeography has revolutionised our ability to infer past biogeographic events from cross-sectional data on current parasite populations. In ecological parasitology, this approach has been used to address fundamental questions concerning host-parasite co-evolution and geographic patterns of spread, and has raised many technical issues and problems of interpretation. For applied parasitologists, the added complexity inherent in adding population genetic structure to perceived parasite distributions can sometimes seem to cloud rather than clarify approaches to control. In this paper, we use case studies firstly to illustrate the potential extent of cryptic diversity in parasite and parasitoid populations, secondly to consider how anthropogenic influences including movement of domestic animals affect the geographic distribution and host associations of parasite genotypes, and thirdly to explore the applied relevance of these processes to parasites of socio-economic importance. The contribution of phylogeographic approaches to deeper understanding of parasite biology in these cases is assessed. Thus, molecular data on the emerging parasites Angiostrongylus vasorum in dogs and wild canids, and the myiasis-causing flies Lucilia spp. in sheep and Cochliomyia hominovorax in humans, lead to clear implications for control efforts to limit global spread. Broader applications of molecular phylogeography to understanding parasite distributions in an era of rapid global change are also discussed.

  19. A human-driven decline in global burned area

    NASA Astrophysics Data System (ADS)

    Andela, N.

    2017-12-01

    Fire regimes are changing rapidly across the globe, driven by human land management and climate. We assessed long-term trends in fire activity using multiple satellite data sets and developed a new global data set on individual fire dynamics to understand the implications of changing fire regimes. Despite warming climate, burned area declined across most of the tropics, contributing to a global decline in burned area of 24.3 ± 8.8% over the past 18 years. The estimated decrease in burned area was largest in savannas and grasslands, where agricultural expansion and intensification were primary drivers of declining fire activity. In tropical forests, frequent fires for deforestation and agricultural management yield a sharp rise in fire activity with the expansion of settled land uses, but the use of fire decreases with increasing investment in agricultural areas in both savanna and forested landscapes. Disparate patterns of recent socieconomic development resulted in contrasting fire trends between southern Africa (increase) and South America (decrease). A strong inverse relationship between burned area and economic development in savannas and grasslands suggests that despite potential increasing fire risk from climate change, ongoing socioeconomic development will likely sustain observed declines in fire in these ecosystems during coming decades. Fewer and smaller fires reduced aerosol concentrations, modified vegetation structure, and increased the magnitude of the terrestrial carbon sink. The spatiotemporal distribution of fire size, duration, speed and direction of spread provided new insights in continental scale differences in fire regimes driven by human and climatic factors. Understanding these dynamics over larger scales is critical to achieve a balance between conservation of fire-dependent ecosystems and increasing agricultural production to support growing populations that will require careful management of fire activity in human-dominated landscapes.

  20. Predicting potential global distributions of two Miscanthus grasses: implications for horticulture, biofuel production, and biological invasions.

    PubMed

    Hager, Heather A; Sinasac, Sarah E; Gedalof, Ze'ev; Newman, Jonathan A

    2014-01-01

    In many regions, large proportions of the naturalized and invasive non-native floras were originally introduced deliberately by humans. Pest risk assessments are now used in many jurisdictions to regulate the importation of species and usually include an estimation of the potential distribution in the import area. Two species of Asian grass (Miscanthus sacchariflorus and M. sinensis) that were originally introduced to North America as ornamental plants have since escaped cultivation. These species and their hybrid offspring are now receiving attention for large-scale production as biofuel crops in North America and elsewhere. We evaluated their potential global climate suitability for cultivation and potential invasion using the niche model CLIMEX and evaluated the models' sensitivity to the parameter values. We then compared the sensitivity of projections of future climatically suitable area under two climate models and two emissions scenarios. The models indicate that the species have been introduced to most of the potential global climatically suitable areas in the northern but not the southern hemisphere. The more narrowly distributed species (M. sacchariflorus) is more sensitive to changes in model parameters, which could have implications for modelling species of conservation concern. Climate projections indicate likely contractions in potential range in the south, but expansions in the north, particularly in introduced areas where biomass production trials are under way. Climate sensitivity analysis shows that projections differ more between the selected climate change models than between the selected emissions scenarios. Local-scale assessments are required to overlay suitable habitat with climate projections to estimate areas of cultivation potential and invasion risk.

  1. The Impact of Global Climate Change on the Geographic Distribution and Sustainable Harvest of Hancornia speciosa Gomes (Apocynaceae) in Brazil

    NASA Astrophysics Data System (ADS)

    Nabout, João Carlos; Magalhães, Mara Rúbia; de Amorim Gomes, Marcos Aurélio; da Cunha, Hélida Ferreira

    2016-04-01

    The global Climate change may affect biodiversity and the functioning of ecosystems by changing the appropriate locations for the development and establishment of the species. The Hancornia speciosa, popularly called Mangaba, is a plant species that has potential commercial value and contributes to rural economic activities in Brazil. The aim of this study was to evaluate the impact of global climate change on the potential geographic distribution, productivity, and value of production of H. speciosa in Brazil. We used MaxEnt to estimate the potential geographic distribution of the species in current and future (2050) climate scenarios. We obtained the productivity and value of production for 74 municipalities in Brazil. Moreover, to explain the variation the productivity and value of production, we constructed 15 models based on four variables: two ecological (ecological niche model and the presence of Unity of conservation) and two socio-economic (gross domestic product and human developed index). The models were selected using Akaike Information Criteria. Our results suggest that municipalities currently harvesting H. speciosa will have lower harvest rates in the future (mainly in northeastern Brazil). The best model to explain the productivity was ecological niche model; thus, municipalities with higher productivity are inserted in regions with higher environmental suitability (indicated by niche model). Thus, in the future, the municipalities harvesting H. speciosa will produce less because there will be less suitable habitat for H. speciosa, which in turn will affect the H. speciosa harvest and the local economy.

  2. Human exposure, biomarkers, and fate of organotins in the environment.

    PubMed

    Okoro, Hussein K; Fatoki, Olalekan S; Adekola, Folahan A; Ximba, Bhekumusa J; Snyman, Reinette G; Opeolu, Beatrice

    2011-01-01

    Organotin compounds result from the addition of organic moieties to inorganic tin.Thus, one or more tin-carbon bonds exist in each organotin molecule. The organo-tin compounds are ubiquitous in the environment. Organotin compounds have many uses, including those as fungicides and stabilizers in plastics, among others in industry. The widespread use of organotins as antifouling agents in boat paints has resulted in pollution of freshwater and marine ecosystems. The presence of organotin compounds in freshwater and marine ecosystems is now understood to be a threat, because of the amounts found in water and the toxicity of some organotin compounds to aquatic organisms, and perhaps to humans as well. Organotin com-pounds are regarded by many to be global pollutants of a stature similar to biphenyl,mercury, and the polychlorinated dibenzodioxins. This stature results from the high toxicity, persistence, bioaccumulation, and endocrine disruptive features of even very low levels of selected organotin compounds.Efforts by selected governmental agencies and others have been undertaken to find a global solution to organotin pollution. France was the first country to ban the use of the organotins in 1980. This occurred before the international maritime organization (IMO) called for a global treaty to ban the application of tributyltin (TBT)-based paints. In this chapter, we review the organotin compounds with emphasis on the human exposure, fate, and distribution of them in the environment. The widespread use of the organotins and their high stability have led to contamination of some aquatic ecosystems. As a result, residues of the organotins may reach humans via food consumption. Notwithstanding the risk of human exposure, only limited data are available on the levels at which the organotins exist in foodstuffs consumed by humans. Moreover, the response of marine species to the organotins, such as TBT, has not been thoroughly investigated. Therefore, more data on the organotins and the consequences of exposure to them are needed. In particular, we believe the following areas need attention: expanded toxicity testing in aquatic species, human exposure, human body burdens, and the research to identify biomarkers for testing the toxicity of the organotins to marine invertebrates.

  3. Anthropogenic influence on the distribution of tropospheric sulphate aerosol

    NASA Astrophysics Data System (ADS)

    Langner, J.; Rodhe, H.; Crutzen, P. J.; Zimmermann, P.

    1992-10-01

    HUMAN activities have increased global emissions of sulphur gases by about a factor of three during the past century, leading to increased sulphate aerosol concentrations, mainly in the Northern Hemisphere. Sulphate aerosols can affect the climate directly, by increasing the backscattering of solar radiation in cloud-free air, and indirectly, by providing additional cloud condensation nuclei1-4. Here we use a global transport-chemistry model to estimate the changes in the distribution of tropospheric sulphate aerosol and deposition of non-seasalt sulphur that have occurred since pre-industrial times. The increase in sulphate aerosol concentration is small over the Southern Hemisphere oceans, but reaches a factor of 100 over northern Europe in winter. Our calculations indicate, however, that at most 6% of the anthropogenic sulphur emissions is available for the formation of new aerosol particles. This is because about one-half of the sulphur dioxide is deposited on the Earth's surface, and most of the remainder is oxidized in cloud droplets so that the sulphate becomes associated with pre-existing particles. Even so, the rate of formation of new sulphate particles may have doubled since pre-industrial times.

  4. Interspecific Hybridization in Pilot Whales and Asymmetric Genetic Introgression in Northern Globicephala melas under the Scenario of Global Warming.

    PubMed

    Miralles, Laura; Oremus, Marc; Silva, Mónica A; Planes, Serge; Garcia-Vazquez, Eva

    2016-01-01

    Pilot whales are two cetacean species (Globicephala melas and G. macrorhynchus) whose distributions are correlated with water temperature and partially overlap in some areas like the North Atlantic Ocean. In the context of global warming, distribution range shifts are expected to occur in species affected by temperature. Consequently, a northward displacement of the tropical pilot whale G. macrorynchus is expected, eventually leading to increased secondary contact areas and opportunities for interspecific hybridization. Here, we describe genetic evidences of recurrent hybridization between pilot whales in northeast Atlantic Ocean. Based on mitochondrial DNA sequences and microsatellite loci, asymmetric introgression of G. macrorhynchus genes into G. melas was observed. For the latter species, a significant correlation was found between historical population growth rate estimates and paleotemperature oscillations. Introgressive hybridization, current temperature increases and lower genetic variation in G. melas suggest that this species could be at risk in its northern range. Under increasing environmental and human-mediated stressors in the North Atlantic Ocean, it seems recommendable to develop a conservation program for G. melas.

  5. Interspecific Hybridization in Pilot Whales and Asymmetric Genetic Introgression in Northern Globicephala melas under the Scenario of Global Warming

    PubMed Central

    Miralles, Laura; Oremus, Marc; Silva, Mónica A.; Planes, Serge; Garcia-Vazquez, Eva

    2016-01-01

    Pilot whales are two cetacean species (Globicephala melas and G. macrorhynchus) whose distributions are correlated with water temperature and partially overlap in some areas like the North Atlantic Ocean. In the context of global warming, distribution range shifts are expected to occur in species affected by temperature. Consequently, a northward displacement of the tropical pilot whale G. macrorynchus is expected, eventually leading to increased secondary contact areas and opportunities for interspecific hybridization. Here, we describe genetic evidences of recurrent hybridization between pilot whales in northeast Atlantic Ocean. Based on mitochondrial DNA sequences and microsatellite loci, asymmetric introgression of G. macrorhynchus genes into G. melas was observed. For the latter species, a significant correlation was found between historical population growth rate estimates and paleotemperature oscillations. Introgressive hybridization, current temperature increases and lower genetic variation in G. melas suggest that this species could be at risk in its northern range. Under increasing environmental and human-mediated stressors in the North Atlantic Ocean, it seems recommendable to develop a conservation program for G. melas. PMID:27508496

  6. Atmospheric Inversion of the Global Surface Carbon Flux with Consideration of the Spatial Distributions of US Crop Production and Consumption

    NASA Astrophysics Data System (ADS)

    Fung, Jonathan Winston

    Carbon dioxide is taken up by crops during production and released back to the atmosphere at different geographical locations through respiration of consumed crop commodities. In this study, spatially distributed county-level US cropland net primary productivity, harvested biomass, changes in soil carbon, and human and livestock consumption data were integrated into the prior terrestrial biosphere flux generated by the Boreal Ecosystem Productivity Simulator (BEPS). A global time-dependent Bayesian synthesis inversion with a nested focus on North America was carried out based on CO2 observations at 210 stations. Overall, the inverted annual North American CO2 sink weakened by 6.5% over the period from 2002 to 2007 compared to simulations disregarding US crop statistical data. The US Midwest is found to be the major sink of 0.36±0.13 PgC yr-1 whereas the large sink in the US Southeast forests weakened to 0.16±0.12 PgC yr-1 partly due to local CO2 sources from crop consumption.

  7. A global map of travel time to cities to assess inequalities in accessibility in 2015

    NASA Astrophysics Data System (ADS)

    Weiss, D. J.; Nelson, A.; Gibson, H. S.; Temperley, W.; Peedell, S.; Lieber, A.; Hancher, M.; Poyart, E.; Belchior, S.; Fullman, N.; Mappin, B.; Dalrymple, U.; Rozier, J.; Lucas, T. C. D.; Howes, R. E.; Tusting, L. S.; Kang, S. Y.; Cameron, E.; Bisanzio, D.; Battle, K. E.; Bhatt, S.; Gething, P. W.

    2018-01-01

    The economic and man-made resources that sustain human wellbeing are not distributed evenly across the world, but are instead heavily concentrated in cities. Poor access to opportunities and services offered by urban centres (a function of distance, transport infrastructure, and the spatial distribution of cities) is a major barrier to improved livelihoods and overall development. Advancing accessibility worldwide underpins the equity agenda of ‘leaving no one behind’ established by the Sustainable Development Goals of the United Nations. This has renewed international efforts to accurately measure accessibility and generate a metric that can inform the design and implementation of development policies. The only previous attempt to reliably map accessibility worldwide, which was published nearly a decade ago, predated the baseline for the Sustainable Development Goals and excluded the recent expansion in infrastructure networks, particularly in lower-resource settings. In parallel, new data sources provided by Open Street Map and Google now capture transportation networks with unprecedented detail and precision. Here we develop and validate a map that quantifies travel time to cities for 2015 at a spatial resolution of approximately one by one kilometre by integrating ten global-scale surfaces that characterize factors affecting human movement rates and 13,840 high-density urban centres within an established geospatial-modelling framework. Our results highlight disparities in accessibility relative to wealth as 50.9% of individuals living in low-income settings (concentrated in sub-Saharan Africa) reside within an hour of a city compared to 90.7% of individuals in high-income settings. By further triangulating this map against socioeconomic datasets, we demonstrate how access to urban centres stratifies the economic, educational, and health status of humanity.

