Science.gov

Sample records for globular cluster metallicities

  1. Probing Globular Cluster Formation in Low Metallicity Dwarf Galaxies

    NASA Astrophysics Data System (ADS)

    Johnson, Kelsey E.; Hunt, Leslie K.; Reines, Amy E.

    2008-12-01

    The ubiquitous presence of globular clusters around massive galaxies today suggests that these extreme star clusters must have been formed prolifically in the earlier universe in low-metallicity galaxies. Numerous adolescent and massive star clusters are already known to be present in a variety of galaxies in the local universe; however most of these systems have metallicities of 12 + log(O/H) > 8, and are thus not representative of the galaxies in which today's ancient globular clusters were formed. In order to better understand the formation and evolution of these massive clusters in environments with few heavy elements, we have targeted several low-metallicity dwarf galaxies with radio observations, searching for newly-formed massive star clusters still embedded in their birth material. The galaxies in this initial study are HS 0822+3542, UGC 4483, Pox 186, and SBS 0335-052, all of which have metallicities of 12 + log(O/H) < 7.75. While no thermal radio sources, indicative of natal massive star clusters, are found in three of the four galaxies, SBS 0335-052 hosts two such objects, which are incredibly luminous. The radio spectral energy distributions of these intense star-forming regions in SBS 0335-052 suggest the presence of ~12,000 equivalent O-type stars, and the implied star formation rate is nearing the maximum starburst intensity limit.

  2. Metallicity of Globular Cluster M13 from VI CCD Photometry

    NASA Astrophysics Data System (ADS)

    Shon, Young-Jong

    2000-12-01

    From the VI images of M13, obtained by using 2K CCD camera and the BOAO 1.8m telescope, we derive the (V-I)-V CMD of M13. From the shapes of red giant branch, the magnitude of horizontal branch, and the giant branch bump on the constructed CMD, we determined the metallicity of the globular cluster to be 1.74 ~<[Fe/H]~< -1.41. The good agreement between our determination of [Fe/H] and those determined by using other methods implies that the morphology of red giant and horizontal branches on (V-I)-V CMD's can be good indirect metallicity indicators of Galactic globular clusters.

  3. Variable Stars In the Unusual, Metal-Rich Globular Cluster

    NASA Technical Reports Server (NTRS)

    Pritzl, Barton J.; Smith, Horace A.; Catelan, Marcio; Sweigart, Allen V.; Oegerle, William R. (Technical Monitor)

    2002-01-01

    We have undertaken a search for variable stars in the metal-rich globular cluster NGC 6388 using time-series BV photometry. Twenty-eight new variables were found in this survey, increasing the total number of variables found near NGC 6388 to approx. 57. A significant number of the variables are RR Lyrae (approx. 14), most of which are probable cluster members. The periods of the fundamental mode RR Lyrae are shown to be unusually long compared to metal-rich field stars. The existence of these long period RRab stars suggests that the horizontal branch of NGC 6388 is unusually bright. This implies that the metallicity-luminosity relationship for RR Lyrae stars is not universal if the RR Lyrae in NGC 6388 are indeed metal-rich. We consider the alternative possibility that the stars in NGC 6388 may span a range in [Fe/H]. Four candidate Population II Cepheids were also found. If they are members of the cluster, NGC 6388 would be the most metal-rich globular cluster to contain Population II Cepheids. The mean V magnitude of the RR Lyrae is found to be 16.85 +/- 0.05 resulting in a distance of 9.0 to 10.3 kpc, for a range of assumed values of (M(sub V)) for RR Lyrae. We determine the reddening of the cluster to be E(B - V) = 0.40 +/- 0.03 mag, with differential reddening across the face of the cluster. We discuss the difficulty in determining the Oosterhoff classification of NGC 6388 and NGC 6441 due to the unusual nature of their RR Lyrae, and address evolutionary constraints on a recent suggestion that they are of Oosterhoff type II.

  4. Pal 12 - A metal-rich globular cluster in the outer halo

    NASA Technical Reports Server (NTRS)

    Cohen, J. G.; Frogel, J. A.; Persson, S. E.; Zinn, R.

    1980-01-01

    New optical and infrared observations of several stars in the distant globular cluster Pal 12 show that they have CO strengths and heavy element abundances only slightly less than in M 71, one of the more metal-rich globular clusters. Pal 12 thus has a metal abundance near the high end of the range over which globular clusters exist and lies in the outer galactic halo. Its red horizontal branch is not anomalous in view of the abundance that has been found.

  5. The Sound Parameter Effect in Metal-Rich Globular Clusters

    NASA Technical Reports Server (NTRS)

    Hall, D. K

    1998-01-01

    Recent Hubble Space Telescope observations have found that the horizontal branches (HBs) in the metal-rich globular clusters NGC 6388 and NGC 6441 slope upward with decreasing B - V. Such a slope is not predicted by canonical HB models and cannot be produced by either a greater cluster age or enhanced mass loss along the red giant branch (RGB). The peculiar HB morphology in these clusters may provide an important clue for understanding the second-parameter effect. We have carried out extensive evolutionary calculations and numerical simulations in order to explore three noncanonical scenarios for explaining the sloped HBs in NGC 6388 and NGC 6441: (1) a high cluster helium abundance scenario, in which the HB evolution is characterized by long blue loops; (2) a rotation scenario, in which internal rotation during the RGB phase increases the HB core mass; and (3) a helium-mixing scenario, in which deep mixing on the RGB enhances the envelope helium abundance. All of these scenarios predict sloped HBs with anomalously bright RR Lyrae variables. We compare this prediction with the properties of the two known RR Lyrae variables in NGC 6388. Additional observational tests of these scenarios are suggested.

  6. Sulphur in the metal poor globular cluster NGC 6397

    NASA Astrophysics Data System (ADS)

    Koch, A.; Caffau, E.

    2011-10-01

    Sulphur (S) is a non-refractory α-element that is not locked into dust grains in the interstellar medium. Thus no correction to the measured, interstellar sulphur abundance is needed and it can be readily compared to the S content in stellar photospheres. Here we present the first measurement of sulphur in the metal poor globular cluster (GC) NGC 6397, as detected in a MIKE/Magellan high signal-to-noise, high-resolution spectrum of one red giant star. While abundance ratios of sulphur are available for a larger number of Galactic stars down to an [Fe/H] of ~ -3.5 dex, no measurements in globular clusters more metal poor than -1.5 dex have been reported so far. We find aNLTE, 3-D abundance ratio of [S/Fe] = +0.52 ± 0.20 (stat.) ± 0.08 (sys.), based on theS I, Multiplet 1 line at 9212.8 Å. This value is consistent with a Galactic halo plateau as typical of other α-elements in GCs and field stars, but we cannot rule out its membership with a second branch of increasing [S/Fe] with decreasing [Fe/H], claimed in the literature, which leads to a large scatter at metallicities around - 2 dex. The [S/Mg] and [S/Ca] ratios in this star are compatible with a Solar value to within the (large) uncertainties. Despite the very large scatter in these ratios across Galactic stars between literature samples, this indicates that sulphur traces the chemical imprints of the other α-elements in metal poor GCs. Combined with its moderate sodium abundance ([S/Na]NLTE = 0.48), the [S/Fe] ratio in this GC extends a global, positive S-Na correlation that is not seen in field stars and might indicate that proton-capture reactions contributed to the production of sulphur in the (metal poor) early GC environments. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  7. Abundances for globular cluster giants. I. Homogeneous metallicities for 24 clusters

    NASA Astrophysics Data System (ADS)

    Carretta, E.; Gratton, R. G.

    1997-01-01

    We have obtained high resolution, high signal-to-noise ratio CCD echelle spectra of 10 bright red giants in 3 globular clusters (47 Tuc, NGC 6752 and NGC 6397) roughly spanning the whole range of metallicities of the galactic globular cluster system. The analysis of this newly acquired material reveals no significant evidence of star-to-star variation of the [Fe/H] ratio in these three clusters. Moreover, a large set of high quality literature data (equivalent widths from high dispersion CCD spectra) was re-analyzed in an homogeneous and self-consistent way to integrate our observations and derive new metal abundances for more than 160 bright red giants in 24 globular clusters (i.e. about 16% of the known population of galactic globulars). This set was then used to define a new metallicity scale for globular clusters which is the result of high quality, direct spectroscopic data, of new and updated model atmospheres from the grid of \\cite[Kurucz (1992)]{\\ref41}, and of a careful fine abundance analysis; this last, in turn, is based on a common set of both atomic and atmospheric parameters for all the stars examined. Given the very high degree of internal homogeneity, our new scale supersedes the offsets and discrepancies existing in previous attempts to obtain a metallicity scale. The internal uncertainty in [Fe/H] is very small: 0.06 dex (24 clusters) on average, and can be interpreted also as the mean precision of the c luster ranking. Compared to our system, metallicities on the widely used Zinn and West's scale are about 0.10 dex higher for [Fe/H]>-1, 0.23 dex lower for -1<[Fe/H]<-1.9 and 0.11 dex too high for [Fe/H]<-1.9. The non-linearity of the Zinn and West's scale is significant even at 3 sigma level. A quadratic transformation is given to correct older values to the new scale in the range of our calibrating clusters (-2.24 <= [Fe/H]ZW <= -0.51). A minor disagreement is found at low metallicities between the metallicity scale based on field and cluster

  8. Multiple populations in more metal-rich galactic globular clusters

    NASA Astrophysics Data System (ADS)

    Cordero, Maria J.

    In this thesis we present chemical abundances for bright stars in the intermediate metallicity globular cluster (GC) M5, and the relatively metal-rich GCs M71 and 47 Tuc with the goal of improving the understanding of chemical evolution in the metallicity regime sampled by these three GCs. The first chapter presents a brief historical overview in light element abundance variations in globular clusters. In the second chapter we present the results obtained for 47 Tuc, the most-metal rich cluster of my sample. 47 Tuc is an ideal target to study chemical evolution and GC formation in massive more metal-rich GCs since it is the closest massive GC. Chemical abundances for O, Na, Al, Si, Ca, Ti, Fe, Ni, La, and Eu were determined for 164 red giant branch (RGB) stars in 47 Tuc using spectra obtained with both the Hydra multi-fiber spectrograph at the Blanco 4-m telescope and the FLAMES multi-object spectrograph at the ESO Very Large Telescope. The average [Fe/H]= --0.79+/-0.09 dex is consistent with literature values, as well as over-abundances of alpha-elements ([alpha/Fe] ~ 0.3 dex). The n-capture process elements indicate that 47 Tuc is r-process dominated ([Eu/La]=+0.24), and the light elements O, Na, and Al exhibit star-to-star variations. The Na-O anti-correlation, a signature typically seen in Galactic GCs, is present in 47 Tuc, and extends to include a small number of stars with [O/Fe] ~ --0.5. Additionally, the [O/Na] ratios of our sample reveal that the cluster stars can be separated into three distinct populations. A KS-test demonstrates that the O-poor/Na-rich stars are more centrally concentrated than the O-rich/Na-poor stars. The observed number and radial distribution of 47 Tuc's stellar populations, as distinguished by their light element composition, agrees closely with the results obtained from photometric data. We do not find evidence supporting a strong Na-Al correlation in 47 Tuc, which is consistent with current models of AGB nucleosynthesis yields

  9. Study of globular cluster M53: new variables, distance, metallicity

    NASA Astrophysics Data System (ADS)

    Dékány, I.; Kovács, G.

    2009-11-01

    Aims: We study the variable star content of the globular cluster M53 to compute the physical parameters of the constituting stars and the distance of the cluster. Methods: Covering two adjacent seasons in 2007 and 2008, new photometric data are gathered for 3048 objects in the field of M53. By using the OIS (optimal image subtraction) method and subsequently TFA (trend filtering algorithm), we search for variables in the full sample by using discrete Fourier transformation and box-fitting least squares methods. We select variables based on the statistics related to these methods combined with visual inspection. Results: We identified 12 new variables (2 RR Lyrae stars, 7 short periodic stars - 3 of them are SX Phe stars - and 3 long-period variables). No eclipsing binaries were found in the present sample. Except for the 3 (hitherto unknown) Blazhko RR Lyrae (two RRab and an RRc) stars, no multiperiodic variables were found. We showed that after proper period shift, the PLC (period-luminosity-color) relation for the first overtone RR Lyrae sample tightly follows the one spanned by the fundamental stars. Furthermore, the slope is in agreement with that derived from other clusters. Based on the earlier Baade-Wesselink calibration of the PLC relations, the derived reddening-free distance modulus of M53 is 16.31±0.04 mag, corresponding to a distance modulus of 18.5 mag for the Large Magellanic Cloud. From the Fourier parameters of the RRab stars we obtained an average iron abundance of -1.58± 0.03 (error of the mean). This is ~0.5 dex higher than the overall abundance of the giants as given in the literature and derived in this paper from the three-color photometry of giants. We suspect that the source of this discrepancy (observable also in other, low-metallicity clusters) is the lack of a sufficient number of low-metallicity objects in the calibrating sample of the Fourier method. Table 1 is only available in electronic form at http://www.aanda.org Photometric data

  10. The SLUGGS survey: calcium triplet-based spectroscopic metallicities for over 900 globular clusters

    NASA Astrophysics Data System (ADS)

    Usher, Christopher; Forbes, Duncan A.; Brodie, Jean P.; Foster, Caroline; Spitler, Lee R.; Arnold, Jacob A.; Romanowsky, Aaron J.; Strader, Jay; Pota, Vincenzo

    2012-10-01

    Although the colour distribution of globular clusters in massive galaxies is well known to be bimodal, the spectroscopic metallicity distribution has been measured in only a few galaxies. After redefining the calcium triplet index-metallicity relation, we use our relation to derive the metallicity of 903 globular clusters in 11 early-type galaxies. This is the largest sample of spectroscopic globular cluster metallicities yet assembled. We compare these metallicities with those derived from Lick indices finding good agreement. In six of the eight galaxies with sufficient numbers of high-quality spectra we find bimodality in the spectroscopic metallicity distribution. Our results imply that most massive early-type galaxies have bimodal metallicity as well as colour distributions. This bimodality suggests that most massive early-type galaxies experienced two periods of star formation.

  11. Star Clusters in M31. VII. Global Kinematics and Metallicity Subpopulations of the Globular Clusters

    NASA Astrophysics Data System (ADS)

    Caldwell, Nelson; Romanowsky, Aaron J.

    2016-06-01

    We carry out a joint spatial-kinematical-metallicity analysis of globular clusters (GCs) around the Andromeda Galaxy (M31), using a homogeneous, high-quality spectroscopic data set. In particular, we remove the contaminating young clusters that have plagued many previous analyses. We find that the clusters can be divided into three major metallicity groups based on their radial distributions: (1) an inner metal-rich group ([Fe/H] > -0.4); (2) a group with intermediate metallicity (with median [Fe/H] = -1) and (3) a metal-poor group, with [Fe/H] < -1.5. The metal-rich group has kinematics and spatial properties like those of the disk of M31, while the two more metal-poor groups show mild prograde rotation overall, with larger dispersions—in contrast to previous claims of stronger rotation. The metal-poor GCs are the least concentrated group; such clusters occur five times less frequently in the central bulge than do clusters of higher metallicity. Despite some well-known differences between the M31 and Milky Way GC systems, our revised analysis points to remarkable similarities in their chemodynamical properties, which could help elucidate the different formation stages of galaxies and their GCs. In particular, the M31 results motivate further exploration of a metal-rich GC formation mode in situ, within high-redshift, clumpy galactic disks.

  12. VizieR Online Data Catalog: Metallicity estimates of M31 globular clusters (Galleti+, 2009)

    NASA Astrophysics Data System (ADS)

    Galleti, S.; Bellazzini, M.; Buzzoni, A.; Federici, L.; Fusi Pecci, F.

    2010-04-01

    New empirical relations of [Fe/H] as a function of [MgFe] and Mg2 indices are based on the well-studied galactic globular clusters, complemented with theoretical model predictions for -0.2<=[Fe/H]<=+0.5. Lick indices for M31 clusters from various literature sources (225 clusters) and from new observations by our team (71 clusters) have been transformed into the Trager et al. (2000AJ....119.1645T) system, yielding new metallicity estimates for 245 globular clusters of M31. (3 data files).

  13. High-dispersion spectroscopy of giants in metal-poor globular clusters. I - Iron abundances

    NASA Technical Reports Server (NTRS)

    Minniti, Dante; Geisler, Doug; Peterson, Ruth C.; Claria, Juan J.

    1993-01-01

    High-resolution, high-SNR CCD spectra have been obtained for 16 giants in eight metal-poor Galactic globular clusters. Fe abundances accurate to 0.15 dex have been determined by a fully consistent set of model atmospheres and spectrum synthesis techniques. A metallicity scale is presented for metal-poor clusters that should prove useful for calibrating a wide variety of photometric and low-resolution spectroscopic metallicity indicators.

  14. A study of rotating globular clusters. The case of the old, metal-poor globular cluster NGC 4372

    NASA Astrophysics Data System (ADS)

    Kacharov, N.; Bianchini, P.; Koch, A.; Frank, M. J.; Martin, N. F.; van de Ven, G.; Puzia, T. H.; McDonald, I.; Johnson, C. I.; Zijlstra, A. A.

    2014-07-01

    Context. NGC 4372 is a poorly studied old, very metal-poor globular cluster (GC) located in the inner Milky Way halo. Aims: We present the first in-depth study of the kinematic properties and derive the structural parameters of NGC 4372 based on the fit of a Plummer profile and a rotating, physical model. We explore the link between internal rotation to different cluster properties and together with similar studies of more GCs, we put these in the context of globular cluster formation and evolution. Methods: We present radial velocities for 131 cluster member stars measured from high-resolution FLAMES/GIRAFFE observations. Their membership to the GC is additionally confirmed from precise metallicity estimates. We build a velocity dispersion profile and a systemic rotation curve using this kinematic data set. Additionally, we obtain an elliptical number density profile of NGC 4372 based on optical images using a Markov chain Monte Carlo fitting algorithm. From this, we derive the cluster's half-light radius and ellipticity as rh = 3.44' ± 0.04' and ɛ = 0.08 ± 0.01. Finally, we give a physical interpretation of the observed morphological and kinematic properties of this GC by fitting an axisymmetric, differentially rotating, dynamical model. Results: Our results show that NGC 4372 has an unusually high ratio of rotation amplitude to velocity dispersion (1.2 vs. 4.5 km s-1) for its metallicity. This puts it in line, however, with two other exceptional, very metal-poor GCs: M 15 and NGC 4590. We also find a mild flattening of NGC 4372 in the direction of its rotation. Given its old age, this suggests that the flattening is indeed caused by the systemic rotation rather than tidal interactions with the Galaxy. Additionally, we estimate the dynamical mass of the GC Mdyn = 2.0 ± 0.5 × 105M⊙ based on the dynamical model, which constrains the mass-to-light ratio of NGC 4372 between 1.4 and 2.3 M⊙/L⊙, representative of an old, purely stellar population. Based on

  15. FURTHER DEFINITION OF THE MASS-METALLICITY RELATION IN GLOBULAR CLUSTER SYSTEMS AROUND BRIGHTEST CLUSTER GALAXIES

    SciTech Connect

    Cockcroft, Robert; Harris, William E.; Wehner, Elizabeth M. H.; Whitmore, Bradley C.; Rothberg, Barry E-mail: harris@physics.mcmaster.ca E-mail: whitmore@stsci.edu

    2009-09-15

    We combine the globular cluster (GC) data for 15 brightest cluster galaxies and use this material to trace the mass-metallicity relations (MMRs) in their globular cluster systems (GCSs). This work extends previous studies which correlate the properties of the MMR with those of the host galaxy. Our combined data sets show a mean trend for the metal-poor subpopulation that corresponds to a scaling of heavy-element abundance with cluster mass Z {approx} M {sup 0.30{+-}}{sup 0.05}. No trend is seen for the metal-rich subpopulation which has a scaling relation that is consistent with zero. We also find that the scaling exponent is independent of the GCS specific frequency and host galaxy luminosity, except perhaps for dwarf galaxies. We present new photometry in (g',i') obtained with Gemini/GMOS for the GC populations around the southern giant ellipticals NGC 5193 and IC 4329. Both galaxies have rich cluster populations which show up as normal, bimodal sequences in the color-magnitude diagram. We test the observed MMRs and argue that they are statistically real, and not an artifact caused by the method we used. We also argue against asymmetric contamination causing the observed MMR as our mean results are no different from other contamination-free studies. Finally, we compare our method to the standard bimodal fitting method (KMM or RMIX) and find our results are consistent. Interpretation of these results is consistent with recent models for GC formation in which the MMR is determined by GC self-enrichment during their brief formation period.

  16. Tidal stripping stellar substructures around four metal-poor globular clusters in the galactic bulge

    SciTech Connect

    Chun, Sang-Hyun; Kang, Minhee; Jung, DooSeok; Sohn, Young-Jong

    2015-01-01

    We investigate the spatial density configuration of stars around four metal-poor globular clusters (NGC 6266, NGC 6626, NGC 6642, and NGC 6723) in the Galactic bulge region using wide-field deep J, H, and K imaging data obtained with the Wide Field Camera near-infrared array on the United Kingdom Infrared Telescope. A statistical weighted filtering algorithm for the stars on the color–magnitude diagram is applied in order to sort cluster member candidates from the field star contamination. In two-dimensional isodensity contour maps of the clusters, we find that all four of the globular clusters exhibit strong evidence of tidally stripped stellar features beyond the tidal radius in the form of tidal tails or small density lobes/chunks. The orientations of the extended stellar substructures are likely to be associated with the effect of dynamic interaction with the Galaxy and the cluster's space motion. The observed radial density profiles of the four globular clusters also describe the extended substructures; they depart from theoretical King and Wilson models and have an overdensity feature with a break in the slope of the profile at the outer region of clusters. The observed results could imply that four globular clusters in the Galactic bulge region have experienced strong environmental effects such as tidal forces or bulge/disk shocks of the Galaxy during the dynamical evolution of globular clusters. These observational results provide further details which add to our understanding of the evolution of clusters in the Galactic bulge region as well as the formation of the Galaxy.

  17. BVRI CCD photometry of the metal-poor globular cluster M68 (NGC 4590)

    SciTech Connect

    Alcaino, G.; Liller, W.; Alvarado, F.; Wenderoth, E. )

    1990-06-01

    BVRI photometry of the low metallicity globular cluster M68 (NGC 4590) was obtained with a CCD camera and the 2.2-m ESO telescope. The resulting BV color-magnitude diagrams are compared with the observations of McClure et al. (1987). The observations are also compared with theoretical isochrones, yielding a cluster age of 13 Gyr with a likely external uncertainty of 2 or 3 Gyr. 25 refs.

  18. Color-magnitude diagrams for six metal-rich, low-latitude globular clusters

    NASA Technical Reports Server (NTRS)

    Armandroff, Taft E.

    1988-01-01

    Colors and magnitudes for stars on CCD frames for six metal-rich, low-latitude, previously unstudied globular clusters and one well-studied, metal-rich cluster (47 Tuc) have been derived and color-magnitude diagrams have been constructed. The photometry for stars in 47 Tuc are in good agreement with previous studies, while the V magnitudes of the horizontal-branch stars in the six program clusters do not agree with estimates based on secondary methods. The distances to these clusters are different from prior estimates. Redding values are derived for each program cluster. The horizontal branches of the program clusters all appear to lie entirely redwards of the red edge of the instability strip, as is normal for their metallicities.

  19. An age difference of two billion years between a metal-rich and a metal-poor globular cluster.

    PubMed

    Hansen, B M S; Kalirai, J S; Anderson, J; Dotter, A; Richer, H B; Rich, R M; Shara, M M; Fahlman, G G; Hurley, J R; King, I R; Reitzel, D; Stetson, P B

    2013-08-01

    Globular clusters trace the formation history of the spheroidal components of our Galaxy and other galaxies, which represent the bulk of star formation over the history of the Universe. The clusters exhibit a range of metallicities (abundances of elements heavier than helium), with metal-poor clusters dominating the stellar halo of the Galaxy, and higher-metallicity clusters found within the inner Galaxy, associated with the stellar bulge, or the thick disk. Age differences between these clusters can indicate the sequence in which the components of the Galaxy formed, and in particular which clusters were formed outside the Galaxy and were later engulfed along with their original host galaxies, and which were formed within it. Here we report an absolute age of 9.9 ± 0.7 billion years (at 95 per cent confidence) for the metal-rich globular cluster 47 Tucanae, determined by modelling the properties of the cluster's white-dwarf cooling sequence. This is about two billion years younger than has been inferred for the metal-poor cluster NGC 6397 from the same models, and provides quantitative evidence that metal-rich clusters like 47 Tucanae formed later than metal-poor halo clusters like NGC 6397.

  20. SIZES OF GALACTIC GLOBULAR CLUSTERS

    SciTech Connect

    Van den Bergh, Sidney

    2012-02-20

    A study is made of deviations from the mean power-law relationship between the Galactocentric distances and the half-light radii of Galactic globular clusters. Surprisingly, deviations from the mean R{sub h} versus R{sub gc} relationship do not appear to correlate with cluster luminosity, cluster metallicity, or horizontal-branch morphology. Differences in orbit shape are found to contribute to the scatter in the R{sub h} versus R{sub gc} relationship of Galactic globular clusters.

  1. Spectroscopic age and metallicity for a sample of Globular Clusters from Stellar Population Models

    NASA Astrophysics Data System (ADS)

    Stock, M. J.; Calderón, P.

    2009-05-01

    We present spectroscopic age and metallicity predictions for a sample of 20 Globular Clusters in the massive E0 galaxy NGC 1407 (data from Cenarro et al. 2007, AJ, 134, 391) and for the Galacic Globular Clusters data from the Library of Integrated Spectra of Galactic Globular Clusters (GGC's) from Schiavon et al. (2005, ApJS, 160, 163) including the widely studied 47 Tuc cluster. Using index-index plots we compared model Single Stellar Populations (SSP's) spectra to the integrated spectra of both samples of Globular Clusters using high resolution line strength indices (Stock, in prep.) and the syntethic SSP's models from P. Coelho (2007, private comm.) as well as the CB07 solar models. For the GC's in NGC1407, the predictions from the syntethic models's with [α /Fe]=0.4 are in good agreement with the results from Cenarro et al. (2007, AJ, 134, 391), taking into account that the dispersion is partially due to the fact that the mean [α/Fe] ratio of the sample is ≈ 0.3 dex, resulting in younger ages and lower metallicities (Thomas et al. 2003, A&A, 401, 429). We observe a bimodal distribution of the Fe4383+ index which is in turn an indicator of metallicity, also seen in Cenarro et al. (2005). The CB07 models predict ages that are widely spread over the plot yielding ages greater than 14 Gyrs. The metallicity derived from these models are very low for almost all the objects (Z < 0.008). The distribution of the GGC's on the syntethic model grid shows a trend in the sense that metal poor clusters are younger than metal rich ones, but this effect might not be real (de Angeli et al. 2005, AJ, 130, 116). For 47 Tuc we estimate an age of ≈ 10 Gyr, and metallicity Z < 0.011 (<[Fe/H]= -0.5) which are both comparable with the values reported in the literature (Carretta et al. 2000; Liu & Chaboyer 2000, ApJ, 544, 818; Schiavon et al. 2002, ApJ, 580, 873; Gratton et al. 2003, A&A, 408, 529).

  2. NONLINEAR COLOR-METALLICITY RELATIONS OF GLOBULAR CLUSTERS. V. NONLINEAR ABSORPTION-LINE INDEX VERSUS METALLICITY RELATIONS AND BIMODAL INDEX DISTRIBUTIONS OF M31 GLOBULAR CLUSTERS

    SciTech Connect

    Kim, Sooyoung; Yoon, Suk-Jin; Chung, Chul; Lee, Young-Wook; Caldwell, Nelson; Schiavon, Ricardo P.; Kang, Yongbeom; Rey, Soo-Chang

    2013-05-10

    Recent spectroscopy on the globular cluster (GC) system of M31 with unprecedented precision witnessed a clear bimodality in absorption-line index distributions of old GCs. Such division of extragalactic GCs, so far asserted mainly by photometric color bimodality, has been viewed as the presence of merely two distinct metallicity subgroups within individual galaxies and forms a critical backbone of various galaxy formation theories. Given that spectroscopy is a more detailed probe into stellar population than photometry, the discovery of index bimodality may point to the very existence of dual GC populations. However, here we show that the observed spectroscopic dichotomy of M31 GCs emerges due to the nonlinear nature of metallicity-to-index conversion and thus one does not necessarily have to invoke two separate GC subsystems. We take this as a close analogy to the recent view that metallicity-color nonlinearity is primarily responsible for observed GC color bimodality. We also demonstrate that the metallicity-sensitive magnesium line displays non-negligible metallicity-index nonlinearity and Balmer lines show rather strong nonlinearity. This gives rise to bimodal index distributions, which are routinely interpreted as bimodal metallicity distributions, not considering metallicity-index nonlinearity. Our findings give a new insight into the constitution of M31's GC system, which could change much of the current thought on the formation of GC systems and their host galaxies.

  3. BVRI CCD photometry of the metal-poor globular cluster NGC 4372

    SciTech Connect

    Alcaino, G.; Liller, W.; Alvarado, F.; Wenderoth, E. )

    1991-07-01

    BVRI CCD photometry is presented in two overlapping fields in the metal-poor globular cluster NGC 4372. The observations extend approximately 2 mag below the main-sequence turnoff to V about 21. By comparing the color-magnitude diagram (CMD) with those of clusters with similar metallicities, it is found that E(B-V) = 0.50 {plus minus} 0.03, and (m-M)v = 14.75 {plus minus} 0.06. Comparison with theoretical isochrones leads to a value E(B-V) = 0.53 {plus minus} 0.03. Comparison of the CMD with that of bright stars published by other authors yields a value for Delta V(TO-HB) = 3.3 {plus minus} 0.3. The weighted mean value of the age of the cluster, derived from the four colors, is 15 {plus minus} 4 Gyr (estimated external uncertainty). 17 refs.

