A cooperative strategy for parameter estimation in large scale systems biology models.
Villaverde, Alejandro F; Egea, Jose A; Banga, Julio R
2012-06-22
Mathematical models play a key role in systems biology: they summarize the currently available knowledge in a way that allows to make experimentally verifiable predictions. Model calibration consists of finding the parameters that give the best fit to a set of experimental data, which entails minimizing a cost function that measures the goodness of this fit. Most mathematical models in systems biology present three characteristics which make this problem very difficult to solve: they are highly non-linear, they have a large number of parameters to be estimated, and the information content of the available experimental data is frequently scarce. Hence, there is a need for global optimization methods capable of solving this problem efficiently. A new approach for parameter estimation of large scale models, called Cooperative Enhanced Scatter Search (CeSS), is presented. Its key feature is the cooperation between different programs ("threads") that run in parallel in different processors. Each thread implements a state of the art metaheuristic, the enhanced Scatter Search algorithm (eSS). Cooperation, meaning information sharing between threads, modifies the systemic properties of the algorithm and allows to speed up performance. Two parameter estimation problems involving models related with the central carbon metabolism of E. coli which include different regulatory levels (metabolic and transcriptional) are used as case studies. The performance and capabilities of the method are also evaluated using benchmark problems of large-scale global optimization, with excellent results. The cooperative CeSS strategy is a general purpose technique that can be applied to any model calibration problem. Its capability has been demonstrated by calibrating two large-scale models of different characteristics, improving the performance of previously existing methods in both cases. The cooperative metaheuristic presented here can be easily extended to incorporate other global and local search solvers and specific structural information for particular classes of problems.
A cooperative strategy for parameter estimation in large scale systems biology models
2012-01-01
Background Mathematical models play a key role in systems biology: they summarize the currently available knowledge in a way that allows to make experimentally verifiable predictions. Model calibration consists of finding the parameters that give the best fit to a set of experimental data, which entails minimizing a cost function that measures the goodness of this fit. Most mathematical models in systems biology present three characteristics which make this problem very difficult to solve: they are highly non-linear, they have a large number of parameters to be estimated, and the information content of the available experimental data is frequently scarce. Hence, there is a need for global optimization methods capable of solving this problem efficiently. Results A new approach for parameter estimation of large scale models, called Cooperative Enhanced Scatter Search (CeSS), is presented. Its key feature is the cooperation between different programs (“threads”) that run in parallel in different processors. Each thread implements a state of the art metaheuristic, the enhanced Scatter Search algorithm (eSS). Cooperation, meaning information sharing between threads, modifies the systemic properties of the algorithm and allows to speed up performance. Two parameter estimation problems involving models related with the central carbon metabolism of E. coli which include different regulatory levels (metabolic and transcriptional) are used as case studies. The performance and capabilities of the method are also evaluated using benchmark problems of large-scale global optimization, with excellent results. Conclusions The cooperative CeSS strategy is a general purpose technique that can be applied to any model calibration problem. Its capability has been demonstrated by calibrating two large-scale models of different characteristics, improving the performance of previously existing methods in both cases. The cooperative metaheuristic presented here can be easily extended to incorporate other global and local search solvers and specific structural information for particular classes of problems. PMID:22727112
Genetic algorithms for protein threading.
Yadgari, J; Amir, A; Unger, R
1998-01-01
Despite many years of efforts, a direct prediction of protein structure from sequence is still not possible. As a result, in the last few years researchers have started to address the "inverse folding problem": Identifying and aligning a sequence to the fold with which it is most compatible, a process known as "threading". In two meetings in which protein folding predictions were objectively evaluated, it became clear that threading as a concept promises a real breakthrough, but that much improvement is still needed in the technique itself. Threading is a NP-hard problem, and thus no general polynomial solution can be expected. Still a practical approach with demonstrated ability to find optimal solutions in many cases, and acceptable solutions in other cases, is needed. We applied the technique of Genetic Algorithms in order to significantly improve the ability of threading algorithms to find the optimal alignment of a sequence to a structure, i.e. the alignment with the minimum free energy. A major progress reported here is the design of a representation of the threading alignment as a string of fixed length. With this representation validation of alignments and genetic operators are effectively implemented. Appropriate data structure and parameters have been selected. It is shown that Genetic Algorithm threading is effective and is able to find the optimal alignment in a few test cases. Furthermore, the described algorithm is shown to perform well even without pre-definition of core elements. Existing threading methods are dependent on such constraints to make their calculations feasible. But the concept of core elements is inherently arbitrary and should be avoided if possible. While a rigorous proof is hard to submit yet an, we present indications that indeed Genetic Algorithm threading is capable of finding consistently good solutions of full alignments in search spaces of size up to 10(70).
Massively Parallel Dantzig-Wolfe Decomposition Applied to Traffic Flow Scheduling
NASA Technical Reports Server (NTRS)
Rios, Joseph Lucio; Ross, Kevin
2009-01-01
Optimal scheduling of air traffic over the entire National Airspace System is a computationally difficult task. To speed computation, Dantzig-Wolfe decomposition is applied to a known linear integer programming approach for assigning delays to flights. The optimization model is proven to have the block-angular structure necessary for Dantzig-Wolfe decomposition. The subproblems for this decomposition are solved in parallel via independent computation threads. Experimental evidence suggests that as the number of subproblems/threads increases (and their respective sizes decrease), the solution quality, convergence, and runtime improve. A demonstration of this is provided by using one flight per subproblem, which is the finest possible decomposition. This results in thousands of subproblems and associated computation threads. This massively parallel approach is compared to one with few threads and to standard (non-decomposed) approaches in terms of solution quality and runtime. Since this method generally provides a non-integral (relaxed) solution to the original optimization problem, two heuristics are developed to generate an integral solution. Dantzig-Wolfe followed by these heuristics can provide a near-optimal (sometimes optimal) solution to the original problem hundreds of times faster than standard (non-decomposed) approaches. In addition, when massive decomposition is employed, the solution is shown to be more likely integral, which obviates the need for an integerization step. These results indicate that nationwide, real-time, high fidelity, optimal traffic flow scheduling is achievable for (at least) 3 hour planning horizons.
Egea, Jose A; Henriques, David; Cokelaer, Thomas; Villaverde, Alejandro F; MacNamara, Aidan; Danciu, Diana-Patricia; Banga, Julio R; Saez-Rodriguez, Julio
2014-05-10
Optimization is the key to solving many problems in computational biology. Global optimization methods, which provide a robust methodology, and metaheuristics in particular have proven to be the most efficient methods for many applications. Despite their utility, there is a limited availability of metaheuristic tools. We present MEIGO, an R and Matlab optimization toolbox (also available in Python via a wrapper of the R version), that implements metaheuristics capable of solving diverse problems arising in systems biology and bioinformatics. The toolbox includes the enhanced scatter search method (eSS) for continuous nonlinear programming (cNLP) and mixed-integer programming (MINLP) problems, and variable neighborhood search (VNS) for Integer Programming (IP) problems. Additionally, the R version includes BayesFit for parameter estimation by Bayesian inference. The eSS and VNS methods can be run on a single-thread or in parallel using a cooperative strategy. The code is supplied under GPLv3 and is available at http://www.iim.csic.es/~gingproc/meigo.html. Documentation and examples are included. The R package has been submitted to BioConductor. We evaluate MEIGO against optimization benchmarks, and illustrate its applicability to a series of case studies in bioinformatics and systems biology where it outperforms other state-of-the-art methods. MEIGO provides a free, open-source platform for optimization that can be applied to multiple domains of systems biology and bioinformatics. It includes efficient state of the art metaheuristics, and its open and modular structure allows the addition of further methods.
2014-01-01
Background Optimization is the key to solving many problems in computational biology. Global optimization methods, which provide a robust methodology, and metaheuristics in particular have proven to be the most efficient methods for many applications. Despite their utility, there is a limited availability of metaheuristic tools. Results We present MEIGO, an R and Matlab optimization toolbox (also available in Python via a wrapper of the R version), that implements metaheuristics capable of solving diverse problems arising in systems biology and bioinformatics. The toolbox includes the enhanced scatter search method (eSS) for continuous nonlinear programming (cNLP) and mixed-integer programming (MINLP) problems, and variable neighborhood search (VNS) for Integer Programming (IP) problems. Additionally, the R version includes BayesFit for parameter estimation by Bayesian inference. The eSS and VNS methods can be run on a single-thread or in parallel using a cooperative strategy. The code is supplied under GPLv3 and is available at http://www.iim.csic.es/~gingproc/meigo.html. Documentation and examples are included. The R package has been submitted to BioConductor. We evaluate MEIGO against optimization benchmarks, and illustrate its applicability to a series of case studies in bioinformatics and systems biology where it outperforms other state-of-the-art methods. Conclusions MEIGO provides a free, open-source platform for optimization that can be applied to multiple domains of systems biology and bioinformatics. It includes efficient state of the art metaheuristics, and its open and modular structure allows the addition of further methods. PMID:24885957
NASA Astrophysics Data System (ADS)
Handhika, T.; Bustamam, A.; Ernastuti, Kerami, D.
2017-07-01
Multi-thread programming using OpenMP on the shared-memory architecture with hyperthreading technology allows the resource to be accessed by multiple processors simultaneously. Each processor can execute more than one thread for a certain period of time. However, its speedup depends on the ability of the processor to execute threads in limited quantities, especially the sequential algorithm which contains a nested loop. The number of the outer loop iterations is greater than the maximum number of threads that can be executed by a processor. The thread distribution technique that had been found previously only be applied by the high-level programmer. This paper generates a parallelization procedure for low-level programmer in dealing with 2-level nested loop problems with the maximum number of threads that can be executed by a processor is smaller than the number of the outer loop iterations. Data preprocessing which is related to the number of the outer loop and the inner loop iterations, the computational time required to execute each iteration and the maximum number of threads that can be executed by a processor are used as a strategy to determine which parallel region that will produce optimal speedup.
Servicing a globally broadcast interrupt signal in a multi-threaded computer
Attinella, John E.; Davis, Kristan D.; Musselman, Roy G.; Satterfield, David L.
2015-12-29
Methods, apparatuses, and computer program products for servicing a globally broadcast interrupt signal in a multi-threaded computer comprising a plurality of processor threads. Embodiments include an interrupt controller indicating in a plurality of local interrupt status locations that a globally broadcast interrupt signal has been received by the interrupt controller. Embodiments also include a thread determining that a local interrupt status location corresponding to the thread indicates that the globally broadcast interrupt signal has been received by the interrupt controller. Embodiments also include the thread processing one or more entries in a global interrupt status bit queue based on whether global interrupt status bits associated with the globally broadcast interrupt signal are locked. Each entry in the global interrupt status bit queue corresponds to a queued global interrupt.
Liu, Xing; Hou, Kun Mean; de Vaulx, Christophe; Xu, Jun; Yang, Jianfeng; Zhou, Haiying; Shi, Hongling; Zhou, Peng
2015-01-01
Memory and energy optimization strategies are essential for the resource-constrained wireless sensor network (WSN) nodes. In this article, a new memory-optimized and energy-optimized multithreaded WSN operating system (OS) LiveOS is designed and implemented. Memory cost of LiveOS is optimized by using the stack-shifting hybrid scheduling approach. Different from the traditional multithreaded OS in which thread stacks are allocated statically by the pre-reservation, thread stacks in LiveOS are allocated dynamically by using the stack-shifting technique. As a result, memory waste problems caused by the static pre-reservation can be avoided. In addition to the stack-shifting dynamic allocation approach, the hybrid scheduling mechanism which can decrease both the thread scheduling overhead and the thread stack number is also implemented in LiveOS. With these mechanisms, the stack memory cost of LiveOS can be reduced more than 50% if compared to that of a traditional multithreaded OS. Not is memory cost optimized, but also the energy cost is optimized in LiveOS, and this is achieved by using the multi-core “context aware” and multi-core “power-off/wakeup” energy conservation approaches. By using these approaches, energy cost of LiveOS can be reduced more than 30% when compared to the single-core WSN system. Memory and energy optimization strategies in LiveOS not only prolong the lifetime of WSN nodes, but also make the multithreaded OS feasible to run on the memory-constrained WSN nodes. PMID:25545264
DOE Office of Scientific and Technical Information (OSTI.GOV)
Attinella, John E.; Davis, Kristan D.; Musselman, Roy G.
Methods, apparatuses, and computer program products for servicing a globally broadcast interrupt signal in a multi-threaded computer comprising a plurality of processor threads. Embodiments include an interrupt controller indicating in a plurality of local interrupt status locations that a globally broadcast interrupt signal has been received by the interrupt controller. Embodiments also include a thread determining that a local interrupt status location corresponding to the thread indicates that the globally broadcast interrupt signal has been received by the interrupt controller. Embodiments also include the thread processing one or more entries in a global interrupt status bit queue based on whethermore » global interrupt status bits associated with the globally broadcast interrupt signal are locked. Each entry in the global interrupt status bit queue corresponds to a queued global interrupt.« less
Geramizadeh, Maryam; Katoozian, Hamidreza; Amid, Reza; Kadkhodazadeh, Mahdi
2018-04-01
This study aimed to optimize the thread depth and pitch of a recently designed dental implant to provide uniform stress distribution by means of a response surface optimization method available in finite element (FE) software. The sensitivity of simulation to different mechanical parameters was also evaluated. A three-dimensional model of a tapered dental implant with micro-threads in the upper area and V-shaped threads in the rest of the body was modeled and analyzed using finite element analysis (FEA). An axial load of 100 N was applied to the top of the implants. The model was optimized for thread depth and pitch to determine the optimal stress distribution. In this analysis, micro-threads had 0.25 to 0.3 mm depth and 0.27 to 0.33 mm pitch, and V-shaped threads had 0.405 to 0.495 mm depth and 0.66 to 0.8 mm pitch. The optimized depth and pitch were 0.307 and 0.286 mm for micro-threads and 0.405 and 0.808 mm for V-shaped threads, respectively. In this design, the most effective parameters on stress distribution were the depth and pitch of the micro-threads based on sensitivity analysis results. Based on the results of this study, the optimal implant design has micro-threads with 0.307 and 0.286 mm depth and pitch, respectively, in the upper area and V-shaped threads with 0.405 and 0.808 mm depth and pitch in the rest of the body. These results indicate that micro-thread parameters have a greater effect on stress and strain values.
Lü, Qiang; Xia, Xiao-Yan; Chen, Rong; Miao, Da-Jun; Chen, Sha-Sha; Quan, Li-Jun; Li, Hai-Ou
2012-01-01
Protein structure prediction (PSP), which is usually modeled as a computational optimization problem, remains one of the biggest challenges in computational biology. PSP encounters two difficult obstacles: the inaccurate energy function problem and the searching problem. Even if the lowest energy has been luckily found by the searching procedure, the correct protein structures are not guaranteed to obtain. A general parallel metaheuristic approach is presented to tackle the above two problems. Multi-energy functions are employed to simultaneously guide the parallel searching threads. Searching trajectories are in fact controlled by the parameters of heuristic algorithms. The parallel approach allows the parameters to be perturbed during the searching threads are running in parallel, while each thread is searching the lowest energy value determined by an individual energy function. By hybridizing the intelligences of parallel ant colonies and Monte Carlo Metropolis search, this paper demonstrates an implementation of our parallel approach for PSP. 16 classical instances were tested to show that the parallel approach is competitive for solving PSP problem. This parallel approach combines various sources of both searching intelligences and energy functions, and thus predicts protein conformations with good quality jointly determined by all the parallel searching threads and energy functions. It provides a framework to combine different searching intelligence embedded in heuristic algorithms. It also constructs a container to hybridize different not-so-accurate objective functions which are usually derived from the domain expertise.
Lü, Qiang; Xia, Xiao-Yan; Chen, Rong; Miao, Da-Jun; Chen, Sha-Sha; Quan, Li-Jun; Li, Hai-Ou
2012-01-01
Background Protein structure prediction (PSP), which is usually modeled as a computational optimization problem, remains one of the biggest challenges in computational biology. PSP encounters two difficult obstacles: the inaccurate energy function problem and the searching problem. Even if the lowest energy has been luckily found by the searching procedure, the correct protein structures are not guaranteed to obtain. Results A general parallel metaheuristic approach is presented to tackle the above two problems. Multi-energy functions are employed to simultaneously guide the parallel searching threads. Searching trajectories are in fact controlled by the parameters of heuristic algorithms. The parallel approach allows the parameters to be perturbed during the searching threads are running in parallel, while each thread is searching the lowest energy value determined by an individual energy function. By hybridizing the intelligences of parallel ant colonies and Monte Carlo Metropolis search, this paper demonstrates an implementation of our parallel approach for PSP. 16 classical instances were tested to show that the parallel approach is competitive for solving PSP problem. Conclusions This parallel approach combines various sources of both searching intelligences and energy functions, and thus predicts protein conformations with good quality jointly determined by all the parallel searching threads and energy functions. It provides a framework to combine different searching intelligence embedded in heuristic algorithms. It also constructs a container to hybridize different not-so-accurate objective functions which are usually derived from the domain expertise. PMID:23028708
NASA Astrophysics Data System (ADS)
Wang, H.; Chen, H.; Chen, X.; Wu, Q.; Wang, Z.
2016-12-01
The Global Nested Air Quality Prediction Modeling System for Hg (GNAQPMS-Hg) is a global chemical transport model coupled Hg transport module to investigate the mercury pollution. In this study, we present our work of transplanting the GNAQPMS model on Intel Xeon Phi processor, Knights Landing (KNL) to accelerate the model. KNL is the second-generation product adopting Many Integrated Core Architecture (MIC) architecture. Compared with the first generation Knight Corner (KNC), KNL has more new hardware features, that it can be used as unique processor as well as coprocessor with other CPU. According to the Vtune tool, the high overhead modules in GNAQPMS model have been addressed, including CBMZ gas chemistry, advection and convection module, and wet deposition module. These high overhead modules were accelerated by optimizing code and using new techniques of KNL. The following optimized measures was done: 1) Changing the pure MPI parallel mode to hybrid parallel mode with MPI and OpenMP; 2.Vectorizing the code to using the 512-bit wide vector computation unit. 3. Reducing unnecessary memory access and calculation. 4. Reducing Thread Local Storage (TLS) for common variables with each OpenMP thread in CBMZ. 5. Changing the way of global communication from files writing and reading to MPI functions. After optimization, the performance of GNAQPMS is greatly increased both on CPU and KNL platform, the single-node test showed that optimized version has 2.6x speedup on two sockets CPU platform and 3.3x speedup on one socket KNL platform compared with the baseline version code, which means the KNL has 1.29x speedup when compared with 2 sockets CPU platform.
Integrating end-to-end threads of control into object-oriented analysis and design
NASA Technical Reports Server (NTRS)
Mccandlish, Janet E.; Macdonald, James R.; Graves, Sara J.
1993-01-01
Current object-oriented analysis and design methodologies fall short in their use of mechanisms for identifying threads of control for the system being developed. The scenarios which typically describe a system are more global than looking at the individual objects and representing their behavior. Unlike conventional methodologies that use data flow and process-dependency diagrams, object-oriented methodologies do not provide a model for representing these global threads end-to-end. Tracing through threads of control is key to ensuring that a system is complete and timing constraints are addressed. The existence of multiple threads of control in a system necessitates a partitioning of the system into processes. This paper describes the application and representation of end-to-end threads of control to the object-oriented analysis and design process using object-oriented constructs. The issue of representation is viewed as a grouping problem, that is, how to group classes/objects at a higher level of abstraction so that the system may be viewed as a whole with both classes/objects and their associated dynamic behavior. Existing object-oriented development methodology techniques are extended by adding design-level constructs termed logical composite classes and process composite classes. Logical composite classes are design-level classes which group classes/objects both logically and by thread of control information. Process composite classes further refine the logical composite class groupings by using process partitioning criteria to produce optimum concurrent execution results. The goal of these design-level constructs is to ultimately provide the basis for a mechanism that can support the creation of process composite classes in an automated way. Using an automated mechanism makes it easier to partition a system into concurrently executing elements that can be run in parallel on multiple processors.
Event Reconstruction for Many-core Architectures using Java
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graf, Norman A.; /SLAC
Although Moore's Law remains technically valid, the performance enhancements in computing which traditionally resulted from increased CPU speeds ended years ago. Chip manufacturers have chosen to increase the number of core CPUs per chip instead of increasing clock speed. Unfortunately, these extra CPUs do not automatically result in improvements in simulation or reconstruction times. To take advantage of this extra computing power requires changing how software is written. Event reconstruction is globally serial, in the sense that raw data has to be unpacked first, channels have to be clustered to produce hits before those hits are identified as belonging tomore » a track or shower, tracks have to be found and fit before they are vertexed, etc. However, many of the individual procedures along the reconstruction chain are intrinsically independent and are perfect candidates for optimization using multi-core architecture. Threading is perhaps the simplest approach to parallelizing a program and Java includes a powerful threading facility built into the language. We have developed a fast and flexible reconstruction package (org.lcsim) written in Java that has been used for numerous physics and detector optimization studies. In this paper we present the results of our studies on optimizing the performance of this toolkit using multiple threads on many-core architectures.« less
SMT-Aware Instantaneous Footprint Optimization
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roy, Probir; Liu, Xu; Song, Shuaiwen
Modern architectures employ simultaneous multithreading (SMT) to increase thread-level parallelism. SMT threads share many functional units and the whole memory hierarchy of a physical core. Without a careful code design, SMT threads can easily contend with each other for these shared resources, causing severe performance degradation. Minimizing SMT thread contention for HPC applications running on dedicated platforms is very challenging, because they usually spawn threads within Single Program Multiple Data (SPMD) models. To address this important issue, we introduce a simple scheme for SMT-aware code optimization, which aims to reduce the memory contention across SMT threads.
Exploring Manycore Multinode Systems for Irregular Applications with FPGA Prototyping
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ceriani, Marco; Palermo, Gianluca; Secchi, Simone
We present a prototype of a multi-core architecture implemented on FPGA, designed to enable efficient execution of irregular applications on distributed shared memory machines, while maintaining high performance on regular workloads. The architecture is composed of off-the-shelf soft-core cores, local interconnection and memory interface, integrated with custom components that optimize it for irregular applications. It relies on three key elements: a global address space, multithreading, and fine-grained synchronization. Global addresses are scrambled to reduce the formation of network hot-spots, while the latency of the transactions is covered by integrating an hardware scheduler within the custom load/store buffers to take advantagemore » from the availability of multiple executions threads, increasing the efficiency in a transparent way to the application. We evaluated a dual node system irregular kernels showing scalability in the number of cores and threads.« less
Shared prefetching to reduce execution skew in multi-threaded systems
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eichenberger, Alexandre E; Gunnels, John A
Mechanisms are provided for optimizing code to perform prefetching of data into a shared memory of a computing device that is shared by a plurality of threads that execute on the computing device. A memory stream of a portion of code that is shared by the plurality of threads is identified. A set of prefetch instructions is distributed across the plurality of threads. Prefetch instructions are inserted into the instruction sequences of the plurality of threads such that each instruction sequence has a separate sub-portion of the set of prefetch instructions, thereby generating optimized code. Executable code is generated basedmore » on the optimized code and stored in a storage device. The executable code, when executed, performs the prefetches associated with the distributed set of prefetch instructions in a shared manner across the plurality of threads.« less
Lin, Chia-Ying; Hsiao, Chun-Ching; Chen, Po-Quan; Hollister, Scott J
2004-08-15
An approach combining global layout and local microstructure topology optimization was used to create a new interbody fusion cage design that concurrently enhanced stability, biofactor delivery, and mechanical tissue stimulation for improved arthrodesis. To develop a new interbody fusion cage design by topology optimization with porous internal architecture. To compare the performance of this new design to conventional threaded cage designs regarding early stability and long-term stress shielding effects on ingrown bone. Conventional interbody cage designs mainly fall into categories of cylindrical or rectangular shell shapes. The designs contribute to rigid stability and maintain disc height for successful arthrodesis but may also suffer mechanically mediated failures of dislocation or subsidence, as well as the possibility of bone resorption. The new optimization approach created a cage having designed microstructure that achieved desired mechanical performance while providing interconnected channels for biofactor delivery. The topology optimization algorithm determines the material layout under desirable volume fraction (50%) and displacement constraints favorable to bone formation. A local microstructural topology optimization method was used to generate periodic microstructures for porous isotropic materials. Final topology was generated by the integration of the two-scaled structures according to segmented regions and the corresponding material density. Image-base finite element analysis was used to compare the mechanical performance of the topology-optimized cage and conventional threaded cage. The final design can be fabricated by a variety of Solid Free-Form systems directly from the image output. The new design exhibited a narrower, more uniform displacement range than the threaded cage design and lower stress at the cage-vertebra interface, suggesting a reduced risk of subsidence. Strain energy density analysis also indicated that a higher portion of total strain energy density was transferred into the new bone region inside the new designed cage, indicating a reduced risk of stress shielding. The new design approach using integrated topology optimization demonstrated comparable or better stability by limited displacement and reduced localized deformation related to the risk of subsidence. Less shielding of newly formed bone was predicted inside the new designed cage. Using the present approach, it is also possible to tailor cage design for specific materials, either titanium or polymer, that can attain the desired balance between stability, reduced stress shielding, and porosity for biofactor delivery.
Optimized FPGA Implementation of Multi-Rate FIR Filters Through Thread Decomposition
NASA Technical Reports Server (NTRS)
Kobayashi, Kayla N.; He, Yutao; Zheng, Jason X.
2011-01-01
Multi-rate finite impulse response (MRFIR) filters are among the essential signal-processing components in spaceborne instruments where finite impulse response filters are often used to minimize nonlinear group delay and finite precision effects. Cascaded (multistage) designs of MRFIR filters are further used for large rate change ratio in order to lower the required throughput, while simultaneously achieving comparable or better performance than single-stage designs. Traditional representation and implementation of MRFIR employ polyphase decomposition of the original filter structure, whose main purpose is to compute only the needed output at the lowest possible sampling rate. In this innovation, an alternative representation and implementation technique called TD-MRFIR (Thread Decomposition MRFIR) is presented. The basic idea is to decompose MRFIR into output computational threads, in contrast to a structural decomposition of the original filter as done in the polyphase decomposition. A naive implementation of a decimation filter consisting of a full FIR followed by a downsampling stage is very inefficient, as most of the computations performed by the FIR state are discarded through downsampling. In fact, only 1/M of the total computations are useful (M being the decimation factor). Polyphase decomposition provides an alternative view of decimation filters, where the downsampling occurs before the FIR stage, and the outputs are viewed as the sum of M sub-filters with length of N/M taps. Although this approach leads to more efficient filter designs, in general the implementation is not straightforward if the numbers of multipliers need to be minimized. In TD-MRFIR, each thread represents an instance of the finite convolution required to produce a single output of the MRFIR. The filter is thus viewed as a finite collection of concurrent threads. Each of the threads completes when a convolution result (filter output value) is computed, and activated when the first input of the convolution becomes available. Thus, the new threads get spawned at exactly the rate of N/M, where N is the total number of taps, and M is the decimation factor. Existing threads retire at the same rate of N/M. The implementation of an MRFIR is thus transformed into a problem to statically schedule the minimum number of multipliers such that all threads can be completed on time. Solving the static scheduling problem is rather straightforward if one examines the Thread Decomposition Diagram, which is a table-like diagram that has rows representing computation threads and columns representing time. The control logic of the MRFIR can be implemented using simple counters. Instead of decomposing MRFIRs into subfilters as suggested by polyphase decomposition, the thread decomposition diagrams transform the problem into a familiar one of static scheduling, which can be easily solved as the input rate is constant.
NASA Astrophysics Data System (ADS)
Lohn, Stefan B.; Dong, Xin; Carminati, Federico
2012-12-01
Chip-Multiprocessors are going to support massive parallelism by many additional physical and logical cores. Improving performance can no longer be obtained by increasing clock-frequency because the technical limits are almost reached. Instead, parallel execution must be used to gain performance. Resources like main memory, the cache hierarchy, bandwidth of the memory bus or links between cores and sockets are not going to be improved as fast. Hence, parallelism can only result into performance gains if the memory usage is optimized and the communication between threads is minimized. Besides concurrent programming has become a domain for experts. Implementing multi-threading is error prone and labor-intensive. A full reimplementation of the whole AliRoot source-code is unaffordable. This paper describes the effort to evaluate the adaption of AliRoot to the needs of multi-threading and to provide the capability of parallel processing by using a semi-automatic source-to-source transformation to address the problems as described before and to provide a straight-forward way of parallelization with almost no interference between threads. This makes the approach simple and reduces the required manual changes in the code. In a first step, unconditional thread-safety will be introduced to bring the original sequential and thread unaware source-code into the position of utilizing multi-threading. Afterwards further investigations have to be performed to point out candidates of classes that are useful to share amongst threads. Then in a second step, the transformation has to change the code to share these classes and finally to verify if there are anymore invalid interferences between threads.
Combinatorial algorithms for design of DNA arrays.
Hannenhalli, Sridhar; Hubell, Earl; Lipshutz, Robert; Pevzner, Pavel A
2002-01-01
Optimal design of DNA arrays requires the development of algorithms with two-fold goals: reducing the effects caused by unintended illumination (border length minimization problem) and reducing the complexity of masks (mask decomposition problem). We describe algorithms that reduce the number of rectangles in mask decomposition by 20-30% as compared to a standard array design under the assumption that the arrangement of oligonucleotides on the array is fixed. This algorithm produces provably optimal solution for all studied real instances of array design. We also address the difficult problem of finding an arrangement which minimizes the border length and come up with a new idea of threading that significantly reduces the border length as compared to standard designs.
NASA Astrophysics Data System (ADS)
Liu, Tianyu; Du, Xining; Ji, Wei; Xu, X. George; Brown, Forrest B.
2014-06-01
For nuclear reactor analysis such as the neutron eigenvalue calculations, the time consuming Monte Carlo (MC) simulations can be accelerated by using graphics processing units (GPUs). However, traditional MC methods are often history-based, and their performance on GPUs is affected significantly by the thread divergence problem. In this paper we describe the development of a newly designed event-based vectorized MC algorithm for solving the neutron eigenvalue problem. The code was implemented using NVIDIA's Compute Unified Device Architecture (CUDA), and tested on a NVIDIA Tesla M2090 GPU card. We found that although the vectorized MC algorithm greatly reduces the occurrence of thread divergence thus enhancing the warp execution efficiency, the overall simulation speed is roughly ten times slower than the history-based MC code on GPUs. Profiling results suggest that the slow speed is probably due to the memory access latency caused by the large amount of global memory transactions. Possible solutions to improve the code efficiency are discussed.
Wesemann, Dorette; Grunwald, Martin
2008-09-01
Online discussion forums are often used by people with eating disorders. This study analyses 2,072 threads containing a total of 14,903 postings from an unmoderated German "prorecovery" forum for persons suffering from bulimia nervosa (www.ab-server.de) during the period from October 2004 to May 2006. The threads were inductively analyzed for underlying structural types, and the various types found were then analyzed for differences in temporal and quantitative parameters. Communication in the online discussion forum occurred in three types of thread: (1) problem-oriented threads (78.8% of threads), (2) communication-oriented threads (15.3% of threads), and (3) metacommunication threads (2.6% of threads). Metacommunication threads contained significantly more postings than problem-oriented and communication-oriented threads, and they were viewed significantly more often. Moreover, there are temporal differences between the structural types. Topics relating to active management of the disorder receive great attention in prorecovery forums. (c) 2008 by Wiley Periodicals, Inc.
LDRD Final Report: Global Optimization for Engineering Science Problems
DOE Office of Scientific and Technical Information (OSTI.GOV)
HART,WILLIAM E.
1999-12-01
For a wide variety of scientific and engineering problems the desired solution corresponds to an optimal set of objective function parameters, where the objective function measures a solution's quality. The main goal of the LDRD ''Global Optimization for Engineering Science Problems'' was the development of new robust and efficient optimization algorithms that can be used to find globally optimal solutions to complex optimization problems. This SAND report summarizes the technical accomplishments of this LDRD, discusses lessons learned and describes open research issues.
Optimization of the Brillouin operator on the KNL architecture
NASA Astrophysics Data System (ADS)
Dürr, Stephan
2018-03-01
Experiences with optimizing the matrix-times-vector application of the Brillouin operator on the Intel KNL processor are reported. Without adjustments to the memory layout, performance figures of 360 Gflop/s in single and 270 Gflop/s in double precision are observed. This is with Nc = 3 colors, Nv = 12 right-hand-sides, Nthr = 256 threads, on lattices of size 323 × 64, using exclusively OMP pragmas. Interestingly, the same routine performs quite well on Intel Core i7 architectures, too. Some observations on the much harderWilson fermion matrix-times-vector optimization problem are added.
From Physics Model to Results: An Optimizing Framework for Cross-Architecture Code Generation
Blazewicz, Marek; Hinder, Ian; Koppelman, David M.; ...
2013-01-01
Starting from a high-level problem description in terms of partial differential equations using abstract tensor notation, the Chemora framework discretizes, optimizes, and generates complete high performance codes for a wide range of compute architectures. Chemora extends the capabilities of Cactus, facilitating the usage of large-scale CPU/GPU systems in an efficient manner for complex applications, without low-level code tuning. Chemora achieves parallelism through MPI and multi-threading, combining OpenMP and CUDA. Optimizations include high-level code transformations, efficient loop traversal strategies, dynamically selected data and instruction cache usage strategies, and JIT compilation of GPU code tailored to the problem characteristics. The discretization ismore » based on higher-order finite differences on multi-block domains. Chemora's capabilities are demonstrated by simulations of black hole collisions. This problem provides an acid test of the framework, as the Einstein equations contain hundreds of variables and thousands of terms.« less
Parallel optimization algorithm for drone inspection in the building industry
NASA Astrophysics Data System (ADS)
Walczyński, Maciej; BoŻejko, Wojciech; Skorupka, Dariusz
2017-07-01
In this paper we present an approach for Vehicle Routing Problem with Drones (VRPD) in case of building inspection from the air. In autonomic inspection process there is a need to determine of the optimal route for inspection drone. This is especially important issue because of the very limited flight time of modern multicopters. The method of determining solutions for Traveling Salesman Problem(TSP), described in this paper bases on Parallel Evolutionary Algorithm (ParEA)with cooperative and independent approach for communication between threads. This method described first by Bożejko and Wodecki [1] bases on the observation that if exists some number of elements on certain positions in a number of permutations which are local minima, then those elements will be in the same position in the optimal solution for TSP problem. Numerical experiments were made on BEM computational cluster with using MPI library.
NASA Astrophysics Data System (ADS)
Chase, Patrick; Vondran, Gary
2011-01-01
Tetrahedral interpolation is commonly used to implement continuous color space conversions from sparse 3D and 4D lookup tables. We investigate the implementation and optimization of tetrahedral interpolation algorithms for GPUs, and compare to the best known CPU implementations as well as to a well known GPU-based trilinear implementation. We show that a 500 NVIDIA GTX-580 GPU is 3x faster than a 1000 Intel Core i7 980X CPU for 3D interpolation, and 9x faster for 4D interpolation. Performance-relevant GPU attributes are explored including thread scheduling, local memory characteristics, global memory hierarchy, and cache behaviors. We consider existing tetrahedral interpolation algorithms and tune based on the structure and branching capabilities of current GPUs. Global memory performance is improved by reordering and expanding the lookup table to ensure optimal access behaviors. Per multiprocessor local memory is exploited to implement optimally coalesced global memory accesses, and local memory addressing is optimized to minimize bank conflicts. We explore the impacts of lookup table density upon computation and memory access costs. Also presented are CPU-based 3D and 4D interpolators, using SSE vector operations that are faster than any previously published solution.
Benson, Christopher R; Maffeo, Christopher; Fatila, Elisabeth M; Liu, Yun; Sheetz, Edward G; Aksimentiev, Aleksei; Singharoy, Abhishek; Flood, Amar H
2018-05-07
The coordinated motion of many individual components underpins the operation of all machines. However, despite generations of experience in engineering, understanding the motion of three or more coupled components remains a challenge, known since the time of Newton as the "three-body problem." Here, we describe, quantify, and simulate a molecular three-body problem of threading two molecular rings onto a linear molecular thread. Specifically, we use voltage-triggered reduction of a tetrazine-based thread to capture two cyanostar macrocycles and form a [3]pseudorotaxane product. As a consequence of the noncovalent coupling between the cyanostar rings, we find the threading occurs by an unexpected and rare inchworm-like motion where one ring follows the other. The mechanism was derived from controls, analysis of cyclic voltammetry (CV) traces, and Brownian dynamics simulations. CVs from two noncovalently interacting rings match that of two covalently linked rings designed to thread via the inchworm pathway, and they deviate considerably from the CV of a macrocycle designed to thread via a stepwise pathway. Time-dependent electrochemistry provides estimates of rate constants for threading. Experimentally derived parameters (energy wells, barriers, diffusion coefficients) helped determine likely pathways of motion with rate-kinetics and Brownian dynamics simulations. Simulations verified intercomponent coupling could be separated into ring-thread interactions for kinetics, and ring-ring interactions for thermodynamics to reduce the three-body problem to a two-body one. Our findings provide a basis for high-throughput design of molecular machinery with multiple components undergoing coupled motion.
Parallel satellite orbital situational problems solver for space missions design and control
NASA Astrophysics Data System (ADS)
Atanassov, Atanas Marinov
2016-11-01
Solving different scientific problems for space applications demands implementation of observations, measurements or realization of active experiments during time intervals in which specific geometric and physical conditions are fulfilled. The solving of situational problems for determination of these time intervals when the satellite instruments work optimally is a very important part of all activities on every stage of preparation and realization of space missions. The elaboration of universal, flexible and robust approach for situation analysis, which is easily portable toward new satellite missions, is significant for reduction of missions' preparation times and costs. Every situation problem could be based on one or more situation conditions. Simultaneously solving different kinds of situation problems based on different number and types of situational conditions, each one of them satisfied on different segments of satellite orbit requires irregular calculations. Three formal approaches are presented. First one is related to situation problems description that allows achieving flexibility in situation problem assembling and presentation in computer memory. The second formal approach is connected with developing of situation problem solver organized as processor that executes specific code for every particular situational condition. The third formal approach is related to solver parallelization utilizing threads and dynamic scheduling based on "pool of threads" abstraction and ensures a good load balance. The developed situation problems solver is intended for incorporation in the frames of multi-physics multi-satellite space mission's design and simulation tools.
Parallel Implementation of 3-D Iterative Reconstruction With Intra-Thread Update for the jPET-D4
NASA Astrophysics Data System (ADS)
Lam, Chih Fung; Yamaya, Taiga; Obi, Takashi; Yoshida, Eiji; Inadama, Naoko; Shibuya, Kengo; Nishikido, Fumihiko; Murayama, Hideo
2009-02-01
One way to speed-up iterative image reconstruction is by parallel computing with a computer cluster. However, as the number of computing threads increases, parallel efficiency decreases due to network transfer delay. In this paper, we proposed a method to reduce data transfer between computing threads by introducing an intra-thread update. The update factor is collected from each slave thread and a global image is updated as usual in the first K sub-iteration. In the rest of the sub-iterations, the global image is only updated at an interval which is controlled by a parameter L. In between that interval, the intra-thread update is carried out whereby an image update is performed in each slave thread locally. We investigated combinations of K and L parameters based on parallel implementation of RAMLA for the jPET-D4 scanner. Our evaluation used four workstations with a total of 16 slave threads. Each slave thread calculated a different set of LORs which are divided according to ring difference numbers. We assessed image quality of the proposed method with a hotspot simulation phantom. The figure of merit was the full-width-half-maximum of hotspots and the background normalized standard deviation. At an optimum K and L setting, we did not find significant change in the output images. We also applied the proposed method to a Hoffman phantom experiment and found the difference due to intra-thread update was negligible. With the intra-thread update, computation time could be reduced by about 23%.
Optimal Sensor Scheduling for Multiple Hypothesis Testing
1981-09-01
Naval Research, under contract N00014-77-0532 is gratpfully acknowledged. 2 Laboratory for Information and Decision Systems , MIT Room 35-213, Cambridge...treat the more general problem [9,10]. However, two common threads connect these approaches: they obtain feedback laws mapping posterior destributions ...objective of a detection or identification algorithm is to produce correct estimates of the true state of a system . It is also bene- ficial if these
A multi-threaded version of MCFM
DOE Office of Scientific and Technical Information (OSTI.GOV)
Campbell, John M.; Ellis, R. Keith; Giele, Walter T.
We report on our findings modifying MCFM using OpenMP to implement multi-threading. By using OpenMP, the modified MCFM will execute on any processor, automatically adjusting to the number of available threads. We then modified the integration routine VEGAS to distribute the event evaluation over the threads, while combining all events at the end of every iteration to optimize the numerical integration. Furthermore, we took special care so that the results of the Monte Carlo integration were independent of the number of threads used, to facilitate the validation of the OpenMP version of MCFM.
Parallel approach for bioinspired algorithms
NASA Astrophysics Data System (ADS)
Zaporozhets, Dmitry; Zaruba, Daria; Kulieva, Nina
2018-05-01
In the paper, a probabilistic parallel approach based on the population heuristic, such as a genetic algorithm, is suggested. The authors proposed using a multithreading approach at the micro level at which new alternative solutions are generated. On each iteration, several threads that independently used the same population to generate new solutions can be started. After the work of all threads, a selection operator combines obtained results in the new population. To confirm the effectiveness of the suggested approach, the authors have developed software on the basis of which experimental computations can be carried out. The authors have considered a classic optimization problem – finding a Hamiltonian cycle in a graph. Experiments show that due to the parallel approach at the micro level, increment of running speed can be obtained on graphs with 250 and more vertices.
NASA Astrophysics Data System (ADS)
Chandra, Rishabh
Partial differential equation-constrained combinatorial optimization (PDECCO) problems are a mixture of continuous and discrete optimization problems. PDECCO problems have discrete controls, but since the partial differential equations (PDE) are continuous, the optimization space is continuous as well. Such problems have several applications, such as gas/water network optimization, traffic optimization, micro-chip cooling optimization, etc. Currently, no efficient classical algorithm which guarantees a global minimum for PDECCO problems exists. A new mapping has been developed that transforms PDECCO problem, which only have linear PDEs as constraints, into quadratic unconstrained binary optimization (QUBO) problems that can be solved using an adiabatic quantum optimizer (AQO). The mapping is efficient, it scales polynomially with the size of the PDECCO problem, requires only one PDE solve to form the QUBO problem, and if the QUBO problem is solved correctly and efficiently on an AQO, guarantees a global optimal solution for the original PDECCO problem.
Parameter estimation of a pulp digester model with derivative-free optimization strategies
NASA Astrophysics Data System (ADS)
Seiça, João C.; Romanenko, Andrey; Fernandes, Florbela P.; Santos, Lino O.; Fernandes, Natércia C. P.
2017-07-01
The work concerns the parameter estimation in the context of the mechanistic modelling of a pulp digester. The problem is cast as a box bounded nonlinear global optimization problem in order to minimize the mismatch between the model outputs with the experimental data observed at a real pulp and paper plant. MCSFilter and Simulated Annealing global optimization methods were used to solve the optimization problem. While the former took longer to converge to the global minimum, the latter terminated faster at a significantly higher value of the objective function and, thus, failed to find the global solution.
Enhancing Polyhedral Relaxations for Global Optimization
ERIC Educational Resources Information Center
Bao, Xiaowei
2009-01-01
During the last decade, global optimization has attracted a lot of attention due to the increased practical need for obtaining global solutions and the success in solving many global optimization problems that were previously considered intractable. In general, the central question of global optimization is to find an optimal solution to a given…
Multi-petascale highly efficient parallel supercomputer
DOE Office of Scientific and Technical Information (OSTI.GOV)
Asaad, Sameh; Bellofatto, Ralph E.; Blocksome, Michael A.
A Multi-Petascale Highly Efficient Parallel Supercomputer of 100 petaflop-scale includes node architectures based upon System-On-a-Chip technology, where each processing node comprises a single Application Specific Integrated Circuit (ASIC). The ASIC nodes are interconnected by a five dimensional torus network that optimally maximize the throughput of packet communications between nodes and minimize latency. The network implements collective network and a global asynchronous network that provides global barrier and notification functions. Integrated in the node design include a list-based prefetcher. The memory system implements transaction memory, thread level speculation, and multiversioning cache that improves soft error rate at the same time andmore » supports DMA functionality allowing for parallel processing message-passing.« less
Kernel optimization for short-range molecular dynamics
NASA Astrophysics Data System (ADS)
Hu, Changjun; Wang, Xianmeng; Li, Jianjiang; He, Xinfu; Li, Shigang; Feng, Yangde; Yang, Shaofeng; Bai, He
2017-02-01
To optimize short-range force computations in Molecular Dynamics (MD) simulations, multi-threading and SIMD optimizations are presented in this paper. With respect to multi-threading optimization, a Partition-and-Separate-Calculation (PSC) method is designed to avoid write conflicts caused by using Newton's third law. Serial bottlenecks are eliminated with no additional memory usage. The method is implemented by using the OpenMP model. Furthermore, the PSC method is employed on Intel Xeon Phi coprocessors in both native and offload models. We also evaluate the performance of the PSC method under different thread affinities on the MIC architecture. In the SIMD execution, we explain the performance influence in the PSC method, considering the "if-clause" of the cutoff radius check. The experiment results show that our PSC method is relatively more efficient compared to some traditional methods. In double precision, our 256-bit SIMD implementation is about 3 times faster than the scalar version.
NASA Astrophysics Data System (ADS)
Lu, Yanrong; Liao, Fucheng; Deng, Jiamei; Liu, Huiyang
2017-09-01
This paper investigates the cooperative global optimal preview tracking problem of linear multi-agent systems under the assumption that the output of a leader is a previewable periodic signal and the topology graph contains a directed spanning tree. First, a type of distributed internal model is introduced, and the cooperative preview tracking problem is converted to a global optimal regulation problem of an augmented system. Second, an optimal controller, which can guarantee the asymptotic stability of the augmented system, is obtained by means of the standard linear quadratic optimal preview control theory. Third, on the basis of proving the existence conditions of the controller, sufficient conditions are given for the original problem to be solvable, meanwhile a cooperative global optimal controller with error integral and preview compensation is derived. Finally, the validity of theoretical results is demonstrated by a numerical simulation.
Protein structure recognition: From eigenvector analysis to structural threading method
NASA Astrophysics Data System (ADS)
Cao, Haibo
In this work, we try to understand the protein folding problem using pair-wise hydrophobic interaction as the dominant interaction for the protein folding process. We found a strong correlation between amino acid sequence and the corresponding native structure of the protein. Some applications of this correlation were discussed in this dissertation include the domain partition and a new structural threading method as well as the performance of this method in the CASP5 competition. In the first part, we give a brief introduction to the protein folding problem. Some essential knowledge and progress from other research groups was discussed. This part include discussions of interactions among amino acids residues, lattice HP model, and the designablity principle. In the second part, we try to establish the correlation between amino acid sequence and the corresponding native structure of the protein. This correlation was observed in our eigenvector study of protein contact matrix. We believe the correlation is universal, thus it can be used in automatic partition of protein structures into folding domains. In the third part, we discuss a threading method based on the correlation between amino acid sequence and ominant eigenvector of the structure contact-matrix. A mathematically straightforward iteration scheme provides a self-consistent optimum global sequence-structure alignment. The computational efficiency of this method makes it possible to search whole protein structure databases for structural homology without relying on sequence similarity. The sensitivity and specificity of this method is discussed, along with a case of blind test prediction. In the appendix, we list the overall performance of this threading method in CASP5 blind test in comparison with other existing approaches.
Pigache, Francois; Messine, Frédéric; Nogarede, Bertrand
2007-07-01
This paper deals with a deterministic and rational way to design piezoelectric transformers in radial mode. The proposed approach is based on the study of the inverse problem of design and on its reformulation as a mixed constrained global optimization problem. The methodology relies on the association of the analytical models for describing the corresponding optimization problem and on an exact global optimization software, named IBBA and developed by the second author to solve it. Numerical experiments are presented and compared in order to validate the proposed approach.
Tuning collective communication for Partitioned Global Address Space programming models
Nishtala, Rajesh; Zheng, Yili; Hargrove, Paul H.; ...
2011-06-12
Partitioned Global Address Space (PGAS) languages offer programmers the convenience of a shared memory programming style combined with locality control necessary to run on large-scale distributed memory systems. Even within a PGAS language programmers often need to perform global communication operations such as broadcasts or reductions, which are best performed as collective operations in which a group of threads work together to perform the operation. In this study we consider the problem of implementing collective communication within PGAS languages and explore some of the design trade-offs in both the interface and implementation. In particular, PGAS collectives have semantic issues thatmore » are different than in send–receive style message passing programs, and different implementation approaches that take advantage of the one-sided communication style in these languages. We present an implementation framework for PGAS collectives as part of the GASNet communication layer, which supports shared memory, distributed memory and hybrids. The framework supports a broad set of algorithms for each collective, over which the implementation may be automatically tuned. In conclusion, we demonstrate the benefit of optimized GASNet collectives using application benchmarks written in UPC, and demonstrate that the GASNet collectives can deliver scalable performance on a variety of state-of-the-art parallel machines including a Cray XT4, an IBM BlueGene/P, and a Sun Constellation system with InfiniBand interconnect.« less
Thread Migration in the Presence of Pointers
NASA Technical Reports Server (NTRS)
Cronk, David; Haines, Matthew; Mehrotra, Piyush
1996-01-01
Dynamic migration of lightweight threads supports both data locality and load balancing. However, migrating threads that contain pointers referencing data in both the stack and heap remains an open problem. In this paper we describe a technique by which threads with pointers referencing both stack and non-shared heap data can be migrated such that the pointers remain valid after migration. As a result, threads containing pointers can now be migrated between processors in a homogeneous distributed memory environment.
NASA Astrophysics Data System (ADS)
Ji, Shude; Li, Zhengwei; Zhou, Zhenlu; Wu, Baosheng
2017-10-01
This study focused on the effects of thread on hook and cold lap formation, lap shear property and impact toughness of alclad 2024-T4 friction stir lap welding (FSLW) joints. Except the traditional threaded pin tool (TR-tool), three new tools with different thread locations and orientations were designed. Results showed that thread significantly affected hook, cold lap morphologies and lap shear properties. The tool with tip-threaded pin (T-tool) fabricated joint with flat hook and cold lap, which resulted in shear fracture mode. The tools with bottom-threaded pin (B-tool) eliminated the hook. The tool with reverse-threaded pin (R-tool) widened the stir zone width. When using configuration A, the joints fabricated by the three new tools showed higher failure loads than the joint fabricated by the TR-tool. The joint using the T-tool owned the optimum impact toughness. This study demonstrated the significance of thread during FSLW and provided a reference to optimize tool geometry.
Experimental study of canvas characterization for paintings
NASA Astrophysics Data System (ADS)
Cornelis, Bruno; Dooms, Ann; Munteanu, Adrian; Cornelis, Jan; Schelkens, Peter
2010-02-01
The work described here fits in the context of a larger project on the objective and relevant characterization of paintings and painting canvas through the analysis of multimodal digital images. We captured, amongst others, X-ray images of different canvas types, characterized by a variety of textures and weave patterns (fine and rougher texture; single thread and multiple threads per weave), including raw canvas as well as canvas processed with different primers. In this paper, we study how to characterize the canvas by extracting global features such as average thread width, average distance between successive threads (i.e. thread density) and the spatial distribution of primers. These features are then used to construct a generic model of the canvas structure. Secondly, we investigate whether we can identify different pieces of canvas coming from the same bolt. This is an important element for dating, authentication and identification of restorations. Both the global characteristics mentioned earlier and some local properties (such as deviations from the average pattern model) are used to compare the "fingerprint" of different pieces of cloth coming from the same or different bolts.
Research of thread rolling on difficult-to-cut material workpieces
NASA Astrophysics Data System (ADS)
Popov, A. Yu; Bugay, I. A.; Nazarov, P. V.; Evdokimova, O. P.; Popov, P. E.; Vasilyev, E. V.
2018-01-01
In medicine production Ti-6Al-4V Grade 5 alloys are used. One of the most important tasks is to increase the strength of the products and decrease in value. The possibility to roll special thread on Ti-6Al-4V Grade 5 alloy workpiece on 2-roller thread rolling machine has been studied. This is wrought alloy, treatment of which in cold condition causes difficulties due to low plasticity. To obtain Ti-6Al-4V Grade 5 alloy product with thread by rolling is rather difficult. This is due to large axial workpiece displacements resulting from large alloy resistance to cold plastic deformation. The provision of adequate kinematics requires experimental researches and the selection of modes - speed of rolling and pressure on the movable roller. The purpose of the work is to determine the optimal modes for rolling thread on titanium alloy workpiece. It has been stated that, after rolling, the product strength has increased up to 30%. As a result of the work, the unit has been made and recommendations to choose the optimal rolling process modes have been offered.
CUDA Optimization Strategies for Compute- and Memory-Bound Neuroimaging Algorithms
Lee, Daren; Dinov, Ivo; Dong, Bin; Gutman, Boris; Yanovsky, Igor; Toga, Arthur W.
2011-01-01
As neuroimaging algorithms and technology continue to grow faster than CPU performance in complexity and image resolution, data-parallel computing methods will be increasingly important. The high performance, data-parallel architecture of modern graphical processing units (GPUs) can reduce computational times by orders of magnitude. However, its massively threaded architecture introduces challenges when GPU resources are exceeded. This paper presents optimization strategies for compute- and memory-bound algorithms for the CUDA architecture. For compute-bound algorithms, the registers are reduced through variable reuse via shared memory and the data throughput is increased through heavier thread workloads and maximizing the thread configuration for a single thread block per multiprocessor. For memory-bound algorithms, fitting the data into the fast but limited GPU resources is achieved through reorganizing the data into self-contained structures and employing a multi-pass approach. Memory latencies are reduced by selecting memory resources whose cache performance are optimized for the algorithm's access patterns. We demonstrate the strategies on two computationally expensive algorithms and achieve optimized GPU implementations that perform up to 6× faster than unoptimized ones. Compared to CPU implementations, we achieve peak GPU speedups of 129× for the 3D unbiased nonlinear image registration technique and 93× for the non-local means surface denoising algorithm. PMID:21159404
CUDA optimization strategies for compute- and memory-bound neuroimaging algorithms.
Lee, Daren; Dinov, Ivo; Dong, Bin; Gutman, Boris; Yanovsky, Igor; Toga, Arthur W
2012-06-01
As neuroimaging algorithms and technology continue to grow faster than CPU performance in complexity and image resolution, data-parallel computing methods will be increasingly important. The high performance, data-parallel architecture of modern graphical processing units (GPUs) can reduce computational times by orders of magnitude. However, its massively threaded architecture introduces challenges when GPU resources are exceeded. This paper presents optimization strategies for compute- and memory-bound algorithms for the CUDA architecture. For compute-bound algorithms, the registers are reduced through variable reuse via shared memory and the data throughput is increased through heavier thread workloads and maximizing the thread configuration for a single thread block per multiprocessor. For memory-bound algorithms, fitting the data into the fast but limited GPU resources is achieved through reorganizing the data into self-contained structures and employing a multi-pass approach. Memory latencies are reduced by selecting memory resources whose cache performance are optimized for the algorithm's access patterns. We demonstrate the strategies on two computationally expensive algorithms and achieve optimized GPU implementations that perform up to 6× faster than unoptimized ones. Compared to CPU implementations, we achieve peak GPU speedups of 129× for the 3D unbiased nonlinear image registration technique and 93× for the non-local means surface denoising algorithm. Copyright © 2010 Elsevier Ireland Ltd. All rights reserved.
Zhang, Yong-Feng; Chiang, Hsiao-Dong
2017-09-01
A novel three-stage methodology, termed the "consensus-based particle swarm optimization (PSO)-assisted Trust-Tech methodology," to find global optimal solutions for nonlinear optimization problems is presented. It is composed of Trust-Tech methods, consensus-based PSO, and local optimization methods that are integrated to compute a set of high-quality local optimal solutions that can contain the global optimal solution. The proposed methodology compares very favorably with several recently developed PSO algorithms based on a set of small-dimension benchmark optimization problems and 20 large-dimension test functions from the CEC 2010 competition. The analytical basis for the proposed methodology is also provided. Experimental results demonstrate that the proposed methodology can rapidly obtain high-quality optimal solutions that can contain the global optimal solution. The scalability of the proposed methodology is promising.
Application of the gravity search algorithm to multi-reservoir operation optimization
NASA Astrophysics Data System (ADS)
Bozorg-Haddad, Omid; Janbaz, Mahdieh; Loáiciga, Hugo A.
2016-12-01
Complexities in river discharge, variable rainfall regime, and drought severity merit the use of advanced optimization tools in multi-reservoir operation. The gravity search algorithm (GSA) is an evolutionary optimization algorithm based on the law of gravity and mass interactions. This paper explores the GSA's efficacy for solving benchmark functions, single reservoir, and four-reservoir operation optimization problems. The GSA's solutions are compared with those of the well-known genetic algorithm (GA) in three optimization problems. The results show that the GSA's results are closer to the optimal solutions than the GA's results in minimizing the benchmark functions. The average values of the objective function equal 1.218 and 1.746 with the GSA and GA, respectively, in solving the single-reservoir hydropower operation problem. The global solution equals 1.213 for this same problem. The GSA converged to 99.97% of the global solution in its average-performing history, while the GA converged to 97% of the global solution of the four-reservoir problem. Requiring fewer parameters for algorithmic implementation and reaching the optimal solution in fewer number of functional evaluations are additional advantages of the GSA over the GA. The results of the three optimization problems demonstrate a superior performance of the GSA for optimizing general mathematical problems and the operation of reservoir systems.
Next-generation acceleration and code optimization for light transport in turbid media using GPUs
Alerstam, Erik; Lo, William Chun Yip; Han, Tianyi David; Rose, Jonathan; Andersson-Engels, Stefan; Lilge, Lothar
2010-01-01
A highly optimized Monte Carlo (MC) code package for simulating light transport is developed on the latest graphics processing unit (GPU) built for general-purpose computing from NVIDIA - the Fermi GPU. In biomedical optics, the MC method is the gold standard approach for simulating light transport in biological tissue, both due to its accuracy and its flexibility in modelling realistic, heterogeneous tissue geometry in 3-D. However, the widespread use of MC simulations in inverse problems, such as treatment planning for PDT, is limited by their long computation time. Despite its parallel nature, optimizing MC code on the GPU has been shown to be a challenge, particularly when the sharing of simulation result matrices among many parallel threads demands the frequent use of atomic instructions to access the slow GPU global memory. This paper proposes an optimization scheme that utilizes the fast shared memory to resolve the performance bottleneck caused by atomic access, and discusses numerous other optimization techniques needed to harness the full potential of the GPU. Using these techniques, a widely accepted MC code package in biophotonics, called MCML, was successfully accelerated on a Fermi GPU by approximately 600x compared to a state-of-the-art Intel Core i7 CPU. A skin model consisting of 7 layers was used as the standard simulation geometry. To demonstrate the possibility of GPU cluster computing, the same GPU code was executed on four GPUs, showing a linear improvement in performance with an increasing number of GPUs. The GPU-based MCML code package, named GPU-MCML, is compatible with a wide range of graphics cards and is released as an open-source software in two versions: an optimized version tuned for high performance and a simplified version for beginners (http://code.google.com/p/gpumcml). PMID:21258498
NASA Technical Reports Server (NTRS)
Englander, Arnold C.; Englander, Jacob A.
2017-01-01
Interplanetary trajectory optimization problems are highly complex and are characterized by a large number of decision variables and equality and inequality constraints as well as many locally optimal solutions. Stochastic global search techniques, coupled with a large-scale NLP solver, have been shown to solve such problems but are inadequately robust when the problem constraints become very complex. In this work, we present a novel search algorithm that takes advantage of the fact that equality constraints effectively collapse the solution space to lower dimensionality. This new approach walks the filament'' of feasibility to efficiently find the global optimal solution.
Screw-Thread Inserts As Temporary Flow Restrictors
NASA Technical Reports Server (NTRS)
Trimarchi, Paul
1992-01-01
Coil-spring screw-thread inserts found useful as temporary flow restrictors. Inserts placed in holes through which flow restricted, effectively reducing cross sections available for flow. Friction alone holds inserts against moderate upstream pressures. Use of coil-spring thread inserts as flow restrictors conceived as inexpensive solution to problem of adjusting flow of oxygen through orifices in faceplate into hydrogen/oxygen combustion chamber. Installation and removal of threaded inserts gentle enough not to deform orifice tubes.
Optimal Configuration and Deployment of Software on Multi-Core Processing Architectures
2008-07-01
between the event generating threads and the collector thread is implemented through semaphores . The Perseus data logger is designed to minimize the...performance counters (through the PAPI API) and opens up access to the shared memory logger through a semaphore and Remote Procedure Call (RPC) buffer... synchronization events. Using this rich data, the TMAM is able to output all of the information necessary to identify precisely which pairs of thread
Scaling Irregular Applications through Data Aggregation and Software Multithreading
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morari, Alessandro; Tumeo, Antonino; Chavarría-Miranda, Daniel
Bioinformatics, data analytics, semantic databases, knowledge discovery are emerging high performance application areas that exploit dynamic, linked data structures such as graphs, unbalanced trees or unstructured grids. These data structures usually are very large, requiring significantly more memory than available on single shared memory systems. Additionally, these data structures are difficult to partition on distributed memory systems. They also present poor spatial and temporal locality, thus generating unpredictable memory and network accesses. The Partitioned Global Address Space (PGAS) programming model seems suitable for these applications, because it allows using a shared memory abstraction across distributed-memory clusters. However, current PGAS languagesmore » and libraries are built to target regular remote data accesses and block transfers. Furthermore, they usually rely on the Single Program Multiple Data (SPMD) parallel control model, which is not well suited to the fine grained, dynamic and unbalanced parallelism of irregular applications. In this paper we present {\\bf GMT} (Global Memory and Threading library), a custom runtime library that enables efficient execution of irregular applications on commodity clusters. GMT integrates a PGAS data substrate with simple fork/join parallelism and provides automatic load balancing on a per node basis. It implements multi-level aggregation and lightweight multithreading to maximize memory and network bandwidth with fine-grained data accesses and tolerate long data access latencies. A key innovation in the GMT runtime is its thread specialization (workers, helpers and communication threads) that realize the overall functionality. We compare our approach with other PGAS models, such as UPC running using GASNet, and hand-optimized MPI code on a set of typical large-scale irregular applications, demonstrating speedups of an order of magnitude.« less
Method for using global optimization to the estimation of surface-consistent residual statics
Reister, David B.; Barhen, Jacob; Oblow, Edward M.
2001-01-01
An efficient method for generating residual statics corrections to compensate for surface-consistent static time shifts in stacked seismic traces. The method includes a step of framing the residual static corrections as a global optimization problem in a parameter space. The method also includes decoupling the global optimization problem involving all seismic traces into several one-dimensional problems. The method further utilizes a Stochastic Pijavskij Tunneling search to eliminate regions in the parameter space where a global minimum is unlikely to exist so that the global minimum may be quickly discovered. The method finds the residual statics corrections by maximizing the total stack power. The stack power is a measure of seismic energy transferred from energy sources to receivers.
OpenGeoSys-GEMS: Hybrid parallelization of a reactive transport code with MPI and threads
NASA Astrophysics Data System (ADS)
Kosakowski, G.; Kulik, D. A.; Shao, H.
2012-04-01
OpenGeoSys-GEMS is a generic purpose reactive transport code based on the operator splitting approach. The code couples the Finite-Element groundwater flow and multi-species transport modules of the OpenGeoSys (OGS) project (http://www.ufz.de/index.php?en=18345) with the GEM-Selektor research package to model thermodynamic equilibrium of aquatic (geo)chemical systems utilizing the Gibbs Energy Minimization approach (http://gems.web.psi.ch/). The combination of OGS and the GEM-Selektor kernel (GEMS3K) is highly flexible due to the object-oriented modular code structures and the well defined (memory based) data exchange modules. Like other reactive transport codes, the practical applicability of OGS-GEMS is often hampered by the long calculation time and large memory requirements. • For realistic geochemical systems which might include dozens of mineral phases and several (non-ideal) solid solutions the time needed to solve the chemical system with GEMS3K may increase exceptionally. • The codes are coupled in a sequential non-iterative loop. In order to keep the accuracy, the time step size is restricted. In combination with a fine spatial discretization the time step size may become very small which increases calculation times drastically even for small 1D problems. • The current version of OGS is not optimized for memory use and the MPI version of OGS does not distribute data between nodes. Even for moderately small 2D problems the number of MPI processes that fit into memory of up-to-date workstations or HPC hardware is limited. One strategy to overcome the above mentioned restrictions of OGS-GEMS is to parallelize the coupled code. For OGS a parallelized version already exists. It is based on a domain decomposition method implemented with MPI and provides a parallel solver for fluid and mass transport processes. In the coupled code, after solving fluid flow and solute transport, geochemical calculations are done in form of a central loop over all finite element nodes with calls to GEMS3K and consecutive calculations of changed material parameters. In a first step the existing MPI implementation was utilized to parallelize this loop. Calculations were split between the MPI processes and afterwards data was synchronized by using MPI communication routines. Furthermore, multi-threaded calculation of the loop was implemented with help of the boost thread library (http://www.boost.org). This implementation provides a flexible environment to distribute calculations between several threads. For each MPI process at least one and up to several dozens of worker threads are spawned. These threads do not replicate the complete OGS-GEM data structure and use only a limited amount of memory. Calculation of the central geochemical loop is shared between all threads. Synchronization between the threads is done by barrier commands. The overall number of local threads times MPI processes should match the number of available computing nodes. The combination of multi-threading and MPI provides an effective and flexible environment to speed up OGS-GEMS calculations while limiting the required memory use. Test calculations on different hardware show that for certain types of applications tremendous speedups are possible.