  8. A global map of travel time to cities to assess inequalities in accessibility in 2015.

    PubMed

    Weiss, D J; Nelson, A; Gibson, H S; Temperley, W; Peedell, S; Lieber, A; Hancher, M; Poyart, E; Belchior, S; Fullman, N; Mappin, B; Dalrymple, U; Rozier, J; Lucas, T C D; Howes, R E; Tusting, L S; Kang, S Y; Cameron, E; Bisanzio, D; Battle, K E; Bhatt, S; Gething, P W

    2018-01-18

    The economic and man-made resources that sustain human wellbeing are not distributed evenly across the world, but are instead heavily concentrated in cities. Poor access to opportunities and services offered by urban centres (a function of distance, transport infrastructure, and the spatial distribution of cities) is a major barrier to improved livelihoods and overall development. Advancing accessibility worldwide underpins the equity agenda of 'leaving no one behind' established by the Sustainable Development Goals of the United Nations. This has renewed international efforts to accurately measure accessibility and generate a metric that can inform the design and implementation of development policies. The only previous attempt to reliably map accessibility worldwide, which was published nearly a decade ago, predated the baseline for the Sustainable Development Goals and excluded the recent expansion in infrastructure networks, particularly in lower-resource settings. In parallel, new data sources provided by Open Street Map and Google now capture transportation networks with unprecedented detail and precision. Here we develop and validate a map that quantifies travel time to cities for 2015 at a spatial resolution of approximately one by one kilometre by integrating ten global-scale surfaces that characterize factors affecting human movement rates and 13,840 high-density urban centres within an established geospatial-modelling framework. Our results highlight disparities in accessibility relative to wealth as 50.9% of individuals living in low-income settings (concentrated in sub-Saharan Africa) reside within an hour of a city compared to 90.7% of individuals in high-income settings. By further triangulating this map against socioeconomic datasets, we demonstrate how access to urban centres stratifies the economic, educational, and health status of humanity.

  9. Will the struggle for health equity and social justice be best served by a Framework Convention on Global Health?

    PubMed

    Haynes, Leigh; Legge, David; London, Leslie; McCoy, David; Sanders, David; Schuftan, Claudio

    2013-06-14

    The idea of a Framework Convention for Global Health (FCGH), using the treaty-making powers of the World Health Organization (WHO), has been promoted as an opportunity to advance global health equity and the right to health. The idea has promise, but needs more thought regarding risks, obstacles, and strategies. The reform of global health governance must be based on a robust analysis of the political economy out of which the drivers of inequality and the denial of the right to health arise. Some of the published commentary has focused on using the proposed FCGH to institutionalize a paradigm change regarding international aid for health care, i.e., reconceptualizing such aid as obligatory, based on human solidarity rather than strategic considerations, based on global stability and national security. We warn against limiting the project to questions of inter-governmental financial transfers because of the risk of neglecting the underlying structural determinants of health injustice. Such neglect would help to legitimize an unjust and unsustainable global economic regime. We raise further questions about the strategic logic informing any campaign for a FCGH. The governments of the United States and Europe have put considerable effort into weakening WHO through tight donor controls, and it would require heavy pressure to persuade them to sign on to a FCGH. Generating such pressure would require strong popular mobilization around the local and diverse priorities of different communities across the globe, and recognition of a common need for effective regulation at the global level. We argue for a broad-based campaign from which the need for more effective global health regulation (and a FCGH) would emerge as a common theme arising from myriad more specific claims. This type of campaign would respond to local needs, and would also be understood within a global, political, and economic perspective. Copyright © 2013 Haynes, Legge, McCoy, Sanders, Schuftan. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

  10. Advancing the right to health through global organizations: The potential role of a Framework Convention on Global Health.

    PubMed

    Friedman, Eric A; Gostin, Lawrence O; Buse, Kent

    2013-06-14

    Organizations, partnerships, and alliances form the building blocks of global governance. Global health organizations thus have the potential to play a formative role in determining the extent to which people are able to realize their right to health. This article examines how major global health organizations, such as WHO, the Global Fund to Fight AIDS, TB and Malaria, UNAIDS, and GAVI approach human rights concerns, including equality, accountability, and inclusive participation. We argue that organizational support for the right to health must transition from ad hoc and partial to permanent and comprehensive. Drawing on the literature and our knowledge of global health organizations, we offer good practices that point to ways in which such agencies can advance the right to health, covering nine areas: 1) participation and representation in governance processes; 2) leadership and organizational ethos; 3) internal policies; 4) norm-setting and promotion; 5) organizational leadership through advocacy and communication; 6) monitoring and accountability; 7) capacity building; 8) funding policies; and 9) partnerships and engagement. In each of these areas, we offer elements of a proposed Framework Convention on Global Health (FCGH), which would commit state parties to support these standards through their board membership and other interactions with these agencies. We also explain how the FCGH could incorporate these organizations into its overall financing framework, initiate a new forum where they collaborate with each other, as well as organizations in other regimes, to advance the right to health, and ensure sufficient funding for right to health capacity building. We urge major global health organizations to follow the leadership of the UN Secretary-General and UNAIDS to champion the FCGH. It is only through a rights-based approach, enshrined in a new Convention, that we can expect to achieve health for all in our lifetimes. Copyright © 2013 Friedman, Gostin, Buse. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

  11. The influence of global climate change on the scientific foundations and applications of Environmental Toxicology and Chemistry: introduction to a SETAC international workshop.

    PubMed

    Stahl, Ralph G; Hooper, Michael J; Balbus, John M; Clements, William; Fritz, Alyce; Gouin, Todd; Helm, Roger; Hickey, Christopher; Landis, Wayne; Moe, S Jannicke

    2013-01-01

    This is the first of seven papers resulting from a Society of Environmental Toxicology and Chemistry (SETAC) international workshop titled "The Influence of Global Climate Change on the Scientific Foundations and Applications of Environmental Toxicology and Chemistry." The workshop involved 36 scientists from 11 countries and was designed to answer the following question: How will global climate change influence the environmental impacts of chemicals and other stressors and the way we assess and manage them in the environment? While more detail is found in the complete series of articles, some key consensus points are as follows: (1) human actions (including mitigation of and adaptation to impacts of global climate change [GCC]) may have as much influence on the fate and distribution of chemical contaminants as does GCC, and modeled predictions should be interpreted cautiously; (2) climate change can affect the toxicity of chemicals, but chemicals can also affect how organisms acclimate to climate change; (3) effects of GCC may be slow, variable, and difficult to detect, though some populations and communities of high vulnerability may exhibit responses sooner and more dramatically than others; (4) future approaches to human and ecological risk assessments will need to incorporate multiple stressors and cumulative risks considering the wide spectrum of potential impacts stemming from GCC; and (5) baseline/reference conditions for estimating resource injury and restoration/rehabilitation will continually shift due to GCC and represent significant challenges to practitioners. Copyright © 2013 SETAC.

  12. Soil carbon debt of 12,000 years of human land use.

    PubMed

    Sanderman, Jonathan; Hengl, Tomislav; Fiske, Gregory J

    2017-09-05

    Human appropriation of land for agriculture has greatly altered the terrestrial carbon balance, creating a large but uncertain carbon debt in soils. Estimating the size and spatial distribution of soil organic carbon (SOC) loss due to land use and land cover change has been difficult but is a critical step in understanding whether SOC sequestration can be an effective climate mitigation strategy. In this study, a machine learning-based model was fitted using a global compilation of SOC data and the History Database of the Global Environment (HYDE) land use data in combination with climatic, landform and lithology covariates. Model results compared favorably with a global compilation of paired plot studies. Projection of this model onto a world without agriculture indicated a global carbon debt due to agriculture of 133 Pg C for the top 2 m of soil, with the rate of loss increasing dramatically in the past 200 years. The HYDE classes "grazing" and "cropland" contributed nearly equally to the loss of SOC. There were higher percent SOC losses on cropland but since more than twice as much land is grazed, slightly higher total losses were found from grazing land. Important spatial patterns of SOC loss were found: Hotspots of SOC loss coincided with some major cropping regions as well as semiarid grazing regions, while other major agricultural zones showed small losses and even net gains in SOC. This analysis has demonstrated that there are identifiable regions which can be targeted for SOC restoration efforts.

  13. The influence of global climate change on the scientific foundations and applications of Environmental Toxicology and Chemistry: Introduction to a SETAC international workshop

    USGS Publications Warehouse

    Stahl, Ralph G.; Hooper, Michael J.; Balbus, John M.; Clements, William; Fritz, Alyce; Gouin, Todd; Helm, Roger; Hickey, Christopher; Landis, Wayne; Moe, S. Jannicke

    2013-01-01

    This is the first of seven papers resulting from a Society of Environmental Toxicology and Chemistry (SETAC) international workshop titled “The Influence of Global Climate Change on the Scientific Foundations and Applications of Environmental Toxicology and Chemistry.” The workshop involved 36 scientists from 11 countries and was designed to answer the following question: How will global climate change influence the environmental impacts of chemicals and other stressors and the way we assess and manage them in the environment? While more detail is found in the complete series of articles, some key consensus points are as follows: (1) human actions (including mitigation of and adaptation to impacts of global climate change [GCC]) may have as much influence on the fate and distribution of chemical contaminants as does GCC, and modeled predictions should be interpreted cautiously; (2) climate change can affect the toxicity of chemicals, but chemicals can also affect how organisms acclimate to climate change; (3) effects of GCC may be slow, variable, and difficult to detect, though some populations and communities of high vulnerability may exhibit responses sooner and more dramatically than others; (4) future approaches to human and ecological risk assessments will need to incorporate multiple stressors and cumulative risks considering the wide spectrum of potential impacts stemming from GCC; and (5) baseline/reference conditions for estimating resource injury and restoration/rehabilitation will continually shift due to GCC and represent significant challenges to practitioners.

  14. Soil carbon debt of 12,000 years of human land use

    PubMed Central

    Sanderman, Jonathan; Hengl, Tomislav; Fiske, Gregory J.

    2017-01-01

    Human appropriation of land for agriculture has greatly altered the terrestrial carbon balance, creating a large but uncertain carbon debt in soils. Estimating the size and spatial distribution of soil organic carbon (SOC) loss due to land use and land cover change has been difficult but is a critical step in understanding whether SOC sequestration can be an effective climate mitigation strategy. In this study, a machine learning-based model was fitted using a global compilation of SOC data and the History Database of the Global Environment (HYDE) land use data in combination with climatic, landform and lithology covariates. Model results compared favorably with a global compilation of paired plot studies. Projection of this model onto a world without agriculture indicated a global carbon debt due to agriculture of 133 Pg C for the top 2 m of soil, with the rate of loss increasing dramatically in the past 200 years. The HYDE classes “grazing” and “cropland” contributed nearly equally to the loss of SOC. There were higher percent SOC losses on cropland but since more than twice as much land is grazed, slightly higher total losses were found from grazing land. Important spatial patterns of SOC loss were found: Hotspots of SOC loss coincided with some major cropping regions as well as semiarid grazing regions, while other major agricultural zones showed small losses and even net gains in SOC. This analysis has demonstrated that there are identifiable regions which can be targeted for SOC restoration efforts. PMID:28827323

  15. Emerging Technologies for Software-Reliant Systems

    DTIC Science & Technology

    2011-02-24

    needs • Loose coupling • Global distribution of hardware, software and people • Horizontal integration and convergence • Virtualization...Webinar– February 2011 © 2011 Carnegie Mellon University Global Distribution of Hardware, Software and People Globalization is an essential part of...University Required Software Engineering Emphasis Due to Emerging Technologies (2) Defensive Programming • Security • Auto-adaptation • Globalization

  16. Biodiversity and socioeconomics in the city: a review of the luxury effect.

    PubMed

    Leong, Misha; Dunn, Robert R; Trautwein, Michelle D

    2018-05-01

    The ecological dynamics of cities are influenced not only by geophysical and biological factors, but also by aspects of human society. In cities around the world, a pattern of higher biodiversity in affluent neighbourhoods has been termed 'the luxury effect'. The luxury effect has been found globally regarding plant diversity and canopy or vegetative cover. Fewer studies have considered the luxury effect and animals, yet it has been recognized in the distributions of birds, bats, lizards and indoor arthropods. Higher socioeconomic status correlates with higher biodiversity resulting from many interacting factors-the creation and maintenance of green space on private and public lands, the tendency of both humans and other species to favour environmentally desirable areas, while avoiding environmental burdens, as well as enduring legacy effects. The luxury effect is amplified in arid cities and as neighbourhoods age, and reduced in tropical areas. Where the luxury effect exists, benefits of urban biodiversity are unequally distributed, particularly in low-income neighbourhoods with higher minority populations. The equal distribution of biodiversity in cities, and thus the elimination of the luxury effect, is a worthy societal goal. © 2018 The Authors.

  17. Global Distribution of Human-Associated Fecal Genetic Markers in Reference Samples from Six Continents.

    PubMed

    Mayer, René E; Reischer, Georg H; Ixenmaier, Simone K; Derx, Julia; Blaschke, Alfred Paul; Ebdon, James E; Linke, Rita; Egle, Lukas; Ahmed, Warish; Blanch, Anicet R; Byamukama, Denis; Savill, Marion; Mushi, Douglas; Cristóbal, Héctor A; Edge, Thomas A; Schade, Margit A; Aslan, Asli; Brooks, Yolanda M; Sommer, Regina; Masago, Yoshifumi; Sato, Maria I; Taylor, Huw D; Rose, Joan B; Wuertz, Stefan; Shanks, Orin C; Piringer, Harald; Mach, Robert L; Savio, Domenico; Zessner, Matthias; Farnleitner, Andreas H

    2018-05-01

    Numerous bacterial genetic markers are available for the molecular detection of human sources of fecal pollution in environmental waters. However, widespread application is hindered by a lack of knowledge regarding geographical stability, limiting implementation to a small number of well-characterized regions. This study investigates the geographic distribution of five human-associated genetic markers (HF183/BFDrev, HF183/BacR287, BacHum-UCD, BacH, and Lachno2) in municipal wastewaters (raw and treated) from 29 urban and rural wastewater treatment plants (750-4 400 000 population equivalents) from 13 countries spanning six continents. In addition, genetic markers were tested against 280 human and nonhuman fecal samples from domesticated, agricultural and wild animal sources. Findings revealed that all genetic markers are present in consistently high concentrations in raw (median log 10 7.2-8.0 marker equivalents (ME) 100 mL -1 ) and biologically treated wastewater samples (median log 10 4.6-6.0 ME 100 mL -1 ) regardless of location and population. The false positive rates of the various markers in nonhuman fecal samples ranged from 5% to 47%. Results suggest that several genetic markers have considerable potential for measuring human-associated contamination in polluted environmental waters. This will be helpful in water quality monitoring, pollution modeling and health risk assessment (as demonstrated by QMRAcatch) to guide target-oriented water safety management across the globe.