  4. Near-infrared photometry of globular clusters towards the Galactic bulge: observations and photometric metallicity indicators

    NASA Astrophysics Data System (ADS)

    Cohen, Roger E.; Moni Bidin, Christian; Mauro, Francesco; Bonatto, Charles; Geisler, Douglas

    2017-01-01

    We present wide-field JHKS photometry of 16 Galactic globular clusters located towards the Galactic bulge, calibrated on the Two Micron All-Sky Survey photometric system. Differential reddening corrections and statistical field star decontamination are employed for all of these clusters before fitting fiducial sequences to the cluster red giant branches (RGBs). Observed values and uncertainties are reported for several photometric features, including the magnitude of the RGB bump, tip, the horizontal branch (HB) and the slope of the upper RGB. The latest spectroscopically determined chemical abundances are used to build distance- and reddening-independent relations between observed photometric features and cluster metallicity, optimizing the sample size and metallicity baseline of these relations by supplementing our sample with results from the literature. We find that the magnitude difference between the HB and the RGB bump can be used to predict metallicities, in terms of both iron abundance [Fe/H] and global metallicity [M/H], with a precision of better than 0.1 dex in all three near-IR bandpasses for relatively metal-rich ([M/H] ≳ -1) clusters. Meanwhile, both the slope of the upper RGB and the magnitude difference between the RGB tip and bump are useful metallicity indicators over the entire sampled metallicity range (-2 ≲ [M/H] ≲ 0) with a precision of 0.2 dex or better, despite model predictions that the RGB slope may become unreliable at high (near-solar) metallicities. Our results agree with previous calibrations in light of the relevant uncertainties, and we discuss implications for clusters with controversial metallicities as well as directions for further investigation.

  5. Where Are the Universe's Globular Clusters?

    NASA Astrophysics Data System (ADS)

    Kohler, Susanna

    2016-04-01

    Observations of globular clusters gravitationally-bound, spherical clusters of stars that orbit galaxies as satellites are critical to studies of galactic and stellar evolution. What type of galaxies host the largest total number of globular clusters in todays universe? A recent study answers this question.Total number of globular clusters vs. host galaxy luminosity for a catalog of ~400 galaxies of all types. [Harris 2016]Globular FavoritismGlobular clusters can be found in the halos of all galaxies above a critical brightness of about 107 solar luminosities (in practice, all but the smallest of dwarfs). The number of globulars a galaxy hosts is related to its luminosity: the Milky Way is host to ~150 globulars, the slightly brighterAndromeda galaxy may have several hundred globulars, and the extremelybright giant elliptical galaxy M87 likely has over ten thousand.But the number of galaxies is not evenly distributed in luminosity; tiny dwarf galaxies are extremely numerous in the universe, whereas giant ellipticals are far less common. So are most of the universes globulars found around dwarfs, simply because there are more dwarfs to host them? Or are the majority ofglobular clusters orbiting large galaxies? A scientist at McMaster University in Canada, William Harris, has done some calculations to find the answer.Finding the PeakHarris combines two components in his estimates:The Schechter function, a function that describes the relative number of galaxies per unit luminosity. This function drops off near a characteristic luminosity roughly that of our galaxy.Empirical data from ~400 galaxies that describe the average number of globulars per galaxy as a function of galaxy luminosity.Relative number of globular clusters in all galaxies at a given luminosity, for metal-poor globulars only (blue), metal-rich globulars only (red), and all globulars (black). The curves peak around the Schechter characteristic luminosity, and metal-poor globulars outnumber metal

  6. The Second-Parameter Effect in Metal-Rich Globular Clusters

    NASA Technical Reports Server (NTRS)

    Sweigart, Allen V.

    1999-01-01

    Recent Hubble Space Telescope (HST) observations have shown that the metal-rich globular clusters (GCs) NGC 6388 and NGC 6441 exhibit a pronounced 2nd parameter effect. Ordinarily metal-rich GCs have only a red horizontal-branch (HB) clump. However, NGC 6388 and NGC 6441 also possess an unexpected population of blue HB stars, indicating that some 2nd parameter is operating in these clusters. Quite remarkably, the HBs in both clusters slope upward with decreasing B -V from the red clump to the top of the blue tail. We review the results of ongoing stellar evolution calculations which indicate (1) that NGC 6388 and NGC 6441 might provide a crucial diagnostic for understanding the origin of the 2nd parameter effect, (2) that differences in age or mass loss along the red-giant branch (RGB) - the two most prominent 2nd parameter candidates - cannot explain the HB morphology of these GCs, and (3) that noncanonical effects involving an enhanced helium abundance or rotation can produce upward sloping HBs. Finally we suggest a new metal-depletion scenario which might help to resolve a baffling conundrum concerning the surface gravities of the blue HB stars in these clusters.

  7. Secondary Globular Cluster populations

    NASA Astrophysics Data System (ADS)

    Fritze-v. Alvensleben, U.

    2004-02-01

    This study is motivated by two facts: 1. The formation of populous star cluster systems is widely observed to accompany violent star formation episodes in gas-rich galaxies as e.g. those triggered by strong interactions or merging. 2. The Globular Cluster (GC) systems of most but not all early-type galaxies show bimodal optical color distributions with fairly universal blue peaks and somewhat variable red peak colors, yet their Luminosity Functions (LFs) look like simple Gaussians with apparently universal turn-over magnitudes that are used for distance measurements and the determination of Ho. Based on a new set of evolutionary synthesis models for Simple (= single burst) Stellar Populations (SSPs) of various metallicities using the latest Padova isochrones I study the color and luminosity evolution of GC populations over the wavelength range from U through K, providing an extensive grid of models for comparison with observations. I assume the intrinsic widths of the color distributions and LFs to be constant in time at the values observed today for the Milky Way or M 31 halo GC populations. Taking the color distributions and LFs of the Milky Way or M 31 halo GC population as a reference for old metal-poor GC populations in general, I study for which combinations of age and metallicity a secondary GC population formed in some violent star formation event in the history of its parent galaxy may or may not be detected in the observed GC color distributions. I also investigate the effect of these secondary GCs on the LFs of the total GC system. Significant differences are found among the diagnostic efficiencies in various wavelength regions. In particular, we predict the NIR to be able to reveal the presence of GC subpopulations with different age - metallicity combinations that may perfectly hide within one inconspicuous optical color peak. If the entire manifold of possible age - metallicity combinations is admitted for a secondary GC population, we find several

  8. Constraining Stellar Population Models. I. Age, Metallicity and Abundance Pattern Compilation for Galactic Globular Clusters

    NASA Astrophysics Data System (ADS)

    Roediger, Joel C.; Courteau, Stéphane; Graves, Genevieve; Schiavon, Ricardo P.

    2014-01-01

    We present an extensive literature compilation of age, metallicity, and chemical abundance pattern information for the 41 Galactic globular clusters (GGCs) studied by Schiavon et al. Our compilation constitutes a notable improvement over previous similar work, particularly in terms of chemical abundances. Its primary purpose is to enable detailed evaluations of and refinements to stellar population synthesis models designed to recover the above information for unresolved stellar systems based on their integrated spectra. However, since the Schiavon sample spans a wide range of the known GGC parameter space, our compilation may also benefit investigations related to a variety of astrophysical endeavors, such as the early formation of the Milky Way, the chemical evolution of GGCs, and stellar evolution and nucleosynthesis. For instance, we confirm with our compiled data that the GGC system has a bimodal metallicity distribution and is uniformly enhanced in the α elements. When paired with the ages of our clusters, we find evidence that supports a scenario whereby the Milky Way obtained its globular clusters through two channels: in situ formation and accretion of satellite galaxies. The distributions of C, N, O, and Na abundances and the dispersions thereof per cluster corroborate the known fact that all GGCs studied so far with respect to multiple stellar populations have been found to harbor them. Finally, using data on individual stars, we verify that stellar atmospheres become progressively polluted by CN(O)-processed material after they leave the main sequence. We also uncover evidence which suggests that the α elements Mg and Ca may originate from more than one nucleosynthetic production site. We estimate that our compilation incorporates all relevant analyses from the literature up to mid-2012. As an aid to investigators in the fields named above, we provide detailed electronic tables of the data upon which our work is based at http

  9. THE SLUGGS SURVEY: NGC 3115, A CRITICAL TEST CASE FOR METALLICITY BIMODALITY IN GLOBULAR CLUSTER SYSTEMS

    SciTech Connect

    Brodie, Jean P.; Conroy, Charlie; Arnold, Jacob A.; Romanowsky, Aaron J.; Usher, Christopher; Forbes, Duncan A.; Strader, Jay

    2012-11-10

    Due to its proximity (9 Mpc) and the strongly bimodal color distribution of its spectroscopically well-sampled globular cluster (GC) system, the early-type galaxy NGC 3115 provides one of the best available tests of whether the color bimodality widely observed in GC systems generally reflects a true metallicity bimodality. Color bimodality has alternatively been attributed to a strongly nonlinear color-metallicity relation reflecting the influence of hot horizontal-branch stars. Here, we couple Subaru Suprime-Cam gi photometry with Keck/DEIMOS spectroscopy to accurately measure GC colors and a CaT index that measures the Ca II triplet. We find the NGC 3115 GC system to be unambiguously bimodal in both color and the CaT index. Using simple stellar population models, we show that the CaT index is essentially unaffected by variations in horizontal-branch morphology over the range of metallicities relevant to GC systems (and is thus a robust indicator of metallicity) and confirm bimodality in the metallicity distribution. We assess the existing evidence for and against multiple metallicity subpopulations in early- and late-type galaxies and conclude that metallicity bi/multimodality is common. We briefly discuss how this fundamental characteristic links directly to the star formation and assembly histories of galaxies.

  10. Binaries in globular clusters

    NASA Technical Reports Server (NTRS)

    Hut, Piet; Mcmillan, Steve; Goodman, Jeremy; Mateo, Mario; Phinney, E. S.; Pryor, Carlton; Richer, Harvey B.; Verbunt, Frank; Weinberg, Martin

    1992-01-01

    Recent observations have shown that globular clusters contain a substantial number of binaries most of which are believed to be primordial. We discuss different successful optical search techniques, based on radial-velocity variables, photometric variables, and the positions of stars in the color-magnitude diagram. In addition, we review searches in other wavelengths, which have turned up low-mass X-ray binaries and more recently a variety of radio pulsars. On the theoretical side, we give an overview of the different physical mechanisms through which individual binaries evolve. We discuss the various simulation techniques which recently have been employed to study the effects of a primordial binary population, and the fascinating interplay between stellar evolution and stellar dynamics which drives globular-cluster evolution.

  11. Main sequence of the metal-poor globular cluster M30 (NGC 7099)

    SciTech Connect

    Alcaino, G.; Liller, W.

    1980-10-01

    We present photographic photometry for 673 stars in the metal-poor globular cluster M30 (NGC 7099). The Racine wedge was used with the CTIO 1-m Yale telescope (..delta..m=3/sup m/.60), the CTIO 4-m telescope (..delta..m=6/sup m/.83), and the ESO 3.6-m telescope (..delta..m=4/sup m/.12) to extend the photoelectric limit from Vapprox. =16.3 to Vapprox. =20.4. For the main-sequence turn-off, we have determined its position to lie at V=18.4 +- 0.1 (m.e.) and B-V=0.49 +- 0.03 (m.e.). From these values, we calculate the intrinsic values M/sub v/ =3.87 and (B-V)/sub 0/=0.47. For the cluster as a whole, we derive a distance modulus (m-M)/sub V/=14.53 +- 0.15 and reddening E(B-V)=0.02 +- 0.02. Using the models of Iben and Rood (Astrophys. J. 159, 605 (1970)) and the isochrones of Demarque and McClure ((1977), in Evolution of Galaxies and Stellar Populations, edited by B. Tinsley and R. B. Larson (Yale University Observatory, New Haven), p. 199), we deduce the cluster's age to be 14.5( +- 4.0) x 10/sup 9/ yr. The large uncertainty in this value emphasizes the dire need for more work on cluster evolution.

  12. Atmospheric parameters and metallicities for 2191 stars in the globular cluster M4

    SciTech Connect

    Malavolta, Luca; Piotto, Giampaolo; Nascimbeni, Valerio; Sneden, Christopher; Milone, Antonino P.; Bedin, Luigi R. E-mail: giampaolo.piotto@unipd.it E-mail: luigi.bedin@oapd.inaf.it E-mail: milone@mso.anu.edu.au

    2014-02-01

    We report new metallicities for stars of Galactic globular cluster M4 using the largest number of stars ever observed at high spectral resolution in any cluster. We analyzed 7250 spectra for 2771 cluster stars gathered with the Very Large Telescope (VLT) FLAMES+GIRAFFE spectrograph at VLT. These medium-resolution spectra cover a small wavelength range, and often have very low signal-to-noise ratios. We approached this data set by reconsidering the whole method of abundance analysis of large stellar samples from beginning to end. We developed a new algorithm that automatically determines the atmospheric parameters of a star. Nearly all of the data preparation steps for spectroscopic analyses are processed on the syntheses, not the observed spectra. For 322 red giant branch (RGB) stars with V ≤ 14.7, we obtain a nearly constant metallicity, ([Fe/H]) = –1.07 (σ = 0.02). No difference in the metallicity at the level of 0.01 dex is observed between the two RGB sequences identified by Monelli et al. For 1869 subgiant and main-sequence stars with V > 14.7, we obtain ([Fe/H]) = –1.16 (σ = 0.09) after fixing the microturbulent velocity. These values are consistent with previous studies that have performed detailed analyses of brighter RGB stars at higher spectroscopic resolution and wavelength coverage. It is not clear if the small mean metallicity difference between brighter and fainter M4 members is real or is the result of the low signal-to-noise characteristics of the fainter stars. The strength of our approach is shown by recovering a metallicity close to a single value for more than 2000 stars, using a data set that is non-optimal for atmospheric analyses. This technique is particularly suitable for noisy data taken in difficult observing conditions.

  13. Atmospheric Parameters and Metallicities for 2191 Stars in the Globular Cluster M4

    NASA Astrophysics Data System (ADS)

    Malavolta, Luca; Sneden, Christopher; Piotto, Giampaolo; Milone, Antonino P.; Bedin, Luigi R.; Nascimbeni, Valerio

    2014-02-01

    We report new metallicities for stars of Galactic globular cluster M4 using the largest number of stars ever observed at high spectral resolution in any cluster. We analyzed 7250 spectra for 2771 cluster stars gathered with the Very Large Telescope (VLT) FLAMES+GIRAFFE spectrograph at VLT. These medium-resolution spectra cover a small wavelength range, and often have very low signal-to-noise ratios. We approached this data set by reconsidering the whole method of abundance analysis of large stellar samples from beginning to end. We developed a new algorithm that automatically determines the atmospheric parameters of a star. Nearly all of the data preparation steps for spectroscopic analyses are processed on the syntheses, not the observed spectra. For 322 red giant branch (RGB) stars with V <= 14.7, we obtain a nearly constant metallicity, lang[Fe/H]rang = -1.07 (σ = 0.02). No difference in the metallicity at the level of 0.01 dex is observed between the two RGB sequences identified by Monelli et al. For 1869 subgiant and main-sequence stars with V > 14.7, we obtain lang[Fe/H]rang = -1.16 (σ = 0.09) after fixing the microturbulent velocity. These values are consistent with previous studies that have performed detailed analyses of brighter RGB stars at higher spectroscopic resolution and wavelength coverage. It is not clear if the small mean metallicity difference between brighter and fainter M4 members is real or is the result of the low signal-to-noise characteristics of the fainter stars. The strength of our approach is shown by recovering a metallicity close to a single value for more than 2000 stars, using a data set that is non-optimal for atmospheric analyses. This technique is particularly suitable for noisy data taken in difficult observing conditions.

  14. Variable Stars in the Unusual, Metal-Rich Globular Cluster NGC-6441

    NASA Technical Reports Server (NTRS)

    Pritzl, Barton J.; Smith, Horace A.; Catelan, Marcio; Sweigart, Allen V.; Fisher, Richard R. (Technical Monitor)

    2001-01-01

    We have undertaken a search for variable stars in the metal-rich globular cluster NGC 6441 using time-series BV photometry. The total number of variables found near NGC 6441 has been increased to approx. 104, with 48 new variables being found in this survey. A significant number of the variables are RR Lyrae stars (approx. 46), most of which are probable cluster members. As was noted by Layden et al. (1999), the periods of the fundamental mode RR Lyrae are unusually long compared to field stars of similar metallicity. The existence of these long period RRab stars is consistent with Sweigart & Catelan's (1998) prediction that the horizontal branch of NGC 6441 is unusually bright. This result implies that the metallicity-luminosity relationship for RR Lyrae stars is not universal. We discuss the difficulty in determining the Oosterhoff classification of NGC 6441 due to the unusual nature of its RR Lyrae. A number of ab-type RR Lyrae are found to be both brighter and redder than the other probable RRab found along the horizontal branch, which may be a result of blending with stars of redder color. A smaller than usual gap is found between the shortest period fundamental mode and the longest period first-overtone mode RR Lyrae. We determine the reddening of the cluster to be E(B - V) = 0.51 +/- 0.02 mag, with substantial differential reddening across the face of the cluster. The mean V magnitude of the RR Lyrae is found to be 17.51 +/- 0.02 resulting in a distance of 10.4 to 11.9 kpc, for a range of assumed values of < M(sub V)> for RR Lyrae stars. The possibility that stars in NGC 6441 may span a range in [Fe/H] is also discussed.

  15. Chemical Abundances in NGC 5053: A Very Metal Poor and Dynamically Complex Globular Cluster

    NASA Astrophysics Data System (ADS)

    Boberg, Owen; Friel, Eileen D.; Vesperini, Enrico

    2015-01-01

    NGC 5053 provides a rich environment to test our understanding of the complex evolution of globular clusters (GCs). Recent studies have found that this cluster has interesting morphological features beyond the spherical distribution expected from GCs. These features include a ˜6° tidal stream (Lauchner et al. 2006), and a possible, but still debated, bridge-like structure between it and its nearby neighbor NGC 5024 (Chun et al. 2010). These features suggest that the evolution of these clusters has not only been greatly affected by their gravitational interaction with the Galaxy, but possibly each other. Additionally, simulations have shown that NGC 5053 could be a likely candidate to belong to the Sgr dSph stream (Law & Majewski 2010). Using the WIYN-Hydra multi-object spectrograph, we have collected high quality (S/N ˜75-90), medium-resolution spectra for red giant branch (RGB) stars in NGC 5053. Using these spectra we have measured the Fe, Ca, Ti, Ni, Ba, Na, and O abundances in the cluster. We measure an average cluster [Fe/H] abundance of -2.46 with a standard deviation of 0.05 dex, making NGC 5053 one of the most metal poor GCs in the Milky Way. The [Ca/Fe], [Ti/Fe], and [Ba/Fe] we measure are consistent with the abundances of Milky Way halo stars at a similar metallicity, with high alpha values and slightly depleted [Ba/Fe]. The Na and O abundances show the Na-O anti-correlation found in most GCs. From our abundance analysis it appears that NGC 5053 is at least chemically similar to other GCs found in the Milky Way. This does not, however, rule out NGC 5053 being a member of the Sgr dSph stream.

  16. Detection of second-generation asymptotic giant branch stars in metal-poor globular clusters

    NASA Astrophysics Data System (ADS)

    García-Hernández, D. A.

    2017-03-01

    Multiple stellar populations are actually known to be present in Galactic globular clusters (GCs). The first generation (FG) displays a halo-like chemical pattern, while the second generation (SG) one is enriched in Al and Na (depleted in Mg and O).Both generations of stars are found at different evolutionary stages like the main-sequence turnoff, the subgiant branch, and the red giant branch (RGB), but the SG seems to be absent - especially in metal-poor ([Fe/H] < -1) GCs - in more evolved evolutionary stages such as the asymptotic giant branch (AGB) phase. This suggests that not all SG stars experience the AGB phase and that AGB-manqué stars may be quite common in metal-poor GCs, which represents a fundamental problem for the theories of GC formation and evolution and stellar evolution. Very recently, we have combined the H-band Al abundances obtained by the APOGEE survey with ground-based optical photometry, reporting the first detection of SG Al-rich AGB stars in several metal-poor GCs with different observational properties such as horizontal branch (HB) morphology, metallicity, and age. The APOGEE observations thus resolve the apparent problem for stellar evolution, supporting the existing horizontal branch star canonical models, and may help to discern the nature of the GC polluters.

  17. The galactic globular cluster system

    NASA Technical Reports Server (NTRS)

    Djorgovski, S.; Meylan, G.

    1994-01-01

    We explore correlations between various properties of Galactic globular clusters, using a database on 143 objects. Our goal is identify correlations and trends which can be used to test and constrain theoretical models of cluster formation and evolution. We use a set of 13 cluster parameters, 9 of which are independently measured. Several arguments suggest that the number of clusters still missing in the obscured regions of the Galaxy is of the order of 10, and thus the selection effects are probably not severe for our sample. Known clusters follow a power-law density distribution with a slope approximately -3.5 to -4, and an apparent core with a core radius approximately 1 kpc. Clusters show a large dynamical range in many of their properties, more so for the core parameters (which are presumably more affected by dynamical evolution) than for the half-light parameters. There are no good correlations with luminosity, although more luminous clusters tend to be more concentrated. When data are binned in luminosity, several trends emerge: more luminous clusters tend to have smaller and denser cores. We interpret this as a differential survival effect, with more massive clusters surviving longer and reaching more evolved dynamical states. Cluster core parameters and concentrations also correlate with the position in the Galaxy, with clusters closer to the Galactic center or plane being more concentrated and having smaller and denser cores. These trends are more pronounced for the fainter (less massive) clusters. This is in agreement with a picture where tidal shocks form disk or bulge passages accelerate dynamical evolution of clusters. Cluster metallicities do not correlate with any other parameter, including luminosity and velocity dispersion; the only detectable trend is with the position in the Galaxy, probably reflecting Zinn's disk-halo dichotomy. This suggests that globular clusters were not self-enriched systems. Velocity dispersions show excellent correlations

  18. Globular clusters with Gaia

    NASA Astrophysics Data System (ADS)

    Pancino, E.; Bellazzini, M.; Giuffrida, G.; Marinoni, S.

    2017-01-01

    The treatment of crowded fields in Gaia data will only be a reality in a few years from now. In particular, for globular clusters, only the end-of-mission data (public in 2022-2023) will have the necessary full crowding treatment and will reach sufficient quality for the faintest stars. As a consequence, the work on the deblending and decontamination pipelines is still ongoing. We describe the present status of the pipelines for different Gaia instruments, and we model the end-of-mission crowding errors on the basis of available information. We then apply the nominal post-launch Gaia performances, appropriately worsened by the estimated crowding errors, to a set of 18 simulated globular clusters with different concentration, distance, and field contamination. We conclude that there will be 103-104 stars with astrometric performances virtually untouched by crowding (contaminated by <1 mmag) in the majoritiy of clusters. The most limiting factor will be field crowding, not cluster crowding: the most contaminated clusters will only contain 10-100 clean stars. We also conclude that: (i) the systemic proper motions and parallaxes will be determined to 1% or better up to ≃15 kpc, and the nearby clusters will have radial velocities to a few km s-1 ; (ii) internal kinematics will be of unprecendented quality, cluster masses will be determined to ≃10% up to 15 kpc and beyond, and it will be possible to identify differences of a few km s-1 or less in the kinematics (if any) of cluster sub-populations up to 10 kpc and beyond; (iii) the brightest stars (V≃17 mag) will have space-quality, wide-field photometry (mmag errors), and all Gaia photometry will have 1-3% errors on the absolute photometric calibration.

  19. CHEMICAL ABUNDANCES IN NGC 5053: A VERY METAL-POOR AND DYNAMICALLY COMPLEX GLOBULAR CLUSTER

    SciTech Connect

    Boberg, Owen M.; Friel, Eileen D.; Vesperini, Enrico

    2015-05-10

    NGC 5053 provides a rich environment to test our understanding of the complex evolution of globular clusters (GCs). Recent studies have found that this cluster has interesting morphological features beyond the typical spherical distribution of GCs, suggesting that external tidal effects have played an important role in its evolution and current properties. Additionally, simulations have shown that NGC 5053 could be a likely candidate to belong to the Sagittarius dwarf galaxy (Sgr dSph) stream. Using the Wisconsin–Indiana–Yale–NOAO–Hydra multi-object spectrograph, we have collected high quality (signal-to-noise ratio ∼ 75–90), medium-resolution spectra for red giant branch stars in NGC 5053. Using these spectra we have measured the Fe, Ca, Ti, Ni, Ba, Na, and O abundances in the cluster. We measure an average cluster [Fe/H] abundance of −2.45 with a standard deviation of 0.04 dex, making NGC 5053 one of the most metal-poor GCs in the Milky Way (MW). The [Ca/Fe], [Ti/Fe], and [Ba/Fe] we measure are consistent with the abundances of MW halo stars at a similar metallicity, with alpha-enhanced ratios and slightly depleted [Ba/Fe]. The Na and O abundances show the Na–O anti-correlation found in most GCs. From our abundance analysis it appears that NGC 5053 is at least chemically similar to other GCs found in the MW. This does not, however, rule out NGC 5053 being associated with the Sgr dSph stream.

  20. Chemical Abundances in NGC 5053: A Very Metal-poor and Dynamically Complex Globular Cluster

    NASA Astrophysics Data System (ADS)

    Boberg, Owen M.; Friel, Eileen D.; Vesperini, Enrico

    2015-05-01

    NGC 5053 provides a rich environment to test our understanding of the complex evolution of globular clusters (GCs). Recent studies have found that this cluster has interesting morphological features beyond the typical spherical distribution of GCs, suggesting that external tidal effects have played an important role in its evolution and current properties. Additionally, simulations have shown that NGC 5053 could be a likely candidate to belong to the Sagittarius dwarf galaxy (Sgr dSph) stream. Using the Wisconsin-Indiana-Yale-NOAO-Hydra multi-object spectrograph, we have collected high quality (signal-to-noise ratio ˜ 75-90), medium-resolution spectra for red giant branch stars in NGC 5053. Using these spectra we have measured the Fe, Ca, Ti, Ni, Ba, Na, and O abundances in the cluster. We measure an average cluster [Fe/H] abundance of -2.45 with a standard deviation of 0.04 dex, making NGC 5053 one of the most metal-poor GCs in the Milky Way (MW). The [Ca/Fe], [Ti/Fe], and [Ba/Fe] we measure are consistent with the abundances of MW halo stars at a similar metallicity, with alpha-enhanced ratios and slightly depleted [Ba/Fe]. The Na and O abundances show the Na-O anti-correlation found in most GCs. From our abundance analysis it appears that NGC 5053 is at least chemically similar to other GCs found in the MW. This does not, however, rule out NGC 5053 being associated with the Sgr dSph stream.

  1. An updated survey of globular clusters in M 31. III. A spectroscopic metallicity scale for the Revised Bologna Catalog

    NASA Astrophysics Data System (ADS)

    Galleti, S.; Bellazzini, M.; Buzzoni, A.; Federici, L.; Fusi Pecci, F.

    2009-12-01

    Aims. We present a new homogeneous set of metallicity estimates based on Lick indices for the old globular clusters of the M 31 galaxy. The final aim is to add homogeneous spectroscopic metallicities to as many entries as possible of the Revised Bologna Catalog of M 31 clusters, by reporting Lick index measurements from any source (literature, new observations, etc.) on the same scale. Methods: New empirical relations of [Fe/H] as a function of [MgFe] and Mg2 indices are based on the well-studied galactic globular clusters, complemented with theoretical model predictions for -0.2≤ [Fe/H]≤ +0.5. Lick indices for M 31 clusters from various literature sources (225 clusters) and from new observations by our team (71 clusters) have been transformed into the Trager et al. system, yielding new metallicity estimates for 245 globular clusters of M 31. Results: Our values are in good agreement with recent estimates based on detailed spectral fitting and with those obtained from color magnitude diagrams of clusters imaged with the Hubble Space Telescope. The typical uncertainty on individual estimates is ≃±0.25 dex, as resulted from the comparison with metallicities derived from color magnitude diagrams of individual clusters. Conclusions: The metallicity distribution of M 31 globular cluster is briefly discussed and compared with that of the Milky Way. Simple parametric statistical tests suggest that the distribution is probably not unimodal. The strong correlation between metallicity and kinematics found in previous studies is confirmed. The most metal-rich GCs tend to be packed into the center of the system and to cluster tightly around the galactic rotation curve defined by the HI disk, while the velocity dispersion about the curve increases with decreasing metallicity. However, also the clusters with [Fe/H]<-1.0 display a clear rotation pattern, at odds with their Milky Way counterparts. Based on observations made at La Palma, at the Spanish Observatorio del Roque

  2. A Wide-Field Photometric Survey for Extratidal Tails Around Five Metal-Poor Globular Clusters in the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Chun, Sang-Hyun; Kim, Jae-Woo; Sohn, Sangmo T.; Park, Jang-Hyun; Han, Wonyong; Kim, Ho-Il; Lee, Young-Wook; Lee, Myung Gyoon; Lee, Sang-Gak; Sohn, Young-Jong

    2010-02-01

    Wide-field deep g'r'i' images obtained with the Megacam of the Canada-France-Hawaii Telescope are used to investigate the spatial configuration of stars around five metal-poor globular clusters M15, M30, M53, NGC 5053, and NGC 5466, in a field-of-view ~3°. Applying a mask filtering algorithm to the color-magnitude diagrams of the observed stars, we sorted cluster's member star candidates that are used to examine the characteristics of the spatial stellar distribution surrounding the target clusters. The smoothed surface density maps and the overlaid isodensity contours indicate that all of the five metal-poor globular clusters exhibit strong evidence of extratidal overdensity features over their tidal radii, in the form of extended tidal tails around the clusters. The orientations of the observed extratidal features show signatures of tidal tails tracing the clusters' orbits, inferred from their proper motions, and effects of dynamical interactions with the Galaxy. Our findings include detections of a tidal bridge-like feature and an envelope structure around the pair of globular clusters M53 and NGC 5053. The observed radial surface density profiles of target clusters have a deviation from theoretical King models, for which the profiles show a break at 0.5-0.7rt , extending the overdensity features out to 1.5-2rt . Both radial surface density profiles for different angular sections and azimuthal number density profiles confirm the overdensity features of tidal tails around the five metal-poor globular clusters. Our results add further observational evidence that the observed metal-poor halo globular clusters originate from an accreted satellite system, indicative of the merging scenario of the formation of the Galactic halo. Based on observations carried out at the Canada-France-Hawaii Telescope, operated by the National Research Council of Canada, the Centre National de la Recherche Scientifique de France, and the University of Hawaii. This is part of the

  3. OPTICAL AND INFRARED PHOTOMETRY OF GLOBULAR CLUSTERS IN NGC 1399: EVIDENCE FOR COLOR-METALLICITY NONLINEARITY

    SciTech Connect

    Blakeslee, John P.; Ferrarese, Laura; Martel, Andre R.; Cho, Hyejeon; Peng, Eric W.; Jordan, Andres

    2012-02-10

    We combine new Wide Field Camera 3 IR Channel (WFC3/IR) F160W (H{sub 160}) imaging data for NGC 1399, the central galaxy in the Fornax cluster, with archival F475W (g{sub 475}), F606W (V{sub 606}), F814W (I{sub 814}), and F850LP (z{sub 850}) optical data from the Advanced Camera for Surveys (ACS). The purely optical g{sub 475} - I{sub 814}, V{sub 606} - I{sub 814}, and g{sub 475} - z{sub 850} colors of NGC 1399's rich globular cluster (GC) system exhibit clear bimodality, at least for magnitudes I{sub 814} > 21.5. The optical-IR I{sub 814} - H{sub 160} color distribution appears unimodal, and this impression is confirmed by mixture modeling analysis. The V{sub 606} - H{sub 160} colors show marginal evidence for bimodality, consistent with bimodality in V{sub 606} - I{sub 814} and unimodality in I{sub 814} - H{sub 160}. If bimodality is imposed for I{sub 814} - H{sub 160} with a double Gaussian model, the preferred blue/red split differs from that for optical colors; these 'differing bimodalities' mean that the optical and optical-IR colors cannot both be linearly proportional to metallicity. Consistent with the differing color distributions, the dependence of I{sub 814} - H{sub 160} on g{sub 475} - I{sub 814} for the matched GC sample is significantly nonlinear, with an inflection point near the trough in the g{sub 475} - I{sub 814} color distribution; the result is similar for the I{sub 814} - H{sub 160} dependence on g{sub 475} - z{sub 850} colors taken from the ACS Fornax Cluster Survey. These g{sub 475} - z{sub 850} colors have been calibrated empirically against metallicity; applying this calibration yields a continuous, skewed, but single-peaked metallicity distribution. Taken together, these results indicate that nonlinear color-metallicity relations play an important role in shaping the observed bimodal distributions of optical colors in extragalactic GC systems.