Automated quality control for stitching of textile articles
NASA Technical Reports Server (NTRS)
Miller, Jeffrey L. (Inventor); Markus, Alan (Inventor)
1999-01-01
Quality control for stitching of a textile article is performed by measuring thread tension in the stitches as the stitches are being made, determining locations of the stitches, and generating a map including the locations and stitching data derived from the measured thread tensions. The stitching data can be analyzed, off-line or in real time, to identify defective stitches. Defective stitches can then be repaired. Real time analysis of the thread tensions allows problems such as broken needle threads to be corrected immediately.
NASA Astrophysics Data System (ADS)
Mahnam, Mehdi; Gendreau, Michel; Lahrichi, Nadia; Rousseau, Louis-Martin
2017-07-01
In this paper, we propose a novel heuristic algorithm for the volumetric-modulated arc therapy treatment planning problem, optimizing the trade-off between delivery time and treatment quality. We present a new mixed integer programming model in which the multi-leaf collimator leaf positions, gantry speed, and dose rate are determined simultaneously. Our heuristic is based on column generation; the aperture configuration is modeled in the columns and the dose distribution and time restriction in the rows. To reduce the number of voxels and increase the efficiency of the master model, we aggregate similar voxels using a clustering technique. The efficiency of the algorithm and the treatment quality are evaluated on a benchmark clinical prostate cancer case. The computational results show that a high-quality treatment is achievable using a four-thread CPU. Finally, we analyze the effects of the various parameters and two leaf-motion strategies.
GLOBAL SOLUTIONS TO FOLDED CONCAVE PENALIZED NONCONVEX LEARNING
Liu, Hongcheng; Yao, Tao; Li, Runze
2015-01-01
This paper is concerned with solving nonconvex learning problems with folded concave penalty. Despite that their global solutions entail desirable statistical properties, there lack optimization techniques that guarantee global optimality in a general setting. In this paper, we show that a class of nonconvex learning problems are equivalent to general quadratic programs. This equivalence facilitates us in developing mixed integer linear programming reformulations, which admit finite algorithms that find a provably global optimal solution. We refer to this reformulation-based technique as the mixed integer programming-based global optimization (MIPGO). To our knowledge, this is the first global optimization scheme with a theoretical guarantee for folded concave penalized nonconvex learning with the SCAD penalty (Fan and Li, 2001) and the MCP penalty (Zhang, 2010). Numerical results indicate a significant outperformance of MIPGO over the state-of-the-art solution scheme, local linear approximation, and other alternative solution techniques in literature in terms of solution quality. PMID:27141126
Global optimization methods for engineering design
NASA Technical Reports Server (NTRS)
Arora, Jasbir S.
1990-01-01
The problem is to find a global minimum for the Problem P. Necessary and sufficient conditions are available for local optimality. However, global solution can be assured only under the assumption of convexity of the problem. If the constraint set S is compact and the cost function is continuous on it, existence of a global minimum is guaranteed. However, in view of the fact that no global optimality conditions are available, a global solution can be found only by an exhaustive search to satisfy Inequality. The exhaustive search can be organized in such a way that the entire design space need not be searched for the solution. This way the computational burden is reduced somewhat. It is concluded that zooming algorithm for global optimizations appears to be a good alternative to stochastic methods. More testing is needed; a general, robust, and efficient local minimizer is required. IDESIGN was used in all numerical calculations which is based on a sequential quadratic programming algorithm, and since feasible set keeps on shrinking, a good algorithm to find an initial feasible point is required. Such algorithms need to be developed and evaluated.
Global Optimal Trajectory in Chaos and NP-Hardness
NASA Astrophysics Data System (ADS)
Latorre, Vittorio; Gao, David Yang
This paper presents an unconventional theory and method for solving general nonlinear dynamical systems. Instead of the direct iterative methods, the discretized nonlinear system is first formulated as a global optimization problem via the least squares method. A newly developed canonical duality theory shows that this nonconvex minimization problem can be solved deterministically in polynomial time if a global optimality condition is satisfied. The so-called pseudo-chaos produced by linear iterative methods are mainly due to the intrinsic numerical error accumulations. Otherwise, the global optimization problem could be NP-hard and the nonlinear system can be really chaotic. A conjecture is proposed, which reveals the connection between chaos in nonlinear dynamics and NP-hardness in computer science. The methodology and the conjecture are verified by applications to the well-known logistic equation, a forced memristive circuit and the Lorenz system. Computational results show that the canonical duality theory can be used to identify chaotic systems and to obtain realistic global optimal solutions in nonlinear dynamical systems. The method and results presented in this paper should bring some new insights into nonlinear dynamical systems and NP-hardness in computational complexity theory.
Geant4 Computing Performance Benchmarking and Monitoring
Dotti, Andrea; Elvira, V. Daniel; Folger, Gunter; ...
2015-12-23
Performance evaluation and analysis of large scale computing applications is essential for optimal use of resources. As detector simulation is one of the most compute intensive tasks and Geant4 is the simulation toolkit most widely used in contemporary high energy physics (HEP) experiments, it is important to monitor Geant4 through its development cycle for changes in computing performance and to identify problems and opportunities for code improvements. All Geant4 development and public releases are being profiled with a set of applications that utilize different input event samples, physics parameters, and detector configurations. Results from multiple benchmarking runs are compared tomore » previous public and development reference releases to monitor CPU and memory usage. Observed changes are evaluated and correlated with code modifications. Besides the full summary of call stack and memory footprint, a detailed call graph analysis is available to Geant4 developers for further analysis. The set of software tools used in the performance evaluation procedure, both in sequential and multi-threaded modes, include FAST, IgProf and Open|Speedshop. In conclusion, the scalability of the CPU time and memory performance in multi-threaded application is evaluated by measuring event throughput and memory gain as a function of the number of threads for selected event samples.« less
Adaptive and mobile ground sensor array.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Holzrichter, Michael Warren; O'Rourke, William T.; Zenner, Jennifer
The goal of this LDRD was to demonstrate the use of robotic vehicles for deploying and autonomously reconfiguring seismic and acoustic sensor arrays with high (centimeter) accuracy to obtain enhancement of our capability to locate and characterize remote targets. The capability to accurately place sensors and then retrieve and reconfigure them allows sensors to be placed in phased arrays in an initial monitoring configuration and then to be reconfigured in an array tuned to the specific frequencies and directions of the selected target. This report reviews the findings and accomplishments achieved during this three-year project. This project successfully demonstrated autonomousmore » deployment and retrieval of a payload package with an accuracy of a few centimeters using differential global positioning system (GPS) signals. It developed an autonomous, multisensor, temporally aligned, radio-frequency communication and signal processing capability, and an array optimization algorithm, which was implemented on a digital signal processor (DSP). Additionally, the project converted the existing single-threaded, monolithic robotic vehicle control code into a multi-threaded, modular control architecture that enhances the reuse of control code in future projects.« less
Inatomi, Osamu; Bamba, Shigeki; Shioya, Makoto; Mochizuki, Yosuke; Ban, Hiromitsu; Tsujikawa, Tomoyuki; Saito, Yasuharu; Andoh, Akira; Fujiyama, Yoshihide
2013-02-14
Although endoscopic biliary stents have been accepted as part of palliative therapy for cases of malignant hilar obstruction, the optimal endoscopic management regime remains controversial. In this study, we evaluated the safety and efficacy of placing a threaded stent above the sphincter of Oddi (threaded inside plastic stents, threaded PS) and compared the results with those of other stent types. Patients with malignant hilar obstruction, including those requiring biliary drainage for stent occlusion, were selected. Patients received either one of the following endoscopic indwelling stents: threaded PS, conventional plastic stents (conventional PS), or metallic stents (MS). Duration of stent patency and the incident of complication were compared in these patients. Forty-two patients underwent placement of endoscopic indwelling stents (threaded PS = 12, conventional PS = 17, MS = 13). The median duration of threaded PS patency was significantly longer than that of conventional PS patency (142 vs. 32 days; P = 0.04, logrank test). The median duration of threaded PS and MS patency was not significantly different (142 vs. 150 days, P = 0.83). Stent migration did not occur in any group. Among patients who underwent threaded PS placement as a salvage therapy after MS obstruction due to tumor ingrowth, the median duration of MS patency was significantly shorter than that of threaded PS patency (123 vs. 240 days). Threaded PS are safe and effective in cases of malignant hilar obstruction; moreover, it is a suitable therapeutic option not only for initial drainage but also for salvage therapy.
Wang, Lipo; Li, Sa; Tian, Fuyu; Fu, Xiuju
2004-10-01
Recently Chen and Aihara have demonstrated both experimentally and mathematically that their chaotic simulated annealing (CSA) has better search ability for solving combinatorial optimization problems compared to both the Hopfield-Tank approach and stochastic simulated annealing (SSA). However, CSA may not find a globally optimal solution no matter how slowly annealing is carried out, because the chaotic dynamics are completely deterministic. In contrast, SSA tends to settle down to a global optimum if the temperature is reduced sufficiently slowly. Here we combine the best features of both SSA and CSA, thereby proposing a new approach for solving optimization problems, i.e., stochastic chaotic simulated annealing, by using a noisy chaotic neural network. We show the effectiveness of this new approach with two difficult combinatorial optimization problems, i.e., a traveling salesman problem and a channel assignment problem for cellular mobile communications.
Conceptual Design Study on Bolts for Self-Loosing Preventable Threaded Fasteners
NASA Astrophysics Data System (ADS)
Noma, Atsushi; He, Jianmei
2017-11-01
Threaded fasteners using bolts is widely applied in industrial field as well as various fields. However, threaded fasteners using bolts have loosing problems and cause many accidents. In this study, the purpose is to obtain self-loosing preventable threaded fasteners by applying spring characteristic effects on bolt structures. Helical-cutting applied bolt structures is introduced through three dimensional (3D) CAD modeling tools. Analytical approaches for evaluations on the spring characteristic effects helical-cutting applied bolt structures and self-loosing preventable performance of threaded fasteners were performed using finite element method and results are reported. Comparing slackness test results with analytical results and more details on evaluating mechanical properties will be executed in future study.
1981-01-01
on modeling the managerial aspects of the firm. The second has been the application to economic theory led by ...individual portfolio optimization problems which were embedded in a larger global optimization problem. In the global problem, portfolios were linked by market ...demand quantities or be given by linear demand relationships. As in~ the source markets , the model
A Memetic Algorithm for Global Optimization of Multimodal Nonseparable Problems.
Zhang, Geng; Li, Yangmin
2016-06-01
It is a big challenging issue of avoiding falling into local optimum especially when facing high-dimensional nonseparable problems where the interdependencies among vector elements are unknown. In order to improve the performance of optimization algorithm, a novel memetic algorithm (MA) called cooperative particle swarm optimizer-modified harmony search (CPSO-MHS) is proposed in this paper, where the CPSO is used for local search and the MHS for global search. The CPSO, as a local search method, uses 1-D swarm to search each dimension separately and thus converges fast. Besides, it can obtain global optimum elements according to our experimental results and analyses. MHS implements the global search by recombining different vector elements and extracting global optimum elements. The interaction between local search and global search creates a set of local search zones, where global optimum elements reside within the search space. The CPSO-MHS algorithm is tested and compared with seven other optimization algorithms on a set of 28 standard benchmarks. Meanwhile, some MAs are also compared according to the results derived directly from their corresponding references. The experimental results demonstrate a good performance of the proposed CPSO-MHS algorithm in solving multimodal nonseparable problems.
Optimizing Approximate Weighted Matching on Nvidia Kepler K40
DOE Office of Scientific and Technical Information (OSTI.GOV)
Naim, Md; Manne, Fredrik; Halappanavar, Mahantesh
Matching is a fundamental graph problem with numerous applications in science and engineering. While algorithms for computing optimal matchings are difficult to parallelize, approximation algorithms on the other hand generally compute high quality solutions and are amenable to parallelization. In this paper, we present efficient implementations of the current best algorithm for half-approximate weighted matching, the Suitor algorithm, on Nvidia Kepler K-40 platform. We develop four variants of the algorithm that exploit hardware features to address key challenges for a GPU implementation. We also experiment with different combinations of work assigned to a warp. Using an exhaustive set ofmore » $269$ inputs, we demonstrate that the new implementation outperforms the previous best GPU algorithm by $10$ to $$100\\times$$ for over $100$ instances, and from $100$ to $$1000\\times$$ for $15$ instances. We also demonstrate up to $$20\\times$$ speedup relative to $2$ threads, and up to $$5\\times$$ relative to $16$ threads on Intel Xeon platform with $16$ cores for the same algorithm. The new algorithms and implementations provided in this paper will have a direct impact on several applications that repeatedly use matching as a key compute kernel. Further, algorithm designs and insights provided in this paper will benefit other researchers implementing graph algorithms on modern GPU architectures.« less
Arsenic contamination in food chain: Thread to global food security
NASA Astrophysics Data System (ADS)
Kashyap, C. A.
2016-12-01
The supply of good quality food is a necessity for economic and social health of urban and rural population. Over the last several decades groundwater contamination in developing countries has assumed dangerous levels as a result millions of people are at risk. This is so particularly with respect to arsenic that has registered high concentration in groundwater in countries like India and Bangladesh. The arsenic content in groundwater varies from 10 to 780 µg/L, which is far above the levels for drinking water standards prescribed by World Health Organization (WHO). Currently arsenic has entered in food chain due to irrigation with arsenic contaminated water. In the present study reports the arsenic contamination in groundwater that is being used for irrigating paddy in Manipur and West Bengal. The arsenic content in irrigation water is 475 µg/L and 780 µg/L in Manipur and West Bengal, respectively. In order to assess the effect of such waters on the rice crop, we collected rice plant from Manipur and determined the arsenic content in roots, stem, and grain. The arsenic content in grain varies from 110 to 190 mg/kg while the limit of arsenic intake by humans is 10 mg/kg (WHO). This problem is not confine to the area, it spread global level, and rice being cultivated in these regions is export to the other countries like USA, Middle East and Europe and will be thread to global food security.
Ethnography at a Distance: Globally Mobile Parents Choosing International Schools
ERIC Educational Resources Information Center
Forsey, Martin; Breidenstein, Georg; Krüger, Oliver; Roch, Anna
2015-01-01
The research we report on was conducted from our computer desktops. We have not met the people we have studied; they are part of what Eichhorn described as a "textual community", gathered around the threads of online conversations associated with a website servicing the needs of English-language speakers in Germany. The thread in…
Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments.
Daily, Jeff
2016-02-10
Sequence alignment algorithms are a key component of many bioinformatics applications. Though various fast Smith-Waterman local sequence alignment implementations have been developed for x86 CPUs, most are embedded into larger database search tools. In addition, fast implementations of Needleman-Wunsch global sequence alignment and its semi-global variants are not as widespread. This article presents the first software library for local, global, and semi-global pairwise intra-sequence alignments and improves the performance of previous intra-sequence implementations. A faster intra-sequence local pairwise alignment implementation is described and benchmarked, including new global and semi-global variants. Using a 375 residue query sequence a speed of 136 billion cell updates per second (GCUPS) was achieved on a dual Intel Xeon E5-2670 24-core processor system, the highest reported for an implementation based on Farrar's 'striped' approach. Rognes's SWIPE optimal database search application is still generally the fastest available at 1.2 to at best 2.4 times faster than Parasail for sequences shorter than 500 amino acids. However, Parasail was faster for longer sequences. For global alignments, Parasail's prefix scan implementation is generally the fastest, faster even than Farrar's 'striped' approach, however the opal library is faster for single-threaded applications. The software library is designed for 64 bit Linux, OS X, or Windows on processors with SSE2, SSE41, or AVX2. Source code is available from https://github.com/jeffdaily/parasail under the Battelle BSD-style license. Applications that require optimal alignment scores could benefit from the improved performance. For the first time, SIMD global, semi-global, and local alignments are available in a stand-alone C library.
ERIC Educational Resources Information Center
Brusco, Michael J.; Kohn, Hans-Friedrich; Stahl, Stephanie
2008-01-01
Dynamic programming methods for matrix permutation problems in combinatorial data analysis can produce globally-optimal solutions for matrices up to size 30x30, but are computationally infeasible for larger matrices because of enormous computer memory requirements. Branch-and-bound methods also guarantee globally-optimal solutions, but computation…
Multiobjective Optimization Using a Pareto Differential Evolution Approach
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.; Biegel, Bryan A. (Technical Monitor)
2002-01-01
Differential Evolution is a simple, fast, and robust evolutionary algorithm that has proven effective in determining the global optimum for several difficult single-objective optimization problems. In this paper, the Differential Evolution algorithm is extended to multiobjective optimization problems by using a Pareto-based approach. The algorithm performs well when applied to several test optimization problems from the literature.
Duarte, Belmiro P.M.; Wong, Weng Kee; Atkinson, Anthony C.
2016-01-01
T-optimum designs for model discrimination are notoriously difficult to find because of the computational difficulty involved in solving an optimization problem that involves two layers of optimization. Only a handful of analytical T-optimal designs are available for the simplest problems; the rest in the literature are found using specialized numerical procedures for a specific problem. We propose a potentially more systematic and general way for finding T-optimal designs using a Semi-Infinite Programming (SIP) approach. The strategy requires that we first reformulate the original minimax or maximin optimization problem into an equivalent semi-infinite program and solve it using an exchange-based method where lower and upper bounds produced by solving the outer and the inner programs, are iterated to convergence. A global Nonlinear Programming (NLP) solver is used to handle the subproblems, thus finding the optimal design and the least favorable parametric configuration that minimizes the residual sum of squares from the alternative or test models. We also use a nonlinear program to check the global optimality of the SIP-generated design and automate the construction of globally optimal designs. The algorithm is successfully used to produce results that coincide with several T-optimal designs reported in the literature for various types of model discrimination problems with normally distributed errors. However, our method is more general, merely requiring that the parameters of the model be estimated by a numerical optimization. PMID:27330230
Duarte, Belmiro P M; Wong, Weng Kee; Atkinson, Anthony C
2015-03-01
T-optimum designs for model discrimination are notoriously difficult to find because of the computational difficulty involved in solving an optimization problem that involves two layers of optimization. Only a handful of analytical T-optimal designs are available for the simplest problems; the rest in the literature are found using specialized numerical procedures for a specific problem. We propose a potentially more systematic and general way for finding T-optimal designs using a Semi-Infinite Programming (SIP) approach. The strategy requires that we first reformulate the original minimax or maximin optimization problem into an equivalent semi-infinite program and solve it using an exchange-based method where lower and upper bounds produced by solving the outer and the inner programs, are iterated to convergence. A global Nonlinear Programming (NLP) solver is used to handle the subproblems, thus finding the optimal design and the least favorable parametric configuration that minimizes the residual sum of squares from the alternative or test models. We also use a nonlinear program to check the global optimality of the SIP-generated design and automate the construction of globally optimal designs. The algorithm is successfully used to produce results that coincide with several T-optimal designs reported in the literature for various types of model discrimination problems with normally distributed errors. However, our method is more general, merely requiring that the parameters of the model be estimated by a numerical optimization.
2013-01-01
Background Although endoscopic biliary stents have been accepted as part of palliative therapy for cases of malignant hilar obstruction, the optimal endoscopic management regime remains controversial. In this study, we evaluated the safety and efficacy of placing a threaded stent above the sphincter of Oddi (threaded inside plastic stents, threaded PS) and compared the results with those of other stent types. Methods Patients with malignant hilar obstruction, including those requiring biliary drainage for stent occlusion, were selected. Patients received either one of the following endoscopic indwelling stents: threaded PS, conventional plastic stents (conventional PS), or metallic stents (MS). Duration of stent patency and the incident of complication were compared in these patients. Results Forty-two patients underwent placement of endoscopic indwelling stents (threaded PS = 12, conventional PS = 17, MS = 13). The median duration of threaded PS patency was significantly longer than that of conventional PS patency (142 vs. 32 days; P = 0.04, logrank test). The median duration of threaded PS and MS patency was not significantly different (142 vs. 150 days, P = 0.83). Stent migration did not occur in any group. Among patients who underwent threaded PS placement as a salvage therapy after MS obstruction due to tumor ingrowth, the median duration of MS patency was significantly shorter than that of threaded PS patency (123 vs. 240 days). Conclusions Threaded PS are safe and effective in cases of malignant hilar obstruction; moreover, it is a suitable therapeutic option not only for initial drainage but also for salvage therapy. PMID:23410217
GPU-accelerated adjoint algorithmic differentiation
NASA Astrophysics Data System (ADS)
Gremse, Felix; Höfter, Andreas; Razik, Lukas; Kiessling, Fabian; Naumann, Uwe
2016-03-01
Many scientific problems such as classifier training or medical image reconstruction can be expressed as minimization of differentiable real-valued cost functions and solved with iterative gradient-based methods. Adjoint algorithmic differentiation (AAD) enables automated computation of gradients of such cost functions implemented as computer programs. To backpropagate adjoint derivatives, excessive memory is potentially required to store the intermediate partial derivatives on a dedicated data structure, referred to as the ;tape;. Parallelization is difficult because threads need to synchronize their accesses during taping and backpropagation. This situation is aggravated for many-core architectures, such as Graphics Processing Units (GPUs), because of the large number of light-weight threads and the limited memory size in general as well as per thread. We show how these limitations can be mediated if the cost function is expressed using GPU-accelerated vector and matrix operations which are recognized as intrinsic functions by our AAD software. We compare this approach with naive and vectorized implementations for CPUs. We use four increasingly complex cost functions to evaluate the performance with respect to memory consumption and gradient computation times. Using vectorization, CPU and GPU memory consumption could be substantially reduced compared to the naive reference implementation, in some cases even by an order of complexity. The vectorization allowed usage of optimized parallel libraries during forward and reverse passes which resulted in high speedups for the vectorized CPU version compared to the naive reference implementation. The GPU version achieved an additional speedup of 7.5 ± 4.4, showing that the processing power of GPUs can be utilized for AAD using this concept. Furthermore, we show how this software can be systematically extended for more complex problems such as nonlinear absorption reconstruction for fluorescence-mediated tomography.
GPU-Accelerated Adjoint Algorithmic Differentiation.
Gremse, Felix; Höfter, Andreas; Razik, Lukas; Kiessling, Fabian; Naumann, Uwe
2016-03-01
Many scientific problems such as classifier training or medical image reconstruction can be expressed as minimization of differentiable real-valued cost functions and solved with iterative gradient-based methods. Adjoint algorithmic differentiation (AAD) enables automated computation of gradients of such cost functions implemented as computer programs. To backpropagate adjoint derivatives, excessive memory is potentially required to store the intermediate partial derivatives on a dedicated data structure, referred to as the "tape". Parallelization is difficult because threads need to synchronize their accesses during taping and backpropagation. This situation is aggravated for many-core architectures, such as Graphics Processing Units (GPUs), because of the large number of light-weight threads and the limited memory size in general as well as per thread. We show how these limitations can be mediated if the cost function is expressed using GPU-accelerated vector and matrix operations which are recognized as intrinsic functions by our AAD software. We compare this approach with naive and vectorized implementations for CPUs. We use four increasingly complex cost functions to evaluate the performance with respect to memory consumption and gradient computation times. Using vectorization, CPU and GPU memory consumption could be substantially reduced compared to the naive reference implementation, in some cases even by an order of complexity. The vectorization allowed usage of optimized parallel libraries during forward and reverse passes which resulted in high speedups for the vectorized CPU version compared to the naive reference implementation. The GPU version achieved an additional speedup of 7.5 ± 4.4, showing that the processing power of GPUs can be utilized for AAD using this concept. Furthermore, we show how this software can be systematically extended for more complex problems such as nonlinear absorption reconstruction for fluorescence-mediated tomography.
GPU-Accelerated Adjoint Algorithmic Differentiation
Gremse, Felix; Höfter, Andreas; Razik, Lukas; Kiessling, Fabian; Naumann, Uwe
2015-01-01
Many scientific problems such as classifier training or medical image reconstruction can be expressed as minimization of differentiable real-valued cost functions and solved with iterative gradient-based methods. Adjoint algorithmic differentiation (AAD) enables automated computation of gradients of such cost functions implemented as computer programs. To backpropagate adjoint derivatives, excessive memory is potentially required to store the intermediate partial derivatives on a dedicated data structure, referred to as the “tape”. Parallelization is difficult because threads need to synchronize their accesses during taping and backpropagation. This situation is aggravated for many-core architectures, such as Graphics Processing Units (GPUs), because of the large number of light-weight threads and the limited memory size in general as well as per thread. We show how these limitations can be mediated if the cost function is expressed using GPU-accelerated vector and matrix operations which are recognized as intrinsic functions by our AAD software. We compare this approach with naive and vectorized implementations for CPUs. We use four increasingly complex cost functions to evaluate the performance with respect to memory consumption and gradient computation times. Using vectorization, CPU and GPU memory consumption could be substantially reduced compared to the naive reference implementation, in some cases even by an order of complexity. The vectorization allowed usage of optimized parallel libraries during forward and reverse passes which resulted in high speedups for the vectorized CPU version compared to the naive reference implementation. The GPU version achieved an additional speedup of 7.5 ± 4.4, showing that the processing power of GPUs can be utilized for AAD using this concept. Furthermore, we show how this software can be systematically extended for more complex problems such as nonlinear absorption reconstruction for fluorescence-mediated tomography. PMID:26941443
Memory Benchmarks for SMP-Based High Performance Parallel Computers
DOE Office of Scientific and Technical Information (OSTI.GOV)
Yoo, A B; de Supinski, B; Mueller, F
2001-11-20
As the speed gap between CPU and main memory continues to grow, memory accesses increasingly dominates the performance of many applications. The problem is particularly acute for symmetric multiprocessor (SMP) systems, where the shared memory may be accessed concurrently by a group of threads running on separate CPUs. Unfortunately, several key issues governing memory system performance in current systems are not well understood. Complex interactions between the levels of the memory hierarchy, buses or switches, DRAM back-ends, system software, and application access patterns can make it difficult to pinpoint bottlenecks and determine appropriate optimizations, and the situation is even moremore » complex for SMP systems. To partially address this problem, we formulated a set of multi-threaded microbenchmarks for characterizing and measuring the performance of the underlying memory system in SMP-based high-performance computers. We report our use of these microbenchmarks on two important SMP-based machines. This paper has four primary contributions. First, we introduce a microbenchmark suite to systematically assess and compare the performance of different levels in SMP memory hierarchies. Second, we present a new tool based on hardware performance monitors to determine a wide array of memory system characteristics, such as cache sizes, quickly and easily; by using this tool, memory performance studies can be targeted to the full spectrum of performance regimes with many fewer data points than is otherwise required. Third, we present experimental results indicating that the performance of applications with large memory footprints remains largely constrained by memory. Fourth, we demonstrate that thread-level parallelism further degrades memory performance, even for the latest SMPs with hardware prefetching and switch-based memory interconnects.« less
An Enhanced Memetic Algorithm for Single-Objective Bilevel Optimization Problems.
Islam, Md Monjurul; Singh, Hemant Kumar; Ray, Tapabrata; Sinha, Ankur
2017-01-01
Bilevel optimization, as the name reflects, deals with optimization at two interconnected hierarchical levels. The aim is to identify the optimum of an upper-level leader problem, subject to the optimality of a lower-level follower problem. Several problems from the domain of engineering, logistics, economics, and transportation have an inherent nested structure which requires them to be modeled as bilevel optimization problems. Increasing size and complexity of such problems has prompted active theoretical and practical interest in the design of efficient algorithms for bilevel optimization. Given the nested nature of bilevel problems, the computational effort (number of function evaluations) required to solve them is often quite high. In this article, we explore the use of a Memetic Algorithm (MA) to solve bilevel optimization problems. While MAs have been quite successful in solving single-level optimization problems, there have been relatively few studies exploring their potential for solving bilevel optimization problems. MAs essentially attempt to combine advantages of global and local search strategies to identify optimum solutions with low computational cost (function evaluations). The approach introduced in this article is a nested Bilevel Memetic Algorithm (BLMA). At both upper and lower levels, either a global or a local search method is used during different phases of the search. The performance of BLMA is presented on twenty-five standard test problems and two real-life applications. The results are compared with other established algorithms to demonstrate the efficacy of the proposed approach.
Proposal of Evolutionary Simplex Method for Global Optimization Problem
NASA Astrophysics Data System (ADS)
Shimizu, Yoshiaki
To make an agile decision in a rational manner, role of optimization engineering has been notified increasingly under diversified customer demand. With this point of view, in this paper, we have proposed a new evolutionary method serving as an optimization technique in the paradigm of optimization engineering. The developed method has prospects to solve globally various complicated problem appearing in real world applications. It is evolved from the conventional method known as Nelder and Mead’s Simplex method by virtue of idea borrowed from recent meta-heuristic method such as PSO. Mentioning an algorithm to handle linear inequality constraints effectively, we have validated effectiveness of the proposed method through comparison with other methods using several benchmark problems.
NASA Astrophysics Data System (ADS)
Cai, Xiaohui; Liu, Yang; Ren, Zhiming
2018-06-01
Reverse-time migration (RTM) is a powerful tool for imaging geologically complex structures such as steep-dip and subsalt. However, its implementation is quite computationally expensive. Recently, as a low-cost solution, the graphic processing unit (GPU) was introduced to improve the efficiency of RTM. In the paper, we develop three ameliorative strategies to implement RTM on GPU card. First, given the high accuracy and efficiency of the adaptive optimal finite-difference (FD) method based on least squares (LS) on central processing unit (CPU), we study the optimal LS-based FD method on GPU. Second, we develop the CPU-based hybrid absorbing boundary condition (ABC) to the GPU-based one by addressing two issues of the former when introduced to GPU card: time-consuming and chaotic threads. Third, for large-scale data, the combinatorial strategy for optimal checkpointing and efficient boundary storage is introduced for the trade-off between memory and recomputation. To save the time of communication between host and disk, the portable operating system interface (POSIX) thread is utilized to create the other CPU core at the checkpoints. Applications of the three strategies on GPU with the compute unified device architecture (CUDA) programming language in RTM demonstrate their efficiency and validity.
On l(1): Optimal decentralized performance
NASA Technical Reports Server (NTRS)
Sourlas, Dennis; Manousiouthakis, Vasilios
1993-01-01
In this paper, the Manousiouthakis parametrization of all decentralized stabilizing controllers is employed in mathematically formulating the l(sup 1) optimal decentralized controller synthesis problem. The resulting optimization problem is infinite dimensional and therefore not directly amenable to computations. It is shown that finite dimensional optimization problems that have value arbitrarily close to the infinite dimensional one can be constructed. Based on this result, an algorithm that solves the l(sup 1) decentralized performance problems is presented. A global optimization approach to the solution of the infinite dimensional approximating problems is also discussed.
Global Perspective and the Implications for School Leadership
ERIC Educational Resources Information Center
Zhang, Gaoming; Bohley, Katharine A.; Wheeler, Lynn
2017-01-01
Understanding and implementing a global perspective of business and education is a requisite skill for 21st Century educational leaders. Among principal preparation programs within the United States, there has been limited evidence of embedding the thread of global literacy or aligning curriculum with global-local skills. The purpose of this paper…
Clark, Andrew G; Naufer, M Nabuan; Westerlund, Fredrik; Lincoln, Per; Rouzina, Ioulia; Paramanathan, Thayaparan; Williams, Mark C
2018-02-06
Molecules that bind DNA via threading intercalation show high binding affinity as well as slow dissociation kinetics, properties ideal for the development of anticancer drugs. To this end, it is critical to identify the specific molecular characteristics of threading intercalators that result in optimal DNA interactions. Using single-molecule techniques, we quantify the binding of a small metal-organic ruthenium threading intercalator (Δ,Δ-B) and compare its binding characteristics to a similar molecule with significantly larger threading moieties (Δ,Δ-P). The binding affinities of the two molecules are the same, while comparison of the binding kinetics reveals significantly faster kinetics for Δ,Δ-B. However, the kinetics is still much slower than that observed for conventional intercalators. Comparison of the two threading intercalators shows that the binding affinity is modulated independently by the intercalating section and the binding kinetics is modulated by the threading moiety. In order to thread DNA, Δ,Δ-P requires a "lock mechanism", in which a large length increase of the DNA duplex is required for both association and dissociation. In contrast, measurements of the force-dependent binding kinetics show that Δ,Δ-B requires a large DNA length increase for association but no length increase for dissociation from DNA. This contrasts strongly with conventional intercalators, for which almost no DNA length change is required for association but a large DNA length change must occur for dissociation. This result illustrates the fundamentally different mechanism of threading intercalation compared with conventional intercalation and will pave the way for the rational design of therapeutic drugs based on DNA threading intercalation.
A Guiding Evolutionary Algorithm with Greedy Strategy for Global Optimization Problems
Cao, Leilei; Xu, Lihong; Goodman, Erik D.
2016-01-01
A Guiding Evolutionary Algorithm (GEA) with greedy strategy for global optimization problems is proposed. Inspired by Particle Swarm Optimization, the Genetic Algorithm, and the Bat Algorithm, the GEA was designed to retain some advantages of each method while avoiding some disadvantages. In contrast to the usual Genetic Algorithm, each individual in GEA is crossed with the current global best one instead of a randomly selected individual. The current best individual served as a guide to attract offspring to its region of genotype space. Mutation was added to offspring according to a dynamic mutation probability. To increase the capability of exploitation, a local search mechanism was applied to new individuals according to a dynamic probability of local search. Experimental results show that GEA outperformed the other three typical global optimization algorithms with which it was compared. PMID:27293421
A Guiding Evolutionary Algorithm with Greedy Strategy for Global Optimization Problems.
Cao, Leilei; Xu, Lihong; Goodman, Erik D
2016-01-01
A Guiding Evolutionary Algorithm (GEA) with greedy strategy for global optimization problems is proposed. Inspired by Particle Swarm Optimization, the Genetic Algorithm, and the Bat Algorithm, the GEA was designed to retain some advantages of each method while avoiding some disadvantages. In contrast to the usual Genetic Algorithm, each individual in GEA is crossed with the current global best one instead of a randomly selected individual. The current best individual served as a guide to attract offspring to its region of genotype space. Mutation was added to offspring according to a dynamic mutation probability. To increase the capability of exploitation, a local search mechanism was applied to new individuals according to a dynamic probability of local search. Experimental results show that GEA outperformed the other three typical global optimization algorithms with which it was compared.
NASA Astrophysics Data System (ADS)
Xu, Shuo; Ji, Ze; Truong Pham, Duc; Yu, Fan
2011-11-01
The simultaneous mission assignment and home allocation for hospital service robots studied is a Multidimensional Assignment Problem (MAP) with multiobjectives and multiconstraints. A population-based metaheuristic, the Binary Bees Algorithm (BBA), is proposed to optimize this NP-hard problem. Inspired by the foraging mechanism of honeybees, the BBA's most important feature is an explicit functional partitioning between global search and local search for exploration and exploitation, respectively. Its key parts consist of adaptive global search, three-step elitism selection (constraint handling, non-dominated solutions selection, and diversity preservation), and elites-centred local search within a Hamming neighbourhood. Two comparative experiments were conducted to investigate its single objective optimization, optimization effectiveness (indexed by the S-metric and C-metric) and optimization efficiency (indexed by computational burden and CPU time) in detail. The BBA outperformed its competitors in almost all the quantitative indices. Hence, the above overall scheme, and particularly the searching history-adapted global search strategy was validated.
Real-time SHVC software decoding with multi-threaded parallel processing
NASA Astrophysics Data System (ADS)
Gudumasu, Srinivas; He, Yuwen; Ye, Yan; He, Yong; Ryu, Eun-Seok; Dong, Jie; Xiu, Xiaoyu
2014-09-01
This paper proposes a parallel decoding framework for scalable HEVC (SHVC). Various optimization technologies are implemented on the basis of SHVC reference software SHM-2.0 to achieve real-time decoding speed for the two layer spatial scalability configuration. SHVC decoder complexity is analyzed with profiling information. The decoding process at each layer and the up-sampling process are designed in parallel and scheduled by a high level application task manager. Within each layer, multi-threaded decoding is applied to accelerate the layer decoding speed. Entropy decoding, reconstruction, and in-loop processing are pipeline designed with multiple threads based on groups of coding tree units (CTU). A group of CTUs is treated as a processing unit in each pipeline stage to achieve a better trade-off between parallelism and synchronization. Motion compensation, inverse quantization, and inverse transform modules are further optimized with SSE4 SIMD instructions. Simulations on a desktop with an Intel i7 processor 2600 running at 3.4 GHz show that the parallel SHVC software decoder is able to decode 1080p spatial 2x at up to 60 fps (frames per second) and 1080p spatial 1.5x at up to 50 fps for those bitstreams generated with SHVC common test conditions in the JCT-VC standardization group. The decoding performance at various bitrates with different optimization technologies and different numbers of threads are compared in terms of decoding speed and resource usage, including processor and memory.
NASA Astrophysics Data System (ADS)
Sergeyev, Yaroslav D.; Kvasov, Dmitri E.; Mukhametzhanov, Marat S.
2018-06-01
The necessity to find the global optimum of multiextremal functions arises in many applied problems where finding local solutions is insufficient. One of the desirable properties of global optimization methods is strong homogeneity meaning that a method produces the same sequences of points where the objective function is evaluated independently both of multiplication of the function by a scaling constant and of adding a shifting constant. In this paper, several aspects of global optimization using strongly homogeneous methods are considered. First, it is shown that even if a method possesses this property theoretically, numerically very small and large scaling constants can lead to ill-conditioning of the scaled problem. Second, a new class of global optimization problems where the objective function can have not only finite but also infinite or infinitesimal Lipschitz constants is introduced. Third, the strong homogeneity of several Lipschitz global optimization algorithms is studied in the framework of the Infinity Computing paradigm allowing one to work numerically with a variety of infinities and infinitesimals. Fourth, it is proved that a class of efficient univariate methods enjoys this property for finite, infinite and infinitesimal scaling and shifting constants. Finally, it is shown that in certain cases the usage of numerical infinities and infinitesimals can avoid ill-conditioning produced by scaling. Numerical experiments illustrating theoretical results are described.
Algorithms for bilevel optimization
NASA Technical Reports Server (NTRS)
Alexandrov, Natalia; Dennis, J. E., Jr.
1994-01-01
General multilevel nonlinear optimization problems arise in design of complex systems and can be used as a means of regularization for multi-criteria optimization problems. Here, for clarity in displaying our ideas, we restrict ourselves to general bi-level optimization problems, and we present two solution approaches. Both approaches use a trust-region globalization strategy, and they can be easily extended to handle the general multilevel problem. We make no convexity assumptions, but we do assume that the problem has a nondegenerate feasible set. We consider necessary optimality conditions for the bi-level problem formulations and discuss results that can be extended to obtain multilevel optimization formulations with constraints at each level.
Global Optimization Ensemble Model for Classification Methods
Anwar, Hina; Qamar, Usman; Muzaffar Qureshi, Abdul Wahab
2014-01-01
Supervised learning is the process of data mining for deducing rules from training datasets. A broad array of supervised learning algorithms exists, every one of them with its own advantages and drawbacks. There are some basic issues that affect the accuracy of classifier while solving a supervised learning problem, like bias-variance tradeoff, dimensionality of input space, and noise in the input data space. All these problems affect the accuracy of classifier and are the reason that there is no global optimal method for classification. There is not any generalized improvement method that can increase the accuracy of any classifier while addressing all the problems stated above. This paper proposes a global optimization ensemble model for classification methods (GMC) that can improve the overall accuracy for supervised learning problems. The experimental results on various public datasets showed that the proposed model improved the accuracy of the classification models from 1% to 30% depending upon the algorithm complexity. PMID:24883382
Tuning orb spider glycoprotein glue performance to habitat humidity.
Opell, Brent D; Jain, Dharamdeep; Dhinojwala, Ali; Blackledge, Todd A
2018-03-26
Orb-weaving spiders use adhesive threads to delay the escape of insects from their webs until the spiders can locate and subdue the insects. These viscous threads are spun as paired flagelliform axial fibers coated by a cylinder of solution derived from the aggregate glands. As low molecular mass compounds (LMMCs) in the aggregate solution attract atmospheric moisture, the enlarging cylinder becomes unstable and divides into droplets. Within each droplet an adhesive glycoprotein core condenses. The plasticity and axial line extensibility of the glycoproteins are maintained by hygroscopic LMMCs. These compounds cause droplet volume to track changes in humidity and glycoprotein viscosity to vary approximately 1000-fold over the course of a day. Natural selection has tuned the performance of glycoprotein cores to the humidity of a species' foraging environment by altering the composition of its LMMCs. Thus, species from low-humidity habits have more hygroscopic threads than those from humid forests. However, at their respective foraging humidities, these species' glycoproteins have remarkably similar viscosities, ensuring optimal droplet adhesion by balancing glycoprotein adhesion and cohesion. Optimal viscosity is also essential for integrating the adhesion force of multiple droplets. As force is transferred to a thread's support line, extending droplets draw it into a parabolic configuration, implementing a suspension bridge mechanism that sums the adhesive force generated over the thread span. Thus, viscous capture threads extend an orb spider's phenotype as a highly integrated complex of large proteins and small molecules that function as a self-assembling, highly tuned, environmentally responsive, adhesive biomaterial. Understanding the synergistic role of chemistry and design in spider adhesives, particularly the ability to stick in wet conditions, provides insight in designing synthetic adhesives for biomedical applications. © 2018. Published by The Company of Biologists Ltd.
Electronic neural network for solving traveling salesman and similar global optimization problems
NASA Technical Reports Server (NTRS)
Thakoor, Anilkumar P. (Inventor); Moopenn, Alexander W. (Inventor); Duong, Tuan A. (Inventor); Eberhardt, Silvio P. (Inventor)
1993-01-01
This invention is a novel high-speed neural network based processor for solving the 'traveling salesman' and other global optimization problems. It comprises a novel hybrid architecture employing a binary synaptic array whose embodiment incorporates the fixed rules of the problem, such as the number of cities to be visited. The array is prompted by analog voltages representing variables such as distances. The processor incorporates two interconnected feedback networks, each of which solves part of the problem independently and simultaneously, yet which exchange information dynamically.
Thread scheduling for GPU-based OPC simulation on multi-thread
NASA Astrophysics Data System (ADS)
Lee, Heejun; Kim, Sangwook; Hong, Jisuk; Lee, Sooryong; Han, Hwansoo
2018-03-01
As semiconductor product development based on shrinkage continues, the accuracy and difficulty required for the model based optical proximity correction (MBOPC) is increasing. OPC simulation time, which is the most timeconsuming part of MBOPC, is rapidly increasing due to high pattern density in a layout and complex OPC model. To reduce OPC simulation time, we attempt to apply graphic processing unit (GPU) to MBOPC because OPC process is good to be programmed in parallel. We address some issues that may typically happen during GPU-based OPC simulation in multi thread system, such as "out of memory" and "GPU idle time". To overcome these problems, we propose a thread scheduling method, which manages OPC jobs in multiple threads in such a way that simulations jobs from multiple threads are alternatively executed on GPU while correction jobs are executed at the same time in each CPU cores. It was observed that the amount of GPU peak memory usage decreases by up to 35%, and MBOPC runtime also decreases by 4%. In cases where out of memory issues occur in a multi-threaded environment, the thread scheduler was used to improve MBOPC runtime up to 23%.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shin, J; Coss, D; McMurry, J
Purpose: To evaluate the efficiency of multithreaded Geant4 (Geant4-MT, version 10.0) for proton Monte Carlo dose calculations using a high performance computing facility. Methods: Geant4-MT was used to calculate 3D dose distributions in 1×1×1 mm3 voxels in a water phantom and patient's head with a 150 MeV proton beam covering approximately 5×5 cm2 in the water phantom. Three timestamps were measured on the fly to separately analyze the required time for initialization (which cannot be parallelized), processing time of individual threads, and completion time. Scalability of averaged processing time per thread was calculated as a function of thread number (1,more » 100, 150, and 200) for both 1M and 50 M histories. The total memory usage was recorded. Results: Simulations with 50 M histories were fastest with 100 threads, taking approximately 1.3 hours and 6 hours for the water phantom and the CT data, respectively with better than 1.0 % statistical uncertainty. The calculations show 1/N scalability in the event loops for both cases. The gains from parallel calculations started to decrease with 150 threads. The memory usage increases linearly with number of threads. No critical failures were observed during the simulations. Conclusion: Multithreading in Geant4-MT decreased simulation time in proton dose distribution calculations by a factor of 64 and 54 at a near optimal 100 threads for water phantom and patient's data respectively. Further simulations will be done to determine the efficiency at the optimal thread number. Considering the trend of computer architecture development, utilizing Geant4-MT for radiotherapy simulations is an excellent cost-effective alternative for a distributed batch queuing system. However, because the scalability depends highly on simulation details, i.e., the ratio of the processing time of one event versus waiting time to access for the shared event queue, a performance evaluation as described is recommended.« less
NASA Technical Reports Server (NTRS)
Clement, Bradley J.; Estlin, Tara A.; Bornstein, Benjamin J.
2013-01-01
The Mobile Thread Task Manager (MTTM) is being applied to parallelizing existing flight software to understand the benefits and to develop new techniques and architectural concepts for adapting software to multicore architectures. It allocates and load-balances tasks for a group of threads that migrate across processors to improve cache performance. In order to balance-load across threads, the MTTM augments a basic map-reduce strategy to draw jobs from a global queue. In a multicore processor, memory may be "homed" to the cache of a specific processor and must be accessed from that processor. The MTTB architecture wraps access to data with thread management to move threads to the home processor for that data so that the computation follows the data in an attempt to avoid L2 cache misses. Cache homing is also handled by a memory manager that translates identifiers to processor IDs where the data will be homed (according to rules defined by the user). The user can also specify the number of threads and processors separately, which is important for tuning performance for different patterns of computation and memory access. MTTM efficiently processes tasks in parallel on a multiprocessor computer. It also provides an interface to make it easier to adapt existing software to a multiprocessor environment.
NASA Astrophysics Data System (ADS)
Baregheh, Mandana; Mezentsev, Vladimir; Schmitz, Holger
2011-06-01
We describe a parallel multi-threaded approach for high performance modelling of wide class of phenomena in ultrafast nonlinear optics. Specific implementation has been performed using the highly parallel capabilities of a programmable graphics processor.
Implementation of a multi-threaded framework for large-scale scientific applications
Sexton-Kennedy, E.; Gartung, Patrick; Jones, C. D.; ...
2015-05-22
The CMS experiment has recently completed the development of a multi-threaded capable application framework. In this paper, we will discuss the design, implementation and application of this framework to production applications in CMS. For the 2015 LHC run, this functionality is particularly critical for both our online and offline production applications, which depend on faster turn-around times and a reduced memory footprint relative to before. These applications are complex codes, each including a large number of physics-driven algorithms. While the framework is capable of running a mix of thread-safe and 'legacy' modules, algorithms running in our production applications need tomore » be thread-safe for optimal use of this multi-threaded framework at a large scale. Towards this end, we discuss the types of changes, which were necessary for our algorithms to achieve good performance of our multithreaded applications in a full-scale application. Lastly performance numbers for what has been achieved for the 2015 run are presented.« less
Global dynamic optimization approach to predict activation in metabolic pathways.
de Hijas-Liste, Gundián M; Klipp, Edda; Balsa-Canto, Eva; Banga, Julio R
2014-01-06
During the last decade, a number of authors have shown that the genetic regulation of metabolic networks may follow optimality principles. Optimal control theory has been successfully used to compute optimal enzyme profiles considering simple metabolic pathways. However, applying this optimal control framework to more general networks (e.g. branched networks, or networks incorporating enzyme production dynamics) yields problems that are analytically intractable and/or numerically very challenging. Further, these previous studies have only considered a single-objective framework. In this work we consider a more general multi-objective formulation and we present solutions based on recent developments in global dynamic optimization techniques. We illustrate the performance and capabilities of these techniques considering two sets of problems. First, we consider a set of single-objective examples of increasing complexity taken from the recent literature. We analyze the multimodal character of the associated non linear optimization problems, and we also evaluate different global optimization approaches in terms of numerical robustness, efficiency and scalability. Second, we consider generalized multi-objective formulations for several examples, and we show how this framework results in more biologically meaningful results. The proposed strategy was used to solve a set of single-objective case studies related to unbranched and branched metabolic networks of different levels of complexity. All problems were successfully solved in reasonable computation times with our global dynamic optimization approach, reaching solutions which were comparable or better than those reported in previous literature. Further, we considered, for the first time, multi-objective formulations, illustrating how activation in metabolic pathways can be explained in terms of the best trade-offs between conflicting objectives. This new methodology can be applied to metabolic networks with arbitrary topologies, non-linear dynamics and constraints.
An Automatic Medium to High Fidelity Low-Thrust Global Trajectory Toolchain; EMTG-GMAT
NASA Technical Reports Server (NTRS)
Beeson, Ryne T.; Englander, Jacob A.; Hughes, Steven P.; Schadegg, Maximillian
2015-01-01
Solving the global optimization, low-thrust, multiple-flyby interplanetary trajectory problem with high-fidelity dynamical models requires an unreasonable amount of computational resources. A better approach, and one that is demonstrated in this paper, is a multi-step process whereby the solution of the aforementioned problem is solved at a lower-fidelity and this solution is used as an initial guess for a higher-fidelity solver. The framework presented in this work uses two tools developed by NASA Goddard Space Flight Center: the Evolutionary Mission Trajectory Generator (EMTG) and the General Mission Analysis Tool (GMAT). EMTG is a medium to medium-high fidelity low-thrust interplanetary global optimization solver, which now has the capability to automatically generate GMAT script files for seeding a high-fidelity solution using GMAT's local optimization capabilities. A discussion of the dynamical models as well as thruster and power modeling for both EMTG and GMAT are given in this paper. Current capabilities are demonstrated with examples that highlight the toolchains ability to efficiently solve the difficult low-thrust global optimization problem with little human intervention.
It's a Sooty Problem: Black Carbon and Aerosols from Space
NASA Technical Reports Server (NTRS)
Kaufman, Yoram J.
2005-01-01
Our knowledge of atmospheric aerosols (smoke, pollution, dust or sea salt particles, small enough to be suspended in the air), their evolution, composition, variability in space and time and interaction with solar radiation, clouds and precipitation is lacking despite decades of research. Just recently we recognized that understanding the global aerosol system is fundamental for progress in climate change and hydrological cycle research. While a single instrument was used to demonstrate 50 yrs ago that the global CO2 levels are rising, posing thread to our climate, we need an may of satellites, surface networks of radiometers, elaborated laboratory and field experiments coupled with chemical transport models to understand the global aerosol system. This complexity of the aerosol problem results from their short lifetime (1 week), variability of the chemical composition and complex chemical and physical processes in the atmosphere. The result is a heterogeneous distribution of aerosol and their properties. The new generation of satellites and surface networks of radiometers provides exciting opportunities to measure the aerosol properties and their interaction with clouds and climate. However farther development in the satellite capability, aerosol chemical models and climate models is needed to fully decipher the aerosol secrets with accuracy required to predict future climates.
Preload, Coefficient of Friction, and Thread Friction in an Implant-Abutment-Screw Complex.
Wentaschek, Stefan; Tomalla, Sven; Schmidtmann, Irene; Lehmann, Karl Martin
To examine the screw preload, coefficient of friction (COF), and tightening torque needed to overcome the thread friction of an implant-abutment-screw complex. In a customized load frame, 25 new implant-abutment-screw complexes including uncoated titanium alloy screws were torqued and untorqued 10 times each, applying 25 Ncm. Mean preload values decreased significantly from 209.8 N to 129.5 N according to the number of repetitions. The overall COF increased correspondingly. There was no comparable trend for the thread friction component. These results suggest that the application of a used implant-abutment-screw complex may be unfavorable for obtaining optimal screw preload.
A connectionist model for diagnostic problem solving
NASA Technical Reports Server (NTRS)
Peng, Yun; Reggia, James A.
1989-01-01
A competition-based connectionist model for solving diagnostic problems is described. The problems considered are computationally difficult in that (1) multiple disorders may occur simultaneously and (2) a global optimum in the space exponential to the total number of possible disorders is sought as a solution. The diagnostic problem is treated as a nonlinear optimization problem, and global optimization criteria are decomposed into local criteria governing node activation updating in the connectionist model. Nodes representing disorders compete with each other to account for each individual manifestation, yet complement each other to account for all manifestations through parallel node interactions. When equilibrium is reached, the network settles into a locally optimal state. Three randomly generated examples of diagnostic problems, each of which has 1024 cases, were tested, and the decomposition plus competition plus resettling approach yielded very high accuracy.
Automated parameterization of intermolecular pair potentials using global optimization techniques
NASA Astrophysics Data System (ADS)
Krämer, Andreas; Hülsmann, Marco; Köddermann, Thorsten; Reith, Dirk
2014-12-01
In this work, different global optimization techniques are assessed for the automated development of molecular force fields, as used in molecular dynamics and Monte Carlo simulations. The quest of finding suitable force field parameters is treated as a mathematical minimization problem. Intricate problem characteristics such as extremely costly and even abortive simulations, noisy simulation results, and especially multiple local minima naturally lead to the use of sophisticated global optimization algorithms. Five diverse algorithms (pure random search, recursive random search, CMA-ES, differential evolution, and taboo search) are compared to our own tailor-made solution named CoSMoS. CoSMoS is an automated workflow. It models the parameters' influence on the simulation observables to detect a globally optimal set of parameters. It is shown how and why this approach is superior to other algorithms. Applied to suitable test functions and simulations for phosgene, CoSMoS effectively reduces the number of required simulations and real time for the optimization task.
NASA Astrophysics Data System (ADS)
Chu, J. G.; Zhang, C.; Fu, G. T.; Li, Y.; Zhou, H. C.
2015-04-01
This study investigates the effectiveness of a sensitivity-informed method for multi-objective operation of reservoir systems, which uses global sensitivity analysis as a screening tool to reduce the computational demands. Sobol's method is used to screen insensitive decision variables and guide the formulation of the optimization problems with a significantly reduced number of decision variables. This sensitivity-informed problem decomposition dramatically reduces the computational demands required for attaining high quality approximations of optimal tradeoff relationships between conflicting design objectives. The search results obtained from the reduced complexity multi-objective reservoir operation problems are then used to pre-condition the full search of the original optimization problem. In two case studies, the Dahuofang reservoir and the inter-basin multi-reservoir system in Liaoning province, China, sensitivity analysis results show that reservoir performance is strongly controlled by a small proportion of decision variables. Sensitivity-informed problem decomposition and pre-conditioning are evaluated in their ability to improve the efficiency and effectiveness of multi-objective evolutionary optimization. Overall, this study illustrates the efficiency and effectiveness of the sensitivity-informed method and the use of global sensitivity analysis to inform problem decomposition when solving the complex multi-objective reservoir operation problems.
Using all of your CPU's in HIPE
NASA Astrophysics Data System (ADS)
Jacobson, J. D.; Fadda, D.
2012-09-01
Modern computer architectures increasingly feature multi-core CPU's. For example, the MacbookPro features the Intel quad-core i7 processors. Through the use of hyper-threading, where each core can execute two threads simultaneously, the quad-core i7 can support eight simultaneous processing threads. All this on your laptop! This CPU power can now be put into service by scientists to perform data reduction tasks, but only if the software has been designed to take advantage of the multiple processor architectures. Up to now, software written for Herschel data reduction (HIPE), written in Jython and JAVA, is single-threaded and can only utilize a single processor. Users of HIPE do not get any advantage from the additional processors. Why not put all of the CPU resources to work reducing your data? We present a multi-threaded software application that corrects long-term transients in the signal from the PACS unchopped spectroscopy line scan mode. In this poster, we present a multi-threaded software framework to achieve performance improvements from parallel execution. We will show how a task to correct transients in the PACS Spectroscopy Pipeline for the un-chopped line scan mode, has been threaded. This computation-intensive task uses either a one-parameter or a three parameter exponential function, to characterize the transient. The task uses a JAVA implementation of Minpack, translated from the C (Moshier) and IDL (Markwardt) by the authors, to optimize the correction parameters. We also explain how to determine if a task can benefit from threading (Amdahl's Law), and if it is safe to thread. The design and implementation, using the JAVA concurrency package completions service is described. Pitfalls, timing bugs, thread safety, resource control, testing and performance improvements are described and plotted.
Block-Parallel Data Analysis with DIY2
DOE Office of Scientific and Technical Information (OSTI.GOV)
Morozov, Dmitriy; Peterka, Tom
DIY2 is a programming model and runtime for block-parallel analytics on distributed-memory machines. Its main abstraction is block-structured data parallelism: data are decomposed into blocks; blocks are assigned to processing elements (processes or threads); computation is described as iterations over these blocks, and communication between blocks is defined by reusable patterns. By expressing computation in this general form, the DIY2 runtime is free to optimize the movement of blocks between slow and fast memories (disk and flash vs. DRAM) and to concurrently execute blocks residing in memory with multiple threads. This enables the same program to execute in-core, out-of-core, serial,more » parallel, single-threaded, multithreaded, or combinations thereof. This paper describes the implementation of the main features of the DIY2 programming model and optimizations to improve performance. DIY2 is evaluated on benchmark test cases to establish baseline performance for several common patterns and on larger complete analysis codes running on large-scale HPC machines.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hart, William E.; Siirola, John Daniel
We describe new capabilities for modeling MPEC problems within the Pyomo modeling software. These capabilities include new modeling components that represent complementar- ity conditions, modeling transformations for re-expressing models with complementarity con- ditions in other forms, and meta-solvers that apply transformations and numeric optimization solvers to optimize MPEC problems. We illustrate the breadth of Pyomo's modeling capabil- ities for MPEC problems, and we describe how Pyomo's meta-solvers can perform local and global optimization of MPEC problems.
Analog Processor To Solve Optimization Problems
NASA Technical Reports Server (NTRS)
Duong, Tuan A.; Eberhardt, Silvio P.; Thakoor, Anil P.
1993-01-01
Proposed analog processor solves "traveling-salesman" problem, considered paradigm of global-optimization problems involving routing or allocation of resources. Includes electronic neural network and auxiliary circuitry based partly on concepts described in "Neural-Network Processor Would Allocate Resources" (NPO-17781) and "Neural Network Solves 'Traveling-Salesman' Problem" (NPO-17807). Processor based on highly parallel computing solves problem in significantly less time.
NASA Astrophysics Data System (ADS)
Rocha, Ana Maria A. C.; Costa, M. Fernanda P.; Fernandes, Edite M. G. P.
2016-12-01
This article presents a shifted hyperbolic penalty function and proposes an augmented Lagrangian-based algorithm for non-convex constrained global optimization problems. Convergence to an ?-global minimizer is proved. At each iteration k, the algorithm requires the ?-global minimization of a bound constrained optimization subproblem, where ?. The subproblems are solved by a stochastic population-based metaheuristic that relies on the artificial fish swarm paradigm and a two-swarm strategy. To enhance the speed of convergence, the algorithm invokes the Nelder-Mead local search with a dynamically defined probability. Numerical experiments with benchmark functions and engineering design problems are presented. The results show that the proposed shifted hyperbolic augmented Lagrangian compares favorably with other deterministic and stochastic penalty-based methods.
NASA Astrophysics Data System (ADS)
Ariyarit, Atthaphon; Sugiura, Masahiko; Tanabe, Yasutada; Kanazaki, Masahiro
2018-06-01
A multi-fidelity optimization technique by an efficient global optimization process using a hybrid surrogate model is investigated for solving real-world design problems. The model constructs the local deviation using the kriging method and the global model using a radial basis function. The expected improvement is computed to decide additional samples that can improve the model. The approach was first investigated by solving mathematical test problems. The results were compared with optimization results from an ordinary kriging method and a co-kriging method, and the proposed method produced the best solution. The proposed method was also applied to aerodynamic design optimization of helicopter blades to obtain the maximum blade efficiency. The optimal shape obtained by the proposed method achieved performance almost equivalent to that obtained using the high-fidelity, evaluation-based single-fidelity optimization. Comparing all three methods, the proposed method required the lowest total number of high-fidelity evaluation runs to obtain a converged solution.
Interior search algorithm (ISA): a novel approach for global optimization.
Gandomi, Amir H
2014-07-01
This paper presents the interior search algorithm (ISA) as a novel method for solving optimization tasks. The proposed ISA is inspired by interior design and decoration. The algorithm is different from other metaheuristic algorithms and provides new insight for global optimization. The proposed method is verified using some benchmark mathematical and engineering problems commonly used in the area of optimization. ISA results are further compared with well-known optimization algorithms. The results show that the ISA is efficiently capable of solving optimization problems. The proposed algorithm can outperform the other well-known algorithms. Further, the proposed algorithm is very simple and it only has one parameter to tune. Copyright © 2014 ISA. Published by Elsevier Ltd. All rights reserved.
Zhong, Shangping; Chen, Tianshun; He, Fengying; Niu, Yuzhen
2014-09-01
For a practical pattern classification task solved by kernel methods, the computing time is mainly spent on kernel learning (or training). However, the current kernel learning approaches are based on local optimization techniques, and hard to have good time performances, especially for large datasets. Thus the existing algorithms cannot be easily extended to large-scale tasks. In this paper, we present a fast Gaussian kernel learning method by solving a specially structured global optimization (SSGO) problem. We optimize the Gaussian kernel function by using the formulated kernel target alignment criterion, which is a difference of increasing (d.i.) functions. Through using a power-transformation based convexification method, the objective criterion can be represented as a difference of convex (d.c.) functions with a fixed power-transformation parameter. And the objective programming problem can then be converted to a SSGO problem: globally minimizing a concave function over a convex set. The SSGO problem is classical and has good solvability. Thus, to find the global optimal solution efficiently, we can adopt the improved Hoffman's outer approximation method, which need not repeat the searching procedure with different starting points to locate the best local minimum. Also, the proposed method can be proven to converge to the global solution for any classification task. We evaluate the proposed method on twenty benchmark datasets, and compare it with four other Gaussian kernel learning methods. Experimental results show that the proposed method stably achieves both good time-efficiency performance and good classification performance. Copyright © 2014 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Pustilnik, L.
2017-06-01
All accepted paradigm of solar and stellar flares energy release based on 2 whales: 1. Source of energy is free energy of non-potential force free magnetic field in atmosphere above active region; 2. Process of ultrafast dissipation of magnetic fields is Reconnection in Thin Turbulent Current Sheet (RTTCS). Progress in observational techniques in last years provided ultra-high spatial resolution and in physics of turbulent plasma showed that real situation is much more complicated and standard approach is in contradiction both with observations and with problem of RTTCS stability. We present critical analysis of classic models of pre-flare energy accumulation and its dissipation during flare energy release from pioneer works Giovanelli (1939, 1947) up to topological reconnection. We show that all accepted description of global force-free fields as source of future flare cannot be agreed with discovered in last years fine and ultra-fine current-magnetic structure included numerouse arcs-threads with diameters up to 100 km with constant sequence from photosphere to corona. This magnetic skeleton of thin current magnetic threads with strong interaction between them is main source of reserved magnetic energy insolar atmosphere. Its dynamics will be controlled by percolation of magnetic stresses through network of current-magnetic threads with transition to flare state caused by critical value of global current. We show that thin turbulent current sheet is absolutely unstable configuration both caused by splitting to numerous linear currents by dissipative modes like to tearing, and as sequence of suppress of plasma turbulence caused by anomalous heating of turbulent plasma. In result of these factors primary RTTCS will be disrupted in numerous turbulent and normal plasma domains like to resistors network. Current propagation through this network will have percolation character with all accompanied properties of percolated systems: self-organization with formation power spectrum of distribution of flares and micro-flares, and possibility of phase transition to flare energy release with huge increasing of energy release.
Using a derivative-free optimization method for multiple solutions of inverse transport problems
Armstrong, Jerawan C.; Favorite, Jeffrey A.
2016-01-14
Identifying unknown components of an object that emits radiation is an important problem for national and global security. Radiation signatures measured from an object of interest can be used to infer object parameter values that are not known. This problem is called an inverse transport problem. An inverse transport problem may have multiple solutions and the most widely used approach for its solution is an iterative optimization method. This paper proposes a stochastic derivative-free global optimization algorithm to find multiple solutions of inverse transport problems. The algorithm is an extension of a multilevel single linkage (MLSL) method where a meshmore » adaptive direct search (MADS) algorithm is incorporated into the local phase. Furthermore, numerical test cases using uncollided fluxes of discrete gamma-ray lines are presented to show the performance of this new algorithm.« less
GPU-Acceleration of Sequence Homology Searches with Database Subsequence Clustering.