  18. Integrating place-specific livelihood and equity outcomes into global assessments of bioenergy deployment

    NASA Astrophysics Data System (ADS)

    Creutzig, Felix; Corbera, Esteve; Bolwig, Simon; Hunsberger, Carol

    2013-09-01

    Integrated assessment models suggest that the large-scale deployment of bioenergy could contribute to ambitious climate change mitigation efforts. However, such a shift would intensify the global competition for land, with possible consequences for 1.5 billion smallholder livelihoods that these models do not consider. Maintaining and enhancing robust livelihoods upon bioenergy deployment is an equally important sustainability goal that warrants greater attention. The social implications of biofuel production are complex, varied and place-specific, difficult to model, operationalize and quantify. However, a rapidly developing body of social science literature is advancing the understanding of these interactions. In this letter we link human geography research on the interaction between biofuel crops and livelihoods in developing countries to integrated assessments on biofuels. We review case-study research focused on first-generation biofuel crops to demonstrate that food, income, land and other assets such as health are key livelihood dimensions that can be impacted by such crops and we highlight how place-specific and global dynamics influence both aggregate and distributional outcomes across these livelihood dimensions. We argue that place-specific production models and land tenure regimes mediate livelihood outcomes, which are also in turn affected by global and regional markets and their resulting equilibrium dynamics. The place-specific perspective suggests that distributional consequences are a crucial complement to aggregate outcomes; this has not been given enough weight in comprehensive assessments to date. By narrowing the gap between place-specific case studies and global models, our discussion offers a route towards integrating livelihood and equity considerations into scenarios of future bioenergy deployment, thus contributing to a key challenge in sustainability sciences.

  19. aerosol radiative effects and forcing: spatial and temporal distributions

    NASA Astrophysics Data System (ADS)

    Kinne, Stefan

    2014-05-01

    A monthly climatology for aerosol optical properties based on a synthesis from global modeling and observational data has been applied to illustrate spatial distributions and global averages of aerosol radiative impacts. With the help of a pre-industrial reference for aerosol optical properties from global modeling, also the aerosol direct forcing (ca -0.35W/m2 globally and annual averaged) and their spatial and seasonal distributions and contributions by individual aerosol components are estimated. Finally, CCN and IN concentrations associated with this climatology are applied to estimate aerosol indirect effects and forcing.

  20. "Small places close to home": toward a health and human rights strategy for the US.

    PubMed

    Tobin Tyler, Elizabeth

    2013-12-12

    Much of the discussion about "health as a human right" has centered on global health initiatives, largely ignoring the application of human rights principles to the significant socioeconomic and racial health disparities in the United States. Given the persistent gaps in insurance coverage and access to quality preventive care in the US, the health and human rights movement has primarily focused its efforts on achieving universal health care coverage. However, this focus has left unaddressed how a human rights strategy might also address the social determinants of health. As Americans' health continues to worsen-the US Institute of Medicine recently reported that the US now fares worse in nine areas of health than 16 peer high-income democracies--a broader social determinants approach is warranted. This article explores the application of international human rights principles, including a "right to health" to the US context, and analyzes how existing domestic law may be used to advance health as a human right for America's most vulnerable populations. It demonstrates that an effective health and human rights strategy must build partnerships among health care providers, public health professionals, and lawyers to identify rights violations, hold officials and systems accountable, and mobilize communities to advocate for systems and policy change. Copyright © 2013 Tobin Tyler. This is an open access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0/), which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original author and source are credited.

  1. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, William D.; Craig, Anthony P.; Truesdale, John E.

    The integrated Earth System Model (iESM) has been developed as a new tool for pro- jecting the joint human/climate system. The iESM is based upon coupling an Integrated Assessment Model (IAM) and an Earth System Model (ESM) into a common modeling in- frastructure. IAMs are the primary tool for describing the human–Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species, land use and land cover change, and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. Themore » iESM project integrates the economic and human dimension modeling of an IAM and a fully coupled ESM within a sin- gle simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore- omitted feedbacks between natural and societal drivers, we can improve scientific under- standing of the human–Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper de- scribes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.« less

  2. DOE Office of Scientific and Technical Information (OSTI.GOV)

    Collins, W. D.; Craig, A. P.; Truesdale, J. E.

    The integrated Earth system model (iESM) has been developed as a new tool for projecting the joint human/climate system. The iESM is based upon coupling an integrated assessment model (IAM) and an Earth system model (ESM) into a common modeling infrastructure. IAMs are the primary tool for describing the human–Earth system, including the sources of global greenhouse gases (GHGs) and short-lived species (SLS), land use and land cover change (LULCC), and other resource-related drivers of anthropogenic climate change. ESMs are the primary scientific tools for examining the physical, chemical, and biogeochemical impacts of human-induced changes to the climate system. Themore » iESM project integrates the economic and human-dimension modeling of an IAM and a fully coupled ESM within a single simulation system while maintaining the separability of each model if needed. Both IAM and ESM codes are developed and used by large communities and have been extensively applied in recent national and international climate assessments. By introducing heretofore-omitted feedbacks between natural and societal drivers, we can improve scientific understanding of the human–Earth system dynamics. Potential applications include studies of the interactions and feedbacks leading to the timing, scale, and geographic distribution of emissions trajectories and other human influences, corresponding climate effects, and the subsequent impacts of a changing climate on human and natural systems. This paper describes the formulation, requirements, implementation, testing, and resulting functionality of the first version of the iESM released to the global climate community.« less

  3. Human neutral genetic variation and forensic STR data.

    PubMed

    Silva, Nuno M; Pereira, Luísa; Poloni, Estella S; Currat, Mathias

    2012-01-01

    The forensic genetics field is generating extensive population data on polymorphism of short tandem repeats (STR) markers in globally distributed samples. In this study we explored and quantified the informative power of these datasets to address issues related to human evolution and diversity, by using two online resources: an allele frequency dataset representing 141 populations summing up to almost 26 thousand individuals; a genotype dataset consisting of 42 populations and more than 11 thousand individuals. We show that the genetic relationships between populations based on forensic STRs are best explained by geography, as observed when analysing other worldwide datasets generated specifically to study human diversity. However, the global level of genetic differentiation between populations (as measured by a fixation index) is about half the value estimated with those other datasets, which contain a much higher number of markers but much less individuals. We suggest that the main factor explaining this difference is an ascertainment bias in forensics data resulting from the choice of markers for individual identification. We show that this choice results in average low variance of heterozygosity across world regions, and hence in low differentiation among populations. Thus, the forensic genetic markers currently produced for the purpose of individual assignment and identification allow the detection of the patterns of neutral genetic structure that characterize the human population but they do underestimate the levels of this genetic structure compared to the datasets of STRs (or other kinds of markers) generated specifically to study the diversity of human populations.

  4. Fresh Waters and Fish Diversity: Distribution, Protection and Disturbance in Tropical Australia

    PubMed Central

    Januchowski-Hartley, Stephanie R.; Pearson, Richard G.; Puschendorf, Robert; Rayner, Thomas

    2011-01-01

    Background Given the globally poor protection of fresh waters for their intrinsic ecological values, assessments are needed to determine how well fresh waters and supported fish species are incidentally protected within existing terrestrial protected-area networks, and to identify their vulnerability to human-induced disturbances. To date, gaps in data have severely constrained any attempt to explore the representation of fresh waters in tropical regions. Methodology and Results We determined the distribution of fresh waters and fish diversity in the Wet Tropics of Queensland, Australia. We then used distribution data of fresh waters, fish species, human-induced disturbances, and the terrestrial protected-area network to assess the effectiveness of terrestrial protected areas for fresh waters and fish species. We also identified human-induced disturbances likely to influence the effectiveness of freshwater protection and evaluated the vulnerability of fresh waters to these disturbances within and outside protected areas. The representation of fresh waters and fish species in the protected areas of the Wet Tropics is poor: 83% of stream types defined by order, 75% of wetland types, and 89% of fish species have less than 20% of their total Wet Tropics length, area or distribution completely within IUCN category II protected areas. Numerous disturbances affect fresh waters both within and outside of protected areas despite the high level of protection afforded to terrestrial areas in the Wet Tropics (>60% of the region). High-order streams and associated wetlands are influenced by the greatest number of human-induced disturbances and are also the least protected. Thirty-two percent of stream length upstream of protected areas has at least one human-induced disturbance present. Conclusions/Significance We demonstrate the need for greater consideration of explicit protection and off-reserve management for fresh waters and supported biodiversity by showing that, even in a region where terrestrial protection is high, it does not adequately capture fresh waters. PMID:21998708

  5. Quantifying Water Stress Using Total Water Volumes and GRACE

    NASA Astrophysics Data System (ADS)

    Richey, A. S.; Famiglietti, J. S.; Druffel-Rodriguez, R.

    2011-12-01

    Water will follow oil as the next critical resource leading to unrest and uprisings globally. To better manage this threat, an improved understanding of the distribution of water stress is required today. This study builds upon previous efforts to characterize water stress by improving both the quantification of human water use and the definition of water availability. Current statistics on human water use are often outdated or inaccurately reported nationally, especially for groundwater. This study improves these estimates by defining human water use in two ways. First, we use NASA's Gravity Recovery and Climate Experiment (GRACE) to isolate the anthropogenic signal in water storage anomalies, which we equate to water use. Second, we quantify an ideal water demand by using average water requirements for the domestic, industrial, and agricultural water use sectors. Water availability has traditionally been limited to "renewable" water, which ignores large, stored water sources that humans use. We compare water stress estimates derived using either renewable water or the total volume of water globally. We use the best-available data to quantify total aquifer and surface water volumes, as compared to groundwater recharge and surface water runoff from land-surface models. The work presented here should provide a more realistic image of water stress by explicitly quantifying groundwater, defining water availability as total water supply, and using GRACE to more accurately quantify water use.

  6. Spatial, seasonal and climatic predictive models of Rift Valley fever disease across Africa.

    PubMed

    Redding, David W; Tiedt, Sonia; Lo Iacono, Gianni; Bett, Bernard; Jones, Kate E

    2017-07-19

    Understanding the emergence and subsequent spread of human infectious diseases is a critical global challenge, especially for high-impact zoonotic and vector-borne diseases. Global climate and land-use change are likely to alter host and vector distributions, but understanding the impact of these changes on the burden of infectious diseases is difficult. Here, we use a Bayesian spatial model to investigate environmental drivers of one of the most important diseases in Africa, Rift Valley fever (RVF). The model uses a hierarchical approach to determine how environmental drivers vary both spatially and seasonally, and incorporates the effects of key climatic oscillations, to produce a continental risk map of RVF in livestock (as a proxy for human RVF risk). We find RVF risk has a distinct seasonal spatial pattern influenced by climatic variation, with the majority of cases occurring in South Africa and Kenya in the first half of an El Niño year. Irrigation, rainfall and human population density were the main drivers of RVF cases, independent of seasonal, climatic or spatial variation. By accounting more subtly for the patterns in RVF data, we better determine the importance of underlying environmental drivers, and also make space- and time-sensitive predictions to better direct future surveillance resources.This article is part of the themed issue 'One Health for a changing world: zoonoses, ecosystems and human well-being'. © 2017 The Authors.

  7. Spatial, seasonal and climatic predictive models of Rift Valley fever disease across Africa

    PubMed Central

    2017-01-01

    Understanding the emergence and subsequent spread of human infectious diseases is a critical global challenge, especially for high-impact zoonotic and vector-borne diseases. Global climate and land-use change are likely to alter host and vector distributions, but understanding the impact of these changes on the burden of infectious diseases is difficult. Here, we use a Bayesian spatial model to investigate environmental drivers of one of the most important diseases in Africa, Rift Valley fever (RVF). The model uses a hierarchical approach to determine how environmental drivers vary both spatially and seasonally, and incorporates the effects of key climatic oscillations, to produce a continental risk map of RVF in livestock (as a proxy for human RVF risk). We find RVF risk has a distinct seasonal spatial pattern influenced by climatic variation, with the majority of cases occurring in South Africa and Kenya in the first half of an El Niño year. Irrigation, rainfall and human population density were the main drivers of RVF cases, independent of seasonal, climatic or spatial variation. By accounting more subtly for the patterns in RVF data, we better determine the importance of underlying environmental drivers, and also make space- and time-sensitive predictions to better direct future surveillance resources. This article is part of the themed issue ‘One Health for a changing world: zoonoses, ecosystems and human well-being’. PMID:28584173

  8. 76 FR 174 - International Business Machines (IBM), Global Sales Operations Organization, Sales and...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2011-01-03

    ...] International Business Machines (IBM), Global Sales Operations Organization, Sales and Distribution Business Manager Roles; One Teleworker Located in Charleston, WV; International Business Machines (IBM), Global Sales Operations Organization, Sales and Distribution Business Unit, Relations Analyst and Band 8...