  4. Gamma-ray Emission from Globular Clusters

    NASA Astrophysics Data System (ADS)

    Tam, Pak-Hin T.; Hui, Chung Y.; Kong, Albert K. H.

    2016-03-01

    Over the last few years, the data obtained using the Large Area Telescope (LAT) aboard the Fermi Gamma-ray Space Telescope has provided new insights on high-energy processes in globular clusters, particularly those involving compact objects such as MilliSecond Pulsars (MSPs). Gamma-ray emission in the 100 MeV to 10 GeV range has been detected from more than a dozen globular clusters in our galaxy, including 47 Tucanae and Terzan 5. Based on a sample of known gammaray globular clusters, the empirical relations between gamma-ray luminosity and properties of globular clusters such as their stellar encounter rate, metallicity, and possible optical and infrared photon energy densities, have been derived. The measured gamma-ray spectra are generally described by a power law with a cut-off at a few gigaelectronvolts. Together with the detection of pulsed γ-rays from two MSPs in two different globular clusters, such spectral signature lends support to the hypothesis that γ-rays from globular clusters represent collective curvature emission from magnetospheres of MSPs in the clusters. Alternative models, involving Inverse-Compton (IC) emission of relativistic electrons that are accelerated close to MSPs or pulsar wind nebula shocks, have also been suggested. Observations at >100 GeV by using Fermi/LAT and atmospheric Cherenkov telescopes such as H.E.S.S.-II, MAGIC-II, VERITAS, and CTA will help to settle some questions unanswered by current data.

  5. Variable stars in metal-rich globular clusters. IV. Long-period variables in NGC 6496

    SciTech Connect

    Abbas, Mohamad A.; Layden, Andrew C.; Guldenschuh, Katherine A.; Reichart, D. E.; Ivarsen, K. M.; Haislip, J. B.; Nysewander, M. C.; LaCluyze, A. P.; Welch, Douglas L. E-mail: laydena@bgsu.edu

    2015-02-01

    We present VI-band photometry for stars in the metal-rich globular cluster NGC 6496. Our time-series data were cadenced to search for long-period variables (LPVs) over a span of nearly two years, and our variability search yielded the discovery of 13 new variable stars, of which 6 are LPVs, 2 are suspected LPVs, and 5 are short-period eclipsing binaries. An additional star was found in the ASAS database, and we clarify its type and period. We argue that all of the eclipsing binaries are field stars, while five to six of the LPVs are members of NGC 6496. We compare the period–luminosity distribution of these LPVs with those of LPVs in the Large Magellanic Cloud and 47 Tucanae, and with theoretical pulsation models. We also present a VI color–magnitude diagram, display the evolutionary states of the variables, and match isochrones to determine a reddening of E(B−V)= 0.21±0.02 mag and apparent distance modulus of 15.60±0.15 mag.

  6. THE METALLICITY BIMODALITY OF GLOBULAR CLUSTER SYSTEMS: A TEST OF GALAXY ASSEMBLY AND OF THE EVOLUTION OF THE GALAXY MASS-METALLICITY RELATION

    SciTech Connect

    Tonini, Chiara

    2013-01-01

    We build a theoretical model to study the origin of the globular cluster metallicity bimodality in the hierarchical galaxy assembly scenario. The model is based on empirical relations such as the galaxy mass-metallicity relation [O/H]-M {sub star} as a function of redshift, and on the observed galaxy stellar mass function up to redshift z {approx} 4. We make use of the theoretical merger rates as a function of mass and redshift from the Millennium simulation to build galaxy merger trees. We derive a new galaxy [Fe/H]-M {sub star} relation as a function of redshift, and by assuming that globular clusters share the metallicity of their original parent galaxy at the time of their formation, we populate the merger tree with globular clusters. We perform a series of Monte Carlo simulations of the galaxy hierarchical assembly, and study the properties of the final globular cluster population as a function of galaxy mass, assembly and star formation history, and under different assumptions for the evolution of the galaxy mass-metallicity relation. The main results and predictions of the model are the following. (1) The hierarchical clustering scenario naturally predicts a metallicity bimodality in the galaxy globular cluster population, where the metal-rich subpopulation is composed of globular clusters formed in the galaxy main progenitor around redshift z {approx} 2, and the metal-poor subpopulation is composed of clusters accreted from satellites, and formed at redshifts z {approx} 3-4. (2) The model reproduces the observed relations by Peng et al. for the metallicities of the metal-rich and metal-poor globular cluster subpopulations as a function of galaxy mass; the positions of the metal-poor and metal-rich peaks depend exclusively on the evolution of the galaxy mass-metallicity relation and the [O/Fe], both of which can be constrained by this method. In particular, we find that the galaxy [O/Fe] evolves linearly with redshift from a value of {approx}0.5 at redshift

  7. A Differential Chemical Element Analysis of the Metal-poor Globular Cluster NGC 6397

    NASA Astrophysics Data System (ADS)

    Koch, Andreas; McWilliam, Andrew

    2011-08-01

    We present chemical abundances in three red giants and two turnoff (TO) stars in the metal-poor Galactic globular cluster (GC) NGC 6397 based on spectroscopy obtained with the Magellan Inamori Kyocera Echelle high-resolution spectrograph on the Magellan 6.5 m Clay telescope. Our results are based on a line-by-line differential abundance analysis relative to the well-studied red giant Arcturus and the Galactic halo field star Hip 66815. At a mean of -2.10 ± 0.02 (stat.) ±0.07 (sys.), the differential iron abundance is in good agreement with other studies in the literature based on gf-values. As in previous differential works we find a distinct departure from ionization equilibrium in that the abundances of Fe I and Fe II differ by ~0.1 dex, with opposite signs for the red giant branch (RGB) and TO stars. The α-element ratios are enhanced to 0.4 (RGB) and 0.3 dex (TO), respectively, and we also confirm strong variations in the O, Na, and Al/Fe abundance ratios. Accordingly, the light-element abundance patterns in one of the red giants can be attributed to pollution by an early generation of massive Type II supernovae. TO and RGB abundances are not significantly different, with the possible exception of Mg and Ti, which are, however, amplified by the patterns in one TO star additionally belonging to this early generation of GC stars. We discuss interrelations of these light elements as a function of the GC metallicity. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  8. A DIFFERENTIAL CHEMICAL ELEMENT ANALYSIS OF THE METAL-POOR GLOBULAR CLUSTER NGC 6397

    SciTech Connect

    Koch, Andreas; McWilliam, Andrew E-mail: andy@obs.carnegiescience.edu

    2011-08-15

    We present chemical abundances in three red giants and two turnoff (TO) stars in the metal-poor Galactic globular cluster (GC) NGC 6397 based on spectroscopy obtained with the Magellan Inamori Kyocera Echelle high-resolution spectrograph on the Magellan 6.5 m Clay telescope. Our results are based on a line-by-line differential abundance analysis relative to the well-studied red giant Arcturus and the Galactic halo field star Hip 66815. At a mean of -2.10 {+-} 0.02 (stat.) {+-}0.07 (sys.), the differential iron abundance is in good agreement with other studies in the literature based on gf-values. As in previous differential works we find a distinct departure from ionization equilibrium in that the abundances of Fe I and Fe II differ by {approx}0.1 dex, with opposite signs for the red giant branch (RGB) and TO stars. The {alpha}-element ratios are enhanced to 0.4 (RGB) and 0.3 dex (TO), respectively, and we also confirm strong variations in the O, Na, and Al/Fe abundance ratios. Accordingly, the light-element abundance patterns in one of the red giants can be attributed to pollution by an early generation of massive Type II supernovae. TO and RGB abundances are not significantly different, with the possible exception of Mg and Ti, which are, however, amplified by the patterns in one TO star additionally belonging to this early generation of GC stars. We discuss interrelations of these light elements as a function of the GC metallicity.

  9. Hot stars in globular clusters.

    NASA Astrophysics Data System (ADS)

    Moehler, S.

    Globular clusters are ideal laboratories to study the evolution of low-mass stars. In this review, I shall concentrate on two types of hot stars observed in globular clusters: horizontal branch stars and UV bright stars. The third type, the white dwarfs, are covered by Bono in this volume. While the morphology of the horizontal branch correlates strongly with metallicity, it has been known for a long time that one parameter is not sufficient to describe the diversity of observed horizontal branch morphologies. A veritable zoo of candidates for this elusive ``2{nd} parameter'' has been suggested over the past decades, and the most prominent ones will be briefly discussed here. Adding to the complications, diffusion is active in the atmospheres of hot horizontal branch stars, which makes their analysis much more diffcult. The latest twist along the horizontal branch was added by the recent discovery of an extension to hotter temperatures and fainter magnitudes, the so-called ``blue hook''. The evolutionary origin of these stars is still under debate. I shall also give a brief overview of our current knowledge about hot UV bright stars and use them to illustrate the adverse effects of selection bias.

  10. Relativistic Binaries in Globular Clusters.

    PubMed

    Benacquista, Matthew J; Downing, Jonathan M B

    2013-01-01

    Galactic globular clusters are old, dense star systems typically containing 10(4)-10(6) stars. As an old population of stars, globular clusters contain many collapsed and degenerate objects. As a dense population of stars, globular clusters are the scene of many interesting close dynamical interactions between stars. These dynamical interactions can alter the evolution of individual stars and can produce tight binary systems containing one or two compact objects. In this review, we discuss theoretical models of globular cluster evolution and binary evolution, techniques for simulating this evolution that leads to relativistic binaries, and current and possible future observational evidence for this population. Our discussion of globular cluster evolution will focus on the processes that boost the production of tight binary systems and the subsequent interaction of these binaries that can alter the properties of both bodies and can lead to exotic objects. Direct N-body integrations and Fokker-Planck simulations of the evolution of globular clusters that incorporate tidal interactions and lead to predictions of relativistic binary populations are also discussed. We discuss the current observational evidence for cataclysmic variables, millisecond pulsars, and low-mass X-ray binaries as well as possible future detection of relativistic binaries with gravitational radiation.

  11. The extreme chemistry of multiple stellar populations in the metal-poor globular cluster NGC 4833

    NASA Astrophysics Data System (ADS)

    Carretta, E.; Bragaglia, A.; Gratton, R. G.; D'Orazi, V.; Lucatello, S.; Momany, Y.; Sollima, A.; Bellazzini, M.; Catanzaro, G.; Leone, F.

    2014-04-01

    Our FLAMES survey of Na-O anticorrelation in globular clusters (GCs) is extended to NGC 4833, a metal-poor GC with a long blue tail on the horizontal branch (HB). We present the abundance analysis for a large sample of 78 red giants based on UVES and GIRAFFE spectra acquired at the ESO-VLT. We derived abundances of Na, O, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Ba, La, and Nd. This is the first extensive study of this cluster from high resolution spectroscopy. On the scale of our survey, the metallicity of NGC 4833 is [Fe/H] = -2.015 ± 0.004 ± 0.084 dex (rms = 0.014 dex) from 12 stars observed with UVES, where the first error is from statistics and the second one refers to the systematic effects. The iron abundance in NGC 4833 is homogeneous at better than 6%. On the other hand, the light elements involved in proton-capture reactions at high temperature show the large star-to-star variations observed in almost all GCs studied so far. The Na-O anticorrelation in NGC 4833 is quite extended, as expected from the high temperatures reached by stars on the HB, and NGC 4833 contains a conspicuous fraction of stars with extreme [O/Na] ratios. More striking is the finding that large star-to-star variations are also seen for Mg, which spans a range of more than 0.5 dex in this GC. Depletions in Mg are correlated to the abundances of O and anti-correlated with Na, Al, and Si abundances. This pattern suggests the action of nuclear processing at unusually high temperatures, producing the extreme chemistry observed in the stellar generations of NGC 4833. These extreme changes are also seen in giants of the much more massive GCs M 54 and ω Cen, and our conclusion is that NGC 4833 has probably lost a conspicuous fraction of its original mass due to bulge shocking, as also indicated by its orbit. Based on observations collected at ESO telescopes under programmes 083.D-0208 and 68.D-0265.Full Tables 2, 6-11 are only available at the CDS via anonymous ftp to http

  12. Infrared Array Photometry of Metal-Rich Globular Clusters.III.Two More Clusters and an Analysis of V-K Colors

    NASA Astrophysics Data System (ADS)

    Kuchinski, Leslie E.; Frogel, Jay A.

    1995-12-01

    We present new JHK photometry for the disk globular clusters NGC 6440 and NUC 6624. These data are initially used to confirm and refine several important results from Kuchinski et al. [AJ, 109, 1131(1995)] for other disk globulars. First, we again demonstrate the ability to derive a reddening-independent estimate for the [Fe/H] of a cluster from the slope if its giant branch (GB) in a K, J - K color-magnitude diagram (CMD). Second, the reddening corrected J- K color and K magnitude of the center of the horizontal branch (HB) and the J - K color of its red edge are confirmed to be independent of [Fe/H] for these clusters. Thus these parameters can be used to estimate E(J - K) of metal-rich clusters with no knowledge of distance or [Fe/H] and to estimate (m - M) if one can first estimate the reddening. We also confirm that the reddening-independent quantities, the half width of a cluster's horizontal branch (HB), and the color difference between the center of the HB and the GB at the level of the HB, both appear to be insensitive to metallicity. The JHK colors of NGC 6440 are similar to those of Liller 1; in both cases these colors are unlike those seen for other globular clusters, field giants, or bulge giants. We have not been able to identify any other cluster parameter that would help to explain these anomalous colors. We have assembled V photometry from the literature for the clusters in our sample and VK photometry for two additional disk globular clusters from Davidge et al. [ApJS, 81, 251(1992)]. We conclude that K, J - K CMDs are preferable to K, V- K CMDs as tools to study basic cluster properties. Finally, we compare our data with theoretical isochrones for metal-rich clusters and present observational evidence that the dependence of the V- K color of the GB on [Fe/H] may be different for halo and disk globular clusters. This difference may be related to differences in the [0/Fe] values for the two cluster systems.

  13. Star-to-Star Abundance Variations among Bright Giants in the Mildly Metal-poor Globular Cluster M4

    NASA Astrophysics Data System (ADS)

    Ivans, Inese I.; Sneden, Christopher; Kraft, Robert P.; Suntzeff, Nicholas B.; Smith, Verne V.; Langer, G. Edward; Fulbright, Jon P.

    1999-09-01

    We present a chemical composition analysis of 36 giants in the nearby mildly metal-poor (<[Fe/H]>=-1.18) ``CN-bimodal'' globular cluster M4. The stars were observed at the Lick and McDonald Observatories using high-resolution échelle spectrographs and at the Cerro Tololo Inter-American Observatory using the multiobject spectrometer. Confronted with a cluster having interstellar extinction that is large and variable across the cluster face, we combined traditional spectroscopic abundance methods with modifications to the line depth ratio technique pioneered by Gray to determine the atmospheric parameters of our stars. We derive a total-to-selective extinction ratio of 3.4+/-0.4 and an average reddening of 0.33+/-0.01, which is significantly lower than that estimated by using the dust maps made by Schlegel and coworkers. We determine abundance ratios typical of halo field and cluster stars for scandium, titanium, vanadium, nickel, and europium with star-to-star variations in these elements of less than +/-0.1. Silicon, aluminum, barium, and lanthanum are overabundant with respect to what is seen in other globular clusters of similar metallicity. These overabundances confirm the results of an earlier study by Brown & Wallerstein based on a much smaller sample of M4 giants. Superposed on the primordial abundance distribution is evidence for the existence of proton capture synthesis of carbon, oxygen, neon, and magnesium. We recover some of the C, N, O, Na, Mg, and Al abundance swings and correlations found in other more metal-poor globular clusters, but the range of variation is muted. In the case of Mg and Al, this is compatible with the idea that the Al enhancements are derived from the destruction of ^25,26Mg, not ^24Mg. We determine that the C+N+O abundance sum is constant to within the observational errors and agrees with the C+N+O total that might be expected for M4 stars at birth. The asymptotic giant branch (AGB) stars in M4 have C, N, and O

  14. CURiuos Variables Experiment (CURVE): Variable Stars in the Metal-Poor Globular Cluster M56

    NASA Astrophysics Data System (ADS)

    Pietrukowicz, P.; Olech, A.; Kedzierski, P.; Zloczewski, K.; Wisniewski, M.; Mularczyk, K.

    2008-06-01

    We surveyed a 6.5'x6.5' field centered on the globular cluster M56 (NGC 6779) in a search for variable stars detecting seven variables, among which two objects are new identifications. One of the new variables is an RR Lyrae star, the third star of that type in M56. Comparison of the new observations and old photometric data for an RVTauri variable V6 indicates a likely period change in the star. Its slow and negative rate of -0.005+/-0.003 d/yr would disagree with post-AGB evolution, however this could be a result of blue-loop evolution and/or random fluctuations of the period.

  15. Insights into the chemical composition of the metal-poor Milky Way halo globular cluster NGC 6426

    NASA Astrophysics Data System (ADS)

    Hanke, M.; Koch, A.; Hansen, C. J.; McWilliam, A.

    2017-03-01

    We present our detailed spectroscopic analysis of the chemical composition of four red giant stars in the halo globular cluster NGC 6426. We obtained high-resolution spectra using the Magellan2/MIKE spectrograph, from which we derived equivalent widths and subsequently computed abundances of 24 species of 22 chemical elements. For the purpose of measuring equivalent widths, we developed a new semi-automated tool, called EWCODE. We report a mean Fe content of [Fe/H] =-2.34 ± 0.05 dex (stat.) in accordance with previous studies. At a mean α-abundance of [(Mg, Si, Ca)/3 Fe] = 0.39 ± 0.03 dex, NGC 6426 falls on the trend drawn by the Milky Way halo and other globular clusters at comparably low metallicities. The distribution of the lighter α-elements as well as the enhanced ratio [Zn/Fe] = 0.39 dex could originate from hypernova enrichment of the pre-cluster medium. We find tentative evidence for a spread in the elements Mg, Si, and Zn, indicating an enrichment scenario, where ejecta of evolved massive stars of a slightly older population have polluted a newly born younger one. The heavy element abundances in this cluster fit well into the picture of metal-poor globular clusters, which in that respect appear to be remarkably homogeneous. The pattern of the neutron-capture elements heavier than Zn points toward an enrichment history governed by the r-process with little, if any, sign of s-process contributions. This finding is supported by the striking similarity of our program stars to the metal-poor field star HD 108317. This paper includes data gathered with the 6.5-m Magellan Telescopes located at Las Campanas Observatory, Chile.Equivalent widths and full Table 2 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (http://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/599/A97

  16. Modelling the Milky Way's globular cluster system

    NASA Astrophysics Data System (ADS)

    Binney, James; Wong, Leong Khim

    2017-01-01

    We construct a model for the Galactic globular cluster system based on a realistic gravitational potential and a distribution function (DF) analytic in the action integrals. The DF comprises disc and halo components whose functional forms resemble those recently used to describe the stellar discs and stellar halo. We determine the posterior distribution of our model parameters using a Bayesian approach. This gives us an understanding of how well the globular cluster data constrain our model. The favoured parameter values of the disc and halo DFs are similar to values previously obtained from fits to the stellar disc and halo, although the cluster halo system shows clearer rotation than does the stellar halo. Our model reproduces the generic features of the globular cluster system, namely the density profile, the mean rotation velocity and the fraction of metal-rich clusters. However, the data indicate either incompatibility between catalogued cluster distances and current estimates of distance to the Galactic Centre, or failure to identify clusters behind the bulge. As the data for our Galaxy's components increase in volume and precision over the next few years, it will be rewarding to revisit the present analysis.

  17. DERIVING METALLICITIES FROM THE INTEGRATED SPECTRA OF EXTRAGALACTIC GLOBULAR CLUSTERS USING THE NEAR-INFRARED CALCIUM TRIPLET

    SciTech Connect

    Foster, Caroline; Forbes, Duncan A.; Proctor, Robert N.; Spitler, Lee R.; Strader, Jay; Brodie, Jean P.

    2010-04-15

    The Ca II triplet (CaT) feature in the near-infrared has been employed as a metallicity indicator for individual stars as well as integrated light of Galactic globular clusters (GCs) and galaxies with varying degrees of success, and sometimes puzzling results. Using the DEIMOS multi-object spectrograph on Keck we obtain a sample of 144 integrated light spectra of GCs around the brightest group galaxy NGC 1407 to test whether the CaT index can be used as a metallicity indicator for extragalactic GCs. Different sets of single stellar population models make different predictions for the behavior of the CaT as a function of metallicity. In this work, the metallicities of the GCs around NGC 1407 are obtained from CaT index values using an empirical conversion. The measured CaT/metallicity distributions show unexpected features, the most remarkable being that the brightest red and blue GCs have similar CaT values despite their large difference in mean color. Suggested explanations for this behavior in the NGC 1407 GC system are (1) the CaT may be affected by a population of hot blue stars, (2) the CaT may saturate earlier than predicted by the models, and/or (3) color may not trace metallicity linearly. Until these possibilities are understood, the use of the CaT as a metallicity indicator for the integrated spectra of extragalactic GCs will remain problematic.

  18. THE ACCRETION OF DWARF GALAXIES AND THEIR GLOBULAR CLUSTER SYSTEMS

    SciTech Connect

    Masters, Craig E.; Ashman, Keith M. E-mail: ashmank@umkc.ed

    2010-12-10

    The question of where the low-metallicity globular clusters in early-type galaxies came from has profound implications for the formation of those galaxies. Our work supports the idea that the metal-poor globular cluster systems of giant early-type galaxies formed in dwarf galaxies that have been subsumed by the giants. To support this hypothesis, two linear relations, one involving globular cluster metallicity versus host galaxy luminosity and one involving metallicity versus velocity dispersion were studied. Tentatively, these relations show that the bright ellipticals do not obey the same trend as the dwarfs, suggesting that the low-metallicity globular clusters did not form within their parent bright ellipticals.

  19. Mass-loss on the red giant branch: the value and metallicity dependence of Reimers' η in globular clusters

    NASA Astrophysics Data System (ADS)

    McDonald, I.; Zijlstra, A. A.

    2015-03-01

    The impact of metallicity on the mass-loss rate from red giant branch (RGB) stars is studied through its effect on the parameters of horizontal branch (HB) stars. The scaling factors from Reimers and Schröder and Cuntz are used to measure the efficiency of RGB mass-loss for typical stars in 56 well-studied Galactic globular clusters (GCs). The median values among clusters are, respectively, η _R = 0.477 ± 0.070 ^{+0.050}_{-0.062} and η _SC = 0.172 ± 0.024 ^{+0.018}_{-0.023} (standard deviation and systematic uncertainties, respectively). Over a factor of 200 in iron abundance, η varies by ≲30 per cent, thus mass-loss mechanisms on the RGB have very little metallicity dependence. Any remaining dependence is within the current systematic uncertainties on cluster ages and evolution models. The low standard deviation of η among clusters (≈14 per cent) contrasts with the variety of HB morphologies. Since η incorporates cluster age, this suggests that age accounts for the majority of the `second parameter problem', and that a Reimers-like law provides a good mass-loss model. The remaining spread in η correlates with cluster mass and density, suggesting helium enrichment provides the third parameter explaining HB morphology of GCs. We close by discussing asymptotic giant branch (AGB) mass-loss, finding that the AGB tip luminosity is better reproduced and η has less metallicity dependence if GCs are more co-eval than generally thought.

  20. THE MASS-METALLICITY RELATION OF GLOBULAR CLUSTERS IN THE CONTEXT OF NONLINEAR COLOR-METALLICTY RELATIONS

    SciTech Connect

    Blakeslee, John P.; Cantiello, Michele; Peng, Eric W.

    2010-02-10

    Two recent empirical developments in the study of extragalactic globular cluster (GC) populations are the color-magnitude relation of the blue GCs (the 'blue tilt') and the nonlinearity of the dependence of optical GC colors on metallicity. The color-magnitude relation, interpreted as a mass-metallicity relation, is thought to be a consequence of self-enrichment. Nonlinear color-metallicity relations have been shown to produce bimodal color distributions from unimodal metallicity distributions. We simulate GC populations including both a mass-metallicity scaling relation and nonlinear color-metallicity relations motivated by theory and observations. Depending on the assumed range of metallicities and the width of the GC luminosity function (GCLF), we find that the simulated populations can have bimodal color distributions with a 'blue tilt' similar to observations, even though the metallicity distribution appears unimodal. The models that produce these features have the relatively high mean GC metallicities and nearly equal blue and red peaks characteristic of giant elliptical galaxies. The blue tilt is less apparent in the models with metallicities typical of dwarf ellipticals; the narrower GCLF in these galaxies has an even bigger effect in reducing the significance of their color-magnitude slopes. We critically examine the evidence for nonlinearity versus bimodal metallicities as explanations for the characteristic double-peaked color histograms of giant ellipticals and conclude that the question remains open. We discuss the prospects for further theoretical and observational progress in constraining the models presented here and for uncovering the true metallicity distributions of extragalactic GC systems.

  1. FORMATION OF METAL-POOR GLOBULAR CLUSTERS IN Ly{alpha} EMITTING GALAXIES IN THE EARLY UNIVERSE

    SciTech Connect

    Elmegreen, Bruce G.; Malhotra, Sangeeta; Rhoads, James

    2012-09-20

    The size, mass, luminosity, and space density of Ly{alpha} emitting (LAE) galaxies observed at intermediate to high redshift agree with expectations for the properties of galaxies that formed metal-poor halo globular clusters (GCs). The low metallicity of these clusters is the result of their formation in low-mass galaxies. Metal-poor GCs could enter spiral galaxies along with their dwarf galaxy hosts, unlike metal-rich GCs, which form in the spirals themselves. Considering an initial GC mass larger than the current mass to account for multiple stellar populations, and considering the additional clusters that are likely to form with massive clusters, we estimate that each GC with a mass today greater than 2 Multiplication-Sign 10{sup 5} M{sub Sun} was likely to have formed among a total stellar mass {approx}> 3 Multiplication-Sign 10{sup 7} M{sub Sun }, a molecular mass {approx}> 10{sup 9} M{sub Sun }, and 10{sup 7} to 10{sup 9} M{sub Sun} of older stars, depending on the relative gas fraction. The star formation rate would have been several M{sub Sun} yr{sup -1} lasting for {approx}10{sup 7} yr, and the Ly{alpha} luminosity would have been {approx}> 10{sup 42} erg s{sup -1}. Integrating the LAE galaxy luminosity function above this minimum, considering the average escape probability for Ly{alpha} photons (25%), and then dividing by the probability that a dwarf galaxy is observed in the LAE phase (0.4%), we find agreement between the comoving space density of LAEs and the average space density of metal-poor GCs today. The local galaxy WLM, with its early starburst and old GC, could be an LAE remnant that did not get into a galaxy halo because of its remote location.

  2. High-resolution abundance analysis of red giants in the metal-poor bulge globular cluster HP 1

    NASA Astrophysics Data System (ADS)

    Barbuy, B.; Cantelli, E.; Vemado, A.; Ernandes, H.; Ortolani, S.; Saviane, I.; Bica, E.; Minniti, D.; Dias, B.; Momany, Y.; Hill, V.; Zoccali, M.; Siqueira-Mello, C.

    2016-06-01

    Context. The globular cluster HP 1 is projected at only 3.̊33 from the Galactic center. Together with its distance, this makes it one of the most central globular clusters in the Milky Way. It has a blue horizontal branch (BHB) and a metallicity of [Fe/H] ≈ -1.0. This means that it probably is one of the oldest objects in the Galaxy. Abundance ratios can reveal the nucleosynthesis pattern of the first stars as well as the early chemical enrichment and early formation of stellar populations. Aims: High-resolution spectra obtained for six stars were analyzed to derive the abundances of the light elements C, N, O, Na, and Al, the alpha-elements Mg, Si, Ca, and Ti, and the heavy elements Sr, Y, Zr, Ba, La, and Eu. Methods: High-resolution spectra of six red giants that are confirmed members of the bulge globular cluster HP 1 were obtained with the 8 m VLT UT2-Kueyen telescope with the UVES spectrograph in FLAMES-UVES configuration. The spectroscopic parameter derivation was based on the excitation and ionization equilibrium of Fe i and Fe ii. Results: We confirm a mean metallicity of [Fe/H] = -1.06 ± 0.10, by adding the two stars that were previously analyzed in HP 1. The alpha-elements O and Mg are enhanced by about +0.3 ≲ [O,Mg/Fe] ≲ +0.5 dex, Si is moderately enhanced with +0.15 ≲ [Si/Fe] ≲ +0.35 dex, while Ca and Ti show lower values of -0.04 ≲ [Ca,Ti/Fe] ≲ +0.28 dex. The r-element Eu is also enhanced with [Eu/Fe] ≈ +0.4, which together with O and Mg is indicative of early enrichment by type II supernovae. Na and Al are low, but it is unclear if Na-O are anticorrelated. The heavy elements are moderately enhanced, with -0.20 < [La/Fe] < +0.43 dex and 0.0 < [Ba/Fe] < +0.75 dex, which is compatible with r-process formation. The spread in Y, Zr, Ba, and La abundances, on the other hand, appears to be compatible with the spinstar scenario or other additional mechanisms such as the weak r-process. Observations collected at the European Southern

  3. CCD time-series photometry of variable stars in globular clusters and the metallicity dependence of the horizontal branch luminosity

    NASA Astrophysics Data System (ADS)

    Arellano Ferro, A.; Bramich, D. M.; Giridhar, S.