Suzuki, Shuji; Kakuta, Masanori; Ishida, Takashi; Akiyama, Yutaka
2016-01-01
Sequence homology searches are used in various fields and require large amounts of computation time, especially for metagenomic analysis, owing to the large number of queries and the database size. To accelerate computing analyses, graphics processing units (GPUs) are widely used as a low-cost, high-performance computing platform. Therefore, we mapped the time-consuming steps involved in GHOSTZ, which is a state-of-the-art homology search algorithm for protein sequences, onto a GPU and implemented it as GHOSTZ-GPU. In addition, we optimized memory access for GPU calculations and for communication between the CPU and GPU. As per results of the evaluation test involving metagenomic data, GHOSTZ-GPU with 12 CPU threads and 1 GPU was approximately 3.0- to 4.1-fold faster than GHOSTZ with 12 CPU threads. Moreover, GHOSTZ-GPU with 12 CPU threads and 3 GPUs was approximately 5.8- to 7.7-fold faster than GHOSTZ with 12 CPU threads.
GPU-based parallel algorithm for blind image restoration using midfrequency-based methods
NASA Astrophysics Data System (ADS)
Xie, Lang; Luo, Yi-han; Bao, Qi-liang
2013-08-01
GPU-based general-purpose computing is a new branch of modern parallel computing, so the study of parallel algorithms specially designed for GPU hardware architecture is of great significance. In order to solve the problem of high computational complexity and poor real-time performance in blind image restoration, the midfrequency-based algorithm for blind image restoration was analyzed and improved in this paper. Furthermore, a midfrequency-based filtering method is also used to restore the image hardly with any recursion or iteration. Combining the algorithm with data intensiveness, data parallel computing and GPU execution model of single instruction and multiple threads, a new parallel midfrequency-based algorithm for blind image restoration is proposed in this paper, which is suitable for stream computing of GPU. In this algorithm, the GPU is utilized to accelerate the estimation of class-G point spread functions and midfrequency-based filtering. Aiming at better management of the GPU threads, the threads in a grid are scheduled according to the decomposition of the filtering data in frequency domain after the optimization of data access and the communication between the host and the device. The kernel parallelism structure is determined by the decomposition of the filtering data to ensure the transmission rate to get around the memory bandwidth limitation. The results show that, with the new algorithm, the operational speed is significantly increased and the real-time performance of image restoration is effectively improved, especially for high-resolution images.
Optimized FPGA Implementation of Multi-Rate FIR Filters Through Thread Decomposition
NASA Technical Reports Server (NTRS)
Zheng, Jason Xin; Nguyen, Kayla; He, Yutao
2010-01-01
Multirate (decimation/interpolation) filters are among the essential signal processing components in spaceborne instruments where Finite Impulse Response (FIR) filters are often used to minimize nonlinear group delay and finite-precision effects. Cascaded (multi-stage) designs of Multi-Rate FIR (MRFIR) filters are further used for large rate change ratio, in order to lower the required throughput while simultaneously achieving comparable or better performance than single-stage designs. Traditional representation and implementation of MRFIR employ polyphase decomposition of the original filter structure, whose main purpose is to compute only the needed output at the lowest possible sampling rate. In this paper, an alternative representation and implementation technique, called TD-MRFIR (Thread Decomposition MRFIR), is presented. The basic idea is to decompose MRFIR into output computational threads, in contrast to a structural decomposition of the original filter as done in the polyphase decomposition. Each thread represents an instance of the finite convolution required to produce a single output of the MRFIR. The filter is thus viewed as a finite collection of concurrent threads. The technical details of TD-MRFIR will be explained, first showing its applicability to the implementation of downsampling, upsampling, and resampling FIR filters, and then describing a general strategy to optimally allocate the number of filter taps. A particular FPGA design of multi-stage TD-MRFIR for the L-band radar of NASA's SMAP (Soil Moisture Active Passive) instrument is demonstrated; and its implementation results in several targeted FPGA devices are summarized in terms of the functional (bit width, fixed-point error) and performance (time closure, resource usage, and power estimation) parameters.
Zhou, Hongyi; Skolnick, Jeffrey
2010-01-01
In this work, we develop a method called FTCOM for assessing the global quality of protein structural models for targets of medium and hard difficulty (remote homology) produced by structure prediction approaches such as threading or ab initio structure prediction. FTCOM requires the Cα coordinates of full length models and assesses model quality based on fragment comparison and a score derived from comparison of the model to top threading templates. On a set of 361 medium/hard targets, FTCOM was applied to and assessed for its ability to improve upon the results from the SP3, SPARKS, PROSPECTOR_3, and PRO-SP3-TASSER threading algorithms. The average TM-score improves by 5%–10% for the first selected model by the new method over models obtained by the original selection procedure in the respective threading methods. Moreover the number of foldable targets (TM-score ≥0.4) increases from least 7.6% for SP3 to 54% for SPARKS. Thus, FTCOM is a promising approach to template selection. PMID:20455261
Bifurcation analysis of eight coupled degenerate optical parametric oscillators
NASA Astrophysics Data System (ADS)
Ito, Daisuke; Ueta, Tetsushi; Aihara, Kazuyuki
2018-06-01
A degenerate optical parametric oscillator (DOPO) network realized as a coherent Ising machine can be used to solve combinatorial optimization problems. Both theoretical and experimental investigations into the performance of DOPO networks have been presented previously. However a problem remains, namely that the dynamics of the DOPO network itself can lower the search success rates of globally optimal solutions for Ising problems. This paper shows that the problem is caused by pitchfork bifurcations due to the symmetry structure of coupled DOPOs. Some two-parameter bifurcation diagrams of equilibrium points express the performance deterioration. It is shown that the emergence of non-ground states regarding local minima hampers the system from reaching the ground states corresponding to the global minimum. We then describe a parametric strategy for leading a system to the ground state by actively utilizing the bifurcation phenomena. By adjusting the parameters to break particular symmetry, we find appropriate parameter sets that allow the coherent Ising machine to obtain the globally optimal solution alone.
Developing eThread pipeline using SAGA-pilot abstraction for large-scale structural bioinformatics.
Ragothaman, Anjani; Boddu, Sairam Chowdary; Kim, Nayong; Feinstein, Wei; Brylinski, Michal; Jha, Shantenu; Kim, Joohyun
2014-01-01
While most of computational annotation approaches are sequence-based, threading methods are becoming increasingly attractive because of predicted structural information that could uncover the underlying function. However, threading tools are generally compute-intensive and the number of protein sequences from even small genomes such as prokaryotes is large typically containing many thousands, prohibiting their application as a genome-wide structural systems biology tool. To leverage its utility, we have developed a pipeline for eThread--a meta-threading protein structure modeling tool, that can use computational resources efficiently and effectively. We employ a pilot-based approach that supports seamless data and task-level parallelism and manages large variation in workload and computational requirements. Our scalable pipeline is deployed on Amazon EC2 and can efficiently select resources based upon task requirements. We present runtime analysis to characterize computational complexity of eThread and EC2 infrastructure. Based on results, we suggest a pathway to an optimized solution with respect to metrics such as time-to-solution or cost-to-solution. Our eThread pipeline can scale to support a large number of sequences and is expected to be a viable solution for genome-scale structural bioinformatics and structure-based annotation, particularly, amenable for small genomes such as prokaryotes. The developed pipeline is easily extensible to other types of distributed cyberinfrastructure.
NASA Astrophysics Data System (ADS)
Protopopescu, V.; D'Helon, C.; Barhen, J.
2003-06-01
A constant-time solution of the continuous global optimization problem (GOP) is obtained by using an ensemble algorithm. We show that under certain assumptions, the solution can be guaranteed by mapping the GOP onto a discrete unsorted search problem, whereupon Brüschweiler's ensemble search algorithm is applied. For adequate sensitivities of the measurement technique, the query complexity of the ensemble search algorithm depends linearly on the size of the function's domain. Advantages and limitations of an eventual NMR implementation are discussed.
Guaranteed convergence of the Hough transform
NASA Astrophysics Data System (ADS)
Soffer, Menashe; Kiryati, Nahum
1995-01-01
The straight-line Hough Transform using normal parameterization with a continuous voting kernel is considered. It transforms the colinearity detection problem to a problem of finding the global maximum of a two dimensional function above a domain in the parameter space. The principle is similar to robust regression using fixed scale M-estimation. Unlike standard M-estimation procedures the Hough Transform does not rely on a good initial estimate of the line parameters: The global optimization problem is approached by exhaustive search on a grid that is usually as fine as computationally feasible. The global maximum of a general function above a bounded domain cannot be found by a finite number of function evaluations. Only if sufficient a-priori knowledge about the smoothness of the objective function is available, convergence to the global maximum can be guaranteed. The extraction of a-priori information and its efficient use are the main challenges in real global optimization problems. The global optimization problem in the Hough Transform is essentially how fine should the parameter space quantization be in order not to miss the true maximum. More than thirty years after Hough patented the basic algorithm, the problem is still essentially open. In this paper an attempt is made to identify a-priori information on the smoothness of the objective (Hough) function and to introduce sufficient conditions for the convergence of the Hough Transform to the global maximum. An image model with several application dependent parameters is defined. Edge point location errors as well as background noise are accounted for. Minimal parameter space quantization intervals that guarantee convergence are obtained. Focusing policies for multi-resolution Hough algorithms are developed. Theoretical support for bottom- up processing is provided. Due to the randomness of errors and noise, convergence guarantees are probabilistic.
NDL-v2.0: A new version of the numerical differentiation library for parallel architectures
NASA Astrophysics Data System (ADS)
Hadjidoukas, P. E.; Angelikopoulos, P.; Voglis, C.; Papageorgiou, D. G.; Lagaris, I. E.
2014-07-01
We present a new version of the numerical differentiation library (NDL) used for the numerical estimation of first and second order partial derivatives of a function by finite differencing. In this version we have restructured the serial implementation of the code so as to achieve optimal task-based parallelization. The pure shared-memory parallelization of the library has been based on the lightweight OpenMP tasking model allowing for the full extraction of the available parallelism and efficient scheduling of multiple concurrent library calls. On multicore clusters, parallelism is exploited by means of TORC, an MPI-based multi-threaded tasking library. The new MPI implementation of NDL provides optimal performance in terms of function calls and, furthermore, supports asynchronous execution of multiple library calls within legacy MPI programs. In addition, a Python interface has been implemented for all cases, exporting the functionality of our library to sequential Python codes. Catalog identifier: AEDG_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AEDG_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 63036 No. of bytes in distributed program, including test data, etc.: 801872 Distribution format: tar.gz Programming language: ANSI Fortran-77, ANSI C, Python. Computer: Distributed systems (clusters), shared memory systems. Operating system: Linux, Unix. Has the code been vectorized or parallelized?: Yes. RAM: The library uses O(N) internal storage, N being the dimension of the problem. It can use up to O(N2) internal storage for Hessian calculations, if a task throttling factor has not been set by the user. Classification: 4.9, 4.14, 6.5. Catalog identifier of previous version: AEDG_v1_0 Journal reference of previous version: Comput. Phys. Comm. 180(2009)1404 Does the new version supersede the previous version?: Yes Nature of problem: The numerical estimation of derivatives at several accuracy levels is a common requirement in many computational tasks, such as optimization, solution of nonlinear systems, and sensitivity analysis. For a large number of scientific and engineering applications, the underlying functions correspond to simulation codes for which analytical estimation of derivatives is difficult or almost impossible. A parallel implementation that exploits systems with multiple CPUs is very important for large scale and computationally expensive problems. Solution method: Finite differencing is used with a carefully chosen step that minimizes the sum of the truncation and round-off errors. The parallel versions employ both OpenMP and MPI libraries. Reasons for new version: The updated version was motivated by our endeavors to extend a parallel Bayesian uncertainty quantification framework [1], by incorporating higher order derivative information as in most state-of-the-art stochastic simulation methods such as Stochastic Newton MCMC [2] and Riemannian Manifold Hamiltonian MC [3]. The function evaluations are simulations with significant time-to-solution, which also varies with the input parameters such as in [1, 4]. The runtime of the N-body-type of problem changes considerably with the introduction of a longer cut-off between the bodies. In the first version of the library, the OpenMP-parallel subroutines spawn a new team of threads and distribute the function evaluations with a PARALLEL DO directive. This limits the functionality of the library as multiple concurrent calls require nested parallelism support from the OpenMP environment. Therefore, either their function evaluations will be serialized or processor oversubscription is likely to occur due to the increased number of OpenMP threads. In addition, the Hessian calculations include two explicit parallel regions that compute first the diagonal and then the off-diagonal elements of the array. Due to the barrier between the two regions, the parallelism of the calculations is not fully exploited. These issues have been addressed in the new version by first restructuring the serial code and then running the function evaluations in parallel using OpenMP tasks. Although the MPI-parallel implementation of the first version is capable of fully exploiting the task parallelism of the PNDL routines, it does not utilize the caching mechanism of the serial code and, therefore, performs some redundant function evaluations in the Hessian and Jacobian calculations. This can lead to: (a) higher execution times if the number of available processors is lower than the total number of tasks, and (b) significant energy consumption due to wasted processor cycles. Overcoming these drawbacks, which become critical as the time of a single function evaluation increases, was the primary goal of this new version. Due to the code restructure, the MPI-parallel implementation (and the OpenMP-parallel in accordance) avoids redundant calls, providing optimal performance in terms of the number of function evaluations. Another limitation of the library was that the library subroutines were collective and synchronous calls. In the new version, each MPI process can issue any number of subroutines for asynchronous execution. We introduce two library calls that provide global and local task synchronizations, similarly to the BARRIER and TASKWAIT directives of OpenMP. The new MPI-implementation is based on TORC, a new tasking library for multicore clusters [5-7]. TORC improves the portability of the software, as it relies exclusively on the POSIX-Threads and MPI programming interfaces. It allows MPI processes to utilize multiple worker threads, offering a hybrid programming and execution environment similar to MPI+OpenMP, in a completely transparent way. Finally, to further improve the usability of our software, a Python interface has been implemented on top of both the OpenMP and MPI versions of the library. This allows sequential Python codes to exploit shared and distributed memory systems. Summary of revisions: The revised code improves the performance of both parallel (OpenMP and MPI) implementations. The functionality and the user-interface of the MPI-parallel version have been extended to support the asynchronous execution of multiple PNDL calls, issued by one or multiple MPI processes. A new underlying tasking library increases portability and allows MPI processes to have multiple worker threads. For both implementations, an interface to the Python programming language has been added. Restrictions: The library uses only double precision arithmetic. The MPI implementation assumes the homogeneity of the execution environment provided by the operating system. Specifically, the processes of a single MPI application must have identical address space and a user function resides at the same virtual address. In addition, address space layout randomization should not be used for the application. Unusual features: The software takes into account bound constraints, in the sense that only feasible points are used to evaluate the derivatives, and given the level of the desired accuracy, the proper formula is automatically employed. Running time: Running time depends on the function's complexity. The test run took 23 ms for the serial distribution, 25 ms for the OpenMP with 2 threads, 53 ms and 1.01 s for the MPI parallel distribution using 2 threads and 2 processes respectively and yield-time for idle workers equal to 10 ms. References: [1] P. Angelikopoulos, C. Paradimitriou, P. Koumoutsakos, Bayesian uncertainty quantification and propagation in molecular dynamics simulations: a high performance computing framework, J. Chem. Phys 137 (14). [2] H.P. Flath, L.C. Wilcox, V. Akcelik, J. Hill, B. van Bloemen Waanders, O. Ghattas, Fast algorithms for Bayesian uncertainty quantification in large-scale linear inverse problems based on low-rank partial Hessian approximations, SIAM J. Sci. Comput. 33 (1) (2011) 407-432. [3] M. Girolami, B. Calderhead, Riemann manifold Langevin and Hamiltonian Monte Carlo methods, J. R. Stat. Soc. Ser. B (Stat. Methodol.) 73 (2) (2011) 123-214. [4] P. Angelikopoulos, C. Paradimitriou, P. Koumoutsakos, Data driven, predictive molecular dynamics for nanoscale flow simulations under uncertainty, J. Phys. Chem. B 117 (47) (2013) 14808-14816. [5] P.E. Hadjidoukas, E. Lappas, V.V. Dimakopoulos, A runtime library for platform-independent task parallelism, in: PDP, IEEE, 2012, pp. 229-236. [6] C. Voglis, P.E. Hadjidoukas, D.G. Papageorgiou, I. Lagaris, A parallel hybrid optimization algorithm for fitting interatomic potentials, Appl. Soft Comput. 13 (12) (2013) 4481-4492. [7] P.E. Hadjidoukas, C. Voglis, V.V. Dimakopoulos, I. Lagaris, D.G. Papageorgiou, Supporting adaptive and irregular parallelism for non-linear numerical optimization, Appl. Math. Comput. 231 (2014) 544-559.
Wind Farm Turbine Type and Placement Optimization
NASA Astrophysics Data System (ADS)
Graf, Peter; Dykes, Katherine; Scott, George; Fields, Jason; Lunacek, Monte; Quick, Julian; Rethore, Pierre-Elouan
2016-09-01
The layout of turbines in a wind farm is already a challenging nonlinear, nonconvex, nonlinearly constrained continuous global optimization problem. Here we begin to address the next generation of wind farm optimization problems by adding the complexity that there is more than one turbine type to choose from. The optimization becomes a nonlinear constrained mixed integer problem, which is a very difficult class of problems to solve. This document briefly summarizes the algorithm and code we have developed, the code validation steps we have performed, and the initial results for multi-turbine type and placement optimization (TTP_OPT) we have run.
Wind farm turbine type and placement optimization
Graf, Peter; Dykes, Katherine; Scott, George; ...
2016-10-03
The layout of turbines in a wind farm is already a challenging nonlinear, nonconvex, nonlinearly constrained continuous global optimization problem. Here we begin to address the next generation of wind farm optimization problems by adding the complexity that there is more than one turbine type to choose from. The optimization becomes a nonlinear constrained mixed integer problem, which is a very difficult class of problems to solve. Furthermore, this document briefly summarizes the algorithm and code we have developed, the code validation steps we have performed, and the initial results for multi-turbine type and placement optimization (TTP_OPT) we have run.
Gravity inversion of a fault by Particle swarm optimization (PSO).
Toushmalani, Reza
2013-01-01
Particle swarm optimization is a heuristic global optimization method and also an optimization algorithm, which is based on swarm intelligence. It comes from the research on the bird and fish flock movement behavior. In this paper we introduce and use this method in gravity inverse problem. We discuss the solution for the inverse problem of determining the shape of a fault whose gravity anomaly is known. Application of the proposed algorithm to this problem has proven its capability to deal with difficult optimization problems. The technique proved to work efficiently when tested to a number of models.
NASA Technical Reports Server (NTRS)
Krasteva, Denitza T.
1998-01-01
Multidisciplinary design optimization (MDO) for large-scale engineering problems poses many challenges (e.g., the design of an efficient concurrent paradigm for global optimization based on disciplinary analyses, expensive computations over vast data sets, etc.) This work focuses on the application of distributed schemes for massively parallel architectures to MDO problems, as a tool for reducing computation time and solving larger problems. The specific problem considered here is configuration optimization of a high speed civil transport (HSCT), and the efficient parallelization of the embedded paradigm for reasonable design space identification. Two distributed dynamic load balancing techniques (random polling and global round robin with message combining) and two necessary termination detection schemes (global task count and token passing) were implemented and evaluated in terms of effectiveness and scalability to large problem sizes and a thousand processors. The effect of certain parameters on execution time was also inspected. Empirical results demonstrated stable performance and effectiveness for all schemes, and the parametric study showed that the selected algorithmic parameters have a negligible effect on performance.
Global optimization algorithm for heat exchanger networks
DOE Office of Scientific and Technical Information (OSTI.GOV)
Quesada, I.; Grossmann, I.E.
This paper deals with the global optimization of heat exchanger networks with fixed topology. It is shown that if linear area cost functions are assumed, as well as arithmetic mean driving force temperature differences in networks with isothermal mixing, the corresponding nonlinear programming (NLP) optimization problem involves linear constraints and a sum of linear fractional functions in the objective which are nonconvex. A rigorous algorithm is proposed that is based on a convex NLP underestimator that involves linear and nonlinear estimators for fractional and bilinear terms which provide a tight lower bound to the global optimum. This NLP problem ismore » used within a spatial branch and bound method for which branching rules are given. Basic properties of the proposed method are presented, and its application is illustrated with several example problems. The results show that the proposed method only requires few nodes in the branch and bound search.« less
NASA Astrophysics Data System (ADS)
Hamza, Karim; Shalaby, Mohamed
2014-09-01
This article presents a framework for simulation-based design optimization of computationally expensive problems, where economizing the generation of sample designs is highly desirable. One popular approach for such problems is efficient global optimization (EGO), where an initial set of design samples is used to construct a kriging model, which is then used to generate new 'infill' sample designs at regions of the search space where there is high expectancy of improvement. This article attempts to address one of the limitations of EGO, where generation of infill samples can become a difficult optimization problem in its own right, as well as allow the generation of multiple samples at a time in order to take advantage of parallel computing in the evaluation of the new samples. The proposed approach is tested on analytical functions, and then applied to the vehicle crashworthiness design of a full Geo Metro model undergoing frontal crash conditions.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graf, Peter; Dykes, Katherine; Scott, George
The layout of turbines in a wind farm is already a challenging nonlinear, nonconvex, nonlinearly constrained continuous global optimization problem. Here we begin to address the next generation of wind farm optimization problems by adding the complexity that there is more than one turbine type to choose from. The optimization becomes a nonlinear constrained mixed integer problem, which is a very difficult class of problems to solve. Furthermore, this document briefly summarizes the algorithm and code we have developed, the code validation steps we have performed, and the initial results for multi-turbine type and placement optimization (TTP_OPT) we have run.
NASA Astrophysics Data System (ADS)
Chu, J.; Zhang, C.; Fu, G.; Li, Y.; Zhou, H.
2015-08-01
This study investigates the effectiveness of a sensitivity-informed method for multi-objective operation of reservoir systems, which uses global sensitivity analysis as a screening tool to reduce computational demands. Sobol's method is used to screen insensitive decision variables and guide the formulation of the optimization problems with a significantly reduced number of decision variables. This sensitivity-informed method dramatically reduces the computational demands required for attaining high-quality approximations of optimal trade-off relationships between conflicting design objectives. The search results obtained from the reduced complexity multi-objective reservoir operation problems are then used to pre-condition the full search of the original optimization problem. In two case studies, the Dahuofang reservoir and the inter-basin multi-reservoir system in Liaoning province, China, sensitivity analysis results show that reservoir performance is strongly controlled by a small proportion of decision variables. Sensitivity-informed dimension reduction and pre-conditioning are evaluated in their ability to improve the efficiency and effectiveness of multi-objective evolutionary optimization. Overall, this study illustrates the efficiency and effectiveness of the sensitivity-informed method and the use of global sensitivity analysis to inform dimension reduction of optimization problems when solving complex multi-objective reservoir operation problems.
Optimal perturbations for nonlinear systems using graph-based optimal transport
NASA Astrophysics Data System (ADS)
Grover, Piyush; Elamvazhuthi, Karthik
2018-06-01
We formulate and solve a class of finite-time transport and mixing problems in the set-oriented framework. The aim is to obtain optimal discrete-time perturbations in nonlinear dynamical systems to transport a specified initial measure on the phase space to a final measure in finite time. The measure is propagated under system dynamics in between the perturbations via the associated transfer operator. Each perturbation is described by a deterministic map in the measure space that implements a version of Monge-Kantorovich optimal transport with quadratic cost. Hence, the optimal solution minimizes a sum of quadratic costs on phase space transport due to the perturbations applied at specified times. The action of the transport map is approximated by a continuous pseudo-time flow on a graph, resulting in a tractable convex optimization problem. This problem is solved via state-of-the-art solvers to global optimality. We apply this algorithm to a problem of transport between measures supported on two disjoint almost-invariant sets in a chaotic fluid system, and to a finite-time optimal mixing problem by choosing the final measure to be uniform. In both cases, the optimal perturbations are found to exploit the phase space structures, such as lobe dynamics, leading to efficient global transport. As the time-horizon of the problem is increased, the optimal perturbations become increasingly localized. Hence, by combining the transfer operator approach with ideas from the theory of optimal mass transportation, we obtain a discrete-time graph-based algorithm for optimal transport and mixing in nonlinear systems.
Acceleration techniques in the univariate Lipschitz global optimization
NASA Astrophysics Data System (ADS)
Sergeyev, Yaroslav D.; Kvasov, Dmitri E.; Mukhametzhanov, Marat S.; De Franco, Angela
2016-10-01
Univariate box-constrained Lipschitz global optimization problems are considered in this contribution. Geometric and information statistical approaches are presented. The novel powerful local tuning and local improvement techniques are described in the contribution as well as the traditional ways to estimate the Lipschitz constant. The advantages of the presented local tuning and local improvement techniques are demonstrated using the operational characteristics approach for comparing deterministic global optimization algorithms on the class of 100 widely used test functions.
A path following algorithm for the graph matching problem.
Zaslavskiy, Mikhail; Bach, Francis; Vert, Jean-Philippe
2009-12-01
We propose a convex-concave programming approach for the labeled weighted graph matching problem. The convex-concave programming formulation is obtained by rewriting the weighted graph matching problem as a least-square problem on the set of permutation matrices and relaxing it to two different optimization problems: a quadratic convex and a quadratic concave optimization problem on the set of doubly stochastic matrices. The concave relaxation has the same global minimum as the initial graph matching problem, but the search for its global minimum is also a hard combinatorial problem. We, therefore, construct an approximation of the concave problem solution by following a solution path of a convex-concave problem obtained by linear interpolation of the convex and concave formulations, starting from the convex relaxation. This method allows to easily integrate the information on graph label similarities into the optimization problem, and therefore, perform labeled weighted graph matching. The algorithm is compared with some of the best performing graph matching methods on four data sets: simulated graphs, QAPLib, retina vessel images, and handwritten Chinese characters. In all cases, the results are competitive with the state of the art.
Argobots: A Lightweight Low-Level Threading and Tasking Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, Sangmin; Amer, Abdelhalim; Balaji, Pavan
In the past few decades, a number of user-level threading and tasking models have been proposed in the literature to address the shortcomings of OS-level threads, primarily with respect to cost and flexibility. Current state-of-the-art user-level threading and tasking models, however, are either too specific to applications or architectures or are not as powerful or flexible. In this paper, we present Argobots, a lightweight, low-level threading and tasking framework that is designed as a portable and performant substrate for high-level programming models or runtime systems. Argobots offers a carefully designed execution model that balances generality of functionality with providing amore » rich set of controls to allow specialization by the user or high-level programming model. We describe the design, implementation, and optimization of Argobots and present integrations with three example high-level models: OpenMP, MPI, and co-located I/O service. Evaluations show that (1) Argobots outperforms existing generic threading runtimes; (2) our OpenMP runtime offers more efficient interoperability capabilities than production OpenMP runtimes do; (3) when MPI interoperates with Argobots instead of Pthreads, it enjoys reduced synchronization costs and better latency hiding capabilities; and (4) I/O service with Argobots reduces interference with co-located applications, achieving performance competitive with that of the Pthreads version.« less
Stellwagen, Sarah D; Opell, Brent D; Short, Kelly G
2014-05-01
Sticky viscous prey capture threads retain insects that strike araneoid orb-webs. The threads' two axial fibers support a series of glue droplets, each featuring a core of adhesive viscoelastic glycoprotein covered by an aqueous solution. After sticking, the glue extends, summing the adhesion of multiple droplets, and dissipates some of the energy of a struggling prey. As a day progresses, threads experience a drop in humidity and an increase in temperature, environmental variables that have the potential to alter thread and web function. We hypothesize that thread droplets respond to these opposing environmental changes in a manner that stabilizes their performance, and test this by examining threads spun by Argiope aurantia, a species that occupies exposed, weedy habitats. We confirmed that decreased humidity increases glycoprotein viscosity and found that increased temperature had the opposite effect. To evaluate the combined effect of temperature and humidity on a droplet's ability to transfer adhesive force and dissipate energy, we extended a droplet and measured both the deflection of the axial line supporting the droplet and the duration of its tensive load. The cumulative product of these two indices, which reflects the energy required to extend a droplet, was greatest under afternoon (hot and dry) conditions, less under morning (cool and humid) conditions, and least under hot and humid afternoon conditions. Although the opposing effects of temperature and humidity tend to stabilize glycoprotein performance, A. aurantia thread droplets appear to function optimally during the afternoon, equipping this species to capture large orthopterans, which are most active at this time.
Tuo, Shouheng; Yong, Longquan; Deng, Fang’an; Li, Yanhai; Lin, Yong; Lu, Qiuju
2017-01-01
Harmony Search (HS) and Teaching-Learning-Based Optimization (TLBO) as new swarm intelligent optimization algorithms have received much attention in recent years. Both of them have shown outstanding performance for solving NP-Hard optimization problems. However, they also suffer dramatic performance degradation for some complex high-dimensional optimization problems. Through a lot of experiments, we find that the HS and TLBO have strong complementarity each other. The HS has strong global exploration power but low convergence speed. Reversely, the TLBO has much fast convergence speed but it is easily trapped into local search. In this work, we propose a hybrid search algorithm named HSTLBO that merges the two algorithms together for synergistically solving complex optimization problems using a self-adaptive selection strategy. In the HSTLBO, both HS and TLBO are modified with the aim of balancing the global exploration and exploitation abilities, where the HS aims mainly to explore the unknown regions and the TLBO aims to rapidly exploit high-precision solutions in the known regions. Our experimental results demonstrate better performance and faster speed than five state-of-the-art HS variants and show better exploration power than five good TLBO variants with similar run time, which illustrates that our method is promising in solving complex high-dimensional optimization problems. The experiment on portfolio optimization problems also demonstrate that the HSTLBO is effective in solving complex read-world application. PMID:28403224
Tuo, Shouheng; Yong, Longquan; Deng, Fang'an; Li, Yanhai; Lin, Yong; Lu, Qiuju
2017-01-01
Harmony Search (HS) and Teaching-Learning-Based Optimization (TLBO) as new swarm intelligent optimization algorithms have received much attention in recent years. Both of them have shown outstanding performance for solving NP-Hard optimization problems. However, they also suffer dramatic performance degradation for some complex high-dimensional optimization problems. Through a lot of experiments, we find that the HS and TLBO have strong complementarity each other. The HS has strong global exploration power but low convergence speed. Reversely, the TLBO has much fast convergence speed but it is easily trapped into local search. In this work, we propose a hybrid search algorithm named HSTLBO that merges the two algorithms together for synergistically solving complex optimization problems using a self-adaptive selection strategy. In the HSTLBO, both HS and TLBO are modified with the aim of balancing the global exploration and exploitation abilities, where the HS aims mainly to explore the unknown regions and the TLBO aims to rapidly exploit high-precision solutions in the known regions. Our experimental results demonstrate better performance and faster speed than five state-of-the-art HS variants and show better exploration power than five good TLBO variants with similar run time, which illustrates that our method is promising in solving complex high-dimensional optimization problems. The experiment on portfolio optimization problems also demonstrate that the HSTLBO is effective in solving complex read-world application.
Generalized bipartite quantum state discrimination problems with sequential measurements
NASA Astrophysics Data System (ADS)
Nakahira, Kenji; Kato, Kentaro; Usuda, Tsuyoshi Sasaki
2018-02-01
We investigate an optimization problem of finding quantum sequential measurements, which forms a wide class of state discrimination problems with the restriction that only local operations and one-way classical communication are allowed. Sequential measurements from Alice to Bob on a bipartite system are considered. Using the fact that the optimization problem can be formulated as a problem with only Alice's measurement and is convex programming, we derive its dual problem and necessary and sufficient conditions for an optimal solution. Our results are applicable to various practical optimization criteria, including the Bayes criterion, the Neyman-Pearson criterion, and the minimax criterion. In the setting of the problem of finding an optimal global measurement, its dual problem and necessary and sufficient conditions for an optimal solution have been widely used to obtain analytical and numerical expressions for optimal solutions. Similarly, our results are useful to obtain analytical and numerical expressions for optimal sequential measurements. Examples in which our results can be used to obtain an analytical expression for an optimal sequential measurement are provided.
Van Derlinden, E; Bernaerts, K; Van Impe, J F
2010-05-21
Optimal experiment design for parameter estimation (OED/PE) has become a popular tool for efficient and accurate estimation of kinetic model parameters. When the kinetic model under study encloses multiple parameters, different optimization strategies can be constructed. The most straightforward approach is to estimate all parameters simultaneously from one optimal experiment (single OED/PE strategy). However, due to the complexity of the optimization problem or the stringent limitations on the system's dynamics, the experimental information can be limited and parameter estimation convergence problems can arise. As an alternative, we propose to reduce the optimization problem to a series of two-parameter estimation problems, i.e., an optimal experiment is designed for a combination of two parameters while presuming the other parameters known. Two different approaches can be followed: (i) all two-parameter optimal experiments are designed based on identical initial parameter estimates and parameters are estimated simultaneously from all resulting experimental data (global OED/PE strategy), and (ii) optimal experiments are calculated and implemented sequentially whereby the parameter values are updated intermediately (sequential OED/PE strategy). This work exploits OED/PE for the identification of the Cardinal Temperature Model with Inflection (CTMI) (Rosso et al., 1993). This kinetic model describes the effect of temperature on the microbial growth rate and encloses four parameters. The three OED/PE strategies are considered and the impact of the OED/PE design strategy on the accuracy of the CTMI parameter estimation is evaluated. Based on a simulation study, it is observed that the parameter values derived from the sequential approach deviate more from the true parameters than the single and global strategy estimates. The single and global OED/PE strategies are further compared based on experimental data obtained from design implementation in a bioreactor. Comparable estimates are obtained, but global OED/PE estimates are, in general, more accurate and reliable. Copyright (c) 2010 Elsevier Ltd. All rights reserved.
NASA Astrophysics Data System (ADS)
Abdel-Kareem, Omar; Harith, M. A.
2008-07-01
Cleaning of copper embroidery threads on archaeological textiles is still a complicated conservation process, as most textile conservators believe that the advantages of using traditional cleaning techniques are less than their disadvantages. In this study, the uses of laser cleaning method and two modified recipes of wet cleaning methods were evaluated for cleaning of the corroded archaeological Egyptian copper embroidery threads on an archaeological Egyptian textile fabric. Some corroded copper thread samples were cleaned using modified recipes of wet cleaning method; other corroded copper thread samples were cleaned with Q-switched Nd:YAG laser radiation of wavelength 532 nm. All tested metal thread samples before and after cleaning were investigated using a light microscope and a scanning electron microscope with an energy dispersive X-ray analysis unit. Also the laser-induced breakdown spectroscopy (LIBS) technique was used for the elemental analysis of laser-cleaned samples to follow up the laser cleaning procedure. The results show that laser cleaning is the most effective method among all tested methods in the cleaning of corroded copper threads. It can be used safely in removing the corrosion products without any damage to both metal strips and fibrous core. The tested laser cleaning technique has solved the problems caused by other traditional cleaning techniques that are commonly used in the cleaning of metal threads on museum textiles.
Arsenic contamination in food chain: Thread to food security
NASA Astrophysics Data System (ADS)
Shekhar Azad Kashyap, Chandra; Singh, Swati
2017-04-01
The supply of good quality food is a necessity for economic and social health welfare of urban and rural population. Over the last several decades groundwater contamination in developing countries has assumed dangerous levels as a result millions of people are at risk. This is so particularly with respect to arsenic that has registered high concentration in groundwater in countries like India and Bangladesh. The arsenic content in groundwater varies from 10 to 780 µg/L, which is far above the levels for drinking water standards prescribed by World Health Organization (WHO). Currently arsenic has entered in food chain due to irrigation with arsenic contaminated water. In the present study reports the arsenic contamination in groundwater that is being used for irrigating paddy in Manipur and West Bengal. The arsenic content in irrigation water is 475 µg/L and 780 µg/L in Manipur and West Bengal, respectively. In order to assess the effect of such waters on the rice crop, we collected rice plant from Manipur and determined the arsenic content in roots, stem, and grain. The arsenic content in grain varies from 110 to 190 mg/kg while the limit of arsenic intake by humans is 10 mg/kg (WHO). This problem is not confine to the area, it spread global level, and rice being cultivated in these regions is export to the other countries like USA, Middle East and Europe and will be thread to global food security.
Gálvez, Akemi; Iglesias, Andrés; Cabellos, Luis
2014-01-01
The problem of data fitting is very important in many theoretical and applied fields. In this paper, we consider the problem of optimizing a weighted Bayesian energy functional for data fitting by using global-support approximating curves. By global-support curves we mean curves expressed as a linear combination of basis functions whose support is the whole domain of the problem, as opposed to other common approaches in CAD/CAM and computer graphics driven by piecewise functions (such as B-splines and NURBS) that provide local control of the shape of the curve. Our method applies a powerful nature-inspired metaheuristic algorithm called cuckoo search, introduced recently to solve optimization problems. A major advantage of this method is its simplicity: cuckoo search requires only two parameters, many fewer than other metaheuristic approaches, so the parameter tuning becomes a very simple task. The paper shows that this new approach can be successfully used to solve our optimization problem. To check the performance of our approach, it has been applied to five illustrative examples of different types, including open and closed 2D and 3D curves that exhibit challenging features, such as cusps and self-intersections. Our results show that the method performs pretty well, being able to solve our minimization problem in an astonishingly straightforward way. PMID:24977175
Gálvez, Akemi; Iglesias, Andrés; Cabellos, Luis
2014-01-01
The problem of data fitting is very important in many theoretical and applied fields. In this paper, we consider the problem of optimizing a weighted Bayesian energy functional for data fitting by using global-support approximating curves. By global-support curves we mean curves expressed as a linear combination of basis functions whose support is the whole domain of the problem, as opposed to other common approaches in CAD/CAM and computer graphics driven by piecewise functions (such as B-splines and NURBS) that provide local control of the shape of the curve. Our method applies a powerful nature-inspired metaheuristic algorithm called cuckoo search, introduced recently to solve optimization problems. A major advantage of this method is its simplicity: cuckoo search requires only two parameters, many fewer than other metaheuristic approaches, so the parameter tuning becomes a very simple task. The paper shows that this new approach can be successfully used to solve our optimization problem. To check the performance of our approach, it has been applied to five illustrative examples of different types, including open and closed 2D and 3D curves that exhibit challenging features, such as cusps and self-intersections. Our results show that the method performs pretty well, being able to solve our minimization problem in an astonishingly straightforward way.
Fat water decomposition using globally optimal surface estimation (GOOSE) algorithm.
Cui, Chen; Wu, Xiaodong; Newell, John D; Jacob, Mathews
2015-03-01
This article focuses on developing a novel noniterative fat water decomposition algorithm more robust to fat water swaps and related ambiguities. Field map estimation is reformulated as a constrained surface estimation problem to exploit the spatial smoothness of the field, thus minimizing the ambiguities in the recovery. Specifically, the differences in the field map-induced frequency shift between adjacent voxels are constrained to be in a finite range. The discretization of the above problem yields a graph optimization scheme, where each node of the graph is only connected with few other nodes. Thanks to the low graph connectivity, the problem is solved efficiently using a noniterative graph cut algorithm. The global minimum of the constrained optimization problem is guaranteed. The performance of the algorithm is compared with that of state-of-the-art schemes. Quantitative comparisons are also made against reference data. The proposed algorithm is observed to yield more robust fat water estimates with fewer fat water swaps and better quantitative results than other state-of-the-art algorithms in a range of challenging applications. The proposed algorithm is capable of considerably reducing the swaps in challenging fat water decomposition problems. The experiments demonstrate the benefit of using explicit smoothness constraints in field map estimation and solving the problem using a globally convergent graph-cut optimization algorithm. © 2014 Wiley Periodicals, Inc.
2015-09-24
algorithms for solving real- world problems. Within the past five years, 2 books, 5 journal special issues, and about 60 papers have been published...Four international conferences have been organized, including the 3rd World Congress of Global Optimization. A unified methodology and algorithm have...been developed with real- world applications. This grant has been used to support and co-support three post-doctors, three PhD students, one part
What Scientific Applications can Benefit from Hardware Transactional Memory?
DOE Office of Scientific and Technical Information (OSTI.GOV)
Schindewolf, M; Bihari, B; Gyllenhaal, J
2012-06-04
Achieving efficient and correct synchronization of multiple threads is a difficult and error-prone task at small scale and, as we march towards extreme scale computing, will be even more challenging when the resulting application is supposed to utilize millions of cores efficiently. Transactional Memory (TM) is a promising technique to ease the burden on the programmer, but only recently has become available on commercial hardware in the new Blue Gene/Q system and hence the real benefit for realistic applications has not been studied, yet. This paper presents the first performance results of TM embedded into OpenMP on a prototype systemmore » of BG/Q and characterizes code properties that will likely lead to benefits when augmented with TM primitives. We first, study the influence of thread count, environment variables and memory layout on TM performance and identify code properties that will yield performance gains with TM. Second, we evaluate the combination of OpenMP with multiple synchronization primitives on top of MPI to determine suitable task to thread ratios per node. Finally, we condense our findings into a set of best practices. These are applied to a Monte Carlo Benchmark and a Smoothed Particle Hydrodynamics method. In both cases an optimized TM version, executed with 64 threads on one node, outperforms a simple TM implementation. MCB with optimized TM yields a speedup of 27.45 over baseline.« less
PS-FW: A Hybrid Algorithm Based on Particle Swarm and Fireworks for Global Optimization
Chen, Shuangqing; Wei, Lixin; Guan, Bing
2018-01-01
Particle swarm optimization (PSO) and fireworks algorithm (FWA) are two recently developed optimization methods which have been applied in various areas due to their simplicity and efficiency. However, when being applied to high-dimensional optimization problems, PSO algorithm may be trapped in the local optima owing to the lack of powerful global exploration capability, and fireworks algorithm is difficult to converge in some cases because of its relatively low local exploitation efficiency for noncore fireworks. In this paper, a hybrid algorithm called PS-FW is presented, in which the modified operators of FWA are embedded into the solving process of PSO. In the iteration process, the abandonment and supplement mechanism is adopted to balance the exploration and exploitation ability of PS-FW, and the modified explosion operator and the novel mutation operator are proposed to speed up the global convergence and to avoid prematurity. To verify the performance of the proposed PS-FW algorithm, 22 high-dimensional benchmark functions have been employed, and it is compared with PSO, FWA, stdPSO, CPSO, CLPSO, FIPS, Frankenstein, and ALWPSO algorithms. Results show that the PS-FW algorithm is an efficient, robust, and fast converging optimization method for solving global optimization problems. PMID:29675036
DOE Office of Scientific and Technical Information (OSTI.GOV)
Gylenhaal, J.; Bronevetsky, G.
2007-05-25
CLOMP is the C version of the Livermore OpenMP benchmark deeloped to measure OpenMP overheads and other performance impacts due to threading (like NUMA memory layouts, memory contention, cache effects, etc.) in order to influence future system design. Current best-in-class implementations of OpenMP have overheads at least ten times larger than is required by many of our applications for effective use of OpenMP. This benchmark shows the significant negative performance impact of these relatively large overheads and of other thread effects. The CLOMP benchmark highly configurable to allow a variety of problem sizes and threading effects to be studied andmore » it carefully checks its results to catch many common threading errors. This benchmark is expected to be included as part of the Sequoia Benchmark suite for the Sequoia procurement.« less
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.
2004-01-01
Differential Evolution (DE) is a simple, fast, and robust evolutionary algorithm that has proven effective in determining the global optimum for several difficult single-objective optimization problems. The DE algorithm has been recently extended to multiobjective optimization problem by using a Pareto-based approach. In this paper, a Pareto DE algorithm is applied to multiobjective aerodynamic shape optimization problems that are characterized by computationally expensive objective function evaluations. To improve computational expensive the algorithm is coupled with generalized response surface meta-models based on artificial neural networks. Results are presented for some test optimization problems from the literature to demonstrate the capabilities of the method.
Optimal Control via Self-Generated Stochasticity
NASA Technical Reports Server (NTRS)
Zak, Michail
2011-01-01
The problem of global maxima of functionals has been examined. Mathematical roots of local maxima are the same as those for a much simpler problem of finding global maximum of a multi-dimensional function. The second problem is instability even if an optimal trajectory is found, there is no guarantee that it is stable. As a result, a fundamentally new approach is introduced to optimal control based upon two new ideas. The first idea is to represent the functional to be maximized as a limit of a probability density governed by the appropriately selected Liouville equation. Then, the corresponding ordinary differential equations (ODEs) become stochastic, and that sample of the solution that has the largest value will have the highest probability to appear in ODE simulation. The main advantages of the stochastic approach are that it is not sensitive to local maxima, the function to be maximized must be only integrable but not necessarily differentiable, and global equality and inequality constraints do not cause any significant obstacles. The second idea is to remove possible instability of the optimal solution by equipping the control system with a self-stabilizing device. The applications of the proposed methodology will optimize the performance of NASA spacecraft, as well as robot performance.
mdtmFTP and its evaluation on ESNET SDN testbed
Zhang, Liang; Wu, Wenji; DeMar, Phil; ...
2017-04-21
In this paper, to address the high-performance challenges of data transfer in the big data era, we are developing and implementing mdtmFTP: a high-performance data transfer tool for big data. mdtmFTP has four salient features. First, it adopts an I/O centric architecture to execute data transfer tasks. Second, it more efficiently utilizes the underlying multicore platform through optimized thread scheduling. Third, it implements a large virtual file mechanism to address the lots-of-small-files (LOSF) problem. In conclusion, mdtmFTP integrates multiple optimization mechanisms, including–zero copy, asynchronous I/O, pipelining, batch processing, and pre-allocated buffer pools–to enhance performance. mdtmFTP has been extensively tested andmore » evaluated within the ESNET 100G testbed. Evaluations show that mdtmFTP can achieve higher performance than existing data transfer tools, such as GridFTP, FDT, and BBCP.« less
Graf, Peter A.; Billups, Stephen
2017-07-24
Computational materials design has suffered from a lack of algorithms formulated in terms of experimentally accessible variables. Here we formulate the problem of (ternary) alloy optimization at the level of choice of atoms and their composition that is normal for synthesists. Mathematically, this is a mixed integer problem where a candidate solution consists of a choice of three elements, and how much of each of them to use. This space has the natural structure of a set of equilateral triangles. We solve this problem by introducing a novel version of the DIRECT algorithm that (1) operates on equilateral triangles insteadmore » of rectangles and (2) works across multiple triangles. We demonstrate on a test case that the algorithm is both robust and efficient. Lastly, we offer an explanation of the efficacy of DIRECT -- specifically, its balance of global and local search -- by showing that 'potentially optimal rectangles' of the original algorithm are akin to the Pareto front of the 'multi-component optimization' of global and local search.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Graf, Peter A.; Billups, Stephen
Computational materials design has suffered from a lack of algorithms formulated in terms of experimentally accessible variables. Here we formulate the problem of (ternary) alloy optimization at the level of choice of atoms and their composition that is normal for synthesists. Mathematically, this is a mixed integer problem where a candidate solution consists of a choice of three elements, and how much of each of them to use. This space has the natural structure of a set of equilateral triangles. We solve this problem by introducing a novel version of the DIRECT algorithm that (1) operates on equilateral triangles insteadmore » of rectangles and (2) works across multiple triangles. We demonstrate on a test case that the algorithm is both robust and efficient. Lastly, we offer an explanation of the efficacy of DIRECT -- specifically, its balance of global and local search -- by showing that 'potentially optimal rectangles' of the original algorithm are akin to the Pareto front of the 'multi-component optimization' of global and local search.« less
NASA Astrophysics Data System (ADS)
Masuda, Kazuaki; Aiyoshi, Eitaro
We propose a method for solving optimal price decision problems for simultaneous multi-article auctions. An auction problem, originally formulated as a combinatorial problem, determines both every seller's whether or not to sell his/her article and every buyer's which article(s) to buy, so that the total utility of buyers and sellers will be maximized. Due to the duality theory, we transform it equivalently into a dual problem in which Lagrange multipliers are interpreted as articles' transaction price. As the dual problem is a continuous optimization problem with respect to the multipliers (i.e., the transaction prices), we propose a numerical method to solve it by applying heuristic global search methods. In this paper, Particle Swarm Optimization (PSO) is used to solve the dual problem, and experimental results are presented to show the validity of the proposed method.
Problems and Processes in Medical Encounters: The CASES method of dialogue analysis
Laws, M. Barton; Taubin, Tatiana; Bezreh, Tanya; Lee, Yoojin; Beach, Mary Catherine; Wilson, Ira B.
2013-01-01
Objective To develop methods to reliably capture structural and dynamic temporal features of clinical interactions. Methods Observational study of 50 audio-recorded routine outpatient visits to HIV specialty clinics, using innovative analytic methods. The Comprehensive Analysis of the Structure of Encounters System (CASES) uses transcripts coded for speech acts, then imposes larger-scale structural elements: threads – the problems or issues addressed; and processes within threads –basic tasks of clinical care labeled Presentation, Information, Resolution (decision making) and Engagement (interpersonal exchange). Threads are also coded for the nature of resolution. Results 61% of utterances are in presentation processes. Provider verbal dominance is greatest in information and resolution processes, which also contain a high proportion of provider directives. About half of threads result in no action or decision. Information flows predominantly from patient to provider in presentation processes, and from provider to patient in information processes. Engagement is rare. Conclusions In this data, resolution is provider centered; more time for patient participation in resolution, or interpersonal engagement, would have to come from presentation. Practice Implications Awareness of the use of time in clinical encounters, and the interaction processes associated with various tasks, may help make clinical communication more efficient and effective. PMID:23391684
Problems and processes in medical encounters: the cases method of dialogue analysis.
Laws, M Barton; Taubin, Tatiana; Bezreh, Tanya; Lee, Yoojin; Beach, Mary Catherine; Wilson, Ira B
2013-05-01
To develop methods to reliably capture structural and dynamic temporal features of clinical interactions. Observational study of 50 audio-recorded routine outpatient visits to HIV specialty clinics, using innovative analytic methods. The comprehensive analysis of the structure of encounters system (CASES) uses transcripts coded for speech acts, then imposes larger-scale structural elements: threads--the problems or issues addressed; and processes within threads--basic tasks of clinical care labeled presentation, information, resolution (decision making) and Engagement (interpersonal exchange). Threads are also coded for the nature of resolution. 61% of utterances are in presentation processes. Provider verbal dominance is greatest in information and resolution processes, which also contain a high proportion of provider directives. About half of threads result in no action or decision. Information flows predominantly from patient to provider in presentation processes, and from provider to patient in information processes. Engagement is rare. In this data, resolution is provider centered; more time for patient participation in resolution, or interpersonal engagement, would have to come from presentation. Awareness of the use of time in clinical encounters, and the interaction processes associated with various tasks, may help make clinical communication more efficient and effective. Copyright © 2013 Elsevier Ireland Ltd. All rights reserved.
Issues Related to Cleaning Complex Geometry Surfaces with ODC-Free Solvents
NASA Technical Reports Server (NTRS)
Bradford, Blake F.; Wurth, Laura A.; Nayate, Pramod D.; McCool, Alex (Technical Monitor)
2001-01-01
Implementing ozone depleting chemicals (ODC)-free solvents into full-scale reusable solid rocket motor cleaning operations has presented problems due to the low vapor pressures of the solvents. Because of slow evaporation, solvent retention is a problem on porous substrates or on surfaces with irregular geometry, such as threaded boltholes, leak check ports, and nozzle backfill joints. The new solvents are being evaluated to replace 1,1,1-trichloroethane, which readily evaporates from these surfaces. Selection of the solvents to be evaluated on full-scale hardware was made based on results of subscale tests performed with flat surface coupons, which did not manifest the problem. Test efforts have been undertaken to address concerns with the slow-evaporating solvents. These concerns include effects on materials due to long-term exposure to solvent, potential migration from bolthole threads to seal surfaces, and effects on bolt loading due to solvent retention in threads. Tests performed to date have verified that retained solvent does not affect materials or hardware performance. Process modifications have also been developed to assist drying, and these can be implemented if additional drying becomes necessary.
Multidisciplinary Environments: A History of Engineering Framework Development
NASA Technical Reports Server (NTRS)
Padula, Sharon L.; Gillian, Ronnie E.
2006-01-01
This paper traces the history of engineering frameworks and their use by Multidisciplinary Design Optimization (MDO) practitioners. The approach is to reference papers that have been presented at one of the ten previous Multidisciplinary Analysis and Optimization (MA&O) conferences. By limiting the search to MA&O papers, the authors can (1) identify the key ideas that led to general purpose MDO frameworks and (2) uncover roadblocks that delayed the development of these ideas. The authors make no attempt to assign credit for revolutionary ideas or to assign blame for missed opportunities. Rather, the goal is to trace the various threads of computer architecture and software framework research and to observe how these threads contributed to the commercial framework products available today.
WOMBAT: A Scalable and High-performance Astrophysical Magnetohydrodynamics Code
NASA Astrophysics Data System (ADS)
Mendygral, P. J.; Radcliffe, N.; Kandalla, K.; Porter, D.; O'Neill, B. J.; Nolting, C.; Edmon, P.; Donnert, J. M. F.; Jones, T. W.
2017-02-01
We present a new code for astrophysical magnetohydrodynamics specifically designed and optimized for high performance and scaling on modern and future supercomputers. We describe a novel hybrid OpenMP/MPI programming model that emerged from a collaboration between Cray, Inc. and the University of Minnesota. This design utilizes MPI-RMA optimized for thread scaling, which allows the code to run extremely efficiently at very high thread counts ideal for the latest generation of multi-core and many-core architectures. Such performance characteristics are needed in the era of “exascale” computing. We describe and demonstrate our high-performance design in detail with the intent that it may be used as a model for other, future astrophysical codes intended for applications demanding exceptional performance.
Multilevel algorithms for nonlinear optimization
NASA Technical Reports Server (NTRS)
Alexandrov, Natalia; Dennis, J. E., Jr.
1994-01-01
Multidisciplinary design optimization (MDO) gives rise to nonlinear optimization problems characterized by a large number of constraints that naturally occur in blocks. We propose a class of multilevel optimization methods motivated by the structure and number of constraints and by the expense of the derivative computations for MDO. The algorithms are an extension to the nonlinear programming problem of the successful class of local Brown-Brent algorithms for nonlinear equations. Our extensions allow the user to partition constraints into arbitrary blocks to fit the application, and they separately process each block and the objective function, restricted to certain subspaces. The methods use trust regions as a globalization strategy, and they have been shown to be globally convergent under reasonable assumptions. The multilevel algorithms can be applied to all classes of MDO formulations. Multilevel algorithms for solving nonlinear systems of equations are a special case of the multilevel optimization methods. In this case, they can be viewed as a trust-region globalization of the Brown-Brent class.
Multidisciplinary optimization of controlled space structures with global sensitivity equations
NASA Technical Reports Server (NTRS)
Padula, Sharon L.; James, Benjamin B.; Graves, Philip C.; Woodard, Stanley E.
1991-01-01
A new method for the preliminary design of controlled space structures is presented. The method coordinates standard finite element structural analysis, multivariable controls, and nonlinear programming codes and allows simultaneous optimization of the structures and control systems of a spacecraft. Global sensitivity equations are a key feature of this method. The preliminary design of a generic geostationary platform is used to demonstrate the multidisciplinary optimization method. Fifteen design variables are used to optimize truss member sizes and feedback gain values. The goal is to reduce the total mass of the structure and the vibration control system while satisfying constraints on vibration decay rate. Incorporating the nonnegligible mass of actuators causes an essential coupling between structural design variables and control design variables. The solution of the demonstration problem is an important step toward a comprehensive preliminary design capability for structures and control systems. Use of global sensitivity equations helps solve optimization problems that have a large number of design variables and a high degree of coupling between disciplines.
NASA Astrophysics Data System (ADS)
Alemany, Kristina
Electric propulsion has recently become a viable technology for spacecraft, enabling shorter flight times, fewer required planetary gravity assists, larger payloads, and/or smaller launch vehicles. With the maturation of this technology, however, comes a new set of challenges in the area of trajectory design. Because low-thrust trajectory optimization has historically required long run-times and significant user-manipulation, mission design has relied on expert-based knowledge for selecting departure and arrival dates, times of flight, and/or target bodies and gravitational swing-bys. These choices are generally based on known configurations that have worked well in previous analyses or simply on trial and error. At the conceptual design level, however, the ability to explore the full extent of the design space is imperative to locating the best solutions in terms of mass and/or flight times. Beginning in 2005, the Global Trajectory Optimization Competition posed a series of difficult mission design problems, all requiring low-thrust propulsion and visiting one or more asteroids. These problems all had large ranges on the continuous variables---launch date, time of flight, and asteroid stay times (when applicable)---as well as being characterized by millions or even billions of possible asteroid sequences. Even with recent advances in low-thrust trajectory optimization, full enumeration of these problems was not possible within the stringent time limits of the competition. This investigation develops a systematic methodology for determining a broad suite of good solutions to the combinatorial, low-thrust, asteroid tour problem. The target application is for conceptual design, where broad exploration of the design space is critical, with the goal being to rapidly identify a reasonable number of promising solutions for future analysis. The proposed methodology has two steps. The first step applies a three-level heuristic sequence developed from the physics of the problem, which allows for efficient pruning of the design space. The second phase applies a global optimization scheme to locate a broad suite of good solutions to the reduced problem. The global optimization scheme developed combines a novel branch-and-bound algorithm with a genetic algorithm and an industry-standard low-thrust trajectory optimization program to solve for the following design variables: asteroid sequence, launch date, times of flight, and asteroid stay times. The methodology is developed based on a small sample problem, which is enumerated and solved so that all possible discretized solutions are known. The methodology is then validated by applying it to a larger intermediate sample problem, which also has a known solution. Next, the methodology is applied to several larger combinatorial asteroid rendezvous problems, using previously identified good solutions as validation benchmarks. These problems include the 2nd and 3rd Global Trajectory Optimization Competition problems. The methodology is shown to be capable of achieving a reduction in the number of asteroid sequences of 6-7 orders of magnitude, in terms of the number of sequences that require low-thrust optimization as compared to the number of sequences in the original problem. More than 70% of the previously known good solutions are identified, along with several new solutions that were not previously reported by any of the competitors. Overall, the methodology developed in this investigation provides an organized search technique for the low-thrust mission design of asteroid rendezvous problems.
Strategies for Global Optimization of Temporal Preferences
NASA Technical Reports Server (NTRS)
Morris, Paul; Morris, Robert; Khatib, Lina; Ramakrishnan, Sailesh
2004-01-01
A temporal reasoning problem can often be naturally characterized as a collection of constraints with associated local preferences for times that make up the admissible values for those constraints. Globally preferred solutions to such problems emerge as a result of well-defined operations that compose and order temporal assignments. The overall objective of this work is a characterization of different notions of global preference, and to identify tractable sub-classes of temporal reasoning problems incorporating these notions. This paper extends previous results by refining the class of useful notions of global temporal preference that are associated with problems that admit of tractable solution techniques. This paper also answers the hitherto open question of whether problems that seek solutions that are globally preferred from a Utilitarian criterion for global preference can be found tractably.
2013-08-01
overwhelming nonradiative recombination losses in the antimonide active region. Furthermore, if the growth of the antimonide active region is done on a GaAs...This is important as threading dislocations would introduce a strong nonradiative recombination process in the QWs and relaxation that is not 100...These defects can act as nonradiative recombination centers. Thus, the source of the threading dislocations and their density in the active region
HPC Profiling with the Sun Studio™ Performance Tools
NASA Astrophysics Data System (ADS)
Itzkowitz, Marty; Maruyama, Yukon
In this paper, we describe how to use the Sun Studio Performance Tools to understand the nature and causes of application performance problems. We first explore CPU and memory performance problems for single-threaded applications, giving some simple examples. Then, we discuss multi-threaded performance issues, such as locking and false-sharing of cache lines, in each case showing how the tools can help. We go on to describe OpenMP applications and the support for them in the performance tools. Then we discuss MPI applications, and the techniques used to profile them. Finally, we present our conclusions.
Report of the Defense Science Board Task Force on Globalization and Security.
1999-12-01
adversaries, such as North Korea’s progress in ballistic missiles. The leveling effect of globalization is a thread that runs through the Task Force...globalization are manifold. Increased use of the commercial sector cannot be separated from the effects of globalization. Nor is increased DoD reliance...enhance dramatically DSB Task Force on Globalization and Security DoD’s organizational efficiency and effectiveness . This could allow DoD to cut
An efficient and practical approach to obtain a better optimum solution for structural optimization
NASA Astrophysics Data System (ADS)
Chen, Ting-Yu; Huang, Jyun-Hao
2013-08-01
For many structural optimization problems, it is hard or even impossible to find the global optimum solution owing to unaffordable computational cost. An alternative and practical way of thinking is thus proposed in this research to obtain an optimum design which may not be global but is better than most local optimum solutions that can be found by gradient-based search methods. The way to reach this goal is to find a smaller search space for gradient-based search methods. It is found in this research that data mining can accomplish this goal easily. The activities of classification, association and clustering in data mining are employed to reduce the original design space. For unconstrained optimization problems, the data mining activities are used to find a smaller search region which contains the global or better local solutions. For constrained optimization problems, it is used to find the feasible region or the feasible region with better objective values. Numerical examples show that the optimum solutions found in the reduced design space by sequential quadratic programming (SQP) are indeed much better than those found by SQP in the original design space. The optimum solutions found in a reduced space by SQP sometimes are even better than the solution found using a hybrid global search method with approximate structural analyses.
GPU-Acceleration of Sequence Homology Searches with Database Subsequence Clustering
Suzuki, Shuji; Kakuta, Masanori; Ishida, Takashi; Akiyama, Yutaka
2016-01-01
Sequence homology searches are used in various fields and require large amounts of computation time, especially for metagenomic analysis, owing to the large number of queries and the database size. To accelerate computing analyses, graphics processing units (GPUs) are widely used as a low-cost, high-performance computing platform. Therefore, we mapped the time-consuming steps involved in GHOSTZ, which is a state-of-the-art homology search algorithm for protein sequences, onto a GPU and implemented it as GHOSTZ-GPU. In addition, we optimized memory access for GPU calculations and for communication between the CPU and GPU. As per results of the evaluation test involving metagenomic data, GHOSTZ-GPU with 12 CPU threads and 1 GPU was approximately 3.0- to 4.1-fold faster than GHOSTZ with 12 CPU threads. Moreover, GHOSTZ-GPU with 12 CPU threads and 3 GPUs was approximately 5.8- to 7.7-fold faster than GHOSTZ with 12 CPU threads. PMID:27482905
NASA Technical Reports Server (NTRS)
Chen, Guanrong
1991-01-01
An optimal trajectory planning problem for a single-link, flexible joint manipulator is studied. A global feedback-linearization is first applied to formulate the nonlinear inequality-constrained optimization problem in a suitable way. Then, an exact and explicit structural formula for the optimal solution of the problem is derived and the solution is shown to be unique. It turns out that the optimal trajectory planning and control can be done off-line, so that the proposed method is applicable to both theoretical analysis and real time tele-robotics control engineering.
Trust regions in Kriging-based optimization with expected improvement
NASA Astrophysics Data System (ADS)
Regis, Rommel G.
2016-06-01
The Kriging-based Efficient Global Optimization (EGO) method works well on many expensive black-box optimization problems. However, it does not seem to perform well on problems with steep and narrow global minimum basins and on high-dimensional problems. This article develops a new Kriging-based optimization method called TRIKE (Trust Region Implementation in Kriging-based optimization with Expected improvement) that implements a trust-region-like approach where each iterate is obtained by maximizing an Expected Improvement (EI) function within some trust region. This trust region is adjusted depending on the ratio of the actual improvement to the EI. This article also develops the Kriging-based CYCLONE (CYClic Local search in OptimizatioN using Expected improvement) method that uses a cyclic pattern to determine the search regions where the EI is maximized. TRIKE and CYCLONE are compared with EGO on 28 test problems with up to 32 dimensions and on a 36-dimensional groundwater bioremediation application in appendices supplied as an online supplement available at http://dx.doi.org/10.1080/0305215X.2015.1082350. The results show that both algorithms yield substantial improvements over EGO and they are competitive with a radial basis function method.
Global Optimization of Interplanetary Trajectories in the Presence of Realistic Mission Contraints
NASA Technical Reports Server (NTRS)
Hinckley, David, Jr.; Englander, Jacob; Hitt, Darren
2015-01-01
Interplanetary missions are often subject to difficult constraints, like solar phase angle upon arrival at the destination, velocity at arrival, and altitudes for flybys. Preliminary design of such missions is often conducted by solving the unconstrained problem and then filtering away solutions which do not naturally satisfy the constraints. However this can bias the search into non-advantageous regions of the solution space, so it can be better to conduct preliminary design with the full set of constraints imposed. In this work two stochastic global search methods are developed which are well suited to the constrained global interplanetary trajectory optimization problem.