  9. Pinpointing and preventing imminent extinctions.

    PubMed

    Ricketts, Taylor H; Dinerstein, Eric; Boucher, Tim; Brooks, Thomas M; Butchart, Stuart H M; Hoffmann, Michael; Lamoreux, John F; Morrison, John; Parr, Mike; Pilgrim, John D; Rodrigues, Ana S L; Sechrest, Wes; Wallace, George E; Berlin, Ken; Bielby, Jon; Burgess, Neil D; Church, Don R; Cox, Neil; Knox, David; Loucks, Colby; Luck, Gary W; Master, Lawrence L; Moore, Robin; Naidoo, Robin; Ridgely, Robert; Schatz, George E; Shire, Gavin; Strand, Holly; Wettengel, Wes; Wikramanayake, Eric

    2005-12-20

    Slowing rates of global biodiversity loss requires preventing species extinctions. Here we pinpoint centers of imminent extinction, where highly threatened species are confined to single sites. Within five globally assessed taxa (i.e., mammals, birds, selected reptiles, amphibians, and conifers), we find 794 such species, three times the number recorded as having gone extinct since 1500. These species occur in 595 sites, concentrated in tropical forests, on islands, and in mountainous areas. Their taxonomic and geographical distribution differs significantly from that of historical extinctions, indicating an expansion of the current extinction episode beyond sensitive species and places toward the planet's most biodiverse mainland regions. Only one-third of the sites are legally protected, and most are surrounded by intense human development. These sites represent clear opportunities for urgent conservation action to prevent species loss.

  10. KSC-2009-1604

    NASA Image and Video Library

    2009-02-10

    VANDENBERG AIR FORCE BASE, Calif. -- NASA's Orbiting Carbon Observatory, or OCO, arrives at Space Launch Complex 576-E at Vandenberg Air Force Base in California. The spacecraft is scheduled for launch aboard Orbital Sciences' Taurus XL rocket, being erected at left, on Feb. 23 from Vandenberg. The spacecraft will collect precise global measurements of carbon dioxide (CO2) in the Earth's atmosphere. Scientists will analyze OCO data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. This improved understanding will enable more reliable forecasts of future changes in the abundance and distribution of CO2 in the atmosphere and the effect that these changes may have on the Earth's climate. Photo credit: NASA/Randy Beaudoin, VAFB

  11. KSC-2009-1602

    NASA Image and Video Library

    2009-02-10

    VANDENBERG AIR FORCE BASE, Calif. -- NASA's Orbiting Carbon Observatory, or OCO, is transported to Space Launch Complex 576-E at Vandenberg Air Force Base in California. The spacecraft is scheduled for launch aboard Orbital Sciences' Taurus XL rocket on Feb. 23 from Vandenberg. The spacecraft will collect precise global measurements of carbon dioxide (CO2) in the Earth's atmosphere. Scientists will analyze OCO data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. This improved understanding will enable more reliable forecasts of future changes in the abundance and distribution of CO2 in the atmosphere and the effect that these changes may have on the Earth's climate. Photo credit: NASA/Randy Beaudoin, VAFB

  12. KSC-2009-1603

    NASA Image and Video Library

    2009-02-10

    VANDENBERG AIR FORCE BASE, Calif. -- NASA's Orbiting Carbon Observatory, or OCO, arrives at Space Launch Complex 576-E at Vandenberg Air Force Base in California. The spacecraft is scheduled for launch aboard Orbital Sciences' Taurus XL rocket on Feb. 23 from Vandenberg. The spacecraft will collect precise global measurements of carbon dioxide (CO2) in the Earth's atmosphere. Scientists will analyze OCO data to improve our understanding of the natural processes and human activities that regulate the abundance and distribution of this important greenhouse gas. This improved understanding will enable more reliable forecasts of future changes in the abundance and distribution of CO2 in the atmosphere and the effect that these changes may have on the Earth's climate. Photo credit: NASA/Randy Beaudoin, VAFB

  13. Global epidemiology of sporotrichosis.

    PubMed

    Chakrabarti, Arunaloke; Bonifaz, Alexandro; Gutierrez-Galhardo, Maria Clara; Mochizuki, Takashi; Li, Shanshan

    2015-01-01

    Sporotrichosis is an endemic mycosis caused by the dimorphic fungus Sporothrix schenckii sensu lato. It has gained importance in recent years due to its worldwide prevalence, recognition of multiple cryptic species within the originally described species, and its distinctive ecology, distribution, and epidemiology across the globe. In this review, we describe the current knowledge of the taxonomy, ecology, prevalence, molecular epidemiology, and outbreaks due to S. schenckii sensu lato. Despite its omnipresence in the environment, this fungus has remarkably diverse modes of infection and distribution patterns across the world. We have delved into the nuances of how sporotrichosis is intimately linked to different forms of human activities, habitats, lifestyles, and environmental and zoonotic interactions. The purpose of this review is to stimulate discussion about the peculiarities of this unique fungal pathogen and increase the awareness of clinicians and microbiologists, especially in regions of high endemicity, to its emergence and evolving presentations and to kindle further research into understanding the unorthodox mechanisms by which this fungus afflicts different human populations. © The Author 2014. Published by Oxford University Press on behalf of The International Society for Human and Animal Mycology. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  14. Global invasion history of the tropical fire ant: a stowaway on the first global trade routes.

    PubMed

    Gotzek, Dietrich; Axen, Heather J; Suarez, Andrew V; Helms Cahan, Sara; Shoemaker, DeWayne

    2015-01-01

    Biological invasions are largely thought to be contemporary, having recently increased sharply in the wake of globalization. However, human commerce had already become global by the mid-16th century when the Spanish connected the New World with Europe and Asia via their Manila galleon and West Indies trade routes. We use genetic data to trace the global invasion of one of the world's most widespread and invasive pest ants, the tropical fire ant, Solenopsis geminata. Our results reveal a pattern of introduction of Old World populations that is highly consistent with historical trading routes suggesting that Spanish trade introduced the tropical fire ant to Asia in the 16th century. We identify southwestern Mexico as the most likely source for the invasive populations, which is consistent with the use of Acapulco as the major Spanish port on the Pacific Ocean. From there, the Spanish galleons brought silver to Manila, which served as a hub for trade with China. The genetic data document a corresponding spread of S. geminata from Mexico via Manila to Taiwan and from there, throughout the Old World. Our descriptions of the worldwide spread of S. geminata represent a rare documented case of a biological invasion of a highly invasive and globally distributed pest species due to the earliest stages of global commerce. © 2014 John Wiley & Sons Ltd.

  15. Statistical perturbations in personal exposure meters caused by the human body in dynamic outdoor environments.

    PubMed

    Rodríguez, Begoña; Blas, Juan; Lorenzo, Rubén M; Fernández, Patricia; Abril, Evaristo J

    2011-04-01

    Personal exposure meters (PEM) are routinely used for the exposure assessment to radio frequency electric or magnetic fields. However, their readings are subject to errors associated with perturbations of the fields caused by the presence of the human body. This paper presents a novel analysis method for the characterization of this effect. Using ray-tracing techniques, PEM measurements have been emulated, with and without an approximation of this shadowing effect. In particular, the Global System for Mobile Communication mobile phone frequency band was chosen for its ubiquity and, specifically, we considered the case where the subject is walking outdoors in a relatively open area. These simulations have been contrasted with real PEM measurements in a 35-min walk. Results show a good agreement in terms of root mean square error and E-field cumulative distribution function (CDF), with a significant improvement when the shadowing effect is taken into account. In particular, the Kolmogorov-Smirnov (KS) test provides a P-value of 0.05 when considering the shadowing effect, versus a P-value of 10⁻¹⁴ when this effect is ignored. In addition, although the E-field levels in the absence of a human body have been found to follow a Nakagami distribution, a lognormal distribution fits the statistics of the PEM values better than the Nakagami distribution. As a conclusion, although the mean could be adjusted by using correction factors, there are also other changes in the CDF that require particular attention due to the shadowing effect because they might lead to a systematic error. Copyright © 2010 Wiley-Liss, Inc.

  16. The effects of variable biome distribution on global climate.

    PubMed

    Noever, D A; Brittain, A; Matsos, H C; Baskaran, S; Obenhuber, D

    1996-01-01

    In projecting climatic adjustments to anthropogenically elevated atmospheric carbon dioxide, most global climate models fix biome distribution to current geographic conditions. Previous biome maps either remain unchanging or shift without taking into account climatic feedbacks such as radiation and temperature. We develop a model that examines the albedo-related effects of biome distribution on global temperature. The model was tested on historical biome changes since 1860 and the results fit both the observed temperature trend and order of magnitude change. The model is then used to generate an optimized future biome distribution that minimizes projected greenhouse effects on global temperature. Because of the complexity of this combinatorial search, an artificial intelligence method, the genetic algorithm, was employed. The method is to adjust biome areas subject to a constant global temperature and total surface area constraint. For regulating global temperature, oceans are found to dominate continental biomes. Algal beds are significant radiative levers as are other carbon intensive biomes including estuaries and tropical deciduous forests. To hold global temperature constant over the next 70 years this simulation requires that deserts decrease and forested areas increase. The effect of biome change on global temperature is revealed as a significant forecasting factor.

  17. Functional Comparison of Bacteria from the Human Gut and Closely Related Non-Gut Bacteria Reveals the Importance of Conjugation and a Paucity of Motility and Chemotaxis Functions in the Gut Environment.

    PubMed

    Dobrijevic, Dragana; Abraham, Anne-Laure; Jamet, Alexandre; Maguin, Emmanuelle; van de Guchte, Maarten

    2016-01-01

    The human GI tract is a complex and still poorly understood environment, inhabited by one of the densest microbial communities on earth. The gut microbiota is shaped by millennia of evolution to co-exist with the host in commensal or symbiotic relationships. Members of the gut microbiota perform specific molecular functions important in the human gut environment. This can be illustrated by the presence of a highly expanded repertoire of proteins involved in carbohydrate metabolism, in phase with the large diversity of polysaccharides originating from the diet or from the host itself that can be encountered in this environment. In order to identify other bacterial functions that are important in the human gut environment, we investigated the distribution of functional groups of proteins in a group of human gut bacteria and their close non-gut relatives. Complementary to earlier global comparisons between different ecosystems, this approach should allow a closer focus on a group of functions directly related to the gut environment while avoiding functions related to taxonomically divergent microbiota composition, which may or may not be relevant for gut homeostasis. We identified several functions that are overrepresented in the human gut bacteria which had not been recognized in a global approach. The observed under-representation of certain other functions may be equally important for gut homeostasis. Together, these analyses provide us with new information about this environment so critical to our health and well-being.

  18. Functional Comparison of Bacteria from the Human Gut and Closely Related Non-Gut Bacteria Reveals the Importance of Conjugation and a Paucity of Motility and Chemotaxis Functions in the Gut Environment

    PubMed Central

    Dobrijevic, Dragana; Abraham, Anne-Laure; Jamet, Alexandre; Maguin, Emmanuelle; van de Guchte, Maarten

    2016-01-01

    The human GI tract is a complex and still poorly understood environment, inhabited by one of the densest microbial communities on earth. The gut microbiota is shaped by millennia of evolution to co-exist with the host in commensal or symbiotic relationships. Members of the gut microbiota perform specific molecular functions important in the human gut environment. This can be illustrated by the presence of a highly expanded repertoire of proteins involved in carbohydrate metabolism, in phase with the large diversity of polysaccharides originating from the diet or from the host itself that can be encountered in this environment. In order to identify other bacterial functions that are important in the human gut environment, we investigated the distribution of functional groups of proteins in a group of human gut bacteria and their close non-gut relatives. Complementary to earlier global comparisons between different ecosystems, this approach should allow a closer focus on a group of functions directly related to the gut environment while avoiding functions related to taxonomically divergent microbiota composition, which may or may not be relevant for gut homeostasis. We identified several functions that are overrepresented in the human gut bacteria which had not been recognized in a global approach. The observed under-representation of certain other functions may be equally important for gut homeostasis. Together, these analyses provide us with new information about this environment so critical to our health and well-being. PMID:27416027

  19. Disentangling Environmental and Anthropogenic Impacts on the Distribution of Unintentionally Introduced Invasive Alien Insects in Mainland China

    PubMed Central

    Zhao, Cai-Yun; Xu, Jing; Liu, Xiao-Yan

    2017-01-01

    Abstract Globalization increases the opportunities for unintentionally introduced invasive alien species, especially for insects, and most of these species could damage ecosystems and cause economic loss in China. In this study, we analyzed drivers of the distribution of unintentionally introduced invasive alien insects. Based on the number of unintentionally introduced invasive alien insects and their presence/absence records in each province in mainland China, regression trees were built to elucidate the roles of environmental and anthropogenic factors on the number distribution and similarity of species composition of these insects. Classification and regression trees indicated climatic suitability (the mean temperature in January) and human economic activity (sum of total freight) are primary drivers for the number distribution pattern of unintentionally introduced invasive alien insects at provincial scale, while only environmental factors (the mean January temperature, the annual precipitation and the areas of provinces) significantly affect the similarity of them based on the multivariate regression trees. PMID:28973576

  20. A robust close-range photogrammetric target extraction algorithm for size and type variant targets

    NASA Astrophysics Data System (ADS)

    Nyarko, Kofi; Thomas, Clayton; Torres, Gilbert

    2016-05-01

    The Photo-G program conducted by Naval Air Systems Command at the Atlantic Test Range in Patuxent River, Maryland, uses photogrammetric analysis of large amounts of real-world imagery to characterize the motion of objects in a 3-D scene. Current approaches involve several independent processes including target acquisition, target identification, 2-D tracking of image features, and 3-D kinematic state estimation. Each process has its own inherent complications and corresponding degrees of both human intervention and computational complexity. One approach being explored for automated target acquisition relies on exploiting the pixel intensity distributions of photogrammetric targets, which tend to be patterns with bimodal intensity distributions. The bimodal distribution partitioning algorithm utilizes this distribution to automatically deconstruct a video frame into regions of interest (ROI) that are merged and expanded to target boundaries, from which ROI centroids are extracted to mark target acquisition points. This process has proved to be scale, position and orientation invariant, as well as fairly insensitive to global uniform intensity disparities.

  1. Global Priorities for Marine Biodiversity Conservation

    PubMed Central

    Selig, Elizabeth R.; Turner, Will R.; Troëng, Sebastian; Wallace, Bryan P.; Halpern, Benjamin S.; Kaschner, Kristin; Lascelles, Ben G.; Carpenter, Kent E.; Mittermeier, Russell A.