    2017-04-01

    We describe and summarize the findings from our CCD time-series photometry of globular clusters (GCs) program and the use of difference image analysis (DIA) in the extraction of precise light curves down to V≍19 mag in crowded regions. We have discovered approximately 250 variable stars in a sample of 23 selected GCs. The absolute magnitude and [Fe/H] for each individual RR Lyrae is obtained via the Fourier decomposition of the light curve. An average of these parameters leads to the distance and metallicity of the host GCs. We present the mean [Fe/H], MV and distance for 26 GCs based exclusively on the RR Lyrae light curve Fourier decomposition technique on an unprecedented homogeneous scale. We also discuss the luminosity dependence of the horizontal branch (HB) via the MV-[Fe/H] relation. We find that this relation should be considered separately for the RRab and RRc stars.

  4. Relative Age Difference Between the Metal-Poor Globular Clusters M53 and M92

    NASA Astrophysics Data System (ADS)

    Cho, Dong-Hwan; Sung, Hyun-Il; Lee, Sang-Gak; Yoon, Tae Seog

    2016-10-01

    CCD photometric observations of the globular cluster (GC), M53 (NGC 5024), are performed using the 1.8 m telescope at the Bohyunsan Optical Astronomy Observatory in Korea on the same nights (2002 April and 2003 May) as the observations of the GC M92 (NGC 6341) reported by Cho and Lee using the same instrumental setup. The data for M53 is reduced using the same method as used for M92 by Cho and Lee, including preprocessing, point-spread function fitting photometry, and standardization etc. Therefore, M53 and M92 are on the same photometric system defined by Landolt, and the photometry of M53 and M92 is tied together as closely as possible. After complete photometric reduction, the V versus B-V, V versus V-I, and V versus B-I color-magnitude diagrams (CMDs) of M53 are produced to derive the relative ages of M53 and M92 and derive the various characteristics of its CMDs in future analysis. From the present analysis, the relative ages of M53 and M92 are derived using the Δ(B-V) method reported by VandenBerg et al. The relative age of M53 is found to be 1.6 ± 0.85 Gyr younger than that of M92 if the absolute age of M92 is taken to be 14 Gyr. This relative age difference between M53 and M92 causes slight differences in the horizontal-branch morphology of these two GCs.

  5. Globular cluster system of the galaxy. II. The spatial and metallicity distributions, the second parameter phenomenon, and the formation of the cluster system

    SciTech Connect

    Zinn, R.

    1980-10-15

    The metal abundance measurements that were collected for 84 globular clusters in the first paper of this series are used here to describe the cluster system. The ranking of the clusters by metallicity has been calibrated by a new (Fe/H) scale, which is based in part on the measurement of (Fe/H)=-1.2 for M71. According to this scale, the metal abundance gradient between the inner and outer halo clusters (i.e., R<9 kpc and 9< or =R< 40 kpc) is only a small fraction of that found with previous (Fe/H) scales. It is not clear, however, that the new scale is to be preferred over the old ones; consequently the size of this gradient remains in doubt. The most significant properties of the cluster system that do not depend on the validity of the (Fe/H) scale are the following; (i) there is a wide range in metal abundance among the cluster in the zone 9< or =R<40 kpc, but no evidence of a gradient with R or with distance from the galactic plane, Vertical BarZVertical Bar; (ii) among the clusters with R<9 kpc, there is a metal abundance gradient with Vertical BarZVertical Bar; and (iii) the magnitude of the second parameter effect increases with R, and if age is the second parameter, then over the range 0cluster age declines by approx.3 Gyr and the scatter in age increases from less than 1 Gyr to approx.2 Gyr.

  6. Isolated elliptical galaxies and their globular cluster systems. II. NGC 7796 - globular clusters, dynamics, companion

    NASA Astrophysics Data System (ADS)

    Richtler, T.; Salinas, R.; Lane, R. R.; Hilker, M.; Schirmer, M.

    2015-02-01

    Context. Rich globular cluster systems, particularly the metal-poor part of them, are thought to be the visible manifestations of long-term accretion processes. The invisible part is the dark matter halo, which may show some correspondence to the globular cluster system. It is therefore interesting to investigate the globular cluster systems of isolated elliptical galaxies, which supposedly have not experienced extended accretion. Aims: We investigate the globular cluster system of the isolated elliptical NGC 7796, present new photometry of the galaxy, and use published kinematical data to constrain the dark matter content. Methods: Deep images in B and R, obtained with the VIsible MultiObject Spectrograph (VIMOS) at the VLT, form the data base. We performed photometry with DAOPHOT and constructed a spherical photometric model. We present isotropic and anisotropic Jeans-models and give a morphological description of the companion dwarf galaxy. Results: The globular cluster system has about 2000 members, so it is not as rich as those of giant ellipticals in galaxy clusters with a comparable stellar mass, but richer than many cluster systems of other isolated ellipticals. The colour distribution of globular clusters is bimodal, which does not necessarily mean a metallicity bimodality. The kinematic literature data are somewhat inconclusive. The velocity dispersion in the inner parts can be reproduced without dark matter under isotropy. Radially anisotropic models need a low stellar mass-to-light ratio, which would contrast with the old age of the galaxy. A MONDian model is supported by X-ray analysis and previous dynamical modelling, but better data are necessary for a confirmation. The dwarf companion galaxy NGC 7796-1 exhibits tidal tails, multiple nuclei, and very boxy isophotes. Conclusions: NGC 7796 is an old, massive isolated elliptical galaxy with no indications of later major star formation events as seen frequently in other isolated ellipticals. Its

  7. Ceci N'est Pas a globular cluster: the metallicity distribution of the stellar system Terzan 5

    SciTech Connect

    Massari, D.; Mucciarelli, A.; Ferraro, F. R.; Lanzoni, B.; Dalessandro, E.; Lovisi, L.; Rich, R. M.; Reitzel, D.; Valenti, E.; Ibata, R.

    2014-11-01

    We present new determinations of the iron abundance for 220 stars belonging to the stellar system Terzan 5 in the Galactic bulge. The spectra have been acquired with FLAMES at the Very Large Telescope of the European Southern Observatory and DEIMOS at the Keck II Telescope. This is by far the largest spectroscopic sample of stars ever observed in this stellar system. From this data set, a subsample of targets with spectra unaffected by TiO bands was extracted and statistically decontaminated from field stars. Once combined with 34 additional stars previously published by our group, a total sample of 135 member stars covering the entire radial extent of the system has been used to determine the metallicity distribution function of Terzan 5. The iron distribution clearly shows three peaks: a super-solar component at [Fe/H] ≅ 0.25 dex, accounting for ∼29% of the sample, a dominant sub-solar population at [Fe/H] ≅ –0.30 dex, corresponding to ∼62% of the total, and a minor (6%) metal-poor component at [Fe/H] ≅ –0.8 dex. Such a broad, multi-modal metallicity distribution demonstrates that Terzan 5 is not a genuine globular cluster but the remnant of a much more complex stellar system.

  8. The helium abundance in the metal-poor globular clusters M30 and NGC 6397

    SciTech Connect

    Mucciarelli, A.; Lovisi, L.; Lanzoni, B.; Ferraro, F. R.

    2014-05-01

    We present the helium abundance of the two metal-poor clusters M30 and NGC 6397. Helium estimates have been obtained by using the high-resolution spectrograph FLAMES at the European Southern Observatory Very Large Telescope and by measuring the He I line at 4471 Å in 24 and 35 horizontal branch (HB) stars in M30 and NGC 6397, respectively. This sample represents the largest data set of He abundances collected so far in metal-poor clusters. The He mass fraction turns out to be Y = 0.252 ± 0.003 (σ = 0.021) for M30 and Y = 0.241 ± 0.004 (σ = 0.023) for NGC 6397. These values are fully compatible with the cosmological abundance, thus suggesting that the HB stars are not strongly enriched in He. The small spread of the Y distributions are compatible with those expected from the observed main sequence splitting. Finally, we find a hint of a weak anticorrelation between Y and [O/Fe] in NGC 6397 in agreement with the prediction that O-poor stars are formed by (He-enriched) gas polluted by the products of hot proton-capture reactions.

  9. Globular Cluster Abundances from High-resolution, Integrated-light Spectroscopy. II. Expanding the Metallicity Range for Old Clusters and Updated Analysis Techniques

    NASA Astrophysics Data System (ADS)

    Colucci, Janet E.; Bernstein, Rebecca A.; McWilliam, Andrew

    2017-01-01

    We present abundances of globular clusters (GCs) in the Milky Way and Fornax from integrated-light (IL) spectra. Our goal is to evaluate the consistency of the IL analysis relative to standard abundance analysis for individual stars in those same clusters. This sample includes an updated analysis of seven clusters from our previous publications and results for five new clusters that expand the metallicity range over which our technique has been tested. We find that the [Fe/H] measured from IL spectra agrees to ∼0.1 dex for GCs with metallicities as high as [Fe/H] = ‑0.3, but the abundances measured for more metal-rich clusters may be underestimated. In addition we systematically evaluate the accuracy of abundance ratios, [X/Fe], for Na i, Mg i, Al i, Si i, Ca i, Ti i, Ti ii, Sc ii, V i, Cr i, Mn i, Co i, Ni i, Cu i, Y ii, Zr i, Ba ii, La ii, Nd ii, and Eu ii. The elements for which the IL analysis gives results that are most similar to analysis of individual stellar spectra are Fe i, Ca i, Si i, Ni i, and Ba ii. The elements that show the greatest differences include Mg i and Zr i. Some elements show good agreement only over a limited range in metallicity. More stellar abundance data in these clusters would enable more complete evaluation of the IL results for other important elements. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  10. Clear Evidence for the Presence of Second-generation Asymptotic Giant Branch Stars in Metal-poor Galactic Globular Clusters

    NASA Astrophysics Data System (ADS)

    García-Hernández, D. A.; Mészáros, Sz.; Monelli, M.; Cassisi, S.; Stetson, P. B.; Zamora, O.; Shetrone, M.; Lucatello, S.

    2015-12-01

    Galactic globular clusters (GCs) are known to host multiple stellar populations: a first generation (FG) with a chemical pattern typical of halo field stars and a second generation (SG) enriched in Na and Al and depleted in O and Mg. Both stellar generations are found at different evolutionary stages (e.g., the main-sequence turnoff, the subgiant branch, and the red giant branch (RGB)). The non detection of SG asymptotic giant branch (AGB) stars in several metal-poor ([Fe/H] < -1) GCs suggests that not all SG stars ascend the AGB phase, and that failed AGB stars may be very common in metal-poor GCs. This observation represents a serious problem for stellar evolution and GC formation/evolution theories. We report fourteen SG-AGB stars in four metal-poor GCs (M13, M5, M3, and M2) with different observational properties: horizontal branch (HB) morphology, metallicity, and age. By combining the H-band Al abundances obtained by the Apache Point Observatory Galactic Evolution Experiment survey with ground-based optical photometry, we identify SG Al-rich AGB stars in these four GCs and show that Al-rich RGB/AGB GC stars should be Na-rich. Our observations provide strong support for present, standard stellar models, i.e., without including a strong mass-loss efficiency, for low-mass HB stars. In fact, current empirical evidence is in agreement with the predicted distribution of FG and SG stars during the He-burning stages based on these standard stellar models.

  11. UV Spectroscopic Indices of Galactic Globular Clusters

    NASA Astrophysics Data System (ADS)

    Morales-Hernández, J.; Chávez, M.; Bertone, E.; Buzzoni, A.; Bressan, A.

    2009-03-01

    We present the calculation of a set of 12 mid-ultraviolet (1900-3200 Å) spectroscopic indices for a sample of 15 galactic globular clusters (GGC) observed with the International Ultraviolet Explorer (IUE). We explore the dependence of the indices on age and metal abundance. We found that five indices (BL 2538, Fe II 2609, Mg II 2800, Mg I 2852 and Mg Wide) display a remarkably good correlation with [Fe/H]. With respect to age, only one index (BL 2740) shows a good correlation. Results from theoretical simple stellar populations well reproduce the global trends of indices vs. [Fe/H].

  12. The Nature of LSB galaxies revealed by their Globular Clusters

    NASA Astrophysics Data System (ADS)

    Kissler-Patig, Markus

    2005-07-01

    Low Surface Brightness {LSB} galaxies encompass many of the extremes in galaxy properties. Their understanding is essential to complete our picture of galaxy formation and evolution. Due to their historical under-representation on galaxy surveys, their importance to many areas of astronomy has only recently began to be realized. Globular clusters are superb tracers of the formation histories of galaxies and have been extensively used as such in high surface brightness galaxies. We propose to investigate the nature of massive LSB galaxies by studying their globular cluster systems. No globular cluster study has been reported for LSB galaxies to date. Yet, both the presence or absence of globular clusters set very strong constraints on the conditions prevailing during LSB galaxy formation and evolution. Both in dwarf and giant high surface brightness {HSB} galaxies, globular clusters are known to form as a constant fraction of baryonic mass. Their presence/absence immediately indicates similarities or discrepancies in the formation and evolution conditions of LSB and HSB galaxies. In particular, the presence/absence of metal-poor halo globular clusters infers similarities/differences in the halo formation and assembly processes of LSB vs. HSB galaxies, while the presence/absence of metal-rich globular clusters can be used to derive the occurrence and frequency of violent events {such as mergers} in the LSB galaxy assembly history. Two band imaging with ACS will allow us to identify the globular clusters {just resolved at the selected distance} and to determine their metallicity {potentially their rough age}. The composition of the systems will be compared to the extensive census built up on HSB galaxies. Our representative sample of six LSB galaxies {cz < 2700 km/s} are selected such, that a large system of globular clusters is expected. Globular clusters will constrain phases of LSB galaxy formation and evolution that can currently not be probed by other means. HST

  13. Discovery of a Super-Li-rich Turnoff Star in the Metal-poor Globular Cluster NGC 6397

    NASA Astrophysics Data System (ADS)

    Koch, Andreas; Lind, Karin; Rich, R. Michael

    2011-09-01

    We report on the discovery of a super-Li-rich turnoff (TO) star in the old (12 Gyr), metal-poor ([Fe/H] = -2.1 dex) globular cluster (GC) NGC 6397, based on high-resolution MIKE/Magellan spectra. This star shows an unusually high lithium abundance of A(Li)NLTE = 4.03 ± 0.06 ± 0.14 dex (or, 4.21, accounting for possible contamination from a binary companion) that lies above the canonical Li-plateau by a factor of 100. This is the highest Li enhancement found in a Galactic GC dwarf star to date. We discuss several enhancement mechanisms, but none can unambiguously explain such a high overabundance. The spectrum of the star shows a possible indication of binarity, but its line strengths and chemical element abundance ratios are fully compatible with other TO stars in this GC, seemingly ruling out mass transfer from an asymptotic giant branch companion as origin of the high A(Li). A possible cause is an interaction with a red giant that has undergone cool bottom processing. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  14. Discovery of a Metal-poor Field Giant with a Globular Cluster Second-generation Abundance Pattern

    NASA Astrophysics Data System (ADS)

    Fernández-Trincado, J. G.; Robin, A. C.; Moreno, E.; Schiavon, R. P.; García Pérez, A. E.; Vieira, K.; Cunha, K.; Zamora, O.; Sneden, C.; Souto, Diogo; Carrera, R.; Johnson, J. A.; Shetrone, M.; Zasowski, G.; García-Hernández, D. A.; Majewski, S. R.; Reylé, C.; Blanco-Cuaresma, S.; Martinez-Medina, L. A.; Pérez-Villegas, A.; Valenzuela, O.; Pichardo, B.; Meza, A.; Mészáros, Sz.; Sobeck, J.; Geisler, D.; Anders, F.; Schultheis, M.; Tang, B.; Roman-Lopes, A.; Mennickent, R. E.; Pan, K.; Nitschelm, C.; Allard, F.

    2016-12-01

    We report on the detection, from observations obtained with the Apache Point Observatory Galactic Evolution Experiment spectroscopic survey, of a metal-poor ([Fe/H] = -1.3 dex) field giant star with an extreme Mg-Al abundance ratio ([Mg/Fe] = -0.31 dex; [Al/Fe] = 1.49 dex). Such low Mg/Al ratios are seen only among the second-generation population of globular clusters (GCs) and are not present among Galactic disk field stars. The light-element abundances of this star, 2M16011638-1201525, suggest that it could have been born in a GC. We explore several origin scenarios, studying the orbit of the star in particular to check the probability of its being kinematically related to known GCs. We performed simple orbital integrations assuming the estimated distance of 2M16011638-1201525 and the available six-dimensional phase-space coordinates of 63 GCs, looking for close encounters in the past with a minimum distance approach within the tidal radius of each cluster. We found a very low probability that 2M16011638-1201525 was ejected from most GCs; however, we note that the best progenitor candidate to host this star is GC ω Centauri (NGC 5139). Our dynamical investigation demonstrates that 2M16011638-1201525 reaches a distance | {Z}\\max | \\lt 3 {kpc} from the Galactic plane and minimum and maximum approaches to the Galactic center of R min < 0.62 kpc and R max < 7.26 kpc in an eccentric (e ˜ 0.53) and retrograde orbit. Since the extreme chemical anomaly of 2M16011638-1201525 has also been observed in halo field stars, this object could also be considered a halo contaminant, likely to have been ejected into the Milky Way disk from the halo. We conclude that 2M16011638-20152 is also kinematically consistent with the disk but chemically consistent with halo field stars.

  15. High-resolution CCD spectra of stars in globular clusters. II - Metals and CNO in M71

    NASA Technical Reports Server (NTRS)

    Leep, E. Myckky; Wallerstein, George; Oke, J. B.

    1987-01-01

    Palomar coude CCD spectra of resolution 0.3 and 0.6 has been used to redetermine abundances in five stars of the relatively metal rich globular cluster M71. The (Fe/H) value is restricted to the limits of -0.6 to -1.0. The largest source of uncertainty is a systematic difference in f-values between those derived via the Holweger-Muller (1974) solar model and the Bell et al. (1976) solar model. If we use absolute f-values measured by the Oxford group (Blackwell et al. 1982) we find Fe/H to lie in the range of -0.6 to -0.75, i.e., as given by using the Bell et al. solar model. The relative abundances of the light elements, i.e., Na through Ca and probably including Ti show an average excess relative to iron of 0.4-dex. The effect of this difference on metal indices derived from broad- and narrow- band photometry is discussed. For three stars we find O/H = -0.6 using absolute f-values. For CN an analysis of individual rotational lines of the 2-0 band of the red system yields lines in the (C/H, N/H) plane that are consistent with either an original C/Fe = N/Fe = 0 or a modest increase in N relative to C due to CN burning and mixing. A search for C-13N was not successful and an uncertain lower limit of C-12/C-13 near 10 was obtained.

  16. High resolution CCD spectra of stars in globular clusters. Part 2: Metals and CNO in M71

    NASA Technical Reports Server (NTRS)

    Leep, E. M.; Oke, J. B.; Wallerstein, G.

    1986-01-01

    Palomar coude CCD spectra of resolution 0.3 and 0.6 has been used to redetermine abundances in five stars of the relatively metal rich globular cluster M71. The (Fe/H) value is restricted to the limits of -0.6 to -1.0. The largest source of uncertainty is a systematic difference in f-values between those derived via the Holweger-Muller (1974) solar model and the Bell et al. (1976) solar model. If we use absolute f-values measured by the Oxford group (Blackwell et al. 1982) we find Fe/H to lie in the range of -0.6 to -0.75, i.e., as given by using the Bell et al. solar model. The relative abundances of the light elements, i.e., Na through Ca and probably including Ti show an average excess relative to iron of 0.4 dex. The effect of this difference on metal indices derived from broad- and narrow- band photometry is discussed. For three stars we find O/H = -0.6 using absolute f-values. For CN an analysis of individual rotational lines of the 2-0 band of the red system yields lines in the (C/H,N/H) plane that are consistent with either an original C/Fe = N/Fe = 0 or a modest increase in N relative to C due to CN burning and mixing. A search for C-13N was not successful and an uncertain lower limit of C-12/C-13 near 10 was obtained.

  17. Contribution of globular clusters to halos

    NASA Astrophysics Data System (ADS)

    Bragaglia, Angela

    2017-03-01

    The contribution of massive star clusters to their hosting halo dramatically depends on their formation mechanism and their early evolution. Massive globular clusters in the Milky Way (and in other galaxies) have been shown to display peculiar chemical patterns (light-elements correlations and anti-correlations) indicative of a complex star formation, confirmed by photometric evidence (spread or split sequences). I use these chemical signatures to try to understand what is the fraction of halo stars originally born in globular clusters.

  18. RR Lyrae stars in M31 globular clusters: B514

    NASA Astrophysics Data System (ADS)

    Contreras, R.; Federici, L.; Clementini, G.; Cacciari, C.; Merighi, R.; Kinemuchi, K.; Catelan, M.; Fusi Pecci, F.; Marconi, M.; Pritzl, B.; Smith, H.

    We present preliminary results of a variable star search in the metal-poor globular cluster B514 of the Andromeda galaxy (M31), based on Hubble Space Telescope Wide Field Planetary Camera 2 and Advanced Camera for Surveys observations. A large number of RR Lyrae stars have been identified for the first time in a globular cluster of M31. The average period of the RR Lyrae variables (< Pab > = 0.58 days and < Pc > = 0.35 days, for fundamental-mode and first-overtone pulsators, respectively) and the position in the period-amplitude diagram both suggest that B514 is likely an Oosterhoff I cluster, contrary to the general behaviour of the metal-poor globular clusters in the Milky Way, which show instead Oosterhoff type II pulsation properties.

  19. Enrichment by supernovae in globular clusters with multiple populations.

    PubMed

    Lee, Jae-Woo; Kang, Young-Woon; Lee, Jina; Lee, Young-Wook

    2009-11-26

    The most massive globular cluster in the Milky Way, omega Centauri, is thought to be the remaining core of a disrupted dwarf galaxy, as expected within the model of hierarchical merging. It contains several stellar populations having different heavy elemental abundances supplied by supernovae-a process known as metal enrichment. Although M 22 appears to be similar to omega Cen, other peculiar globular clusters do not. Therefore omega Cen and M 22 are viewed as exceptional, and the presence of chemical inhomogeneities in other clusters is seen as 'pollution' from the intermediate-mass asymptotic-giant-branch stars expected in normal globular clusters. Here we report Ca abundances for seven globular clusters and compare them to omega Cen. Calcium and other heavy elements can only be supplied through numerous supernovae explosions of massive stars in these stellar systems, but the gravitational potentials of the present-day clusters cannot preserve most of the ejecta from such explosions. We conclude that these globular clusters, like omega Cen, are most probably the relics of more massive primeval dwarf galaxies that merged and disrupted to form the proto-Galaxy.

  20. Globular Cluster Contributions to the Galactic Halo

    NASA Astrophysics Data System (ADS)

    Martell, Sarah; Grebel, Eva; Lai, David

    2010-08-01

    The goal of this project is to confirm chemically that globular clusters are the source of as much as half the population of the Galactic halo. Using moderate-resolution spectroscopy from the SEGUE survey, we have identified a previously unknown population of halo field giants with distinctly strong CN features. CN variations are typically only observed in globular clusters, so these stars are interpreted as immigrants to the halo that originally formed in globular clusters. In one night of Keck/HIRES time, we will obtain high-quality, high- resolution spectra for five such stars, and determine abundances of O, Na, Mg, Al, alpha, iron-peak and neutron-capture elements. With this information we can state clearly whether these unusual CN-strong halo stars carry the full abundance pattern seen in CN-strong globular cluster stars, with depleted C, O, and Mg and enhanced N, Na, and Al. This type of coarse ``chemical tagging'' will allow a clearer division of the Galactic halo into contributions from globular clusters and from dwarf galaxies, and will place constraints on theoretical models of globular cluster formation and evolution.

  1. Far-ultraviolet radiation from disk globular clusters

    NASA Technical Reports Server (NTRS)

    Rich, R. M.; Minniti, Dante; Liebert, James

    1993-01-01

    IUE spectra obtained in a survey of the metal-rich disk system of globular clusters are presented. Significant FUV fluxes were detected in the 1200-2000-A short-wavelength (SWP) range of the IUE Observatory in several disk globular clusters. These clusters are the most metal-rich known to have an FUV flux. Three clusters show spectral energy distrbutions (SEDs) clearly rising at shorter wavelengths, not unlike the upturns observed in the bulges of metal-rich elliptical galaxies. Several others with weak SWP detections appear to have flat or uncertain spectral energy distributions. Blue stragglers provide a possible explanation for flux redder than 2000 A in clusters showing weaker flux in the SWP region, and with flat or declining SEDs.

  2. Observations of the Hot Horizontal Branch Stars in the Metal-Rich Bulge Globular Cluster NGC 6388

    NASA Technical Reports Server (NTRS)

    Moehler, S.; Sweigart, A. V.

    2006-01-01

    The metal-rich bulge globular cluster NGC 6388 shows a distinct blue horizontal-branch tail in its colour-magnitude diagram (Rich et al. 1997) and is thus a strong case of the well-known 2nd Parameter Problem. In addition, its horizontal branch (HB) shows an upward tilt toward bluer colours, which cannot be explained by canonical evolutionary models. Several non-canonical scenarios have been proposed to explain these puzzling observations. In order to test the predictions of these scenarios, we have obtained medium resolution spectra to determine the atmospheric parameters of a sample of the blue HB stars in NGC 6388.Using the medium resolution spectra, we determine effective temperatures, surface gravities and helium abundances by fitting the observed Balmer and helium lines with appropriate theoretical stellar spectra. As we know the distance to the cluster, we can verify our results by determining masses for the stars. During the data reduction we took special care to correctly subtract the background, which is dominated by the overlapping spectra of cool stars. The cool blue tail stars in our sample with T(sub eff) approximately 10000 K have lower than canonical surface gravities, suggesting that these stars are, on average, approximately equal to 0.4 mag brighter than canonical HB stars in agreement with the observed upward slope of the HB in NGC 6388. Moreover, the mean mass of these stars agrees well with theoretical predictions. In contrast, the hot blue tail stars in our sample with T(sub eff) greater than or equal to 12000 K show significantly lower surface gravities than predicted by any scenario, which can reproduce the photometric observations. Their masses are also too low by about a factor of 2 compared to theoretical predictions. The physical parameters of the blue HB stars at about 10,000 K support the helium pollution scenario. The low gravities and masses of the hot blue tail stars, however, are probably caused by problems with the data reduction

  3. Globular cluster clustering around ultra compact dwarf galaxies in the halo of NGC 1399

    NASA Astrophysics Data System (ADS)

    Voggel, Karina; Hilker, Michael; Richtler, Tom

    2016-08-01

    We tested the spatial distribution of UCDs and GCs in the halo of NGC 1399 in the Fornax cluster. In particular we tried to find out if globular clusters are more abundant in the vicinity of UCDs than what is expected from their global distribution. A local overabundance of globular clusters was found around UCDs on a scale of 1 kpc compared to what is expected from the large scale distribution of globulars in the host galaxy. This effect is stronger for the metal-poor blue GCs and weaker for the red GCs. An explanation for these clustered globulars is either that they are the remains of a GC system of an ancestor dwarf galaxy before it was stripped to its nucleus, which appears as UCD today. Alternatively these clustered GCs could have been originally part of a super star cluster complex.

  4. Stellar black holes in globular clusters

    NASA Technical Reports Server (NTRS)

    Kulkarni, S. R.; Hut, Piet; Mcmillan, Steve

    1993-01-01

    The recent discovery of large populations of millisec pulsars associated with neutron stars in globular clusters indicates that several hundred stellar black holes of about 10 solar masses each can form within a typical cluster. While, in clusters of high central density, the rapid dynamical evolution of the black-hole population leads to an ejection of nearly all holes on a short timescale, systems of intermediate density may involve a normal star's capture by one of the surviving holes to form a low-mass X-ray binary. One or more such binaries may be found in the globular clusters surrounding our galaxy.

  5. What determines the stellar mass functions in globular clusters?

    NASA Technical Reports Server (NTRS)

    Djorgovski, S.; Piotto, Giampaolo; Capaccioli, Massimo

    1993-01-01

    We analyze the dependence of stellar mass function slopes for a sample of 17 globular clusters on a variety of cluster parameters. The principal novelty of our approach is the use of appropriate multivariate statistical methods to disentangle the complex situation which is present in this problem: the slopes depend simultaneously on more than one variable, and many cluster parameters are mutually correlated. We find that the mass function slopes in the range M/M(solar) = 0.5-0.8 are largely determined by the position in the Galaxy and to a lesser extent by the cluster metallicity. Clusters closer to the Galactic center or plane have shallower mass function slopes. At a given distance to the Galactic center, clusters closer to the Galactic plane have shallower mass function slopes. At a given R(GC) and/or Z(GP), more metal-rich clusters have shallower mass function slopes. Thus, the monovariate correlations with the position or metallicity are both correct, but only partial, and in terms of slopes, biased descriptions of the situation. We present trivariate least-squares solutions where the mass function slopes can be predicted within the measurement accuracy. This relation can serve as a powerful observational constraint for theories of globular cluster formation and evolution, and it is one of the tightest correlations between globular cluster properties now known.

  6. Metallicities and Alpha-to-Iron Ratios in Globular Cluster Stars on a Homogeneous Scale: Search for Multiple Populations

    NASA Astrophysics Data System (ADS)

    Dias, B.; Saviane, I.; Barbuy, B.; Held, E.; Da Costa, G.; Ortolani, S.; Vasquez, S.

    2015-05-01

    We are carrying out a survey of 51 poorly studied Milky Way globular clusters by means of spectroscopy of ˜20 red giant stars per cluster. Optical spectra (4600-5800 Å) were obtained with FORS2@VLT/ESO, at a resolution Δλ ˜ 2.5 Å. We used the ETOILE code to derive radial velocities, Teff, log g, [Fe/H], and [Mg/Fe] for each star by identifying the best fitted spectrum among a grid of stellar spectra. The stellar library can be a collection of observed or synthetic spectra. The main contributions of this work are to provide a homogeneous scale of [Fe/H], [Mg/Fe], and radial velocities for 51 clusters (in particular for the 29 distant and/or highly reddened ones), to provide a catalogue of confirmed member stars for each cluster, and to identify interesting clusters for follow-up with high resolution data (e.g., the massive clusters M 22 and NGC 5824, for which a spread in [Fe/H] was found).