A deterministic global optimization using smooth diagonal auxiliary functions
NASA Astrophysics Data System (ADS)
Sergeyev, Yaroslav D.; Kvasov, Dmitri E.
2015-04-01
In many practical decision-making problems it happens that functions involved in optimization process are black-box with unknown analytical representations and hard to evaluate. In this paper, a global optimization problem is considered where both the goal function f (x) and its gradient f‧ (x) are black-box functions. It is supposed that f‧ (x) satisfies the Lipschitz condition over the search hyperinterval with an unknown Lipschitz constant K. A new deterministic 'Divide-the-Best' algorithm based on efficient diagonal partitions and smooth auxiliary functions is proposed in its basic version, its convergence conditions are studied and numerical experiments executed on eight hundred test functions are presented.
Consensus oriented fuzzified decision support for oil spill contingency management.
Liu, Xin; Wirtz, Kai W
2006-06-30
Studies on multi-group multi-criteria decision-making problems for oil spill contingency management are in their infancy. This paper presents a second-order fuzzy comprehensive evaluation (FCE) model to resolve decision-making problems in the area of contingency management after environmental disasters such as oil spills. To assess the performance of different oil combat strategies, second-order FCE allows for the utilization of lexical information, the consideration of ecological and socio-economic criteria and the involvement of a variety of stakeholders. On the other hand, the new approach can be validated by using internal and external checks, which refer to sensitivity tests regarding its internal setups and comparisons with other methods, respectively. Through a case study, the Pallas oil spill in the German Bight in 1998, it is demonstrated that this approach can help decision makers who search for an optimal strategy in multi-thread contingency problems and has a wider application potential in the field of integrated coastal zone management.
Argobots: A Lightweight Low-Level Threading and Tasking Framework
Seo, Sangmin; Amer, Abdelhalim; Balaji, Pavan; ...
2017-10-24
In the past few decades, a number of user-level threading and tasking models have been proposed in the literature to address the shortcomings of OS-level threads, primarily with respect to cost and flexibility. Current state-of-the-art user-level threading and tasking models, however, are either too specific to applications or architectures or are not as powerful or flexible. In this article, we present Argobots, a lightweight, low-level threading and tasking framework that is designed as a portable and performant substrate for high-level programming models or runtime systems. Argobots offers a carefully designed execution model that balances generality of functionality with providing amore » rich set of controls to allow specialization by the user or high-level programming model. Here, we describe the design, implementation, and optimization of Argobots and present integrations with three example high-level models: OpenMP, MPI, and co-located I/O service. Evaluations show that (1) Argobots outperforms existing generic threading runtimes; (2) our OpenMP runtime offers more efficient interoperability capabilities than production OpenMP runtimes do; (3) when MPI interoperates with Argobots instead of Pthreads, it enjoys reduced synchronization costs and better latency hiding capabilities; and (4) I/O service with Argobots reduces interference with co-located applications, achieving performance competitive with that of the Pthreads version.« less
Argobots: A Lightweight Low-Level Threading and Tasking Framework
DOE Office of Scientific and Technical Information (OSTI.GOV)
Seo, Sangmin; Amer, Abdelhalim; Balaji, Pavan
In the past few decades, a number of user-level threading and tasking models have been proposed in the literature to address the shortcomings of OS-level threads, primarily with respect to cost and flexibility. Current state-of-the-art user-level threading and tasking models, however, are either too specific to applications or architectures or are not as powerful or flexible. In this article, we present Argobots, a lightweight, low-level threading and tasking framework that is designed as a portable and performant substrate for high-level programming models or runtime systems. Argobots offers a carefully designed execution model that balances generality of functionality with providing amore » rich set of controls to allow specialization by the user or high-level programming model. Here, we describe the design, implementation, and optimization of Argobots and present integrations with three example high-level models: OpenMP, MPI, and co-located I/O service. Evaluations show that (1) Argobots outperforms existing generic threading runtimes; (2) our OpenMP runtime offers more efficient interoperability capabilities than production OpenMP runtimes do; (3) when MPI interoperates with Argobots instead of Pthreads, it enjoys reduced synchronization costs and better latency hiding capabilities; and (4) I/O service with Argobots reduces interference with co-located applications, achieving performance competitive with that of the Pthreads version.« less
Developing eThread Pipeline Using SAGA-Pilot Abstraction for Large-Scale Structural Bioinformatics
Ragothaman, Anjani; Feinstein, Wei; Jha, Shantenu; Kim, Joohyun
2014-01-01
While most of computational annotation approaches are sequence-based, threading methods are becoming increasingly attractive because of predicted structural information that could uncover the underlying function. However, threading tools are generally compute-intensive and the number of protein sequences from even small genomes such as prokaryotes is large typically containing many thousands, prohibiting their application as a genome-wide structural systems biology tool. To leverage its utility, we have developed a pipeline for eThread—a meta-threading protein structure modeling tool, that can use computational resources efficiently and effectively. We employ a pilot-based approach that supports seamless data and task-level parallelism and manages large variation in workload and computational requirements. Our scalable pipeline is deployed on Amazon EC2 and can efficiently select resources based upon task requirements. We present runtime analysis to characterize computational complexity of eThread and EC2 infrastructure. Based on results, we suggest a pathway to an optimized solution with respect to metrics such as time-to-solution or cost-to-solution. Our eThread pipeline can scale to support a large number of sequences and is expected to be a viable solution for genome-scale structural bioinformatics and structure-based annotation, particularly, amenable for small genomes such as prokaryotes. The developed pipeline is easily extensible to other types of distributed cyberinfrastructure. PMID:24995285
Using Multi-threading for the Automatic Load Balancing of 2D Adaptive Finite Element Meshes
NASA Technical Reports Server (NTRS)
Heber, Gerd; Biswas, Rupak; Thulasiraman, Parimala; Gao, Guang R.; Saini, Subhash (Technical Monitor)
1998-01-01
In this paper, we present a multi-threaded approach for the automatic load balancing of adaptive finite element (FE) meshes The platform of our choice is the EARTH multi-threaded system which offers sufficient capabilities to tackle this problem. We implement the adaption phase of FE applications oil triangular meshes and exploit the EARTH token mechanism to automatically balance the resulting irregular and highly nonuniform workload. We discuss the results of our experiments oil EARTH-SP2, on implementation of EARTH on the IBM SP2 with different load balancing strategies that are built into the runtime system.
Research on particle swarm optimization algorithm based on optimal movement probability
NASA Astrophysics Data System (ADS)
Ma, Jianhong; Zhang, Han; He, Baofeng
2017-01-01
The particle swarm optimization algorithm to improve the control precision, and has great application value training neural network and fuzzy system control fields etc.The traditional particle swarm algorithm is used for the training of feed forward neural networks,the search efficiency is low, and easy to fall into local convergence.An improved particle swarm optimization algorithm is proposed based on error back propagation gradient descent. Particle swarm optimization for Solving Least Squares Problems to meme group, the particles in the fitness ranking, optimization problem of the overall consideration, the error back propagation gradient descent training BP neural network, particle to update the velocity and position according to their individual optimal and global optimization, make the particles more to the social optimal learning and less to its optimal learning, it can avoid the particles fall into local optimum, by using gradient information can accelerate the PSO local search ability, improve the multi beam particle swarm depth zero less trajectory information search efficiency, the realization of improved particle swarm optimization algorithm. Simulation results show that the algorithm in the initial stage of rapid convergence to the global optimal solution can be near to the global optimal solution and keep close to the trend, the algorithm has faster convergence speed and search performance in the same running time, it can improve the convergence speed of the algorithm, especially the later search efficiency.
Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments
DOE Office of Scientific and Technical Information (OSTI.GOV)
Daily, Jeffrey A.
Sequence alignment algorithms are a key component of many bioinformatics applications. Though various fast Smith-Waterman local sequence alignment implementations have been developed for x86 CPUs, most are embedded into larger database search tools. In addition, fast implementations of Needleman-Wunsch global sequence alignment and its semi-global variants are not as widespread. This article presents the first software library for local, global, and semi-global pairwise intra-sequence alignments and improves the performance of previous intra-sequence implementations. As a result, a faster intra-sequence pairwise alignment implementation is described and benchmarked. Using a 375 residue query sequence a speed of 136 billion cell updates permore » second (GCUPS) was achieved on a dual Intel Xeon E5-2670 12-core processor system, the highest reported for an implementation based on Farrar’s ’striped’ approach. When using only a single thread, parasail was 1.7 times faster than Rognes’s SWIPE. For many score matrices, parasail is faster than BLAST. The software library is designed for 64 bit Linux, OS X, or Windows on processors with SSE2, SSE41, or AVX2. Source code is available from https://github.com/jeffdaily/parasail under the Battelle BSD-style license. In conclusion, applications that require optimal alignment scores could benefit from the improved performance. For the first time, SIMD global, semi-global, and local alignments are available in a stand-alone C library.« less
Parasail: SIMD C library for global, semi-global, and local pairwise sequence alignments
Daily, Jeffrey A.
2016-02-10
Sequence alignment algorithms are a key component of many bioinformatics applications. Though various fast Smith-Waterman local sequence alignment implementations have been developed for x86 CPUs, most are embedded into larger database search tools. In addition, fast implementations of Needleman-Wunsch global sequence alignment and its semi-global variants are not as widespread. This article presents the first software library for local, global, and semi-global pairwise intra-sequence alignments and improves the performance of previous intra-sequence implementations. As a result, a faster intra-sequence pairwise alignment implementation is described and benchmarked. Using a 375 residue query sequence a speed of 136 billion cell updates permore » second (GCUPS) was achieved on a dual Intel Xeon E5-2670 12-core processor system, the highest reported for an implementation based on Farrar’s ’striped’ approach. When using only a single thread, parasail was 1.7 times faster than Rognes’s SWIPE. For many score matrices, parasail is faster than BLAST. The software library is designed for 64 bit Linux, OS X, or Windows on processors with SSE2, SSE41, or AVX2. Source code is available from https://github.com/jeffdaily/parasail under the Battelle BSD-style license. In conclusion, applications that require optimal alignment scores could benefit from the improved performance. For the first time, SIMD global, semi-global, and local alignments are available in a stand-alone C library.« less
NASA Astrophysics Data System (ADS)
Ivashkin, V. V.; Krylov, I. V.
2015-09-01
A method to optimize the flight trajectories to the asteroid Apophis that allows reliably to form a set of Pontryagin extremals for various boundary conditions of the flight, as well as effectively to search for a global problem optimum amongst its elements, is developed.
Memoryless cooperative graph search based on the simulated annealing algorithm
NASA Astrophysics Data System (ADS)
Hou, Jian; Yan, Gang-Feng; Fan, Zhen
2011-04-01
We have studied the problem of reaching a globally optimal segment for a graph-like environment with a single or a group of autonomous mobile agents. Firstly, two efficient simulated-annealing-like algorithms are given for a single agent to solve the problem in a partially known environment and an unknown environment, respectively. It shows that under both proposed control strategies, the agent will eventually converge to a globally optimal segment with probability 1. Secondly, we use multi-agent searching to simultaneously reduce the computation complexity and accelerate convergence based on the algorithms we have given for a single agent. By exploiting graph partition, a gossip-consensus method based scheme is presented to update the key parameter—radius of the graph, ensuring that the agents spend much less time finding a globally optimal segment.
Wehmeyer, Christoph; Falk von Rudorff, Guido; Wolf, Sebastian; Kabbe, Gabriel; Schärf, Daniel; Kühne, Thomas D; Sebastiani, Daniel
2012-11-21
We present a stochastic, swarm intelligence-based optimization algorithm for the prediction of global minima on potential energy surfaces of molecular cluster structures. Our optimization approach is a modification of the artificial bee colony (ABC) algorithm which is inspired by the foraging behavior of honey bees. We apply our modified ABC algorithm to the problem of global geometry optimization of molecular cluster structures and show its performance for clusters with 2-57 particles and different interatomic interaction potentials.
NASA Astrophysics Data System (ADS)
Wehmeyer, Christoph; Falk von Rudorff, Guido; Wolf, Sebastian; Kabbe, Gabriel; Schärf, Daniel; Kühne, Thomas D.; Sebastiani, Daniel
2012-11-01
We present a stochastic, swarm intelligence-based optimization algorithm for the prediction of global minima on potential energy surfaces of molecular cluster structures. Our optimization approach is a modification of the artificial bee colony (ABC) algorithm which is inspired by the foraging behavior of honey bees. We apply our modified ABC algorithm to the problem of global geometry optimization of molecular cluster structures and show its performance for clusters with 2-57 particles and different interatomic interaction potentials.
On unified modeling, theory, and method for solving multi-scale global optimization problems
NASA Astrophysics Data System (ADS)
Gao, David Yang
2016-10-01
A unified model is proposed for general optimization problems in multi-scale complex systems. Based on this model and necessary assumptions in physics, the canonical duality theory is presented in a precise way to include traditional duality theories and popular methods as special applications. Two conjectures on NP-hardness are proposed, which should play important roles for correctly understanding and efficiently solving challenging real-world problems. Applications are illustrated for both nonconvex continuous optimization and mixed integer nonlinear programming.
Analysis of Modeling Parameters on Threaded Screws.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Vigil, Miquela S.; Brake, Matthew Robert; Vangoethem, Douglas
2015-06-01
Assembled mechanical systems often contain a large number of bolted connections. These bolted connections (joints) are integral aspects of the load path for structural dynamics, and, consequently, are paramount for calculating a structure's stiffness and energy dissipation prop- erties. However, analysts have not found the optimal method to model appropriately these bolted joints. The complexity of the screw geometry cause issues when generating a mesh of the model. This paper will explore different approaches to model a screw-substrate connec- tion. Model parameters such as mesh continuity, node alignment, wedge angles, and thread to body element size ratios are examined. Themore » results of this study will give analysts a better understanding of the influences of these parameters and will aide in finding the optimal method to model bolted connections.« less
WOMBAT: A Scalable and High-performance Astrophysical Magnetohydrodynamics Code
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mendygral, P. J.; Radcliffe, N.; Kandalla, K.
2017-02-01
We present a new code for astrophysical magnetohydrodynamics specifically designed and optimized for high performance and scaling on modern and future supercomputers. We describe a novel hybrid OpenMP/MPI programming model that emerged from a collaboration between Cray, Inc. and the University of Minnesota. This design utilizes MPI-RMA optimized for thread scaling, which allows the code to run extremely efficiently at very high thread counts ideal for the latest generation of multi-core and many-core architectures. Such performance characteristics are needed in the era of “exascale” computing. We describe and demonstrate our high-performance design in detail with the intent that it maymore » be used as a model for other, future astrophysical codes intended for applications demanding exceptional performance.« less
ERIC Educational Resources Information Center
Morris, Edward K.
2009-01-01
I know that most men, including those at ease with problems of the greatest complexity, can seldom accept the simplest and most obvious truth if it be such as would oblige them to admit the falsity of conclusions which they have proudly taught to others, and which they have woven, thread by thread, into the fabrics of their life. (Tolstoy, 1894)…
Global Optimization of Low-Thrust Interplanetary Trajectories Subject to Operational Constraints
NASA Technical Reports Server (NTRS)
Englander, Jacob A.; Vavrina, Matthew A.; Hinckley, David
2016-01-01
Low-thrust interplanetary space missions are highly complex and there can be many locally optimal solutions. While several techniques exist to search for globally optimal solutions to low-thrust trajectory design problems, they are typically limited to unconstrained trajectories. The operational design community in turn has largely avoided using such techniques and has primarily focused on accurate constrained local optimization combined with grid searches and intuitive design processes at the expense of efficient exploration of the global design space. This work is an attempt to bridge the gap between the global optimization and operational design communities by presenting a mathematical framework for global optimization of low-thrust trajectories subject to complex constraints including the targeting of planetary landing sites, a solar range constraint to simplify the thermal design of the spacecraft, and a real-world multi-thruster electric propulsion system that must switch thrusters on and off as available power changes over the course of a mission.
Efficient Parallelization of a Dynamic Unstructured Application on the Tera MTA
NASA Technical Reports Server (NTRS)
Oliker, Leonid; Biswas, Rupak
1999-01-01
The success of parallel computing in solving real-life computationally-intensive problems relies on their efficient mapping and execution on large-scale multiprocessor architectures. Many important applications are both unstructured and dynamic in nature, making their efficient parallel implementation a daunting task. This paper presents the parallelization of a dynamic unstructured mesh adaptation algorithm using three popular programming paradigms on three leading supercomputers. We examine an MPI message-passing implementation on the Cray T3E and the SGI Origin2OOO, a shared-memory implementation using cache coherent nonuniform memory access (CC-NUMA) of the Origin2OOO, and a multi-threaded version on the newly-released Tera Multi-threaded Architecture (MTA). We compare several critical factors of this parallel code development, including runtime, scalability, programmability, and memory overhead. Our overall results demonstrate that multi-threaded systems offer tremendous potential for quickly and efficiently solving some of the most challenging real-life problems on parallel computers.
Production scheduling with ant colony optimization
NASA Astrophysics Data System (ADS)
Chernigovskiy, A. S.; Kapulin, D. V.; Noskova, E. E.; Yamskikh, T. N.; Tsarev, R. Yu
2017-10-01
The optimum solution of the production scheduling problem for manufacturing processes at an enterprise is crucial as it allows one to obtain the required amount of production within a specified time frame. Optimum production schedule can be found using a variety of optimization algorithms or scheduling algorithms. Ant colony optimization is one of well-known techniques to solve the global multi-objective optimization problem. In the article, the authors present a solution of the production scheduling problem by means of an ant colony optimization algorithm. A case study of the algorithm efficiency estimated against some others production scheduling algorithms is presented. Advantages of the ant colony optimization algorithm and its beneficial effect on the manufacturing process are provided.
A Matter of Time: Faster Percolator Analysis via Efficient SVM Learning for Large-Scale Proteomics.
Halloran, John T; Rocke, David M
2018-05-04
Percolator is an important tool for greatly improving the results of a database search and subsequent downstream analysis. Using support vector machines (SVMs), Percolator recalibrates peptide-spectrum matches based on the learned decision boundary between targets and decoys. To improve analysis time for large-scale data sets, we update Percolator's SVM learning engine through software and algorithmic optimizations rather than heuristic approaches that necessitate the careful study of their impact on learned parameters across different search settings and data sets. We show that by optimizing Percolator's original learning algorithm, l 2 -SVM-MFN, large-scale SVM learning requires nearly only a third of the original runtime. Furthermore, we show that by employing the widely used Trust Region Newton (TRON) algorithm instead of l 2 -SVM-MFN, large-scale Percolator SVM learning is reduced to nearly only a fifth of the original runtime. Importantly, these speedups only affect the speed at which Percolator converges to a global solution and do not alter recalibration performance. The upgraded versions of both l 2 -SVM-MFN and TRON are optimized within the Percolator codebase for multithreaded and single-thread use and are available under Apache license at bitbucket.org/jthalloran/percolator_upgrade .
Castillo, Edward; Castillo, Richard; Fuentes, David; Guerrero, Thomas
2014-01-01
Purpose: Block matching is a well-known strategy for estimating corresponding voxel locations between a pair of images according to an image similarity metric. Though robust to issues such as image noise and large magnitude voxel displacements, the estimated point matches are not guaranteed to be spatially accurate. However, the underlying optimization problem solved by the block matching procedure is similar in structure to the class of optimization problem associated with B-spline based registration methods. By exploiting this relationship, the authors derive a numerical method for computing a global minimizer to a constrained B-spline registration problem that incorporates the robustness of block matching with the global smoothness properties inherent to B-spline parameterization. Methods: The method reformulates the traditional B-spline registration problem as a basis pursuit problem describing the minimal l1-perturbation to block match pairs required to produce a B-spline fitting error within a given tolerance. The sparsity pattern of the optimal perturbation then defines a voxel point cloud subset on which the B-spline fit is a global minimizer to a constrained variant of the B-spline registration problem. As opposed to traditional B-spline algorithms, the optimization step involving the actual image data is addressed by block matching. Results: The performance of the method is measured in terms of spatial accuracy using ten inhale/exhale thoracic CT image pairs (available for download at www.dir-lab.com) obtained from the COPDgene dataset and corresponding sets of expert-determined landmark point pairs. The results of the validation procedure demonstrate that the method can achieve a high spatial accuracy on a significantly complex image set. Conclusions: The proposed methodology is demonstrated to achieve a high spatial accuracy and is generalizable in that in can employ any displacement field parameterization described as a least squares fit to block match generated estimates. Thus, the framework allows for a wide range of image similarity block match metric and physical modeling combinations. PMID:24694135
New evidence favoring multilevel decomposition and optimization
NASA Technical Reports Server (NTRS)
Padula, Sharon L.; Polignone, Debra A.
1990-01-01
The issue of the utility of multilevel decomposition and optimization remains controversial. To date, only the structural optimization community has actively developed and promoted multilevel optimization techniques. However, even this community acknowledges that multilevel optimization is ideally suited for a rather limited set of problems. It is warned that decomposition typically requires eliminating local variables by using global variables and that this in turn causes ill-conditioning of the multilevel optimization by adding equality constraints. The purpose is to suggest a new multilevel optimization technique. This technique uses behavior variables, in addition to design variables and constraints, to decompose the problem. The new technique removes the need for equality constraints, simplifies the decomposition of the design problem, simplifies the programming task, and improves the convergence speed of multilevel optimization compared to conventional optimization.
Optimal Computing Budget Allocation for Particle Swarm Optimization in Stochastic Optimization.
Zhang, Si; Xu, Jie; Lee, Loo Hay; Chew, Ek Peng; Wong, Wai Peng; Chen, Chun-Hung
2017-04-01
Particle Swarm Optimization (PSO) is a popular metaheuristic for deterministic optimization. Originated in the interpretations of the movement of individuals in a bird flock or fish school, PSO introduces the concept of personal best and global best to simulate the pattern of searching for food by flocking and successfully translate the natural phenomena to the optimization of complex functions. Many real-life applications of PSO cope with stochastic problems. To solve a stochastic problem using PSO, a straightforward approach is to equally allocate computational effort among all particles and obtain the same number of samples of fitness values. This is not an efficient use of computational budget and leaves considerable room for improvement. This paper proposes a seamless integration of the concept of optimal computing budget allocation (OCBA) into PSO to improve the computational efficiency of PSO for stochastic optimization problems. We derive an asymptotically optimal allocation rule to intelligently determine the number of samples for all particles such that the PSO algorithm can efficiently select the personal best and global best when there is stochastic estimation noise in fitness values. We also propose an easy-to-implement sequential procedure. Numerical tests show that our new approach can obtain much better results using the same amount of computational effort.
Optimal Computing Budget Allocation for Particle Swarm Optimization in Stochastic Optimization
Zhang, Si; Xu, Jie; Lee, Loo Hay; Chew, Ek Peng; Chen, Chun-Hung
2017-01-01
Particle Swarm Optimization (PSO) is a popular metaheuristic for deterministic optimization. Originated in the interpretations of the movement of individuals in a bird flock or fish school, PSO introduces the concept of personal best and global best to simulate the pattern of searching for food by flocking and successfully translate the natural phenomena to the optimization of complex functions. Many real-life applications of PSO cope with stochastic problems. To solve a stochastic problem using PSO, a straightforward approach is to equally allocate computational effort among all particles and obtain the same number of samples of fitness values. This is not an efficient use of computational budget and leaves considerable room for improvement. This paper proposes a seamless integration of the concept of optimal computing budget allocation (OCBA) into PSO to improve the computational efficiency of PSO for stochastic optimization problems. We derive an asymptotically optimal allocation rule to intelligently determine the number of samples for all particles such that the PSO algorithm can efficiently select the personal best and global best when there is stochastic estimation noise in fitness values. We also propose an easy-to-implement sequential procedure. Numerical tests show that our new approach can obtain much better results using the same amount of computational effort. PMID:29170617
Seismic waveform inversion best practices: regional, global and exploration test cases
NASA Astrophysics Data System (ADS)
Modrak, Ryan; Tromp, Jeroen
2016-09-01
Reaching the global minimum of a waveform misfit function requires careful choices about the nonlinear optimization, preconditioning and regularization methods underlying an inversion. Because waveform inversion problems are susceptible to erratic convergence associated with strong nonlinearity, one or two test cases are not enough to reliably inform such decisions. We identify best practices, instead, using four seismic near-surface problems, one regional problem and two global problems. To make meaningful quantitative comparisons between methods, we carry out hundreds of inversions, varying one aspect of the implementation at a time. Comparing nonlinear optimization algorithms, we find that limited-memory BFGS provides computational savings over nonlinear conjugate gradient methods in a wide range of test cases. Comparing preconditioners, we show that a new diagonal scaling derived from the adjoint of the forward operator provides better performance than two conventional preconditioning schemes. Comparing regularization strategies, we find that projection, convolution, Tikhonov regularization and total variation regularization are effective in different contexts. Besides questions of one strategy or another, reliability and efficiency in waveform inversion depend on close numerical attention and care. Implementation details involving the line search and restart conditions have a strong effect on computational cost, regardless of the chosen nonlinear optimization algorithm.
Monitoring cyclodextrin-polyviologen pseudopolyrotaxanes with the Bradford assay.
Belitsky, Jason M; Nelson, Alshakim; Stoddart, J Fraser
2006-01-21
Self-assembled multivalent pseudopolyrotaxanes, composed of lactoside-bearing cyclodextrin (CD) rings threaded on linear polyviologen polymers, have been introduced recently as flexible and dynamic neoglycoconjugates. In the course of this research, it was found that polyviologens are responsive to the Bradford assay, which is traditionally highly selective for proteins. The response of the pseudopolyrotaxanes to the Bradford assay was dependant on, and thus indicative of, the degree of threading of the CD rings onto the polyelectrolyte. The assay was then used to report on the threading and dethreading of native and lactoside-bearing alpha-CD rings onto and off of polyviologen chains, a phenomenon which demonstrates the utility of biochemical assays to address problems unique to supramolecular chemistry.
CMS Readiness for Multi-Core Workload Scheduling
DOE Office of Scientific and Technical Information (OSTI.GOV)
Perez-Calero Yzquierdo, A.; Balcas, J.; Hernandez, J.
In the present run of the LHC, CMS data reconstruction and simulation algorithms benefit greatly from being executed as multiple threads running on several processor cores. The complexity of the Run 2 events requires parallelization of the code to reduce the memory-per- core footprint constraining serial execution programs, thus optimizing the exploitation of present multi-core processor architectures. The allocation of computing resources for multi-core tasks, however, becomes a complex problem in itself. The CMS workload submission infrastructure employs multi-slot partitionable pilots, built on HTCondor and GlideinWMS native features, to enable scheduling of single and multi-core jobs simultaneously. This provides amore » solution for the scheduling problem in a uniform way across grid sites running a diversity of gateways to compute resources and batch system technologies. This paper presents this strategy and the tools on which it has been implemented. The experience of managing multi-core resources at the Tier-0 and Tier-1 sites during 2015, along with the deployment phase to Tier-2 sites during early 2016 is reported. The process of performance monitoring and optimization to achieve efficient and flexible use of the resources is also described.« less
CMS readiness for multi-core workload scheduling
NASA Astrophysics Data System (ADS)
Perez-Calero Yzquierdo, A.; Balcas, J.; Hernandez, J.; Aftab Khan, F.; Letts, J.; Mason, D.; Verguilov, V.
2017-10-01
In the present run of the LHC, CMS data reconstruction and simulation algorithms benefit greatly from being executed as multiple threads running on several processor cores. The complexity of the Run 2 events requires parallelization of the code to reduce the memory-per- core footprint constraining serial execution programs, thus optimizing the exploitation of present multi-core processor architectures. The allocation of computing resources for multi-core tasks, however, becomes a complex problem in itself. The CMS workload submission infrastructure employs multi-slot partitionable pilots, built on HTCondor and GlideinWMS native features, to enable scheduling of single and multi-core jobs simultaneously. This provides a solution for the scheduling problem in a uniform way across grid sites running a diversity of gateways to compute resources and batch system technologies. This paper presents this strategy and the tools on which it has been implemented. The experience of managing multi-core resources at the Tier-0 and Tier-1 sites during 2015, along with the deployment phase to Tier-2 sites during early 2016 is reported. The process of performance monitoring and optimization to achieve efficient and flexible use of the resources is also described.
NASA Astrophysics Data System (ADS)
Murillo, Sergio; Pattichis, Marios; Soliz, Peter; Barriga, Simon; Loizou, C. P.; Pattichis, C. S.
2010-03-01
Motion estimation from digital video is an ill-posed problem that requires a regularization approach. Regularization introduces a smoothness constraint that can reduce the resolution of the velocity estimates. The problem is further complicated for ultrasound videos (US), where speckle noise levels can be significant. Motion estimation using optical flow models requires the modification of several parameters to satisfy the optical flow constraint as well as the level of imposed smoothness. Furthermore, except in simulations or mostly unrealistic cases, there is no ground truth to use for validating the velocity estimates. This problem is present in all real video sequences that are used as input to motion estimation algorithms. It is also an open problem in biomedical applications like motion analysis of US of carotid artery (CA) plaques. In this paper, we study the problem of obtaining reliable ultrasound video motion estimates for atherosclerotic plaques for use in clinical diagnosis. A global optimization framework for motion parameter optimization is presented. This framework uses actual carotid artery motions to provide optimal parameter values for a variety of motions and is tested on ten different US videos using two different motion estimation techniques.
First-order design of geodetic networks using the simulated annealing method
NASA Astrophysics Data System (ADS)
Berné, J. L.; Baselga, S.
2004-09-01
The general problem of the optimal design for a geodetic network subject to any extrinsic factors, namely the first-order design problem, can be dealt with as a numeric optimization problem. The classic theory of this problem and the optimization methods are revised. Then the innovative use of the simulated annealing method, which has been successfully applied in other fields, is presented for this classical geodetic problem. This method, belonging to iterative heuristic techniques in operational research, uses a thermodynamical analogy to crystalline networks to offer a solution that converges probabilistically to the global optimum. Basic formulation and some examples are studied.
Mao, Xun; Du, Ting-E; Meng, Lili; Song, Tingting
2015-08-19
We reported here for the first time on the use of cotton thread combined with novel gold nanoparticle trimer reporter probe for low-cost, sensitive and rapid detection of a lung cancer related biomarker, human ferritin. A model system comprising ferritin as an analyte and a pair of monoclonal antibodies was used to demonstrate the proof-of-concept on the dry-reagent natural cotton thread immunoassay device. Results indicated that the using of novel gold nanoparticle trimer reporter probe greatly improved the sensitivity comparing with traditional gold nanoparticle reporter probe on the cotton thread immunoassay device. The assay avoids multiple incubation and washing steps performed in most conventional protein analyses. Although qualitative tests are realized by observing the color change of the test zone, quantitative data are obtained by recording the optical responses of the test zone with a commercial scanner and corresponding analysis software. Under optimal conditions, the cotton thread immunoassay device was capable of measuring 10 ng/mL human ferritin under room temperature which is sensitive enough for clinical diagnosis. Moreover, the sample solution employed in the assays is just 8 μL, which is much less than traditional lateral flow strip based biosensors. Copyright © 2015 Elsevier B.V. All rights reserved.
NASA Astrophysics Data System (ADS)
Alimohammadi, Shahrouz; Cavaglieri, Daniele; Beyhaghi, Pooriya; Bewley, Thomas R.
2016-11-01
This work applies a recently developed Derivative-free optimization algorithm to derive a new mixed implicit-explicit (IMEX) time integration scheme for Computational Fluid Dynamics (CFD) simulations. This algorithm allows imposing a specified order of accuracy for the time integration and other important stability properties in the form of nonlinear constraints within the optimization problem. In this procedure, the coefficients of the IMEX scheme should satisfy a set of constraints simultaneously. Therefore, the optimization process, at each iteration, estimates the location of the optimal coefficients using a set of global surrogates, for both the objective and constraint functions, as well as a model of the uncertainty function of these surrogates based on the concept of Delaunay triangulation. This procedure has been proven to converge to the global minimum of the constrained optimization problem provided the constraints and objective functions are twice differentiable. As a result, a new third-order, low-storage IMEX Runge-Kutta time integration scheme is obtained with remarkably fast convergence. Numerical tests are then performed leveraging the turbulent channel flow simulations to validate the theoretical order of accuracy and stability properties of the new scheme.
Characterizing L1-norm best-fit subspaces
NASA Astrophysics Data System (ADS)
Brooks, J. Paul; Dulá, José H.
2017-05-01
Fitting affine objects to data is the basis of many tools and methodologies in statistics, machine learning, and signal processing. The L1 norm is often employed to produce subspaces exhibiting a robustness to outliers and faulty observations. The L1-norm best-fit subspace problem is directly formulated as a nonlinear, nonconvex, and nondifferentiable optimization problem. The case when the subspace is a hyperplane can be solved to global optimality efficiently by solving a series of linear programs. The problem of finding the best-fit line has recently been shown to be NP-hard. We present necessary conditions for optimality for the best-fit subspace problem, and use them to characterize properties of optimal solutions.
An Optimization-Based Method for Feature Ranking in Nonlinear Regression Problems.
Bravi, Luca; Piccialli, Veronica; Sciandrone, Marco
2017-04-01
In this paper, we consider the feature ranking problem, where, given a set of training instances, the task is to associate a score with the features in order to assess their relevance. Feature ranking is a very important tool for decision support systems, and may be used as an auxiliary step of feature selection to reduce the high dimensionality of real-world data. We focus on regression problems by assuming that the process underlying the generated data can be approximated by a continuous function (for instance, a feedforward neural network). We formally state the notion of relevance of a feature by introducing a minimum zero-norm inversion problem of a neural network, which is a nonsmooth, constrained optimization problem. We employ a concave approximation of the zero-norm function, and we define a smooth, global optimization problem to be solved in order to assess the relevance of the features. We present the new feature ranking method based on the solution of instances of the global optimization problem depending on the available training data. Computational experiments on both artificial and real data sets are performed, and point out that the proposed feature ranking method is a valid alternative to existing methods in terms of effectiveness. The obtained results also show that the method is costly in terms of CPU time, and this may be a limitation in the solution of large-dimensional problems.
Multidisciplinary optimization of a controlled space structure using 150 design variables
NASA Technical Reports Server (NTRS)
James, Benjamin B.
1993-01-01
A controls-structures interaction design method is presented. The method coordinates standard finite-element structural analysis, multivariable controls, and nonlinear programming codes and allows simultaneous optimization of the structure and control system of a spacecraft. Global sensitivity equations are used to account for coupling between the disciplines. Use of global sensitivity equations helps solve optimization problems that have a large number of design variables and a high degree of coupling between disciplines. The preliminary design of a generic geostationary platform is used to demonstrate the multidisciplinary optimization method. Design problems using 15, 63, and 150 design variables to optimize truss member sizes and feedback gain values are solved and the results are presented. The goal is to reduce the total mass of the structure and the vibration control system while satisfying constraints on vibration decay rate. Incorporation of the nonnegligible mass of actuators causes an essential coupling between structural design variables and control design variables.
Global Passivity in Microscopic Thermodynamics
NASA Astrophysics Data System (ADS)
Uzdin, Raam; Rahav, Saar
2018-04-01
The main thread that links classical thermodynamics and the thermodynamics of small quantum systems is the celebrated Clausius inequality form of the second law. However, its application to small quantum systems suffers from two cardinal problems. (i) The Clausius inequality does not hold when the system and environment are initially correlated—a commonly encountered scenario in microscopic setups. (ii) In some other cases, the Clausius inequality does not provide any useful information (e.g., in dephasing scenarios). We address these deficiencies by developing the notion of global passivity and employing it as a tool for deriving thermodynamic inequalities on observables. For initially uncorrelated thermal environments the global passivity framework recovers the Clausius inequality. More generally, global passivity provides an extension of the Clausius inequality that holds even in the presences of strong initial system-environment correlations. Crucially, the present framework provides additional thermodynamic bounds on expectation values. To illustrate the role of the additional bounds, we use them to detect unaccounted heat leaks and weak feedback operations ("Maxwell demons") that the Clausius inequality cannot detect. In addition, it is shown that global passivity can put practical upper and lower bounds on the buildup of system-environment correlations for dephasing interactions. Our findings are highly relevant for experiments in various systems such as ion traps, superconducting circuits, atoms in optical cavities, and more.
Simulation of LHC events on a millions threads
NASA Astrophysics Data System (ADS)
Childers, J. T.; Uram, T. D.; LeCompte, T. J.; Papka, M. E.; Benjamin, D. P.
2015-12-01
Demand for Grid resources is expected to double during LHC Run II as compared to Run I; the capacity of the Grid, however, will not double. The HEP community must consider how to bridge this computing gap by targeting larger compute resources and using the available compute resources as efficiently as possible. Argonne's Mira, the fifth fastest supercomputer in the world, can run roughly five times the number of parallel processes that the ATLAS experiment typically uses on the Grid. We ported Alpgen, a serial x86 code, to run as a parallel application under MPI on the Blue Gene/Q architecture. By analysis of the Alpgen code, we reduced the memory footprint to allow running 64 threads per node, utilizing the four hardware threads available per core on the PowerPC A2 processor. Event generation and unweighting, typically run as independent serial phases, are coupled together in a single job in this scenario, reducing intermediate writes to the filesystem. By these optimizations, we have successfully run LHC proton-proton physics event generation at the scale of a million threads, filling two-thirds of Mira.
2011-01-01
Background Design of newly engineered microbial strains for biotechnological purposes would greatly benefit from the development of realistic mathematical models for the processes to be optimized. Such models can then be analyzed and, with the development and application of appropriate optimization techniques, one could identify the modifications that need to be made to the organism in order to achieve the desired biotechnological goal. As appropriate models to perform such an analysis are necessarily non-linear and typically non-convex, finding their global optimum is a challenging task. Canonical modeling techniques, such as Generalized Mass Action (GMA) models based on the power-law formalism, offer a possible solution to this problem because they have a mathematical structure that enables the development of specific algorithms for global optimization. Results Based on the GMA canonical representation, we have developed in previous works a highly efficient optimization algorithm and a set of related strategies for understanding the evolution of adaptive responses in cellular metabolism. Here, we explore the possibility of recasting kinetic non-linear models into an equivalent GMA model, so that global optimization on the recast GMA model can be performed. With this technique, optimization is greatly facilitated and the results are transposable to the original non-linear problem. This procedure is straightforward for a particular class of non-linear models known as Saturable and Cooperative (SC) models that extend the power-law formalism to deal with saturation and cooperativity. Conclusions Our results show that recasting non-linear kinetic models into GMA models is indeed an appropriate strategy that helps overcoming some of the numerical difficulties that arise during the global optimization task. PMID:21867520
Threaded-Field-Line Model for the Transition Region and Solar Corona
NASA Astrophysics Data System (ADS)
Sokolov, I.; van der Holst, B.; Gombosi, T. I.
2014-12-01
In numerical simulations of the solar corona, both for the ambient state and especially for dynamical processes the most computational resources are spent for maintaining the numerical solution in the Low Solar Corona and in the transition region, where the temperature gradients are very sharp and the magnetic field has a complicated topology. The degraded computational efficiency is caused by the need in a highest resolution as well as the use of the fully three-dimensional implicit solver for electron heat conduction. On the other hand, the physical nature of the processes involved is rather simple (which still does not facilitate the numerical methods) as long as the heat fluxes as well as slow plasma motional velocities are aligned with the magnetic field. The Alfven wave turbulence, which is often believed to be the main driver of the solar wind and the main source of the coronal heating, is characterized by the Poynting flux of the waves, which is also aligned with the magnetic field. Therefore, the plasma state in any point of the three-dimensional grid in the Low Solar Corona can be found by solving a set of one-dimensional equations for the magnetic field line ("thread"), which passes through this point and connects it to the chromosphere and to the global Solar Corona. In the present paper we describe an innovative computational technology based upon the use of the magnetic-field-line-threads to forlmulate the boundary condition for the global solar corona model which traces the connection of each boundary point to the cromosphere along the threads.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Huang, Kuo -Ling; Mehrotra, Sanjay
We present a homogeneous algorithm equipped with a modified potential function for the monotone complementarity problem. We show that this potential function is reduced by at least a constant amount if a scaled Lipschitz condition (SLC) is satisfied. A practical algorithm based on this potential function is implemented in a software package named iOptimize. The implementation in iOptimize maintains global linear and polynomial time convergence properties, while achieving practical performance. It either successfully solves the problem, or concludes that the SLC is not satisfied. When compared with the mature software package MOSEK (barrier solver version 6.0.0.106), iOptimize solves convex quadraticmore » programming problems, convex quadratically constrained quadratic programming problems, and general convex programming problems in fewer iterations. Moreover, several problems for which MOSEK fails are solved to optimality. In addition, we also find that iOptimize detects infeasibility more reliably than the general nonlinear solvers Ipopt (version 3.9.2) and Knitro (version 8.0).« less
NASA Astrophysics Data System (ADS)
Ranaivomiarana, Narindra; Irisarri, François-Xavier; Bettebghor, Dimitri; Desmorat, Boris
2018-04-01
An optimization methodology to find concurrently material spatial distribution and material anisotropy repartition is proposed for orthotropic, linear and elastic two-dimensional membrane structures. The shape of the structure is parameterized by a density variable that determines the presence or absence of material. The polar method is used to parameterize a general orthotropic material by its elasticity tensor invariants by change of frame. A global structural stiffness maximization problem written as a compliance minimization problem is treated, and a volume constraint is applied. The compliance minimization can be put into a double minimization of complementary energy. An extension of the alternate directions algorithm is proposed to solve the double minimization problem. The algorithm iterates between local minimizations in each element of the structure and global minimizations. Thanks to the polar method, the local minimizations are solved explicitly providing analytical solutions. The global minimizations are performed with finite element calculations. The method is shown to be straightforward and efficient. Concurrent optimization of density and anisotropy distribution of a cantilever beam and a bridge are presented.
Optimal harvesting of a stochastic delay logistic model with Lévy jumps
NASA Astrophysics Data System (ADS)
Qiu, Hong; Deng, Wenmin
2016-10-01
The optimal harvesting problem of a stochastic time delay logistic model with Lévy jumps is considered in this article. We first show that the model has a unique global positive solution and discuss the uniform boundedness of its pth moment with harvesting. Then we prove that the system is globally attractive and asymptotically stable in distribution under our assumptions. Furthermore, we obtain the existence of the optimal harvesting effort by the ergodic method, and then we give the explicit expression of the optimal harvesting policy and maximum yield.
Electronic neural networks for global optimization
NASA Technical Reports Server (NTRS)
Thakoor, A. P.; Moopenn, A. W.; Eberhardt, S.
1990-01-01
An electronic neural network with feedback architecture, implemented in analog custom VLSI is described. Its application to problems of global optimization for dynamic assignment is discussed. The convergence properties of the neural network hardware are compared with computer simulation results. The neural network's ability to provide optimal or near optimal solutions within only a few neuron time constants, a speed enhancement of several orders of magnitude over conventional search methods, is demonstrated. The effect of noise on the circuit dynamics and the convergence behavior of the neural network hardware is also examined.
Adaptive particle swarm optimization for optimal orbital elements of binary stars
NASA Astrophysics Data System (ADS)
Attia, Abdel-Fattah
2016-12-01
The paper presents an adaptive particle swarm optimization (APSO) as an alternative method to determine the optimal orbital elements of the star η Bootis of MK type G0 IV. The proposed algorithm transforms the problem of finding periodic orbits into the problem of detecting global minimizers as a function, to get a best fit of Keplerian and Phase curves. The experimental results demonstrate that the proposed approach of APSO generally more accurate than the standard particle swarm optimization (PSO) and other published optimization algorithms, in terms of solution accuracy, convergence speed and algorithm reliability.
Optimal Wonderful Life Utility Functions in Multi-Agent Systems
NASA Technical Reports Server (NTRS)
Wolpert, David H.; Tumer, Kagan; Swanson, Keith (Technical Monitor)
2000-01-01
The mathematics of Collective Intelligence (COINs) is concerned with the design of multi-agent systems so as to optimize an overall global utility function when those systems lack centralized communication and control. Typically in COINs each agent runs a distinct Reinforcement Learning (RL) algorithm, so that much of the design problem reduces to how best to initialize/update each agent's private utility function, as far as the ensuing value of the global utility is concerned. Traditional team game solutions to this problem assign to each agent the global utility as its private utility function. In previous work we used the COIN framework to derive the alternative Wonderful Life Utility (WLU), and experimentally established that having the agents use it induces global utility performance up to orders of magnitude superior to that induced by use of the team game utility. The WLU has a free parameter (the clamping parameter) which we simply set to zero in that previous work. Here we derive the optimal value of the clamping parameter, and demonstrate experimentally that using that optimal value can result in significantly improved performance over that of clamping to zero, over and above the improvement beyond traditional approaches.
Convex relaxations for gas expansion planning
Borraz-Sanchez, Conrado; Bent, Russell Whitford; Backhaus, Scott N.; ...
2016-01-01
Expansion of natural gas networks is a critical process involving substantial capital expenditures with complex decision-support requirements. Here, given the non-convex nature of gas transmission constraints, global optimality and infeasibility guarantees can only be offered by global optimisation approaches. Unfortunately, state-of-the-art global optimisation solvers are unable to scale up to real-world size instances. In this study, we present a convex mixed-integer second-order cone relaxation for the gas expansion planning problem under steady-state conditions. The underlying model offers tight lower bounds with high computational efficiency. In addition, the optimal solution of the relaxation can often be used to derive high-quality solutionsmore » to the original problem, leading to provably tight optimality gaps and, in some cases, global optimal solutions. The convex relaxation is based on a few key ideas, including the introduction of flux direction variables, exact McCormick relaxations, on/off constraints, and integer cuts. Numerical experiments are conducted on the traditional Belgian gas network, as well as other real larger networks. The results demonstrate both the accuracy and computational speed of the relaxation and its ability to produce high-quality solution« less
DQM: Decentralized Quadratically Approximated Alternating Direction Method of Multipliers
NASA Astrophysics Data System (ADS)
Mokhtari, Aryan; Shi, Wei; Ling, Qing; Ribeiro, Alejandro
2016-10-01
This paper considers decentralized consensus optimization problems where nodes of a network have access to different summands of a global objective function. Nodes cooperate to minimize the global objective by exchanging information with neighbors only. A decentralized version of the alternating directions method of multipliers (DADMM) is a common method for solving this category of problems. DADMM exhibits linear convergence rate to the optimal objective but its implementation requires solving a convex optimization problem at each iteration. This can be computationally costly and may result in large overall convergence times. The decentralized quadratically approximated ADMM algorithm (DQM), which minimizes a quadratic approximation of the objective function that DADMM minimizes at each iteration, is proposed here. The consequent reduction in computational time is shown to have minimal effect on convergence properties. Convergence still proceeds at a linear rate with a guaranteed constant that is asymptotically equivalent to the DADMM linear convergence rate constant. Numerical results demonstrate advantages of DQM relative to DADMM and other alternatives in a logistic regression problem.
A hierarchical wavefront reconstruction algorithm for gradient sensors
NASA Astrophysics Data System (ADS)
Bharmal, Nazim; Bitenc, Urban; Basden, Alastair; Myers, Richard
2013-12-01
ELT-scale extreme adaptive optics systems will require new approaches tocompute the wavefront suitably quickly, when the computational burden ofapplying a MVM is no longer practical. An approach is demonstrated here whichis hierarchical in transforming wavefront slopes from a WFS into a wavefront,and then to actuator values. First, simple integration in 1D is used to create1D-wavefront estimates with unknown starting points at the edges of independentspatial domains. Second, these starting points are estimated globally. By thesestarting points are a sub-set of the overall grid where wavefront values are tobe estimated, sparse representations are produced and numerical complexity canbe chosen by the spacing of the starting point grid relative to the overallgrid. Using a combination of algebraic expressions, sparse representation, anda conjugate gradient solver, the number of non-parallelized operations forreconstruction on a 100x100 sub-aperture sized problem is ~600,000 or O(N^3/2),which is approximately the same as for each thread of a MVM solutionparallelized over 100 threads. To reduce the effects of noise propagationwithin each domain, a noise reduction algorithm can be applied which ensuresthe continuity of the wavefront. To apply this additional step has a cost of~1,200,000 operations. We conclude by briefly discussing how the final step ofconverting from wavefront to actuator values can be achieved.
Liu, Jianfeng; Laird, Carl Damon
2017-09-22
Optimal design of a gas detection systems is challenging because of the numerous sources of uncertainty, including weather and environmental conditions, leak location and characteristics, and process conditions. Rigorous CFD simulations of dispersion scenarios combined with stochastic programming techniques have been successfully applied to the problem of optimal gas detector placement; however, rigorous treatment of sensor failure and nonuniform unavailability has received less attention. To improve reliability of the design, this paper proposes a problem formulation that explicitly considers nonuniform unavailabilities and all backup detection levels. The resulting sensor placement problem is a large-scale mixed-integer nonlinear programming (MINLP) problem thatmore » requires a tailored solution approach for efficient solution. We have developed a multitree method which depends on iteratively solving a sequence of upper-bounding master problems and lower-bounding subproblems. The tailored global solution strategy is tested on a real data problem and the encouraging numerical results indicate that our solution framework is promising in solving sensor placement problems. This study was selected for the special issue in JLPPI from the 2016 International Symposium of the MKO Process Safety Center.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liu, Jianfeng; Laird, Carl Damon
Optimal design of a gas detection systems is challenging because of the numerous sources of uncertainty, including weather and environmental conditions, leak location and characteristics, and process conditions. Rigorous CFD simulations of dispersion scenarios combined with stochastic programming techniques have been successfully applied to the problem of optimal gas detector placement; however, rigorous treatment of sensor failure and nonuniform unavailability has received less attention. To improve reliability of the design, this paper proposes a problem formulation that explicitly considers nonuniform unavailabilities and all backup detection levels. The resulting sensor placement problem is a large-scale mixed-integer nonlinear programming (MINLP) problem thatmore » requires a tailored solution approach for efficient solution. We have developed a multitree method which depends on iteratively solving a sequence of upper-bounding master problems and lower-bounding subproblems. The tailored global solution strategy is tested on a real data problem and the encouraging numerical results indicate that our solution framework is promising in solving sensor placement problems. This study was selected for the special issue in JLPPI from the 2016 International Symposium of the MKO Process Safety Center.« less
Fast globally optimal segmentation of 3D prostate MRI with axial symmetry prior.
Qiu, Wu; Yuan, Jing; Ukwatta, Eranga; Sun, Yue; Rajchl, Martin; Fenster, Aaron
2013-01-01
We propose a novel global optimization approach to segmenting a given 3D prostate T2w magnetic resonance (MR) image, which enforces the inherent axial symmetry of the prostate shape and simultaneously performs a sequence of 2D axial slice-wise segmentations with a global 3D coherence prior. We show that the proposed challenging combinatorial optimization problem can be solved globally and exactly by means of convex relaxation. With this regard, we introduce a novel coupled continuous max-flow model, which is dual to the studied convex relaxed optimization formulation and leads to an efficient multiplier augmented algorithm based on the modern convex optimization theory. Moreover, the new continuous max-flow based algorithm was implemented on GPUs to achieve a substantial improvement in computation. Experimental results using public and in-house datasets demonstrate great advantages of the proposed method in terms of both accuracy and efficiency.
The application of systems thinking in health: why use systems thinking?
Peters, David H
2014-08-26
This paper explores the question of what systems thinking adds to the field of global health. Observing that elements of systems thinking are already common in public health research, the article discusses which of the large body of theories, methods, and tools associated with systems thinking are more useful. The paper reviews the origins of systems thinking, describing a range of the theories, methods, and tools. A common thread is the idea that the behavior of systems is governed by common principles that can be discovered and expressed. They each address problems of complexity, which is a frequent challenge in global health. The different methods and tools are suited to different types of inquiry and involve both qualitative and quantitative techniques. The paper concludes by emphasizing that explicit models used in systems thinking provide new opportunities to understand and continuously test and revise our understanding of the nature of things, including how to intervene to improve people's health.
Locking design affects the jamming of screws in locking plates.
Sandriesser, Sabrina; Rupp, Markus; Greinwald, Markus; Heiss, Christian; Augat, Peter; Alt, Volker
2018-06-01
The seizing of locking screws is a frequently encountered clinical problem during implant removal of locking compression plates (LCP) after completion of fracture healing. The aim of this study was to investigate the effect of two different locking mechanisms on the seizing of locking screws. Specifically, the removal torques before and after cyclic dynamic loading were assessed for screws inserted at the manufacturer-recommended torque or at an increased insertion torque. The seizing of 3.5-mm angular stable screws was assessed as a function of insertion torque for two different locking mechanisms (Thread & Conus and Thread Only). Locking screws (n=10 for each configuration) were inserted either according to the manufacturer-recommended torque or at an increased torque of 150% to simulate an over-insertion of the screw. Half of the screws were removed directly after insertion and the remaining half was removed after a dynamic load protocol of 100,000 cycles. The removal torques of locking screws exceeded the insertion torques for all tested conditions confirming the adequacy of the test setup in mimicking screw seizing in locked plating. Screw seizing was more pronounced for Thread Only design (+37%) compared to Thread & Conus design (+14%; P<0.0001). Cyclic loading of the locking construct consistently resulted in an increased seizing of the locking screws (P<0.0001). Clinical observations from patients treated with the Thread & Conus locking design confirm the biomechanical findings of reduction in seizing effect by using a Thread & Conus design. In conclusion, both over-tightening and cyclic loading are potential causes for screw seizing in locking plate implants. Both effects were found to be less pronounced in the Thread & Conus design as compared to the traditional Thread Only design. © 2018 Elsevier Ltd. All rights reserved.
Coupled Low-thrust Trajectory and System Optimization via Multi-Objective Hybrid Optimal Control
NASA Technical Reports Server (NTRS)
Vavrina, Matthew A.; Englander, Jacob Aldo; Ghosh, Alexander R.
2015-01-01
The optimization of low-thrust trajectories is tightly coupled with the spacecraft hardware. Trading trajectory characteristics with system parameters ton identify viable solutions and determine mission sensitivities across discrete hardware configurations is labor intensive. Local independent optimization runs can sample the design space, but a global exploration that resolves the relationships between the system variables across multiple objectives enables a full mapping of the optimal solution space. A multi-objective, hybrid optimal control algorithm is formulated using a multi-objective genetic algorithm as an outer loop systems optimizer around a global trajectory optimizer. The coupled problem is solved simultaneously to generate Pareto-optimal solutions in a single execution. The automated approach is demonstrated on two boulder return missions.
Towards global optimization with adaptive simulated annealing
NASA Astrophysics Data System (ADS)
Forbes, Gregory W.; Jones, Andrew E.
1991-01-01
The structure of the simulated annealing algorithm is presented and its rationale is discussed. A unifying heuristic is then introduced which serves as a guide in the design of all of the sub-components of the algorithm. Simply put this heuristic principle states that at every cycle in the algorithm the occupation density should be kept as close as possible to the equilibrium distribution. This heuristic has been used as a guide to develop novel step generation and temperature control methods intended to improve the efficiency of the simulated annealing algorithm. The resulting algorithm has been used in attempts to locate good solutions for one of the lens design problems associated with this conference viz. the " monochromatic quartet" and a sample of the results is presented. 1 Global optimization in the context oflens design Whatever the context optimization algorithms relate to problems that take the following form: Given some configuration space with coordinates r (x1 . . x) and a merit function written asffr) find the point r whereftr) takes it lowest value. That is find the global minimum. In many cases there is also a set of auxiliary constraints that must be met so the problem statement becomes: Find the global minimum of the merit function within the region defined by E. (r) 0 j 1 2 . . . p and 0 j 1 2 . . . q.
Visualizing and improving the robustness of phase retrieval algorithms
Tripathi, Ashish; Leyffer, Sven; Munson, Todd; ...
2015-06-01
Coherent x-ray diffractive imaging is a novel imaging technique that utilizes phase retrieval and nonlinear optimization methods to image matter at nanometer scales. We explore how the convergence properties of a popular phase retrieval algorithm, Fienup's HIO, behave by introducing a reduced dimensionality problem allowing us to visualize and quantify convergence to local minima and the globally optimal solution. We then introduce generalizations of HIO that improve upon the original algorithm's ability to converge to the globally optimal solution.
Visualizing and improving the robustness of phase retrieval algorithms
DOE Office of Scientific and Technical Information (OSTI.GOV)
Tripathi, Ashish; Leyffer, Sven; Munson, Todd
Coherent x-ray diffractive imaging is a novel imaging technique that utilizes phase retrieval and nonlinear optimization methods to image matter at nanometer scales. We explore how the convergence properties of a popular phase retrieval algorithm, Fienup's HIO, behave by introducing a reduced dimensionality problem allowing us to visualize and quantify convergence to local minima and the globally optimal solution. We then introduce generalizations of HIO that improve upon the original algorithm's ability to converge to the globally optimal solution.
A review on economic emission dispatch problems using quantum computational intelligence
NASA Astrophysics Data System (ADS)
Mahdi, Fahad Parvez; Vasant, Pandian; Kallimani, Vish; Abdullah-Al-Wadud, M.
2016-11-01
Economic emission dispatch (EED) problems are one of the most crucial problems in power systems. Growing energy demand, limitation of natural resources and global warming make this topic into the center of discussion and research. This paper reviews the use of Quantum Computational Intelligence (QCI) in solving Economic Emission Dispatch problems. QCI techniques like Quantum Genetic Algorithm (QGA) and Quantum Particle Swarm Optimization (QPSO) algorithm are discussed here. This paper will encourage the researcher to use more QCI based algorithm to get better optimal result for solving EED problems.
ERIC Educational Resources Information Center
Sage, Colin
2013-01-01
Recent experience of food price volatility in global markets encourages closer examination of the dynamics underlying the global food system and reveals a range of contingent factors. Meanwhile a common thread of many recent expert reports has emphasised the need to intensify agricultural production to double food output by 2050. Drawing upon a…
ERIC Educational Resources Information Center
Antell, Sonja; Heywood, John
2015-01-01
Action learning is often used as an element of leadership development programmes. The intention is to support classroom learning with an experiential thread which runs throughout the life of the programme. Action Learning Associates (ALA) has been working with an international organisation for three years to deliver the global "First Line…
Improved hybrid optimization algorithm for 3D protein structure prediction.
Zhou, Changjun; Hou, Caixia; Wei, Xiaopeng; Zhang, Qiang
2014-07-01
A new improved hybrid optimization algorithm - PGATS algorithm, which is based on toy off-lattice model, is presented for dealing with three-dimensional protein structure prediction problems. The algorithm combines the particle swarm optimization (PSO), genetic algorithm (GA), and tabu search (TS) algorithms. Otherwise, we also take some different improved strategies. The factor of stochastic disturbance is joined in the particle swarm optimization to improve the search ability; the operations of crossover and mutation that are in the genetic algorithm are changed to a kind of random liner method; at last tabu search algorithm is improved by appending a mutation operator. Through the combination of a variety of strategies and algorithms, the protein structure prediction (PSP) in a 3D off-lattice model is achieved. The PSP problem is an NP-hard problem, but the problem can be attributed to a global optimization problem of multi-extremum and multi-parameters. This is the theoretical principle of the hybrid optimization algorithm that is proposed in this paper. The algorithm combines local search and global search, which overcomes the shortcoming of a single algorithm, giving full play to the advantage of each algorithm. In the current universal standard sequences, Fibonacci sequences and real protein sequences are certified. Experiments show that the proposed new method outperforms single algorithms on the accuracy of calculating the protein sequence energy value, which is proved to be an effective way to predict the structure of proteins.
Multithreaded Stochastic PDES for Reactions and Diffusions in Neurons.
Lin, Zhongwei; Tropper, Carl; Mcdougal, Robert A; Patoary, Mohammand Nazrul Ishlam; Lytton, William W; Yao, Yiping; Hines, Michael L
2017-07-01
Cells exhibit stochastic behavior when the number of molecules is small. Hence a stochastic reaction-diffusion simulator capable of working at scale can provide a more accurate view of molecular dynamics within the cell. This paper describes a parallel discrete event simulator, Neuron Time Warp-Multi Thread (NTW-MT), developed for the simulation of reaction diffusion models of neurons. To the best of our knowledge, this is the first parallel discrete event simulator oriented towards stochastic simulation of chemical reactions in a neuron. The simulator was developed as part of the NEURON project. NTW-MT is optimistic and thread-based, which attempts to capitalize on multi-core architectures used in high performance machines. It makes use of a multi-level queue for the pending event set and a single roll-back message in place of individual anti-messages to disperse contention and decrease the overhead of processing rollbacks. Global Virtual Time is computed asynchronously both within and among processes to get rid of the overhead for synchronizing threads. Memory usage is managed in order to avoid locking and unlocking when allocating and de-allocating memory and to maximize cache locality. We verified our simulator on a calcium buffer model. We examined its performance on a calcium wave model, comparing it to the performance of a process based optimistic simulator and a threaded simulator which uses a single priority queue for each thread. Our multi-threaded simulator is shown to achieve superior performance to these simulators. Finally, we demonstrated the scalability of our simulator on a larger CICR model and a more detailed CICR model.
It looks easy! Heuristics for combinatorial optimization problems.
Chronicle, Edward P; MacGregor, James N; Ormerod, Thomas C; Burr, Alistair
2006-04-01
Human performance on instances of computationally intractable optimization problems, such as the travelling salesperson problem (TSP), can be excellent. We have proposed a boundary-following heuristic to account for this finding. We report three experiments with TSPs where the capacity to employ this heuristic was varied. In Experiment 1, participants free to use the heuristic produced solutions significantly closer to optimal than did those prevented from doing so. Experiments 2 and 3 together replicated this finding in larger problems and demonstrated that a potential confound had no effect. In all three experiments, performance was closely matched by a boundary-following model. The results implicate global rather than purely local processes. Humans may have access to simple, perceptually based, heuristics that are suited to some combinatorial optimization tasks.
Huang, Kuo -Ling; Mehrotra, Sanjay
2016-11-08
We present a homogeneous algorithm equipped with a modified potential function for the monotone complementarity problem. We show that this potential function is reduced by at least a constant amount if a scaled Lipschitz condition (SLC) is satisfied. A practical algorithm based on this potential function is implemented in a software package named iOptimize. The implementation in iOptimize maintains global linear and polynomial time convergence properties, while achieving practical performance. It either successfully solves the problem, or concludes that the SLC is not satisfied. When compared with the mature software package MOSEK (barrier solver version 6.0.0.106), iOptimize solves convex quadraticmore » programming problems, convex quadratically constrained quadratic programming problems, and general convex programming problems in fewer iterations. Moreover, several problems for which MOSEK fails are solved to optimality. In addition, we also find that iOptimize detects infeasibility more reliably than the general nonlinear solvers Ipopt (version 3.9.2) and Knitro (version 8.0).« less
Urbanoski, Karen; van Mierlo, Trevor; Cunningham, John
2017-10-01
This study contributes to emerging literature on online health networks by modeling communication patterns between members of a moderated online support group for problem drinking. Using social network analysis, we described members' patterns of joint participation in threads, parsing out the role of site moderators, and explored differences in member characteristics by network position. Posts made to the online support group of Alcohol Help Centre during 2013 were structured as a two-mode network of members (n = 205) connected via threads (n = 506). Metrics included degree centrality, clique membership, and tie strength. The network consisted of one component and no cliques of members, although most made few posts and a small number communicated only with the site's moderators. Highly active members were older and tended to have started posting prior to 2013. The distribution of members across threads varied from threads containing posts by one member to others that connected multiple members. Moderators accounted for sizable proportions of the connectivity between both members and threads. After 5 years of operation, the AHC online support group appears to be fairly cohesive and stable, in the sense that there were no isolated subnetworks comprised of specific types of members or devoted to specific topics. Participation and connectedness at the member-level was varied, however, and tended to be low on average. The moderators were among the most central in the network, although there were also members who emerged as central and dedicated contributors to the online discussions across topics. Study findings highlight a number of areas for consideration by online support group developers and managers.
NASA Astrophysics Data System (ADS)
Tajuddin, Wan Ahmad
1994-02-01
Ease in finding the configuration at the global energy minimum in a symmetric neural network is important for combinatorial optimization problems. We carry out a comprehensive survey of available strategies for seeking global minima by comparing their performances in the binary representation problem. We recall our previous comparison of steepest descent with analog dynamics, genetic hill-climbing, simulated diffusion, simulated annealing, threshold accepting and simulated tunneling. To this, we add comparisons to other strategies including taboo search and one with field-ordered updating.