    2014-01-01

    In recent decades, many marine populations have experienced major declines in abundance, but we still know little about where management interventions may help protect the highest levels of marine biodiversity. We used modeled spatial distribution data for nearly 12,500 species to quantify global patterns of species richness and two measures of endemism. By combining these data with spatial information on cumulative human impacts, we identified priority areas where marine biodiversity is most and least impacted by human activities, both within Exclusive Economic Zones (EEZs) and Areas Beyond National Jurisdiction (ABNJ). Our analyses highlighted places that are both accepted priorities for marine conservation like the Coral Triangle, as well as less well-known locations in the southwest Indian Ocean, western Pacific Ocean, Arctic and Antarctic Oceans, and within semi-enclosed seas like the Mediterranean and Baltic Seas. Within highly impacted priority areas, climate and fishing were the biggest stressors. Although new priorities may arise as we continue to improve marine species range datasets, results from this work are an essential first step in guiding limited resources to regions where investment could best sustain marine biodiversity. PMID:24416151

  2. Global priorities for marine biodiversity conservation.

    PubMed

    Selig, Elizabeth R; Turner, Will R; Troëng, Sebastian; Wallace, Bryan P; Halpern, Benjamin S; Kaschner, Kristin; Lascelles, Ben G; Carpenter, Kent E; Mittermeier, Russell A

    2014-01-01

    In recent decades, many marine populations have experienced major declines in abundance, but we still know little about where management interventions may help protect the highest levels of marine biodiversity. We used modeled spatial distribution data for nearly 12,500 species to quantify global patterns of species richness and two measures of endemism. By combining these data with spatial information on cumulative human impacts, we identified priority areas where marine biodiversity is most and least impacted by human activities, both within Exclusive Economic Zones (EEZs) and Areas Beyond National Jurisdiction (ABNJ). Our analyses highlighted places that are both accepted priorities for marine conservation like the Coral Triangle, as well as less well-known locations in the southwest Indian Ocean, western Pacific Ocean, Arctic and Antarctic Oceans, and within semi-enclosed seas like the Mediterranean and Baltic Seas. Within highly impacted priority areas, climate and fishing were the biggest stressors. Although new priorities may arise as we continue to improve marine species range datasets, results from this work are an essential first step in guiding limited resources to regions where investment could best sustain marine biodiversity.

  3. The ecology of religious beliefs

    PubMed Central

    Botero, Carlos A.; Gardner, Beth; Kirby, Kathryn R.; Bulbulia, Joseph; Gavin, Michael C.; Gray, Russell D.

    2014-01-01

    Although ecological forces are known to shape the expression of sociality across a broad range of biological taxa, their role in shaping human behavior is currently disputed. Both comparative and experimental evidence indicate that beliefs in moralizing high gods promote cooperation among humans, a behavioral attribute known to correlate with environmental harshness in nonhuman animals. Here we combine fine-grained bioclimatic data with the latest statistical tools from ecology and the social sciences to evaluate the potential effects of environmental forces, language history, and culture on the global distribution of belief in moralizing high gods (n = 583 societies). After simultaneously accounting for potential nonindependence among societies because of shared ancestry and cultural diffusion, we find that these beliefs are more prevalent among societies that inhabit poorer environments and are more prone to ecological duress. In addition, we find that these beliefs are more likely in politically complex societies that recognize rights to movable property. Overall, our multimodel inference approach predicts the global distribution of beliefs in moralizing high gods with an accuracy of 91%, and estimates the relative importance of different potential mechanisms by which this spatial pattern may have arisen. The emerging picture is neither one of pure cultural transmission nor of simple ecological determinism, but rather a complex mixture of social, cultural, and environmental influences. Our methods and findings provide a blueprint for how the increasing wealth of ecological, linguistic, and historical data can be leveraged to understand the forces that have shaped the behavior of our own species. PMID:25385605

  4. Global earthquake fatalities and population

    USGS Publications Warehouse

    Holzer, Thomas L.; Savage, James C.

    2013-01-01

    Modern global earthquake fatalities can be separated into two components: (1) fatalities from an approximately constant annual background rate that is independent of world population growth and (2) fatalities caused by earthquakes with large human death tolls, the frequency of which is dependent on world population. Earthquakes with death tolls greater than 100,000 (and 50,000) have increased with world population and obey a nonstationary Poisson distribution with rate proportional to population. We predict that the number of earthquakes with death tolls greater than 100,000 (50,000) will increase in the 21st century to 8.7±3.3 (20.5±4.3) from 4 (7) observed in the 20th century if world population reaches 10.1 billion in 2100. Combining fatalities caused by the background rate with fatalities caused by catastrophic earthquakes (>100,000 fatalities) indicates global fatalities in the 21st century will be 2.57±0.64 million if the average post-1900 death toll for catastrophic earthquakes (193,000) is assumed.

  5. Climate change: the potential impact on occupational exposure to pesticides.

    PubMed

    Gatto, Maria Pia; Cabella, Renato; Gherardi, Monica

    2016-01-01

    This study investigates the possible influence of global climate change (GCC) on exposure to plant protection products (PPP) in the workplace. The paper has evaluated the main potential relationships between GCC and occupational exposure to pesticides, by highlighting how global warming might affect their future use and by reviewing its possible consequence on workers' exposure. Global warming, influencing the spatial and temporal distribution and proliferation of weeds, the impact of already present insect pests and pathogens and the introduction of new infesting species, could cause a changed use of pesticides in terms of higher amounts, doses and types of products applied, so influencing the human exposure to them during agricultural activities. GCC, in particular heat waves, may also potentially have impact on workers' susceptibility to pesticides absorption. Prevention policies of health in the workplace must be ready to address new risks from occupational exposure to pesticide, presumably different from current risks, since an increased use may be expected.

  6. The Teaching of Anthropogenic Climate Change and Earth Science via Technology-Enabled Inquiry Education

    NASA Technical Reports Server (NTRS)

    Bush, Drew; Sieber, Renee; Seiler, Gale; Chandler, Mark

    2016-01-01

    A gap has existed between the tools and processes of scientists working on anthropogenic global climate change (AGCC) and the technologies and curricula available to educators teaching the subject through student inquiry. Designing realistic scientific inquiry into AGCC poses a challenge because research on it relies on complex computer models, globally distributed data sets, and complex laboratory and data collection procedures. Here we examine efforts by the scientific community and educational researchers to design new curricula and technology that close this gap and impart robust AGCC and Earth Science understanding. We find technology-based teaching shows promise in promoting robust AGCC understandings if associated curricula address mitigating factors such as time constraints in incorporating technology and the need to support teachers implementing AGCC and Earth Science inquiry. We recommend the scientific community continue to collaborate with educational researchers to focus on developing those inquiry technologies and curricula that use realistic scientific processes from AGCC research and/or the methods for determining how human society should respond to global change.

  7. High resolution global gridded data for use in population studies

    NASA Astrophysics Data System (ADS)

    Lloyd, Christopher T.; Sorichetta, Alessandro; Tatem, Andrew J.

    2017-01-01

    Recent years have seen substantial growth in openly available satellite and other geospatial data layers, which represent a range of metrics relevant to global human population mapping at fine spatial scales. The specifications of such data differ widely and therefore the harmonisation of data layers is a prerequisite to constructing detailed and contemporary spatial datasets which accurately describe population distributions. Such datasets are vital to measure impacts of population growth, monitor change, and plan interventions. To this end the WorldPop Project has produced an open access archive of 3 and 30 arc-second resolution gridded data. Four tiled raster datasets form the basis of the archive: (i) Viewfinder Panoramas topography clipped to Global ADMinistrative area (GADM) coastlines; (ii) a matching ISO 3166 country identification grid; (iii) country area; (iv) and slope layer. Further layers include transport networks, landcover, nightlights, precipitation, travel time to major cities, and waterways. Datasets and production methodology are here described. The archive can be downloaded both from the WorldPop Dataverse Repository and the WorldPop Project website.

  8. High resolution global gridded data for use in population studies.

    PubMed

    Lloyd, Christopher T; Sorichetta, Alessandro; Tatem, Andrew J

    2017-01-31

    Recent years have seen substantial growth in openly available satellite and other geospatial data layers, which represent a range of metrics relevant to global human population mapping at fine spatial scales. The specifications of such data differ widely and therefore the harmonisation of data layers is a prerequisite to constructing detailed and contemporary spatial datasets which accurately describe population distributions. Such datasets are vital to measure impacts of population growth, monitor change, and plan interventions. To this end the WorldPop Project has produced an open access archive of 3 and 30 arc-second resolution gridded data. Four tiled raster datasets form the basis of the archive: (i) Viewfinder Panoramas topography clipped to Global ADMinistrative area (GADM) coastlines; (ii) a matching ISO 3166 country identification grid; (iii) country area; (iv) and slope layer. Further layers include transport networks, landcover, nightlights, precipitation, travel time to major cities, and waterways. Datasets and production methodology are here described. The archive can be downloaded both from the WorldPop Dataverse Repository and the WorldPop Project website.

  9. Using animation quality metric to improve efficiency of global illumination computation for dynamic environments

    NASA Astrophysics Data System (ADS)

    Myszkowski, Karol; Tawara, Takehiro; Seidel, Hans-Peter

    2002-06-01

    In this paper, we consider applications of perception-based video quality metrics to improve the performance of global lighting computations for dynamic environments. For this purpose we extend the Visible Difference Predictor (VDP) developed by Daly to handle computer animations. We incorporate into the VDP the spatio-velocity CSF model developed by Kelly. The CSF model requires data on the velocity of moving patterns across the image plane. We use the 3D image warping technique to compensate for the camera motion, and we conservatively assume that the motion of animated objects (usually strong attractors of the visual attention) is fully compensated by the smooth pursuit eye motion. Our global illumination solution is based on stochastic photon tracing and takes advantage of temporal coherence of lighting distribution, by processing photons both in the spatial and temporal domains. The VDP is used to keep noise inherent in stochastic methods below the sensitivity level of the human observer. As a result a perceptually-consistent quality across all animation frames is obtained.

  10. Holocene extinction dynamics of Equus hydruntinus, a late-surviving European megafaunal mammal

    NASA Astrophysics Data System (ADS)

    Crees, Jennifer J.; Turvey, Samuel T.

    2014-05-01

    The European wild ass (Equus hydruntinus) is a globally extinct Eurasian equid. This species was widespread in Europe and southwest Asia during the Late Pleistocene, but its distribution became restricted to southern Europe and adjacent geographic regions in the Holocene. Previous research on E. hydruntinus has focused predominantly on its taxonomy and Late Pleistocene distribution. However, its Holocene distribution and extinction remain poorly understood, despite the fact that the European wild ass represents one of Europe's very few globally extinct Holocene megafaunal mammal species. We summarise all available Holocene zooarchaeological spatio-temporal occurrence data for the species, and analyse patterns of its distribution and extinction using point pattern analysis (kernel density estimation and Clark Evans index) and optimal linear estimation. We demonstrate that the geographic range of E. hydruntinus became highly fragmented into discrete subpopulations during the Holocene, which were associated with separate regions of open habitat and which became progressively extinct between the Neolithic and Iron Age. These data challenge previous suggestions of the late survival of E. hydruntinus into the medieval period in Spain, and instead suggest that postglacial climate-driven vegetational changes were a primary factor responsible for extinction of the species, driving isolation of small remnant subpopulations that may have been increasingly vulnerable to human exploitation. This study contributes to a more nuanced understanding of Late Quaternary species extinctions in Eurasia, suggesting that they were temporally staggered and distinct in their respective extinction trajectories.

  11. Animal viral diseases and global change: bluetongue and West Nile fever as paradigms

    PubMed Central

    Jiménez-Clavero, Miguel Á

    2012-01-01

    Environmental changes have an undoubted influence on the appearance, distribution, and evolution of infectious diseases, and notably on those transmitted by vectors. Global change refers to environmental changes arising from human activities affecting the fundamental mechanisms operating in the biosphere. This paper discusses the changes observed in recent times with regard to some important arboviral (arthropod-borne viral) diseases of animals, and the role global change could have played in these variations. Two of the most important arboviral diseases of animals, bluetongue (BT) and West Nile fever/encephalitis (WNF), have been selected as models. In both cases, in the last 15 years an important leap forward has been observed, which has lead to considering them emerging diseases in different parts of the world. BT, affecting domestic ruminants, has recently afflicted livestock in Europe in an unprecedented epizootic, causing enormous economic losses. WNF affects wildlife (birds), domestic animals (equines), and humans, thus, beyond the economic consequences of its occurrence, as a zoonotic disease, it poses an important public health threat. West Nile virus (WNV) has expanded in the last 12 years worldwide, and particularly in the Americas, where it first occurred in 1999, extending throughout the Americas relentlessly since then, causing a severe epidemic of disastrous consequences for public health, wildlife, and livestock. In Europe, WNV is known long time ago, but it is since the last years of the twentieth century that its incidence has risen substantially. Circumstances such as global warming, changes in land use and water management, increase in travel, trade of animals, and others, can have an important influence in the observed changes in both diseases. The following question is raised: What is the contribution of global changes to the current increase of these diseases in the world? PMID:22707955

  12. The Tropospheric Ozone Assessment Report (TOAR): A community-wide effort to quantify tropospheric ozone in a rapidly changing world

    NASA Astrophysics Data System (ADS)

    Cooper, O. R.; Schultz, M.; Paoletti, E.; Galbally, I. E.; Naja, M. K.; Tarasick, D. W.; Evans, M. J.; Thompson, A. M.

    2017-12-01

    Tropospheric ozone is a greenhouse gas and pollutant detrimental to human health and crop and ecosystem productivity. Since 1990 a large portion of the anthropogenic emissions that react in the atmosphere to produce ozone has shifted from North America and Europe to Asia. This rapid shift, coupled with limited ozone monitoring in developing nations, left scientists unable to answer the most basic questions: Which regions of the world have the greatest human and plant exposure to ozone pollution? Is ozone continuing to decline in nations with strong emissions controls? To what extent is ozone increasing in the developing world? How can the atmospheric sciences community facilitate access to the ozone metrics necessary for quantifying ozone's impact on human health and crop/ecosystem productivity? To answer these questions the International Global Atmospheric Chemistry Project (IGAC) initiated the Tropospheric Ozone Assessment Report (TOAR). With over 220 member scientists and air quality specialists from 36 nations, TOAR's mission is to provide the research community with an up-to-date scientific assessment of tropospheric ozone's global distribution and trends from the surface to the tropopause. TOAR has also built the world's largest database of surface ozone observations and generated ozone exposure and dose metrics at thousands of measurement sites around the world, freely accessible for research on the global-scale impact of ozone on climate, human health and crop/ecosystem productivity. Plots of these metrics show the regions of the world with the greatest ozone exposure for humans and crops/ecosystems, at least in areas where observations are available. The results also highlight regions where air quality is improving and where it has degraded. TOAR has also conducted the first intercomparison of tropospheric column ozone from ozonesondes and multiple satellite instruments, which provide similar estimates of the present-day tropospheric ozone burden.