  7. Globular cluster X-ray sources

    NASA Astrophysics Data System (ADS)

    Pooley, D.

    We know from observations that globular clusters are very efficient catalysts in forming unusual binary systems, such as low-mass X-ray binaries (LMXBs), cataclysmic variables (CVs), and millisecond pulsars (MSPs), with formation rates per unit mass exceeding those in the Galactic disk by orders of magnitude. The high stellar densities in globular clusters trigger various dynamical interactions: exchange encounters, direct collisions, destruction of binaries, and tidal capture. This binary population is, in turn, critical to the stabilization of globular clusters against gravitational collapse; the long-term stability of a cluster is thought to depend on tapping into the gravitational binding energy of such close binaries. I will present an overview of the current state of globular cluster X-ray observations, as well as our work on deep Chandra observations of M4, where we reach some of the lowest X-ray luminosities in any globular cluster (comparable to the deep observations of 47 Tuc and NGC 6397). One of M4 X-ray sources previously classified as a white dwarf binary is likely a neutron star binary, and another X-ray source is a sub-subgiant, the nature of which is still unclear. skip=3pt

  8. UV-bright stars in globular clusters

    NASA Technical Reports Server (NTRS)

    Landsman, Wayne B.

    1994-01-01

    This paper highlights globular cluster studies with Ultraviolet Imaging Telescope (UIT) in three areas: the discrepancy between observed ultraviolet HB magnitudes and predictions of theoretical HB models; the discovery of two hot subdwarfs in NGC 1851, a globular not previously known to contain such stars; and spectroscopic follow up of newly identified UV-bright stars in M79 and w Cen. I also present results of a recent observation of NGC 6397 with the Voyager ultraviolet spectrometer.

  9. Millisecond radio pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    Verbunt, Frank; Lewin, Walter H. G.; van Paradijs, Jan

    1989-04-01

    It is shown that the number of millisecond radio pulsars, in globular clusters, should be larger than 100, applying the standard scenario that all the pulsars descend from low-mass X-ray binaries. Moreover, most of the pulsars are located in a small number of clusters. The prediction that Teran 5 and Liller 1 contain at least about a dozen millisecond radio pulsars each is made. The observations of millisecond radio pulsars in globular clusters to date, in particular the discovery of two millisecond radio pulsars in 47 Tuc, are in agreement with the standard scenario, in which the neutron star is spun up during the mass transfer phase.

  10. Millisecond radio pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    Verbunt, Frank; Lewin, Walter H. G.; van Paradijs, Jan

    1989-11-01

    It is shown that the number of millisecond radio pulsars, in globular clusters, should be larger than 100, applying the standard scenario that all the pulsars descend from low-mass X-ray binaries. Moreover, most of the pulsars are located in a small number of clusters. The prediction that Teran 5 and Liller 1 contain at least about a dozen millisecond radio pulsars each is made. The observations of millisecond radio pulsars in globular clusters to date, in particular the discovery of two millisecond radio pulsars in 47 Tuc, are in agreement with the standard scenario, in which the neutron star is spun up during the mass transfer phase.

  11. Millisecond radio pulsars in globular clusters

    NASA Technical Reports Server (NTRS)

    Verbunt, Frank; Lewin, Walter H. G.; Vanparadijs, Jan

    1989-01-01

    It is shown that the number of millisecond radio pulsars, in globular clusters, should be larger than 100, applying the standard scenario that all the pulsars descend from low-mass X-ray binaries. Moreover, most of the pulsars are located in a small number of clusters. The prediction that Teran 5 and Liller 1 contain at least about a dozen millisecond radio pulsars each is made. The observations of millisecond radio pulsars in globular clusters to date, in particular the discovery of two millisecond radio pulsars in 47 Tuc, are in agreement with the standard scenario, in which the neutron star is spun up during the mass transfer phase.

  12. Globular clusters in the far-ultraviolet: evidence for He-enriched second populations in extragalactic globular clusters?

    NASA Astrophysics Data System (ADS)

    Peacock, Mark B.; Zepf, Stephen E.; Kundu, Arunav; Chael, Julia

    2017-01-01

    We investigate the integrated far-ultraviolet (FUV) emission from globular clusters. We present new FUV photometry of M87's clusters based on archival Hubble Space Telescope (HST) Wide Field Planetary Camera 2 F170W observations. We use these data to test the reliability of published photometry based on HST space telescope imaging spectrograph FUV-MAMA observations, which are now known to suffer from significant red-leak. We generally confirm these previous FUV detections, but suggest they may be somewhat fainter. We compare the FUV emission from bright (MV < -9.0) clusters in the Milky Way, M31, M81 and M87 to each other and to the predictions from stellar populations models. Metal-rich globular clusters show a large spread in FUV - V, with some clusters in M31, M81 and M87 being much bluer than standard predictions. This requires that some metal-rich clusters host a significant population of blue/extreme horizontal branch (HB) stars. These hot HB stars are not traditionally expected in metal-rich environments, but are a natural consequence of multiple populations in clusters - since the enriched population is observed to be He enhanced and will therefore produce bluer HB stars, even at high metallicity. We conclude that the observed FUV emission from metal-rich clusters in M31, M81 and M87 provides evidence that He-enhanced second populations, similar to those observed directly in the Milky Way, may be a ubiquitous feature of globular clusters in the local Universe. Future HST FUV photometry is required to both confirm our interpretation of these archival data and provide constraints on He-enriched second populations of stars in extragalactic globular clusters.

  13. THE X-RAY LUMINOSITY FUNCTION OF LOW MASS X-RAY BINARIES IN EARLY-TYPE GALAXIES, THEIR METAL-RICH, AND METAL-POOR GLOBULAR CLUSTERS

    SciTech Connect

    Peacock, Mark B.; Zepf, Stephen E.

    2016-02-10

    We present the X-ray luminosity function (XLF) of low-mass X-ray binaries (LMXBs) in the globular clusters (GCs) and fields of seven early-type galaxies. These galaxies are selected to have both deep Chandra observations, which allow their LMXB populations to be observed to X-ray luminosities of 10{sup 37}–10{sup 38} erg s{sup −1}, and Hubble Space Telescope optical mosaics that enable the X-ray sources to be separated into field LMXBs, GC LMXBs, and contaminating background and foreground sources. We find that at all luminosities the number of field LMXBs per stellar mass is similar in these galaxies. This suggests that the field LMXB populations in these galaxies are not effected by the GC specific frequency, and that properties such as binary fraction and the stellar initial mass function are either similar across the sample or change in a way that does not affect the number of LMXBs. We compare the XLF of the field LMXBs to that of the GC LMXBs and find that they are significantly different with a p-value of 3 × 10{sup −6} (equivalent to 4.7σ for a normal distribution). The difference is such that the XLF of the GC LMXBs is flatter than that of the field LMXBs, with the GCs hosting relatively more bright sources and fewer faint sources. A comparison of the XLF of the metal-rich and metal-poor GCs hints that the metal-poor clusters may have more bright LMXBs, but the difference is not statistically significant.

  14. Spectroscopy of globular clusters in the outer halo of M81

    NASA Astrophysics Data System (ADS)

    Suwannajak, Chutipong; Sarajedini, Ata

    2017-01-01

    We present integrated spectroscopy of two globular clusters and two globular cluster candidates in the central region of the dynamically active M81 group of galaxies. These spectra were obtained from the OSIRIS instrument at the 10.4m Gran Telescopio Canarias (GTC). The target clusters are located in the halo between M81, M82, and NGC3077, which contains a significant amount of young stars and HI gas as a result of interactions between these galaxies. The spectra of the target clusters show spectral features of globular clusters, confirming their globular cluster nature. One of the two clusters is located 400 kpc away from M81, making it the most isolated globular cluster in the local universe. However, the origin of these clusters is still largely a mystery. We use their spectra to study their kinematics, ages, and metallicities to better understand the impact of galaxy interactions on the process of galaxy formation and evolution.

  15. Large scale structure of the globular cluster population in Coma

    NASA Astrophysics Data System (ADS)

    Gagliano, Alexander T.; O'Neill, Conor; Madrid, Juan P.

    2016-01-01

    A search for globular cluster candidates in the Coma Cluster was carried out using Hubble Space Telescope data taken with the Advanced Camera for Surveys. We combine different observing programs including the Coma Treasury Survey in order to obtain the large scale distribution of globular clusters in Coma. Globular cluster candidates were selected through careful morphological inspection and a detailed analysis of their magnitude and colors in the two available wavebands, F475W (Sloan g) and F814W (I). Color Magnitude Diagrams, radial density plots and density maps were then created to characterize the globular cluster population in Coma. Preliminary results show the structure of the intergalactic globular cluster system throughout Coma, among the largest globular clusters catalogues to date. The spatial distribution of globular clusters shows clear overdensities, or bridges, between Coma galaxies. It also becomes evident that galaxies of similar luminosity have vastly different numbers of associated globular clusters.

  16. Pixel lensing observations towards globular clusters

    NASA Astrophysics Data System (ADS)

    Cardone, V. F.; Cantiello, M.

    2003-07-01

    It has been suggested that a monitoring program employing the pixel lensing method to search for microlensing events towards galactic globular clusters may increase the statistics and discriminate among different halo models. Stimulated by this proposal, we evaluate an upper limit to the pixel lensing event rate for such a survey. Four different dark halo models have been considered changing both the flattening and the slope of the mass density profile. The lens mass function has been modelled as a homogenous power - law for mu in (mul, muu) and both the mass limits and the slope of the mass function have been varied to investigate their effect on the rate. The target globular clusters have been selected in order to minimize the disk contribution to the event rate. We find that a pixel lensing survey towards globular clusters is unable to discriminate among different halo models since the number of detectable events is too small to allow any reliable statistical analysis.

  17. Globular Cluster Messier 2 in Aquarius

    NASA Technical Reports Server (NTRS)

    2003-01-01

    This image of the Globular cluster Messier 2 (M2) was taken by Galaxy Evolution Explorer on August 20, 2003. This image is a small section of a single All Sky Imaging Survey exposure of only 129 seconds in the constellation Aquarius. This picture is a combination of Galaxy Evolution Explorer images taken with the far ultraviolet (colored blue) and near ultraviolet detectors (colored red). Globular clusters are gravitationally bound systems of hundreds of thousands of stars that orbit in the halos of galaxies. The globular clusters in out Milky Way galaxy contain some of the oldest stars known. M2 lies 33,000 light years from our Sun with stars distributed in a spherical system with a radius of approximately 100 light years.

  18. The self-enrichment of globular clusters

    NASA Astrophysics Data System (ADS)

    Morgan, Siobahn; Lake, George

    1989-04-01

    It is shown that protoglobular clusters of primordial gas can confine the supernovae needed to enrich themselves. The required protocluster cloud masses and structural parameters are the same as those currently observed for the clusters. Two causal scenarios for star formation are examined to calculate the initial enrichment of primordial clouds. In the 'Christmas tree' scheme, the maximum final (Fe/H) is about 0.1. Since the time scale for formation and evolution of massive stars at the center of a cluster is nearly an order of magnitude less than the collapse time of the cluster, every globular cluster may have to survive a suprernova detonation. If this is the case, the minimum mass of a globular cluster is about 10 to the 4.6th solar mass.

  19. The fundamental plane correlations for globular clusters

    NASA Technical Reports Server (NTRS)

    Djorgovski, S.

    1995-01-01

    In the parameter space whose axes include a radius (core, or half-light), a surface brightness (central, or average within the half-light radius), and the central projected velocity dispersion, globular clusters lie on a two-dimensional surface (a plane, if the logarithmic quantities are used). This is analogous to the 'fundamental plane' of elliptical galaxies. The implied bivariate correlations are the best now known for globular clusters. The derived scaling laws for the core properties imply that cluster cores are fully virialized, homologous systems, with a constant (M/L) ratio. The corresponding scaling laws on the half-light scale are differrent, but are nearly identical to those derived from the 'fundamental plane' of ellipticals. This may be due to the range of cluster concentrations, which are correlated with other parameters. A similar explanation for elliptical galaxies may be viable. These correlations provide new empirical constraints for models of globular cluster formation and evolution, and may also be usable as rough distance-indicator relations for globular clusters.

  20. A black hole in a globular cluster.

    PubMed

    Maccarone, Thomas J; Kundu, Arunav; Zepf, Stephen E; Rhode, Katherine L

    2007-01-11

    Globular star clusters contain thousands to millions of old stars packed within a region only tens of light years across. Their high stellar densities make it very probable that their member stars will interact or collide. There has accordingly been considerable debate about whether black holes should exist in these star clusters. Some theoretical work suggests that dynamical processes in the densest inner regions of globular clusters may lead to the formation of black holes of approximately 1,000 solar masses. Other numerical simulations instead predict that stellar interactions will eject most or all of the black holes that form in globular clusters. Here we report the X-ray signature of an accreting black hole in a globular cluster associated with the giant elliptical galaxy NGC 4472 (in the Virgo cluster). This object has an X-ray luminosity of about 4 x 10(39) erg s(-1), which rules out any object other than a black hole in such an old stellar population. The X-ray luminosity varies by a factor of seven in a few hours, which excludes the possibility that the object is several neutron stars superposed.

  1. YOUNG RADIO PULSARS IN GALACTIC GLOBULAR CLUSTERS

    SciTech Connect

    Boyles, J.; Lorimer, D. R.; Turk, P. J.; Mnatsakanov, R.; Lynch, R. S.; Ransom, S. M.; Freire, P. C.; Belczynski, K.

    2011-11-20

    Currently three isolated radio pulsars and one binary radio pulsar with no evidence of any previous recycling are known in 97 surveyed Galactic globular clusters (GCs). As pointed out by Lyne et al., the presence of these pulsars cannot be explained by core-collapse supernovae, as commonly assumed for their counterparts in the Galactic disk. We apply a Bayesian analysis to the results from surveys for radio pulsars in GCs and find the number of potentially observable non-recycled radio pulsars present in all clusters to be <3600. Accounting for beaming and retention considerations, the implied birthrate for any formation scenario for all 97 clusters is <0.25 pulsars century{sup -1} assuming a Maxwellian distribution of velocities with a dispersion of 10 km s{sup -1}. The implied birthrates for higher velocity dispersions are substantially higher than inferred for such pulsars in the Galactic disk. This suggests that the velocity dispersion of young pulsars in GCs is significantly lower than those of disk pulsars. These numbers may be substantial overestimates due to the fact that the currently known sample of young pulsars is observed only in metal-rich clusters. We propose that young pulsars may only be formed in GCs with metallicities with log[Fe/H] > - 0.6. In this case, the potentially observable population of such young pulsars is 447{sup +1420}{sub -399} (the error bars give a 95% confidence interval) and their birthrate is 0.012{sup +0.037}{sub -0.010} pulsars century{sup -1}. The most likely creation scenario to explain these pulsars is the electron capture supernova of an OMgNe white dwarf.

  2. The ultraviolet spectra of M31 globular clusters

    NASA Technical Reports Server (NTRS)

    Cowley, A. P.; Burstein, D.

    1988-01-01

    Ultraviolet spectra of 11 of the brightest globular clusters in M31 show that some exhibit residual flux below 3000 A, greater than that expected from the bright, evolved stars in the cluster. There seems to be no apparent correlation of the strength of this ultraviolet flux with parameters such as metallicity, U-B color, visual magnitude, X-ray emission, or location within the parent galaxy. However, comparison of the ultraviolet colors of the M31 globular clusters with those in the Galaxy and in the Large Magellanic Cloud suggests that the M31 clusters may contain a high percentage of blue horizontal-branch stars or that some clusters could be as young as about 2 x 10 to the 9th yr.

  3. Most Massive Globular Cluster in Our Galaxy

    NASA Astrophysics Data System (ADS)

    1994-05-01

    measurements were made of 483 giant and sub-giant stars in Omega Centauri, located between 10 arcsec and 1350 arcsec from its centre. The mean velocities could be determined for 469 of them and the astronomers were then able to estimate the spread of stellar velocities at various locations in the cluster. The technical term for this quantity is "velocity dispersion". It increases with the strength of the gravitational field in which the stars move, and is therefore an indicator of the total mass of the entire cluster. The new observations show that the velocity dispersion is about 22 km/sec at the centre of Omega Centauri. The dispersion decreases outwards, but the central value is the largest ever measured in any globular cluster. When taken together with accurate measurements of the distribution of the stars in the cluster, this leads to an estimate of the total mass of Omega Centauri at about 5 million solar masses (1 solar mass = 2 10^30 kg). This is to be compared with the masses of other globular clusters in our Galaxy which in most cases have been found to be of the order of 100,000 solar masses only. In fact, because of its great size and mass, Omega Centauri now appears to be an object that is intermediate between the ordinary globular clusters in the Milky Way and the much larger dwarf spheroidal galaxies which move around our galaxy. This great mass obviously contributes to its long-term stability. 1 This Press Release is accompanied by a photograph, ESO PR Photo 11/94-1. 2 The group consists of Georges Meylan (ESO), Michel Mayor and Antoine Duquennoy (Geneva Observatory, Switzerland) and Pierre Dubath (formerly ESO, now Lick Observatory, Santa Cruz, California). They are reporting their new results today at the semi-annual meeting of the American Astronomical Society (AAS) in Minneapolis, Minnesota, U.S.A. 3 The light from the star in Omega Centauri is dispersed into a spectrum. It then passes through a metal mask with holes that correspond to about 1500 absorption

  4. Globular cluster x-ray sources.

    PubMed

    Pooley, David

    2010-04-20

    Globular clusters and x-ray astronomy have a long and fruitful history. Uhuru and OSO-7 revealed highly luminous (> 10(36) ergs(-1)) x-ray sources in globular clusters, and Einstein and ROSAT revealed a larger population of low-luminosity (< 10(33) ergs(-1)) x-ray sources. It was realized early on that the high-luminosity sources were low-mass x-ray binaries in outburst and that they were orders of magnitude more abundant per unit mass in globular clusters than in the rest of the galaxy. However, the low-luminosity sources proved difficult to classify. Many ideas were put forth--low-mass x-ray binaries in quiescence (qLMXBs), cataclysmic variables (CVs), active main-sequence binaries (ABs), and millisecond pulsars (MSPs)--but secure identifications were scarce. In ROSAT observations of 55 clusters, about 25 low-luminosity sources were found. Chandra has now observed over 80 Galactic globular clusters, and these observations have revealed over 1,500 x-ray sources. The superb angular resolution has allowed for many counterpart identifications, providing clues to the nature of this population. It is a heterogeneous mix of qLMXBs, CVs, ABs, and MSPs, and it has been shown that the qLMXBs and CVs are both, in part, overabundant like the luminous LMXBs. The number of x-ray sources in a cluster correlates very well with its encounter frequency. This points to dynamical formation scenarios for the x-ray sources and shows them to be excellent tracers of the complicated internal dynamics. The relation between the encounter frequency and the number of x-ray sources has been used to suggest that we have misunderstood the dynamical states of globular clusters.

  5. STELLAR ENCOUNTER RATE IN GALACTIC GLOBULAR CLUSTERS

    SciTech Connect

    Bahramian, Arash; Heinke, Craig O.; Sivakoff, Gregory R.; Gladstone, Jeanette C.

    2013-04-01

    The high stellar densities in the cores of globular clusters cause significant stellar interactions. These stellar interactions can produce close binary mass-transferring systems involving compact objects and their progeny, such as X-ray binaries and radio millisecond pulsars. Comparing the numbers of these systems and interaction rates in different clusters drives our understanding of how cluster parameters affect the production of close binaries. In this paper we estimate stellar encounter rates ({Gamma}) for 124 Galactic globular clusters based on observational data as opposed to the methods previously employed, which assumed 'King-model' profiles for all clusters. By deprojecting cluster surface brightness profiles to estimate luminosity density profiles, we treat 'King-model' and 'core-collapsed' clusters in the same way. In addition, we use Monte Carlo simulations to investigate the effects of uncertainties in various observational parameters (distance, reddening, surface brightness) on {Gamma}, producing the first catalog of globular cluster stellar encounter rates with estimated errors. Comparing our results with published observations of likely products of stellar interactions (numbers of X-ray binaries, numbers of radio millisecond pulsars, and {gamma}-ray luminosity) we find both clear correlations and some differences with published results.

  6. Tidal Stripping of Globular Clusters in a Simulated Galaxy Cluster

    NASA Astrophysics Data System (ADS)

    Ramos, F.; Coenda, V.; Muriel, H.; Abadi, M.

    2015-06-01

    Using a cosmological N-body numerical simulation of the formation of a galaxy-cluster-sized halo, we analyze the temporal evolution of its globular cluster population. We follow the dynamical evolution of 38 galactic dark matter halos orbiting in a galaxy cluster that at redshift z = 0 has a virial mass of 1.71 × 1014 M⊙ h-1. In order to mimic both “blue” and “red” populations of globular clusters, for each galactic halo we select two different sets of particles at high redshift (z ≈ 1), constrained by the condition that, at redshift z = 0, their average radial density profiles are similar to the observed profiles. As expected, the general galaxy cluster tidal field removes a significant fraction of the globular cluster populations to feed the intracluster population. On average, halos lost approximately 16% and 29% of their initial red and blue globular cluster populations, respectively. Our results suggest that these fractions strongly depend on the orbital trajectory of the galactic halo, specifically on the number of orbits and on the minimum pericentric distance to the galaxy cluster center that the halo has had. At a given time, these fractions also depend on the current clustercentric distance, just as observations show that the specific frequency of globular clusters SN depends on their clustercentric distance.

  7. TIDAL STRIPPING OF GLOBULAR CLUSTERS IN A SIMULATED GALAXY CLUSTER

    SciTech Connect

    Ramos, F.; Coenda, V.; Muriel, H.; Abadi, M.

    2015-06-20

    Using a cosmological N-body numerical simulation of the formation of a galaxy-cluster-sized halo, we analyze the temporal evolution of its globular cluster population. We follow the dynamical evolution of 38 galactic dark matter halos orbiting in a galaxy cluster that at redshift z = 0 has a virial mass of 1.71 × 10{sup 14} M{sub ⊙} h{sup −1}. In order to mimic both “blue” and “red” populations of globular clusters, for each galactic halo we select two different sets of particles at high redshift (z ≈ 1), constrained by the condition that, at redshift z = 0, their average radial density profiles are similar to the observed profiles. As expected, the general galaxy cluster tidal field removes a significant fraction of the globular cluster populations to feed the intracluster population. On average, halos lost approximately 16% and 29% of their initial red and blue globular cluster populations, respectively. Our results suggest that these fractions strongly depend on the orbital trajectory of the galactic halo, specifically on the number of orbits and on the minimum pericentric distance to the galaxy cluster center that the halo has had. At a given time, these fractions also depend on the current clustercentric distance, just as observations show that the specific frequency of globular clusters S{sub N} depends on their clustercentric distance.

  8. Globular Cluster Systems in Brightest Cluster Galaxies. III: Beyond Bimodality

    NASA Astrophysics Data System (ADS)

    Harris, William E.; Ciccone, Stephanie M.; Eadie, Gwendolyn M.; Gnedin, Oleg Y.; Geisler, Douglas; Rothberg, Barry; Bailin, Jeremy

    2017-01-01

    We present new deep photometry of the rich globular cluster (GC) systems around the Brightest Cluster Galaxies UGC 9799 (Abell 2052) and UGC 10143 (Abell 2147), obtained with the Hubble Space Telescope (HST) ACS and WFC3 cameras. For comparison, we also present new reductions of similar HST/ACS data for the Coma supergiants NGC 4874 and 4889. All four of these galaxies have huge cluster populations (to the radial limits of our data, comprising from 12,000 to 23,000 clusters per galaxy). The metallicity distribution functions (MDFs) of the GCs can still be matched by a bimodal-Gaussian form where the metal-rich and metal-poor modes are separated by ≃ 0.8 dex, but the internal dispersions of each mode are so large that the total MDF becomes very broad and nearly continuous from [Fe/H] ≃ ‑2.4 to solar. There are, however, significant differences between galaxies in the relative numbers of metal-rich clusters, suggesting that they underwent significantly different histories of mergers with massive gas-rich halos. Last, the proportion of metal-poor GCs rises especially rapidly outside projected radii R≳ 4 {R}{eff}, suggesting the importance of accreted dwarf satellites in the outer halo. Comprehensive models for the formation of GCs as part of the hierarchical formation of their parent galaxies will be needed to trace the systematic change in structure of the MDF with galaxy mass, from the distinctly bimodal form in smaller galaxies up to the broad continuum that we see in the very largest systems.

  9. Spectroscopy of candidate young globular clusters in NGC 1275

    NASA Technical Reports Server (NTRS)

    Zepf, Stephen E.; Carter, Dave; Sharples, Ray M.; Ashman, Keith

    1995-01-01

    We present spectra of the brightest member of the population of compact blue objects discovered in the peculiar galaxy NGC 1275 by Holtzman et al. (1992) using Hubble Space Telescope images. These spectra show strong Balmer absorption lines like those observed in A-type stars, as expected if the object is a young globular cluster. The age estimated from the strength of the Balmer lines is about 0.5 Gyr, although ages ranging from 0.1 Gyr to 0.9 Gyr cannot be confidently excluded given current models of stellar populations. If these estimated ages are adopted for the young cluster population of NGC 1275 as a whole, the fading predicted by stellar populations models gives a luminosity function which is consistent with that of the Galactic globular cluster system convolved with the observational selection function for the NGC 1275 system. We also use the equivalent widths of the Mg b and Fe 5270 features to constrain the metallicity of the young cluster. Combining these absorption-line widths with the age estimates from the Balmer lines and stellar population models, we find a metallicity of roughly solar, based on the Mg b index, and somewhat higher for the Fe 5270 index. The radial velocity of the absorption lines of the cluster spectrum is offset from the emission lines of the galaxy spectrum at the same position by - 130 km/s, providing further evidence for the identification of the object as a global cluster and opening up the future possibility of studying the kinematics of young cluster systems. The discovery of objects with the characteristics of young globular clusters in NGC 1275, which shows evidence of a recent interaction or merger, supports the hypothesis that galaxy interactions and mergers are favorable sites for the formation of globular clusters.

  10. Spectroscopic study of globular clusters in the halo of M31 with the Xinglong 2.16 m telescope II: dynamics, metallicity and age

    NASA Astrophysics Data System (ADS)

    Fan, Zhou; Huang, Ya-Fang; Li, Jin-Zeng; Zhou, Xu; Ma, Jun; Zhao, Yong-Heng

    2012-07-01

    In Paper I, we performed spectroscopic observations on 11 confirmed globular clusters (GCs) in M31 with the Xinglong 2.16 m telescope. We mainly focused on the fitting method and the metallicity gradient for the M31 GC sample. Here, we analyze and further discuss the dynamics, metallicity and age, and their distributions, as well as the relationships between these parameters. In our work, eight more confirmed GCs in the halo of M31 were observed, most of which lack previous spectroscopic information. These star clusters are located far from the galactic center at a projected radius of ~ 14 to ~ 117 kpc, which is more spatially extended than that in the previous work. Firstly, we measured the Lick absorption-line indices and the radial velocities. Then the ages and metallicity values of [Fe/H] and [α/Fe] were fitted by comparing the observed spectral feature indices and the Single Stellar Population model of Thomas et al. in the Cassisi and Padova stellar evolutionary tracks, respectively. Our results show that most of the star clusters in our sample are older than 10 Gyr except B290, which is ~ 5.5 Gyr, and most of them are metal-poor with metallicity [Fe/H] < -1, suggesting that these clusters were born at the early stage of the galaxy's formation. We find that the metallicity gradient for the outer halo clusters with rp > 25 kpc may have an insignificant slope of -0.005 ± 0.005 dex kpc-1 and if the outliers G001 and H11 are excluded, the slope does not change significantly, with a value of -0.002 ± 0.003 dex kpc-1. We also find that the metallicity is not a function of age for the GCs with age < 7 Gyr, but for the old GCs with age > 7 Gyr, there seems to be a trend that the older ones have lower metallicity. Additionally, we plot metallicity distributions with the largest sample of M31 GCs so far and show the bimodality is not significant, and the number of metal-poor and metal-rich groups becomes comparable. The spatial distributions show that the metal

  11. Primordial black holes in globular clusters

    NASA Technical Reports Server (NTRS)

    Sigurdsson, Steinn; Hernquist, Lars

    1993-01-01

    It has recently been recognized that significant numbers of medium-mass back holes (of order 10 solar masses) should form in globular clusters during the early stages of their evolution. Here we explore the dynamical and observational consequences of the presence of such a primordial black-hole population in a globular cluster. The holes initially segregate to the cluster cores, where they form binary and multiple black-hole systems. The subsequent dynamical evolution of the black-hole population ejects most of the holes on a relatively short timescale: a typical cluster will retain between zero and four black holes in its core, and possibly a few black holes in its halo. The presence of binary, triple, and quadruple black-hole systems in cluster cores will disrupt main-sequence and giant stellar binaries; this may account for the observed anomalies in the distribution of binaries in globular clusters. Furthermore, tidal interactions between a multiple black-hole system and a red giant star can remove much of the red giant's stellar envelope, which may explain the puzzling absence of larger red giants in the cores of some very dense clusters.

  12. Formation of globular clusters with multiple populations

    NASA Astrophysics Data System (ADS)

    Decressin, T.

    2017-03-01

    Spectroscopic and photometric evidences have led to a complete revision of our understanding of globular clusters with the discovery of multiple stellar populations which differ chemically. Whereas some stars have a chemical composition similar to fields stars, others show large star-to-star variations in light elements (Li to Al) while their composition in iron and heavy elements stay constant. This peculiar chemical pattern can be explained by self-pollution of the intracluster gas occurring in the early evolution of clusters. Here the possible impact from a first generation of fast rotating stars to the early evolution of globular clusters is presented. The high rotation velocity will allow the stars to rotate at the break-up velocity and release matter enrich in H-burning which in turn will produce new stars with a chemical composition in agreement with observations. The massive stars have also an important role to clear the cluster from the remaining gas left after the star formation episodes. If the gas expulsion is fast enough, the strong change in the potential well will lead to the loss of stars occupying the outer part of the cluster. As second generation stars are preferentially born in the cluster centre, the ratio of second to first generation stars will increase over time to match the present ratio determined by observations. Considerations on the properties of low-mass stars still present in globular clusters will also be presented.