A Locality-Based Threading Algorithm for the Configuration-Interaction Method
DOE Office of Scientific and Technical Information (OSTI.GOV)
Shan, Hongzhang; Williams, Samuel; Johnson, Calvin
The Configuration Interaction (CI) method has been widely used to solve the non-relativistic many-body Schrodinger equation. One great challenge to implementing it efficiently on manycore architectures is its immense memory and data movement requirements. To address this issue, within each node, we exploit a hybrid MPI+OpenMP programming model in lieu of the traditional flat MPI programming model. Here in this paper, we develop optimizations that partition the workloads among OpenMP threads based on data locality,-which is essential in ensuring applications with complex data access patterns scale well on manycore architectures. The new algorithm scales to 256 threadson the 64-core Intelmore » Knights Landing (KNL) manycore processor and 24 threads on dual-socket Ivy Bridge (Xeon) nodes. Compared with the original implementation, the performance has been improved by up to 7× on theKnights Landing processor and 3× on the dual-socket Ivy Bridge node.« less
A Locality-Based Threading Algorithm for the Configuration-Interaction Method
Shan, Hongzhang; Williams, Samuel; Johnson, Calvin; ...
2017-07-03
The Configuration Interaction (CI) method has been widely used to solve the non-relativistic many-body Schrodinger equation. One great challenge to implementing it efficiently on manycore architectures is its immense memory and data movement requirements. To address this issue, within each node, we exploit a hybrid MPI+OpenMP programming model in lieu of the traditional flat MPI programming model. Here in this paper, we develop optimizations that partition the workloads among OpenMP threads based on data locality,-which is essential in ensuring applications with complex data access patterns scale well on manycore architectures. The new algorithm scales to 256 threadson the 64-core Intelmore » Knights Landing (KNL) manycore processor and 24 threads on dual-socket Ivy Bridge (Xeon) nodes. Compared with the original implementation, the performance has been improved by up to 7× on theKnights Landing processor and 3× on the dual-socket Ivy Bridge node.« less
VTK-m: Accelerating the Visualization Toolkit for Massively Threaded Architectures
Moreland, Kenneth; Sewell, Christopher; Usher, William; ...
2016-05-09
Here, one of the most critical challenges for high-performance computing (HPC) scientific visualization is execution on massively threaded processors. Of the many fundamental changes we are seeing in HPC systems, one of the most profound is a reliance on new processor types optimized for execution bandwidth over latency hiding. Our current production scientific visualization software is not designed for these new types of architectures. To address this issue, the VTK-m framework serves as a container for algorithms, provides flexible data representation, and simplifies the design of visualization algorithms on new and future computer architecture.
VTK-m: Accelerating the Visualization Toolkit for Massively Threaded Architectures
Moreland, Kenneth; Sewell, Christopher; Usher, William; ...
2016-05-09
Execution on massively threaded processors is one of the most critical challenges for high-performance computing (HPC) scientific visualization. Of the many fundamental changes we are seeing in HPC systems, one of the most profound is a reliance on new processor types optimized for execution bandwidth over latency hiding. Moreover, our current production scientific visualization software is not designed for these new types of architectures. In order to address this issue, the VTK-m framework serves as a container for algorithms, provides flexible data representation, and simplifies the design of visualization algorithms on new and future computer architecture.
Dynamic optimization of chemical processes using ant colony framework.
Rajesh, J; Gupta, K; Kusumakar, H S; Jayaraman, V K; Kulkarni, B D
2001-11-01
Ant colony framework is illustrated by considering dynamic optimization of six important bench marking examples. This new computational tool is simple to implement and can tackle problems with state as well as terminal constraints in a straightforward fashion. It requires fewer grid points to reach the global optimum at relatively very low computational effort. The examples with varying degree of complexities, analyzed here, illustrate its potential for solving a large class of process optimization problems in chemical engineering.
Strategies for global optimization in photonics design.
Vukovic, Ana; Sewell, Phillip; Benson, Trevor M
2010-10-01
This paper reports on two important issues that arise in the context of the global optimization of photonic components where large problem spaces must be investigated. The first is the implementation of a fast simulation method and associated matrix solver for assessing particular designs and the second, the strategies that a designer can adopt to control the size of the problem design space to reduce runtimes without compromising the convergence of the global optimization tool. For this study an analytical simulation method based on Mie scattering and a fast matrix solver exploiting the fast multipole method are combined with genetic algorithms (GAs). The impact of the approximations of the simulation method on the accuracy and runtime of individual design assessments and the consequent effects on the GA are also examined. An investigation of optimization strategies for controlling the design space size is conducted on two illustrative examples, namely, 60° and 90° waveguide bends based on photonic microstructures, and their effectiveness is analyzed in terms of a GA's ability to converge to the best solution within an acceptable timeframe. Finally, the paper describes some particular optimized solutions found in the course of this work.
GPU COMPUTING FOR PARTICLE TRACKING
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nishimura, Hiroshi; Song, Kai; Muriki, Krishna
2011-03-25
This is a feasibility study of using a modern Graphics Processing Unit (GPU) to parallelize the accelerator particle tracking code. To demonstrate the massive parallelization features provided by GPU computing, a simplified TracyGPU program is developed for dynamic aperture calculation. Performances, issues, and challenges from introducing GPU are also discussed. General purpose Computation on Graphics Processing Units (GPGPU) bring massive parallel computing capabilities to numerical calculation. However, the unique architecture of GPU requires a comprehensive understanding of the hardware and programming model to be able to well optimize existing applications. In the field of accelerator physics, the dynamic aperture calculationmore » of a storage ring, which is often the most time consuming part of the accelerator modeling and simulation, can benefit from GPU due to its embarrassingly parallel feature, which fits well with the GPU programming model. In this paper, we use the Tesla C2050 GPU which consists of 14 multi-processois (MP) with 32 cores on each MP, therefore a total of 448 cores, to host thousands ot threads dynamically. Thread is a logical execution unit of the program on GPU. In the GPU programming model, threads are grouped into a collection of blocks Within each block, multiple threads share the same code, and up to 48 KB of shared memory. Multiple thread blocks form a grid, which is executed as a GPU kernel. A simplified code that is a subset of Tracy++ [2] is developed to demonstrate the possibility of using GPU to speed up the dynamic aperture calculation by having each thread track a particle.« less
FastGCN: A GPU Accelerated Tool for Fast Gene Co-Expression Networks
Liang, Meimei; Zhang, Futao; Jin, Gulei; Zhu, Jun
2015-01-01
Gene co-expression networks comprise one type of valuable biological networks. Many methods and tools have been published to construct gene co-expression networks; however, most of these tools and methods are inconvenient and time consuming for large datasets. We have developed a user-friendly, accelerated and optimized tool for constructing gene co-expression networks that can fully harness the parallel nature of GPU (Graphic Processing Unit) architectures. Genetic entropies were exploited to filter out genes with no or small expression changes in the raw data preprocessing step. Pearson correlation coefficients were then calculated. After that, we normalized these coefficients and employed the False Discovery Rate to control the multiple tests. At last, modules identification was conducted to construct the co-expression networks. All of these calculations were implemented on a GPU. We also compressed the coefficient matrix to save space. We compared the performance of the GPU implementation with those of multi-core CPU implementations with 16 CPU threads, single-thread C/C++ implementation and single-thread R implementation. Our results show that GPU implementation largely outperforms single-thread C/C++ implementation and single-thread R implementation, and GPU implementation outperforms multi-core CPU implementation when the number of genes increases. With the test dataset containing 16,000 genes and 590 individuals, we can achieve greater than 63 times the speed using a GPU implementation compared with a single-thread R implementation when 50 percent of genes were filtered out and about 80 times the speed when no genes were filtered out. PMID:25602758
FastGCN: a GPU accelerated tool for fast gene co-expression networks.
Liang, Meimei; Zhang, Futao; Jin, Gulei; Zhu, Jun
2015-01-01
Gene co-expression networks comprise one type of valuable biological networks. Many methods and tools have been published to construct gene co-expression networks; however, most of these tools and methods are inconvenient and time consuming for large datasets. We have developed a user-friendly, accelerated and optimized tool for constructing gene co-expression networks that can fully harness the parallel nature of GPU (Graphic Processing Unit) architectures. Genetic entropies were exploited to filter out genes with no or small expression changes in the raw data preprocessing step. Pearson correlation coefficients were then calculated. After that, we normalized these coefficients and employed the False Discovery Rate to control the multiple tests. At last, modules identification was conducted to construct the co-expression networks. All of these calculations were implemented on a GPU. We also compressed the coefficient matrix to save space. We compared the performance of the GPU implementation with those of multi-core CPU implementations with 16 CPU threads, single-thread C/C++ implementation and single-thread R implementation. Our results show that GPU implementation largely outperforms single-thread C/C++ implementation and single-thread R implementation, and GPU implementation outperforms multi-core CPU implementation when the number of genes increases. With the test dataset containing 16,000 genes and 590 individuals, we can achieve greater than 63 times the speed using a GPU implementation compared with a single-thread R implementation when 50 percent of genes were filtered out and about 80 times the speed when no genes were filtered out.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Liang, Faming; Cheng, Yichen; Lin, Guang
2014-06-13
Simulated annealing has been widely used in the solution of optimization problems. As known by many researchers, the global optima cannot be guaranteed to be located by simulated annealing unless a logarithmic cooling schedule is used. However, the logarithmic cooling schedule is so slow that no one can afford to have such a long CPU time. This paper proposes a new stochastic optimization algorithm, the so-called simulated stochastic approximation annealing algorithm, which is a combination of simulated annealing and the stochastic approximation Monte Carlo algorithm. Under the framework of stochastic approximation Markov chain Monte Carlo, it is shown that themore » new algorithm can work with a cooling schedule in which the temperature can decrease much faster than in the logarithmic cooling schedule, e.g., a square-root cooling schedule, while guaranteeing the global optima to be reached when the temperature tends to zero. The new algorithm has been tested on a few benchmark optimization problems, including feed-forward neural network training and protein-folding. The numerical results indicate that the new algorithm can significantly outperform simulated annealing and other competitors.« less
Automatic building of a web-like structure based on thermoplastic adhesive.
Leach, Derek; Wang, Liyu; Reusser, Dorothea; Iida, Fumiya
2014-09-01
Animals build structures to extend their control over certain aspects of the environment; e.g., orb-weaver spiders build webs to capture prey, etc. Inspired by this behaviour of animals, we attempt to develop robotics technology that allows a robot to automatically builds structures to help it accomplish certain tasks. In this paper we show automatic building of a web-like structure with a robot arm based on thermoplastic adhesive (TPA) material. The material properties of TPA, such as elasticity, adhesiveness, and low melting temperature, make it possible for a robot to form threads across an open space by an extrusion-drawing process and then combine several of these threads into a web-like structure. The problems addressed here are discovering which parameters determine the thickness of a thread and determining how web-like structures may be used for certain tasks. We first present a model for the extrusion and the drawing of TPA threads which also includes the temperature-dependent material properties. The model verification result shows that the increasing relative surface area of the TPA thread as it is drawn thinner increases the heat loss of the thread, and that by controlling how quickly the thread is drawn, a range of diameters can be achieved from 0.2-0.75 mm. We then present a method based on a generalized nonlinear finite element truss model. The model was validated and could predict the deformation of various web-like structures when payloads are added. At the end, we demonstrate automatic building of a web-like structure for payload bearing.
Topical perspective on massive threading and parallelism.
Farber, Robert M
2011-09-01
Unquestionably computer architectures have undergone a recent and noteworthy paradigm shift that now delivers multi- and many-core systems with tens to many thousands of concurrent hardware processing elements per workstation or supercomputer node. GPGPU (General Purpose Graphics Processor Unit) technology in particular has attracted significant attention as new software development capabilities, namely CUDA (Compute Unified Device Architecture) and OpenCL™, have made it possible for students as well as small and large research organizations to achieve excellent speedup for many applications over more conventional computing architectures. The current scientific literature reflects this shift with numerous examples of GPGPU applications that have achieved one, two, and in some special cases, three-orders of magnitude increased computational performance through the use of massive threading to exploit parallelism. Multi-core architectures are also evolving quickly to exploit both massive-threading and massive-parallelism such as the 1.3 million threads Blue Waters supercomputer. The challenge confronting scientists in planning future experimental and theoretical research efforts--be they individual efforts with one computer or collaborative efforts proposing to use the largest supercomputers in the world is how to capitalize on these new massively threaded computational architectures--especially as not all computational problems will scale to massive parallelism. In particular, the costs associated with restructuring software (and potentially redesigning algorithms) to exploit the parallelism of these multi- and many-threaded machines must be considered along with application scalability and lifespan. This perspective is an overview of the current state of threading and parallelize with some insight into the future. Published by Elsevier Inc.
Low Complexity Models to improve Incomplete Sensitivities for Shape Optimization
NASA Astrophysics Data System (ADS)
Stanciu, Mugurel; Mohammadi, Bijan; Moreau, Stéphane
2003-01-01
The present global platform for simulation and design of multi-model configurations treat shape optimization problems in aerodynamics. Flow solvers are coupled with optimization algorithms based on CAD-free and CAD-connected frameworks. Newton methods together with incomplete expressions of gradients are used. Such incomplete sensitivities are improved using reduced models based on physical assumptions. The validity and the application of this approach in real-life problems are presented. The numerical examples concern shape optimization for an airfoil, a business jet and a car engine cooling axial fan.
Structural optimization of 3D-printed synthetic spider webs for high strength
NASA Astrophysics Data System (ADS)
Qin, Zhao; Compton, Brett G.; Lewis, Jennifer A.; Buehler, Markus J.
2015-05-01
Spiders spin intricate webs that serve as sophisticated prey-trapping architectures that simultaneously exhibit high strength, elasticity and graceful failure. To determine how web mechanics are controlled by their topological design and material distribution, here we create spider-web mimics composed of elastomeric filaments. Specifically, computational modelling and microscale 3D printing are combined to investigate the mechanical response of elastomeric webs under multiple loading conditions. We find the existence of an asymptotic prey size that leads to a saturated web strength. We identify pathways to design elastomeric material structures with maximum strength, low density and adaptability. We show that the loading type dictates the optimal material distribution, that is, a homogeneous distribution is better for localized loading, while stronger radial threads with weaker spiral threads is better for distributed loading. Our observations reveal that the material distribution within spider webs is dictated by the loading condition, shedding light on their observed architectural variations.
Structural optimization of 3D-printed synthetic spider webs for high strength.
Qin, Zhao; Compton, Brett G; Lewis, Jennifer A; Buehler, Markus J
2015-05-15
Spiders spin intricate webs that serve as sophisticated prey-trapping architectures that simultaneously exhibit high strength, elasticity and graceful failure. To determine how web mechanics are controlled by their topological design and material distribution, here we create spider-web mimics composed of elastomeric filaments. Specifically, computational modelling and microscale 3D printing are combined to investigate the mechanical response of elastomeric webs under multiple loading conditions. We find the existence of an asymptotic prey size that leads to a saturated web strength. We identify pathways to design elastomeric material structures with maximum strength, low density and adaptability. We show that the loading type dictates the optimal material distribution, that is, a homogeneous distribution is better for localized loading, while stronger radial threads with weaker spiral threads is better for distributed loading. Our observations reveal that the material distribution within spider webs is dictated by the loading condition, shedding light on their observed architectural variations.
Analysis Balance Parameter of Optimal Ramp metering
NASA Astrophysics Data System (ADS)
Li, Y.; Duan, N.; Yang, X.
2018-05-01
Ramp metering is a motorway control method to avoid onset congestion through limiting the access of ramp inflows into the main road of the motorway. The optimization model of ramp metering is developed based upon cell transmission model (CTM). With the piecewise linear structure of CTM, the corresponding motorway traffic optimization problem can be formulated as a linear programming (LP) problem. It is known that LP problem can be solved by established solution algorithms such as SIMPLEX or interior-point methods for the global optimal solution. The commercial software (CPLEX) is adopted in this study to solve the LP problem within reasonable computational time. The concept is illustrated through a case study of the United Kingdom M25 Motorway. The optimal solution provides useful insights and guidances on how to manage motorway traffic in order to maximize the corresponding efficiency.
A New Method for Global Optimization Based on Stochastic Differential Equations.
1984-12-01
Optimizacion Global de Funciones, Universidad Nacional Autonoma de M~xico, Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas, Report...SIGMA package and its usage are described in full de - tail in Annex A5; the complete listing of the FORTRAN code is in Annex A6. 5. Test problems Since...software implemen- tation on a number of test problems: and therefore a collection of test problems naturally began to build up during project de - velopment
Workplace mental health: developing an integrated intervention approach.
LaMontagne, Anthony D; Martin, Angela; Page, Kathryn M; Reavley, Nicola J; Noblet, Andrew J; Milner, Allison J; Keegel, Tessa; Smith, Peter M
2014-05-09
Mental health problems are prevalent and costly in working populations. Workplace interventions to address common mental health problems have evolved relatively independently along three main threads or disciplinary traditions: medicine, public health, and psychology. In this Debate piece, we argue that these three threads need to be integrated to optimise the prevention of mental health problems in working populations. To realise the greatest population mental health benefits, workplace mental health intervention needs to comprehensively 1) protect mental health by reducing work-related risk factors for mental health problems; 2) promote mental health by developing the positive aspects of work as well as worker strengths and positive capacities; and 3) address mental health problems among working people regardless of cause. We outline the evidence supporting such an integrated intervention approach and consider the research agenda and policy developments needed to move towards this goal, and propose the notion of integrated workplace mental health literacy. An integrated approach to workplace mental health combines the strengths of medicine, public health, and psychology, and has the potential to optimise both the prevention and management of mental health problems in the workplace.
Complex Challenges in the Less-Developed World
NASA Astrophysics Data System (ADS)
Webster, P. J.
2016-12-01
The developing world faces special challenges in a changing climate. The immediate impacts of possible increased precipitation, more frequent and severe hazard events and sea-level rise are compounded by lack of resources and, often, rapidly growing populations. We examine the concept that the society that learns to deal with hazards in the current climate will be best placed to deal with possibly more frequent and more intense hazards in the future. We use as an example the conundrum facing Bangladesh where global sea-level rise is exaggerated by delta subsidence of river sediment. Sedimentation is expected to increase with increased river flow. We explore how authorities may deal with these multifaceted threats and how they need to carefully thread a strategy that leads to solutions and not exaggerations of the problem.
A modified form of conjugate gradient method for unconstrained optimization problems
NASA Astrophysics Data System (ADS)
Ghani, Nur Hamizah Abdul; Rivaie, Mohd.; Mamat, Mustafa
2016-06-01
Conjugate gradient (CG) methods have been recognized as an interesting technique to solve optimization problems, due to the numerical efficiency, simplicity and low memory requirements. In this paper, we propose a new CG method based on the study of Rivaie et al. [7] (Comparative study of conjugate gradient coefficient for unconstrained Optimization, Aus. J. Bas. Appl. Sci. 5(2011) 947-951). Then, we show that our method satisfies sufficient descent condition and converges globally with exact line search. Numerical results show that our proposed method is efficient for given standard test problems, compare to other existing CG methods.
2014-04-01
important data structures of RTEMS are introduced. Section 3.2.2 discusses the problems we found in RTEMS that may cause security vulnerabilities...the important data structures in RTEMS: Object, which is a critical data structure in the SCORE, tasks threads. Approved for Public Release...these important system codes. The example code shows a possibility that a user can delete a system thread. Therefore, in order to protect system
Tien, Kai-Wen; Kulvatunyou, Boonserm; Jung, Kiwook; Prabhu, Vittaldas
2017-01-01
As cloud computing is increasingly adopted, the trend is to offer software functions as modular services and compose them into larger, more meaningful ones. The trend is attractive to analytical problems in the manufacturing system design and performance improvement domain because 1) finding a global optimization for the system is a complex problem; and 2) sub-problems are typically compartmentalized by the organizational structure. However, solving sub-problems by independent services can result in a sub-optimal solution at the system level. This paper investigates the technique called Analytical Target Cascading (ATC) to coordinate the optimization of loosely-coupled sub-problems, each may be modularly formulated by differing departments and be solved by modular analytical services. The result demonstrates that ATC is a promising method in that it offers system-level optimal solutions that can scale up by exploiting distributed and modular executions while allowing easier management of the problem formulation.
NASA Astrophysics Data System (ADS)
Bonet-García, F.; Järvi, L.; Asmi, A.; Suárez-Muñoz, M.
2016-12-01
Humanity must face enormous environmental challenges including biodiversity decline, climate change, ocean acidification, sea level rise and overpopulation. The research infrastructures (RIs) created in the last decades worldwide cover a wide range of spatial and thematic scales and collect information about the functioning of Earth ecosystems. However, we need to go one step forward: understand and simulate the functioning of the Earth as a complex system in a global change scenario. Cooperation among international RIs as well as multidisciplinary work are mandatory to achieve this challenging objective. COOP+ (EU Horizon 2020 project) aims to strengthen the links and coordination of European environmental RIs with their international counterparts. COOP+ will create cooperation threads among international research infrastructures using environmental Global Challenges (GCs) as thematic guidelines. These GCs are polyhedral and sometimes wicked problems that threaten the sustainability of our modern societies from a social and environmental perspective. This contribution describes how COOP+ uses GCs as guidelines to foster cooperation among RIs. First we have created an open survey to collect ideas about GCs within the different scientific communities. We present the structure of this survey as well as the preliminary information that it contains. The survey will be accepting responses during the project life (September 2018). We also describe the structure of a template that will be used to collaboratively characterize some selected GCs under the point of view of RIs. The main idea is to assess how RIs can be useful to address global environmental problems. We encourage all scientists related to RIs communities to participate in this process.
A Global Approach to the Optimal Trajectory Based on an Improved Ant Colony Algorithm for Cold Spray
NASA Astrophysics Data System (ADS)
Cai, Zhenhua; Chen, Tingyang; Zeng, Chunnian; Guo, Xueping; Lian, Huijuan; Zheng, You; Wei, Xiaoxu
2016-12-01
This paper is concerned with finding a global approach to obtain the shortest complete coverage trajectory on complex surfaces for cold spray applications. A slicing algorithm is employed to decompose the free-form complex surface into several small pieces of simple topological type. The problem of finding the optimal arrangement of the pieces is translated into a generalized traveling salesman problem (GTSP). Owing to its high searching capability and convergence performance, an improved ant colony algorithm is then used to solve the GTSP. Through off-line simulation, a robot trajectory is generated based on the optimized result. The approach is applied to coat real components with a complex surface by using the cold spray system with copper as the spraying material.
Utility of coupling nonlinear optimization methods with numerical modeling software
DOE Office of Scientific and Technical Information (OSTI.GOV)
Murphy, M.J.
1996-08-05
Results of using GLO (Global Local Optimizer), a general purpose nonlinear optimization software package for investigating multi-parameter problems in science and engineering is discussed. The package consists of the modular optimization control system (GLO), a graphical user interface (GLO-GUI), a pre-processor (GLO-PUT), a post-processor (GLO-GET), and nonlinear optimization software modules, GLOBAL & LOCAL. GLO is designed for controlling and easy coupling to any scientific software application. GLO runs the optimization module and scientific software application in an iterative loop. At each iteration, the optimization module defines new values for the set of parameters being optimized. GLO-PUT inserts the new parametermore » values into the input file of the scientific application. GLO runs the application with the new parameter values. GLO-GET determines the value of the objective function by extracting the results of the analysis and comparing to the desired result. GLO continues to run the scientific application over and over until it finds the ``best`` set of parameters by minimizing (or maximizing) the objective function. An example problem showing the optimization of material model is presented (Taylor cylinder impact test).« less
Fast optimization of binary clusters using a novel dynamic lattice searching method.
Wu, Xia; Cheng, Wen
2014-09-28
Global optimization of binary clusters has been a difficult task despite of much effort and many efficient methods. Directing toward two types of elements (i.e., homotop problem) in binary clusters, two classes of virtual dynamic lattices are constructed and a modified dynamic lattice searching (DLS) method, i.e., binary DLS (BDLS) method, is developed. However, it was found that the BDLS can only be utilized for the optimization of binary clusters with small sizes because homotop problem is hard to be solved without atomic exchange operation. Therefore, the iterated local search (ILS) method is adopted to solve homotop problem and an efficient method based on the BDLS method and ILS, named as BDLS-ILS, is presented for global optimization of binary clusters. In order to assess the efficiency of the proposed method, binary Lennard-Jones clusters with up to 100 atoms are investigated. Results show that the method is proved to be efficient. Furthermore, the BDLS-ILS method is also adopted to study the geometrical structures of (AuPd)79 clusters with DFT-fit parameters of Gupta potential.
NASA Astrophysics Data System (ADS)
Clay, M. P.; Buaria, D.; Gotoh, T.; Yeung, P. K.
2017-10-01
A new dual-communicator algorithm with very favorable performance characteristics has been developed for direct numerical simulation (DNS) of turbulent mixing of a passive scalar governed by an advection-diffusion equation. We focus on the regime of high Schmidt number (S c), where because of low molecular diffusivity the grid-resolution requirements for the scalar field are stricter than those for the velocity field by a factor √{ S c }. Computational throughput is improved by simulating the velocity field on a coarse grid of Nv3 points with a Fourier pseudo-spectral (FPS) method, while the passive scalar is simulated on a fine grid of Nθ3 points with a combined compact finite difference (CCD) scheme which computes first and second derivatives at eighth-order accuracy. A static three-dimensional domain decomposition and a parallel solution algorithm for the CCD scheme are used to avoid the heavy communication cost of memory transposes. A kernel is used to evaluate several approaches to optimize the performance of the CCD routines, which account for 60% of the overall simulation cost. On the petascale supercomputer Blue Waters at the University of Illinois, Urbana-Champaign, scalability is improved substantially with a hybrid MPI-OpenMP approach in which a dedicated thread per NUMA domain overlaps communication calls with computational tasks performed by a separate team of threads spawned using OpenMP nested parallelism. At a target production problem size of 81923 (0.5 trillion) grid points on 262,144 cores, CCD timings are reduced by 34% compared to a pure-MPI implementation. Timings for 163843 (4 trillion) grid points on 524,288 cores encouragingly maintain scalability greater than 90%, although the wall clock time is too high for production runs at this size. Performance monitoring with CrayPat for problem sizes up to 40963 shows that the CCD routines can achieve nearly 6% of the peak flop rate. The new DNS code is built upon two existing FPS and CCD codes. With the grid ratio Nθ /Nv = 8, the disparity in the computational requirements for the velocity and scalar problems is addressed by splitting the global communicator MPI_COMM_WORLD into disjoint communicators for the velocity and scalar fields, respectively. Inter-communicator transfer of the velocity field from the velocity communicator to the scalar communicator is handled with discrete send and non-blocking receive calls, which are overlapped with other operations on the scalar communicator. For production simulations at Nθ = 8192 and Nv = 1024 on 262,144 cores for the scalar field, the DNS code achieves 94% strong scaling relative to 65,536 cores and 92% weak scaling relative to Nθ = 1024 and Nv = 128 on 512 cores.
Review: Optimization methods for groundwater modeling and management
NASA Astrophysics Data System (ADS)
Yeh, William W.-G.
2015-09-01
Optimization methods have been used in groundwater modeling as well as for the planning and management of groundwater systems. This paper reviews and evaluates the various optimization methods that have been used for solving the inverse problem of parameter identification (estimation), experimental design, and groundwater planning and management. Various model selection criteria are discussed, as well as criteria used for model discrimination. The inverse problem of parameter identification concerns the optimal determination of model parameters using water-level observations. In general, the optimal experimental design seeks to find sampling strategies for the purpose of estimating the unknown model parameters. A typical objective of optimal conjunctive-use planning of surface water and groundwater is to minimize the operational costs of meeting water demand. The optimization methods include mathematical programming techniques such as linear programming, quadratic programming, dynamic programming, stochastic programming, nonlinear programming, and the global search algorithms such as genetic algorithms, simulated annealing, and tabu search. Emphasis is placed on groundwater flow problems as opposed to contaminant transport problems. A typical two-dimensional groundwater flow problem is used to explain the basic formulations and algorithms that have been used to solve the formulated optimization problems.
Multimedia article. The keys to the new laparoscopic world Thumbs up! knot and Tornado knot.
Uchida, K; Haruta, N; Okajima, M; Matsuda, M; Yamamoto, M
2005-06-01
Most laparoscopic surgeons feel some anxiety when performing intracorporeal knotting with conventional techniques [1, 2]. Two factors contribute to this anxiety. The first is the necessity of recognizing three dimensions on a two-dimensional monitor. The conventional intracorporeal knotting techniques make loops by twisting the thread with a second pair of forceps. This necessitates cooperative movement of both hands, with the added difficulties of depth perception. Regular touch confirmations reduce problems with depth perception. However, touch confirmation is more complicated in laparoscopic surgery than in laparotomy. The second problem is that tied loops can come loose and escape the instruments, especially with hard thread. This is not only stressful but also increases operation time.
Applying Jlint to Space Exploration Software
NASA Technical Reports Server (NTRS)
Artho, Cyrille; Havelund, Klaus
2004-01-01
Java is a very successful programming language which is also becoming widespread in embedded systems, where software correctness is critical. Jlint is a simple but highly efficient static analyzer that checks a Java program for several common errors, such as null pointer exceptions, and overflow errors. It also includes checks for multi-threading problems, such as deadlocks and data races. The case study described here shows the effectiveness of Jlint in find-false positives in the multi-threading warnings gives an insight into design patterns commonly used in multi-threaded code. The results show that a few analysis techniques are sufficient to avoid almost all false positives. These techniques include investigating all possible callers and a few code idioms. Verifying the correct application of these patterns is still crucial, because their correct usage is not trivial.
Distributed Control with Collective Intelligence
NASA Technical Reports Server (NTRS)
Wolpert, David H.; Wheeler, Kevin R.; Tumer, Kagan
1998-01-01
We consider systems of interacting reinforcement learning (RL) algorithms that do not work at cross purposes , in that their collective behavior maximizes a global utility function. We call such systems COllective INtelligences (COINs). We present the theory of designing COINs. Then we present experiments validating that theory in the context of two distributed control problems: We show that COINs perform near-optimally in a difficult variant of Arthur's bar problem [Arthur] (and in particular avoid the tragedy of the commons for that problem), and we also illustrate optimal performance in the master-slave problem.
An algorithmic framework for multiobjective optimization.
Ganesan, T; Elamvazuthi, I; Shaari, Ku Zilati Ku; Vasant, P
2013-01-01
Multiobjective (MO) optimization is an emerging field which is increasingly being encountered in many fields globally. Various metaheuristic techniques such as differential evolution (DE), genetic algorithm (GA), gravitational search algorithm (GSA), and particle swarm optimization (PSO) have been used in conjunction with scalarization techniques such as weighted sum approach and the normal-boundary intersection (NBI) method to solve MO problems. Nevertheless, many challenges still arise especially when dealing with problems with multiple objectives (especially in cases more than two). In addition, problems with extensive computational overhead emerge when dealing with hybrid algorithms. This paper discusses these issues by proposing an alternative framework that utilizes algorithmic concepts related to the problem structure for generating efficient and effective algorithms. This paper proposes a framework to generate new high-performance algorithms with minimal computational overhead for MO optimization.
An Algorithmic Framework for Multiobjective Optimization
Ganesan, T.; Elamvazuthi, I.; Shaari, Ku Zilati Ku; Vasant, P.
2013-01-01
Multiobjective (MO) optimization is an emerging field which is increasingly being encountered in many fields globally. Various metaheuristic techniques such as differential evolution (DE), genetic algorithm (GA), gravitational search algorithm (GSA), and particle swarm optimization (PSO) have been used in conjunction with scalarization techniques such as weighted sum approach and the normal-boundary intersection (NBI) method to solve MO problems. Nevertheless, many challenges still arise especially when dealing with problems with multiple objectives (especially in cases more than two). In addition, problems with extensive computational overhead emerge when dealing with hybrid algorithms. This paper discusses these issues by proposing an alternative framework that utilizes algorithmic concepts related to the problem structure for generating efficient and effective algorithms. This paper proposes a framework to generate new high-performance algorithms with minimal computational overhead for MO optimization. PMID:24470795
Arasomwan, Martins Akugbe; Adewumi, Aderemi Oluyinka
2013-01-01
Linear decreasing inertia weight (LDIW) strategy was introduced to improve on the performance of the original particle swarm optimization (PSO). However, linear decreasing inertia weight PSO (LDIW-PSO) algorithm is known to have the shortcoming of premature convergence in solving complex (multipeak) optimization problems due to lack of enough momentum for particles to do exploitation as the algorithm approaches its terminal point. Researchers have tried to address this shortcoming by modifying LDIW-PSO or proposing new PSO variants. Some of these variants have been claimed to outperform LDIW-PSO. The major goal of this paper is to experimentally establish the fact that LDIW-PSO is very much efficient if its parameters are properly set. First, an experiment was conducted to acquire a percentage value of the search space limits to compute the particle velocity limits in LDIW-PSO based on commonly used benchmark global optimization problems. Second, using the experimentally obtained values, five well-known benchmark optimization problems were used to show the outstanding performance of LDIW-PSO over some of its competitors which have in the past claimed superiority over it. Two other recent PSO variants with different inertia weight strategies were also compared with LDIW-PSO with the latter outperforming both in the simulation experiments conducted. PMID:24324383
Evolutionary optimization methods for accelerator design
NASA Astrophysics Data System (ADS)
Poklonskiy, Alexey A.
Many problems from the fields of accelerator physics and beam theory can be formulated as optimization problems and, as such, solved using optimization methods. Despite growing efficiency of the optimization methods, the adoption of modern optimization techniques in these fields is rather limited. Evolutionary Algorithms (EAs) form a relatively new and actively developed optimization methods family. They possess many attractive features such as: ease of the implementation, modest requirements on the objective function, a good tolerance to noise, robustness, and the ability to perform a global search efficiently. In this work we study the application of EAs to problems from accelerator physics and beam theory. We review the most commonly used methods of unconstrained optimization and describe the GATool, evolutionary algorithm and the software package, used in this work, in detail. Then we use a set of test problems to assess its performance in terms of computational resources, quality of the obtained result, and the tradeoff between them. We justify the choice of GATool as a heuristic method to generate cutoff values for the COSY-GO rigorous global optimization package for the COSY Infinity scientific computing package. We design the model of their mutual interaction and demonstrate that the quality of the result obtained by GATool increases as the information about the search domain is refined, which supports the usefulness of this model. We Giscuss GATool's performance on the problems suffering from static and dynamic noise and study useful strategies of GATool parameter tuning for these and other difficult problems. We review the challenges of constrained optimization with EAs and methods commonly used to overcome them. We describe REPA, a new constrained optimization method based on repairing, in exquisite detail, including the properties of its two repairing techniques: REFIND and REPROPT. We assess REPROPT's performance on the standard constrained optimization test problems for EA with a variety of different configurations and suggest optimal default parameter values based on the results. Then we study the performance of the REPA method on the same set of test problems and compare the obtained results with those of several commonly used constrained optimization methods with EA. Based on the obtained results, particularly on the outstanding performance of REPA on test problem that presents significant difficulty for other reviewed EAs, we conclude that the proposed method is useful and competitive. We discuss REPA parameter tuning for difficult problems and critically review some of the problems from the de-facto standard test problem set for the constrained optimization with EA. In order to demonstrate the practical usefulness of the developed method, we study several problems of accelerator design and demonstrate how they can be solved with EAs. These problems include a simple accelerator design problem (design a quadrupole triplet to be stigmatically imaging, find all possible solutions), a complex real-life accelerator design problem (an optimization of the front end section for the future neutrino factory), and a problem of the normal form defect function optimization which is used to rigorously estimate the stability of the beam dynamics in circular accelerators. The positive results we obtained suggest that the application of EAs to problems from accelerator theory can be very beneficial and has large potential. The developed optimization scenarios and tools can be used to approach similar problems.
Taboo Search: An Approach to the Multiple Minima Problem
NASA Astrophysics Data System (ADS)
Cvijovic, Djurdje; Klinowski, Jacek
1995-02-01
Described here is a method, based on Glover's taboo search for discrete functions, of solving the multiple minima problem for continuous functions. As demonstrated by model calculations, the algorithm avoids entrapment in local minima and continues the search to give a near-optimal final solution. Unlike other methods of global optimization, this procedure is generally applicable, easy to implement, derivative-free, and conceptually simple.
New displacement-based methods for optimal truss topology design
NASA Technical Reports Server (NTRS)
Bendsoe, Martin P.; Ben-Tal, Aharon; Haftka, Raphael T.
1991-01-01
Two alternate methods for maximum stiffness truss topology design are presented. The ground structure approach is used, and the problem is formulated in terms of displacements and bar areas. This large, nonconvex optimization problem can be solved by a simultaneous analysis and design approach. Alternatively, an equivalent, unconstrained, and convex problem in the displacements only can be formulated, and this problem can be solved by a nonsmooth, steepest descent algorithm. In both methods, the explicit solving of the equilibrium equations and the assembly of the global stiffness matrix are circumvented. A large number of examples have been studied, showing the attractive features of topology design as well as exposing interesting features of optimal topologies.
Methodology of Numerical Optimization for Orbital Parameters of Binary Systems
NASA Astrophysics Data System (ADS)
Araya, I.; Curé, M.
2010-02-01
The use of a numerical method of maximization (or minimization) in optimization processes allows us to obtain a great amount of solutions. Therefore, we can find a global maximum or minimum of the problem, but this is only possible if we used a suitable methodology. To obtain the global optimum values, we use the genetic algorithm called PIKAIA (P. Charbonneau) and other four algorithms implemented in Mathematica. We demonstrate that derived orbital parameters of binary systems published in some papers, based on radial velocity measurements, are local minimum instead of global ones.
On a numerical solving of random generated hexamatrix games
NASA Astrophysics Data System (ADS)
Orlov, Andrei; Strekalovskiy, Alexander
2016-10-01
In this paper, we develop a global search method for finding a Nash equilibrium in a hexamatrix game (polymatrix game of three players). The method, on the one hand, is based on the equivalence theorem of the problem of finding a Nash equilibrium in the game and a special mathematical optimization problem, and, on the other hand, on the usage of Global Search Theory for solving the latter problem. The efficiency of this approach is demonstrated by the results of computational testing.
Nan, Feng; Moghadasi, Mohammad; Vakili, Pirooz; Vajda, Sandor; Kozakov, Dima; Ch. Paschalidis, Ioannis
2015-01-01
We propose a new stochastic global optimization method targeting protein docking problems. The method is based on finding a general convex polynomial underestimator to the binding energy function in a permissive subspace that possesses a funnel-like structure. We use Principal Component Analysis (PCA) to determine such permissive subspaces. The problem of finding the general convex polynomial underestimator is reduced into the problem of ensuring that a certain polynomial is a Sum-of-Squares (SOS), which can be done via semi-definite programming. The underestimator is then used to bias sampling of the energy function in order to recover a deep minimum. We show that the proposed method significantly improves the quality of docked conformations compared to existing methods. PMID:25914440
Zhang, Huaguang; Feng, Tao; Yang, Guang-Hong; Liang, Hongjing
2015-07-01
In this paper, the inverse optimal approach is employed to design distributed consensus protocols that guarantee consensus and global optimality with respect to some quadratic performance indexes for identical linear systems on a directed graph. The inverse optimal theory is developed by introducing the notion of partial stability. As a result, the necessary and sufficient conditions for inverse optimality are proposed. By means of the developed inverse optimal theory, the necessary and sufficient conditions are established for globally optimal cooperative control problems on directed graphs. Basic optimal cooperative design procedures are given based on asymptotic properties of the resulting optimal distributed consensus protocols, and the multiagent systems can reach desired consensus performance (convergence rate and damping rate) asymptotically. Finally, two examples are given to illustrate the effectiveness of the proposed methods.
A dynamic model of functioning of a bank
NASA Astrophysics Data System (ADS)
Malafeyev, Oleg; Awasthi, Achal; Zaitseva, Irina; Rezenkov, Denis; Bogdanova, Svetlana
2018-04-01
In this paper, we analyze dynamic programming as a novel approach to solve the problem of maximizing the profits of a bank. The mathematical model of the problem and the description of bank's work is described in this paper. The problem is then approached using the method of dynamic programming. Dynamic programming makes sure that the solutions obtained are globally optimal and numerically stable. The optimization process is set up as a discrete multi-stage decision process and solved with the help of dynamic programming.
New estimation architecture for multisensor data fusion
NASA Astrophysics Data System (ADS)
Covino, Joseph M.; Griffiths, Barry E.
1991-07-01
This paper describes a novel method of hierarchical asynchronous distributed filtering called the Net Information Approach (NIA). The NIA is a Kalman-filter-based estimation scheme for spatially distributed sensors which must retain their local optimality yet require a nearly optimal global estimate. The key idea of the NIA is that each local sensor-dedicated filter tells the global filter 'what I've learned since the last local-to-global transmission,' whereas in other estimation architectures the local-to-global transmission consists of 'what I think now.' An algorithm based on this idea has been demonstrated on a small-scale target-tracking problem with many encouraging results. Feasibility of this approach was demonstrated by comparing NIA performance to an optimal centralized Kalman filter (lower bound) via Monte Carlo simulations.
NASA Astrophysics Data System (ADS)
Clay, M. P.; Yeung, P. K.; Buaria, D.; Gotoh, T.
2017-11-01
Turbulent mixing at high Schmidt number is a multiscale problem which places demanding requirements on direct numerical simulations to resolve fluctuations down the to Batchelor scale. We use a dual-grid, dual-scheme and dual-communicator approach where velocity and scalar fields are computed by separate groups of parallel processes, the latter using a combined compact finite difference (CCD) scheme on finer grid with a static 3-D domain decomposition free of the communication overhead of memory transposes. A high degree of scalability is achieved for a 81923 scalar field at Schmidt number 512 in turbulence with a modest inertial range, by overlapping communication with computation whenever possible. On the Cray XE6 partition of Blue Waters, use of a dedicated thread for communication combined with OpenMP locks and nested parallelism reduces CCD timings by 34% compared to an MPI baseline. The code has been further optimized for the 27-petaflops Cray XK7 machine Titan using GPUs as accelerators with the latest OpenMP 4.5 directives, giving 2.7X speedup compared to CPU-only execution at the largest problem size. Supported by NSF Grant ACI-1036170, the NCSA Blue Waters Project with subaward via UIUC, and a DOE INCITE allocation at ORNL.
Yu, Yi; Hu, Binqi; Liu, Xinglong
2018-01-01
The dispatching of hydro-thermal system is a nonlinear programming problem with multiple constraints and high dimensions and the solution techniques of the model have been a hotspot in research. Based on the advantage of that the artificial bee colony algorithm (ABC) can efficiently solve the high-dimensional problem, an improved artificial bee colony algorithm has been proposed to solve DHTS problem in this paper. The improvements of the proposed algorithm include two aspects. On one hand, local search can be guided in efficiency by the information of the global optimal solution and its gradient in each generation. The global optimal solution improves the search efficiency of the algorithm but loses diversity, while the gradient can weaken the loss of diversity caused by the global optimal solution. On the other hand, inspired by genetic algorithm, the nectar resource which has not been updated in limit generation is transformed to a new one by using selection, crossover and mutation, which can ensure individual diversity and make full use of prior information for improving the global search ability of the algorithm. The two improvements of ABC algorithm are proved to be effective via a classical numeral example at last. Among which the genetic operator for the promotion of the ABC algorithm’s performance is significant. The results are also compared with those of other state-of-the-art algorithms, the enhanced ABC algorithm has general advantages in minimum cost, average cost and maximum cost which shows its usability and effectiveness. The achievements in this paper provide a new method for solving the DHTS problems, and also offer a novel reference for the improvement of mechanism and the application of algorithms. PMID:29324743
Yu, Yi; Wu, Yonggang; Hu, Binqi; Liu, Xinglong
2018-01-01
The dispatching of hydro-thermal system is a nonlinear programming problem with multiple constraints and high dimensions and the solution techniques of the model have been a hotspot in research. Based on the advantage of that the artificial bee colony algorithm (ABC) can efficiently solve the high-dimensional problem, an improved artificial bee colony algorithm has been proposed to solve DHTS problem in this paper. The improvements of the proposed algorithm include two aspects. On one hand, local search can be guided in efficiency by the information of the global optimal solution and its gradient in each generation. The global optimal solution improves the search efficiency of the algorithm but loses diversity, while the gradient can weaken the loss of diversity caused by the global optimal solution. On the other hand, inspired by genetic algorithm, the nectar resource which has not been updated in limit generation is transformed to a new one by using selection, crossover and mutation, which can ensure individual diversity and make full use of prior information for improving the global search ability of the algorithm. The two improvements of ABC algorithm are proved to be effective via a classical numeral example at last. Among which the genetic operator for the promotion of the ABC algorithm's performance is significant. The results are also compared with those of other state-of-the-art algorithms, the enhanced ABC algorithm has general advantages in minimum cost, average cost and maximum cost which shows its usability and effectiveness. The achievements in this paper provide a new method for solving the DHTS problems, and also offer a novel reference for the improvement of mechanism and the application of algorithms.
Optimization of atmospheric transport models on HPC platforms
NASA Astrophysics Data System (ADS)
de la Cruz, Raúl; Folch, Arnau; Farré, Pau; Cabezas, Javier; Navarro, Nacho; Cela, José María
2016-12-01
The performance and scalability of atmospheric transport models on high performance computing environments is often far from optimal for multiple reasons including, for example, sequential input and output, synchronous communications, work unbalance, memory access latency or lack of task overlapping. We investigate how different software optimizations and porting to non general-purpose hardware architectures improve code scalability and execution times considering, as an example, the FALL3D volcanic ash transport model. To this purpose, we implement the FALL3D model equations in the WARIS framework, a software designed from scratch to solve in a parallel and efficient way different geoscience problems on a wide variety of architectures. In addition, we consider further improvements in WARIS such as hybrid MPI-OMP parallelization, spatial blocking, auto-tuning and thread affinity. Considering all these aspects together, the FALL3D execution times for a realistic test case running on general-purpose cluster architectures (Intel Sandy Bridge) decrease by a factor between 7 and 40 depending on the grid resolution. Finally, we port the application to Intel Xeon Phi (MIC) and NVIDIA GPUs (CUDA) accelerator-based architectures and compare performance, cost and power consumption on all the architectures. Implications on time-constrained operational model configurations are discussed.
Zhang, Yang
2014-01-01
We develop and test a new pipeline in CASP10 to predict protein structures based on an interplay of I-TASSER and QUARK for both free-modeling (FM) and template-based modeling (TBM) targets. The most noteworthy observation is that sorting through the threading template pool using the QUARK-based ab initio models as probes allows the detection of distant-homology templates which might be ignored by the traditional sequence profile-based threading alignment algorithms. Further template assembly refinement by I-TASSER resulted in successful folding of two medium-sized FM targets with >150 residues. For TBM, the multiple threading alignments from LOMETS are, for the first time, incorporated into the ab initio QUARK simulations, which were further refined by I-TASSER assembly refinement. Compared with the traditional threading assembly refinement procedures, the inclusion of the threading-constrained ab initio folding models can consistently improve the quality of the full-length models as assessed by the GDT-HA and hydrogen-bonding scores. Despite the success, significant challenges still exist in domain boundary prediction and consistent folding of medium-size proteins (especially beta-proteins) for nonhomologous targets. Further developments of sensitive fold-recognition and ab initio folding methods are critical for solving these problems. PMID:23760925
Zhang, Yang
2014-02-01
We develop and test a new pipeline in CASP10 to predict protein structures based on an interplay of I-TASSER and QUARK for both free-modeling (FM) and template-based modeling (TBM) targets. The most noteworthy observation is that sorting through the threading template pool using the QUARK-based ab initio models as probes allows the detection of distant-homology templates which might be ignored by the traditional sequence profile-based threading alignment algorithms. Further template assembly refinement by I-TASSER resulted in successful folding of two medium-sized FM targets with >150 residues. For TBM, the multiple threading alignments from LOMETS are, for the first time, incorporated into the ab initio QUARK simulations, which were further refined by I-TASSER assembly refinement. Compared with the traditional threading assembly refinement procedures, the inclusion of the threading-constrained ab initio folding models can consistently improve the quality of the full-length models as assessed by the GDT-HA and hydrogen-bonding scores. Despite the success, significant challenges still exist in domain boundary prediction and consistent folding of medium-size proteins (especially beta-proteins) for nonhomologous targets. Further developments of sensitive fold-recognition and ab initio folding methods are critical for solving these problems. Copyright © 2013 Wiley Periodicals, Inc.
A global optimization algorithm inspired in the behavior of selfish herds.
Fausto, Fernando; Cuevas, Erik; Valdivia, Arturo; González, Adrián
2017-10-01
In this paper, a novel swarm optimization algorithm called the Selfish Herd Optimizer (SHO) is proposed for solving global optimization problems. SHO is based on the simulation of the widely observed selfish herd behavior manifested by individuals within a herd of animals subjected to some form of predation risk. In SHO, individuals emulate the predatory interactions between groups of prey and predators by two types of search agents: the members of a selfish herd (the prey) and a pack of hungry predators. Depending on their classification as either a prey or a predator, each individual is conducted by a set of unique evolutionary operators inspired by such prey-predator relationship. These unique traits allow SHO to improve the balance between exploration and exploitation without altering the population size. To illustrate the proficiency and robustness of the proposed method, it is compared to other well-known evolutionary optimization approaches such as Particle Swarm Optimization (PSO), Artificial Bee Colony (ABC), Firefly Algorithm (FA), Differential Evolution (DE), Genetic Algorithms (GA), Crow Search Algorithm (CSA), Dragonfly Algorithm (DA), Moth-flame Optimization Algorithm (MOA) and Sine Cosine Algorithm (SCA). The comparison examines several standard benchmark functions, commonly considered within the literature of evolutionary algorithms. The experimental results show the remarkable performance of our proposed approach against those of the other compared methods, and as such SHO is proven to be an excellent alternative to solve global optimization problems. Copyright © 2017 Elsevier B.V. All rights reserved.
Kishore, Vipuil; Paderi, John E.; Akkus, Anna; Smith, Katie M.; Balachandran, Dave; Beaudoin, Stephen; Panitch, Alyssa; Akkus, Ozan
2011-01-01
Orientational anisotropy of collagen molecules is integral for the mechanical strength of collagen-rich tissues. We have previously reported a novel methodology to synthesize highly oriented electrochemically aligned collagen (ELAC) threads with mechanical properties converging upon those of native tendon. Decorin, a small leucine rich proteoglycan (SLRP), binds to fibrillar collagen and has been suggested to enhance the mechanical properties of tendon. Based on the structure of natural decorin, we have previously designed and synthesized a peptidoglycan (DS-SILY) that mimics decorin both structurally and functionally. In this study, we investigated the effect of the incorporation of DS-SILY on the mechanical properties and structural organization of ELAC threads. The results indicated that the addition of DS-SILY at a molar ratio of 30:1 (Collagen:DS-SILY) significantly enhanced the ultimate stress and ultimate strain of the ELAC threads. Furthermore, differential scanning calorimetry revealed that the addition of DS-SILY at a molar ratio of 30:1 resulted in a more thermally stable collagen structure. However, addition of DS-SILY at a higher concentration (10:1 Collagen:DS-SILY) yielded weaker threads with mechanical properties comparable to collagen control threads. Transmission emission microscopy revealed that the addition of DS-SILY at a higher concentration (10:1) resulted in pronounced aggregation of collagen fibrils. More importantly, these aggregates were not aligned along the long axis of the ELAC thereby compromising on the overall tensile properties of the material. We conclude that incorporation of an optimal amount of DS-SILY is a promising approach to synthesize mechanically competent collagen based biomaterials for tendon tissue engineering applications. PMID:21356334
Herberstein, Marie E.
2017-01-01
The anchorage of structures is a crucial element of construction, both for humans and animals. Spiders use adhesive plaques to attach silk threads to substrates. Both biological and artificial adhesive structures usually have an optimal loading angle, and are prone to varying loading situations. Silk anchorages, however, must cope with loading in highly variable directions. Here we show that the detachment forces of thread anchorages of orb-web spiders are highly robust against pulling in different directions. This is gained by a two-step back-and-forth spinning pattern during the rapid production of the adhesive plaque, which shifts the thread insertion point towards the plaque centre and forms a flexible tree root-like network of branching fibres around the loading point. Using a morphometric approach and a tape-and-thread model we show that neither area, nor width of the plaque, but the shift of the loading point towards the plaque centre has the highest effect on pull-off resistance. This is explained by a circular propagation of the delamination crack with a low peeling angle. We further show that silken attachment discs are highly directional and adjusted to provide maximal performance in the upstream dragline. These results show that the way the glue is applied, crucially enhances the toughness of the anchorage without the need of additional material intake. This work is a starting point to study the evolution of tough and universal thread anchorages among spiders, and to develop bioinspired ‘instant’ anchorages of thread- and cable-like structures to a broad bandwidth of substrates. PMID:28228539
Wolff, Jonas O; Herberstein, Marie E
2017-02-01
The anchorage of structures is a crucial element of construction, both for humans and animals. Spiders use adhesive plaques to attach silk threads to substrates. Both biological and artificial adhesive structures usually have an optimal loading angle, and are prone to varying loading situations. Silk anchorages, however, must cope with loading in highly variable directions. Here we show that the detachment forces of thread anchorages of orb-web spiders are highly robust against pulling in different directions. This is gained by a two-step back-and-forth spinning pattern during the rapid production of the adhesive plaque, which shifts the thread insertion point towards the plaque centre and forms a flexible tree root-like network of branching fibres around the loading point. Using a morphometric approach and a tape-and-thread model we show that neither area, nor width of the plaque, but the shift of the loading point towards the plaque centre has the highest effect on pull-off resistance. This is explained by a circular propagation of the delamination crack with a low peeling angle. We further show that silken attachment discs are highly directional and adjusted to provide maximal performance in the upstream dragline. These results show that the way the glue is applied, crucially enhances the toughness of the anchorage without the need of additional material intake. This work is a starting point to study the evolution of tough and universal thread anchorages among spiders, and to develop bioinspired 'instant' anchorages of thread- and cable-like structures to a broad bandwidth of substrates. © 2017 The Author(s).
Non-adaptive and adaptive hybrid approaches for enhancing water quality management
NASA Astrophysics Data System (ADS)
Kalwij, Ineke M.; Peralta, Richard C.
2008-09-01
SummaryUsing optimization to help solve groundwater management problems cost-effectively is becoming increasingly important. Hybrid optimization approaches, that combine two or more optimization algorithms, will become valuable and common tools for addressing complex nonlinear hydrologic problems. Hybrid heuristic optimizers have capabilities far beyond those of a simple genetic algorithm (SGA), and are continuously improving. SGAs having only parent selection, crossover, and mutation are inefficient and rarely used for optimizing contaminant transport management. Even an advanced genetic algorithm (AGA) that includes elitism (to emphasize using the best strategies as parents) and healing (to help assure optimal strategy feasibility) is undesirably inefficient. Much more efficient than an AGA is the presented hybrid (AGCT), which adds comprehensive tabu search (TS) features to an AGA. TS mechanisms (TS probability, tabu list size, search coarseness and solution space size, and a TS threshold value) force the optimizer to search portions of the solution space that yield superior pumping strategies, and to avoid reproducing similar or inferior strategies. An AGCT characteristic is that TS control parameters are unchanging during optimization. However, TS parameter values that are ideal for optimization commencement can be undesirable when nearing assumed global optimality. The second presented hybrid, termed global converger (GC), is significantly better than the AGCT. GC includes AGCT plus feedback-driven auto-adaptive control that dynamically changes TS parameters during run-time. Before comparing AGCT and GC, we empirically derived scaled dimensionless TS control parameter guidelines by evaluating 50 sets of parameter values for a hypothetical optimization problem. For the hypothetical area, AGCT optimized both well locations and pumping rates. The parameters are useful starting values because using trial-and-error to identify an ideal combination of control parameter values for a new optimization problem can be time consuming. For comparison, AGA, AGCT, and GC are applied to optimize pumping rates for assumed well locations of a complex large-scale contaminant transport and remediation optimization problem at Blaine Naval Ammunition Depot (NAD). Both hybrid approaches converged more closely to the optimal solution than the non-hybrid AGA. GC averaged 18.79% better convergence than AGCT, and 31.9% than AGA, within the same computation time (12.5 days). AGCT averaged 13.1% better convergence than AGA. The GC can significantly reduce the burden of employing computationally intensive hydrologic simulation models within a limited time period and for real-world optimization problems. Although demonstrated for a groundwater quality problem, it is also applicable to other arenas, such as managing salt water intrusion and surface water contaminant loading.
Dong, Zhixu; Sun, Xingwei; Chen, Changzheng; Sun, Mengnan
2018-04-13
The inconvenient loading and unloading of a long and heavy drill pipe gives rise to the difficulty in measuring the contour parameters of its threads at both ends. To solve this problem, in this paper we take the SCK230 drill pipe thread-repairing machine tool as a carrier to design and achieve a fast and on-machine measuring system based on a laser probe. This system drives a laser displacement sensor to acquire the contour data of a certain axial section of the thread by using the servo function of a CNC machine tool. To correct the sensor's measurement errors caused by the measuring point inclination angle, an inclination error model is built to compensate data in real time. To better suppress random error interference and ensure real contour information, a new wavelet threshold function is proposed to process data through the wavelet threshold denoising. Discrete data after denoising is segmented according to the geometrical characteristics of the drill pipe thread, and the regression model of the contour data in each section is fitted by using the method of weighted total least squares (WTLS). Then, the thread parameters are calculated in real time to judge the processing quality. Inclination error experiments show that the proposed compensation model is accurate and effective, and it can improve the data acquisition accuracy of a sensor. Simulation results indicate that the improved threshold function is of better continuity and self-adaptability, which makes sure that denoising effects are guaranteed, and, meanwhile, the complete elimination of real data distorted in random errors is avoided. Additionally, NC50 thread-testing experiments show that the proposed on-machine measuring system can complete the measurement of a 25 mm thread in 7.8 s, with a measurement accuracy of ±8 μm and repeatability limit ≤ 4 μm (high repeatability), and hence the accuracy and efficiency of measurement are both improved.
Sun, Xingwei; Chen, Changzheng; Sun, Mengnan
2018-01-01
The inconvenient loading and unloading of a long and heavy drill pipe gives rise to the difficulty in measuring the contour parameters of its threads at both ends. To solve this problem, in this paper we take the SCK230 drill pipe thread-repairing machine tool as a carrier to design and achieve a fast and on-machine measuring system based on a laser probe. This system drives a laser displacement sensor to acquire the contour data of a certain axial section of the thread by using the servo function of a CNC machine tool. To correct the sensor’s measurement errors caused by the measuring point inclination angle, an inclination error model is built to compensate data in real time. To better suppress random error interference and ensure real contour information, a new wavelet threshold function is proposed to process data through the wavelet threshold denoising. Discrete data after denoising is segmented according to the geometrical characteristics of the drill pipe thread, and the regression model of the contour data in each section is fitted by using the method of weighted total least squares (WTLS). Then, the thread parameters are calculated in real time to judge the processing quality. Inclination error experiments show that the proposed compensation model is accurate and effective, and it can improve the data acquisition accuracy of a sensor. Simulation results indicate that the improved threshold function is of better continuity and self-adaptability, which makes sure that denoising effects are guaranteed, and, meanwhile, the complete elimination of real data distorted in random errors is avoided. Additionally, NC50 thread-testing experiments show that the proposed on-machine measuring system can complete the measurement of a 25 mm thread in 7.8 s, with a measurement accuracy of ±8 μm and repeatability limit ≤ 4 μm (high repeatability), and hence the accuracy and efficiency of measurement are both improved. PMID:29652836
NASA Astrophysics Data System (ADS)
Li, Haichen; Qin, Tao; Wang, Weiping; Lei, Xiaohui; Wu, Wenhui
2018-02-01
Due to the weakness in holding diversity and reaching global optimum, the standard particle swarm optimization has not performed well in reservoir optimal operation. To solve this problem, this paper introduces downhill simplex method to work together with the standard particle swarm optimization. The application of this approach in Goupitan reservoir optimal operation proves that the improved method had better accuracy and higher reliability with small investment.
Global, Multi-Objective Trajectory Optimization With Parametric Spreading
NASA Technical Reports Server (NTRS)
Vavrina, Matthew A.; Englander, Jacob A.; Phillips, Sean M.; Hughes, Kyle M.
2017-01-01
Mission design problems are often characterized by multiple, competing trajectory optimization objectives. Recent multi-objective trajectory optimization formulations enable generation of globally-optimal, Pareto solutions via a multi-objective genetic algorithm. A byproduct of these formulations is that clustering in design space can occur in evolving the population towards the Pareto front. This clustering can be a drawback, however, if parametric evaluations of design variables are desired. This effort addresses clustering by incorporating operators that encourage a uniform spread over specified design variables while maintaining Pareto front representation. The algorithm is demonstrated on a Neptune orbiter mission, and enhanced multidimensional visualization strategies are presented.
NASA Astrophysics Data System (ADS)
Abdeh-Kolahchi, A.; Satish, M.; Datta, B.
2004-05-01
A state art groundwater monitoring network design is introduced. The method combines groundwater flow and transport results with optimization Genetic Algorithm (GA) to identify optimal monitoring well locations. Optimization theory uses different techniques to find a set of parameter values that minimize or maximize objective functions. The suggested groundwater optimal monitoring network design is based on the objective of maximizing the probability of tracking a transient contamination plume by determining sequential monitoring locations. The MODFLOW and MT3DMS models included as separate modules within the Groundwater Modeling System (GMS) are used to develop three dimensional groundwater flow and contamination transport simulation. The groundwater flow and contamination simulation results are introduced as input to the optimization model, using Genetic Algorithm (GA) to identify the groundwater optimal monitoring network design, based on several candidate monitoring locations. The groundwater monitoring network design model is used Genetic Algorithms with binary variables representing potential monitoring location. As the number of decision variables and constraints increase, the non-linearity of the objective function also increases which make difficulty to obtain optimal solutions. The genetic algorithm is an evolutionary global optimization technique, which is capable of finding the optimal solution for many complex problems. In this study, the GA approach capable of finding the global optimal solution to a groundwater monitoring network design problem involving 18.4X 1018 feasible solutions will be discussed. However, to ensure the efficiency of the solution process and global optimality of the solution obtained using GA, it is necessary that appropriate GA parameter values be specified. The sensitivity analysis of genetic algorithms parameters such as random number, crossover probability, mutation probability, and elitism are discussed for solution of monitoring network design.
Formulation of image fusion as a constrained least squares optimization problem
Dwork, Nicholas; Lasry, Eric M.; Pauly, John M.; Balbás, Jorge
2017-01-01
Abstract. Fusing a lower resolution color image with a higher resolution monochrome image is a common practice in medical imaging. By incorporating spatial context and/or improving the signal-to-noise ratio, it provides clinicians with a single frame of the most complete information for diagnosis. In this paper, image fusion is formulated as a convex optimization problem that avoids image decomposition and permits operations at the pixel level. This results in a highly efficient and embarrassingly parallelizable algorithm based on widely available robust and simple numerical methods that realizes the fused image as the global minimizer of the convex optimization problem. PMID:28331885
Application of firefly algorithm to the dynamic model updating problem
NASA Astrophysics Data System (ADS)
Shabbir, Faisal; Omenzetter, Piotr
2015-04-01
Model updating can be considered as a branch of optimization problems in which calibration of the finite element (FE) model is undertaken by comparing the modal properties of the actual structure with these of the FE predictions. The attainment of a global solution in a multi dimensional search space is a challenging problem. The nature-inspired algorithms have gained increasing attention in the previous decade for solving such complex optimization problems. This study applies the novel Firefly Algorithm (FA), a global optimization search technique, to a dynamic model updating problem. This is to the authors' best knowledge the first time FA is applied to model updating. The working of FA is inspired by the flashing characteristics of fireflies. Each firefly represents a randomly generated solution which is assigned brightness according to the value of the objective function. The physical structure under consideration is a full scale cable stayed pedestrian bridge with composite bridge deck. Data from dynamic testing of the bridge was used to correlate and update the initial model by using FA. The algorithm aimed at minimizing the difference between the natural frequencies and mode shapes of the structure. The performance of the algorithm is analyzed in finding the optimal solution in a multi dimensional search space. The paper concludes with an investigation of the efficacy of the algorithm in obtaining a reference finite element model which correctly represents the as-built original structure.
Modeling Cooperative Threads to Project GPU Performance for Adaptive Parallelism
DOE Office of Scientific and Technical Information (OSTI.GOV)
Meng, Jiayuan; Uram, Thomas; Morozov, Vitali A.