  13. Mangroves Response to Climate Change: A Review of Recent Findings on Mangrove Extension and Distribution.

    PubMed

    Godoy, Mario D P; de Lacerda, Luiz D

    2015-01-01

    Mangroves function as a natural coastline protection for erosion and inundation, providing important environmental services. Due to their geographical distribution at the continent-ocean interface, the mangrove habitat may suffer heavy impacts from global climate change, maximized by local human activities occurring in a given coastal region. This review analyzed the literature published over the last 25 years, on the documented response of mangroves to environmental change caused by global climate change, taking into consideration 104 case studies and predictive modeling, worldwide. Most studies appeared after the year 2000, as a response to the 1997 IPCC report. Although many reports showed that the world's mangrove area is decreasing due to direct anthropogenic pressure, several others, however, showed that in a variety of habitats mangroves are expanding as a response to global climate change. Worldwide, pole ward migration is extending the latitudinal limits of mangroves due to warmer winters and decreasing the frequency of extreme low temperatures, whereas in low-lying coastal plains, mangroves are migrating landward due to sea level rise, as demonstrated for the NE Brazilian coast. Taking into consideration climate change alone, mangroves in most areas will display a positive response. In some areas however, such as low-lying oceanic islands, such as in the Pacific and the Caribbean, and constrained coastlines, such as the SE Brazilian coast, mangroves will most probably not survive.

  14. Late Pleistocene climate drivers of early human migration.

    PubMed

    Timmermann, Axel; Friedrich, Tobias

    2016-10-06

    On the basis of fossil and archaeological data it has been hypothesized that the exodus of Homo sapiens out of Africa and into Eurasia between ~50-120 thousand years ago occurred in several orbitally paced migration episodes. Crossing vegetated pluvial corridors from northeastern Africa into the Arabian Peninsula and the Levant and expanding further into Eurasia, Australia and the Americas, early H. sapiens experienced massive time-varying climate and sea level conditions on a variety of timescales. Hitherto it has remained difficult to quantify the effect of glacial- and millennial-scale climate variability on early human dispersal and evolution. Here we present results from a numerical human dispersal model, which is forced by spatiotemporal estimates of climate and sea level changes over the past 125 thousand years. The model simulates the overall dispersal of H. sapiens in close agreement with archaeological and fossil data and features prominent glacial migration waves across the Arabian Peninsula and the Levant region around 106-94, 89-73, 59-47 and 45-29 thousand years ago. The findings document that orbital-scale global climate swings played a key role in shaping Late Pleistocene global population distributions, whereas millennial-scale abrupt climate changes, associated with Dansgaard-Oeschger events, had a more limited regional effect.

  15. Mapping the zebrafish brain methylome using reduced representation bisulfite sequencing

    PubMed Central

    Chatterjee, Aniruddha; Ozaki, Yuichi; Stockwell, Peter A; Horsfield, Julia A; Morison, Ian M; Nakagawa, Shinichi

    2013-01-01

    Reduced representation bisulfite sequencing (RRBS) has been used to profile DNA methylation patterns in mammalian genomes such as human, mouse and rat. The methylome of the zebrafish, an important animal model, has not yet been characterized at base-pair resolution using RRBS. Therefore, we evaluated the technique of RRBS in this model organism by generating four single-nucleotide resolution DNA methylomes of adult zebrafish brain. We performed several simulations to show the distribution of fragments and enrichment of CpGs in different in silico reduced representation genomes of zebrafish. Four RRBS brain libraries generated 98 million sequenced reads and had higher frequencies of multiple mapping than equivalent human RRBS libraries. The zebrafish methylome indicates there is higher global DNA methylation in the zebrafish genome compared with its equivalent human methylome. This observation was confirmed by RRBS of zebrafish liver. High coverage CpG dinucleotides are enriched in CpG island shores more than in the CpG island core. We found that 45% of the mapped CpGs reside in gene bodies, and 7% in gene promoters. This analysis provides a roadmap for generating reproducible base-pair level methylomes for zebrafish using RRBS and our results provide the first evidence that RRBS is a suitable technique for global methylation analysis in zebrafish. PMID:23975027

  16. Late Pleistocene climate drivers of early human migration

    NASA Astrophysics Data System (ADS)

    Timmermann, Axel; Friedrich, Tobias

    2016-10-01

    On the basis of fossil and archaeological data it has been hypothesized that the exodus of Homo sapiens out of Africa and into Eurasia between ~50-120 thousand years ago occurred in several orbitally paced migration episodes. Crossing vegetated pluvial corridors from northeastern Africa into the Arabian Peninsula and the Levant and expanding further into Eurasia, Australia and the Americas, early H. sapiens experienced massive time-varying climate and sea level conditions on a variety of timescales. Hitherto it has remained difficult to quantify the effect of glacial- and millennial-scale climate variability on early human dispersal and evolution. Here we present results from a numerical human dispersal model, which is forced by spatiotemporal estimates of climate and sea level changes over the past 125 thousand years. The model simulates the overall dispersal of H. sapiens in close agreement with archaeological and fossil data and features prominent glacial migration waves across the Arabian Peninsula and the Levant region around 106-94, 89-73, 59-47 and 45-29 thousand years ago. The findings document that orbital-scale global climate swings played a key role in shaping Late Pleistocene global population distributions, whereas millennial-scale abrupt climate changes, associated with Dansgaard-Oeschger events, had a more limited regional effect.

  17. Multiple geographic origins of commensalism and complex dispersal history of Black Rats.

    PubMed

    Aplin, Ken P; Suzuki, Hitoshi; Chinen, Alejandro A; Chesser, R Terry; Ten Have, José; Donnellan, Stephen C; Austin, Jeremy; Frost, Angela; Gonzalez, Jean Paul; Herbreteau, Vincent; Catzeflis, Francois; Soubrier, Julien; Fang, Yin-Ping; Robins, Judith; Matisoo-Smith, Elizabeth; Bastos, Amanda D S; Maryanto, Ibnu; Sinaga, Martua H; Denys, Christiane; Van Den Bussche, Ronald A; Conroy, Chris; Rowe, Kevin; Cooper, Alan

    2011-01-01

    The Black Rat (Rattus rattus) spread out of Asia to become one of the world's worst agricultural and urban pests, and a reservoir or vector of numerous zoonotic diseases, including the devastating plague. Despite the global scale and inestimable cost of their impacts on both human livelihoods and natural ecosystems, little is known of the global genetic diversity of Black Rats, the timing and directions of their historical dispersals, and the risks associated with contemporary movements. We surveyed mitochondrial DNA of Black Rats collected across their global range as a first step towards obtaining an historical genetic perspective on this socioeconomically important group of rodents. We found a strong phylogeographic pattern with well-differentiated lineages of Black Rats native to South Asia, the Himalayan region, southern Indochina, and northern Indochina to East Asia, and a diversification that probably commenced in the early Middle Pleistocene. We also identified two other currently recognised species of Rattus as potential derivatives of a paraphyletic R. rattus. Three of the four phylogenetic lineage units within R. rattus show clear genetic signatures of major population expansion in prehistoric times, and the distribution of particular haplogroups mirrors archaeologically and historically documented patterns of human dispersal and trade. Commensalism clearly arose multiple times in R. rattus and in widely separated geographic regions, and this may account for apparent regionalism in their associated pathogens. Our findings represent an important step towards deeper understanding the complex and influential relationship that has developed between Black Rats and humans, and invite a thorough re-examination of host-pathogen associations among Black Rats.

  18. Multiple Geographic Origins of Commensalism and Complex Dispersal History of Black Rats

    PubMed Central

    Aplin, Ken P.; Suzuki, Hitoshi; Chinen, Alejandro A.; Chesser, R. Terry; ten Have, José; Donnellan, Stephen C.; Austin, Jeremy; Frost, Angela; Gonzalez, Jean Paul; Herbreteau, Vincent; Catzeflis, Francois; Soubrier, Julien; Fang, Yin-Ping; Robins, Judith; Matisoo-Smith, Elizabeth; Bastos, Amanda D. S.; Maryanto, Ibnu; Sinaga, Martua H.; Denys, Christiane; Van Den Bussche, Ronald A.; Conroy, Chris; Rowe, Kevin; Cooper, Alan

    2011-01-01

    The Black Rat (Rattus rattus) spread out of Asia to become one of the world's worst agricultural and urban pests, and a reservoir or vector of numerous zoonotic diseases, including the devastating plague. Despite the global scale and inestimable cost of their impacts on both human livelihoods and natural ecosystems, little is known of the global genetic diversity of Black Rats, the timing and directions of their historical dispersals, and the risks associated with contemporary movements. We surveyed mitochondrial DNA of Black Rats collected across their global range as a first step towards obtaining an historical genetic perspective on this socioeconomically important group of rodents. We found a strong phylogeographic pattern with well-differentiated lineages of Black Rats native to South Asia, the Himalayan region, southern Indochina, and northern Indochina to East Asia, and a diversification that probably commenced in the early Middle Pleistocene. We also identified two other currently recognised species of Rattus as potential derivatives of a paraphyletic R. rattus. Three of the four phylogenetic lineage units within R. rattus show clear genetic signatures of major population expansion in prehistoric times, and the distribution of particular haplogroups mirrors archaeologically and historically documented patterns of human dispersal and trade. Commensalism clearly arose multiple times in R. rattus and in widely separated geographic regions, and this may account for apparent regionalism in their associated pathogens. Our findings represent an important step towards deeper understanding the complex and influential relationship that has developed between Black Rats and humans, and invite a thorough re-examination of host-pathogen associations among Black Rats. PMID:22073158

  19. Assessing commercial feasibility: a practical and ethical prerequisite for human clinical testing.

    PubMed

    Kirk, Dwayne D; Robert, Jason Scott

    2005-01-01

    This article proposes that an assessment of commercial feasibility should be integrated as a prerequisite for human clinical testing to improve the quality and relevance of materials being investigated, as an ethical aspect for human subject protection, and as a means of improving accountability where clinical development is funded on promises of successful translational research. A commercial feasibility analysis is not currently required to justify human clinical testing, but is assumed to have been conducted by industry participants, and use of public funds for clinical trials should be defensible in the same manner. Plant-made vaccines (PMVs) are offered in this discussion as a model for evaluating the relevance of commercial feasibility before human clinical testing. PMVs have been proposed as a potential solution for global health, based on a vision of immunizing the world against many infectious diseases. Such a vision depends on translating current knowledge in plant science and immunology into a potent vaccine that can be readily manufactured and distributed to those in need. But new biologics such as PMVs may fail to be manufactured due to financial or logistical reasons--particularly for orphan diseases without sufficient revenue incentive for industry investment--regardless of the effectiveness which might be demonstrated in human clinical testing. Moreover, all potential instruments of global health depend on translational agents well beyond the lab in order to reach those in need. A model compromising five criteria for commercial feasibility is suggested for inclusion by regulators and ethics review boards as part of the review process prior to approval of human clinical testing. Use of this model may help to facilitate safe and appropriate translational research and bring more immediate benefits to those in need.

  20. Occurrence and distribution of Indian primates

    USGS Publications Warehouse

    Karanth, K.K.; Nichols, J.D.; Hines, J.E.

    2010-01-01

    Global and regional species conservation efforts are hindered by poor distribution data and range maps. Many Indian primates face extinction, but assessments of population status are hindered by lack of reliable distribution data. We estimated the current occurrence and distribution of 15 Indian primates by applying occupancy models to field data from a country-wide survey of local experts. We modeled species occurrence in relation to ecological and social covariates (protected areas, landscape characteristics, and human influences), which we believe are critical to determining species occurrence in India. We found evidence that protected areas positively influence occurrence of seven species and for some species are their only refuge. We found evergreen forests to be more critical for some primates along with temperate and deciduous forests. Elevation negatively influenced occurrence of three species. Lower human population density was positively associated with occurrence of five species, and higher cultural tolerance was positively associated with occurrence of three species. We find that 11 primates occupy less than 15% of the total land area of India. Vulnerable primates with restricted ranges are Golden langur, Arunachal macaque, Pig-tailed macaque, stump-tailed macaque, Phayre's leaf monkey, Nilgiri langur and Lion-tailed macaque. Only Hanuman langur and rhesus macaque are widely distributed. We find occupancy modeling to be useful in determining species ranges, and in agreement with current species ranking and IUCN status. In landscapes where monitoring efforts require optimizing cost, effort and time, we used ecological and social covariates to reliably estimate species occurrence and focus species conservation efforts. ?? Elsevier Ltd.

  1. From heavy-tailed to exponential distribution of interevent time in cellphone top-up behavior

    NASA Astrophysics Data System (ADS)

    Wang, Peng; Ma, Qiang

    2017-05-01

    Cellphone top-up is a kind of activities, to a great extent, driven by individual consumption rather than personal interest and this behavior should be stable in common sense. However, our researches find there are heavy-tails both in interevent time distribution and purchase frequency distribution at the global level. Moreover, we find both memories of interevent time and unit price series are negative, which is different from previous bursty activities. We divide individuals into five groups according to the purchase frequency and the average unit price respectively. Then, the group analysis shows some significant heterogeneity in this behavior. On one hand, we obtain only the individuals with high purchase frequency have the heavy-tailed nature in interevent time distribution. On the contrary, the negative memory is only caused by low purchase-frequency individuals without burstiness. On the other hand, the individuals with different preferential price also have different power-law exponents at the group level and there is no data collapse after rescaling between these distributions. Our findings produce the evidence for the significant heterogeneity of human activity in many aspects.