  13. REGION OF GLOBULAR CLUSTER NGC 6397

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Right A NASA Hubble Space Telescope image of a small region (1.4 light-years across) in the globular star cluster NGC 6397 shows far fewer stars than would be expected in faint red dwarf stars were abundant. HST resolves about 200 stars. The stellar density is so low that HST can literally see right through the cluster and resolve far more distant background galaxies. This observation shows the surprising cutoff point below which nature apparently doesn't make many stars smaller that 1/5 the mass of our Sun. If there were lower mass stars in the cluster, then the image would contain an estimated 500 stars. This observation provides new insights into star formation in our Galaxy. Left A ground-based sky survey photograph of the globular cluster NGC 6397, one of the nearest and densest agglomerations of stars to Earth. The cluster is located 7,200 light-years away in the southern constellation Ara, and is one of 150 such objects which orbit our Milky Way Galaxy. Globular clusters are ideal laboratories for studying the formation and evolution of stars. This visible light picture was taken on March 3, 1994 with the Wide Field Planetary Camera 2, as part of the HST parallel observing program. Credit: F. Paresce, ST ScI and ESA and NASA

  14. The Stellar Populations of Nuclei, Globular Clusters, and Stars in dE Galaxies in Virgo and Fornax

    NASA Astrophysics Data System (ADS)

    Whitfield Miller, Bryan; Hyazinth Puzia, Thomas; Hilker, Michael; Sanchez-Janssen, Ruben; Kissler-Patig, Markus

    2015-08-01

    We present ages and metallicities for globular clusters, nuclei, and underlying stars in nucleated dwarf elliptical galaxies (dE,N) in the Virgo and Fornax Cluster based on Lick/IDS index measurements and SSP models. Gemini/GMOS spectroscopy shows that the globular clusters are mostly old and metal-poor, very similar to the globular clusters in the Milky Way halo. The nuclei and underlying stars tend to be more metal-rich than the globular clusters and have a wide range of ages. The [α/Fe] ratios for both the globular clusters and nuclei range between 0.0 and 0.3. Formation scenarios for globular clusters and nuclei will be discussed.

  15. The integrated calcium II triplet as a metallicity indicator: comparisons with high-resolution [Fe/H] in M31 globular clusters

    NASA Astrophysics Data System (ADS)

    Sakari, Charli M.; Wallerstein, George

    2016-02-01

    Medium resolution (R = 4000-9000) spectra of the near infrared Ca II lines (at 8498, 8542, and 8662 Å) in M31 globular cluster (GC) integrated light spectra are presented. In individual stars the Ca II triplet (CaT) traces stellar metallicity; this paper compares integrated CaT strengths to well determined, high-precision [Fe/H] values from high-resolution integrated light spectra. The target GCs cover a wide range in metallicity (from [Fe/H] ˜ -2.1 to -0.2). While most are older than ˜10 Gyr, some may be of intermediate age (2-6 Gyr). A handful (3-6) have detailed abundances (e.g. low [Ca/Fe]) that indicate they may have been accreted from dwarf galaxies. Using various measurements and definitions of CaT strength, it is confirmed that for GCs with [Fe/H] ≲ -0.4 and older than ˜2 Gyr the integrated CaT traces cluster [Fe/H] to within ˜0.2 dex, independent of age. CaT lines in metal-rich GCs are very sensitive to nearby atomic lines (and TiO molecular lines in the most metal-rich GCs), largely due to line blanketing in continuum regions. The [Ca/Fe] ratio has a mild effect on the integrated CaT strength in metal poor GCs. The integrated CaT can therefore be safely used to determine rough metallicities for distant, unresolved clusters, provided that attention is paid to the limits of the measurement techniques.

  16. STRUCTURAL PARAMETERS OF THE MESSIER 87 GLOBULAR CLUSTERS

    SciTech Connect

    Madrid, Juan P.; Harris, William E.; Blakeslee, John P.; Gomez, MatIas

    2009-11-01

    We derive structural parameters for approx2000 globular clusters in the giant Virgo elliptical Messier 87 (M87) using extremely deep Hubble Space Telescope images in F606W (V) and F814W (I) taken with the ACS/WFC. The cluster scale sizes (half-light radii r{sub h} ) and ellipticities are determined from point-spread-function -convolved King-model profile fitting. We find that the r{sub h} distribution closely resembles the inner Milky Way clusters, peaking at r{sub h} approx = 2.5 pc and with virtually no clusters more compact than r{sub h} approx = 1 pc. The metal-poor clusters have on average an r{sub h} 24% larger than the metal-rich ones. The cluster scale size shows a gradual and noticeable increase with galactocentric distance. Clusters are very slightly larger in the bluer waveband V, a possible hint that we may be beginning to see the effects of mass segregation within the clusters. We also derived a color magnitude diagram for the M87 globular cluster system which shows a striking bimodal distribution.

  17. Population Models for Massive Globular Clusters

    NASA Astrophysics Data System (ADS)

    Lee, Young-Wook; Joo, Seok-Joo; Han, Sang-Il; Na, Chongsam; Lim, Dongwook; Roh, Dong-Goo

    2015-03-01

    Increasing number of massive globular clusters (GCs) in the Milky Way are now turned out to host multiple stellar populations having different heavy element abundances enriched by supernovae. Recent observations have further shown that [CNO/Fe] is also enhanced in metal-rich subpopulations in most of these GCs, including ω Cen and M22 (Marino et al. 2011, 2012). In order to reflect this in our population modeling, we have expanded the parameter space of Y 2 isochrones and horizontal-branch (HB) evolutionary tracks to include the cases of normal and enhanced nitrogen abundances ([N/Fe] = 0.0, 0.8, and 1.6). The observed variations in the total CNO content were reproduced by interpolating these nitrogen enhanced stellar models. Our test simulations with varying N and O abundances show that, once the total CNO sum ([CNO/Fe]) is held constant, both N and O have almost identical effects on the HR diagram (see Fig. 1).

  18. The ACS Survey of Galactic Globular Clusters. VIII. Effects of Environment on Globular Cluster Global Mass Functions

    NASA Astrophysics Data System (ADS)

    Paust, Nathaniel E. Q.; Reid, I. Neill; Piotto, Giampaolo; Aparicio, Antonio; Anderson, Jay; Sarajedini, Ata; Bedin, Luigi R.; Chaboyer, Brian; Dotter, Aaron; Hempel, Maren; Majewski, Steven; Marín-Franch, A.; Milone, Antonino; Rosenberg, Alfred; Siegel, Michael

    2010-02-01

    We have used observations obtained as part of the Hubble Space Telescope/ACS Survey of Galactic Globular Clusters to construct global present-day mass functions for 17 globular clusters utilizing multi-mass King models to extrapolate from our observations to the global cluster behavior. The global present-day mass functions for these clusters are well matched by power laws from the turnoff, ≈0.8 M sun, to 0.2-0.3 M sun on the lower main sequence. The slopes of those power-law fits, α, have been correlated with an extensive set of intrinsic and extrinsic cluster properties to investigate which parameters may influence the form of the present-day mass function. We do not confirm previous suggestions of correlations between α and either metallicity or Galactic location. However, we do find a strong statistical correlation with the related parameters central surface brightness, μ V , and inferred central density, ρ0. The correlation is such that clusters with denser cores (stronger binding energy) tend to have steeper mass functions (a higher proportion of low-mass stars), suggesting that dynamical evolution due to external interactions may have played a key role in determining α. Thus, the present-day mass function may owe more to nurture than to nature. Detailed modeling of external dynamical effects is therefore a requisite for determining the initial mass function for Galactic globular clusters.

  19. THE ACS SURVEY OF GALACTIC GLOBULAR CLUSTERS. VIII. EFFECTS OF ENVIRONMENT ON GLOBULAR CLUSTER GLOBAL MASS FUNCTIONS

    SciTech Connect

    Paust, Nathaniel E. Q.; Reid, I. Neill; Anderson, Jay E-mail: inr@stsci.edu

    2010-02-15

    We have used observations obtained as part of the Hubble Space Telescope/ACS Survey of Galactic Globular Clusters to construct global present-day mass functions for 17 globular clusters utilizing multi-mass King models to extrapolate from our observations to the global cluster behavior. The global present-day mass functions for these clusters are well matched by power laws from the turnoff, {approx}0.8 M {sub sun}, to 0.2-0.3 M {sub sun} on the lower main sequence. The slopes of those power-law fits, {alpha}, have been correlated with an extensive set of intrinsic and extrinsic cluster properties to investigate which parameters may influence the form of the present-day mass function. We do not confirm previous suggestions of correlations between {alpha} and either metallicity or Galactic location. However, we do find a strong statistical correlation with the related parameters central surface brightness, {mu} {sub V}, and inferred central density, {rho}{sub 0}. The correlation is such that clusters with denser cores (stronger binding energy) tend to have steeper mass functions (a higher proportion of low-mass stars), suggesting that dynamical evolution due to external interactions may have played a key role in determining {alpha}. Thus, the present-day mass function may owe more to nurture than to nature. Detailed modeling of external dynamical effects is therefore a requisite for determining the initial mass function for Galactic globular clusters.

  20. A spectroscopic study of the globular Cluster NGC 4147

    NASA Astrophysics Data System (ADS)

    Villanova, S.; Monaco, L.; Moni Bidin, C.; Assmann, P.

    2016-08-01

    We present the abundance analysis for a sample of 18 red giant branch stars in the metal-poor globular cluster NGC 4147 based on medium- and high-resolution spectra. This is the first extensive spectroscopic study of this cluster. We derive abundances of C, N, O, Na, Mg, Al, Si, Ca, Ti, Cr, Fe, Ni, Y, Ba, and Eu. We find a metallicity of [Fe/H] = -1.84 ± 0.02 and an α-enhancement of +0.38 ± 0.05 (errors on the mean), typical of halo globular clusters in this metallicity regime. A significant spread is observed in the abundances of light elements C, N, O, Na, and Al. In particular, we found an Na-O anticorrelation and Na-Al correlation. The cluster contains only ˜15 per cent of stars that belong to the first generation (Na-poor and O-rich). This implies that it suffered a severe mass-loss during its lifetime. Its [Ca/Fe] and [Ti/Fe] mean values agree better with the Galactic halo trend than with the trend of extragalactic environments at the cluster metallicity. This possibly suggests that NGC 4147 is a genuine Galactic object at odd with what claimed by some author that proposed the cluster to be member of the Sagittarius dwarf galaxy. An antirelation between the light s-process element Y and Na may also be present.

  1. THE EFFECT OF SECOND-GENERATION POPULATIONS ON THE INTEGRATED COLORS OF METAL-RICH GLOBULAR CLUSTERS IN EARLY-TYPE GALAXIES

    SciTech Connect

    Chung, Chul; Lee, Sang-Yoon; Yoon, Suk-Jin; Lee, Young-Wook

    2013-05-20

    The mean color of globular clusters (GCs) in early-type galaxies is in general bluer than the integrated color of halo field stars in host galaxies. Metal-rich GCs often appear more associated with field stars than metal-poor GCs, yet show bluer colors than their host galaxy light. Motivated by the discovery of multiple stellar populations in Milky Way GCs, we present a new scenario in which the presence of second-generation (SG) stars in GCs is responsible for the color discrepancy between metal-rich GCs and field stars. The model assumes that the SG populations have an enhanced helium abundance as evidenced by observations, and it gives a good explanation of the bluer optical colors of metal-rich GCs than field stars as well as strong Balmer lines and blue UV colors of metal-rich GCs. Ours may be complementary to the recent scenario suggesting the difference in stellar mass functions (MFs) as an origin for the GC-to-star color offset. A quantitative comparison is given between the SG and MF models.

  2. HUBBLE SPIES GLOBULAR CLUSTER IN NEIGHBORING GALAXY

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Hubble Space Telescope has captured a view of a globular cluster called G1, a large, bright ball of light in the center of the photograph consisting of at least 300,000 old stars. G1, also known as Mayall II, orbits the Andromeda galaxy (M31), the nearest major spiral galaxy to our Milky Way. Located 130,000 light-years from Andromeda's nucleus, G1 is the brightest globular cluster in the Local Group of galaxies. The Local Group consists of about 20 nearby galaxies, including the Milky Way. The crisp image is comparable to ground-based telescope views of similar clusters orbiting the Milky Way. The Andromeda cluster, however, is nearly 100 times farther away. A glimpse into the cluster's finer details allow astronomers to see its fainter helium-burning stars whose temperatures and brightnesses show that this cluster in Andromeda and the oldest Milky Way clusters have approximately the same age. These clusters probably were formed shortly after the beginning of the universe, providing astronomers with a record of the earliest era of galaxy formation. During the next two years, astronomers will use Hubble to study about 20 more globular clusters in Andromeda. The color picture was assembled from separate images taken in visible and near-infrared wavelengths taken in July of 1994. CREDIT: Michael Rich, Kenneth Mighell, and James D. Neill (Columbia University), and Wendy Freedman (Carnegie Observatories), and NASA Image files in GIF and JPEG format and captions may be accessed on Internet via anonymous ftp from oposite.stsci.edu in /pubinfo.

  3. Young globular clusters in the Milky Way Galaxy

    NASA Technical Reports Server (NTRS)

    Lin, D. N. C.; Richer, Harvey B.

    1992-01-01

    Ruprecht 106 and Pal 12 are two known globular clusters in the Milky Way that are unequivocally younger than other clusters of similar metallicity. The Galactic coordinates of Ruprecht 106 place it near to the Magellanic Stream in projection, suggesting a tidal capture from the Magellanic Clouds. It is demonstrated that a family of orbits for both clusters can be constructed that are consistent with this capture hypothesis and that these then lead to a prediction of 3 milliarcseconds per year for the proper motions of both Ruprecht 106 and Pal 12.

  4. Pulsating White Dwarfs in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Kanaan, A.; Zabot, A.; Fraga, L.

    2012-09-01

    We present our current efforts to detect pulsating white dwarfs in globular clusters and analyze the future of this area when the Extremely Large Telescope (ELT), the Giant Magellan Telescope (GMT) and the Thirty-Meter Telescope (TMT) all become operational. Today we are able to detect pulsating white dwarfs in M 4, NGC 6397 and NGC 6752. When ELT comes on line we should be able to improve the quality of data for the nearby clusters and push the limit to at least 3 magnitudes further, up to NGC 6626, increasing the number of observable clusters from 3 to 20.

  5. The Globular cluster system of M31.

    NASA Astrophysics Data System (ADS)

    Galleti, S.; Buzzoni, A.; Federici, L.; Fusi Pecci, F.

    I present here some results of the extensive revision work of M31 confirmed and candidate globular clusters. The Revised Bologna Catalog, RBC, www.bo.astro.it/M31 is currently the largest and most complete database available online. Two spectroscopic surveys are in progress to confirm RBC cluster candidates as well as newly identified candidates at large distances from the center of M31. I have also studied a subsample of bright and young (age < 2 Gyr) clusters in M31 that doesn't appear to have any counterpart in the Milky Way.

  6. The Dynamics Of Galactic Globular Cluster

    NASA Astrophysics Data System (ADS)

    Ding, Chen

    2008-10-01

    We have used the Hubble Space Telescope (HST) to measure proper motion of the globular cluster NGC 6656 (M22) with respect to the background bulge stars and its internal velocity dispersion profile. With the space velocity of (Π, Θ, W) = (184±3, 209±14, 132±15) km s-1, we also calculate the orbit of the cluster. The central velocity dispersion in both components of the proper motion of cluster stars is 16.99 km s-1. We derive the mass-to-ration (M/L)˜1.7 which is relatively higher than the past works.

  7. Globular cluster formation - The fossil record

    NASA Technical Reports Server (NTRS)

    Murray, Stephen D.; Lin, Douglas N. C.

    1992-01-01

    Properties of globular clusters which have remained unchanged since their formation are used to infer the internal pressures, cooling times, and dynamical times of the protocluster clouds immediately prior to the onset of star formation. For all globular clusters examined, it is found that the cooling times are much less than the dynamical times, implying that the protoclusters must have been maintained in thermal equilibrium by external heat sources, with fluxes consistent with those found in previous work, and giving the observed rho-T relation. Self-gravitating clouds cannot be stably heated, so that the Jeans mass forms an upper limit to the cluster masses. The observed dependence of protocluster pressure upon galactocentric position implies that the protocluster clouds were in hydrostatic equilibrium after their formation. The pressure dependence is well fitted by that expected for a quasi-statically evolving background hot gas, shock heated to its virial temperature. The observations and inferences are combined with previous theoretical work to construct a picture of globular cluster formation.

  8. VARIABLES IN GLOBULAR CLUSTER NGC 5024

    SciTech Connect

    Safonova, M.; Stalin, C. S. E-mail: stalin@iiap.res.in

    2011-12-15

    We present the results of a commissioning campaign to observe Galactic globular clusters for the search of microlensing events. The central 10' Multiplication-Sign 10' region of the globular cluster NGC 5024 was monitored using the 2 m Himalayan Chandra Telescope in R-band for a period of about 8 hr on 2010 March 24. Light curves were obtained for nearly 10,000 stars using a modified Differential Image Analysis technique. We identified all known variables within our field of view and revised the periods and status of some previously reported short-period variables. We report about 70 new variable sources and present their equatorial coordinates, periods, light curves, and possible types. Out of these, 15 are SX Phe stars, 10 are W UMa-type stars, and 14 are probable RR Lyrae stars. Nine of the newly discovered SX Phe stars and one eclipsing binary belong to the blue straggler star population.

  9. New Breakthroughs in the Battle of the Bulge Using Globular Clusters

    NASA Astrophysics Data System (ADS)

    Geisler, D.; Mauro, F.; Bidin, C. M.; Cohen, R.; Chené, A.; Villanova, S.; Cummings, J.; Gormaz, A.; Minniti, D.; Alonso-García, J.; Hempel, M.; VVV Team

    2015-05-01

    We present some recent work undertaken mostly at the Universidad de Concepción using bulge globular clusters to better understand this important but poorly studied Galactic component, especially based on data from the VVV Survey. This includes discovering new bulge globulars, investigating dual HBs, and obtaining Ca triplet metallicities and velocities.

  10. THE OPTICAL COLORS OF GIANT ELLIPTICAL GALAXIES AND THEIR METAL-RICH GLOBULAR CLUSTERS INDICATE A BOTTOM-HEAVY INITIAL MASS FUNCTION

    SciTech Connect

    Goudfrooij, Paul; Diederik Kruijssen, J. M. E-mail: kruijssen@mpa-garching.mpg.de

    2013-01-10

    We report a systematic and statistically significant offset between the optical (g - z or B - I) colors of seven massive elliptical galaxies and the mean colors of their associated massive metal-rich globular clusters (GCs) in the sense that the parent galaxies are redder by {approx}0.12-0.20 mag at a given galactocentric distance. However, spectroscopic indices in the blue indicate that the luminosity-weighted ages and metallicities of such galaxies are equal to that of their averaged massive metal-rich GCs at a given galactocentric distance, to within small uncertainties. The observed color differences between the red GC systems and their parent galaxies cannot be explained by the presence of multiple stellar generations in massive metal-rich GCs, as the impact of the latter to the populations' integrated g - z or B - I colors is found to be negligible. However, we show that this paradox can be explained if the stellar initial mass function (IMF) in these massive elliptical galaxies was significantly steeper at subsolar masses than canonical IMFs derived from star counts in the solar neighborhood, with the GC colors having become bluer due to dynamical evolution, causing a significant flattening of the stellar MF of the average surviving GC.

  11. HUBBLE PINPOINTS WHITE DWARFS IN GLOBULAR CLUSTER

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Peering deep inside a cluster of several hundred thousand stars, NASA's Hubble Space Telescope uncovered the oldest burned-out stars in our Milky Way Galaxy. Located in the globular cluster M4, these small, dying stars - called white dwarfs - are giving astronomers a fresh reading on one of the biggest questions in astronomy: How old is the universe? The ancient white dwarfs in M4 are about 12 to 13 billion years old. After accounting for the time it took the cluster to form after the big bang, astronomers found that the age of the white dwarfs agrees with previous estimates for the universe's age. In the top panel, a ground-based observatory snapped a panoramic view of the entire cluster, which contains several hundred thousand stars within a volume of 10 to 30 light-years across. The Kitt Peak National Observatory's 0.9-meter telescope took this picture in March 1995. The box at left indicates the region observed by the Hubble telescope. The Hubble telescope studied a small region of the cluster. A section of that region is seen in the picture at bottom left. A sampling of an even smaller region is shown at bottom right. This region is only about one light-year across. In this smaller region, Hubble pinpointed a number of faint white dwarfs. The blue circles pinpoint the dwarfs. It took nearly eight days of exposure time over a 67-day period to find these extremely faint stars. Globular clusters are among the oldest clusters of stars in the universe. The faintest and coolest white dwarfs within globular clusters can yield a globular cluster's age. Earlier Hubble observations showed that the first stars formed less than 1 billion years after the universe's birth in the big bang. So, finding the oldest stars puts astronomers within arm's reach of the universe's age. M4 is 7,000 light-years away in the constellation Scorpius. Hubble's Wide Field and Planetary Camera 2 made the observations from January through April 2001. These optical observations were combined to

  12. Understanding the Current Dynamical States of Globular Clusters

    NASA Astrophysics Data System (ADS)

    Pooley, David

    2008-09-01

    We appear to be on the verge of a major paradigm shift in our understanding of the current dynamical states of Galactic globular clusters. Fregeau (2008) brought together two recent theoretical breakthroughs as well as an observational breakthrough made possible by Chandra -- that a globular cluster's X-ray source population scales with its dynamical encounter frequency -- to persuasively argue that we have misunderstood the dynamical states of Galactic globular clusters. The observational evidence hinges on Chandra results from clusters which are classified as "core collapsed," of which there are only a handful of observations. I propose a nearly complete census with Chandra of the rest of the "core collapsed" globular clusters.

  13. RR Lyrae in Sagittarius Dwarf Globular Clusters (Poster abstract)

    NASA Astrophysics Data System (ADS)

    Pritzl, B. J.; Gehrman, T. J.; Bell, E.; Salinas, R.; Smith, H. A.; Catelan, M.

    2016-12-01

    (Abstract only) The Milky Way Galaxy was built up in part by the cannibalization of smaller dwarf galaxies. Some of them likely contained globular clusters. The Sagittarius dwarf galaxy provides a unique opportunity to study a system of globular clusters that originated outside the Milky Way. We have investigated the RR Lyrae populations in two Sagittarius globular clusters, Arp 2 and Terzan 8. The RR Lyrae are used to study the properties of the clusters and to compare this system to Milky Way globular clusters. We will discuss whether or not dwarf galaxies similar to the Sagittarius dwarf galaxy could have played a role in the formation of the Milky Way Galaxy.

  14. Dynamics of the globular cluster NGC 362

    NASA Technical Reports Server (NTRS)

    Fischer, Philippe; Welch, Douglas L.; Mateo, Mario; Cote, Patrick

    1993-01-01

    A combination of V-band CCD images and echelle spectra of member red giants is presently used to examine the internal dynamics of the globular cluster NGC 362. A total of 285 stellar spectra were obtained of 215 stars for radial velocity determinations, and the true cluster binary fraction was determined from simulations to be 0.15 for circular orbits and 0.27 for orbits with an f(e) = e (eccentricity) distribution function. An overabundance of binaries is surmised for NGC 362 on this basis.

  15. Helium abundance difference within globular clusters: NGC 2808.

    NASA Astrophysics Data System (ADS)

    Cacciari, C.; Pasquini, L.; Valenti, E.; Käufl, H. U.; Mauas, P.

    Multiple populations have been recently detected in most Galactic globular clusters, even with no significant spread in metallicity. Unusual features of the observed colour-magnitude diagrams can be explained by differences in the He content of the stars belonging to the sub-populations. We report on empirical evidence of He abundance spread in a few globular clusters, with particular attention to NGC 2808, where He abundance variation has been measured in a pair of otherwise identical red giant stars using the HeI 1083 nm line. A quantitative estimate of this difference has been derived by appropriate chromospheric modelling, in very good agreement with stellar evolution requirements. Partly based on observations collected at ESO VLT (Chile), under programme 384.D-0283.

  16. Abundances in Globular Cluster Red Giant Stars

    NASA Astrophysics Data System (ADS)

    Cavallo, R. M.

    1997-12-01

    Observations of globular cluster red giant branch (RGB) stars have shown star-to-star variations in the abundances of C, N, O, Na, Mg, and Al, contrary to predictions of standard stellar evolutionary theory. I have modeled the variations in the abundance profiles around the hydrogen-burning shell (H shell) of metal-poor red giant stars by combining four RGB stellar evolutionary sequences of different metallicities with a detailed nuclear reaction network. This approach has significant advantages over previous research: (1) it allows for the variation in the temperature and density around the H shell; (2) it follows the effects of the changing H-shell structure as the sequence evolves; (3) it accounts for the effect of the metallicity on the abundance profiles; (4) it allows the reaction rates to be varied so that their uncertainties may be explored. The results are in good qualitative agreement with the observations. All the models show a region above the H shell in which first C, then O, is depleted in the CN and ON nuclear burning cycles. Within the C-depleted region, the (12) C/(13) C ratio is reduced to its equilibrium value. Just above the O-depleted region, Na is enhanced from proton captures on (22) Ne. In brighter models, Na becomes greatly enhanced within the O-depleted region as the NeNa cycle converts (20) Ne into (23) Na before attaining equilibrium inside the H shell. The more metal-poor models also show Al being increased around the H shell, first from (25,26) Mg, then from (24) Mg in the MgAl cycle. Despite the diminution (24) Mg suffers in synthesizing Al, the models show its abundance is increased due to the NeNa-cycle breakout reaction, (23) Na(p,γ)(24) Mg. This latter result is at odds with observations that show (24) Mg is depleted in a sample of M 13 and NGC 6752 giants (Shetrone 1996, 1997).

  17. Globular Cluster Systems in Brightest Cluster Galaxies. II. NGC 6166

    NASA Astrophysics Data System (ADS)

    Harris, William E.; Blakeslee, John P.; Whitmore, Bradley C.; Gnedin, Oleg Y.; Geisler, Douglas; Rothberg, Barry

    2016-01-01

    We present new deep photometry of the globular cluster system (GCS) around NGC 6166, the central supergiant galaxy in Abell 2199. Hubble Space Telescope data from the Advanced Camera for Surveys and WFC3 cameras in F475W and F814W are used to determine the spatial distribution of the GCS, its metallicity distribution function (MDF), and the dependence of the MDF on galactocentric radius and on GC luminosity. The MDF is extremely broad, with the classic red and blue subpopulations heavily overlapped, but a double-Gaussian model can still formally match the MDF closely. The spatial distribution follows a Sérsic-like profile detectably to a projected radius of at least Rgc = 250 kpc. To that radius, the total number of clusters in the system is NGC = 39000 ± 2000, the global specific frequency is SN = 11.2 ± 0.6, and 57% of the total are blue, metal-poor clusters. The GCS may fade smoothly into the intracluster medium (ICM) of A2199; we see no clear transition from the core of the galaxy to the cD halo or the ICM. The radial distribution, projected ellipticity, and mean metallicity of the red (metal-richer) clusters match the halo light extremely well for {R}{gc}≳ 15 {{kpc}}, both of them varying as {σ }{MRGC}∼ {σ }{light}∼ {R}-1.8. By comparison, the blue (metal-poor) GC component has a much shallower falloff {σ }{MPGC}∼ {R}-1.0 and a more nearly spherical distribution. This strong difference in their density distributions produces a net metallicity gradient in the GCS as a whole that is primarily generated by the population gradient. With NGC 6166 we appear to be penetrating into a regime of high enough galaxy mass and rich enough environment that the bimodal two-phase description of GC formation is no longer as clear or effective as it has been in smaller galaxies.

  18. Evolution of redback radio pulsars in globular clusters

    NASA Astrophysics Data System (ADS)

    Benvenuto, O. G.; De Vito, M. A.; Horvath, J. E.

    2017-01-01

    Context. We study the evolution of close binary systems composed of a normal, intermediate mass star and a neutron star considering a chemical composition typical of that present in globular clusters (Z = 0.001). Aims: We look for similarities and differences with respect to solar composition donor stars, which we have extensively studied in the past. As a definite example, we perform an application on one of the redbacks located in a globular cluster. Methods: We performed a detailed grid of models in order to find systems that represent the so-called redback binary radio pulsar systems with donor star masses between 0.6 and 2.0 solar masses and orbital periods in the range 0.2-0.9 d. Results: We find that the evolution of these binary systems is rather similar to those corresponding to solar composition objects, allowing us to account for the occurrence of redbacks in globular clusters, as the main physical ingredient is the irradiation feedback. Redback systems are in the quasi-RLOF state, that is, almost filling their corresponding Roche lobe. During the irradiation cycle the system alternates between semi-detached and detached states. While detached the system appears as a binary millisecond pulsar, called a redback. Circumstellar material, as seen in redbacks, is left behind after the previous semi-detached phase. Conclusions: The evolution of binary radio pulsar systems considering irradiation successfully accounts for, and provides a way for, the occurrence of redback pulsars in low-metallicity environments such as globular clusters. This is the case despite possible effects of the low metal content of the donor star that could drive systems away from redback configuration.

  19. A new look at the globular cluster M28

    SciTech Connect

    Rees, R.F.; Cudworth, K.M. )

    1991-07-01

    Reductions of PDS microdensitometer scans of 20 plates from three different telescopes over an epoch range of 92 yr have yielded proper motions and photometry for more than 250 stars down to V about 16 in the region of the poorly studied globular cluster M28 (NGC 6626). Membership probabilities for these stars, including several variables, are derived from the proper motions, and a color-magnitude diagram of probable members is presented and discussed. Strong evidence of systematic errors in previous photographic photometry is found. Some questions about the metal abundance of M28 are addressed; in particular, a dependence upon method of the derived metallicity. All previously known variables included in this study are at least possible members. Evidence is found of variability of a few stars not previously known to vary. The derivation of the cluster's absolute proper motion shows the space velocity to be surprisingly disklike for a moderately metal-poor cluster. 33 refs.

  20. Cosmic strings and the origin of globular clusters

    SciTech Connect

    Barton, Alistair; Brandenberger, Robert H.; Lin, Ling E-mail: rhb@physics.mcgill.ca

    2015-06-01

    We hypothesize that cosmic string loops are the seeds about which globular clusters accrete. Fixing the cosmic string tension by demanding that the peak in the distribution of masses of objects accreting onto string loops agrees with the peak in the observed mass distribution of globular clusters in our Milky Way galaxy, we then compute the expected number density and mass function of globular clusters, and compare with observations. Our hypothesis naturally explains why globular clusters are the oldest and most dense objects in a galaxy, and why they are found in the halo of the galaxy.