Most accelerators, such as graphics processing units (GPUs) and vector processors, are particularly suitable for accelerating massively parallel workloads. On the other hand, conventional workloads are developed for multi-core parallelism, which often scale to only a few dozen OpenMP threads. When hardware threads significantly outnumber the degree of parallelism in the outer loop, programmers are challenged with efficient hardware utilization. A common solution is to further exploit the parallelism hidden deep in the code structure. Such parallelism is less structured: parallel and sequential loops may be imperfectly nested within each other, neigh boring inner loops may exhibit different concurrency patternsmore » (e.g. Reduction vs. Forall), yet have to be parallelized in the same parallel section. Many input-dependent transformations have to be explored. A programmer often employs a larger group of hardware threads to cooperatively walk through a smaller outer loop partition and adaptively exploit any encountered parallelism. This process is time-consuming and error-prone, yet the risk of gaining little or no performance remains high for such workloads. To reduce risk and guide implementation, we propose a technique to model workloads with limited parallelism that can automatically explore and evaluate transformations involving cooperative threads. Eventually, our framework projects the best achievable performance and the most promising transformations without implementing GPU code or using physical hardware. We envision our technique to be integrated into future compilers or optimization frameworks for autotuning.« less
Kassa, Semu Mitiku
2018-02-01
Funds from various global organizations, such as, The Global Fund, The World Bank, etc. are not directly distributed to the targeted risk groups. Especially in the so-called third-world-countries, the major part of the fund in HIV prevention programs comes from these global funding organizations. The allocations of these funds usually pass through several levels of decision making bodies that have their own specific parameters to control and specific objectives to achieve. However, these decisions are made mostly in a heuristic manner and this may lead to a non-optimal allocation of the scarce resources. In this paper, a hierarchical mathematical optimization model is proposed to solve such a problem. Combining existing epidemiological models with the kind of interventions being on practice, a 3-level hierarchical decision making model in optimally allocating such resources has been developed and analyzed. When the impact of antiretroviral therapy (ART) is included in the model, it has been shown that the objective function of the lower level decision making structure is a non-convex minimization problem in the allocation variables even if all the production functions for the intervention programs are assumed to be linear.
Song, Qi; Wu, Xiaodong; Liu, Yunlong; Smith, Mark; Buatti, John; Sonka, Milan
2009-01-01
We present a novel method for globally optimal surface segmentation of multiple mutually interacting objects, incorporating both edge and shape knowledge in a 3-D graph-theoretic approach. Hard surface interacting constraints are enforced in the interacting regions, preserving the geometric relationship of those partially interacting surfaces. The soft smoothness a priori shape compliance is introduced into the energy functional to provide shape guidance. The globally optimal surfaces can be simultaneously achieved by solving a maximum flow problem based on an arc-weighted graph representation. Representing the segmentation problem in an arc-weighted graph, one can incorporate a wider spectrum of constraints into the formulation, thus increasing segmentation accuracy and robustness in volumetric image data. To the best of our knowledge, our method is the first attempt to introduce the arc-weighted graph representation into the graph-searching approach for simultaneous segmentation of multiple partially interacting objects, which admits a globally optimal solution in a low-order polynomial time. Our new approach was applied to the simultaneous surface detection of bladder and prostate. The result was quite encouraging in spite of the low saliency of the bladder and prostate in CT images.
Du, Shouqiang; Chen, Miao
2018-01-01
We consider a kind of nonsmooth optimization problems with [Formula: see text]-norm minimization, which has many applications in compressed sensing, signal reconstruction, and the related engineering problems. Using smoothing approximate techniques, this kind of nonsmooth optimization problem can be transformed into a general unconstrained optimization problem, which can be solved by the proposed smoothing modified three-term conjugate gradient method. The smoothing modified three-term conjugate gradient method is based on Polak-Ribière-Polyak conjugate gradient method. For the Polak-Ribière-Polyak conjugate gradient method has good numerical properties, the proposed method possesses the sufficient descent property without any line searches, and it is also proved to be globally convergent. Finally, the numerical experiments show the efficiency of the proposed method.
NASA Astrophysics Data System (ADS)
Aittokoski, Timo; Miettinen, Kaisa
2008-07-01
Solving real-life engineering problems can be difficult because they often have multiple conflicting objectives, the objective functions involved are highly nonlinear and they contain multiple local minima. Furthermore, function values are often produced via a time-consuming simulation process. These facts suggest the need for an automated optimization tool that is efficient (in terms of number of objective function evaluations) and capable of solving global and multiobjective optimization problems. In this article, the requirements on a general simulation-based optimization system are discussed and such a system is applied to optimize the performance of a two-stroke combustion engine. In the example of a simulation-based optimization problem, the dimensions and shape of the exhaust pipe of a two-stroke engine are altered, and values of three conflicting objective functions are optimized. These values are derived from power output characteristics of the engine. The optimization approach involves interactive multiobjective optimization and provides a convenient tool to balance between conflicting objectives and to find good solutions.
Stochastic Methods for Aircraft Design
NASA Technical Reports Server (NTRS)
Pelz, Richard B.; Ogot, Madara
1998-01-01
The global stochastic optimization method, simulated annealing (SA), was adapted and applied to various problems in aircraft design. The research was aimed at overcoming the problem of finding an optimal design in a space with multiple minima and roughness ubiquitous to numerically generated nonlinear objective functions. SA was modified to reduce the number of objective function evaluations for an optimal design, historically the main criticism of stochastic methods. SA was applied to many CFD/MDO problems including: low sonic-boom bodies, minimum drag on supersonic fore-bodies, minimum drag on supersonic aeroelastic fore-bodies, minimum drag on HSCT aeroelastic wings, FLOPS preliminary design code, another preliminary aircraft design study with vortex lattice aerodynamics, HSR complete aircraft aerodynamics. In every case, SA provided a simple, robust and reliable optimization method which found optimal designs in order 100 objective function evaluations. Perhaps most importantly, from this academic/industrial project, technology has been successfully transferred; this method is the method of choice for optimization problems at Northrop Grumman.
Liu, Qingshan; Wang, Jun
2011-04-01
This paper presents a one-layer recurrent neural network for solving a class of constrained nonsmooth optimization problems with piecewise-linear objective functions. The proposed neural network is guaranteed to be globally convergent in finite time to the optimal solutions under a mild condition on a derived lower bound of a single gain parameter in the model. The number of neurons in the neural network is the same as the number of decision variables of the optimization problem. Compared with existing neural networks for optimization, the proposed neural network has a couple of salient features such as finite-time convergence and a low model complexity. Specific models for two important special cases, namely, linear programming and nonsmooth optimization, are also presented. In addition, applications to the shortest path problem and constrained least absolute deviation problem are discussed with simulation results to demonstrate the effectiveness and characteristics of the proposed neural network.
Olugbara, Oludayo
2014-01-01
This paper presents an annual multiobjective crop-mix planning as a problem of concurrent maximization of net profit and maximization of crop production to determine an optimal cropping pattern. The optimal crop production in a particular planting season is a crucial decision making task from the perspectives of economic management and sustainable agriculture. A multiobjective optimal crop-mix problem is formulated and solved using the generalized differential evolution 3 (GDE3) metaheuristic to generate a globally optimal solution. The performance of the GDE3 metaheuristic is investigated by comparing its results with the results obtained using epsilon constrained and nondominated sorting genetic algorithms—being two representatives of state-of-the-art in evolutionary optimization. The performance metrics of additive epsilon, generational distance, inverted generational distance, and spacing are considered to establish the comparability. In addition, a graphical comparison with respect to the true Pareto front for the multiobjective optimal crop-mix planning problem is presented. Empirical results generally show GDE3 to be a viable alternative tool for solving a multiobjective optimal crop-mix planning problem. PMID:24883369
Adekanmbi, Oluwole; Olugbara, Oludayo; Adeyemo, Josiah
2014-01-01
This paper presents an annual multiobjective crop-mix planning as a problem of concurrent maximization of net profit and maximization of crop production to determine an optimal cropping pattern. The optimal crop production in a particular planting season is a crucial decision making task from the perspectives of economic management and sustainable agriculture. A multiobjective optimal crop-mix problem is formulated and solved using the generalized differential evolution 3 (GDE3) metaheuristic to generate a globally optimal solution. The performance of the GDE3 metaheuristic is investigated by comparing its results with the results obtained using epsilon constrained and nondominated sorting genetic algorithms-being two representatives of state-of-the-art in evolutionary optimization. The performance metrics of additive epsilon, generational distance, inverted generational distance, and spacing are considered to establish the comparability. In addition, a graphical comparison with respect to the true Pareto front for the multiobjective optimal crop-mix planning problem is presented. Empirical results generally show GDE3 to be a viable alternative tool for solving a multiobjective optimal crop-mix planning problem.
Robust Dynamic Multi-objective Vehicle Routing Optimization Method.
Guo, Yi-Nan; Cheng, Jian; Luo, Sha; Gong, Dun-Wei
2017-03-21
For dynamic multi-objective vehicle routing problems, the waiting time of vehicle, the number of serving vehicles, the total distance of routes were normally considered as the optimization objectives. Except for above objectives, fuel consumption that leads to the environmental pollution and energy consumption was focused on in this paper. Considering the vehicles' load and the driving distance, corresponding carbon emission model was built and set as an optimization objective. Dynamic multi-objective vehicle routing problems with hard time windows and randomly appeared dynamic customers, subsequently, were modeled. In existing planning methods, when the new service demand came up, global vehicle routing optimization method was triggered to find the optimal routes for non-served customers, which was time-consuming. Therefore, robust dynamic multi-objective vehicle routing method with two-phase is proposed. Three highlights of the novel method are: (i) After finding optimal robust virtual routes for all customers by adopting multi-objective particle swarm optimization in the first phase, static vehicle routes for static customers are formed by removing all dynamic customers from robust virtual routes in next phase. (ii)The dynamically appeared customers append to be served according to their service time and the vehicles' statues. Global vehicle routing optimization is triggered only when no suitable locations can be found for dynamic customers. (iii)A metric measuring the algorithms' robustness is given. The statistical results indicated that the routes obtained by the proposed method have better stability and robustness, but may be sub-optimum. Moreover, time-consuming global vehicle routing optimization is avoided as dynamic customers appear.
Parallel fast multipole boundary element method applied to computational homogenization
NASA Astrophysics Data System (ADS)
Ptaszny, Jacek
2018-01-01
In the present work, a fast multipole boundary element method (FMBEM) and a parallel computer code for 3D elasticity problem is developed and applied to the computational homogenization of a solid containing spherical voids. The system of equation is solved by using the GMRES iterative solver. The boundary of the body is dicretized by using the quadrilateral serendipity elements with an adaptive numerical integration. Operations related to a single GMRES iteration, performed by traversing the corresponding tree structure upwards and downwards, are parallelized by using the OpenMP standard. The assignment of tasks to threads is based on the assumption that the tree nodes at which the moment transformations are initialized can be partitioned into disjoint sets of equal or approximately equal size and assigned to the threads. The achieved speedup as a function of number of threads is examined.
Validation of the Transient Structural Response of a Threaded Assembly: Phase I
DOE Office of Scientific and Technical Information (OSTI.GOV)
Doebling, Scott W.; Hemez, Francois M.; Robertson, Amy N.
2004-04-01
This report explores the application of model validation techniques in structural dynamics. The problem of interest is the propagation of an explosive-driven mechanical shock through a complex threaded joint. The study serves the purpose of assessing whether validating a large-size computational model is feasible, which unit experiments are required, and where the main sources of uncertainty reside. The results documented here are preliminary, and the analyses are exploratory in nature. The results obtained to date reveal several deficiencies of the analysis, to be rectified in future work.
NASA Astrophysics Data System (ADS)
Roy, Satadru
Traditional approaches to design and optimize a new system, often, use a system-centric objective and do not take into consideration how the operator will use this new system alongside of other existing systems. This "hand-off" between the design of the new system and how the new system operates alongside other systems might lead to a sub-optimal performance with respect to the operator-level objective. In other words, the system that is optimal for its system-level objective might not be best for the system-of-systems level objective of the operator. Among the few available references that describe attempts to address this hand-off, most follow an MDO-motivated subspace decomposition approach of first designing a very good system and then provide this system to the operator who decides the best way to use this new system along with the existing systems. The motivating example in this dissertation presents one such similar problem that includes aircraft design, airline operations and revenue management "subspaces". The research here develops an approach that could simultaneously solve these subspaces posed as a monolithic optimization problem. The monolithic approach makes the problem a Mixed Integer/Discrete Non-Linear Programming (MINLP/MDNLP) problem, which are extremely difficult to solve. The presence of expensive, sophisticated engineering analyses further aggravate the problem. To tackle this challenge problem, the work here presents a new optimization framework that simultaneously solves the subspaces to capture the "synergism" in the problem that the previous decomposition approaches may not have exploited, addresses mixed-integer/discrete type design variables in an efficient manner, and accounts for computationally expensive analysis tools. The framework combines concepts from efficient global optimization, Kriging partial least squares, and gradient-based optimization. This approach then demonstrates its ability to solve an 11 route airline network problem consisting of 94 decision variables including 33 integer and 61 continuous type variables. This application problem is a representation of an interacting group of systems and provides key challenges to the optimization framework to solve the MINLP problem, as reflected by the presence of a moderate number of integer and continuous type design variables and expensive analysis tool. The result indicates simultaneously solving the subspaces could lead to significant improvement in the fleet-level objective of the airline when compared to the previously developed sequential subspace decomposition approach. In developing the approach to solve the MINLP/MDNLP challenge problem, several test problems provided the ability to explore performance of the framework. While solving these test problems, the framework showed that it could solve other MDNLP problems including categorically discrete variables, indicating that the framework could have broader application than the new aircraft design-fleet allocation-revenue management problem.
NASA Astrophysics Data System (ADS)
Manzanares-Filho, N.; Albuquerque, R. B. F.; Sousa, B. S.; Santos, L. G. C.
2018-06-01
This article presents a comparative study of some versions of the controlled random search algorithm (CRSA) in global optimization problems. The basic CRSA, originally proposed by Price in 1977 and improved by Ali et al. in 1997, is taken as a starting point. Then, some new modifications are proposed to improve the efficiency and reliability of this global optimization technique. The performance of the algorithms is assessed using traditional benchmark test problems commonly invoked in the literature. This comparative study points out the key features of the modified algorithm. Finally, a comparison is also made in a practical engineering application, namely the inverse aerofoil shape design.
Implementation and Optimization of miniGMG - a Compact Geometric Multigrid Benchmark
DOE Office of Scientific and Technical Information (OSTI.GOV)
Williams, Samuel; Kalamkar, Dhiraj; Singh, Amik
2012-12-01
Multigrid methods are widely used to accelerate the convergence of iterative solvers for linear systems used in a number of different application areas. In this report, we describe miniGMG, our compact geometric multigrid benchmark designed to proxy the multigrid solves found in AMR applications. We explore optimization techniques for geometric multigrid on existing and emerging multicore systems including the Opteron-based Cray XE6, Intel Sandy Bridge and Nehalem-based Infiniband clusters, as well as manycore-based architectures including NVIDIA's Fermi and Kepler GPUs and Intel's Knights Corner (KNC) co-processor. This report examines a variety of novel techniques including communication-aggregation, threaded wavefront-based DRAM communication-avoiding,more » dynamic threading decisions, SIMDization, and fusion of operators. We quantify performance through each phase of the V-cycle for both single-node and distributed-memory experiments and provide detailed analysis for each class of optimization. Results show our optimizations yield significant speedups across a variety of subdomain sizes while simultaneously demonstrating the potential of multi- and manycore processors to dramatically accelerate single-node performance. However, our analysis also indicates that improvements in networks and communication will be essential to reap the potential of manycore processors in large-scale multigrid calculations.« less
NASA Astrophysics Data System (ADS)
Chiu, Y.; Nishikawa, T.
2013-12-01
With the increasing complexity of parameter-structure identification (PSI) in groundwater modeling, there is a need for robust, fast, and accurate optimizers in the groundwater-hydrology field. For this work, PSI is defined as identifying parameter dimension, structure, and value. In this study, Voronoi tessellation and differential evolution (DE) are used to solve the optimal PSI problem. Voronoi tessellation is used for automatic parameterization, whereby stepwise regression and the error covariance matrix are used to determine the optimal parameter dimension. DE is a novel global optimizer that can be used to solve nonlinear, nondifferentiable, and multimodal optimization problems. It can be viewed as an improved version of genetic algorithms and employs a simple cycle of mutation, crossover, and selection operations. DE is used to estimate the optimal parameter structure and its associated values. A synthetic numerical experiment of continuous hydraulic conductivity distribution was conducted to demonstrate the proposed methodology. The results indicate that DE can identify the global optimum effectively and efficiently. A sensitivity analysis of the control parameters (i.e., the population size, mutation scaling factor, crossover rate, and mutation schemes) was performed to examine their influence on the objective function. The proposed DE was then applied to solve a complex parameter-estimation problem for a small desert groundwater basin in Southern California. Hydraulic conductivity, specific yield, specific storage, fault conductance, and recharge components were estimated simultaneously. Comparison of DE and a traditional gradient-based approach (PEST) shows DE to be more robust and efficient. The results of this work not only provide an alternative for PSI in groundwater models, but also extend DE applications towards solving complex, regional-scale water management optimization problems.
Li, Xuejun; Xu, Jia; Yang, Yun
2015-01-01
Cloud workflow system is a kind of platform service based on cloud computing. It facilitates the automation of workflow applications. Between cloud workflow system and its counterparts, market-oriented business model is one of the most prominent factors. The optimization of task-level scheduling in cloud workflow system is a hot topic. As the scheduling is a NP problem, Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) have been proposed to optimize the cost. However, they have the characteristic of premature convergence in optimization process and therefore cannot effectively reduce the cost. To solve these problems, Chaotic Particle Swarm Optimization (CPSO) algorithm with chaotic sequence and adaptive inertia weight factor is applied to present the task-level scheduling. Chaotic sequence with high randomness improves the diversity of solutions, and its regularity assures a good global convergence. Adaptive inertia weight factor depends on the estimate value of cost. It makes the scheduling avoid premature convergence by properly balancing between global and local exploration. The experimental simulation shows that the cost obtained by our scheduling is always lower than the other two representative counterparts.
Li, Xuejun; Xu, Jia; Yang, Yun
2015-01-01
Cloud workflow system is a kind of platform service based on cloud computing. It facilitates the automation of workflow applications. Between cloud workflow system and its counterparts, market-oriented business model is one of the most prominent factors. The optimization of task-level scheduling in cloud workflow system is a hot topic. As the scheduling is a NP problem, Ant Colony Optimization (ACO) and Particle Swarm Optimization (PSO) have been proposed to optimize the cost. However, they have the characteristic of premature convergence in optimization process and therefore cannot effectively reduce the cost. To solve these problems, Chaotic Particle Swarm Optimization (CPSO) algorithm with chaotic sequence and adaptive inertia weight factor is applied to present the task-level scheduling. Chaotic sequence with high randomness improves the diversity of solutions, and its regularity assures a good global convergence. Adaptive inertia weight factor depends on the estimate value of cost. It makes the scheduling avoid premature convergence by properly balancing between global and local exploration. The experimental simulation shows that the cost obtained by our scheduling is always lower than the other two representative counterparts. PMID:26357510
Solving Large Problems Quickly: Progress in 2001-2003
NASA Technical Reports Server (NTRS)
Mowry, Todd C.; Colohan, Christopher B.; Brown, Angela Demke; Steffan, J. Gregory; Zhai, Antonia
2004-01-01
This document describes the progress we have made and the lessons we have learned in 2001 through 2003 under the NASA grant entitled "Solving Important Problems Faster". The long-term goal of this research is to accelerate large, irregular scientific applications which have enormous data sets and which are difficult to parallelize. To accomplish this goal, we are exploring two complementary techniques: (i) using compiler-inserted prefetching to automatically hide the I/O latency of accessing these large data sets from disk; and (ii) using thread-level data speculation to enable the optimistic parallelization of applications despite uncertainty as to whether data dependences exist between the resulting threads which would normally make them unsafe to execute in parallel. Overall, we made significant progress in 2001 through 2003, and the project has gone well.
Workplace mental health: developing an integrated intervention approach
2014-01-01
Background Mental health problems are prevalent and costly in working populations. Workplace interventions to address common mental health problems have evolved relatively independently along three main threads or disciplinary traditions: medicine, public health, and psychology. In this Debate piece, we argue that these three threads need to be integrated to optimise the prevention of mental health problems in working populations. Discussion To realise the greatest population mental health benefits, workplace mental health intervention needs to comprehensively 1) protect mental health by reducing work–related risk factors for mental health problems; 2) promote mental health by developing the positive aspects of work as well as worker strengths and positive capacities; and 3) address mental health problems among working people regardless of cause. We outline the evidence supporting such an integrated intervention approach and consider the research agenda and policy developments needed to move towards this goal, and propose the notion of integrated workplace mental health literacy. Summary An integrated approach to workplace mental health combines the strengths of medicine, public health, and psychology, and has the potential to optimise both the prevention and management of mental health problems in the workplace. PMID:24884425
INTERNAL DYNAMICS OF A TWIN-LAYER SOLAR PROMINENCE
DOE Office of Scientific and Technical Information (OSTI.GOV)
Xia, C.; Keppens, R.
Modern observations revealed rich dynamics within solar prominences. The globally stable quiescent prominences, characterized by the presence of thin vertical threads and falling knobs, are frequently invaded by small rising dark plumes. These dynamic phenomena are related to magnetic Rayleigh–Taylor instability, since prominence matter, 100 times denser than surrounding coronal plasma, is lifted against gravity by weak magnetic field. To get a deeper understanding of the physics behind these phenomena, we use three-dimensional magnetohydrodynamic simulations to investigate the nonlinear magnetoconvective motions in a twin-layer prominence in a macroscopic model from chromospheric layers up to 30 Mm height. The properties ofmore » simulated falling “fingers” and uprising bubbles are consistent with those in observed vertical threads and rising plumes in quiescent prominences. Both sheets of the twin-layer prominence show a strongly coherent evolution due to their magnetic connectivity, and demonstrate collective kink deformation. Our model suggests that the vertical threads of the prominence as seen in an edge-on view, and the apparent horizontal threads of the filament when seen top-down are different appearances of the same structures. Synthetic images of the modeled twin-layer prominence reflect the strong degree of mixing established over the entire prominence structure, in agreement with the observations.« less
Agustini, Deonir; Bergamini, Márcio F; Marcolino-Junior, Luiz Humberto
2017-01-25
The micro flow injection analysis (μFIA) is a powerful technique that uses the principles of traditional flow analysis in a microfluidic device and brings a number of improvements related to the consumption of reagents and samples, speed of analysis and portability. However, the complexity and cost of manufacturing processes, difficulty in integrating micropumps and the limited performance of systems employing passive pumps are challenges that must be overcome. Here, we present the characterization and optimization of a low cost device based on cotton threads as microfluidic channel to perform μFIA based on passive pumps with good analytical performance in a simple, easy and inexpensive way. The transport of solutions is made through cotton threads by capillary force facilitated by gravity. After studying and optimizing several features related to the device, were obtained a flow rate of 2.2 ± 0.1 μL s -1 , an analytical frequency of 208 injections per hour, a sample injection volume of 2.0 μL and a waste volume of approximately 40 μL per analysis. For chronoamperometric determination of naproxen, a detection limit of 0.29 μmol L -1 was reached, with a relative standard deviation (RSD) of 1.69% between injections and a RSD of 3.79% with five different devices. Thus, based on the performance presented by proposed microfluidic device, it is possible to overcome some limitations of the μFIA systems based on passive pumps and allow expansion in the use of this technique. Copyright © 2016 Elsevier B.V. All rights reserved.
Integrated Hardware and Software for No-Loss Computing
NASA Technical Reports Server (NTRS)
James, Mark
2007-01-01
When an algorithm is distributed across multiple threads executing on many distinct processors, a loss of one of those threads or processors can potentially result in the total loss of all the incremental results up to that point. When implementation is massively hardware distributed, then the probability of a hardware failure during the course of a long execution is potentially high. Traditionally, this problem has been addressed by establishing checkpoints where the current state of some or part of the execution is saved. Then in the event of a failure, this state information can be used to recompute that point in the execution and resume the computation from that point. A serious problem arises when one distributes a problem across multiple threads and physical processors is that one increases the likelihood of the algorithm failing due to no fault of the scientist but as a result of hardware faults coupled with operating system problems. With good reason, scientists expect their computing tools to serve them and not the other way around. What is novel here is a unique combination of hardware and software that reformulates an application into monolithic structure that can be monitored in real-time and dynamically reconfigured in the event of a failure. This unique reformulation of hardware and software will provide advanced aeronautical technologies to meet the challenges of next-generation systems in aviation, for civilian and scientific purposes, in our atmosphere and in atmospheres of other worlds. In particular, with respect to NASA s manned flight to Mars, this technology addresses the critical requirements for improving safety and increasing reliability of manned spacecraft.
Topology-changing shape optimization with the genetic algorithm
NASA Astrophysics Data System (ADS)
Lamberson, Steven E., Jr.
The goal is to take a traditional shape optimization problem statement and modify it slightly to allow for prescribed changes in topology. This modification enables greater flexibility in the choice of parameters for the topology optimization problem, while improving the direct physical relevance of the results. This modification involves changing the optimization problem statement from a nonlinear programming problem into a form of mixed-discrete nonlinear programing problem. The present work demonstrates one possible way of using the Genetic Algorithm (GA) to solve such a problem, including the use of "masking bits" and a new modification to the bit-string affinity (BSA) termination criterion specifically designed for problems with "masking bits." A simple ten-bar truss problem proves the utility of the modified BSA for this type of problem. A more complicated two dimensional bracket problem is solved using both the proposed approach and a more traditional topology optimization approach (Solid Isotropic Microstructure with Penalization or SIMP) to enable comparison. The proposed approach is able to solve problems with both local and global constraints, which is something traditional methods cannot do. The proposed approach has a significantly higher computational burden --- on the order of 100 times larger than SIMP, although the proposed approach is able to offset this with parallel computing.
CaLRS: A Critical-Aware Shared LLC Request Scheduling Algorithm on GPGPU
Ma, Jianliang; Meng, Jinglei; Chen, Tianzhou; Wu, Minghui
2015-01-01
Ultra high thread-level parallelism in modern GPUs usually introduces numerous memory requests simultaneously. So there are always plenty of memory requests waiting at each bank of the shared LLC (L2 in this paper) and global memory. For global memory, various schedulers have already been developed to adjust the request sequence. But we find few work has ever focused on the service sequence on the shared LLC. We measured that a big number of GPU applications always queue at LLC bank for services, which provide opportunity to optimize the service order on LLC. Through adjusting the GPU memory request service order, we can improve the schedulability of SM. So we proposed a critical-aware shared LLC request scheduling algorithm (CaLRS) in this paper. The priority representative of memory request is critical for CaLRS. We use the number of memory requests that originate from the same warp but have not been serviced when they arrive at the shared LLC bank to represent the criticality of each warp. Experiments show that the proposed scheme can boost the SM schedulability effectively by promoting the scheduling priority of the memory requests with high criticality and improves the performance of GPU indirectly. PMID:25729772
Zhang, Bo; Duan, Haibin
2017-01-01
Three-dimension path planning of uninhabited combat aerial vehicle (UCAV) is a complicated optimal problem, which mainly focused on optimizing the flight route considering the different types of constrains under complex combating environment. A novel predator-prey pigeon-inspired optimization (PPPIO) is proposed to solve the UCAV three-dimension path planning problem in dynamic environment. Pigeon-inspired optimization (PIO) is a new bio-inspired optimization algorithm. In this algorithm, map and compass operator model and landmark operator model are used to search the best result of a function. The prey-predator concept is adopted to improve global best properties and enhance the convergence speed. The characteristics of the optimal path are presented in the form of a cost function. The comparative simulation results show that our proposed PPPIO algorithm is more efficient than the basic PIO, particle swarm optimization (PSO), and different evolution (DE) in solving UCAV three-dimensional path planning problems.
NASA Astrophysics Data System (ADS)
Xu, Jincheng; Liu, Wei; Wang, Jin; Liu, Linong; Zhang, Jianfeng
2018-02-01
De-absorption pre-stack time migration (QPSTM) compensates for the absorption and dispersion of seismic waves by introducing an effective Q parameter, thereby making it an effective tool for 3D, high-resolution imaging of seismic data. Although the optimal aperture obtained via stationary-phase migration reduces the computational cost of 3D QPSTM and yields 3D stationary-phase QPSTM, the associated computational efficiency is still the main problem in the processing of 3D, high-resolution images for real large-scale seismic data. In the current paper, we proposed a division method for large-scale, 3D seismic data to optimize the performance of stationary-phase QPSTM on clusters of graphics processing units (GPU). Then, we designed an imaging point parallel strategy to achieve an optimal parallel computing performance. Afterward, we adopted an asynchronous double buffering scheme for multi-stream to perform the GPU/CPU parallel computing. Moreover, several key optimization strategies of computation and storage based on the compute unified device architecture (CUDA) were adopted to accelerate the 3D stationary-phase QPSTM algorithm. Compared with the initial GPU code, the implementation of the key optimization steps, including thread optimization, shared memory optimization, register optimization and special function units (SFU), greatly improved the efficiency. A numerical example employing real large-scale, 3D seismic data showed that our scheme is nearly 80 times faster than the CPU-QPSTM algorithm. Our GPU/CPU heterogeneous parallel computing framework significant reduces the computational cost and facilitates 3D high-resolution imaging for large-scale seismic data.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Bartlett, Roscoe
2010-03-31
GlobiPack contains a small collection of optimization globalization algorithms. These algorithms are used by optimization and various nonlinear equation solver algorithms.Used as the line-search procedure with Newton and Quasi-Newton optimization and nonlinear equation solver methods. These are standard published 1-D line search algorithms such as are described in the book Nocedal and Wright Numerical Optimization: 2nd edition, 2006. One set of algorithms were copied and refactored from the existing open-source Trilinos package MOOCHO where the linear search code is used to globalize SQP methods. This software is generic to any mathematical optimization problem where smooth derivatives exist. There is nomore » specific connection or mention whatsoever to any specific application, period. You cannot find more general mathematical software.« less
The trouble with drink: why ideas matter.
Edwards, Griffith
2010-05-01
This paper builds upon the work of previous authors who have explored the evolution of ideas in the alcohol arena. With revisions in the relevant sections of ICD and DSM forthcoming, such matters are of considerable contemporary importance. The focus here will be upon the history of the last 200 years. The main themes to be explored include the flux of ideas on what, over time, has counted as the trouble with drink, ideas on the cause of the problem and the impact of this thinking on public action. Medical authorities of the late Enlightenment period made the revolutionary suggestion that habitual drunkenness constituted a disease, rather than a vice. The thread of that idea can be traced to the present day, but with an alternative perception of drink itself or alcohol-related problems generally, as cause for concern, also having a lineage. There are several inferences to be drawn from this history: the need for vigilance lest disease formulations become stalking-horses for moralism and social control, the need to integrate awareness of alcohol dependence as a dimensional individual-level problem, with a public health understanding of the vastly amorphous and at least equally important universe of alcohol-related problems; the dangers lurking in scientific reductionism when the problems at issue truly require a multi-disciplinary analysis; and the need for global consensus rather than cultural imposition of ideas on what counts as the problem with drink.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Fukuoka, T.
Many studies have been devoted to investigate how the maximum stress occurring in the bolted joint could be reduced. Patterson and Kenny suggest that a modified nut with a straight bevel at the bearing surface is effective. However, they only dealt with M30, and estimations on the nut geometry had not been necessarily sufficient. In this study, an extensive finite element approach for solving general multi-body contact problem is proposed by incorporating a regularization method into stiffness matrices with singularity involved; thus, numerical analyses are executed to accurately determine the optimal shape of the modified nut for various design factors.more » A modified nut with a curved bevel is also treated, and it is concluded that the modified nuts are significantly effective for bolts with larger nominal diameter and fine pitch, and are practically useful compared to pitch modification and tapered thread methods.« less
Effect of local minima on adiabatic quantum optimization.
Amin, M H S
2008-04-04
We present a perturbative method to estimate the spectral gap for adiabatic quantum optimization, based on the structure of the energy levels in the problem Hamiltonian. We show that, for problems that have an exponentially large number of local minima close to the global minimum, the gap becomes exponentially small making the computation time exponentially long. The quantum advantage of adiabatic quantum computation may then be accessed only via the local adiabatic evolution, which requires phase coherence throughout the evolution and knowledge of the spectrum. Such problems, therefore, are not suitable for adiabatic quantum computation.
NASA Technical Reports Server (NTRS)
Farhat, Charbel; Rixen, Daniel
1996-01-01
We present an optimal preconditioning algorithm that is equally applicable to the dual (FETI) and primal (Balancing) Schur complement domain decomposition methods, and which successfully addresses the problems of subdomain heterogeneities including the effects of large jumps of coefficients. The proposed preconditioner is derived from energy principles and embeds a new coarsening operator that propagates the error globally and accelerates convergence. The resulting iterative solver is illustrated with the solution of highly heterogeneous elasticity problems.
Neural Network Solves "Traveling-Salesman" Problem
NASA Technical Reports Server (NTRS)
Thakoor, Anilkumar P.; Moopenn, Alexander W.
1990-01-01
Experimental electronic neural network solves "traveling-salesman" problem. Plans round trip of minimum distance among N cities, visiting every city once and only once (without backtracking). This problem is paradigm of many problems of global optimization (e.g., routing or allocation of resources) occuring in industry, business, and government. Applied to large number of cities (or resources), circuits of this kind expected to solve problem faster and more cheaply.
Cheng, Yung-Chang; Lin, Deng-Huei; Jiang, Cho-Pei; Lin, Yuan-Min
2017-05-01
This study proposes a new methodology for dental implant customization consisting of numerical geometric optimization and 3-dimensional printing fabrication of zirconia ceramic. In the numerical modeling, exogenous factors for implant shape include the thread pitch, thread depth, maximal diameter of implant neck, and body size. Endogenous factors are bone density, cortical bone thickness, and non-osseointegration. An integration procedure, including uniform design method, Kriging interpolation and genetic algorithm, is applied to optimize the geometry of dental implants. The threshold of minimal micromotion for optimization evaluation was 100 μm. The optimized model is imported to the 3-dimensional slurry printer to fabricate the zirconia green body (powder is bonded by polymer weakly) of the implant. The sintered implant is obtained using a 2-stage sintering process. Twelve models are constructed according to uniform design method and simulated the micromotion behavior using finite element modeling. The result of uniform design models yields a set of exogenous factors that can provide the minimal micromotion (30.61 μm), as a suitable model. Kriging interpolation and genetic algorithm modified the exogenous factor of the suitable model, resulting in 27.11 μm as an optimization model. Experimental results show that the 3-dimensional slurry printer successfully fabricated the green body of the optimization model, but the accuracy of sintered part still needs to be improved. In addition, the scanning electron microscopy morphology is a stabilized t-phase microstructure, and the average compressive strength of the sintered part is 632.1 MPa. Copyright © 2016 John Wiley & Sons, Ltd.
Structural optimization of 3D-printed synthetic spider webs for high strength
Qin, Zhao; Compton, Brett G.; Lewis, Jennifer A.; Buehler, Markus J.
2015-01-01
Spiders spin intricate webs that serve as sophisticated prey-trapping architectures that simultaneously exhibit high strength, elasticity and graceful failure. To determine how web mechanics are controlled by their topological design and material distribution, here we create spider-web mimics composed of elastomeric filaments. Specifically, computational modelling and microscale 3D printing are combined to investigate the mechanical response of elastomeric webs under multiple loading conditions. We find the existence of an asymptotic prey size that leads to a saturated web strength. We identify pathways to design elastomeric material structures with maximum strength, low density and adaptability. We show that the loading type dictates the optimal material distribution, that is, a homogeneous distribution is better for localized loading, while stronger radial threads with weaker spiral threads is better for distributed loading. Our observations reveal that the material distribution within spider webs is dictated by the loading condition, shedding light on their observed architectural variations. PMID:25975372
NASA Astrophysics Data System (ADS)
Chong, Haining; Wang, Zhewei; Chen, Chaonan; Xu, Zemin; Wu, Ke; Wu, Lan; Xu, Bo; Ye, Hui
2018-04-01
In order to suppress dislocation generation, we develop a "three-step growth" method to heteroepitaxy low dislocation density germanium (Ge) layers on silicon with the MBE process. The method is composed of 3 growth steps: low temperature (LT) seed layer, LT-HT intermediate layer as well as high temperature (HT) epilayer, successively. Threading dislocation density (TDD) of epitaxial Ge layers is measured as low as 1.4 × 106 cm-2 by optimizing the growth parameters. The results of Raman spectrum showed that the internal strain of heteroepitaxial Ge layers is tensile and homogeneous. During the growth of LT-HT intermediate layer, TDD reduction can be obtained by lowering the temperature ramping rate, and high rate deposition maintains smooth surface morphology in Ge epilayer. A mechanism based on thermodynamics is used to explain the TDD and surface morphological dependence on temperature ramping rate and deposition rate. Furthermore, we demonstrate that the Ge layer obtained can provide an excellent platform for III-V materials integrated on Si.
NASA Astrophysics Data System (ADS)
Vaz, Miguel; Luersen, Marco A.; Muñoz-Rojas, Pablo A.; Trentin, Robson G.
2016-04-01
Application of optimization techniques to the identification of inelastic material parameters has substantially increased in recent years. The complex stress-strain paths and high nonlinearity, typical of this class of problems, require the development of robust and efficient techniques for inverse problems able to account for an irregular topography of the fitness surface. Within this framework, this work investigates the application of the gradient-based Sequential Quadratic Programming method, of the Nelder-Mead downhill simplex algorithm, of Particle Swarm Optimization (PSO), and of a global-local PSO-Nelder-Mead hybrid scheme to the identification of inelastic parameters based on a deep drawing operation. The hybrid technique has shown to be the best strategy by combining the good PSO performance to approach the global minimum basin of attraction with the efficiency demonstrated by the Nelder-Mead algorithm to obtain the minimum itself.
Puig, V; Cembrano, G; Romera, J; Quevedo, J; Aznar, B; Ramón, G; Cabot, J
2009-01-01
This paper deals with the global control of the Riera Blanca catchment in the Barcelona sewer network using a predictive optimal control approach. This catchment has been modelled using a conceptual modelling approach based on decomposing the catchments in subcatchments and representing them as virtual tanks. This conceptual modelling approach allows real-time model calibration and control of the sewer network. The global control problem of the Riera Blanca catchment is solved using a optimal/predictive control algorithm. To implement the predictive optimal control of the Riera Blanca catchment, a software tool named CORAL is used. The on-line control is simulated by interfacing CORAL with a high fidelity simulator of sewer networks (MOUSE). CORAL interchanges readings from the limnimeters and gate commands with MOUSE as if it was connected with the real SCADA system. Finally, the global control results obtained using the predictive optimal control are presented and compared against the results obtained using current local control system. The results obtained using the global control are very satisfactory compared to those obtained using the local control.
Optimizing visual comfort for stereoscopic 3D display based on color-plus-depth signals.
Shao, Feng; Jiang, Qiuping; Fu, Randi; Yu, Mei; Jiang, Gangyi
2016-05-30
Visual comfort is a long-facing problem in stereoscopic 3D (S3D) display. In this paper, targeting to produce S3D content based on color-plus-depth signals, a general framework for depth mapping to optimize visual comfort for S3D display is proposed. The main motivation of this work is to remap the depth range of color-plus-depth signals to a new depth range that is suitable to comfortable S3D display. Towards this end, we first remap the depth range globally based on the adjusted zero disparity plane, and then present a two-stage global and local depth optimization solution to solve the visual comfort problem. The remapped depth map is used to generate the S3D output. We demonstrate the power of our approach on perceptually uncomfortable and comfortable stereoscopic images.
Efficient Optimization of Low-Thrust Spacecraft Trajectories
NASA Technical Reports Server (NTRS)
Lee, Seungwon; Fink, Wolfgang; Russell, Ryan; Terrile, Richard; Petropoulos, Anastassios; vonAllmen, Paul
2007-01-01
A paper describes a computationally efficient method of optimizing trajectories of spacecraft driven by propulsion systems that generate low thrusts and, hence, must be operated for long times. A common goal in trajectory-optimization problems is to find minimum-time, minimum-fuel, or Pareto-optimal trajectories (here, Pareto-optimality signifies that no other solutions are superior with respect to both flight time and fuel consumption). The present method utilizes genetic and simulated-annealing algorithms to search for globally Pareto-optimal solutions. These algorithms are implemented in parallel form to reduce computation time. These algorithms are coupled with either of two traditional trajectory- design approaches called "direct" and "indirect." In the direct approach, thrust control is discretized in either arc time or arc length, and the resulting discrete thrust vectors are optimized. The indirect approach involves the primer-vector theory (introduced in 1963), in which the thrust control problem is transformed into a co-state control problem and the initial values of the co-state vector are optimized. In application to two example orbit-transfer problems, this method was found to generate solutions comparable to those of other state-of-the-art trajectory-optimization methods while requiring much less computation time.
Multiple crack detection in 3D using a stable XFEM and global optimization
NASA Astrophysics Data System (ADS)
Agathos, Konstantinos; Chatzi, Eleni; Bordas, Stéphane P. A.
2018-02-01
A numerical scheme is proposed for the detection of multiple cracks in three dimensional (3D) structures. The scheme is based on a variant of the extended finite element method (XFEM) and a hybrid optimizer solution. The proposed XFEM variant is particularly well-suited for the simulation of 3D fracture problems, and as such serves as an efficient solution to the so-called forward problem. A set of heuristic optimization algorithms are recombined into a multiscale optimization scheme. The introduced approach proves effective in tackling the complex inverse problem involved, where identification of multiple flaws is sought on the basis of sparse measurements collected near the structural boundary. The potential of the scheme is demonstrated through a set of numerical case studies of varying complexity.
An information driven strategy to support multidisciplinary design
NASA Technical Reports Server (NTRS)
Rangan, Ravi M.; Fulton, Robert E.
1990-01-01
The design of complex engineering systems such as aircraft, automobiles, and computers is primarily a cooperative multidisciplinary design process involving interactions between several design agents. The common thread underlying this multidisciplinary design activity is the information exchange between the various groups and disciplines. The integrating component in such environments is the common data and the dependencies that exist between such data. This may be contrasted to classical multidisciplinary analyses problems where there is coupling between distinct design parameters. For example, they may be expressed as mathematically coupled relationships between aerodynamic and structural interactions in aircraft structures, between thermal and structural interactions in nuclear plants, and between control considerations and structural interactions in flexible robots. These relationships provide analytical based frameworks leading to optimization problem formulations. However, in multidisciplinary design problems, information based interactions become more critical. Many times, the relationships between different design parameters are not amenable to analytical characterization. Under such circumstances, information based interactions will provide the best integration paradigm, i.e., there is a need to model the data entities and their dependencies between design parameters originating from different design agents. The modeling of such data interactions and dependencies forms the basis for integrating the various design agents.
The Problem State: A Cognitive Bottleneck in Multitasking
ERIC Educational Resources Information Center
Borst, Jelmer P.; Taatgen, Niels A.; van Rijn, Hedderik
2010-01-01
The main challenge for theories of multitasking is to predict when and how tasks interfere. Here, we focus on interference related to the problem state, a directly accessible intermediate representation of the current state of a task. On the basis of Salvucci and Taatgen's (2008) threaded cognition theory, we predict interference if 2 or more…
Optimizing human activity patterns using global sensitivity analysis.
Fairchild, Geoffrey; Hickmann, Kyle S; Mniszewski, Susan M; Del Valle, Sara Y; Hyman, James M
2014-12-01
Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule's regularity for a population. We show how to tune an activity's regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimization problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. We use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations.
Optimizing human activity patterns using global sensitivity analysis
Hickmann, Kyle S.; Mniszewski, Susan M.; Del Valle, Sara Y.; Hyman, James M.
2014-01-01
Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule’s regularity for a population. We show how to tune an activity’s regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimization problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. We use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations. PMID:25580080
Role of Aragvadhadi Sutra in the Management of Fistula -in-Ano.
Kumar, P H; Sahu, M
2000-01-01
Traditional Medicine has its own importance for the treatment of various medical and surgical diseases irrespective of tremendous development of modern medicine. There are number of diseases were after repeated surgery. Fistula-in ano is one such condition which is prone to recurrence even after repeated surgery and can be effectively treated by Ayurvedic medicines. An extensive work has been done on the treatment of Bhagandara by Kshara sutra exploring various aspects of the problem and finding our the solution to them1. the present study is related to similar type of medicated thread known as Aragvadadi Sutra which has been mentioned by sushruta in Bhagandara. It consists of Aragvadha (Cassia fistula), Haridra (Curcuma longa), Agaru (Aquilaria agalocha), Madhu (Honey) and Ghrita (Ghee). This is the first non-caustic thread being tried on different types of Bhagandara. Especially it is a painless thread, non-irritant and very useful in sensitive patients like children, females and elders.
Metal and transuranic records in mussel shells, byssal threads and tissues
NASA Astrophysics Data System (ADS)
Koide, Minoru; Lee, Dong Soo; Goldberg, Edward D.
1982-12-01
Bivalve shells offer several advantages over tissues for the monitoring of heavy metal pollutants in the marine environment. They are easier to handle and to store. The problem of whether to depurate the animals before analyses is avoided. The shells appear to be more sensitive to environmental heavy metals levels over the long term than do the soft parts. Of the substances examined (Cd, Cu, Zn, Pb, Ag, Ni, 238Pu and 239 + 240Pu) only Pb and Pu displayed a strong covariance between soft tissue and shell concentrations. There were strong correlations between metals in the shell but not in the soft tissues in general. The byssal threads, because of their enrichment of transuranic elements and of their ease in handling, may be useful in monitoring these metals. A very weak discharge of 238Pu to marine waters adjacent to a nuclear reactor was detected in the byssal threads of mussels.
Collective intelligence for control of distributed dynamical systems
NASA Astrophysics Data System (ADS)
Wolpert, D. H.; Wheeler, K. R.; Tumer, K.
2000-03-01
We consider the El Farol bar problem, also known as the minority game (W. B. Arthur, The American Economic Review, 84 (1994) 406; D. Challet and Y. C. Zhang, Physica A, 256 (1998) 514). We view it as an instance of the general problem of how to configure the nodal elements of a distributed dynamical system so that they do not "work at cross purposes", in that their collective dynamics avoids frustration and thereby achieves a provided global goal. We summarize a mathematical theory for such configuration applicable when (as in the bar problem) the global goal can be expressed as minimizing a global energy function and the nodes can be expressed as minimizers of local free energy functions. We show that a system designed with that theory performs nearly optimally for the bar problem.
NASA Astrophysics Data System (ADS)
Gandomi, A. H.; Yang, X.-S.; Talatahari, S.; Alavi, A. H.
2013-01-01
A recently developed metaheuristic optimization algorithm, firefly algorithm (FA), mimics the social behavior of fireflies based on the flashing and attraction characteristics of fireflies. In the present study, we will introduce chaos into FA so as to increase its global search mobility for robust global optimization. Detailed studies are carried out on benchmark problems with different chaotic maps. Here, 12 different chaotic maps are utilized to tune the attractive movement of the fireflies in the algorithm. The results show that some chaotic FAs can clearly outperform the standard FA.
Inference of Stochastic Nonlinear Oscillators with Applications to Physiological Problems
NASA Technical Reports Server (NTRS)
Smelyanskiy, Vadim N.; Luchinsky, Dmitry G.
2004-01-01
A new method of inferencing of coupled stochastic nonlinear oscillators is described. The technique does not require extensive global optimization, provides optimal compensation for noise-induced errors and is robust in a broad range of dynamical models. We illustrate the main ideas of the technique by inferencing a model of five globally and locally coupled noisy oscillators. Specific modifications of the technique for inferencing hidden degrees of freedom of coupled nonlinear oscillators is discussed in the context of physiological applications.
Damping of prominence longitudinal oscillations due to mass accretion
NASA Astrophysics Data System (ADS)
Ruderman, Michael S.; Luna, Manuel
2016-06-01
We study the damping of longitudinal oscillations of a prominence thread caused by the mass accretion. We suggested a simple model describing this phenomenon. In this model we considered a thin curved magnetic tube filled with the plasma. The prominence thread is in the central part of the tube and it consists of dense cold plasma. The parts of the tube at the two sides of the thread are filled with hot rarefied plasma. We assume that there are flows of rarefied plasma toward the thread caused by the plasma evaporation at the magnetic tube footpoints. Our main assumption is that the hot plasma is instantaneously accommodated by the thread when it arrives at the thread, and its temperature and density become equal to those of the thread. Then we derive the system of ordinary differential equations describing the thread dynamics. We solve this system of ordinary differential equations in two particular cases. In the first case we assume that the magnetic tube is composed of an arc of a circle with two straight lines attached to its ends such that the whole curve is smooth. A very important property of this model is that the equations describing the thread oscillations are linear for any oscillation amplitude. We obtain the analytical solution of the governing equations. Then we obtain the analytical expressions for the oscillation damping time and periods. We find that the damping time is inversely proportional to the accretion rate. The oscillation periods increase with time. We conclude that the oscillations can damp in a few periods if the inclination angle is sufficiently small, not larger that 10°, and the flow speed is sufficiently large, not less that 30 km s-1. In the second model we consider the tube with the shape of an arc of a circle. The thread oscillates with the pendulum frequency dependent exclusively on the radius of curvature of the arc. The damping depends on the mass accretion rate and the initial mass of the threads, that is the mass of the thread at the moment when it is perturbed. First we consider small amplitude oscillations and use the linear description. Then we consider nonlinear oscillations and assume that the damping is slow, meaning that the damping time is much larger that the characteristic oscillation time. The thread oscillations are described by the solution of the nonlinear pendulum problem with slowly varying amplitude. The nonlinearity reduces the damping time, however this reduction is small. Again the damping time is inversely proportional to the accretion rate. We also obtain that the oscillation periods decrease with time. However even for the largest initial oscillation amplitude considered in our article the period reduction does not exceed 20%. We conclude that the mass accretion can damp the motion of the threads rapidly. Thus, this mechanism can explain the observed strong damping of large-amplitude longitudinal oscillations. In addition, the damping time can be used to determine the mass accretion rate and indirectly the coronal heating.
Wang, Xinghu; Hong, Yiguang; Yi, Peng; Ji, Haibo; Kang, Yu
2017-05-24
In this paper, a distributed optimization problem is studied for continuous-time multiagent systems with unknown-frequency disturbances. A distributed gradient-based control is proposed for the agents to achieve the optimal consensus with estimating unknown frequencies and rejecting the bounded disturbance in the semi-global sense. Based on convex optimization analysis and adaptive internal model approach, the exact optimization solution can be obtained for the multiagent system disturbed by exogenous disturbances with uncertain parameters.
Local search for optimal global map generation using mid-decadal landsat images
Khatib, L.; Gasch, J.; Morris, Robert; Covington, S.
2007-01-01
NASA and the US Geological Survey (USGS) are seeking to generate a map of the entire globe using Landsat 5 Thematic Mapper (TM) and Landsat 7 Enhanced Thematic Mapper Plus (ETM+) sensor data from the "mid-decadal" period of 2004 through 2006. The global map is comprised of thousands of scene locations and, for each location, tens of different images of varying quality to chose from. Furthermore, it is desirable for images of adjacent scenes be close together in time of acquisition, to avoid obvious discontinuities due to seasonal changes. These characteristics make it desirable to formulate an automated solution to the problem of generating the complete map. This paper formulates a Global Map Generator problem as a Constraint Optimization Problem (GMG-COP) and describes an approach to solving it using local search. Preliminary results of running the algorithm on image data sets are summarized. The results suggest a significant improvement in map quality using constraint-based solutions. Copyright ?? 2007, Association for the Advancement of Artificial Intelligence (www.aaai.org). All rights reserved.
Huang, Song; Tian, Na; Wang, Yan; Ji, Zhicheng
2016-01-01
Taking resource allocation into account, flexible job shop problem (FJSP) is a class of complex scheduling problem in manufacturing system. In order to utilize the machine resources rationally, multi-objective particle swarm optimization (MOPSO) integrating with variable neighborhood search is introduced to address FJSP efficiently. Firstly, the assignment rules (AL) and dispatching rules (DR) are provided to initialize the population. And then special discrete operators are designed to produce new individuals and earliest completion machine (ECM) is adopted in the disturbance operator to escape the optima. Secondly, personal-best archives (cognitive memories) and global-best archive (social memory), which are updated by the predefined non-dominated archive update strategy, are simultaneously designed to preserve non-dominated individuals and select personal-best positions and the global-best position. Finally, three neighborhoods are provided to search the neighborhoods of global-best archive for enhancing local search ability. The proposed algorithm is evaluated by using Kacem instances and Brdata instances, and a comparison with other approaches shows the effectiveness of the proposed algorithm for FJSP.
Thinking Globally about U.S. Extended Deterrence
DOE Office of Scientific and Technical Information (OSTI.GOV)
Roberts, Brad; Santoro, David; Volpe, Tristan
In contrast to the Cold War bilateral global competition between the United States and the Soviet Union, the modern nuclear age features a more complex, multiplayer arena on the regional scale. With the exception of the U.S. and Russia, most major powers retain relatively small nuclear arsenals or technical hedge capabilities. The U.S., with strong interests and security partnerships in Europe, Northeast Asia, and the Middle East, must navigate through long-standing rivalries and active conflicts while attempting to divine the intentions of less experienced nuclear decision makers in charge of weak domestic institutions. As a result, analysts and policymakers mustmore » think globally about U.S. extended deterrence. How have the requirements of extended deterrence and assurance changed? Are there important threads that connect each region? What should the U.S. do differently? To explore these questions, Lawrence Livermore National Laboratory’s Center for Global Security Research, in partnership with the Carnegie Endowment for International Peace and the Pacific Forum CSIS, held a workshop on “Thinking Globally about U.S. Extended Deterrence” in Washington, DC on November 2, 2015. The workshop brought together approximately 40 U.S. and foreign deterrence specialists and government officials, all attending in their private capacities. The participants joined a day of not-for-attribution discussions on the changing deterrence and assurance requirements, the threads that connect the regions, and U.S. strategy to deal with emerging challenges. The following is a summary of key takeaways.« less
Pricing of swing options: A Monte Carlo simulation approach
NASA Astrophysics Data System (ADS)
Leow, Kai-Siong
We study the problem of pricing swing options, a class of multiple early exercise options that are traded in energy market, particularly in the electricity and natural gas markets. These contracts permit the option holder to periodically exercise the right to trade a variable amount of energy with a counterparty, subject to local volumetric constraints. In addition, the total amount of energy traded from settlement to expiration with the counterparty is restricted by a global volumetric constraint. Violation of this global volumetric constraint is allowed but would lead to penalty settled at expiration. The pricing problem is formulated as a stochastic optimal control problem in discrete time and state space. We present a stochastic dynamic programming algorithm which is based on piecewise linear concave approximation of value functions. This algorithm yields the value of the swing option under the assumption that the optimal exercise policy is applied by the option holder. We present a proof of an almost sure convergence that the algorithm generates the optimal exercise strategy as the number of iterations approaches to infinity. Finally, we provide a numerical example for pricing a natural gas swing call option.
Optimal Sensor Layouts in Underwater Locomotory Systems
NASA Astrophysics Data System (ADS)
Colvert, Brendan; Kanso, Eva
2015-11-01
Retrieving and understanding global flow characteristics from local sensory measurements is a challenging but extremely relevant problem in fields such as defense, robotics, and biomimetics. It is an inverse problem in that the goal is to translate local information into global flow properties. In this talk we present techniques for optimization of sensory layouts within the context of an idealized underwater locomotory system. Using techniques from fluid mechanics and control theory, we show that, under certain conditions, local measurements can inform the submerged body about its orientation relative to the ambient flow, and allow it to recognize local properties of shear flows. We conclude by commenting on the relevance of these findings to underwater navigation in engineered systems and live organisms.
The marriage problem and the fate of bachelors
NASA Astrophysics Data System (ADS)
Nieuwenhuizen, Th. M.
In the marriage problem, a variant of the bi-parted matching problem, each member has a “wish-list” expressing his/her preference for all possible partners; this list consists of random, positive real numbers drawn from a certain distribution. One searches the lowest cost for the society, at the risk of breaking up pairs in the course of time. Minimization of a global cost function (Hamiltonian) is performed with statistical mechanics techniques at a finite fictitious temperature. The problem is generalized to include bachelors, needed in particular when the groups have different size, and polygamy. Exact solutions are found for the optimal solution ( T=0). The entropy is found to vanish quadratically in T. Also, other evidence is found that the replica symmetric solution is exact, implying at most a polynomial degeneracy of the optimal solution. Whether bachelors occur or not, depends not only on their intrinsic qualities, or lack thereof, but also on global aspects of the chance for pair formation in society.
NASA Astrophysics Data System (ADS)
Korotkova, T. I.; Popova, V. I.
2017-11-01
The generalized mathematical model of decision-making in the problem of planning and mode selection providing required heat loads in a large heat supply system is considered. The system is multilevel, decomposed into levels of main and distribution heating networks with intermediate control stages. Evaluation of the effectiveness, reliability and safety of such a complex system is carried out immediately according to several indicators, in particular pressure, flow, temperature. This global multicriteria optimization problem with constraints is decomposed into a number of local optimization problems and the coordination problem. An agreed solution of local problems provides a solution to the global multicriterion problem of decision making in a complex system. The choice of the optimum operational mode of operation of a complex heat supply system is made on the basis of the iterative coordination process, which converges to the coordinated solution of local optimization tasks. The interactive principle of multicriteria task decision-making includes, in particular, periodic adjustment adjustments, if necessary, guaranteeing optimal safety, reliability and efficiency of the system as a whole in the process of operation. The degree of accuracy of the solution, for example, the degree of deviation of the internal air temperature from the required value, can also be changed interactively. This allows to carry out adjustment activities in the best way and to improve the quality of heat supply to consumers. At the same time, an energy-saving task is being solved to determine the minimum required values of heads at sources and pumping stations.
Quantum Heterogeneous Computing for Satellite Positioning Optimization
NASA Astrophysics Data System (ADS)
Bass, G.; Kumar, V.; Dulny, J., III
2016-12-01
Hard optimization problems occur in many fields of academic study and practical situations. We present results in which quantum heterogeneous computing is used to solve a real-world optimization problem: satellite positioning. Optimization problems like this can scale very rapidly with problem size, and become unsolvable with traditional brute-force methods. Typically, such problems have been approximately solved with heuristic approaches; however, these methods can take a long time to calculate and are not guaranteed to find optimal solutions. Quantum computing offers the possibility of producing significant speed-up and improved solution quality. There are now commercially available quantum annealing (QA) devices that are designed to solve difficult optimization problems. These devices have 1000+ quantum bits, but they have significant hardware size and connectivity limitations. We present a novel heterogeneous computing stack that combines QA and classical machine learning and allows the use of QA on problems larger than the quantum hardware could solve in isolation. We begin by analyzing the satellite positioning problem with a heuristic solver, the genetic algorithm. The classical computer's comparatively large available memory can explore the full problem space and converge to a solution relatively close to the true optimum. The QA device can then evolve directly to the optimal solution within this more limited space. Preliminary experiments, using the Quantum Monte Carlo (QMC) algorithm to simulate QA hardware, have produced promising results. Working with problem instances with known global minima, we find a solution within 8% in a matter of seconds, and within 5% in a few minutes. Future studies include replacing QMC with commercially available quantum hardware and exploring more problem sets and model parameters. Our results have important implications for how heterogeneous quantum computing can be used to solve difficult optimization problems in any field.
A globally convergent LCL method for nonlinear optimization.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Friedlander, M. P.; Saunders, M. A.; Mathematics and Computer Science
2005-01-01
For optimization problems with nonlinear constraints, linearly constrained Lagrangian (LCL) methods solve a sequence of subproblems of the form 'minimize an augmented Lagrangian function subject to linearized constraints.' Such methods converge rapidly near a solution but may not be reliable from arbitrary starting points. Nevertheless, the well-known software package MINOS has proved effective on many large problems. Its success motivates us to derive a related LCL algorithm that possesses three important properties: it is globally convergent, the subproblem constraints are always feasible, and the subproblems may be solved inexactly. The new algorithm has been implemented in Matlab, with an optionmore » to use either MINOS or SNOPT (Fortran codes) to solve the linearly constrained subproblems. Only first derivatives are required. We present numerical results on a subset of the COPS, HS, and CUTE test problems, which include many large examples. The results demonstrate the robustness and efficiency of the stabilized LCL procedure.« less
NASA Astrophysics Data System (ADS)
Polprasert, Jirawadee; Ongsakul, Weerakorn; Dieu, Vo Ngoc
2011-06-01
This paper proposes a self-organizing hierarchical particle swarm optimization (SPSO) with time-varying acceleration coefficients (TVAC) for solving economic dispatch (ED) problem with non-smooth functions including multiple fuel options (MFO) and valve-point loading effects (VPLE). The proposed SPSO with TVAC is the new approach optimizer and good performance for solving ED problems. It can handle the premature convergence of the problem by re-initialization of velocity whenever particles are stagnated in the search space. To properly control both local and global explorations of the swarm during the optimization process, the performance of TVAC is included. The proposed method is tested in different ED problems with non-smooth cost functions and the obtained results are compared to those from many other methods in the literature. The results have revealed that the proposed SPSO with TVAC is effective in finding higher quality solutions for non-smooth ED problems than many other methods.
Integrating NOE and RDC using sum-of-squares relaxation for protein structure determination.
Khoo, Y; Singer, A; Cowburn, D
2017-07-01
We revisit the problem of protein structure determination from geometrical restraints from NMR, using convex optimization. It is well-known that the NP-hard distance geometry problem of determining atomic positions from pairwise distance restraints can be relaxed into a convex semidefinite program (SDP). However, often the NOE distance restraints are too imprecise and sparse for accurate structure determination. Residual dipolar coupling (RDC) measurements provide additional geometric information on the angles between atom-pair directions and axes of the principal-axis-frame. The optimization problem involving RDC is highly non-convex and requires a good initialization even within the simulated annealing framework. In this paper, we model the protein backbone as an articulated structure composed of rigid units. Determining the rotation of each rigid unit gives the full protein structure. We propose solving the non-convex optimization problems using the sum-of-squares (SOS) hierarchy, a hierarchy of convex relaxations with increasing complexity and approximation power. Unlike classical global optimization approaches, SOS optimization returns a certificate of optimality if the global optimum is found. Based on the SOS method, we proposed two algorithms-RDC-SOS and RDC-NOE-SOS, that have polynomial time complexity in the number of amino-acid residues and run efficiently on a standard desktop. In many instances, the proposed methods exactly recover the solution to the original non-convex optimization problem. To the best of our knowledge this is the first time SOS relaxation is introduced to solve non-convex optimization problems in structural biology. We further introduce a statistical tool, the Cramér-Rao bound (CRB), to provide an information theoretic bound on the highest resolution one can hope to achieve when determining protein structure from noisy measurements using any unbiased estimator. Our simulation results show that when the RDC measurements are corrupted by Gaussian noise of realistic variance, both SOS based algorithms attain the CRB. We successfully apply our method in a divide-and-conquer fashion to determine the structure of ubiquitin from experimental NOE and RDC measurements obtained in two alignment media, achieving more accurate and faster reconstructions compared to the current state of the art.
MO-AB-BRA-01: A Global Level Set Based Formulation for Volumetric Modulated Arc Therapy
DOE Office of Scientific and Technical Information (OSTI.GOV)
Nguyen, D; Lyu, Q; Ruan, D
2016-06-15
Purpose: The current clinical Volumetric Modulated Arc Therapy (VMAT) optimization is formulated as a non-convex problem and various greedy heuristics have been employed for an empirical solution, jeopardizing plan consistency and quality. We introduce a novel global direct aperture optimization method for VMAT to overcome these limitations. Methods: The global VMAT (gVMAT) planning was formulated as an optimization problem with an L2-norm fidelity term and an anisotropic total variation term. A level set function was used to describe the aperture shapes and adjacent aperture shapes were penalized to control MLC motion range. An alternating optimization strategy was implemented to solvemore » the fluence intensity and aperture shapes simultaneously. Single arc gVMAT plans, utilizing 180 beams with 2° angular resolution, were generated for a glioblastoma multiforme (GBM), lung (LNG), and 2 head and neck cases—one with 3 PTVs (H&N3PTV) and one with 4 PTVs (H&N4PTV). The plans were compared against the clinical VMAT (cVMAT) plans utilizing two overlapping coplanar arcs. Results: The optimization of the gVMAT plans had converged within 600 iterations. gVMAT reduced the average max and mean OAR dose by 6.59% and 7.45% of the prescription dose. Reductions in max dose and mean dose were as high as 14.5 Gy in the LNG case and 15.3 Gy in the H&N3PTV case. PTV coverages (D95, D98, D99) were within 0.25% of the prescription dose. By globally considering all beams, the gVMAT optimizer allowed some beams to deliver higher intensities, yielding a dose distribution that resembles a static beam IMRT plan with beam orientation optimization. Conclusions: The novel VMAT approach allows for the search of an optimal plan in the global solution space and generates deliverable apertures directly. The single arc VMAT approach fully utilizes the digital linacs’ capability in dose rate and gantry rotation speed modulation. Varian Medical Systems, NIH grant R01CA188300, NIH grant R43CA183390.« less
Toward Enhancing OpenMP's Work-Sharing Directives
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chapman, B M; Huang, L; Jin, H
2006-05-17
OpenMP provides a portable programming interface for shared memory parallel computers (SMPs). Although this interface has proven successful for small SMPs, it requires greater flexibility in light of the steadily growing size of individual SMPs and the recent advent of multithreaded chips. In this paper, we describe two application development experiences that exposed these expressivity problems in the current OpenMP specification. We then propose mechanisms to overcome these limitations, including thread subteams and thread topologies. Thus, we identify language features that improve OpenMP application performance on emerging and large-scale platforms while preserving ease of programming.