  2. Globalization and health: results and options.

    PubMed

    Cornia, G A

    2001-01-01

    The last two decades have witnessed the emergence and consolidation of an economic paradigm which emphasizes domestic deregulation and the removal of barriers to international trade and finance. If properly managed, such an approach can lead to perceptible gains in health status. Where markets are non-exclusionary, regulatory institutions strong and safety nets in place, globalization enhances the performance of countries with a good human and physical infrastructure but narrow domestic markets. Health gains in China, Costa Rica, the East Asian "tiger economies" and Viet Nam can be attributed in part to their growing access to global markets, savings and technology. However, for most of the remaining countries, many of them in Africa, Latin America and Eastern Europe, globalization has not lived up to its promises due to a combination of poor domestic conditions, an unequal distribution of foreign investments and the imposition of new conditions further limiting the access of their exports to the OECD markets. In these developing countries, the last twenty years have brought about a slow, unstable and unequal pattern of growth and stagnation in health indicators. Autarky is not the answer to this situation, but neither is premature, unconditional and unselective globalization. Further unilateral liberalization is unlikely to help them to improve their economic performance and health conditions. For them, a gradual and selective integration into the world economy linked to the removal of asymmetries in global markets and to the creation of democratic institutions of global governance is preferable to instant globalization.

  3. Globalization and health: results and options.

    PubMed Central

    Cornia, G. A.

    2001-01-01

    The last two decades have witnessed the emergence and consolidation of an economic paradigm which emphasizes domestic deregulation and the removal of barriers to international trade and finance. If properly managed, such an approach can lead to perceptible gains in health status. Where markets are non-exclusionary, regulatory institutions strong and safety nets in place, globalization enhances the performance of countries with a good human and physical infrastructure but narrow domestic markets. Health gains in China, Costa Rica, the East Asian "tiger economies" and Viet Nam can be attributed in part to their growing access to global markets, savings and technology. However, for most of the remaining countries, many of them in Africa, Latin America and Eastern Europe, globalization has not lived up to its promises due to a combination of poor domestic conditions, an unequal distribution of foreign investments and the imposition of new conditions further limiting the access of their exports to the OECD markets. In these developing countries, the last twenty years have brought about a slow, unstable and unequal pattern of growth and stagnation in health indicators. Autarky is not the answer to this situation, but neither is premature, unconditional and unselective globalization. Further unilateral liberalization is unlikely to help them to improve their economic performance and health conditions. For them, a gradual and selective integration into the world economy linked to the removal of asymmetries in global markets and to the creation of democratic institutions of global governance is preferable to instant globalization. PMID:11584731

  4. A Tri-network Model of Human Semantic Processing

    PubMed Central

    Xu, Yangwen; He, Yong; Bi, Yanchao

    2017-01-01

    Humans process the meaning of the world via both verbal and nonverbal modalities. It has been established that widely distributed cortical regions are involved in semantic processing, yet the global wiring pattern of this brain system has not been considered in the current neurocognitive semantic models. We review evidence from the brain-network perspective, which shows that the semantic system is topologically segregated into three brain modules. Revisiting previous region-based evidence in light of these new network findings, we postulate that these three modules support multimodal experiential representation, language-supported representation, and semantic control. A tri-network neurocognitive model of semantic processing is proposed, which generates new hypotheses regarding the network basis of different types of semantic processes. PMID:28955266

  5. The impact of HIV/AIDS on human development in African countries.

    PubMed

    Boutayeb, Abdesslam

    2009-11-18

    In the present paper, we consider the impact of HIV/AIDS on human development in African countries, showing that, beyond health issues, this disease should and must be seen as a global development concern, affecting all components of human development. Consequently, we stress the necessity of multidisciplinary approaches that model, estimate and predict the real impact of HIV/AIDS on human development of African countries in order to optimise the strategies proposed by national countries, international institutions and their partners. In our search strategy, we relied on secondary information, mainly through National Human Development Reports of some African countries and regular publications released by the United Nations (UN), United Nations Development Programme (UNDP), World Health Organization (WHO) and the World Bank. We restricted ourselves to reports dealing explicitly with the impact of HIV/AIDS on human development in African countries. HIV/AIDS is affecting the global human development of African countries through its devastating impact on health and demographic indicators such as life expectancy at birth, healthcare assistance, age and sex distribution, economic indicators like income, work force, and economic growth, education and knowledge acquisition and other indicators like governance, gender inequality and human rights. On the basis of the national reports reviewed, it appears clearly that HIV/AIDS is no longer a crisis only for the healthcare sector, but presents a challenge to all sectors. Consequently, HIV/AIDS is a development question and should be viewed as such. The disease is impeding development by imposing a steady decline in the key indicators of human development and hence reversing the social and economic gains that African countries are striving to attain. Being at the same time a cause and consequence of poverty and underdevelopment, it constitutes a challenge to human security and human development by diminishing the chances of alleviating poverty and hunger, achieving universal primary education, promoting gender equality, reducing child and maternal mortality, and ensuring environmental sustainability.

  6. Accounting for sampling patterns reverses the relative importance of trade and climate for the global sharing of exotic plants

    USGS Publications Warehouse

    Sofaer, Helen R.; Jarnevich, Catherine S.

    2017-01-01

    AimThe distributions of exotic species reflect patterns of human-mediated dispersal, species climatic tolerances and a suite of other biotic and abiotic factors. The relative importance of each of these factors will shape how the spread of exotic species is affected by ongoing economic globalization and climate change. However, patterns of trade may be correlated with variation in scientific sampling effort globally, potentially confounding studies that do not account for sampling patterns.LocationGlobal.Time periodMuseum records, generally from the 1800s up to 2015.Major taxa studiedPlant species exotic to the United States.MethodsWe used data from the Global Biodiversity Information Facility (GBIF) to summarize the number of plant species with exotic occurrences in the United States that also occur in each other country world-wide. We assessed the relative importance of trade and climatic similarity for explaining variation in the number of shared species while evaluating several methods to account for variation in sampling effort among countries.ResultsAccounting for variation in sampling effort reversed the relative importance of trade and climate for explaining numbers of shared species. Trade was strongly correlated with numbers of shared U.S. exotic plants between the United States and other countries before, but not after, accounting for sampling variation among countries. Conversely, accounting for sampling effort strengthened the relationship between climatic similarity and species sharing. Using the number of records as a measure of sampling effort provided a straightforward approach for the analysis of occurrence data, whereas species richness estimators and rarefaction were less effective at removing sampling bias.Main conclusionsOur work provides support for broad-scale climatic limitation on the distributions of exotic species, illustrates the need to account for variation in sampling effort in large biodiversity databases, and highlights the difficulty in inferring causal links between the economic drivers of invasion and global patterns of exotic species occurrence.

  7. From the Myth of Level Playing Fields to the Reality of a Finite Planet

    PubMed Central

    Labonté, Ronald

    2016-01-01

    Despite the mythology that the global economy with its trade rules creates a ‘level playing field,’ international trade has never involved ‘level players.’ The inequalities in outcomes generated by the more powerful winning more frequently has led to innovative ideas for ex post redistribution to make the matches between the players both fairer, and in the analogy to basketball used by the authors, more interesting and even more competitive. The proposal for a Global Social Protection Fund, financed by a small tax on the winners to enhance social protection spending for the losers, presumably increasing the latter’s capabilities to compete more effectively in the global market game, is one such idea. It has much to commend it. Several problems, however, stand in its way, apart from those inherent within nations themselves and to which the authors give some attention. First, much global trade is now intra-firm rather than international, making calculations of which nations win or lose exceedingly difficult. Second, tax havens persist without the transparency and global regulatory oversights that would allow a better rendering of where winnings are stashed. Third, pre-distribution inequalities (those arising from market activities before government tax and transfer measures apply) are still increasing as labour’s power to wrestle global capital into some ameliorative social contract diminishes. Fourth, there are finite limits to a planet on the cusp of multiple environmental crises. These problems do not diminish the necessity of alternative policy playbooks such as the proposed Fund, but point to the need to embrace the new Sustainable Development Goals (SDGs) as a single set, such that economic growth for the bottom half of humanity includes deep structural reforms to both pre-distribution and redistribution, if the targets for environmental survival are to be met. PMID:26927404

  8. USGS global change research

    USGS Publications Warehouse

    ,

    1995-01-01

    The Earth's global environment--its interrelated climate, land, oceans, fresh water, atmospheric and ecological systems-has changed continually throughout Earth history. Human activities are having ever-increasing effects on these systems. Sustaining our environment as population and demands for resources increase requires a sound understanding of the causes and cycles of natural change and the effects of human activities on the Earth's environmental systems. The U.S. Global Change Research Program was authorized by Congress in 1989 to provide the scientific understanding necessary to develop national and international policies concerning global environmental issues, particularly global climate change. The program addresses questions such as: what factors determine global climate; have humans already begun to change the global climate; will the climate of the future be very different; what will be the effects of climate change; and how much confidence do we have in our predictions? Through understanding, we can improve our capability to predict change, reduce the adverse effects of human activities, and plan strategies for adapting to natural and human-induced environmental change.

  9. Innovation in globally distributed teams: the role of LMX, communication frequency, and member influence on team decisions.

    PubMed

    Gajendran, Ravi S; Joshi, Aparna

    2012-11-01

    For globally distributed teams charged with innovation, member contributions to the team are crucial for effective performance. Prior research, however, suggests that members of globally distributed teams often feel isolated and excluded from their team's activities and decisions. How can leaders of such teams foster member inclusion in team decisions? Drawing on leader-member exchange (LMX) theory, we propose that for distributed teams, LMX and communication frequency jointly shape member influence on team decisions. Findings from a test of our hypotheses using data from 40 globally distributed teams suggest that LMX can enhance member influence on team decisions when it is sustained through frequent leader-member communication. This joint effect is strengthened as team dispersion increases. At the team level, member influence on team decisions has a positive effect on team innovation. (c) 2012 APA, all rights reserved.

  10. Global trends in molecular epidemiology of HIV-1 during 2000–2007

    PubMed Central

    Hemelaar, Joris; Gouws, Eleanor; Ghys, Peter D.; Osmanov, Saladin

    2013-01-01

    Objective To estimate the global and regional distribution of HIV-1 subtypes and recombinants between 2000 and 2007. Design Country-specific HIV-1 molecular epidemiology data were combined with estimates of the number of HIV-infected people in each country. Method Cross-sectional HIV-1 subtyping data were collected from 65913 samples in 109 countries between 2000 and 2007. The distribution of HIV-1 subtypes in individual countries was weighted according to the number of HIV-infected people in each country to generate estimates of regional and global HIV-1 subtype distribution for the periods 2000–2003 and 2004–2007. Results Analysis of the global distribution of HIV-1 subtypes and recombinants in the two time periods indicated a broadly stable distribution of HIV-1 subtypes worldwide with a notable increase in the proportion of circulating recombinant forms (CRFs), a decrease in unique recombinant forms (URFs), and an overall increase in recombinants. In 2004–2007, subtype C accounted for nearly half (48%) of all global infections, followed by subtypes A (12%) and B (11%), CRF02_AG (8%), CRF01_AE (5%), subtype G (5%) and D(2%). Subtypes F, H, J and K together cause fewer than 1% of infections worldwide. Other CRFs and URFs are each responsible for 4% of global infections, bringing the combined total of worldwide CRFs to 16% and all recombinants (CRFs plus URFs) to 20%. Conclusions The global and regional distributions of individual subtypes and recombinants are broadly stable, although CRFs may play an increasing role in the HIV pandemic. The global diversity of HIV-1 poses a formidable challenge to HIV vaccine development. PMID:21297424

  11. Global heating distributions for January 1979 calculated from GLA assimilated and simulated model-based datasets

    NASA Technical Reports Server (NTRS)

    Schaack, Todd K.; Lenzen, Allen J.; Johnson, Donald R.

    1991-01-01

    This study surveys the large-scale distribution of heating for January 1979 obtained from five sources of information. Through intercomparison of these distributions, with emphasis on satellite-derived information, an investigation is conducted into the global distribution of atmospheric heating and the impact of observations on the diagnostic estimates of heating derived from assimilated datasets. The results indicate a substantial impact of satellite information on diagnostic estimates of heating in regions where there is a scarcity of conventional observations. The addition of satellite data provides information on the atmosphere's temperature and wind structure that is important for estimation of the global distribution of heating and energy exchange.

  12. Global Change and the Function and Distribution of Wetlands

    USGS Publications Warehouse

    Middleton, Beth A.

    2012-01-01

    The Global Change Ecology and Wetlands book series will highlight the latest research from the world leaders in the field of climate change in wetlands. Global Change and the Function and Distribution of Wetlands highlights information of importance to wetland ecologists.  The chapters include syntheses of international studies on the effects of drought on function and regeneration in wetlands, sea level rise and the distribution of mangrove swamps, former distributions of swamp species and future lessons from paleoecology, and shifts in atmospheric emissions across geographical regions in wetlands.  Overall, the book will contribute to a better understanding of the potential effects of climate change on world wetland distribution and function.

  13. Effects of global changes on the climatic niche of the tick Ixodes ricinus inferred by species distribution modelling.

    PubMed

    Porretta, Daniele; Mastrantonio, Valentina; Amendolia, Sara; Gaiarsa, Stefano; Epis, Sara; Genchi, Claudio; Bandi, Claudio; Otranto, Domenico; Urbanelli, Sandra

    2013-09-19

    Global climate change can seriously impact on the epidemiological dynamics of vector-borne diseases. In this study we investigated how future climatic changes could affect the climatic niche of Ixodes ricinus (Acari, Ixodida), among the most important vectors of pathogens of medical and veterinary concern in Europe. Species Distribution Modelling (SDM) was used to reconstruct the climatic niche of I. ricinus, and to project it into the future conditions for 2050 and 2080, under two scenarios: a continuous human demographic growth and a severe increase of gas emissions (scenario A2), and a scenario that proposes lower human demographic growth than A2, and a more sustainable gas emissions (scenario B2). Models were reconstructed using the algorithm of "maximum entropy", as implemented in the software Maxent 3.3.3e; 4,544 occurrence points and 15 bioclimatic variables were used. In both scenarios an increase of climatic niche of about two times greater than the current area was predicted as well as a higher climatic suitability under the scenario B2 than A2. Such an increase occurred both in a latitudinal and longitudinal way, including northern Eurasian regions (e.g. Sweden and Russia), that were previously unsuitable for the species. Our models are congruent with the predictions of range expansion already observed in I. ricinus at a regional scale and provide a qualitative and quantitative assessment of the future climatically suitable areas for I. ricinus at a continental scale. Although the use of SDM at a higher resolution should be integrated by a more refined analysis of further abiotic and biotic data, the results presented here suggest that under future climatic scenarios most of the current distribution area of I. ricinus could remain suitable and significantly increase at a continental geographic scale. Therefore disease outbreaks of pathogens transmitted by this tick species could emerge in previous non-endemic geographic areas. Further studies will implement and refine present data toward a better understanding of the risk represented by I. ricinus to human health.