  1. No energy equipartition in globular clusters

    NASA Astrophysics Data System (ADS)

    Trenti, Michele; van der Marel, Roeland

    2013-11-01

    It is widely believed that globular clusters evolve over many two-body relaxation times towards a state of energy equipartition, so that velocity dispersion scales with stellar mass as σ ∝ m-η with η = 0.5. We show here that this is incorrect, using a suite of direct N-body simulations with a variety of realistic initial mass functions and initial conditions. No simulated system ever reaches a state close to equipartition. Near the centre, the luminous main-sequence stars reach a maximum ηmax ≈ 0.15 ± 0.03. At large times, all radial bins convergence on an asymptotic value η∞ ≈ 0.08 ± 0.02. The development of this `partial equipartition' is strikingly similar across our simulations, despite the range of different initial conditions employed. Compact remnants tend to have higher η than main-sequence stars (but still η < 0.5), due to their steeper (evolved) mass function. The presence of an intermediate-mass black hole (IMBH) decreases η, consistent with our previous findings of a quenching of mass segregation under these conditions. All these results can be understood as a consequence of the Spitzer instability for two-component systems, extended by Vishniac to a continuous mass spectrum. Mass segregation (the tendency of heavier stars to sink towards the core) has often been studied observationally, but energy equipartition has not. Due to the advent of high-quality proper motion data sets from the Hubble Space Telescope, it is now possible to measure η for real clusters. Detailed data-model comparisons open up a new observational window on globular cluster dynamics and evolution. A first comparison of our simulations to observations of Omega Cen yields good agreement, supporting the view that globular clusters are not generally in energy equipartition. Modelling techniques that assume equipartition by construction (e.g. multi-mass Michie-King models) are approximate at best.

  2. Manganese Abundances in Globular Cluster and Halo Field Stars

    NASA Astrophysics Data System (ADS)

    Sobeck, J. S.; Simmerer, J. A.; Fulbright, J. P.; Sneden, C.; Kraft, R. P.; Ivans, I. I.

    2004-05-01

    We have derived Mn abundances for more than 100 stars in nine Galactic globular clusters: M3, M4, M5, M10, M13, M15, M71, Pal5 and NGC 7006. In addition, Mn abundance determinations have been made for a comparable number of halo field stars possessing an overlapping range of metallicities and stellar parameters. The spectra of the cluster giants were obtained as a part of the Lick-Texas investigations into globular cluster chemistry. The spectra of the field stars are a part of a large study by Simmerer et al. (2004, ApJ, submitted). Data were collected at the McDonald, Lick ,and Keck Observatories and were analyzed using the synthetic spectra of the 6000 Å Mn I triplet. Hyperfine structure parameters were included in the synthetic spectra computations. It is well known that metal-poor field stars possess [Mn/Fe] ratios approximately a factor of two lower than solar values (Wallerstein et al. 1963, Gratton et al.1989, McWilliam et al. 1997). Our analysis shows that for the metallicity range -0.5 > [Fe/H] > -2.8 field stars have a mean relative abundance of <[Mn/Fe]> = -0.28±0.01 (sigma = 0.08), a value esssentially identical to that of the nine globular clusters: <[Mn/Fe]> = -0.28±0.01 (sigma = 0.12). It is evident that [Mn/Fe] ratios of metal-poor stars do not depend upon their environment. Our Mn abundance results viewed in conjunction with the globular cluster Cu abundances of Simmerer et al. (2003) suggest the following possibilities: one, the production of these elements is extremely metallicity-dependent or two, these elements were manufactured in the Galactic halo prior to cluster formation. Ongoing support from NSF, currently through grants AST-0307495 to CS and AST-0098453 to RPK, is gratefully acknowledged. Research for III is currently supported by NASA through Hubble Fellowship grant HST-HF-01151.01-A from the Space Telescope Science Institute.

  3. A possible formation channel for blue hook stars in globular cluster - II. Effects of metallicity, mass ratio, tidal enhancement efficiency and helium abundance

    NASA Astrophysics Data System (ADS)

    Lei, Zhenxin; Zhao, Gang; Zeng, Aihua; Shen, Lihua; Lan, Zhongjian; Jiang, Dengkai; Han, Zhanwen

    2016-12-01

    Employing tidally enhanced stellar wind, we studied in binaries the effects of metallicity, mass ratio of primary to secondary, tidal enhancement efficiency and helium abundance on the formation of blue hook (BHk) stars in globular clusters (GCs). A total of 28 sets of binary models combined with different input parameters are studied. For each set of binary model, we presented a range of initial orbital periods that is needed to produce BHk stars in binaries. All the binary models could produce BHk stars within different range of initial orbital periods. We also compared our results with the observation in the Teff-logg diagram of GC NGC 2808 and ω Cen. Most of the BHk stars in these two GCs locate well in the region predicted by our theoretical models, especially when C/N-enhanced model atmospheres are considered. We found that mass ratio of primary to secondary and tidal enhancement efficiency have little effects on the formation of BHk stars in binaries, while metallicity and helium abundance would play important roles, especially for helium abundance. Specifically, with helium abundance increasing in binary models, the space range of initial orbital periods needed to produce BHk stars becomes obviously wider, regardless of other input parameters adopted. Our results were discussed with recent observations and other theoretical models.

  4. Variable stars in the bulge globular cluster NGC 6401

    NASA Astrophysics Data System (ADS)

    Tsapras, Y.; Arellano Ferro, A.; Bramich, D. M.; Jaimes, R. Figuera; Kains, N.; Street, R.; Hundertmark, M.; Horne, K.; Dominik, M.; Snodgrass, C.

    2017-02-01

    We present a study of variable stars in globular cluster NGC 6401. The cluster is only 5.3° away from the Galactic Centre and suffers from strong differential reddening. The photometric precision afforded us by difference image analysis resulted in improved sensitivity to variability in formerly inaccessible interior regions of the cluster. We find 23 RRab and 11 RRc stars within one cluster radius (2.4 arcmin), for which we provide coordinates, finder-charts and time series photometry. Through Fourier decomposition of the RR Lyrae star light curves we derive a mean metallicity of [Fe/H]UVES = -1.13 ± 0.06 ([Fe/H]ZW = -1.25 ± 0.06), and a distance of d ≈ 6.35 ± 0.81 kpc. Using the RR Lyrae population, we also determine that NGC 6401 is an Oosterhoff type I cluster.

  5. Globular cluster origin of X-ray bursters

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.

    1984-01-01

    X-ray bursters and galactic bulge X-ray sources, or the most luminous X-ray sources in the Galaxy, are reasonably well constrained in their basic nature but not in their origin. It is suggested they may all have been produced by tidal capture in high density cores of globular clusters, which have now largely been disrupted by tidal stripping and shocking in the galactic plane. General arguments are presented for cluster disruption by the possible ring of giant molecular clouds in the Galaxy. Tests of the cluster disruption hypothesis are in progress and preliminary results are summarized here. The G-K star 'companions' previously noted for at least four bursters have spectra (in the two cases observed) consistent with metal-rich cluster giants. Several possibilities are discussed, including the formation of hierarchical triples in the dissolving cluster or in the galactic plane.

  6. THE BLUE HOOK POPULATIONS OF MASSIVE GLOBULAR CLUSTERS

    SciTech Connect

    Brown, Thomas M.; Smith, Ed; Sweigart, Allen V.; Lanz, Thierry; Landsman, Wayne B.; Hubeny, Ivan E-mail: edsmith@stsci.ed E-mail: lanz@astro.umd.ed E-mail: hubeny@aegis.as.arizona.ed

    2010-08-01

    We present new Hubble Space Telescope ultraviolet color-magnitude diagrams of five massive Galactic globular clusters: NGC 2419, NGC 6273, NGC 6715, NGC 6388, and NGC 6441. These observations were obtained to investigate the 'blue hook' (BH) phenomenon previously observed in UV images of the globular clusters {omega} Cen and NGC 2808. Blue hook stars are a class of hot (approximately 35,000 K) subluminous horizontal branch stars that occupy a region of the HR diagram that is unexplained by canonical stellar evolution theory. By coupling new stellar evolution models to appropriate non-LTE synthetic spectra, we investigate various theoretical explanations for these stars. Specifically, we compare our photometry to canonical models at standard cluster abundances, canonical models with enhanced helium (consistent with cluster self-enrichment at early times), and flash-mixed models formed via a late helium-core flash on the white dwarf cooling curve. We find that flash-mixed models are required to explain the faint luminosity of the BH stars, although neither the canonical models nor the flash-mixed models can explain the range of color observed in such stars, especially those in the most metal-rich clusters. Aside from the variation in the color range, no clear trends emerge in the morphology of the BH population with respect to metallicity.

  7. The Ages, Metallicities, and Alpha Element Enhancements of Globular Clusters in the Elliptical NGC 5128: A Homogeneous Spectroscopic Study with Gemini/Gemini Multi-Object Spectrograph

    NASA Astrophysics Data System (ADS)

    Woodley, Kristin A.; Harris, William E.; Puzia, Thomas H.; Gómez, Matías; Harris, Gretchen L. H.; Geisler, Doug

    2010-01-01

    We present new integrated light spectroscopy of globular clusters (GCs) in NGC 5128, a nearby giant elliptical galaxy less than 4 Mpc away, in order to measure radial velocities and derive ages, metallicities, and alpha-element abundance ratios. Using the Gemini South 8 meter telescope with the instrument Gemini Multi-Object Spectrograph, we obtained spectroscopy in the range of ~3400-5700 Å for 72 GCs with a signal-to-noise ratio greater than 30 Å-1 and we have also discovered 35 new GCs within NGC 5128 from our radial velocity measurements. We measured and compared the Lick indices from Hδ A through Fe5406 with the single stellar population models of Thomas et al. in order to derive age, metallicity, and [α/Fe] values. We also measure Lick indices for 41 Milky Way GCs from Puzia et al. and Schiavon et al. with the same methodology for direct comparison. Our results show that 68% of the NGC 5128 GCs have old ages (>8 Gyr), 14% have intermediate ages (5-8 Gyr), and 18% have young ages (<5 Gyr). However, when we look at the metallicity of the GCs as a function of age, we find 92% of metal-poor GCs and 56% of metal-rich GCs in NGC 5128 have ages >8 Gyr, indicating that the majority of both metallicity subpopulations of GCs formed earlier, with a significant population of young and metal-rich GCs forming later. Our metallicity distribution function generated directly from spectroscopic Lick indices is clearly bimodal, as is the color distribution of the same set of GCs. Thus, the metallicity bimodality is real and not an artifact of the color to metallicity conversion. However, the metallicity distribution function obtained from comparison with the single stellar population models is consistent with a unimodal, bimodal, or multimodal shape. The [α/Fe] values are supersolar with a mean value of 0.14 ± 0.04, indicating a fast formation timescale. However, the GCs in NGC 5128 are not as [α/Fe] enhanced as the Milky Way GCs also examined in this study. Our measured

  8. The first Δa observations of three globular clusters

    NASA Astrophysics Data System (ADS)

    Paunzen, E.; Iliev, I. Kh.; Pintado, O. I.; Baum, H.; Maitzen, H. M.; Netopil, M.; Önehag, A.; Zejda, M.; Fraga, L.

    2014-09-01

    Globular clusters are main astrophysical laboratories to test and modify evolutionary models. Thought to be rather homogeneous in their local elemental distribution of members, results suggest a wide variety of chemical peculiarities. Besides different main sequences, believed to be caused by different helium abundances, peculiarities of blue horizontal-branch stars and on the red giant branch were found. This whole zoo of peculiar objects has to be explained in the context of stellar formation and evolution. The tool of Δa photometry is employed in order to detect peculiar stars in the whole spectral range. This three filter narrow-band system measures the flux distribution in the region from 4900 to 5600 Å in order to find any peculiarities around 5200 Å. It is highly efficient to detect classical chemically peculiar stars of the upper main sequence, Be/Ae, shell and metal-weak objects in the Milky Way and Magellanic Clouds. We present Δa photometry of 2266 stars from 109 individual frames for three globular clusters (NGC 104, NGC 6205, and NGC 7099). A comparison with published abundances, for three horizontal-branch stars, only, yields an excellent agreement. According to the 3σ detection limit of each globular cluster, about 3 per cent of the stars lie in abnormal regions in the diagnostic diagrams. The first observations of three widely different aggregates give very promising results, which will serve as a solid basis for follow-up observations including photometric as well as spectroscopic studies.

  9. Rosat Observations of Nine Globular Clusters

    NASA Technical Reports Server (NTRS)

    Rappaport, S.; Dewey, D.; Levine, A.; Macri, L.

    1994-01-01

    The ROSAT HRI was used to image fields around nine Galactic globular clusters that have central densities in the range of 10(exp 4) - 10(exp 5) solar mass pc(exp -3) and that had not previously been observed with the Einstein Observatory. We detected X-ray sources associated with Pal 2 and NGC 6304 with luminosities of 1.1 x 10(exp 34) ergs/s and 1.2 x 10(exp 33) ergs/s, respectively. No X-ray emission was detected from the source in Ter 6, thus confirming its transient nature. In all, there were 23 serendipitous sources found in the nine fields; none was apparently associated with any of the other seven clusters. The results are discussed in the context of low-luminosity cluster X-ray sources, in general.

  10. Multi-color photometry of the Galactic globular cluster M 75 = NGC 6864. A new sensitive metallicity indicator and the position of the horizontal branch in UV

    NASA Astrophysics Data System (ADS)

    Kravtsov, V.; Alcaíno, G.; Marconi, G.; Alvarado, F.

    2007-07-01

    Aims:We carry out and analyze new multi-color photometry of the Galactic globular cluster (GC) M 75 in UBVI and focus on the brighter sequences of the color-magnitude diagram (CMD), with particular emphasis on their location in U-based CMD. Specifically, we study the level both of the horizontal (HB) and red giant branches (RGB) relative to the main-sequence turnoff (TO) in the U magnitude. Methods: Along with the presented photometry of M 75, we use our collection of photometric data on GCs belonging to the metal-poor range, [Fe/H]{ZW}<-1.1 dex, obtained from observations with different equipment, but calibrated by standard stars situated in the observed cluster fields. Results: We confirm our earlier finding, and extend it to a larger magnitude range. We demonstrate that Δ U_TO^BHB expressing the difference in U magnitude between the TO point and the level of the blue HB, near its red boundary, of the metal-poor GCs observed with the EMMI camera of the NTT/ESO telescope is about 0.4-0.5 mag smaller as compared to GCs observed with the 100 arcsec telescope and 1.3 m Warsaw telescope of the Las Campanas Observatory. At the same time, Δ U_TO^RGB, the difference in U magnitude between the TO and RGB inflection (brightest) points, does not show such an apparent dependence on the characteristics of U filters used, but it depends on cluster metallicity. We have shown, for the first time, the dependence of the parameter Δ U_TO^RGB on [Fe/H] and have estimated its analytical expression, by assuming a linear relation between the parameter and metallicity. Its slope, Δ U_TO^RGB/Δ[Fe/H] 1.2 mag/dex, is approximately a factor of two steeper than that of the dependence of the RGB bump position in the V magnitude on metallicity. The asymptotic giant branch (AGB) clump and features of the RGB luminosity function (LF) of M 75 are also discussed. Based on observations with the 1.3 m Warsaw telescope at Las Campanas Observatory. Individual photometry measurements are only

  11. Measuring consistent masses for 25 Milky Way globular clusters

    SciTech Connect

    Kimmig, Brian; Seth, Anil; Ivans, Inese I.; Anderton, Tim; Gregersen, Dylan; Strader, Jay; Caldwell, Nelson

    2015-02-01

    We present central velocity dispersions, masses, mass-to-light ratios (M/Ls ), and rotation strengths for 25 Galactic globular clusters (GCs). We derive radial velocities of 1951 stars in 12 GCs from single order spectra taken with Hectochelle on the MMT telescope. To this sample we add an analysis of available archival data of individual stars. For the full set of data we fit King models to derive consistent dynamical parameters for the clusters. We find good agreement between single-mass King models and the observed radial dispersion profiles. The large, uniform sample of dynamical masses we derive enables us to examine trends of M/L with cluster mass and metallicity. The overall values of M/L and the trends with mass and metallicity are consistent with existing measurements from a large sample of M31 clusters. This includes a clear trend of increasing M/L with cluster mass and lower than expected M/Ls for the metal-rich clusters. We find no clear trend of increasing rotation with increasing cluster metallicity suggested in previous work.

  12. The origin of the Milky Way globular clusters

    NASA Astrophysics Data System (ADS)

    Renaud, Florent; Agertz, Oscar; Gieles, Mark

    2017-03-01

    We present a cosmological zoom-in simulation of a Milky Way-like galaxy used to explore the formation and evolution of star clusters. We investigate in particular the origin of the bimodality observed in the colour and metallicity of globular clusters, and the environmental evolution through cosmic times in the form of tidal tensors. Our results self-consistently confirm previous findings that the blue, metal-poor clusters form in satellite galaxies that are accreted on to the Milky Way, while the red, metal-rich clusters form mostly in situ, or, to a lower extent, in massive, self-enriched galaxies merging with the Milky Way. By monitoring the tidal fields these populations experience, we find that clusters formed in situ (generally centrally concentrated) feel significantly stronger tides than the accreted ones, both in the present day, and when averaged over their entire life. Furthermore, we note that the tidal field experienced by Milky Way clusters is significantly weaker in the past than at present day, confirming that it is unlikely that a power-law cluster initial mass function like that of young massive clusters, is transformed into the observed peaked distribution in the Milky Way with relaxation-driven evaporation in a tidal field.

  13. THE PRODUCTION RATE OF SN Ia EVENTS IN GLOBULAR CLUSTERS

    SciTech Connect

    Washabaugh, Pearce C.; Bregman, Joel N. E-mail: jbregman@umich.edu

    2013-01-01

    In globular clusters, dynamical evolution produces luminous X-ray emitting binaries at a rate about 200 times greater than in the field. If globular clusters also produce SN Ia at a high rate, it would account for many of the SN Ia production in early-type galaxies and provide insight into their formation. Here we use archival Hubble Space Telescope (HST) images of nearby galaxies that have hosted an SN Ia to examine the rate at which globular clusters produce these events. The location of the SN Ia is registered on an HST image obtained before the event or after the supernova (SN) faded. Of the 36 nearby galaxies examined, 21 had sufficiently good data to search for globular cluster hosts. None of the 21 SNe have a definite globular cluster counterpart, although there are some ambiguous cases. This places an upper limit to the enhancement rate of SN Ia production in globular clusters of about 42 at the 95% confidence level, which is an order of magnitude lower than the enhancement rate for luminous X-ray binaries. Even if all of the ambiguous cases are considered as having a globular cluster counterpart, the upper bound for the enhancement rate is 82 at the 95% confidence level, still a factor of several below that needed to account for half of the SN Ia events. Barring unforeseen selection effects, we conclude that globular clusters are not responsible for producing a significant fraction of the SN Ia events in early-type galaxies.

  14. THE GLOBULAR CLUSTER SYSTEM OF NGC 4636 AND FORMATION OF GLOBULAR CLUSTERS IN GIANT ELLIPTICAL GALAXIES

    SciTech Connect

    Park, Hong Soo; Lee, Myung Gyoon; Hwang, Ho Seong; Kim, Sang Chul; Arimoto, Nobuo; Yamada, Yoshihiko; Tamura, Naoyuki; Onodera, Masato E-mail: mglee@astro.snu.ac.kr E-mail: sckim@kasi.re.kr E-mail: yoshihiko.yamada@nao.ac.jp E-mail: monodera@phys.ethz.ch

    2012-11-10

    We present a spectroscopic analysis of the metallicities, ages, and alpha-elements of the globular clusters (GCs) in the giant elliptical galaxy (gE) NGC 4636 in the Virgo Cluster. Line indices of the GCs are measured from the integrated spectra obtained with Faint Object Camera and Spectrograph on the Subaru 8.2 m Telescope. We derive [Fe/H] values of 59 GCs based on the Brodie and Huchra method, and [Z/H], age, and [{alpha}/Fe] values of 33 GCs from the comparison of the Lick line indices with single stellar population models. The metallicity distribution of NGC 4636 GCs shows a hint of a bimodality with two peaks at [Fe/H] = -1.23({sigma} = 0.32) and -0.35({sigma} = 0.19). The age spread is large from 2 Gyr to 15 Gyr and the fraction of young GCs with age <5 Gyr is about 27%. The [{alpha}/Fe] of the GCs shows a broad distribution with a mean value [{alpha}/Fe] Almost-Equal-To 0.14 dex. The dependence of these chemical properties on the galactocentric radius is weak. We also derive the metallicities, ages, and [{alpha}/Fe] values for the GCs in other nearby gEs (M87, M49, M60, NGC 5128, NGC 1399, and NGC 1407) from the line index data in the literature using the same methods as used for NGC 4636 GCs. The metallicity distribution of GCs in the combined sample of seven gEs including NGC 4636 is found to be bimodal, supported by the KMM test with a significance level of >99.9%. All these gEs harbor some young GCs with ages less than 5 Gyr. The mean age of the metal-rich GCs ([Fe/H] >-0.9) is about 3 Gyr younger than that of the metal-poor GCs. The mean value of [{alpha}/Fe] of the gE GCs is smaller than that of the Milky Way GCs. We discuss these results in the context of GC formation in gEs.

  15. LITHIUM-RICH GIANTS IN GLOBULAR CLUSTERS

    SciTech Connect

    Kirby, Evan N.; Cohen, Judith G.; Guhathakurta, Puragra; Hong, Jerry; Guo, Michelle; Guo, Rachel; Cunha, Katia

    2016-03-10

    Although red giants deplete lithium on their surfaces, some giants are Li-rich. Intermediate-mass asymptotic giant branch (AGB) stars can generate Li through the Cameron–Fowler conveyor, but the existence of Li-rich, low-mass red giant branch (RGB) stars is puzzling. Globular clusters are the best sites to examine this phenomenon because it is straightforward to determine membership in the cluster and to identify the evolutionary state of each star. In 72 hours of Keck/DEIMOS exposures in 25 clusters, we found four Li-rich RGB and two Li-rich AGB stars. There were 1696 RGB and 125 AGB stars with measurements or upper limits consistent with normal abundances of Li. Hence, the frequency of Li-richness in globular clusters is (0.2 ± 0.1)% for the RGB, (1.6 ± 1.1)% for the AGB, and (0.3 ± 0.1)% for all giants. Because the Li-rich RGB stars are on the lower RGB, Li self-generation mechanisms proposed to occur at the luminosity function bump or He core flash cannot explain these four lower RGB stars. We propose the following origin for Li enrichment: (1) All luminous giants experience a brief phase of Li enrichment at the He core flash. (2) All post-RGB stars with binary companions on the lower RGB will engage in mass transfer. This scenario predicts that 0.1% of lower RGB stars will appear Li-rich due to mass transfer from a recently Li-enhanced companion. This frequency is at the lower end of our confidence interval.

  16. Lithium-rich Giants in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Kirby, Evan N.; Guhathakurta, Puragra; Zhang, Andrew J.; Hong, Jerry; Guo, Michelle; Guo, Rachel; Cohen, Judith G.; Cunha, Katia

    2016-03-01

    Although red giants deplete lithium on their surfaces, some giants are Li-rich. Intermediate-mass asymptotic giant branch (AGB) stars can generate Li through the Cameron-Fowler conveyor, but the existence of Li-rich, low-mass red giant branch (RGB) stars is puzzling. Globular clusters are the best sites to examine this phenomenon because it is straightforward to determine membership in the cluster and to identify the evolutionary state of each star. In 72 hours of Keck/DEIMOS exposures in 25 clusters, we found four Li-rich RGB and two Li-rich AGB stars. There were 1696 RGB and 125 AGB stars with measurements or upper limits consistent with normal abundances of Li. Hence, the frequency of Li-richness in globular clusters is (0.2 ± 0.1)% for the RGB, (1.6 ± 1.1)% for the AGB, and (0.3 ± 0.1)% for all giants. Because the Li-rich RGB stars are on the lower RGB, Li self-generation mechanisms proposed to occur at the luminosity function bump or He core flash cannot explain these four lower RGB stars. We propose the following origin for Li enrichment: (1) All luminous giants experience a brief phase of Li enrichment at the He core flash. (2) All post-RGB stars with binary companions on the lower RGB will engage in mass transfer. This scenario predicts that 0.1% of lower RGB stars will appear Li-rich due to mass transfer from a recently Li-enhanced companion. This frequency is at the lower end of our confidence interval. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W. M. Keck Foundation.

  17. IC 1257: A New Globular Cluster in the Galactic Halo

    NASA Technical Reports Server (NTRS)

    Harris, W. E.; Phelps, R. L.; Madore, B. F.; Pevunova, O.; Skiff, B. A.; Crute, C.; Wilson, B.

    1996-01-01

    New CCD photometry of the faint, compact star cluster IC 1257 (L = 17? = +/- 15?obtained with the Palomar 5m telescope, reveals that it is a highly reddened globular cluster well beyond the Galactic center.

  18. Lack of Energy Equipartition in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Trenti, Michele

    2013-05-01

    Abstract (2,250 Maximum Characters): It is widely believed that globular clusters evolve over many two-body relaxation times toward a state of energy equipartition, so that velocity dispersion scales with stellar mass as σ∝m^{-η} with η=0.5. I will show instead that this is incorrect, using a suite of direct N-body simulations with a variety of realistic initial mass functions and initial conditions. No simulated system ever reaches a state close to equipartition. Near the center, the luminous main-sequence stars reach a maximum η_{max 0.15±0.03. At large times, all radial bins convergence on an asymptotic value η_{∞ 0.08±0.02. The development of this ``partial equipartition'' is strikingly similar across simulations, despite the range of different initial conditions employed. Compact remnants tend to have higher η than main-sequence stars (but still η< 0.5), due to their steeper (evolved) mass function. The presence of an intermediate-mass black hole (IMBH) decreases η, consistent with our previous findings of a quenching of mass segregation under these conditions. All these results can be understood as a consequence of the Spitzer instability for two-component systems, extended by Vishniac to a continuous mass spectrum. Mass segregation (the tendency of heavier stars to sink toward the core) has often been studied observationally, but energy equipartition has not. Due to the advent of high-quality proper motion datasets from the Hubble Space Telescope, it is now possible to measure η for real clusters. Detailed data-model comparisons open up a new observational window on globular cluster dynamics, structure, evolution, initial conditions, and possible IMBHs. A first comparison of my simulations to observations of Omega Cen yields good agreement, supporting the view that globular clusters are not generally in energy equipartition. Modeling techniques that assume equipartition by construction (e.g., multi-mass Michie-King models) are thus approximate

  19. Strömgren and near-infrared photometry of metal-rich bulge globular clusters. I. NGC 6528 and its surrounding field

    NASA Astrophysics Data System (ADS)

    Calamida, A.; Bono, G.; Lagioia, E. P.; Milone, A. P.; Fabrizio, M.; Saviane, I.; Moni Bidin, C.; Mauro, F.; Buonanno, R.; Ferraro, I.; Iannicola, G.; Zoccali, M.