A Unified Approach to Optimization
2014-10-02
employee scheduling, ad placement, latin squares, disjunctions of linear systems, temporal modeling with interval variables, and traveling salesman problems ...integrating technologies. A key to integrated modeling is to formulate a problem with high-levelmetaconstraints, which are inspired by the “global... problem substructure to the solver. This contrasts with the atomistic modeling style of mixed integer programming (MIP) and satisfiability (SAT) solvers
Neoliberal Optimism: Applying Market Techniques to Global Health.
Mei, Yuyang
2017-01-01
Global health and neoliberalism are becoming increasingly intertwined as organizations utilize markets and profit motives to solve the traditional problems of poverty and population health. I use field work conducted over 14 months in a global health technology company to explore how the promise of neoliberalism re-envisions humanitarian efforts. In this company's vaccine refrigerator project, staff members expect their investors and their market to allow them to achieve scale and develop accountability to their users in developing countries. However, the translation of neoliberal techniques to the global health sphere falls short of the ideal, as profits are meager and purchasing power remains with donor organizations. The continued optimism in market principles amidst such a non-ideal market reveals the tenacious ideological commitment to neoliberalism in these global health projects.
Using VoiceThread to Promote Collaborative Learning in On-Line Clinical Nurse Leader Courses.
Fox, Ola H
The movement to advance the clinical nurse leader (CNL) as an innovative new role for meeting higher health care quality standards continues with CNL programs offered on-line at colleges and universities nationwide. Collaborative learning activities offer the opportunity for CNL students to gain experience in working together in small groups to negotiate and solve care process problems. The challenge for nurse educators is to provide collaborative learning activities in an asynchronous learning environment that can be considered isolating by default. This article reports on the experiences of 17 CNL students who used VoiceThread, a cloud-based tool that allowed them to communicate asynchronously with one another through voice comments for collaboration and sharing knowledge. Participants identified benefits and drawbacks to using VoiceThread for collaboration as compared to text-based discussion boards. Students reported that the ability to hear the voice of their peers and the instructor helped them feel like they were in a classroom communicating with "real" instructor and peers. Students indicated a preference for on-line classes that used VoiceThread discussions to on-line classes that used only text-based discussion boards. Copyright © 2016 Elsevier Inc. All rights reserved.
Harmony search optimization for HDR prostate brachytherapy
NASA Astrophysics Data System (ADS)
Panchal, Aditya
In high dose-rate (HDR) prostate brachytherapy, multiple catheters are inserted interstitially into the target volume. The process of treating the prostate involves calculating and determining the best dose distribution to the target and organs-at-risk by means of optimizing the time that the radioactive source dwells at specified positions within the catheters. It is the goal of this work to investigate the use of a new optimization algorithm, known as Harmony Search, in order to optimize dwell times for HDR prostate brachytherapy. The new algorithm was tested on 9 different patients and also compared with the genetic algorithm. Simulations were performed to determine the optimal value of the Harmony Search parameters. Finally, multithreading of the simulation was examined to determine potential benefits. First, a simulation environment was created using the Python programming language and the wxPython graphical interface toolkit, which was necessary to run repeated optimizations. DICOM RT data from Varian BrachyVision was parsed and used to obtain patient anatomy and HDR catheter information. Once the structures were indexed, the volume of each structure was determined and compared to the original volume calculated in BrachyVision for validation. Dose was calculated using the AAPM TG-43 point source model of the GammaMed 192Ir HDR source and was validated against Varian BrachyVision. A DVH-based objective function was created and used for the optimization simulation. Harmony Search and the genetic algorithm were implemented as optimization algorithms for the simulation and were compared against each other. The optimal values for Harmony Search parameters (Harmony Memory Size [HMS], Harmony Memory Considering Rate [HMCR], and Pitch Adjusting Rate [PAR]) were also determined. Lastly, the simulation was modified to use multiple threads of execution in order to achieve faster computational times. Experimental results show that the volume calculation that was implemented in this thesis was within 2% of the values computed by Varian BrachyVision for the prostate, within 3% for the rectum and bladder and 6% for the urethra. The calculation of dose compared to BrachyVision was determined to be different by only 0.38%. Isodose curves were also generated and were found to be similar to BrachyVision. The comparison between Harmony Search and genetic algorithm showed that Harmony Search was over 4 times faster when compared over multiple data sets. The optimal Harmony Memory Size was found to be 5 or lower; the Harmony Memory Considering Rate was determined to be 0.95, and the Pitch Adjusting Rate was found to be 0.9. Ultimately, the effect of multithreading showed that as intensive computations such as optimization and dose calculation are involved, the threads of execution scale with the number of processors, achieving a speed increase proportional to the number of processor cores. In conclusion, this work showed that Harmony Search is a viable alternative to existing algorithms for use in HDR prostate brachytherapy optimization. Coupled with the optimal parameters for the algorithm and a multithreaded simulation, this combination has the capability to significantly decrease the time spent on minimizing optimization problems in the clinic that are time intensive, such as brachytherapy, IMRT and beam angle optimization.
Epidemic spreading on random surfer networks with optimal interaction radius
NASA Astrophysics Data System (ADS)
Feng, Yun; Ding, Li; Hu, Ping
2018-03-01
In this paper, the optimal control problem of epidemic spreading on random surfer heterogeneous networks is considered. An epidemic spreading model is established according to the classification of individual's initial interaction radii. Then, a control strategy is proposed based on adjusting individual's interaction radii. The global stability of the disease free and endemic equilibrium of the model is investigated. We prove that an optimal solution exists for the optimal control problem and the explicit form of which is presented. Numerical simulations are conducted to verify the correctness of the theoretical results. It is proved that the optimal control strategy is effective to minimize the density of infected individuals and the cost associated with the adjustment of interaction radii.
NASA Astrophysics Data System (ADS)
Trost, Nico; Jiménez, Javier; Imke, Uwe; Sanchez, Victor
2014-06-01
TWOPORFLOW is a thermo-hydraulic code based on a porous media approach to simulate single- and two-phase flow including boiling. It is under development at the Institute for Neutron Physics and Reactor Technology (INR) at KIT. The code features a 3D transient solution of the mass, momentum and energy conservation equations for two inter-penetrating fluids with a semi-implicit continuous Eulerian type solver. The application domain of TWOPORFLOW includes the flow in standard porous media and in structured porous media such as micro-channels and cores of nuclear power plants. In the latter case, the fluid domain is coupled to a fuel rod model, describing the heat flow inside the solid structure. In this work, detailed profiling tools have been utilized to determine the optimization potential of TWOPORFLOW. As a result, bottle-necks were identified and reduced in the most feasible way, leading for instance to an optimization of the water-steam property computation. Furthermore, an OpenMP implementation addressing the routines in charge of inter-phase momentum-, energy- and mass-coupling delivered good performance together with a high scalability on shared memory architectures. In contrast to that, the approach for distributed memory systems was to solve sub-problems resulting by the decomposition of the initial Cartesian geometry. Thread communication for the sub-problem boundary updates was accomplished by the Message Passing Interface (MPI) standard.
Staying alive: the psychology of human survival
DOE Office of Scientific and Technical Information (OSTI.GOV)
Walsh, R.
Human beings need not live on the edge of global extinction. The author advocates that the problems created by greed, aggression, and ignorance (such as pollution, nuclear weaponry, and ecological imbalances) can be altered by individual and collective effort to confront inner confusion. By making the effort to educate each other, changing beliefs about themselves and others, and reducing fear and defensiveness, people can work toward developing the positive global psychology that the author outlines. Using the principles of behavior modification, he reinterprets motivation to apply to a global therapy based on optimism and good will. An appendix gives themore » names and addresses of organizations working toward the resolution of global problems. 174 references.« less
I, Zarei; S, Khajehpour; A, Sabouri; AZ, Haghnegahdar; K, Jafari
2016-01-01
Statement of Problem: Impacts and accidents are considered as the main fac- tors in losing the teeth, so the analysis and design of the implants that they can be more resistant against impacts is very important. One of the important nu- merical methods having widespread application in various fields of engineering sciences is the finite element method. Among its wide applications, the study of distribution of power in complex structures can be noted. Objectives: The aim of this research was to assess the geometric effect and the type of implant thread on its performance; we also made an attempt to determine the created stress using finite element method. Materials and Methods: In this study, the three dimensional model of bone by using Cone Beam Computerized Tomography (CBCT) of the patient has been provided. The implants in this study are designed by Solid Works software. Loading is simulated in explicit dynamic, by struck of a rigid body with the speed of 1 mm/s to implant vertically and horizontally; and the maximum level of induced stress for the cortical and trabecular bone in the ANSYS Workbench software was calculated. Results: By considering the results of this study, it was identified that, among the designed samples, the maximum imposed stress in the cortical bone layer occurred in the first group (straight threads) and the maximum stress value in the trabecular bone layer and implant occurred in the second group (tapered threads). Conclusions: Due to the limitations of this study, the implants with more depth thread, because of the increased contact surface of the implant with the bone, caused more stability; also, the implant with smaller thread and shorter pitch length caused more stress to the bone. PMID:28959748
THREaD Mapper Studio: a novel, visual web server for the estimation of genetic linkage maps
Cheema, Jitender; Ellis, T. H. Noel; Dicks, Jo
2010-01-01
The estimation of genetic linkage maps is a key component in plant and animal research, providing both an indication of the genetic structure of an organism and a mechanism for identifying candidate genes associated with traits of interest. Because of this importance, several computational solutions to genetic map estimation exist, mostly implemented as stand-alone software packages. However, the estimation process is often largely hidden from the user. Consequently, problems such as a program crashing may occur that leave a user baffled. THREaD Mapper Studio (http://cbr.jic.ac.uk/threadmapper) is a new web site that implements a novel, visual and interactive method for the estimation of genetic linkage maps from DNA markers. The rationale behind the web site is to make the estimation process as transparent and robust as possible, while also allowing users to use their expert knowledge during analysis. Indeed, the 3D visual nature of the tool allows users to spot features in a data set, such as outlying markers and potential structural rearrangements that could cause problems with the estimation procedure and to account for them in their analysis. Furthermore, THREaD Mapper Studio facilitates the visual comparison of genetic map solutions from third party software, aiding users in developing robust solutions for their data sets. PMID:20494977
Evolution of System Architectures: Where Do We Need to Fail Next?
NASA Astrophysics Data System (ADS)
Bermudez, Luis; Alameh, Nadine; Percivall, George
2013-04-01
Innovation requires testing and failing. Thomas Edison was right when he said "I have not failed. I've just found 10,000 ways that won't work". For innovation and improvement of standards to happen, service Architectures have to be tested and tested. Within the Open Geospatial Consortium (OGC), testing of service architectures has occurred for the last 15 years. This talk will present an evolution of these service architectures and a possible future path. OGC is a global forum for the collaboration of developers and users of spatial data products and services, and for the advancement and development of international standards for geospatial interoperability. The OGC Interoperability Program is a series of hands-on, fast paced, engineering initiatives to accelerate the development and acceptance of OGC standards. Each initiative is organized in threads that provide focus under a particular theme. The first testbed, OGC Web Services phase 1, completed in 2003 had four threads: Common Architecture, Web Mapping, Sensor Web and Web Imagery Enablement. The Common Architecture was a cross-thread theme, to ensure that the Web Mapping and Sensor Web experiments built on a base common architecture. The architecture was based on the three main SOA components: Broker, Requestor and Provider. It proposed a general service model defining service interactions and dependencies; categorization of service types; registries to allow discovery and access of services; data models and encodings; and common services (WMS, WFS, WCS). For the latter, there was a clear distinction on the different services: Data Services (e.g. WMS), Application services (e.g. Coordinate transformation) and server-side client applications (e.g. image exploitation). The latest testbed, OGC Web Service phase 9, completed in 2012 had 5 threads: Aviation, Cross-Community Interoperability (CCI), Security and Services Interoperability (SSI), OWS Innovations and Compliance & Interoperability Testing & Evaluation (CITE). Compared to the first testbed, OWS-9 did not have a separate common architecture thread. Instead the emphasis was on brokering information models, securing them and making data available efficiently on mobile devices. The outcome is an architecture based on usability and non-intrusiveness while leveraging mediation of information models from different communities. This talk will use lessons learned from the evolution from OGC Testbed phase 1 to phase 9 to better understand how global and complex infrastructures evolve to support many communities including the Earth System Science Community.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Ross, R.S.
1989-06-01
For a vehicle operating across arbitrarily-contoured terrain, finding the most fuel-efficient route between two points can be viewed as a high-level global path-planning problem with traversal costs and stability dependent on the direction of travel (anisotropic). The problem assumes a two-dimensional polygonal map of homogeneous cost regions for terrain representation constructed from elevation information. The anisotropic energy cost of vehicle motion has a non-braking component dependent on horizontal distance, a braking component dependent on vertical distance, and a constant path-independent component. The behavior of minimum-energy paths is then proved to be restricted to a small, but optimal set of traversalmore » types. An optimal-path-planning algorithm, using a heuristic search technique, reduces the infinite number of paths between the start and goal points to a finite number by generating sequences of goal-feasible window lists from analyzing the polygonal map and applying pruning criteria. The pruning criteria consist of visibility analysis, heading analysis, and region-boundary constraints. Each goal-feasible window lists specifies an associated convex optimization problem, and the best of all locally-optimal paths through the goal-feasible window lists is the globally-optimal path. These ideas have been implemented in a computer program, with results showing considerably better performance than the exponential average-case behavior predicted.« less
On computing the global time-optimal motions of robotic manipulators in the presence of obstacles
NASA Technical Reports Server (NTRS)
Shiller, Zvi; Dubowsky, Steven
1991-01-01
A method for computing the time-optimal motions of robotic manipulators is presented that considers the nonlinear manipulator dynamics, actuator constraints, joint limits, and obstacles. The optimization problem is reduced to a search for the time-optimal path in the n-dimensional position space. A small set of near-optimal paths is first efficiently selected from a grid, using a branch and bound search and a series of lower bound estimates on the traveling time along a given path. These paths are further optimized with a local path optimization to yield the global optimal solution. Obstacles are considered by eliminating the collision points from the tessellated space and by adding a penalty function to the motion time in the local optimization. The computational efficiency of the method stems from the reduced dimensionality of the searched spaced and from combining the grid search with a local optimization. The method is demonstrated in several examples for two- and six-degree-of-freedom manipulators with obstacles.
A feasible DY conjugate gradient method for linear equality constraints
NASA Astrophysics Data System (ADS)
LI, Can
2017-09-01
In this paper, we propose a feasible conjugate gradient method for solving linear equality constrained optimization problem. The method is an extension of the Dai-Yuan conjugate gradient method proposed by Dai and Yuan to linear equality constrained optimization problem. It can be applied to solve large linear equality constrained problem due to lower storage requirement. An attractive property of the method is that the generated direction is always feasible and descent direction. Under mild conditions, the global convergence of the proposed method with exact line search is established. Numerical experiments are also given which show the efficiency of the method.
Matt: local flexibility aids protein multiple structure alignment.
Menke, Matthew; Berger, Bonnie; Cowen, Lenore
2008-01-01
Even when there is agreement on what measure a protein multiple structure alignment should be optimizing, finding the optimal alignment is computationally prohibitive. One approach used by many previous methods is aligned fragment pair chaining, where short structural fragments from all the proteins are aligned against each other optimally, and the final alignment chains these together in geometrically consistent ways. Ye and Godzik have recently suggested that adding geometric flexibility may help better model protein structures in a variety of contexts. We introduce the program Matt (Multiple Alignment with Translations and Twists), an aligned fragment pair chaining algorithm that, in intermediate steps, allows local flexibility between fragments: small translations and rotations are temporarily allowed to bring sets of aligned fragments closer, even if they are physically impossible under rigid body transformations. After a dynamic programming assembly guided by these "bent" alignments, geometric consistency is restored in the final step before the alignment is output. Matt is tested against other recent multiple protein structure alignment programs on the popular Homstrad and SABmark benchmark datasets. Matt's global performance is competitive with the other programs on Homstrad, but outperforms the other programs on SABmark, a benchmark of multiple structure alignments of proteins with more distant homology. On both datasets, Matt demonstrates an ability to better align the ends of alpha-helices and beta-strands, an important characteristic of any structure alignment program intended to help construct a structural template library for threading approaches to the inverse protein-folding problem. The related question of whether Matt alignments can be used to distinguish distantly homologous structure pairs from pairs of proteins that are not homologous is also considered. For this purpose, a p-value score based on the length of the common core and average root mean squared deviation (RMSD) of Matt alignments is shown to largely separate decoys from homologous protein structures in the SABmark benchmark dataset. We postulate that Matt's strong performance comes from its ability to model proteins in different conformational states and, perhaps even more important, its ability to model backbone distortions in more distantly related proteins.
NASA Astrophysics Data System (ADS)
Lin, Juan; Liu, Chenglian; Guo, Yongning
2014-10-01
The estimation of neural active sources from the magnetoencephalography (MEG) data is a very critical issue for both clinical neurology and brain functions research. A widely accepted source-modeling technique for MEG involves calculating a set of equivalent current dipoles (ECDs). Depth in the brain is one of difficulties in MEG source localization. Particle swarm optimization(PSO) is widely used to solve various optimization problems. In this paper we discuss its ability and robustness to find the global optimum in different depths of the brain when using single equivalent current dipole (sECD) model and single time sliced data. The results show that PSO is an effective global optimization to MEG source localization when given one dipole in different depths.
Dermatoses secondary to Asian cultural practices.
Lilly, Evelyn; Kundu, Roopal V
2012-04-01
Although Asian cultural practices, such as acupuncture and threading, are widely used, there is limited medical literature describing their cutaneous effects and complications. This review briefly describes therapeutic cultural practices (traditional Chinese medicine, acupuncture, cupping, moxibustion, coining, Ayurveda, and aromatherapy) and cosmetic cultural practices (hair oils, henna, bindis, saris, and threading), with particular attention to dermatoses secondary to these practices. Traditional Chinese medicine and Ayurveda may cause heavy metal toxicity, severe cutaneous adverse reactions, and contact dermatitis. Cupping, moxibustion, and coining lead to dermatoses that may be mistaken for abuse by people unfamiliar with the practices. Hair oils may cause contact dermatitis and folliculitis. Paraphenylenediamine in black henna and bindi dyes and adhesives can cause severe allergic contact dermatitis. The drawstring in saris causes frictional irritation, which can lead to tinea corporis, koebnerization, and even squamous cell carcinoma. Threading may cause folliculitis, impetigo, and verrucae. The increasing prevalence of Asian cultural practices, which are performed inside and outside of Asia in this era of globalization, demands that dermatologists be familiar with the secondary dermatoses that may develop. © 2012 The International Society of Dermatology.
Autonomous Modelling of X-ray Spectra Using Robust Global Optimization Methods
NASA Astrophysics Data System (ADS)
Rogers, Adam; Safi-Harb, Samar; Fiege, Jason
2015-08-01
The standard approach to model fitting in X-ray astronomy is by means of local optimization methods. However, these local optimizers suffer from a number of problems, such as a tendency for the fit parameters to become trapped in local minima, and can require an involved process of detailed user intervention to guide them through the optimization process. In this work we introduce a general GUI-driven global optimization method for fitting models to X-ray data, written in MATLAB, which searches for optimal models with minimal user interaction. We directly interface with the commonly used XSPEC libraries to access the full complement of pre-existing spectral models that describe a wide range of physics appropriate for modelling astrophysical sources, including supernova remnants and compact objects. Our algorithm is powered by the Ferret genetic algorithm and Locust particle swarm optimizer from the Qubist Global Optimization Toolbox, which are robust at finding families of solutions and identifying degeneracies. This technique will be particularly instrumental for multi-parameter models and high-fidelity data. In this presentation, we provide details of the code and use our techniques to analyze X-ray data obtained from a variety of astrophysical sources.
Semidefinite Relaxation-Based Optimization of Multiple-Input Wireless Power Transfer Systems
NASA Astrophysics Data System (ADS)
Lang, Hans-Dieter; Sarris, Costas D.
2017-11-01
An optimization procedure for multi-transmitter (MISO) wireless power transfer (WPT) systems based on tight semidefinite relaxation (SDR) is presented. This method ensures physical realizability of MISO WPT systems designed via convex optimization -- a robust, semi-analytical and intuitive route to optimizing such systems. To that end, the nonconvex constraints requiring that power is fed into rather than drawn from the system via all transmitter ports are incorporated in a convex semidefinite relaxation, which is efficiently and reliably solvable by dedicated algorithms. A test of the solution then confirms that this modified problem is equivalent (tight relaxation) to the original (nonconvex) one and that the true global optimum has been found. This is a clear advantage over global optimization methods (e.g. genetic algorithms), where convergence to the true global optimum cannot be ensured or tested. Discussions of numerical results yielded by both the closed-form expressions and the refined technique illustrate the importance and practicability of the new method. It, is shown that this technique offers a rigorous optimization framework for a broad range of current and emerging WPT applications.
A particle swarm optimization variant with an inner variable learning strategy.
Wu, Guohua; Pedrycz, Witold; Ma, Manhao; Qiu, Dishan; Li, Haifeng; Liu, Jin
2014-01-01
Although Particle Swarm Optimization (PSO) has demonstrated competitive performance in solving global optimization problems, it exhibits some limitations when dealing with optimization problems with high dimensionality and complex landscape. In this paper, we integrate some problem-oriented knowledge into the design of a certain PSO variant. The resulting novel PSO algorithm with an inner variable learning strategy (PSO-IVL) is particularly efficient for optimizing functions with symmetric variables. Symmetric variables of the optimized function have to satisfy a certain quantitative relation. Based on this knowledge, the inner variable learning (IVL) strategy helps the particle to inspect the relation among its inner variables, determine the exemplar variable for all other variables, and then make each variable learn from the exemplar variable in terms of their quantitative relations. In addition, we design a new trap detection and jumping out strategy to help particles escape from local optima. The trap detection operation is employed at the level of individual particles whereas the trap jumping out strategy is adaptive in its nature. Experimental simulations completed for some representative optimization functions demonstrate the excellent performance of PSO-IVL. The effectiveness of the PSO-IVL stresses a usefulness of augmenting evolutionary algorithms by problem-oriented domain knowledge.
Optimal Area Use in Orb Webs of the Spider Araneus diadematus
NASA Astrophysics Data System (ADS)
Krink, T.; Vollrath, F.
We studied the abilities of the garden cross spider Araneus diadematus regarding adaptation of web geometry to spatial constraints. Spiders reacted to a spatial reduction in their building site from a square-shaped frame to a slimmer, rectangular frame (side ratio 1 : 2) by maintaining overall web geometry while reducing the web area covered by the sticky capture spiral. However, when the frames were changed further to a rectangular side ratio of 1 : 3, the spiders changed specific web properties in such a way that a further reduction in the capture spiral area was prevented. Construction of the threads making up the web frame and the auxiliary spiral requires that the spider explores the spatial constraints of its building site. The geometry of both frame and auxiliary spiral threads in turn determine the geometry of the capture threads. Since in very narrow frames the spider adjusted the auxiliary to suit the subsequent capture spiral, we suggest that an initial spatial survey led to the final adaptation of overall web geometry to a web site.
Optimal area use in orb webs of the spider Araneus diadematus.
Krink, T; Vollrath, F
2000-02-01
We studied the abilities of the garden cross spider Araneus diadematus regarding adaptation of web geometry to spatial constraints. Spiders reacted to a spatial reduction in their building site from a square-shaped frame to a slimmer, rectangular frame (side ratio 1 : 2) by maintaining overall web geometry while reducing the web area covered by the sticky capture spiral. However, when the frames were changed further to a rectangular side ratio of 1 : 3, the spiders changed specific web properties in such a way that a further reduction in the capture spiral area was prevented. Construction of the threads making up the web frame and the auxiliary spiral requires that the spider explores the spatial constraints of its building site. The geometry of both frame and auxiliary spiral threads in turn determine the geometry of the capture threads. Since in very narrow frames the spider adjusted the auxiliary to suit the subsequent capture spiral, we suggest that an initial spatial survey led to the final adaptation of overall web geometry to a web site.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Mueller, Juliane
MISO is an optimization framework for solving computationally expensive mixed-integer, black-box, global optimization problems. MISO uses surrogate models to approximate the computationally expensive objective function. Hence, derivative information, which is generally unavailable for black-box simulation objective functions, is not needed. MISO allows the user to choose the initial experimental design strategy, the type of surrogate model, and the sampling strategy.
Local Feature Selection for Data Classification.
Armanfard, Narges; Reilly, James P; Komeili, Majid
2016-06-01
Typical feature selection methods choose an optimal global feature subset that is applied over all regions of the sample space. In contrast, in this paper we propose a novel localized feature selection (LFS) approach whereby each region of the sample space is associated with its own distinct optimized feature set, which may vary both in membership and size across the sample space. This allows the feature set to optimally adapt to local variations in the sample space. An associated method for measuring the similarities of a query datum to each of the respective classes is also proposed. The proposed method makes no assumptions about the underlying structure of the samples; hence the method is insensitive to the distribution of the data over the sample space. The method is efficiently formulated as a linear programming optimization problem. Furthermore, we demonstrate the method is robust against the over-fitting problem. Experimental results on eleven synthetic and real-world data sets demonstrate the viability of the formulation and the effectiveness of the proposed algorithm. In addition we show several examples where localized feature selection produces better results than a global feature selection method.
Guo, Weian; Si, Chengyong; Xue, Yu; Mao, Yanfen; Wang, Lei; Wu, Qidi
2017-05-04
Particle Swarm Optimization (PSO) is a popular algorithm which is widely investigated and well implemented in many areas. However, the canonical PSO does not perform well in population diversity maintenance so that usually leads to a premature convergence or local optima. To address this issue, we propose a variant of PSO named Grouping PSO with Personal- Best-Position (Pbest) Guidance (GPSO-PG) which maintains the population diversity by preserving the diversity of exemplars. On one hand, we adopt uniform random allocation strategy to assign particles into different groups and in each group the losers will learn from the winner. On the other hand, we employ personal historical best position of each particle in social learning rather than the current global best particle. In this way, the exemplars diversity increases and the effect from the global best particle is eliminated. We test the proposed algorithm to the benchmarks in CEC 2008 and CEC 2010, which concern the large scale optimization problems (LSOPs). By comparing several current peer algorithms, GPSO-PG exhibits a competitive performance to maintain population diversity and obtains a satisfactory performance to the problems.
Final report for the Tera Computer TTI CRADA
DOE Office of Scientific and Technical Information (OSTI.GOV)
Davidson, G.S.; Pavlakos, C.; Silva, C.
1997-01-01
Tera Computer and Sandia National Laboratories have completed a CRADA, which examined the Tera Multi-Threaded Architecture (MTA) for use with large codes of importance to industry and DOE. The MTA is an innovative architecture that uses parallelism to mask latency between memories and processors. The physical implementation is a parallel computer with high cross-section bandwidth and GaAs processors designed by Tera, which support many small computation threads and fast, lightweight context switches between them. When any thread blocks while waiting for memory accesses to complete, another thread immediately begins execution so that high CPU utilization is maintained. The Tera MTAmore » parallel computer has a single, global address space, which is appealing when porting existing applications to a parallel computer. This ease of porting is further enabled by compiler technology that helps break computations into parallel threads. DOE and Sandia National Laboratories were interested in working with Tera to further develop this computing concept. While Tera Computer would continue the hardware development and compiler research, Sandia National Laboratories would work with Tera to ensure that their compilers worked well with important Sandia codes, most particularly CTH, a shock physics code used for weapon safety computations. In addition to that important code, Sandia National Laboratories would complete research on a robotic path planning code, SANDROS, which is important in manufacturing applications, and would evaluate the MTA performance on this code. Finally, Sandia would work directly with Tera to develop 3D visualization codes, which would be appropriate for use with the MTA. Each of these tasks has been completed to the extent possible, given that Tera has just completed the MTA hardware. All of the CRADA work had to be done on simulators.« less
Optimization of a chemical identification algorithm
NASA Astrophysics Data System (ADS)
Chyba, Thomas H.; Fisk, Brian; Gunning, Christin; Farley, Kevin; Polizzi, Amber; Baughman, David; Simpson, Steven; Slamani, Mohamed-Adel; Almassy, Robert; Da Re, Ryan; Li, Eunice; MacDonald, Steve; Slamani, Ahmed; Mitchell, Scott A.; Pendell-Jones, Jay; Reed, Timothy L.; Emge, Darren
2010-04-01
A procedure to evaluate and optimize the performance of a chemical identification algorithm is presented. The Joint Contaminated Surface Detector (JCSD) employs Raman spectroscopy to detect and identify surface chemical contamination. JCSD measurements of chemical warfare agents, simulants, toxic industrial chemicals, interferents and bare surface backgrounds were made in the laboratory and under realistic field conditions. A test data suite, developed from these measurements, is used to benchmark algorithm performance throughout the improvement process. In any one measurement, one of many possible targets can be present along with interferents and surfaces. The detection results are expressed as a 2-category classification problem so that Receiver Operating Characteristic (ROC) techniques can be applied. The limitations of applying this framework to chemical detection problems are discussed along with means to mitigate them. Algorithmic performance is optimized globally using robust Design of Experiments and Taguchi techniques. These methods require figures of merit to trade off between false alarms and detection probability. Several figures of merit, including the Matthews Correlation Coefficient and the Taguchi Signal-to-Noise Ratio are compared. Following the optimization of global parameters which govern the algorithm behavior across all target chemicals, ROC techniques are employed to optimize chemical-specific parameters to further improve performance.
Xiao, Xun; Geyer, Veikko F.; Bowne-Anderson, Hugo; Howard, Jonathon; Sbalzarini, Ivo F.
2016-01-01
Biological filaments, such as actin filaments, microtubules, and cilia, are often imaged using different light-microscopy techniques. Reconstructing the filament curve from the acquired images constitutes the filament segmentation problem. Since filaments have lower dimensionality than the image itself, there is an inherent trade-off between tracing the filament with sub-pixel accuracy and avoiding noise artifacts. Here, we present a globally optimal filament segmentation method based on B-spline vector level-sets and a generalized linear model for the pixel intensity statistics. We show that the resulting optimization problem is convex and can hence be solved with global optimality. We introduce a simple and efficient algorithm to compute such optimal filament segmentations, and provide an open-source implementation as an ImageJ/Fiji plugin. We further derive an information-theoretic lower bound on the filament segmentation error, quantifying how well an algorithm could possibly do given the information in the image. We show that our algorithm asymptotically reaches this bound in the spline coefficients. We validate our method in comprehensive benchmarks, compare with other methods, and show applications from fluorescence, phase-contrast, and dark-field microscopy. PMID:27104582
Methodology for Determining Limit Torques for Threaded Fasteners
NASA Technical Reports Server (NTRS)
Hissam, Andy
2011-01-01
In aerospace design, where minimizing weight is always a priority, achieving the full capacity from fasteners is essential. To do so, the initial bolt preload must be maximized. The benefits of high preload are well documented and include improved fatigue resistance, a stiffer joint, and resistance to loosening. But many factors like elastic interactions and embedment tend to lower the initial preload placed on the bolt. These factors provide additional motivation to maximize the initial preload. But, to maximize bolt preload, you must determine what torque to apply. Determining this torque is greatly complicated by the large preload scatter generally seen with torque control. This paper presents a detailed methodology for generating limit torques for threaded fasteners. This methodology accounts for the large scatter in preload found with torque control, and therefore, addresses the statistical nature of the problem. It also addresses prevailing torque, a feature common in aerospace fasteners. Although prevailing torque provides a desired locking feature, it can also increase preload scatter. In addition, it can limit the amount of preload that can be generated due to the torsion it creates in the bolt. This paper discusses the complications of prevailing torque and how best to handle it. A wide range of torque-tension bolt testing was conducted in support of this research. The results from this research will benefit the design engineer as well as analyst involved in the design of bolted joints, leading to better, more optimized structural designs.
Constant time worker thread allocation via configuration caching
DOE Office of Scientific and Technical Information (OSTI.GOV)
Eichenberger, Alexandre E; O'Brien, John K. P.
Mechanisms are provided for allocating threads for execution of a parallel region of code. A request for allocation of worker threads to execute the parallel region of code is received from a master thread. Cached thread allocation information identifying prior thread allocations that have been performed for the master thread are accessed. Worker threads are allocated to the master thread based on the cached thread allocation information. The parallel region of code is executed using the allocated worker threads.
A pervasive parallel framework for visualization: final report for FWP 10-014707
DOE Office of Scientific and Technical Information (OSTI.GOV)
Moreland, Kenneth D.
2014-01-01
We are on the threshold of a transformative change in the basic architecture of highperformance computing. The use of accelerator processors, characterized by large core counts, shared but asymmetrical memory, and heavy thread loading, is quickly becoming the norm in high performance computing. These accelerators represent significant challenges in updating our existing base of software. An intrinsic problem with this transition is a fundamental programming shift from message passing processes to much more fine thread scheduling with memory sharing. Another problem is the lack of stability in accelerator implementation; processor and compiler technology is currently changing rapidly. This report documentsmore » the results of our three-year ASCR project to address these challenges. Our project includes the development of the Dax toolkit, which contains the beginnings of new algorithms for a new generation of computers and the underlying infrastructure to rapidly prototype and build further algorithms as necessary.« less
Modeling of outgassing and matrix decomposition in carbon-phenolic composites
NASA Technical Reports Server (NTRS)
Mcmanus, Hugh L.
1994-01-01
Work done in the period Jan. - June 1994 is summarized. Two threads of research have been followed. First, the thermodynamics approach was used to model the chemical and mechanical responses of composites exposed to high temperatures. The thermodynamics approach lends itself easily to the usage of variational principles. This thermodynamic-variational approach has been applied to the transpiration cooling problem. The second thread is the development of a better algorithm to solve the governing equations resulting from the modeling. Explicit finite difference method is explored for solving the governing nonlinear, partial differential equations. The method allows detailed material models to be included and solution on massively parallel supercomputers. To demonstrate the feasibility of the explicit scheme in solving nonlinear partial differential equations, a transpiration cooling problem was solved. Some interesting transient behaviors were captured such as stress waves and small spatial oscillations of transient pressure distribution.
NASA Technical Reports Server (NTRS)
Artho, Cyrille; Havelund, Klaus; Biere, Armin; Koga, Dennis (Technical Monitor)
2003-01-01
Data races are a common problem in concurrent and multi-threaded programming. They are hard to detect without proper tool support. Despite the successful application of these tools, experience shows that the notion of data race is not powerful enough to capture certain types of inconsistencies occurring in practice. In this paper we investigate data races on a higher abstraction layer. This enables us to detect inconsistent uses of shared variables, even if no classical race condition occurs. For example, a data structure representing a coordinate pair may have to be treated atomically. By lifting the meaning of a data race to a higher level, such problems can now be covered. The paper defines the concepts view and view consistency to give a notation for this novel kind of property. It describes what kinds of errors can be detected with this new definition, and where its limitations are. It also gives a formal guideline for using data structures in a multi-threading environment.
Path optimization method for the sign problem
NASA Astrophysics Data System (ADS)
Ohnishi, Akira; Mori, Yuto; Kashiwa, Kouji
2018-03-01
We propose a path optimization method (POM) to evade the sign problem in the Monte-Carlo calculations for complex actions. Among many approaches to the sign problem, the Lefschetz-thimble path-integral method and the complex Langevin method are promising and extensively discussed. In these methods, real field variables are complexified and the integration manifold is determined by the flow equations or stochastically sampled. When we have singular points of the action or multiple critical points near the original integral surface, however, we have a risk to encounter the residual and global sign problems or the singular drift term problem. One of the ways to avoid the singular points is to optimize the integration path which is designed not to hit the singular points of the Boltzmann weight. By specifying the one-dimensional integration-path as z = t +if(t)(f ɛ R) and by optimizing f(t) to enhance the average phase factor, we demonstrate that we can avoid the sign problem in a one-variable toy model for which the complex Langevin method is found to fail. In this proceedings, we propose POM and discuss how we can avoid the sign problem in a toy model. We also discuss the possibility to utilize the neural network to optimize the path.
NASA Astrophysics Data System (ADS)
Zhuang, Yufei; Huang, Haibin
2014-02-01
A hybrid algorithm combining particle swarm optimization (PSO) algorithm with the Legendre pseudospectral method (LPM) is proposed for solving time-optimal trajectory planning problem of underactuated spacecrafts. At the beginning phase of the searching process, an initialization generator is constructed by the PSO algorithm due to its strong global searching ability and robustness to random initial values, however, PSO algorithm has a disadvantage that its convergence rate around the global optimum is slow. Then, when the change in fitness function is smaller than a predefined value, the searching algorithm is switched to the LPM to accelerate the searching process. Thus, with the obtained solutions by the PSO algorithm as a set of proper initial guesses, the hybrid algorithm can find a global optimum more quickly and accurately. 200 Monte Carlo simulations results demonstrate that the proposed hybrid PSO-LPM algorithm has greater advantages in terms of global searching capability and convergence rate than both single PSO algorithm and LPM algorithm. Moreover, the PSO-LPM algorithm is also robust to random initial values.
Optimal boundary regularity for a singular Monge-Ampère equation
NASA Astrophysics Data System (ADS)
Jian, Huaiyu; Li, You
2018-06-01
In this paper we study the optimal global regularity for a singular Monge-Ampère type equation which arises from a few geometric problems. We find that the global regularity does not depend on the smoothness of domain, but it does depend on the convexity of the domain. We introduce (a , η) type to describe the convexity. As a result, we show that the more convex is the domain, the better is the regularity of the solution. In particular, the regularity is the best near angular points.
Full covered self-expandable metal stents for the treatment of anastomotic leak using a silk thread
Choi, Cheol Woong; Kang, Dae Hwan; Kim, Hyung Wook; Park, Su Bum; Kim, Su Jin; Hwang, Sun Hwi; Lee, Si Hak
2017-01-01
Abstract To evaluate the safety and effectiveness of fixation of the fully covered self-expandable metal stent (SEMS) placement using a silk thread for complete closure of an anastomotic leak. An anastomotic leak is a life-threatening complication after gastrectomy. Although the traditional treatment of choice was surgical re-intervention, an endoscopic SEMS can be used alternatively. During the study period, we retrospectively reviewed consecutive patients who received a modified covered SEMS capable of being fixed using a silk thread (Shim technique) due to an anastomotic leak after gastrectomy to prevent stent migration. Demographic data, stent placement and removal, clinical success, time to resolution, and complications were evaluated. A total of 7 patients underwent fully covered SEMS with a silk thread placement for an anastomotic leak after gastrectomy to treat gastric cancer. The patients’ mean age was 71.3 ± 8.0 years. Man sex was predominant (85.7%). All patients’ American Society of Anesthesiologists (ASA) scores were between I and III. Total gastrectomy was performed in 5 patients (71.4%) and proximal gastrectomy was performed in 2 patients (28.6%). The time between gastrectomy and stent insertion was 22.3 ± 11.1 days. The size of the leaks was 27.1 ± 11.1 mm. Technical success and complete leak closure were achieved in all patients. Stent migration was absent. All stents were removed between 4 and 6 weeks. Delayed esophageal stricture was found in 1 patient (14.2) and successfully resolved after endoscopic balloon dilation. For an anastomotic leak after gastrectomy, fully covered SEMS placement with a silk thread is an effective and safe treatment option without stent migration. The stent extraction time between 4 and 6 weeks was optimal without severe complications. PMID:28723752
Full covered self-expandable metal stents for the treatment of anastomotic leak using a silk thread.
Choi, Cheol Woong; Kang, Dae Hwan; Kim, Hyung Wook; Park, Su Bum; Kim, Su Jin; Hwang, Sun Hwi; Lee, Si Hak
2017-07-01
To evaluate the safety and effectiveness of fixation of the fully covered self-expandable metal stent (SEMS) placement using a silk thread for complete closure of an anastomotic leak. An anastomotic leak is a life-threatening complication after gastrectomy. Although the traditional treatment of choice was surgical re-intervention, an endoscopic SEMS can be used alternatively.During the study period, we retrospectively reviewed consecutive patients who received a modified covered SEMS capable of being fixed using a silk thread (Shim technique) due to an anastomotic leak after gastrectomy to prevent stent migration. Demographic data, stent placement and removal, clinical success, time to resolution, and complications were evaluated.A total of 7 patients underwent fully covered SEMS with a silk thread placement for an anastomotic leak after gastrectomy to treat gastric cancer. The patients' mean age was 71.3 ± 8.0 years. Man sex was predominant (85.7%). All patients' American Society of Anesthesiologists (ASA) scores were between I and III. Total gastrectomy was performed in 5 patients (71.4%) and proximal gastrectomy was performed in 2 patients (28.6%). The time between gastrectomy and stent insertion was 22.3 ± 11.1 days. The size of the leaks was 27.1 ± 11.1 mm. Technical success and complete leak closure were achieved in all patients. Stent migration was absent. All stents were removed between 4 and 6 weeks. Delayed esophageal stricture was found in 1 patient (14.2) and successfully resolved after endoscopic balloon dilation.For an anastomotic leak after gastrectomy, fully covered SEMS placement with a silk thread is an effective and safe treatment option without stent migration. The stent extraction time between 4 and 6 weeks was optimal without severe complications.
ERIC Educational Resources Information Center
Oberle, Alex P.; Joseph, Sue A.; May, David W.
2010-01-01
Geospatial technologies (GSTs), such as geographic information systems, global positioning systems and remote sensing, present an avenue for expanding the already strong interdisciplinary nature of geography. This paper discusses how GSTs served as a common thread for a crosscutting faculty institute that was established to enhance graduate…
Curriculum: Integrating Team-Based Design across the Curriculum at a Large Public University
ERIC Educational Resources Information Center
Trenshaw, Kathryn F.; Henderson, Jerrod A.; Miletic, Marina; Seebauer, Edmund G.; Tillman, Ayesha S.; Vogel, Troy J.
2014-01-01
Despite high enrollments and budget cutbacks affecting many programs, students still need design experience which prepares them for a globally competitive workforce. We demonstrate that team design projects can be threaded across the curriculum even at large institutions with high departmental student to faculty ratios (~50:1). We assessed student…
Development of the ICT Sector and Urban Competitiveness: The Case of Dubai
ERIC Educational Resources Information Center
Keivani, Ramin; Parsa, Ali; Younis, Bassem
2003-01-01
The one common thread in all studies of globalization is the role of information and communications technologies (ICTs) in facilitating the advanced producer service, production, innovation, and knowledge function that have come to characterize the urban condition at the heart of this process. ICTs provide the instantaneous and real-time…
What Are Data? Museum Data Bank Research Report Number 1.
ERIC Educational Resources Information Center
Vance, David
This paper describes the process of automatic extraction of implicit--global--data from explicit information by file inversion and threading. Each datum is the symbolic representation of a proposition, and as such has a number of movable parts corresponding to the ideal elements of the proposition represented; e.g., subject, predicate. A third…
From non-preemptive to preemptive scheduling using synchronization synthesis.
Černý, Pavol; Clarke, Edmund M; Henzinger, Thomas A; Radhakrishna, Arjun; Ryzhyk, Leonid; Samanta, Roopsha; Tarrach, Thorsten
2017-01-01
We present a computer-aided programming approach to concurrency. The approach allows programmers to program assuming a friendly, non-preemptive scheduler, and our synthesis procedure inserts synchronization to ensure that the final program works even with a preemptive scheduler. The correctness specification is implicit, inferred from the non-preemptive behavior. Let us consider sequences of calls that the program makes to an external interface. The specification requires that any such sequence produced under a preemptive scheduler should be included in the set of sequences produced under a non-preemptive scheduler. We guarantee that our synthesis does not introduce deadlocks and that the synchronization inserted is optimal w.r.t. a given objective function. The solution is based on a finitary abstraction, an algorithm for bounded language inclusion modulo an independence relation, and generation of a set of global constraints over synchronization placements. Each model of the global constraints set corresponds to a correctness-ensuring synchronization placement. The placement that is optimal w.r.t. the given objective function is chosen as the synchronization solution. We apply the approach to device-driver programming, where the driver threads call the software interface of the device and the API provided by the operating system. Our experiments demonstrate that our synthesis method is precise and efficient. The implicit specification helped us find one concurrency bug previously missed when model-checking using an explicit, user-provided specification. We implemented objective functions for coarse-grained and fine-grained locking and observed that different synchronization placements are produced for our experiments, favoring a minimal number of synchronization operations or maximum concurrency, respectively.
NASA Astrophysics Data System (ADS)
Ebrahimi, Mehdi; Jahangirian, Alireza
2017-12-01
An efficient strategy is presented for global shape optimization of wing sections with a parallel genetic algorithm. Several computational techniques are applied to increase the convergence rate and the efficiency of the method. A variable fidelity computational evaluation method is applied in which the expensive Navier-Stokes flow solver is complemented by an inexpensive multi-layer perceptron neural network for the objective function evaluations. A population dispersion method that consists of two phases, of exploration and refinement, is developed to improve the convergence rate and the robustness of the genetic algorithm. Owing to the nature of the optimization problem, a parallel framework based on the master/slave approach is used. The outcomes indicate that the method is able to find the global optimum with significantly lower computational time in comparison to the conventional genetic algorithm.
Algorithms for Maneuvering Spacecraft Around Small Bodies
NASA Technical Reports Server (NTRS)
Acikmese, A. Bechet; Bayard, David
2006-01-01
A document describes mathematical derivations and applications of autonomous guidance algorithms for maneuvering spacecraft in the vicinities of small astronomical bodies like comets or asteroids. These algorithms compute fuel- or energy-optimal trajectories for typical maneuvers by solving the associated optimal-control problems with relevant control and state constraints. In the derivations, these problems are converted from their original continuous (infinite-dimensional) forms to finite-dimensional forms through (1) discretization of the time axis and (2) spectral discretization of control inputs via a finite number of Chebyshev basis functions. In these doubly discretized problems, the Chebyshev coefficients are the variables. These problems are, variously, either convex programming problems or programming problems that can be convexified. The resulting discrete problems are convex parameter-optimization problems; this is desirable because one can take advantage of very efficient and robust algorithms that have been developed previously and are well established for solving such problems. These algorithms are fast, do not require initial guesses, and always converge to global optima. Following the derivations, the algorithms are demonstrated by applying them to numerical examples of flyby, descent-to-hover, and ascent-from-hover maneuvers.
Screw-Thread Standards for Federal Services, 1957. Handbook H28 (1957), Part 3
1957-09-01
MOUNTING THREADS PHOTOGRAPHIC EQUIPMENT THREADS ISO METRIC THREADS; MISCELLANEOUS THREADS CLASS 5 INTERFERENCE-FIT THREADS, TRIAL STANDARD WRENCH...Bibliography on measurement of pitch diameter by means of wires 60 Appendix 14. Metric screw-thread standards 61 1. ISO thread profiles...61 2. Standard series for ISO metric threads 62 3. Designations for ISO metric threads 62 Tables Page Table XII. 1.—Basic
Su, Weixing; Chen, Hanning; Liu, Fang; Lin, Na; Jing, Shikai; Liang, Xiaodan; Liu, Wei
2017-03-01
There are many dynamic optimization problems in the real world, whose convergence and searching ability is cautiously desired, obviously different from static optimization cases. This requires an optimization algorithm adaptively seek the changing optima over dynamic environments, instead of only finding the global optimal solution in the static environment. This paper proposes a novel comprehensive learning artificial bee colony optimizer (CLABC) for optimization in dynamic environments problems, which employs a pool of optimal foraging strategies to balance the exploration and exploitation tradeoff. The main motive of CLABC is to enrich artificial bee foraging behaviors in the ABC model by combining Powell's pattern search method, life-cycle, and crossover-based social learning strategy. The proposed CLABC is a more bee-colony-realistic model that the bee can reproduce and die dynamically throughout the foraging process and population size varies as the algorithm runs. The experiments for evaluating CLABC are conducted on the dynamic moving peak benchmarks. Furthermore, the proposed algorithm is applied to a real-world application of dynamic RFID network optimization. Statistical analysis of all these cases highlights the significant performance improvement due to the beneficial combination and demonstrates the performance superiority of the proposed algorithm.
Multimodal optimization by using hybrid of artificial bee colony algorithm and BFGS algorithm
NASA Astrophysics Data System (ADS)
Anam, S.
2017-10-01
Optimization has become one of the important fields in Mathematics. Many problems in engineering and science can be formulated into optimization problems. They maybe have many local optima. The optimization problem with many local optima, known as multimodal optimization problem, is how to find the global solution. Several metaheuristic methods have been proposed to solve multimodal optimization problems such as Particle Swarm Optimization (PSO), Genetics Algorithm (GA), Artificial Bee Colony (ABC) algorithm, etc. The performance of the ABC algorithm is better than or similar to those of other population-based algorithms with the advantage of employing a fewer control parameters. The ABC algorithm also has the advantages of strong robustness, fast convergence and high flexibility. However, it has the disadvantages premature convergence in the later search period. The accuracy of the optimal value cannot meet the requirements sometimes. Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm is a good iterative method for finding a local optimum. Compared with other local optimization methods, the BFGS algorithm is better. Based on the advantages of the ABC algorithm and the BFGS algorithm, this paper proposes a hybrid of the artificial bee colony algorithm and the BFGS algorithm to solve the multimodal optimization problem. The first step is that the ABC algorithm is run to find a point. In the second step is that the point obtained by the first step is used as an initial point of BFGS algorithm. The results show that the hybrid method can overcome from the basic ABC algorithm problems for almost all test function. However, if the shape of function is flat, the proposed method cannot work well.
Genetic Algorithm for Optimization: Preprocessing with n Dimensional Bisection and Error Estimation
NASA Technical Reports Server (NTRS)
Sen, S. K.; Shaykhian, Gholam Ali
2006-01-01
A knowledge of the appropriate values of the parameters of a genetic algorithm (GA) such as the population size, the shrunk search space containing the solution, crossover and mutation probabilities is not available a priori for a general optimization problem. Recommended here is a polynomial-time preprocessing scheme that includes an n-dimensional bisection and that determines the foregoing parameters before deciding upon an appropriate GA for all problems of similar nature and type. Such a preprocessing is not only fast but also enables us to get the global optimal solution and its reasonably narrow error bounds with a high degree of confidence.
Tractable Pareto Optimization of Temporal Preferences
NASA Technical Reports Server (NTRS)
Morris, Robert; Morris, Paul; Khatib, Lina; Venable, Brent
2003-01-01
This paper focuses on temporal constraint problems where the objective is to optimize a set of local preferences for when events occur. In previous work, a subclass of these problems has been formalized as a generalization of Temporal CSPs, and a tractable strategy for optimization has been proposed, where global optimality is defined as maximizing the minimum of the component preference values. This criterion for optimality, which we call 'Weakest Link Optimization' (WLO), is known to have limited practical usefulness because solutions are compared only on the basis of their worst value; thus, there is no requirement to improve the other values. To address this limitation, we introduce a new algorithm that re-applies WLO iteratively in a way that leads to improvement of all the values. We show the value of this strategy by proving that, with suitable preference functions, the resulting solutions are Pareto Optimal.
Global gene expression analysis by combinatorial optimization.
Ameur, Adam; Aurell, Erik; Carlsson, Mats; Westholm, Jakub Orzechowski
2004-01-01
Generally, there is a trade-off between methods of gene expression analysis that are precise but labor-intensive, e.g. RT-PCR, and methods that scale up to global coverage but are not quite as quantitative, e.g. microarrays. In the present paper, we show how how a known method of gene expression profiling (K. Kato, Nucleic Acids Res. 23, 3685-3690 (1995)), which relies on a fairly small number of steps, can be turned into a global gene expression measurement by advanced data post-processing, with potentially little loss of accuracy. Post-processing here entails solving an ancillary combinatorial optimization problem. Validation is performed on in silico experiments generated from the FANTOM data base of full-length mouse cDNA. We present two variants of the method. One uses state-of-the-art commercial software for solving problems of this kind, the other a code developed by us specifically for this purpose, released in the public domain under GPL license.
Using Multithreading for the Automatic Load Balancing of 2D Adaptive Finite Element Meshes
NASA Technical Reports Server (NTRS)
Heber, Gerd; Biswas, Rupak; Thulasiraman, Parimala; Gao, Guang R.; Bailey, David H. (Technical Monitor)
1998-01-01
In this paper, we present a multi-threaded approach for the automatic load balancing of adaptive finite element (FE) meshes. The platform of our choice is the EARTH multi-threaded system which offers sufficient capabilities to tackle this problem. We implement the question phase of FE applications on triangular meshes, and exploit the EARTH token mechanism to automatically balance the resulting irregular and highly nonuniform workload. We discuss the results of our experiments on EARTH-SP2, an implementation of EARTH on the IBM SP2, with different load balancing strategies that are built into the runtime system.
Constraint Optimization Problem For The Cutting Of A Cobalt Chrome Refractory Material
NASA Astrophysics Data System (ADS)
Lebaal, Nadhir; Schlegel, Daniel; Folea, Milena
2011-05-01
This paper shows a complete approach to solve a given problem, from the experimentation to the optimization of different cutting parameters. In response to an industrial problem of slotting FSX 414, a Cobalt-based refractory material, we have implemented a design of experiment to determine the most influent parameters on the tool life, the surface roughness and the cutting forces. After theses trials, an optimization approach has been implemented to find the lowest manufacturing cost while respecting the roughness constraints and cutting force limitation constraints. The optimization approach is based on the Response Surface Method (RSM) using the Sequential Quadratic programming algorithm (SQP) for a constrained problem. To avoid a local optimum and to obtain an accurate solution at low cost, an efficient strategy, which allows improving the RSM accuracy in the vicinity of the global optimum, is presented. With these models and these trials, we could apply and compare our optimization methods in order to get the lowest cost for the best quality, i.e. a satisfying surface roughness and limited cutting forces.
NASA Technical Reports Server (NTRS)
Rash, James L.
2010-01-01
NASA's space data-communications infrastructure, the Space Network and the Ground Network, provide scheduled (as well as some limited types of unscheduled) data-communications services to user spacecraft via orbiting relay satellites and ground stations. An implementation of the methods and algorithms disclosed herein will be a system that produces globally optimized schedules with not only optimized service delivery by the space data-communications infrastructure but also optimized satisfaction of all user requirements and prescribed constraints, including radio frequency interference (RFI) constraints. Evolutionary search, a class of probabilistic strategies for searching large solution spaces, constitutes the essential technology in this disclosure. Also disclosed are methods and algorithms for optimizing the execution efficiency of the schedule-generation algorithm itself. The scheduling methods and algorithms as presented are adaptable to accommodate the complexity of scheduling the civilian and/or military data-communications infrastructure. Finally, the problem itself, and the methods and algorithms, are generalized and specified formally, with applicability to a very broad class of combinatorial optimization problems.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Chiu, George L.; Eichenberger, Alexandre E.; O'Brien, John K. P.
The present disclosure relates generally to a dedicated memory structure (that is, hardware device) holding data for detecting available worker thread(s) and informing available worker thread(s) of task(s) to execute.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Druinsky, Alex; Ghysels, Pieter; Li, Xiaoye S.
In this paper, we study the performance of a two-level algebraic-multigrid algorithm, with a focus on the impact of the coarse-grid solver on performance. We consider two algorithms for solving the coarse-space systems: the preconditioned conjugate gradient method and a new robust HSS-embedded low-rank sparse-factorization algorithm. Our test data comes from the SPE Comparative Solution Project for oil-reservoir simulations. We contrast the performance of our code on one 12-core socket of a Cray XC30 machine with performance on a 60-core Intel Xeon Phi coprocessor. To obtain top performance, we optimized the code to take full advantage of fine-grained parallelism andmore » made it thread-friendly for high thread count. We also developed a bounds-and-bottlenecks performance model of the solver which we used to guide us through the optimization effort, and also carried out performance tuning in the solver’s large parameter space. Finally, as a result, significant speedups were obtained on both machines.« less
Global Optimization of N-Maneuver, High-Thrust Trajectories Using Direct Multiple Shooting
NASA Technical Reports Server (NTRS)
Vavrina, Matthew A.; Englander, Jacob A.; Ellison, Donald H.
2016-01-01
The performance of impulsive, gravity-assist trajectories often improves with the inclusion of one or more maneuvers between flybys. However, grid-based scans over the entire design space can become computationally intractable for even one deep-space maneuver, and few global search routines are capable of an arbitrary number of maneuvers. To address this difficulty a trajectory transcription allowing for any number of maneuvers is developed within a multi-objective, global optimization framework for constrained, multiple gravity-assist trajectories. The formulation exploits a robust shooting scheme and analytic derivatives for computational efficiency. The approach is applied to several complex, interplanetary problems, achieving notable performance without a user-supplied initial guess.
Optimizing human activity patterns using global sensitivity analysis
Fairchild, Geoffrey; Hickmann, Kyle S.; Mniszewski, Susan M.; ...
2013-12-10
Implementing realistic activity patterns for a population is crucial for modeling, for example, disease spread, supply and demand, and disaster response. Using the dynamic activity simulation engine, DASim, we generate schedules for a population that capture regular (e.g., working, eating, and sleeping) and irregular activities (e.g., shopping or going to the doctor). We use the sample entropy (SampEn) statistic to quantify a schedule’s regularity for a population. We show how to tune an activity’s regularity by adjusting SampEn, thereby making it possible to realistically design activities when creating a schedule. The tuning process sets up a computationally intractable high-dimensional optimizationmore » problem. To reduce the computational demand, we use Bayesian Gaussian process regression to compute global sensitivity indices and identify the parameters that have the greatest effect on the variance of SampEn. Here we use the harmony search (HS) global optimization algorithm to locate global optima. Our results show that HS combined with global sensitivity analysis can efficiently tune the SampEn statistic with few search iterations. We demonstrate how global sensitivity analysis can guide statistical emulation and global optimization algorithms to efficiently tune activities and generate realistic activity patterns. Finally, though our tuning methods are applied to dynamic activity schedule generation, they are general and represent a significant step in the direction of automated tuning and optimization of high-dimensional computer simulations.« less
OpenMDAO: Framework for Flexible Multidisciplinary Design, Analysis and Optimization Methods
NASA Technical Reports Server (NTRS)
Heath, Christopher M.; Gray, Justin S.
2012-01-01
The OpenMDAO project is underway at NASA to develop a framework which simplifies the implementation of state-of-the-art tools and methods for multidisciplinary design, analysis and optimization. Foremost, OpenMDAO has been designed to handle variable problem formulations, encourage reconfigurability, and promote model reuse. This work demonstrates the concept of iteration hierarchies in OpenMDAO to achieve a flexible environment for supporting advanced optimization methods which include adaptive sampling and surrogate modeling techniques. In this effort, two efficient global optimization methods were applied to solve a constrained, single-objective and constrained, multiobjective version of a joint aircraft/engine sizing problem. The aircraft model, NASA's nextgeneration advanced single-aisle civil transport, is being studied as part of the Subsonic Fixed Wing project to help meet simultaneous program goals for reduced fuel burn, emissions, and noise. This analysis serves as a realistic test problem to demonstrate the flexibility and reconfigurability offered by OpenMDAO.
Optimal Resource Allocation for NOMA-TDMA Scheme with α-Fairness in Industrial Internet of Things.
Sun, Yanjing; Guo, Yiyu; Li, Song; Wu, Dapeng; Wang, Bin
2018-05-15
In this paper, a joint non-orthogonal multiple access and time division multiple access (NOMA-TDMA) scheme is proposed in Industrial Internet of Things (IIoT), which allowed multiple sensors to transmit in the same time-frequency resource block using NOMA. The user scheduling, time slot allocation, and power control are jointly optimized in order to maximize the system α -fair utility under transmit power constraint and minimum rate constraint. The optimization problem is nonconvex because of the fractional objective function and the nonconvex constraints. To deal with the original problem, we firstly convert the objective function in the optimization problem into a difference of two convex functions (D.C.) form, and then propose a NOMA-TDMA-DC algorithm to exploit the global optimum. Numerical results show that the NOMA-TDMA scheme significantly outperforms the traditional orthogonal multiple access scheme in terms of both spectral efficiency and user fairness.
Grid Transmission Expansion Planning Model Based on Grid Vulnerability
NASA Astrophysics Data System (ADS)
Tang, Quan; Wang, Xi; Li, Ting; Zhang, Quanming; Zhang, Hongli; Li, Huaqiang
2018-03-01
Based on grid vulnerability and uniformity theory, proposed global network structure and state vulnerability factor model used to measure different grid models. established a multi-objective power grid planning model which considering the global power network vulnerability, economy and grid security constraint. Using improved chaos crossover and mutation genetic algorithm to optimize the optimal plan. For the problem of multi-objective optimization, dimension is not uniform, the weight is not easy given. Using principal component analysis (PCA) method to comprehensive assessment of the population every generation, make the results more objective and credible assessment. the feasibility and effectiveness of the proposed model are validated by simulation results of Garver-6 bus system and Garver-18 bus.
A modified conjugate gradient coefficient with inexact line search for unconstrained optimization
NASA Astrophysics Data System (ADS)
Aini, Nurul; Rivaie, Mohd; Mamat, Mustafa
2016-11-01
Conjugate gradient (CG) method is a line search algorithm mostly known for its wide application in solving unconstrained optimization problems. Its low memory requirements and global convergence properties makes it one of the most preferred method in real life application such as in engineering and business. In this paper, we present a new CG method based on AMR* and CD method for solving unconstrained optimization functions. The resulting algorithm is proven to have both the sufficient descent and global convergence properties under inexact line search. Numerical tests are conducted to assess the effectiveness of the new method in comparison to some previous CG methods. The results obtained indicate that our method is indeed superior.
A new effective operator for the hybrid algorithm for solving global optimisation problems
NASA Astrophysics Data System (ADS)
Duc, Le Anh; Li, Kenli; Nguyen, Tien Trong; Yen, Vu Minh; Truong, Tung Khac
2018-04-01
Hybrid algorithms have been recently used to solve complex single-objective optimisation problems. The ultimate goal is to find an optimised global solution by using these algorithms. Based on the existing algorithms (HP_CRO, PSO, RCCRO), this study proposes a new hybrid algorithm called MPC (Mean-PSO-CRO), which utilises a new Mean-Search Operator. By employing this new operator, the proposed algorithm improves the search ability on areas of the solution space that the other operators of previous algorithms do not explore. Specifically, the Mean-Search Operator helps find the better solutions in comparison with other algorithms. Moreover, the authors have proposed two parameters for balancing local and global search and between various types of local search, as well. In addition, three versions of this operator, which use different constraints, are introduced. The experimental results on 23 benchmark functions, which are used in previous works, show that our framework can find better optimal or close-to-optimal solutions with faster convergence speed for most of the benchmark functions, especially the high-dimensional functions. Thus, the proposed algorithm is more effective in solving single-objective optimisation problems than the other existing algorithms.
Optimal sequential measurements for bipartite state discrimination
NASA Astrophysics Data System (ADS)
Croke, Sarah; Barnett, Stephen M.; Weir, Graeme
2017-05-01
State discrimination is a useful test problem with which to clarify the power and limitations of different classes of measurement. We consider the problem of discriminating between given states of a bipartite quantum system via sequential measurement of the subsystems, with classical feed-forward of measurement results. Our aim is to understand when sequential measurements, which are relatively easy to implement experimentally, perform as well, or almost as well, as optimal joint measurements, which are in general more technologically challenging. We construct conditions that the optimal sequential measurement must satisfy, analogous to the well-known Helstrom conditions for minimum error discrimination in the unrestricted case. We give several examples and compare the optimal probability of correctly identifying the state via global versus sequential measurement strategies.
Optimal correction and design parameter search by modern methods of rigorous global optimization
NASA Astrophysics Data System (ADS)
Makino, K.; Berz, M.
2011-07-01
Frequently the design of schemes for correction of aberrations or the determination of possible operating ranges for beamlines and cells in synchrotrons exhibit multitudes of possibilities for their correction, usually appearing in disconnected regions of parameter space which cannot be directly qualified by analytical means. In such cases, frequently an abundance of optimization runs are carried out, each of which determines a local minimum depending on the specific chosen initial conditions. Practical solutions are then obtained through an often extended interplay of experienced manual adjustment of certain suitable parameters and local searches by varying other parameters. However, in a formal sense this problem can be viewed as a global optimization problem, i.e. the determination of all solutions within a certain range of parameters that lead to a specific optimum. For example, it may be of interest to find all possible settings of multiple quadrupoles that can achieve imaging; or to find ahead of time all possible settings that achieve a particular tune; or to find all possible manners to adjust nonlinear parameters to achieve correction of high order aberrations. These tasks can easily be phrased in terms of such an optimization problem; but while mathematically this formulation is often straightforward, it has been common belief that it is of limited practical value since the resulting optimization problem cannot usually be solved. However, recent significant advances in modern methods of rigorous global optimization make these methods feasible for optics design for the first time. The key ideas of the method lie in an interplay of rigorous local underestimators of the objective functions, and by using the underestimators to rigorously iteratively eliminate regions that lie above already known upper bounds of the minima, in what is commonly known as a branch-and-bound approach. Recent enhancements of the Differential Algebraic methods used in particle optics for the computation of aberrations allow the determination of particularly sharp underestimators for large regions. As a consequence, the subsequent progressive pruning of the allowed search space as part of the optimization progresses is carried out particularly effectively. The end result is the rigorous determination of the single or multiple optimal solutions of the parameter optimization, regardless of their location, their number, and the starting values of optimization. The methods are particularly powerful if executed in interplay with genetic optimizers generating their new populations within the currently active unpruned space. Their current best guess provides rigorous upper bounds of the minima, which can then beneficially be used for better pruning. Examples of the method and its performance will be presented, including the determination of all operating points of desired tunes or chromaticities, etc. in storage ring lattices.