  14. A contemporary decennial global Landsat sample of changing agricultural field sizes

    NASA Astrophysics Data System (ADS)

    White, Emma; Roy, David

    2014-05-01

    Agriculture has caused significant human induced Land Cover Land Use (LCLU) change, with dramatic cropland expansion in the last century and significant increases in productivity over the past few decades. Satellite data have been used for agricultural applications including cropland distribution mapping, crop condition monitoring, crop production assessment and yield prediction. Satellite based agricultural applications are less reliable when the sensor spatial resolution is small relative to the field size. However, to date, studies of agricultural field size distributions and their change have been limited, even though this information is needed to inform the design of agricultural satellite monitoring systems. Moreover, the size of agricultural fields is a fundamental description of rural landscapes and provides an insight into the drivers of rural LCLU change. In many parts of the world field sizes may have increased. Increasing field sizes cause a subsequent decrease in the number of fields and therefore decreased landscape spatial complexity with impacts on biodiversity, habitat, soil erosion, plant-pollinator interactions, and impacts on the diffusion of herbicides, pesticides, disease pathogens, and pests. The Landsat series of satellites provide the longest record of global land observations, with 30m observations available since 1982. Landsat data are used to examine contemporary field size changes in a period (1980 to 2010) when significant global agricultural changes have occurred. A multi-scale sampling approach is used to locate global hotspots of field size change by examination of a recent global agricultural yield map and literature review. Nine hotspots are selected where significant field size change is apparent and where change has been driven by technological advancements (Argentina and U.S.), abrupt societal changes (Albania and Zimbabwe), government land use and agricultural policy changes (China, Malaysia, Brazil), and/or constrained by historic patterns of LCLU (Albania, France and India). Landsat images sensed in two time periods, up to 25 years apart, are used to extract field object classifications at each hotspot using a multispectral image segmentation approach. The field size distributions for the two periods are compared statistically and quantify examples of significant increasing field size associated primarily with agricultural technological innovation (Argentina and U.S.) and decreasing field size associated with rapid societal changes (Albania and Zimbabwe). The implications of this research, and the potential of higher spatial resolution data from planned global coverage satellites, to provide improved agricultural monitoring are discussed.

  15. The Global Coherence Initiative: Creating a Coherent Planetary Standing Wave

    PubMed Central

    Deyhle, Annette; Childre, Doc

    2012-01-01

    ABSTRACT The much anticipated year of 2012 is now here. Amidst the predictions and cosmic alignments that many are aware of, one thing is for sure: it will be an interesting and exciting year as the speed of change continues to increase, bringing both chaos and great opportunity. One benchmark of these times is a shift in many people from a paradigm of competition to one of greater cooperation. All across the planet, increasing numbers of people are practicing heart-based living, and more groups are forming activities that support positive change and creative solutions for manifesting a better world. The Global Coherence Initiative (GCI) is a science-based, co-creative project to unite people in heart-focused care and intention. GCI is working in concert with other initiatives to realize the increased power of collective intention and consciousness. The convergence of several independent lines of evidence provides strong support for the existence of a global information field that connects all living systems and consciousness. Every cell in our bodies is bathed in an external and internal environment of fluctuating invisible magnetic forces that can affect virtually every cell and circuit in biological systems. Therefore, it should not be surprising that numerous physiological rhythms in humans and global collective behaviors are not only synchronized with solar and geomagnetic activity, but disruptions in these fields can create adverse effects on human health and behavior. The most likely mechanism for explaining how solar and geomagnetic influences affect human health and behavior are a coupling between the human nervous system and resonating geomagnetic frequencies, called Schumann resonances, which occur in the earth-ionosphere resonant cavity and Alfvén waves. It is well established that these resonant frequencies directly overlap with those of the human brain and cardiovascular system. If all living systems are indeed interconnected and communicate with each other via biological, electromagnetic, and nonlocal fields, it stands to reason that humans can work together in a co-creative relationship to consciously increase the coherence in the global field environment, which in turn distributes this information to all living systems within the field. GCI was established to help facilitate the shift in global consciousness from instability and discord to balance, cooperation, and enduring peace. A primary goal of GCI is to test the hypothesis that large numbers of people when in a heart-coherent state and holding a shared intention can encode information on the earth's energetic and geomagnetic fields, which act as carrier waves of this physiologically patterned and relevant information. In order to conduct this research, a global network of 12 to 14 ultrasensitive magnetic field detectors specifically designed to measure the earth's magnetic resonances is being installed strategically around the planet. More important is GCI's primary goal to motivate as many people as possible to work together in a more coherent and collaborative manner to increase the collective human consciousness. If we are persuaded that not only external fields of solar and cosmic origins but also human attention and emotion can directly affect the physical world and the mental and emotional states of others (consciousness), it broadens our view of what interconnectedness means and how it can be intentionally utilized to shape the future of the world we live in. It implies that our attitudes, emotions, and intentions matter and that coherent, cooperative intent can have positive effects. GCI hypothesizes that when enough individuals and social groups increase their coherence baseline and utilize that increased coherence to intentionally create a more coherent standing reference wave in the global field, it will help increase global consciousness. This can be achieved when an increasing number of people move towards more balanced and self-regulated emotions and responses. This in turn can help facilitate cooperation and collaboration in innovative problem solving and intuitive discernment for addressing society's significant social, environmental, and economic problems. In time, as more individuals stabilize the global field and families, workplaces, and communities move to increased social coherence, it will lead to increased global coherence. This will be indicated by countries adopting a more coherent planetary view so that social and economic oppression, warfare, cultural intolerance, crime, and disregard for the environment can be addressed meaningfully and successfully. PMID:24278803

  16. Population Growth. Understanding Global Change: Earth Science and Human Impacts. Global Change Instruction Program.

    ERIC Educational Resources Information Center

    Jacobsen, Judith E.

    The Global Change Instruction Program was designed by college professors to fill a need for interdisciplinary materials on the emerging science of global change. This instructional module concentrates on interactions between population growth and human activities that produce global change. The materials are designed for undergraduate students…

  17. The global distribution of tetrapods reveals a need for targeted reptile conservation.

    PubMed

    Roll, Uri; Feldman, Anat; Novosolov, Maria; Allison, Allen; Bauer, Aaron M; Bernard, Rodolphe; Böhm, Monika; Castro-Herrera, Fernando; Chirio, Laurent; Collen, Ben; Colli, Guarino R; Dabool, Lital; Das, Indraneil; Doan, Tiffany M; Grismer, Lee L; Hoogmoed, Marinus; Itescu, Yuval; Kraus, Fred; LeBreton, Matthew; Lewin, Amir; Martins, Marcio; Maza, Erez; Meirte, Danny; Nagy, Zoltán T; de C Nogueira, Cristiano; Pauwels, Olivier S G; Pincheira-Donoso, Daniel; Powney, Gary D; Sindaco, Roberto; Tallowin, Oliver J S; Torres-Carvajal, Omar; Trape, Jean-François; Vidan, Enav; Uetz, Peter; Wagner, Philipp; Wang, Yuezhao; Orme, C David L; Grenyer, Richard; Meiri, Shai

    2017-11-01

    The distributions of amphibians, birds and mammals have underpinned global and local conservation priorities, and have been fundamental to our understanding of the determinants of global biodiversity. In contrast, the global distributions of reptiles, representing a third of terrestrial vertebrate diversity, have been unavailable. This prevented the incorporation of reptiles into conservation planning and biased our understanding of the underlying processes governing global vertebrate biodiversity. Here, we present and analyse the global distribution of 10,064 reptile species (99% of extant terrestrial species). We show that richness patterns of the other three tetrapod classes are good spatial surrogates for species richness of all reptiles combined and of snakes, but characterize diversity patterns of lizards and turtles poorly. Hotspots of total and endemic lizard richness overlap very little with those of other taxa. Moreover, existing protected areas, sites of biodiversity significance and global conservation schemes represent birds and mammals better than reptiles. We show that additional conservation actions are needed to effectively protect reptiles, particularly lizards and turtles. Adding reptile knowledge to a global complementarity conservation priority scheme identifies many locations that consequently become important. Notably, investing resources in some of the world's arid, grassland and savannah habitats might be necessary to represent all terrestrial vertebrates efficiently.

  18. The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis

    PubMed Central

    2011-01-01

    Background The final article in a series of three publications examining the global distribution of 41 dominant vector species (DVS) of malaria is presented here. The first publication examined the DVS from the Americas, with the second covering those species present in Africa, Europe and the Middle East. Here we discuss the 19 DVS of the Asian-Pacific region. This region experiences a high diversity of vector species, many occurring sympatrically, which, combined with the occurrence of a high number of species complexes and suspected species complexes, and behavioural plasticity of many of these major vectors, adds a level of entomological complexity not comparable elsewhere globally. To try and untangle the intricacy of the vectors of this region and to increase the effectiveness of vector control interventions, an understanding of the contemporary distribution of each species, combined with a synthesis of the current knowledge of their behaviour and ecology is needed. Results Expert opinion (EO) range maps, created with the most up-to-date expert knowledge of each DVS distribution, were combined with a contemporary database of occurrence data and a suite of open access, environmental and climatic variables. Using the Boosted Regression Tree (BRT) modelling method, distribution maps of each DVS were produced. The occurrence data were abstracted from the formal, published literature, plus other relevant sources, resulting in the collation of DVS occurrence at 10116 locations across 31 countries, of which 8853 were successfully geo-referenced and 7430 were resolved to spatial areas that could be included in the BRT model. A detailed summary of the information on the bionomics of each species and species complex is also presented. Conclusions This article concludes a project aimed to establish the contemporary global distribution of the DVS of malaria. The three articles produced are intended as a detailed reference for scientists continuing research into the aspects of taxonomy, biology and ecology relevant to species-specific vector control. This research is particularly relevant to help unravel the complicated taxonomic status, ecology and epidemiology of the vectors of the Asia-Pacific region. All the occurrence data, predictive maps and EO-shape files generated during the production of these publications will be made available in the public domain. We hope that this will encourage data sharing to improve future iterations of the distribution maps. PMID:21612587

  19. The dominant Anopheles vectors of human malaria in the Asia-Pacific region: occurrence data, distribution maps and bionomic précis.

    PubMed

    Sinka, Marianne E; Bangs, Michael J; Manguin, Sylvie; Chareonviriyaphap, Theeraphap; Patil, Anand P; Temperley, William H; Gething, Peter W; Elyazar, Iqbal R F; Kabaria, Caroline W; Harbach, Ralph E; Hay, Simon I

    2011-05-25

    The final article in a series of three publications examining the global distribution of 41 dominant vector species (DVS) of malaria is presented here. The first publication examined the DVS from the Americas, with the second covering those species present in Africa, Europe and the Middle East. Here we discuss the 19 DVS of the Asian-Pacific region. This region experiences a high diversity of vector species, many occurring sympatrically, which, combined with the occurrence of a high number of species complexes and suspected species complexes, and behavioural plasticity of many of these major vectors, adds a level of entomological complexity not comparable elsewhere globally. To try and untangle the intricacy of the vectors of this region and to increase the effectiveness of vector control interventions, an understanding of the contemporary distribution of each species, combined with a synthesis of the current knowledge of their behaviour and ecology is needed. Expert opinion (EO) range maps, created with the most up-to-date expert knowledge of each DVS distribution, were combined with a contemporary database of occurrence data and a suite of open access, environmental and climatic variables. Using the Boosted Regression Tree (BRT) modelling method, distribution maps of each DVS were produced. The occurrence data were abstracted from the formal, published literature, plus other relevant sources, resulting in the collation of DVS occurrence at 10116 locations across 31 countries, of which 8853 were successfully geo-referenced and 7430 were resolved to spatial areas that could be included in the BRT model. A detailed summary of the information on the bionomics of each species and species complex is also presented. This article concludes a project aimed to establish the contemporary global distribution of the DVS of malaria. The three articles produced are intended as a detailed reference for scientists continuing research into the aspects of taxonomy, biology and ecology relevant to species-specific vector control. This research is particularly relevant to help unravel the complicated taxonomic status, ecology and epidemiology of the vectors of the Asia-Pacific region. All the occurrence data, predictive maps and EO-shape files generated during the production of these publications will be made available in the public domain. We hope that this will encourage data sharing to improve future iterations of the distribution maps.

  20. SEPARATION OF THE RIBBON FROM GLOBALLY DISTRIBUTED ENERGETIC NEUTRAL ATOM FLUX USING THE FIRST FIVE YEARS OF IBEX OBSERVATIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Schwadron, N. A.; Moebius, E.; Kucharek, H.

    2014-11-01

    The Interstellar Boundary Explorer (IBEX) observes the IBEX ribbon, which stretches across much of the sky observed in energetic neutral atoms (ENAs). The ribbon covers a narrow (∼20°-50°) region that is believed to be roughly perpendicular to the interstellar magnetic field. Superimposed on the IBEX ribbon is the globally distributed flux that is controlled by the processes and properties of the heliosheath. This is a second study that utilizes a previously developed technique to separate ENA emissions in the ribbon from the globally distributed flux. A transparency mask is applied over the ribbon and regions of high emissions. We thenmore » solve for the globally distributed flux using an interpolation scheme. Previously, ribbon separation techniques were applied to the first year of IBEX-Hi data at and above 0.71 keV. Here we extend the separation analysis down to 0.2 keV and to five years of IBEX data enabling first maps of the ribbon and the globally distributed flux across the full sky of ENA emissions. Our analysis shows the broadening of the ribbon peak at energies below 0.71 keV and demonstrates the apparent deformation of the ribbon in the nose and heliotail. We show global asymmetries of the heliosheath, including both deflection of the heliotail and differing widths of the lobes, in context of the direction, draping, and compression of the heliospheric magnetic field. We discuss implications of the ribbon maps for the wide array of concepts that attempt to explain the ribbon's origin. Thus, we present the five-year separation of the IBEX ribbon from the globally distributed flux in preparation for a formal IBEX data release of ribbon and globally distributed flux maps to the heliophysics community.« less

Top