NASA Astrophysics Data System (ADS)
Wirawan, Christina; Chandra, Fory
2016-02-01
Theory of Inventive Problem Solving (TRIZ) is a creative encouraging problem solving method. TRIZ is prepared by Altshuller for product design. Altshuller prepared contradiction matrix and suggestion to solve contradictions usually occur in product design. This paper try to combine TRIZ with quality tools such as Pareto and Fault Tree Analysis (FTA) to solve contradiction in quality improvement problem, neither than product design problem. Pareto used to identify defect priority, FTA used to analysis and identify root cause of defect. When there is contradiction in solving defect causes, TRIZ used to find creative problem solving. As a case study, PT ’X’, a plastic molding manufacturing industry was taken. PT ‘X’ using traditional press machine to produce plastic thread cone. There are 5 defect types that might occur in plastic thread cone production, incomplete form, dirty, mottle, excessive form, rugged. Research about quality improvement effort using DMAIC at PT ‘X’ have been done by Fory Candra. From this research, defect types, priority, root cause from FTA, recommendation from FMEA. In this research, from FTA reviewed, contradictions found among causes troublesome quality improvement efforts. TRIZ used to solve the contradictions and quality improvement effort can be made effectively.
Adaptive cockroach swarm algorithm
NASA Astrophysics Data System (ADS)
Obagbuwa, Ibidun C.; Abidoye, Ademola P.
2017-07-01
An adaptive cockroach swarm optimization (ACSO) algorithm is proposed in this paper to strengthen the existing cockroach swarm optimization (CSO) algorithm. The ruthless component of CSO algorithm is modified by the employment of blend crossover predator-prey evolution method which helps algorithm prevent any possible population collapse, maintain population diversity and create adaptive search in each iteration. The performance of the proposed algorithm on 16 global optimization benchmark function problems was evaluated and compared with the existing CSO, cuckoo search, differential evolution, particle swarm optimization and artificial bee colony algorithms.
Role of Aragvadhadi Sutra in the Management of Fistula -in-Ano
Kumar, P. Hemantha; Sahu, M.
2000-01-01
Traditional Medicine has its own importance for the treatment of various medical and surgical diseases irrespective of tremendous development of modern medicine. There are number of diseases were after repeated surgery. Fistula-in ano is one such condition which is prone to recurrence even after repeated surgery and can be effectively treated by Ayurvedic medicines. An extensive work has been done on the treatment of Bhagandara by Kshara sutra exploring various aspects of the problem and finding our the solution to them1. the present study is related to similar type of medicated thread known as Aragvadadi Sutra which has been mentioned by sushruta in Bhagandara. It consists of Aragvadha (Cassia fistula), Haridra (Curcuma longa), Agaru (Aquilaria agalocha), Madhu (Honey) and Ghrita (Ghee). This is the first non-caustic thread being tried on different types of Bhagandara. Especially it is a painless thread, non-irritant and very useful in sensitive patients like children, females and elders. PMID:22556930
Power/Performance Trade-offs of Small Batched LU Based Solvers on GPUs
DOE Office of Scientific and Technical Information (OSTI.GOV)
Villa, Oreste; Fatica, Massimiliano; Gawande, Nitin A.
In this paper we propose and analyze a set of batched linear solvers for small matrices on Graphic Processing Units (GPUs), evaluating the various alternatives depending on the size of the systems to solve. We discuss three different solutions that operate with different level of parallelization and GPU features. The first, exploiting the CUBLAS library, manages matrices of size up to 32x32 and employs Warp level (one matrix, one Warp) parallelism and shared memory. The second works at Thread-block level parallelism (one matrix, one Thread-block), still exploiting shared memory but managing matrices up to 76x76. The third is Thread levelmore » parallel (one matrix, one thread) and can reach sizes up to 128x128, but it does not exploit shared memory and only relies on the high memory bandwidth of the GPU. The first and second solution only support partial pivoting, the third one easily supports partial and full pivoting, making it attractive to problems that require greater numerical stability. We analyze the trade-offs in terms of performance and power consumption as function of the size of the linear systems that are simultaneously solved. We execute the three implementations on a Tesla M2090 (Fermi) and on a Tesla K20 (Kepler).« less
A Novel Hybrid Firefly Algorithm for Global Optimization.
Zhang, Lina; Liu, Liqiang; Yang, Xin-She; Dai, Yuntao
Global optimization is challenging to solve due to its nonlinearity and multimodality. Traditional algorithms such as the gradient-based methods often struggle to deal with such problems and one of the current trends is to use metaheuristic algorithms. In this paper, a novel hybrid population-based global optimization algorithm, called hybrid firefly algorithm (HFA), is proposed by combining the advantages of both the firefly algorithm (FA) and differential evolution (DE). FA and DE are executed in parallel to promote information sharing among the population and thus enhance searching efficiency. In order to evaluate the performance and efficiency of the proposed algorithm, a diverse set of selected benchmark functions are employed and these functions fall into two groups: unimodal and multimodal. The experimental results show better performance of the proposed algorithm compared to the original version of the firefly algorithm (FA), differential evolution (DE) and particle swarm optimization (PSO) in the sense of avoiding local minima and increasing the convergence rate.
A Novel Hybrid Firefly Algorithm for Global Optimization
Zhang, Lina; Liu, Liqiang; Yang, Xin-She; Dai, Yuntao
2016-01-01
Global optimization is challenging to solve due to its nonlinearity and multimodality. Traditional algorithms such as the gradient-based methods often struggle to deal with such problems and one of the current trends is to use metaheuristic algorithms. In this paper, a novel hybrid population-based global optimization algorithm, called hybrid firefly algorithm (HFA), is proposed by combining the advantages of both the firefly algorithm (FA) and differential evolution (DE). FA and DE are executed in parallel to promote information sharing among the population and thus enhance searching efficiency. In order to evaluate the performance and efficiency of the proposed algorithm, a diverse set of selected benchmark functions are employed and these functions fall into two groups: unimodal and multimodal. The experimental results show better performance of the proposed algorithm compared to the original version of the firefly algorithm (FA), differential evolution (DE) and particle swarm optimization (PSO) in the sense of avoiding local minima and increasing the convergence rate. PMID:27685869
ERIC Educational Resources Information Center
Brusco, Michael J.; Stahl, Stephanie
2005-01-01
There are two well-known methods for obtaining a guaranteed globally optimal solution to the problem of least-squares unidimensional scaling of a symmetric dissimilarity matrix: (a) dynamic programming, and (b) branch-and-bound. Dynamic programming is generally more efficient than branch-and-bound, but the former is limited to matrices with…
Comparison of penalty functions on a penalty approach to mixed-integer optimization
NASA Astrophysics Data System (ADS)
Francisco, Rogério B.; Costa, M. Fernanda P.; Rocha, Ana Maria A. C.; Fernandes, Edite M. G. P.
2016-06-01
In this paper, we present a comparative study involving several penalty functions that can be used in a penalty approach for globally solving bound mixed-integer nonlinear programming (bMIMLP) problems. The penalty approach relies on a continuous reformulation of the bMINLP problem by adding a particular penalty term to the objective function. A penalty function based on the `erf' function is proposed. The continuous nonlinear optimization problems are sequentially solved by the population-based firefly algorithm. Preliminary numerical experiments are carried out in order to analyze the quality of the produced solutions, when compared with other penalty functions available in the literature.
NASA Astrophysics Data System (ADS)
Rakshit, Suman; Khare, Swanand R.; Datta, Biswa Nath
2018-07-01
One of the most important yet difficult aspect of the Finite Element Model Updating Problem is to preserve the finite element inherited structures in the updated model. Finite element matrices are in general symmetric, positive definite (or semi-definite) and banded (tridiagonal, diagonal, penta-diagonal, etc.). Though a large number of papers have been published in recent years on various aspects of solutions of this problem, papers dealing with structure preservation almost do not exist. A novel optimization based approach that preserves the symmetric tridiagonal structures of the stiffness and damping matrices is proposed in this paper. An analytical expression for the global minimum solution of the associated optimization problem along with the results of numerical experiments obtained by both the analytical expressions and by an appropriate numerical optimization algorithm are presented. The results of numerical experiments support the validity of the proposed method.
Annealing Ant Colony Optimization with Mutation Operator for Solving TSP.
Mohsen, Abdulqader M
2016-01-01
Ant Colony Optimization (ACO) has been successfully applied to solve a wide range of combinatorial optimization problems such as minimum spanning tree, traveling salesman problem, and quadratic assignment problem. Basic ACO has drawbacks of trapping into local minimum and low convergence rate. Simulated annealing (SA) and mutation operator have the jumping ability and global convergence; and local search has the ability to speed up the convergence. Therefore, this paper proposed a hybrid ACO algorithm integrating the advantages of ACO, SA, mutation operator, and local search procedure to solve the traveling salesman problem. The core of algorithm is based on the ACO. SA and mutation operator were used to increase the ants population diversity from time to time and the local search was used to exploit the current search area efficiently. The comparative experiments, using 24 TSP instances from TSPLIB, show that the proposed algorithm outperformed some well-known algorithms in the literature in terms of solution quality.
Hierarchical Artificial Bee Colony Algorithm for RFID Network Planning Optimization
Ma, Lianbo; Chen, Hanning; Hu, Kunyuan; Zhu, Yunlong
2014-01-01
This paper presents a novel optimization algorithm, namely, hierarchical artificial bee colony optimization, called HABC, to tackle the radio frequency identification network planning (RNP) problem. In the proposed multilevel model, the higher-level species can be aggregated by the subpopulations from lower level. In the bottom level, each subpopulation employing the canonical ABC method searches the part-dimensional optimum in parallel, which can be constructed into a complete solution for the upper level. At the same time, the comprehensive learning method with crossover and mutation operators is applied to enhance the global search ability between species. Experiments are conducted on a set of 10 benchmark optimization problems. The results demonstrate that the proposed HABC obtains remarkable performance on most chosen benchmark functions when compared to several successful swarm intelligence and evolutionary algorithms. Then HABC is used for solving the real-world RNP problem on two instances with different scales. Simulation results show that the proposed algorithm is superior for solving RNP, in terms of optimization accuracy and computation robustness. PMID:24592200
Hierarchical artificial bee colony algorithm for RFID network planning optimization.
Ma, Lianbo; Chen, Hanning; Hu, Kunyuan; Zhu, Yunlong
2014-01-01
This paper presents a novel optimization algorithm, namely, hierarchical artificial bee colony optimization, called HABC, to tackle the radio frequency identification network planning (RNP) problem. In the proposed multilevel model, the higher-level species can be aggregated by the subpopulations from lower level. In the bottom level, each subpopulation employing the canonical ABC method searches the part-dimensional optimum in parallel, which can be constructed into a complete solution for the upper level. At the same time, the comprehensive learning method with crossover and mutation operators is applied to enhance the global search ability between species. Experiments are conducted on a set of 10 benchmark optimization problems. The results demonstrate that the proposed HABC obtains remarkable performance on most chosen benchmark functions when compared to several successful swarm intelligence and evolutionary algorithms. Then HABC is used for solving the real-world RNP problem on two instances with different scales. Simulation results show that the proposed algorithm is superior for solving RNP, in terms of optimization accuracy and computation robustness.
The Study of Importance of the Balance Space Food -Storage Method -
NASA Astrophysics Data System (ADS)
Katayama, Naomi; Yamashita, Masamichi; Hashimoto, Hirofumi; Space Agriculture Task Force, J.
Providing foods to space crew is the important requirements to support long term manned space exploration. Foods fill not only physiological requirements to sustain life, but psychological needs for refreshment and joy during the long and hard mission to extraterrestrial planets. We designed joyful and healthy recipe with materials, which can be produced by the bio-regenerative agricultural system operated at limited resources available in Mars base, Moon base and spaceship. We need to think about how to use the storage food when we have the time of emergency. The pupa of the silkworm becomes the important nourishment source as protein and lipid. The silk thread uses it as clothing and cosmetics and medical supplies. However, we can use the silk thread as food as protein. The silk thread is mad of sericin and fibroin. The sericin is used for cosmetics mainly, but can make sheet food by mixing it with rice flour. We can make Japanese rolled sushi with this product. In addition, we can make spring roll and gyoza and shao-mai. As for the fibroin which is the subject of the silk thread, is to extract it high pressure heat; of the protein can powder it, and can use it as food. Even if there is the silk thread in this way after having made it clothes once, we can do it to food again. We can reuse the cotton thread as carbohydrates equally, too. We can use the wood as carbohydrates, also. Based upon the foregoing, we use the pupa of the silkworm as protein and lipid, and the silk thread as protein, and the cotton thread and wood as carbohydrates. It is recommended as healthy meal balance; Protein: Lipid: Carbohydrate ratio equal 15-20We succeeded to develop joyful and nutritious space recipe at the end. Since energy consumption for physical exercise activities under micro-or sub-gravity is less than the terrestrial case, choice of our space foods is essencial to suppress blood sugar level, and prevent the metabolic syndrome. Because of less need of agricultural resources at choosing ecological members from the lower ladder of the food chain, our space recipe could be a proposal to solve the food problem on Earth.
Eco-analytical Methodology in Environmental Problems Monitoring
NASA Astrophysics Data System (ADS)
Agienko, M. I.; Bondareva, E. P.; Chistyakova, G. V.; Zhironkina, O. V.; Kalinina, O. I.
2017-01-01
Among the problems common to all mankind, which solutions influence the prospects of civilization, the problem of ecological situation monitoring takes very important place. Solution of this problem requires specific methodology based on eco-analytical comprehension of global issues. Eco-analytical methodology should help searching for the optimum balance between environmental problems and accelerating scientific and technical progress. The fact that Governments, corporations, scientists and nations focus on the production and consumption of material goods cause great damage to environment. As a result, the activity of environmentalists is developing quite spontaneously, as a complement to productive activities. Therefore, the challenge posed by the environmental problems for the science is the formation of geo-analytical reasoning and the monitoring of global problems common for the whole humanity. So it is expected to find the optimal trajectory of industrial development to prevent irreversible problems in the biosphere that could stop progress of civilization.
Hybrid Genetic Algorithm - Local Search Method for Ground-Water Management
NASA Astrophysics Data System (ADS)
Chiu, Y.; Nishikawa, T.; Martin, P.
2008-12-01
Ground-water management problems commonly are formulated as a mixed-integer, non-linear programming problem (MINLP). Relying only on conventional gradient-search methods to solve the management problem is computationally fast; however, the methods may become trapped in a local optimum. Global-optimization schemes can identify the global optimum, but the convergence is very slow when the optimal solution approaches the global optimum. In this study, we developed a hybrid optimization scheme, which includes a genetic algorithm and a gradient-search method, to solve the MINLP. The genetic algorithm identifies a near- optimal solution, and the gradient search uses the near optimum to identify the global optimum. Our methodology is applied to a conjunctive-use project in the Warren ground-water basin, California. Hi- Desert Water District (HDWD), the primary water-manager in the basin, plans to construct a wastewater treatment plant to reduce future septic-tank effluent from reaching the ground-water system. The treated wastewater instead will recharge the ground-water basin via percolation ponds as part of a larger conjunctive-use strategy, subject to State regulations (e.g. minimum distances and travel times). HDWD wishes to identify the least-cost conjunctive-use strategies that control ground-water levels, meet regulations, and identify new production-well locations. As formulated, the MINLP objective is to minimize water-delivery costs subject to constraints including pump capacities, available recharge water, water-supply demand, water-level constraints, and potential new-well locations. The methodology was demonstrated by an enumerative search of the entire feasible solution and comparing the optimum solution with results from the branch-and-bound algorithm. The results also indicate that the hybrid method identifies the global optimum within an affordable computation time. Sensitivity analyses, which include testing different recharge-rate scenarios, pond layouts, and water-supply constraints, indicate that the number of new wells is insensitive to water-supply constraints; however, pumping rates and patterns of the existing wells are sensitive. The locations of new wells are mildly sensitive to the pond layout.
Data: The Common Thread & Tie That Binds Exposure Science
While a number of ongoing efforts exist aimed at empirically measuring or modeling exposure data, problems persist regarding availability and access to this data. Innovations in managing proprietary data, establishing data quality, standardization of data sets, and sharing of exi...
A continuous GRASP to determine the relationship between drugs and adverse reactions
DOE Office of Scientific and Technical Information (OSTI.GOV)
Hirsch, Michael J.; Meneses, Claudio N.; Pardalos, Panos M.
2007-11-05
Adverse drag reactions (ADRs) are estimated to be one of the leading causes of death. Many national and international agencies have set up databases of ADR reports for the express purpose of determining the relationship between drugs and adverse reactions that they cause. We formulate the drug-reaction relationship problem as a continuous optimization problem and utilize C-GRASP, a new continuous global optimization heuristic, to approximately determine the relationship between drugs and adverse reactions. Our approach is compared against others in the literature and is shown to find better solutions.
Gradient gravitational search: An efficient metaheuristic algorithm for global optimization.
Dash, Tirtharaj; Sahu, Prabhat K
2015-05-30
The adaptation of novel techniques developed in the field of computational chemistry to solve the concerned problems for large and flexible molecules is taking the center stage with regard to efficient algorithm, computational cost and accuracy. In this article, the gradient-based gravitational search (GGS) algorithm, using analytical gradients for a fast minimization to the next local minimum has been reported. Its efficiency as metaheuristic approach has also been compared with Gradient Tabu Search and others like: Gravitational Search, Cuckoo Search, and Back Tracking Search algorithms for global optimization. Moreover, the GGS approach has also been applied to computational chemistry problems for finding the minimal value potential energy of two-dimensional and three-dimensional off-lattice protein models. The simulation results reveal the relative stability and physical accuracy of protein models with efficient computational cost. © 2015 Wiley Periodicals, Inc.
Homework through the Eyes of Children: What Does Visual Ethnography Invite Us to See?
ERIC Educational Resources Information Center
Hutchison, Kirsten
2011-01-01
Whilst the notion of children's rights and an entitlement to express their views and participate as global citizens is threaded throughout the international policy field, children's perspectives on the near ubiquitous practice of homework, and its effects on their daily lives and learner subjectivities, remain under-researched. Drawing on the…
Guo, Y C; Wang, H; Wu, H P; Zhang, M Q
2015-12-21
Aimed to address the defects of the large mean square error (MSE), and the slow convergence speed in equalizing the multi-modulus signals of the constant modulus algorithm (CMA), a multi-modulus algorithm (MMA) based on global artificial fish swarm (GAFS) intelligent optimization of DNA encoding sequences (GAFS-DNA-MMA) was proposed. To improve the convergence rate and reduce the MSE, this proposed algorithm adopted an encoding method based on DNA nucleotide chains to provide a possible solution to the problem. Furthermore, the GAFS algorithm, with its fast convergence and global search ability, was used to find the best sequence. The real and imaginary parts of the initial optimal weight vector of MMA were obtained through DNA coding of the best sequence. The simulation results show that the proposed algorithm has a faster convergence speed and smaller MSE in comparison with the CMA, the MMA, and the AFS-DNA-MMA.
The fully actuated traffic control problem solved by global optimization and complementarity
NASA Astrophysics Data System (ADS)
Ribeiro, Isabel M.; de Lurdes de Oliveira Simões, Maria
2016-02-01
Global optimization and complementarity are used to determine the signal timing for fully actuated traffic control, regarding effective green and red times on each cycle. The average values of these parameters can be used to estimate the control delay of vehicles. In this article, a two-phase queuing system for a signalized intersection is outlined, based on the principle of minimization of the total waiting time for the vehicles. The underlying model results in a linear program with linear complementarity constraints, solved by a sequential complementarity algorithm. Departure rates of vehicles during green and yellow periods were treated as deterministic, while arrival rates of vehicles were assumed to follow a Poisson distribution. Several traffic scenarios were created and solved. The numerical results reveal that it is possible to use global optimization and complementarity over a reasonable number of cycles and determine with efficiency effective green and red times for a signalized intersection.
On Improving Efficiency of Differential Evolution for Aerodynamic Shape Optimization Applications
NASA Technical Reports Server (NTRS)
Madavan, Nateri K.
2004-01-01
Differential Evolution (DE) is a simple and robust evolutionary strategy that has been provEn effective in determining the global optimum for several difficult optimization problems. Although DE offers several advantages over traditional optimization approaches, its use in applications such as aerodynamic shape optimization where the objective function evaluations are computationally expensive is limited by the large number of function evaluations often required. In this paper various approaches for improving the efficiency of DE are reviewed and discussed. Several approaches that have proven effective for other evolutionary algorithms are modified and implemented in a DE-based aerodynamic shape optimization method that uses a Navier-Stokes solver for the objective function evaluations. Parallelization techniques on distributed computers are used to reduce turnaround times. Results are presented for standard test optimization problems and for the inverse design of a turbine airfoil. The efficiency improvements achieved by the different approaches are evaluated and compared.
Guided particle swarm optimization method to solve general nonlinear optimization problems
NASA Astrophysics Data System (ADS)
Abdelhalim, Alyaa; Nakata, Kazuhide; El-Alem, Mahmoud; Eltawil, Amr
2018-04-01
The development of hybrid algorithms is becoming an important topic in the global optimization research area. This article proposes a new technique in hybridizing the particle swarm optimization (PSO) algorithm and the Nelder-Mead (NM) simplex search algorithm to solve general nonlinear unconstrained optimization problems. Unlike traditional hybrid methods, the proposed method hybridizes the NM algorithm inside the PSO to improve the velocities and positions of the particles iteratively. The new hybridization considers the PSO algorithm and NM algorithm as one heuristic, not in a sequential or hierarchical manner. The NM algorithm is applied to improve the initial random solution of the PSO algorithm and iteratively in every step to improve the overall performance of the method. The performance of the proposed method was tested over 20 optimization test functions with varying dimensions. Comprehensive comparisons with other methods in the literature indicate that the proposed solution method is promising and competitive.
NASA Technical Reports Server (NTRS)
1995-01-01
The design of a High-Speed Civil Transport (HSCT) air-breathing propulsion system for multimission, variable-cycle operations was successfully optimized through a soft coupling of the engine performance analyzer NASA Engine Performance Program (NEPP) to a multidisciplinary optimization tool COMETBOARDS that was developed at the NASA Lewis Research Center. The design optimization of this engine was cast as a nonlinear optimization problem, with engine thrust as the merit function and the bypass ratios, r-values of fans, fuel flow, and other factors as important active design variables. Constraints were specified on factors including the maximum speed of the compressors, the positive surge margins for the compressors with specified safety factors, the discharge temperature, the pressure ratios, and the mixer extreme Mach number. Solving the problem by using the most reliable optimization algorithm available in COMETBOARDS would provide feasible optimum results only for a portion of the aircraft flight regime because of the large number of mission points (defined by altitudes, Mach numbers, flow rates, and other factors), diverse constraint types, and overall poor conditioning of the design space. Only the cascade optimization strategy of COMETBOARDS, which was devised especially for difficult multidisciplinary applications, could successfully solve a number of engine design problems for their flight regimes. Furthermore, the cascade strategy converged to the same global optimum solution even when it was initiated from different design points. Multiple optimizers in a specified sequence, pseudorandom damping, and reduction of the design space distortion via a global scaling scheme are some of the key features of the cascade strategy. HSCT engine concept, optimized solution for HSCT engine concept. A COMETBOARDS solution for an HSCT engine (Mach-2.4 mixed-flow turbofan) along with its configuration is shown. The optimum thrust is normalized with respect to NEPP results. COMETBOARDS added value in the design optimization of the HSCT engine.
From the physics of interacting polymers to optimizing routes on the London Underground
Yeung, Chi Ho; Saad, David; Wong, K. Y. Michael
2013-01-01
Optimizing paths on networks is crucial for many applications, ranging from subway traffic to Internet communication. Because global path optimization that takes account of all path choices simultaneously is computationally hard, most existing routing algorithms optimize paths individually, thus providing suboptimal solutions. We use the physics of interacting polymers and disordered systems to analyze macroscopic properties of generic path optimization problems and derive a simple, principled, generic, and distributed routing algorithm capable of considering all individual path choices simultaneously. We demonstrate the efficacy of the algorithm by applying it to: (i) random graphs resembling Internet overlay networks, (ii) travel on the London Underground network based on Oyster card data, and (iii) the global airport network. Analytically derived macroscopic properties give rise to insightful new routing phenomena, including phase transitions and scaling laws, that facilitate better understanding of the appropriate operational regimes and their limitations, which are difficult to obtain otherwise. PMID:23898198
From the physics of interacting polymers to optimizing routes on the London Underground.
Yeung, Chi Ho; Saad, David; Wong, K Y Michael
2013-08-20
Optimizing paths on networks is crucial for many applications, ranging from subway traffic to Internet communication. Because global path optimization that takes account of all path choices simultaneously is computationally hard, most existing routing algorithms optimize paths individually, thus providing suboptimal solutions. We use the physics of interacting polymers and disordered systems to analyze macroscopic properties of generic path optimization problems and derive a simple, principled, generic, and distributed routing algorithm capable of considering all individual path choices simultaneously. We demonstrate the efficacy of the algorithm by applying it to: (i) random graphs resembling Internet overlay networks, (ii) travel on the London Underground network based on Oyster card data, and (iii) the global airport network. Analytically derived macroscopic properties give rise to insightful new routing phenomena, including phase transitions and scaling laws, that facilitate better understanding of the appropriate operational regimes and their limitations, which are difficult to obtain otherwise.
NASA Astrophysics Data System (ADS)
Beyhaghi, Pooriya
2016-11-01
This work considers the problem of the efficient minimization of the infinite time average of a stationary ergodic process in the space of a handful of independent parameters which affect it. Problems of this class, derived from physical or numerical experiments which are sometimes expensive to perform, are ubiquitous in turbulence research. In such problems, any given function evaluation, determined with finite sampling, is associated with a quantifiable amount of uncertainty, which may be reduced via additional sampling. This work proposes the first algorithm of this type. Our algorithm remarkably reduces the overall cost of the optimization process for problems of this class. Further, under certain well-defined conditions, rigorous proof of convergence is established to the global minimum of the problem considered.
Solving SAT Problem Based on Hybrid Differential Evolution Algorithm
NASA Astrophysics Data System (ADS)
Liu, Kunqi; Zhang, Jingmin; Liu, Gang; Kang, Lishan
Satisfiability (SAT) problem is an NP-complete problem. Based on the analysis about it, SAT problem is translated equally into an optimization problem on the minimum of objective function. A hybrid differential evolution algorithm is proposed to solve the Satisfiability problem. It makes full use of strong local search capacity of hill-climbing algorithm and strong global search capability of differential evolution algorithm, which makes up their disadvantages, improves the efficiency of algorithm and avoids the stagnation phenomenon. The experiment results show that the hybrid algorithm is efficient in solving SAT problem.
Joint Geophysical Inversion With Multi-Objective Global Optimization Methods
NASA Astrophysics Data System (ADS)
Lelievre, P. G.; Bijani, R.; Farquharson, C. G.
2015-12-01
Pareto multi-objective global optimization (PMOGO) methods generate a suite of solutions that minimize multiple objectives (e.g. data misfits and regularization terms) in a Pareto-optimal sense. Providing a suite of models, as opposed to a single model that minimizes a weighted sum of objectives, allows a more complete assessment of the possibilities and avoids the often difficult choice of how to weight each objective. We are applying PMOGO methods to three classes of inverse problems. The first class are standard mesh-based problems where the physical property values in each cell are treated as continuous variables. The second class of problems are also mesh-based but cells can only take discrete physical property values corresponding to known or assumed rock units. In the third class we consider a fundamentally different type of inversion in which a model comprises wireframe surfaces representing contacts between rock units; the physical properties of each rock unit remain fixed while the inversion controls the position of the contact surfaces via control nodes. This third class of problem is essentially a geometry inversion, which can be used to recover the unknown geometry of a target body or to investigate the viability of a proposed Earth model. Joint inversion is greatly simplified for the latter two problem classes because no additional mathematical coupling measure is required in the objective function. PMOGO methods can solve numerically complicated problems that could not be solved with standard descent-based local minimization methods. This includes the latter two classes of problems mentioned above. There are significant increases in the computational requirements when PMOGO methods are used but these can be ameliorated using parallelization and problem dimension reduction strategies.
Simultaneous multislice refocusing via time optimal control.
Rund, Armin; Aigner, Christoph Stefan; Kunisch, Karl; Stollberger, Rudolf
2018-02-09
Joint design of minimum duration RF pulses and slice-selective gradient shapes for MRI via time optimal control with strict physical constraints, and its application to simultaneous multislice imaging. The minimization of the pulse duration is cast as a time optimal control problem with inequality constraints describing the refocusing quality and physical constraints. It is solved with a bilevel method, where the pulse length is minimized in the upper level, and the constraints are satisfied in the lower level. To address the inherent nonconvexity of the optimization problem, the upper level is enhanced with new heuristics for finding a near global optimizer based on a second optimization problem. A large set of optimized examples shows an average temporal reduction of 87.1% for double diffusion and 74% for turbo spin echo pulses compared to power independent number of slices pulses. The optimized results are validated on a 3T scanner with phantom measurements. The presented design method computes minimum duration RF pulse and slice-selective gradient shapes subject to physical constraints. The shorter pulse duration can be used to decrease the effective echo time in existing echo-planar imaging or echo spacing in turbo spin echo sequences. © 2018 International Society for Magnetic Resonance in Medicine.
Heo, Jae Sang; Kim, Taehoon; Ban, Seok-Gyu; Kim, Daesik; Lee, Jun Ho; Jur, Jesse S; Kim, Myung-Gil; Kim, Yong-Hoon; Hong, Yongtaek; Park, Sung Kyu
2017-08-01
The realization of large-area electronics with full integration of 1D thread-like devices may open up a new era for ultraflexible and human adaptable electronic systems because of their potential advantages in demonstrating scalable complex circuitry by a simply integrated weaving technology. More importantly, the thread-like fiber electronic devices can be achieved using a simple reel-to-reel process, which is strongly required for low-cost and scalable manufacturing technology. Here, high-performance reel-processed complementary metal-oxide-semiconductor (CMOS) integrated circuits are reported on 1D fiber substrates by using selectively chemical-doped single-walled carbon nanotube (SWCNT) transistors. With the introduction of selective n-type doping and a nonrelief photochemical patterning process, p- and n-type SWCNT transistors are successfully implemented on cylindrical fiber substrates under air ambient, enabling high-performance and reliable thread-like CMOS inverter circuits. In addition, it is noteworthy that the optimized reel-coating process can facilitate improvement in the arrangement of SWCNTs, building uniformly well-aligned SWCNT channels, and enhancement of the electrical performance of the devices. The p- and n-type SWCNT transistors exhibit field-effect mobility of 4.03 and 2.15 cm 2 V -1 s -1 , respectively, with relatively narrow distribution. Moreover, the SWCNT CMOS inverter circuits demonstrate a gain of 6.76 and relatively good dynamic operation at a supply voltage of 5.0 V. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.
A multi-product green supply chain under government supervision with price and demand uncertainty
NASA Astrophysics Data System (ADS)
Hafezalkotob, Ashkan; Zamani, Soma
2018-05-01
In this paper, a bi-level game-theoretic model is proposed to investigate the effects of governmental financial intervention on green supply chain. This problem is formulated as a bi-level program for a green supply chain that produces various products with different environmental pollution levels. The problem is also regard uncertainties in market demand and sale price of raw materials and products. The model is further transformed into a single-level nonlinear programming problem by replacing the lower-level optimization problem with its Karush-Kuhn-Tucker optimality conditions. Genetic algorithm is applied as a solution methodology to solve nonlinear programming model. Finally, to investigate the validity of the proposed method, the computational results obtained through genetic algorithm are compared with global optimal solution attained by enumerative method. Analytical results indicate that the proposed GA offers better solutions in large size problems. Also, we conclude that financial intervention by government consists of green taxation and subsidization is an effective method to stabilize green supply chain members' performance.
An EGO-like optimization framework for sensor placement optimization in modal analysis
NASA Astrophysics Data System (ADS)
Morlier, Joseph; Basile, Aniello; Chiplunkar, Ankit; Charlotte, Miguel
2018-07-01
In aircraft design, ground/flight vibration tests are conducted to extract aircraft’s modal parameters (natural frequencies, damping ratios and mode shapes) also known as the modal basis. The main problem in aircraft modal identification is the large number of sensors needed, which increases operational time and costs. The goal of this paper is to minimize the number of sensors by optimizing their locations in order to reconstruct a truncated modal basis of N mode shapes with a high level of accuracy in the reconstruction. There are several methods to solve sensors placement optimization (SPO) problems, but for this case an original approach has been established based on an iterative process for mode shapes reconstruction through an adaptive Kriging metamodeling approach so called efficient global optimization (EGO)-SPO. The main idea in this publication is to solve an optimization problem where the sensors locations are variables and the objective function is defined by maximizing the trace of criteria so called AutoMAC. The results on a 2D wing demonstrate a reduction of sensors by 30% using our EGO-SPO strategy.
NASA Technical Reports Server (NTRS)
Rais-Rohani, Masoud
2003-01-01
This report discusses the development and application of two alternative strategies in the form of global and sequential local response surface (RS) techniques for the solution of reliability-based optimization (RBO) problems. The problem of a thin-walled composite circular cylinder under axial buckling instability is used as a demonstrative example. In this case, the global technique uses a single second-order RS model to estimate the axial buckling load over the entire feasible design space (FDS) whereas the local technique uses multiple first-order RS models with each applied to a small subregion of FDS. Alternative methods for the calculation of unknown coefficients in each RS model are explored prior to the solution of the optimization problem. The example RBO problem is formulated as a function of 23 uncorrelated random variables that include material properties, thickness and orientation angle of each ply, cylinder diameter and length, as well as the applied load. The mean values of the 8 ply thicknesses are treated as independent design variables. While the coefficients of variation of all random variables are held fixed, the standard deviations of ply thicknesses can vary during the optimization process as a result of changes in the design variables. The structural reliability analysis is based on the first-order reliability method with reliability index treated as the design constraint. In addition to the probabilistic sensitivity analysis of reliability index, the results of the RBO problem are presented for different combinations of cylinder length and diameter and laminate ply patterns. The two strategies are found to produce similar results in terms of accuracy with the sequential local RS technique having a considerably better computational efficiency.
DOE Office of Scientific and Technical Information (OSTI.GOV)
O’Connor, D; Nguyen, D; Voronenko, Y
Purpose: Integrated beam orientation and fluence map optimization is expected to be the foundation of robust automated planning but existing heuristic methods do not promise global optimality. We aim to develop a new method for beam angle selection in 4π non-coplanar IMRT systems based on solving (globally) a single convex optimization problem, and to demonstrate the effectiveness of the method by comparison with a state of the art column generation method for 4π beam angle selection. Methods: The beam angle selection problem is formulated as a large scale convex fluence map optimization problem with an additional group sparsity term thatmore » encourages most candidate beams to be inactive. The optimization problem is solved using an accelerated first-order method, the Fast Iterative Shrinkage-Thresholding Algorithm (FISTA). The beam angle selection and fluence map optimization algorithm is used to create non-coplanar 4π treatment plans for several cases (including head and neck, lung, and prostate cases) and the resulting treatment plans are compared with 4π treatment plans created using the column generation algorithm. Results: In our experiments the treatment plans created using the group sparsity method meet or exceed the dosimetric quality of plans created using the column generation algorithm, which was shown superior to clinical plans. Moreover, the group sparsity approach converges in about 3 minutes in these cases, as compared with runtimes of a few hours for the column generation method. Conclusion: This work demonstrates the first non-greedy approach to non-coplanar beam angle selection, based on convex optimization, for 4π IMRT systems. The method given here improves both treatment plan quality and runtime as compared with a state of the art column generation algorithm. When the group sparsity term is set to zero, we obtain an excellent method for fluence map optimization, useful when beam angles have already been selected. NIH R43CA183390, NIH R01CA188300, Varian Medical Systems; Part of this research took place while D. O’Connor was a summer intern at RefleXion Medical.« less
On Global Optimal Sailplane Flight Strategy
NASA Technical Reports Server (NTRS)
Sander, G. J.; Litt, F. X.
1979-01-01
The derivation and interpretation of the necessary conditions that a sailplane cross-country flight has to satisfy to achieve the maximum global flight speed is considered. Simple rules are obtained for two specific meteorological models. The first one uses concentrated lifts of various strengths and unequal distance. The second one takes into account finite, nonuniform space amplitudes for the lifts and allows, therefore, for dolphin style flight. In both models, altitude constraints consisting of upper and lower limits are shown to be essential to model realistic problems. Numerical examples illustrate the difference with existing techniques based on local optimality conditions.
Thread selection according to power characteristics during context switching on compute nodes
DOE Office of Scientific and Technical Information (OSTI.GOV)
Archer, Charles J.; Blocksome, Michael A.; Randles, Amanda E.
Methods, apparatus, and products are disclosed for thread selection during context switching on a plurality of compute nodes that includes: executing, by a compute node, an application using a plurality of threads of execution, including executing one or more of the threads of execution; selecting, by the compute node from a plurality of available threads of execution for the application, a next thread of execution in dependence upon power characteristics for each of the available threads; determining, by the compute node, whether criteria for a thread context switch are satisfied; and performing, by the compute node, the thread context switchmore » if the criteria for a thread context switch are satisfied, including executing the next thread of execution.« less
DOE Office of Scientific and Technical Information (OSTI.GOV)
None, None
Methods, apparatus, and products are disclosed for thread selection during context switching on a plurality of compute nodes that includes: executing, by a compute node, an application using a plurality of threads of execution, including executing one or more of the threads of execution; selecting, by the compute node from a plurality of available threads of execution for the application, a next thread of execution in dependence upon power characteristics for each of the available threads; determining, by the compute node, whether criteria for a thread context switch are satisfied; and performing, by the compute node, the thread context switchmore » if the criteria for a thread context switch are satisfied, including executing the next thread of execution.« less
Xiao, Xun; Geyer, Veikko F; Bowne-Anderson, Hugo; Howard, Jonathon; Sbalzarini, Ivo F
2016-08-01
Biological filaments, such as actin filaments, microtubules, and cilia, are often imaged using different light-microscopy techniques. Reconstructing the filament curve from the acquired images constitutes the filament segmentation problem. Since filaments have lower dimensionality than the image itself, there is an inherent trade-off between tracing the filament with sub-pixel accuracy and avoiding noise artifacts. Here, we present a globally optimal filament segmentation method based on B-spline vector level-sets and a generalized linear model for the pixel intensity statistics. We show that the resulting optimization problem is convex and can hence be solved with global optimality. We introduce a simple and efficient algorithm to compute such optimal filament segmentations, and provide an open-source implementation as an ImageJ/Fiji plugin. We further derive an information-theoretic lower bound on the filament segmentation error, quantifying how well an algorithm could possibly do given the information in the image. We show that our algorithm asymptotically reaches this bound in the spline coefficients. We validate our method in comprehensive benchmarks, compare with other methods, and show applications from fluorescence, phase-contrast, and dark-field microscopy. Copyright © 2016 The Authors. Published by Elsevier B.V. All rights reserved.
Nonlinear optimization simplified by hypersurface deformation
DOE Office of Scientific and Technical Information (OSTI.GOV)
Stillinger, F.H.; Weber, T.A.
1988-09-01
A general strategy is advanced for simplifying nonlinear optimization problems, the ant-lion method. This approach exploits shape modifications of the cost-function hypersurface which distend basins surrounding low-lying minima (including global minima). By intertwining hypersurface deformations with steepest-descent displacements, the search is concentrated on a small relevant subset of all minima. Specific calculations demonstrating the value of this method are reported for the partitioning of two classes of irregular but nonrandom graphs, the prime-factor graphs and the pi graphs. We also indicate how this approach can be applied to the traveling salesman problem and to design layout optimization, and that itmore » may be useful in combination with simulated annealing strategies.« less
Modified locking thread form for fastener
NASA Technical Reports Server (NTRS)
Roopnarine, (Inventor); Vranish, John D. (Inventor)
1998-01-01
A threaded fastener has a standard part with a standard thread form characterized by thread walls with a standard included angle, and a modified part complementary to the standard part having a modified thread form characterized by thread walls which are symmetrically inclined with a modified included angle that is different from the standard included angle of the standard part's thread walls, such that the threads of one part make pre-loaded edge contact with the thread walls of the other part. The thread form of the modified part can have an included angle that is greater, less, or compound as compared to the included angle of the standard part. The standard part may be a bolt and the modified part a nut, or vice versa. The modified thread form holds securely even under large vibrational forces, it permits bi-directional use of standard mating threads, is impervious to the build up of tolerances and can be manufactured with a wider range of tolerances without loss of functionality, and distributes loading stresses (per thread) in a manner that decreases the possibility of single thread failure.
Recent Advances in Source Localisation Using Range Measurements
2015-10-01
Range Weighted SR- LS ............................................................................................ 5 GEOLOCATION USING SEMIDEFINITE... LS ) and the squared range least squares (SR- LS ) [3]. The R- LS -based formulation is of great interest and has been known for its optimal performance...to efficiently compute an R- LS position estimate. A number of optimization tools may be applied to globally solve the R- LS problem and are usually
Wang, Handing; Jin, Yaochu; Doherty, John
2017-09-01
Function evaluations (FEs) of many real-world optimization problems are time or resource consuming, posing a serious challenge to the application of evolutionary algorithms (EAs) to solve these problems. To address this challenge, the research on surrogate-assisted EAs has attracted increasing attention from both academia and industry over the past decades. However, most existing surrogate-assisted EAs (SAEAs) either still require thousands of expensive FEs to obtain acceptable solutions, or are only applied to very low-dimensional problems. In this paper, a novel surrogate-assisted particle swarm optimization (PSO) inspired from committee-based active learning (CAL) is proposed. In the proposed algorithm, a global model management strategy inspired from CAL is developed, which searches for the best and most uncertain solutions according to a surrogate ensemble using a PSO algorithm and evaluates these solutions using the expensive objective function. In addition, a local surrogate model is built around the best solution obtained so far. Then, a PSO algorithm searches on the local surrogate to find its optimum and evaluates it. The evolutionary search using the global model management strategy switches to the local search once no further improvement can be observed, and vice versa. This iterative search process continues until the computational budget is exhausted. Experimental results comparing the proposed algorithm with a few state-of-the-art SAEAs on both benchmark problems up to 30 decision variables as well as an airfoil design problem demonstrate that the proposed algorithm is able to achieve better or competitive solutions with a limited budget of hundreds of exact FEs.
Nonlinear Rayleigh wave inversion based on the shuffled frog-leaping algorithm
NASA Astrophysics Data System (ADS)
Sun, Cheng-Yu; Wang, Yan-Yan; Wu, Dun-Shi; Qin, Xiao-Jun
2017-12-01
At present, near-surface shear wave velocities are mainly calculated through Rayleigh wave dispersion-curve inversions in engineering surface investigations, but the required calculations pose a highly nonlinear global optimization problem. In order to alleviate the risk of falling into a local optimal solution, this paper introduces a new global optimization method, the shuffle frog-leaping algorithm (SFLA), into the Rayleigh wave dispersion-curve inversion process. SFLA is a swarm-intelligence-based algorithm that simulates a group of frogs searching for food. It uses a few parameters, achieves rapid convergence, and is capability of effective global searching. In order to test the reliability and calculation performance of SFLA, noise-free and noisy synthetic datasets were inverted. We conducted a comparative analysis with other established algorithms using the noise-free dataset, and then tested the ability of SFLA to cope with data noise. Finally, we inverted a real-world example to examine the applicability of SFLA. Results from both synthetic and field data demonstrated the effectiveness of SFLA in the interpretation of Rayleigh wave dispersion curves. We found that SFLA is superior to the established methods in terms of both reliability and computational efficiency, so it offers great potential to improve our ability to solve geophysical inversion problems.
Optimal harvesting for a predator-prey agent-based model using difference equations.
Oremland, Matthew; Laubenbacher, Reinhard
2015-03-01
In this paper, a method known as Pareto optimization is applied in the solution of a multi-objective optimization problem. The system in question is an agent-based model (ABM) wherein global dynamics emerge from local interactions. A system of discrete mathematical equations is formulated in order to capture the dynamics of the ABM; while the original model is built up analytically from the rules of the model, the paper shows how minor changes to the ABM rule set can have a substantial effect on model dynamics. To address this issue, we introduce parameters into the equation model that track such changes. The equation model is amenable to mathematical theory—we show how stability analysis can be performed and validated using ABM data. We then reduce the equation model to a simpler version and implement changes to allow controls from the ABM to be tested using the equations. Cohen's weighted κ is proposed as a measure of similarity between the equation model and the ABM, particularly with respect to the optimization problem. The reduced equation model is used to solve a multi-objective optimization problem via a technique known as Pareto optimization, a heuristic evolutionary algorithm. Results show that the equation model is a good fit for ABM data; Pareto optimization provides a suite of solutions to the multi-objective optimization problem that can be implemented directly in the ABM.
I-TASSER: fully automated protein structure prediction in CASP8.
Zhang, Yang
2009-01-01
The I-TASSER algorithm for 3D protein structure prediction was tested in CASP8, with the procedure fully automated in both the Server and Human sections. The quality of the server models is close to that of human ones but the human predictions incorporate more diverse templates from other servers which improve the human predictions in some of the distant homology targets. For the first time, the sequence-based contact predictions from machine learning techniques are found helpful for both template-based modeling (TBM) and template-free modeling (FM). In TBM, although the accuracy of the sequence based contact predictions is on average lower than that from template-based ones, the novel contacts in the sequence-based predictions, which are complementary to the threading templates in the weakly or unaligned regions, are important to improve the global and local packing in these regions. Moreover, the newly developed atomic structural refinement algorithm was tested in CASP8 and found to improve the hydrogen-bonding networks and the overall TM-score, which is mainly due to its ability of removing steric clashes so that the models can be generated from cluster centroids. Nevertheless, one of the major issues of the I-TASSER pipeline is the model selection where the best models could not be appropriately recognized when the correct templates are detected only by the minority of the threading algorithms. There are also problems related with domain-splitting and mirror image recognition which mainly influences the performance of I-TASSER modeling in the FM-based structure predictions. Copyright 2009 Wiley-Liss, Inc.
"How Did We Get Here?": Topic Drift in Online Health Discussions.
Park, Albert; Hartzler, Andrea L; Huh, Jina; Hsieh, Gary; McDonald, David W; Pratt, Wanda
2016-11-02
Patients increasingly use online health communities to exchange health information and peer support. During the progression of health discussions, a change of topic-topic drift-can occur. Topic drift is a frequent phenomenon linked to incoherence and frustration in online communities and other forms of computer-mediated communication. For sensitive topics, such as health, such drift could have life-altering repercussions, yet topic drift has not been studied in these contexts. Our goals were to understand topic drift in online health communities and then to develop and evaluate an automated approach to detect both topic drift and efforts of community members to counteract such drift. We manually analyzed 721 posts from 184 threads from 7 online health communities within WebMD to understand topic drift, members' reaction towards topic drift, and their efforts to counteract topic drift. Then, we developed an automated approach to detect topic drift and counteraction efforts. We detected topic drift by calculating cosine similarity between 229,156 posts from 37,805 threads and measuring change of cosine similarity scores from the threads' first posts to their sequential posts. Using a similar approach, we detected counteractions to topic drift in threads by focusing on the irregular increase of similarity scores compared to the previous post in threads. Finally, we evaluated the performance of our automated approaches to detect topic drift and counteracting efforts by using a manually developed gold standard. Our qualitative analyses revealed that in threads of online health communities, topics change gradually, but usually stay within the global frame of topics for the specific community. Members showed frustration when topic drift occurred in the middle of threads but reacted positively to off-topic stories shared as separate threads. Although all types of members helped to counteract topic drift, original posters provided the most effort to keep threads on topic. Cosine similarity scores show promise for automatically detecting topical changes in online health discussions. In our manual evaluation, we achieved an F1 score of .71 and .73 for detecting topic drift and counteracting efforts to stay on topic, respectively. Our analyses expand our understanding of topic drift in a health context and highlight practical implications, such as promoting off-topic discussions as a function of building rapport in online health communities. Furthermore, the quantitative findings suggest that an automated tool could help detect topic drift, support counteraction efforts to bring the conversation back on topic, and improve communication in these important communities. Findings from this study have the potential to reduce topic drift and improve online health community members' experience of computer-mediated communication. Improved communication could enhance the personal health management of members who seek essential information and support during times of difficulty. ©Albert Park, Andrea L Hartzler, Jina Huh, Gary Hsieh, David W McDonald, Wanda Pratt. Originally published in the Journal of Medical Internet Research (http://www.jmir.org), 02.11.2016.
Cutting thread at flexible endoscopy.
Gong, F; Swain, P; Kadirkamanathan, S; Hepworth, C; Laufer, J; Shelton, J; Mills, T
1996-12-01
New thread-cutting techniques were developed for use at flexible endoscopy. A guillotine was designed to follow and cut thread at the endoscope tip. A new method was developed for guiding suture cutters. Efficacy of Nd: YAG laser cutting of threads was studied. Experimental and clinical experience with thread-cutting methods is presented. A 2.4 mm diameter flexible thread-cutting guillotine was constructed featuring two lateral holes with sharp edges through which sutures to be cut are passed. Standard suture cutters were guided by backloading thread through the cutters extracorporeally. A snare cutter was constructed to retrieve objects sewn to tissue. Efficacy and speed of Nd: YAG laser in cutting twelve different threads were studied. The guillotine cut thread faster (p < 0.05) than standard suture cutters. Backloading thread shortened time taken to cut thread (p < 0.001) compared with free-hand cutting. Nd: YAG laser was ineffective in cutting uncolored threads and slower than mechanical cutters. Results of thread cutting in clinical studies using sewing machine (n = 77 cutting episodes in 21 patients), in-vivo experiments (n = 156), and postsurgical cases (n = 15 over 15 years) are presented. New thread-cutting methods are described and their efficacy demonstrated in experimental and clinical studies.
Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems
Rodriguez-Fernandez, Maria; Egea, Jose A; Banga, Julio R
2006-01-01
Background We consider the problem of parameter estimation (model calibration) in nonlinear dynamic models of biological systems. Due to the frequent ill-conditioning and multi-modality of many of these problems, traditional local methods usually fail (unless initialized with very good guesses of the parameter vector). In order to surmount these difficulties, global optimization (GO) methods have been suggested as robust alternatives. Currently, deterministic GO methods can not solve problems of realistic size within this class in reasonable computation times. In contrast, certain types of stochastic GO methods have shown promising results, although the computational cost remains large. Rodriguez-Fernandez and coworkers have presented hybrid stochastic-deterministic GO methods which could reduce computation time by one order of magnitude while guaranteeing robustness. Our goal here was to further reduce the computational effort without loosing robustness. Results We have developed a new procedure based on the scatter search methodology for nonlinear optimization of dynamic models of arbitrary (or even unknown) structure (i.e. black-box models). In this contribution, we describe and apply this novel metaheuristic, inspired by recent developments in the field of operations research, to a set of complex identification problems and we make a critical comparison with respect to the previous (above mentioned) successful methods. Conclusion Robust and efficient methods for parameter estimation are of key importance in systems biology and related areas. The new metaheuristic presented in this paper aims to ensure the proper solution of these problems by adopting a global optimization approach, while keeping the computational effort under reasonable values. This new metaheuristic was applied to a set of three challenging parameter estimation problems of nonlinear dynamic biological systems, outperforming very significantly all the methods previously used for these benchmark problems. PMID:17081289
Novel metaheuristic for parameter estimation in nonlinear dynamic biological systems.
Rodriguez-Fernandez, Maria; Egea, Jose A; Banga, Julio R
2006-11-02
We consider the problem of parameter estimation (model calibration) in nonlinear dynamic models of biological systems. Due to the frequent ill-conditioning and multi-modality of many of these problems, traditional local methods usually fail (unless initialized with very good guesses of the parameter vector). In order to surmount these difficulties, global optimization (GO) methods have been suggested as robust alternatives. Currently, deterministic GO methods can not solve problems of realistic size within this class in reasonable computation times. In contrast, certain types of stochastic GO methods have shown promising results, although the computational cost remains large. Rodriguez-Fernandez and coworkers have presented hybrid stochastic-deterministic GO methods which could reduce computation time by one order of magnitude while guaranteeing robustness. Our goal here was to further reduce the computational effort without loosing robustness. We have developed a new procedure based on the scatter search methodology for nonlinear optimization of dynamic models of arbitrary (or even unknown) structure (i.e. black-box models). In this contribution, we describe and apply this novel metaheuristic, inspired by recent developments in the field of operations research, to a set of complex identification problems and we make a critical comparison with respect to the previous (above mentioned) successful methods. Robust and efficient methods for parameter estimation are of key importance in systems biology and related areas. The new metaheuristic presented in this paper aims to ensure the proper solution of these problems by adopting a global optimization approach, while keeping the computational effort under reasonable values. This new metaheuristic was applied to a set of three challenging parameter estimation problems of nonlinear dynamic biological systems, outperforming very significantly all the methods previously used for these benchmark problems.
Progress in multidisciplinary design optimization at NASA Langley
NASA Technical Reports Server (NTRS)
Padula, Sharon L.
1993-01-01
Multidisciplinary Design Optimization refers to some combination of disciplinary analyses, sensitivity analysis, and optimization techniques used to design complex engineering systems. The ultimate objective of this research at NASA Langley Research Center is to help the US industry reduce the costs associated with development, manufacturing, and maintenance of aerospace vehicles while improving system performance. This report reviews progress towards this objective and highlights topics for future research. Aerospace design problems selected from the author's research illustrate strengths and weaknesses in existing multidisciplinary optimization techniques. The techniques discussed include multiobjective optimization, global sensitivity equations and sequential linear programming.
Tool Removes Coil-Spring Thread Inserts
NASA Technical Reports Server (NTRS)
Collins, Gerald J., Jr.; Swenson, Gary J.; Mcclellan, J. Scott
1991-01-01
Tool removes coil-spring thread inserts from threaded holes. Threads into hole, pries insert loose, grips insert, then pulls insert to thread it out of hole. Effects essentially reverse of insertion process to ease removal and avoid further damage to threaded inner surface of hole.
Chen, Qingkui; Zhao, Deyu; Wang, Jingjuan
2017-01-01
This paper aims to develop a low-cost, high-performance and high-reliability computing system to process large-scale data using common data mining algorithms in the Internet of Things (IoT) computing environment. Considering the characteristics of IoT data processing, similar to mainstream high performance computing, we use a GPU (Graphics Processing Unit) cluster to achieve better IoT services. Firstly, we present an energy consumption calculation method (ECCM) based on WSNs. Then, using the CUDA (Compute Unified Device Architecture) Programming model, we propose a Two-level Parallel Optimization Model (TLPOM) which exploits reasonable resource planning and common compiler optimization techniques to obtain the best blocks and threads configuration considering the resource constraints of each node. The key to this part is dynamic coupling Thread-Level Parallelism (TLP) and Instruction-Level Parallelism (ILP) to improve the performance of the algorithms without additional energy consumption. Finally, combining the ECCM and the TLPOM, we use the Reliable GPU Cluster Architecture (RGCA) to obtain a high-reliability computing system considering the nodes’ diversity, algorithm characteristics, etc. The results show that the performance of the algorithms significantly increased by 34.1%, 33.96% and 24.07% for Fermi, Kepler and Maxwell on average with TLPOM and the RGCA ensures that our IoT computing system provides low-cost and high-reliability services. PMID:28777325
Fang, Yuling; Chen, Qingkui; Xiong, Neal N; Zhao, Deyu; Wang, Jingjuan
2017-08-04
This paper aims to develop a low-cost, high-performance and high-reliability computing system to process large-scale data using common data mining algorithms in the Internet of Things (IoT) computing environment. Considering the characteristics of IoT data processing, similar to mainstream high performance computing, we use a GPU (Graphics Processing Unit) cluster to achieve better IoT services. Firstly, we present an energy consumption calculation method (ECCM) based on WSNs. Then, using the CUDA (Compute Unified Device Architecture) Programming model, we propose a Two-level Parallel Optimization Model (TLPOM) which exploits reasonable resource planning and common compiler optimization techniques to obtain the best blocks and threads configuration considering the resource constraints of each node. The key to this part is dynamic coupling Thread-Level Parallelism (TLP) and Instruction-Level Parallelism (ILP) to improve the performance of the algorithms without additional energy consumption. Finally, combining the ECCM and the TLPOM, we use the Reliable GPU Cluster Architecture (RGCA) to obtain a high-reliability computing system considering the nodes' diversity, algorithm characteristics, etc. The results show that the performance of the algorithms significantly increased by 34.1%, 33.96% and 24.07% for Fermi, Kepler and Maxwell on average with TLPOM and the RGCA ensures that our IoT computing system provides low-cost and high-reliability services.
DOE Office of Scientific and Technical Information (OSTI.GOV)
Cai, Yunfeng, E-mail: yfcai@math.pku.edu.cn; Department of Computer Science, University of California, Davis 95616; Bai, Zhaojun, E-mail: bai@cs.ucdavis.edu
2013-12-15
The iterative diagonalization of a sequence of large ill-conditioned generalized eigenvalue problems is a computational bottleneck in quantum mechanical methods employing a nonorthogonal basis for ab initio electronic structure calculations. We propose a hybrid preconditioning scheme to effectively combine global and locally accelerated preconditioners for rapid iterative diagonalization of such eigenvalue problems. In partition-of-unity finite-element (PUFE) pseudopotential density-functional calculations, employing a nonorthogonal basis, we show that the hybrid preconditioned block steepest descent method is a cost-effective eigensolver, outperforming current state-of-the-art global preconditioning schemes, and comparably efficient for the ill-conditioned generalized eigenvalue problems produced by PUFE as the locally optimal blockmore » preconditioned conjugate-gradient method for the well-conditioned standard eigenvalue problems produced by planewave methods.« less
ERIC Educational Resources Information Center
Ambrose, Don
2012-01-01
In this commentary, the author finds the interdisciplinary approach of Roland S. Persson's (2012a) target article refreshing. Persson's (2012a) additional emphases on ethnocentricity, cultural bias and strong threads of influence from the global economy also are helpful. They shed light on some strong contextual influences that shape the…
DOE Office of Scientific and Technical Information (OSTI.GOV)
Dall'Anese, Emiliano; Dhople, Sairaj V.; Giannakis, Georgios B.
2015-07-01
This paper considers a collection of networked nonlinear dynamical systems, and addresses the synthesis of feedback controllers that seek optimal operating points corresponding to the solution of pertinent network-wide optimization problems. Particular emphasis is placed on the solution of semidefinite programs (SDPs). The design of the feedback controller is grounded on a dual e-subgradient approach, with the dual iterates utilized to dynamically update the dynamical-system reference signals. Global convergence is guaranteed for diminishing stepsize rules, even when the reference inputs are updated at a faster rate than the dynamical-system settling time. The application of the proposed framework to the controlmore » of power-electronic inverters in AC distribution systems is discussed. The objective is to bridge the time-scale separation between real-time inverter control and network-wide optimization. Optimization objectives assume the form of SDP relaxations of prototypical AC optimal power flow problems.« less
Stoms, David M.; Davis, Frank W.
2014-01-01
Quantitative methods of spatial conservation prioritization have traditionally been applied to issues in conservation biology and reserve design, though their use in other types of natural resource management is growing. The utility maximization problem is one form of a covering problem where multiple criteria can represent the expected social benefits of conservation action. This approach allows flexibility with a problem formulation that is more general than typical reserve design problems, though the solution methods are very similar. However, few studies have addressed optimization in utility maximization problems for conservation planning, and the effect of solution procedure is largely unquantified. Therefore, this study mapped five criteria describing elements of multifunctional agriculture to determine a hypothetical conservation resource allocation plan for agricultural land conservation in the Central Valley of CA, USA. We compared solution procedures within the utility maximization framework to determine the difference between an open source integer programming approach and a greedy heuristic, and find gains from optimization of up to 12%. We also model land availability for conservation action as a stochastic process and determine the decline in total utility compared to the globally optimal set using both solution algorithms. Our results are comparable to other studies illustrating the benefits of optimization for different conservation planning problems, and highlight the importance of maximizing the effectiveness of limited funding for conservation and natural resource management. PMID:25538868
Kreitler, Jason R.; Stoms, David M.; Davis, Frank W.
2014-01-01
Quantitative methods of spatial conservation prioritization have traditionally been applied to issues in conservation biology and reserve design, though their use in other types of natural resource management is growing. The utility maximization problem is one form of a covering problem where multiple criteria can represent the expected social benefits of conservation action. This approach allows flexibility with a problem formulation that is more general than typical reserve design problems, though the solution methods are very similar. However, few studies have addressed optimization in utility maximization problems for conservation planning, and the effect of solution procedure is largely unquantified. Therefore, this study mapped five criteria describing elements of multifunctional agriculture to determine a hypothetical conservation resource allocation plan for agricultural land conservation in the Central Valley of CA, USA. We compared solution procedures within the utility maximization framework to determine the difference between an open source integer programming approach and a greedy heuristic, and find gains from optimization of up to 12%. We also model land availability for conservation action as a stochastic process and determine the decline in total utility compared to the globally optimal set using both solution algorithms. Our results are comparable to other studies illustrating the benefits of optimization for different conservation planning problems, and highlight the importance of maximizing the effectiveness of limited funding for conservation and natural resource management.
A Novel Harmony Search Algorithm Based on Teaching-Learning Strategies for 0-1 Knapsack Problems
Tuo, Shouheng; Yong, Longquan; Deng, Fang'an
2014-01-01
To enhance the performance of harmony search (HS) algorithm on solving the discrete optimization problems, this paper proposes a novel harmony search algorithm based on teaching-learning (HSTL) strategies to solve 0-1 knapsack problems. In the HSTL algorithm, firstly, a method is presented to adjust dimension dynamically for selected harmony vector in optimization procedure. In addition, four strategies (harmony memory consideration, teaching-learning strategy, local pitch adjusting, and random mutation) are employed to improve the performance of HS algorithm. Another improvement in HSTL method is that the dynamic strategies are adopted to change the parameters, which maintains the proper balance effectively between global exploration power and local exploitation power. Finally, simulation experiments with 13 knapsack problems show that the HSTL algorithm can be an efficient alternative for solving 0-1 knapsack problems. PMID:24574905
A novel harmony search algorithm based on teaching-learning strategies for 0-1 knapsack problems.
Tuo, Shouheng; Yong, Longquan; Deng, Fang'an
2014-01-01
To enhance the performance of harmony search (HS) algorithm on solving the discrete optimization problems, this paper proposes a novel harmony search algorithm based on teaching-learning (HSTL) strategies to solve 0-1 knapsack problems. In the HSTL algorithm, firstly, a method is presented to adjust dimension dynamically for selected harmony vector in optimization procedure. In addition, four strategies (harmony memory consideration, teaching-learning strategy, local pitch adjusting, and random mutation) are employed to improve the performance of HS algorithm. Another improvement in HSTL method is that the dynamic strategies are adopted to change the parameters, which maintains the proper balance effectively between global exploration power and local exploitation power. Finally, simulation experiments with 13 knapsack problems show that the HSTL algorithm can be an efficient alternative for solving 0-1 knapsack problems.
Thread gauge for measuring thread pitch diameters
Brewster, A.L.
1985-11-19
A thread gauge which attaches to a vernier caliper to measure the thread pitch diameter of both externally threaded and internally threaded parts is disclosed. A pair of anvils are externally threaded with threads having the same pitch as those of the threaded part. Each anvil is mounted on a stem having a ball on which the anvil can rotate to properly mate with the parts to which the anvils are applied. The stems are detachably secured to the caliper blades by attachment collars having keyhole openings for receiving the stems and caliper blades. A set screw is used to secure each collar on its caliper blade. 2 figs.
Thread gauge for measuring thread pitch diameters
Brewster, Albert L.
1985-01-01
A thread gauge which attaches to a vernier caliper to measure the thread pitch diameter of both externally threaded and internally threaded parts. A pair of anvils are externally threaded with threads having the same pitch as those of the threaded part. Each anvil is mounted on a stem having a ball on which the anvil can rotate to properly mate with the parts to which the anvils are applied. The stems are detachably secured to the caliper blades by attachment collars having keyhole openings for receiving the stems and caliper blades. A set screw is used to secure each collar on its caliper blade.