    2014-05-01

    We present Strömgren and near-infrared (NIR) photometry of the bulge cluster NGC 6528 and its surrounding field in Baade's Window. uvby images were collected with EFOSC2 on the New Technology Telescope (NTT, La Silla, ESO). The NIR catalogs are based on J,K-band VIRCAM at VISTA (Paranal, ESO) and SOFI at NTT photometry. We matched the aforementioned data sets with Hubble Space Telescope photometry to obtain proper-motion-cleaned samples of NGC 6528 and bulge stars. Furthermore, we were able to correct the Strömgren-NIR photometry for differential reddening. The huge color sensitivity of the Strömgren-NIR color-magnitude-diagrams (CMDs) helped us in separating age and metallicity effects. The red giant branch (RGB) of NGC 6528 is well reproduced in all the CMDs by adopting scaled solar isochrones with solar abundance, that is Z = 0.0198, or α-enhanced isochrones with the same iron content, that is Z = 0.04, and an age range of t = 10-12 Gyr. The same isochrones well reproduce most of the color spread of Baade's Window RGB. These findings support the literature age estimates for NGC 6528. We also performed a new theoretical visual-NIR metallicity calibration based on the Strömgren index m1 and on visual-NIR colors for red giant (RG) stars. Scaled solar and α-enhanced models were adopted and we validated the new metallicity-index-color (MIC) relations by applying them to estimate the photometric metal abundance of a sample of field RGs and of a metal-poor (M 92, [Fe/H] ~-2.3) and a metal-rich (NGC 6624, [Fe/H] ~ -0.7) globular cluster. We applied the calibration to estimate the mean metal abundance of NGC 6528, finding [Fe/H] = [M/H] = -0.04 ± 0.02, with a mean intrinsic dispersion of σ = 0.27 dex, by averaging the metallicities obtained with the scaled solar [m], y - J and [m], y - K MIC relations, and of -0.11 ± 0.01, with σ = 0.27 dex, by using the m1, y - J and m1, y - K relations. These findings support results based on high-resolution spectroscopy

  20. BLUE STRAGGLERS IN GLOBULAR CLUSTER 47 TUCANAE

    NASA Technical Reports Server (NTRS)

    2002-01-01

    The core of globular cluster 47 Tucanae is home to many blue stragglers, rejuvenated stars that glow with the blue light of young stars. A ground-based telescope image (on the left) shows the entire crowded core of 47 Tucanae, located 15,000 light-years away in the constellation Tucana. Peering into the heart of the globular cluster's bright core, the Hubble Space Telescope's Wide Field and Planetary Camera 2 separated the dense clump of stars into many individual stars (image on right). Some of these stars shine with the light of old stars; others with the blue light of blue stragglers. The yellow circles in the Hubble telescope image highlight several of the cluster's blue stragglers. Analysis for this observation centered on one massive blue straggler. Astronomers theorize that blue stragglers are formed either by the slow merger of stars in a double-star system or by the collision of two unrelated stars. For the blue straggler in 47 Tucanae, astronomers favor the slow merger scenario. This image is a 3-color composite of archival Hubble Wide Field and Planetary Camera 2 images in the ultraviolet (blue), blue (green), and violet (red) filters. Color tables were assigned and scaled so that the red giant stars appear orange, main-sequence stars are white/green, and blue stragglers are appropriately blue. The ultraviolet images were taken on Oct. 25, 1995, and the blue and violet images were taken on Sept. 1, 1995. Credit: Rex Saffer (Villanova University) and Dave Zurek (STScI), and NASA

  1. A DYING STAR IN GLOBULAR CLUSTER

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A DYING STAR IN GLOBULAR CLUSTER M15 The globular cluster Messier 15 is shown in this color image obtained with the NASA Hubble Space Telescope's Wide Field Planetary Camera 2 (WFPC2). Lying some 40,000 light-years from Earth in the direction of the constellation Pegasus, M15 is one of nearly 150 known globular clusters that form a vast halo surrounding our Milky Way galaxy. Each of these clusters is a spherical association of hundreds of thousands of ancient stars. The image, prepared by the Hubble Heritage team, attempts to show the stars in M15 in their true colors. The brightest cluster stars are red giants, with an orange color due to surface temperatures lower than our Sun's. Most of the fainter stars are hotter, giving them a bluish-white color. If we lived in the core of M15, our sky would blaze with tens of thousands of brilliant stars both day and night! Nestled among the myriads of stars visible in the Hubble image is an astronomical oddity. The pinkish object to the upper left of the cluster's core is a gas cloud surrounding a dying star. Known as Kuestner 648, this was the first planetary nebula to be identified in a globular cluster. In 1928, F. G. Pease, working at the 100-inch telescope of California's Mount Wilson Observatory, photographed the spectrum of K 648 and discovered the telltale bright emission of a nebular gas cloud rather than a normal star. In the ensuing 70 years, only three more planetary nebulae have been discovered in globular clusters. The stars in M15 and other globular clusters are estimated to be about 12 billion years old. They were among the first generations of stars to form in the Milky Way. Our Sun, by comparison, is a youthful 4.6 billion years old. As a star like the Sun ages, it exhausts the hydrogen that fuels its nuclear fusion, and increases in size to become a red giant. Then it ejects its outer layers into space, producing a planetary nebula. The remnant star at the center of the nebula gradually dies away as a

  2. A DYING STAR IN GLOBULAR CLUSTER

    NASA Technical Reports Server (NTRS)

    2002-01-01

    A DYING STAR IN GLOBULAR CLUSTER M15 The globular cluster Messier 15 is shown in this color image obtained with the NASA Hubble Space Telescope's Wide Field Planetary Camera 2 (WFPC2). Lying some 40,000 light-years from Earth in the direction of the constellation Pegasus, M15 is one of nearly 150 known globular clusters that form a vast halo surrounding our Milky Way galaxy. Each of these clusters is a spherical association of hundreds of thousands of ancient stars. The image, prepared by the Hubble Heritage team, attempts to show the stars in M15 in their true colors. The brightest cluster stars are red giants, with an orange color due to surface temperatures lower than our Sun's. Most of the fainter stars are hotter, giving them a bluish-white color. If we lived in the core of M15, our sky would blaze with tens of thousands of brilliant stars both day and night! Nestled among the myriads of stars visible in the Hubble image is an astronomical oddity. The pinkish object to the upper left of the cluster's core is a gas cloud surrounding a dying star. Known as Kuestner 648, this was the first planetary nebula to be identified in a globular cluster. In 1928, F. G. Pease, working at the 100-inch telescope of California's Mount Wilson Observatory, photographed the spectrum of K 648 and discovered the telltale bright emission of a nebular gas cloud rather than a normal star. In the ensuing 70 years, only three more planetary nebulae have been discovered in globular clusters. The stars in M15 and other globular clusters are estimated to be about 12 billion years old. They were among the first generations of stars to form in the Milky Way. Our Sun, by comparison, is a youthful 4.6 billion years old. As a star like the Sun ages, it exhausts the hydrogen that fuels its nuclear fusion, and increases in size to become a red giant. Then it ejects its outer layers into space, producing a planetary nebula. The remnant star at the center of the nebula gradually dies away as a

  3. The Chemical Properties of Milky Way and M31 Globular Clusters. II. Stellar Population Model Predictions

    NASA Astrophysics Data System (ADS)

    Beasley, Michael A.; Brodie, Jean P.; Strader, Jay; Forbes, Duncan A.; Proctor, Robert N.; Barmby, Pauline; Huchra, John P.

    2005-03-01

    We derive ages, metallicities, and abundance ratios ([α/Fe]) from the integrated spectra of 23 globular clusters in M31 by employing multivariate fits to two different stellar population models. We also perform a parallel analysis on 21 Galactic globular clusters as a consistency check and in order to facilitate a differential analysis. Our analysis shows that the M31 globular clusters separate into three distinct components in age and metallicity; we identify an old, metal-poor group (seven clusters), an old, metal-rich group (10 clusters), and an intermediate-age (3-6 Gyr), intermediate-metallicity ([Z/H]~-1) group (six clusters). This third group is not identified in the Galactic globular cluster sample. We also see evidence that the old, metal-rich Galactic globular clusters are 1-2 Gyr older than their counterparts in M31. The majority of globular clusters in both samples appear to be enhanced in α-elements, but the degree of enhancement is rather model-dependent. The intermediate-age globular clusters appear to be the most enhanced, with [α/Fe]~0.4. These clusters are clearly depressed in CN with respect to the models and the bulk of the M31 and Milky Way sample. Compared with the bulge of M31, M32, and NGC 205, these clusters most resemble the stellar populations in NGC 205 in terms of age, metallicity, and CN abundance. We infer horizontal branch morphologies for the M31 clusters using the Rose Ca II index and demonstrate that blue horizontal branches are not leading to erroneous age estimates in our analysis. We discuss and reject as unlikely the hypothesis that these objects are in fact foreground stars contaminating the optical catalogs. The intermediate-age clusters have generally higher velocities than the bulk of the M31 cluster population. Spatially, three of these clusters are projected onto the bulge region, and the remaining three are distributed at large radii. We discuss these objects within the context of the build-up of the M31 halo and

  4. Study of Diffuse X-ray Emission in Globular Clusters

    NASA Technical Reports Server (NTRS)

    Grindlay, Jonathan E.

    1997-01-01

    This grant supported our analysis of ROSAT x-ray data on globular clusters. Although the grant title referred to our original ROSAT proposal (cycle 1) to study diffuse soft x-ray emission in three globulars (for which time was only granted in that original observing cycle for one cluster, 47 Tuc), the grant has also been maintained through several renewals and funding supplements to support our later ROSAT observations of point sources in globulars. The primary emphasis has been on the study of the dim sources, or low liuminosity globular cluster x-ray sources, which we had originally discovered with the Einstein Observatory and for which ROSAT provided the logical followup. In this Final Report, we summarize the Scientific Objectives of this investigation of both diffuse emission and dim sources in globular clusters and the Results Achieved; and finally the Papers Published.

  5. Chemical abundances of multiple stellar populations in massive globular clusters

    NASA Astrophysics Data System (ADS)

    Marino, Anna F.

    2017-03-01

    Multiple stellar populations in the Milky Way globular clusters manifest themselves with a large variety. Although chemical abundance variations in light elements, including He, are ubiquitous, the amount of these variations is different in different globulars. Stellar populations with distinct Fe, C+N+O and slow-neutron capture elements have been now detected in some globular clusters, whose number will likely increase. All these chemical features correspond to specific photometric patterns. I review the chemical+photometric features of the multiple stellar populations in globular clusters and discuss how the interpretation of data is being more and more challenging. Very excitingly, the origin and evolution of globular clusters is being a complex puzzle to compose.

  6. Multivariate Analysis of the Globular Clusters in M87

    NASA Astrophysics Data System (ADS)

    Das, Sukanta; Chattopadhayay, Tanuka; Davoust, Emmanuel

    2015-11-01

    An objective classification of 147 globular clusters (GCs) in the inner region of the giant elliptical galaxy M87 is carried out with the help of two methods of multivariate analysis. First, independent component analysis (ICA) is used to determine a set of independent variables that are linear combinations of various observed parameters (mostly Lick indices) of the GCs. Next, K-means cluster analysis (CA) is applied on the independent components (ICs), to find the optimum number of homogeneous groups having an underlying structure. The properties of the four groups of GCs thus uncovered are used to explain the formation mechanism of the host galaxy. It is suggested that M87 formed in two successive phases. First a monolithic collapse, which gave rise to an inner group of metal-rich clusters with little systematic rotation and an outer group of metal-poor clusters in eccentric orbits. In a second phase, the galaxy accreted low-mass satellites in a dissipationless fashion, from the gas of which the two other groups of GCs formed. Evidence is given for a blue stellar population in the more metal rich clusters, which we interpret by Helium enrichment. Finally, it is found that the clusters of M87 differ in some of their chemical properties (NaD, TiO1, light-element abundances) from GCs in our Galaxy and M31.

  7. Modeling the Blue Stragglers in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sourav

    2012-10-01

    Blue stragglers {BS} have been extensively observed in Galactic globular clusters {GGC}. primarily with HST. Many theoretical studies have identified BS formation channels and it is understood that dynamics in GCs modifies formation and distribution of the BSs. Despite the wealth of observational data, comprehensive theoretical models including all relevant physical processes in dynamically evolving GCs do not exist. Our dynamical cluster modeling code, developed over the past decade, includes all relevant physical processes in a GC including two-body relaxation, strong scattering, physical collisions, and stellar-evolution {single and binary}. We can model GCs with realistic N and provide star-by-star models for GCs directly comparable with the observed data. This proposed study will create realistic GC models with initial conditions from a grid spanning a large range in the multidimensional parameter space including cluster mass, binary fraction, concentration, and Galactic position. Our numerical models combined with observational constraints from existing HST data will for the first time provide explanations for the observed trends in the BS populations in GGCs, the dominant formation channel for these BSs, typical dynamical ages of the BSs, and find detailed dynamical histories of the BSs in GGCs. These models will yield valuable insight on the correlations between the BS properties and a number of cluster dynamical properties {central density, binary fraction, and binary orbital properties} which will potentially help constrain a GC's past evolutionary history. As a bonus a large set of realistic theoretical GC models will be constructed.

  8. On eccentricities of globular cluster galactocentric orbits

    NASA Astrophysics Data System (ADS)

    Ninkovic, S.

    The orbital eccentricities of 55 globular clusters are calculated and discussed. The data are taken from the study of Woltjer (1975), but include only those clusters for which reliable chemical compositions, positions, and line-of-sight velocities are given. The clusters are divided into six groups according to chemical composition and galactocentric distance, and the formulas of House and Wiegandt (1977) are employed in the calculations. The results are presented in tables and characterized individually. An LSR velocity of 225 km/sec is assumed, but some calculations using 275 km/sec are included for comparison. A general lower limit of eccentricity of 0.3 and upper limits (depending on cluster type) as high as 0.9 are estimated, with perigalactic distances not less than 1 kpc and apogalactic distances generally less than 25 but sometimes as high as 50-100 kpc. The mean orbital eccentricity of the groups is found to be better correlated to galactocentric distance than to chemical composition. The evolutionary contraction of the Galaxy is estimated to have lasted about 2-3 Gyr.

  9. Intermediate-age globular clusters in four galaxy merger remnants

    SciTech Connect

    Trancho, Gelys; Miller, Bryan W.; Schweizer, François; Burdett, Daniel P.; Palamara, David

    2014-08-01

    We present the results of combining Hubble Space Telescope optical photometry with ground-based K{sub s} -band photometry from the Gemini imagers NIRI and FLAMINGOS-I to study the globular cluster (GC) populations in four early-type galaxies that are candidate remnants of recent mergers (NGC 1700, NGC 2865, NGC 4382, and NGC 7727). These galaxies were chosen based on their blue colors and fine structure, such as shells and ripples that are indicative of past interactions. We fit the combined VIK{sub s} GC data with simple toy models of mixed cluster populations that contain three subpopulations of different age and metallicity. The fits, done via chi-squared mapping of the parameter space, yield clear evidence for the presence of intermediate-age clusters in each galaxy. We find that the ages of ∼1-2 Gyr for these GC subpopulations are consistent with the previously estimated merger ages for the host galaxies.

  10. Intermediate-age Globular Clusters in Four Galaxy Merger Remnants

    NASA Astrophysics Data System (ADS)

    Trancho, Gelys; Miller, Bryan W.; Schweizer, François; Burdett, Daniel P.; Palamara, David

    2014-08-01

    We present the results of combining Hubble Space Telescope optical photometry with ground-based Ks -band photometry from the Gemini imagers NIRI and FLAMINGOS-I to study the globular cluster (GC) populations in four early-type galaxies that are candidate remnants of recent mergers (NGC 1700, NGC 2865, NGC 4382, and NGC 7727). These galaxies were chosen based on their blue colors and fine structure, such as shells and ripples that are indicative of past interactions. We fit the combined VIKs GC data with simple toy models of mixed cluster populations that contain three subpopulations of different age and metallicity. The fits, done via chi-squared mapping of the parameter space, yield clear evidence for the presence of intermediate-age clusters in each galaxy. We find that the ages of ~1-2 Gyr for these GC subpopulations are consistent with the previously estimated merger ages for the host galaxies.

  11. What Happens to the Gas in Globular Clusters?

    NASA Astrophysics Data System (ADS)

    Thoul, A.; Jehin, E.; Magain, P.; Noels, A.; Parmentier, G.

    Observations of globular clusters show that they contain much too little gas or dust, compared to what should be present due to the mass-losing stars in the cluster. Many authors have been intrigued by the fate of the gas in globular clusters. They have suggested various mechanisms by which the gas could escape from the cluster, such as stellar UV radiation, cluster winds driven by X-ray bursters, novae, or flare-stars, relativistic winds from millisecond pulsars, condensation into stars, accretion processes drawing upon a central gas reservoir, continuous sweeping of the cluster gas by the gaseous medium of the Galactic halo dots. Recent results also show that globular cluster stars show many abundance anomalies. Accretion of interstellar gas by the cluster stars has been suggested as a plausible mechanism to explain these anomalies. It is also a major ingredient of the EASE scenario linking halo field stars to globular clusters, which we have recently developed to explain strong r-and s-elements correlations in halo field dwarf stars. Here we will briefly review the status of gas and dust detection in globular clusters, as well as the possible gas removal mechanisms. We will explore in more details the gas and dust accretion processes onto main sequence stars. In particular, we will study the efficiency of this mechanism in removing gas from the globular clusters interstellar medium.

  12. STRUCTURE AND DYNAMICS OF THE GLOBULAR CLUSTER PALOMAR 13

    SciTech Connect

    Bradford, J. D.; Geha, M.; Munoz, R. R.; Santana, F. A.; Simon, J. D.; Cote, P.; Stetson, P. B.; Kirby, E.; Djorgovski, S. G. E-mail: marla.geha@yale.edu

    2011-12-20

    We present Keck/DEIMOS spectroscopy and Canada-France-Hawaii Telescope/MegaCam photometry for the Milky Way globular cluster Palomar 13. We triple the number of spectroscopically confirmed members, including many repeat velocity measurements. Palomar 13 is the only known globular cluster with possible evidence for dark matter, based on a Keck/High Resolution Echelle Spectrometer 21 star velocity dispersion of {sigma} = 2.2 {+-} 0.4 km s{sup -1}. We reproduce this measurement, but demonstrate that it is inflated by unresolved binary stars. For our sample of 61 stars, the velocity dispersion is {sigma} = 0.7{sup +0.6}{sub -0.5} km s{sup -1}. Combining our DEIMOS data with literature values, our final velocity dispersion is {sigma} = 0.4{sup +0.4}{sub -0.3} km s{sup -1}. We determine a spectroscopic metallicity of [Fe/H] = -1.6 {+-} 0.1 dex, placing a 1{sigma} upper limit of {sigma}{sub [Fe/H]} {approx} 0.2 dex on any internal metallicity spread. We determine Palomar 13's total luminosity to be M{sub V} = -2.8 {+-} 0.4, making it among the least luminous known globular clusters. The photometric isophotes are regular out to the half-light radius and mildly irregular outside this radius. The outer surface brightness profile slope is shallower than typical globular clusters ({Sigma}{proportional_to}r{sup {eta}}, {eta} = -2.8 {+-} 0.3). Thus at large radius, tidal debris is likely affecting the appearance of Palomar 13. Combining our luminosity with the intrinsic velocity dispersion, we find a dynamical mass of M{sub 1/2} = 1.3{sup +2:7}{sub -1.3} Multiplication-Sign 10{sup 3} M{sub Sun} and a mass-to-light ratio of M/L{sub V} = 2.4{sup +5.0}{sub -2.4} M{sub Sun }/L{sub Sun }. Within our measurement errors, the mass-to-light ratio agrees with the theoretical predictions for a single stellar population. We conclude that, while there is some evidence for tidal stripping at large radius, the dynamical mass of Palomar 13 is consistent with its stellar mass and neither

  13. Structure and Dynamics of the Globular Cluster Palomar 13

    NASA Astrophysics Data System (ADS)

    Bradford, J. D.; Geha, M.; Muñoz, R. R.; Santana, F. A.; Simon, J. D.; Côté, P.; Stetson, P. B.; Kirby, E.; Djorgovski, S. G.

    2011-12-01

    We present Keck/DEIMOS spectroscopy and Canada-France-Hawaii Telescope/MegaCam photometry for the Milky Way globular cluster Palomar 13. We triple the number of spectroscopically confirmed members, including many repeat velocity measurements. Palomar 13 is the only known globular cluster with possible evidence for dark matter, based on a Keck/High Resolution Echelle Spectrometer 21 star velocity dispersion of σ = 2.2 ± 0.4 km s-1. We reproduce this measurement, but demonstrate that it is inflated by unresolved binary stars. For our sample of 61 stars, the velocity dispersion is σ = 0.7+0.6 -0.5 km s-1. Combining our DEIMOS data with literature values, our final velocity dispersion is σ = 0.4+0.4 -0.3 km s-1. We determine a spectroscopic metallicity of [Fe/H] = -1.6 ± 0.1 dex, placing a 1σ upper limit of σ[Fe/H] ~ 0.2 dex on any internal metallicity spread. We determine Palomar 13's total luminosity to be MV = -2.8 ± 0.4, making it among the least luminous known globular clusters. The photometric isophotes are regular out to the half-light radius and mildly irregular outside this radius. The outer surface brightness profile slope is shallower than typical globular clusters (Σvpropr η, η = -2.8 ± 0.3). Thus at large radius, tidal debris is likely affecting the appearance of Palomar 13. Combining our luminosity with the intrinsic velocity dispersion, we find a dynamical mass of M 1/2 = 1.3+2: 7 -1.3 × 103 M ⊙ and a mass-to-light ratio of M/LV = 2.4+5.0 -2.4 M ⊙/L ⊙. Within our measurement errors, the mass-to-light ratio agrees with the theoretical predictions for a single stellar population. We conclude that, while there is some evidence for tidal stripping at large radius, the dynamical mass of Palomar 13 is consistent with its stellar mass and neither significant dark matter, nor extreme tidal heating, is required to explain the cluster dynamics. The data presented herein were obtained at the W. M. Keck Observatory, which is operated as a

  14. The colour-magnitude relation of globular clusters in Centaurus and Hydra. Constraints on star cluster self-enrichment with a link to massive Milky Way globular clusters

    NASA Astrophysics Data System (ADS)

    Fensch, J.; Mieske, S.; Müller-Seidlitz, J.; Hilker, M.

    2014-07-01

    Aims: We investigate the colour-magnitude relation of metal-poor globular clusters, the so-called blue tilt, in the Hydra and Centaurus galaxy clusters and constrain the primordial conditions for star cluster self-enrichment. Methods: We analyse U,I photometry for about 2500 globular clusters in the central regions of Hydra and Centaurus, based on VLT/FORS1 data. We measure the relation between mean colour and luminosity for the blue and red subpopulation of the globular cluster samples. We convert these relations into mass-metallicity space and compare the obtained GC mass-metallicity relation with predictions from the star cluster self-enrichment model by Bailin & Harris (2009, ApJ, 695, 1082). For this we include effects of dynamical and stellar evolution and a physically well motivated primordial mass-radius scaling. Results: We obtain a mass-metallicity scaling of Z ∝ M0.27 ± 0.05 for Centaurus GCs and Z ∝ M0.40 ± 0.06 for Hydra GCs, consistent with the range of observed relations in other environments. We find that the GC mass-metallicity relation already sets in at present-day masses of a few and is well established in the luminosity range of massive MW clusters like ω Centauri. The inclusion of a primordial mass-radius scaling of star clusters significantly improves the fit of the self-enrichment model to the data. The self-enrichment model accurately reproduces the observed relations for average primordial half-light radii rh ~ 1-1.5 pc, star formation efficiencies f⋆ ~ 0.3-0.4, and pre-enrichment levels of [Fe/H] - 1.7 dex. The slightly steeper blue tilt for Hydra can be explained either by a ~30% smaller average rh at fixed f⋆ ~ 0.3, or analogously by a ~20% smaller f⋆ at fixed rh ~ 1.5 pc. Within the self-enrichment scenario, the observed blue tilt implies a correlation between GC mass and width of the stellar metallicity distribution. We find that this implied correlation matches the trend of width with GC mass measured in Galactic GCs

  15. Sulfur in the globular clusters 47 Tucanae and NGC 6752

    NASA Astrophysics Data System (ADS)

    Sbordone, L.; Limongi, M.; Chieffi, A.; Caffau, E.; Ludwig, H.-G.; Bonifacio, P.

    2009-08-01

    Context: The light elements Li, O, Na, Al, and Mg are known to show star-to-star variations in the globular clusters 47 Tuc and NGC 6752. Such variations are interpreted as coming from processing in a previous generation of stars. Aims: In this paper we investigate the abundances of the α-element sulfur, for which no previous measurements exist. In fact this element has not been investigated in any Galactic globular cluster so far. The only globular cluster for which such measurements are available is Terzan 7, which belongs to the Sgr dSph. Methods: We use high-resolution spectra of the S i Mult. 1, acquired with the UVES spectrograph at the 8.2 m VLT-Kueyen telescope, for turn-off and giant stars in the two globular clusters. The spectra were analysed making use of ATLAS static plane parallel model atmospheres and SYNTHE spectrum synthesis. We also compute 3D corrections from CO^5BOLD hydrodynamic models and apply corrections due to NLTE effects taken from the literature. Results: In the cluster NGC 6752 sulfur has been measured only in four subgiant stars. We find no significant star-to-star scatter and a mean <[S/Fe]> = +0.49 ± 0.15, consistent with what is observed in field stars of the same metallicity. In the cluster 47 Tuc we measured S in 4 turn-off and 5 subgiant stars with a mean <[S/Fe]> = +0.18 ± 0.14. While this result is compatible with no star-to-star scatter we notice a statistically significant correlation of the sulfur abundance with the sodium abundance and a tentative correlation with the silicon abundance. Conclusions: The sulfur-sodium correlation is not easily explained in terms of nucleosynthesis. An origin due to atomic diffusion can be easily dismissed. The correlation cannot be easily dismissed either, in view of its statistical significance, until better data for more stars is available. Based on observations made with the ESO VLT-Kueyen telescope at the Paranal Observatory, Chile, in the course of the ESO-Large Programme 165.L-0263.

  16. Disruption of the Globular Cluster Pal 5

    NASA Technical Reports Server (NTRS)

    Miller, R. H.; Smith, B. F.; Cuzzi, Jeffrey N. (Technical Monitor)

    1995-01-01

    Orbit calculations suggest that the sparse globular cluster, Pal 5, will pass within 7 kpc of the Galactic center the next time it crosses the plane, where it might be destroyed by tidal stresses. We study this problem, treating Pal 5 as a self-consistent dynamical system orbiting through an external potential that represents the Galaxy. The first part of the problem is to find suitable analytic approximations to the Galactic potential. They must be valid in all regions the cluster is likely to explore. Observed velocity and positional data for Pal 5 are used as initial conditions to determine the orbit. Methods we used for a different problem some 12 years ago have been adapted to this problem. Three experiments have been run, with M/L= 1, 3, and 10, for the cluster model. The cluster blew up shortly after passing through the Galactic plane (about 130 Myrs after the beginning of the run) with M/L=1. At M/L = 3 and 10 the cluster survived, although it got quite a kick in the fundamental mode on passing through the plane. But the fundamental mode oscillation died out in a couple of oscillation cycles at M/L=10. Pal 5 will probably be destroyed on its next crossing of the Galactic plane if M/L=1, but it can survive (albeit with fairly heavy damage) if NI/L=3. We haven't tried to trap the mass limits more closely than that. Pal 5 comes through pretty well unscathed at M/L=10. An interesting follow-up experiment would be to back the cluster up along its orbit to look at its previous passage through the Galactic plane, to see what kind of object it might have been at earlier times.

  17. Search for Carbon-Rich Asymptotic Giant Branch Stars in Milky Way Globular Clusters

    NASA Astrophysics Data System (ADS)

    Indahl, Briana; Pessev, P.

    2014-01-01

    From our current understanding of stellar evolution, it would not be expected to find carbon rich asymptotic giant branch (AGB) stars in Milky Way globular clusters. Due to the low metallicity of the population II stars making up the globular clusters and their age, stars large enough to fuse carbon should have already evolved off of the asymptotic giant branch. Recently, however, there have been serendipitous discoveries of these types of stars. Matsunaga et al. (2006) discovered a Mira variable in the globular cluster Lynga 7. It was later confirmed by Feast et al. (2012) that the star is a member of the cluster and must be a product of a stellar merger. In the same year, Sharina et al. (2012) discovered a carbon star in the low metallicity globular cluster NGC6426 and reports it to be a CH star. Five more of these types of stars have been made as serendipitous discoveries and have been reported by Harding (1962), Dickens (1972), Cote et al. (1997), and Van Loon (2007). The abundance of these types of carbon stars in Milky Way globular clusters has been unknown because the discovery of these types of objects has only ever been a serendipitous discovery. These stars could have been easily overlooked in the past as they are outside the typical parameter space of galactic globular clusters. Also advances in near-infrared instruments and observing techniques have made it possible to detect the fainter carbon stars in binary systems. Having an understanding of the abundances of carbon stars in galactic globular clusters will aid in the modeling of globular cluster and galaxy formation leading to a better understanding of these processes. To get an understanding of the abundances of these stars we conducted the first comprehensive search for AGB carbon stars into all Milky Way globular clusters listed in the Harris Catalog (expect for Pyxis). I have found 128 carbon star candidates using methods of comparing color magnitude diagrams of the clusters with the carbon

  18. The Age of the Inner Halo Globular Cluster NGC 6652

    NASA Technical Reports Server (NTRS)

    Chaboyer, Brian; Sarajedini, Ata; Armandroff, Taft E.

    2000-01-01

    Hubble Space Telescope (HST) (V,I) photometry has been obtained for the inner halo globular cluster NGC 6652. The photometry reaches approximately 4 mag below the turn-off and includes a well populated horizontal branch (HB). This cluster is located close to the Galactic center at RGC approximately equal to 2.0 kpc with a reddening of E(V-I) = 0.15 +/- 0.02 and has a metallicity of [Fe/H] approximately equal to -0.85. Based upon DELTA V (sup SGB) (sub HB), NGC 6652 is 11.7 plus or minus 1.6 Gyr old. Using A HB precise differential ages for 47 Tuc (a thick disk globular), M107 and NGC 1851 (both halo clusters) were obtained. NGC 6652 appears to be the same age as 47 Tuc and NGC 1851 (within +/- 1.2 Gyr), while there is a slight suggestion that M107 is older than NGC 6652 by 2.3 +/- 1.5 Gyr. As this is a less than 2 sigma result, this issue needs to be investigated further before a definitive statement regarding the relative age of M107 and NGC 6652 may be made.

  19. Globular Clusters as Cradles of Life and Advanced Civilizations

    NASA Astrophysics Data System (ADS)

    Di Stefano, R.; Ray, A.

    2016-08-01

    Globular clusters are ancient stellar populations in compact dense ellipsoids. There is no star formation and there are no core-collapse supernovae, but several lines of evidence suggest that globular clusters are rich in planets. If so, and if advanced civilizations can develop there, then the distances between these civilizations and other stars would be far smaller than typical distances between stars in the Galactic disk, facilitating interstellar communication and travel. The potent combination of long-term stability and high stellar densities provides a globular cluster opportunity. Yet the very proximity that promotes interstellar travel also brings danger, as stellar interactions can destroy planetary systems. We find, however, that large portions of many globular clusters are “sweet spots,” where habitable-zone planetary orbits are stable for long times. Globular clusters in our own and other galaxies are, therefore, among the best targets for searches for extraterrestrial intelligence (SETI). We use the Drake equation to compare the likelihood of advanced civilizations in globular clusters to that in the Galactic disk. We also consider free-floating planets, since wide-orbit planets can be ejected to travel through the cluster. Civilizations spawned in globular clusters may be able to establish self-sustaining outposts, reducing the probability that a single catastrophic event will destroy the civilization. Although individual civilizations may follow different evolutionary paths, or even be destroyed, the cluster may continue to host advanced civilizations once a small number have jumped across interstellar space. Civilizations residing in globular clusters could therefore, in a sense, be immortal.

  20. Bayesian Analysis of Multiple Populations in Galactic Globular Clusters

    NASA Astrophysics Data System (ADS)

    Wagner-Kaiser, Rachel A.; Sarajedini, Ata; von Hippel, Ted; Stenning, David; Piotto, Giampaolo; Milone, Antonino; van Dyk, David A.; Robinson, Elliot; Stein, Nathan

    2016-01-01

    We use GO 13297 Cycle 21 Hubble Space Telescope (HST) observations and archival GO 10775 Cycle 14 HST ACS Treasury observations of Galactic Globular Clusters to find and characterize multiple stellar populations. Determining how globular clusters are able to create and retain enriched material to produce several generations of stars is key to understanding how these objects formed and how they have affected the structural, kinematic, and chemical evolution of the Milky Way. We employ a sophisticated Bayesian technique with an adaptive MCMC algorithm to simultaneously fit the age, distance, absorption, and metallicity for each cluster. At the same time, we also fit unique helium values to two distinct populations of the cluster and determine the relative proportions of those populations. Our unique numerical approach allows objective and precise analysis of these complicated clusters, providing posterior distribution functions for each parameter of interest. We use these results to gain a better understanding of multiple populations in these clusters and their role in the history of the Milky Way.Support for this work was provided by NASA through grant numbers HST-GO-10775 and HST-GO-13297 from the Space Telescope Science Institute, which is operated by AURA, Inc., under NASA contract NAS5-26555. This material is based upon work supported by the National Aeronautics and Space Administration under Grant NNX11AF34G issued through the Office of Space Science. This project was supported by the National Aeronautics & Space Administration through the University of Central Florida's NASA Florida Space Grant Consortium.

  1. CENTRAL ROTATIONS OF MILKY WAY GLOBULAR CLUSTERS

    SciTech Connect

    Fabricius, Maximilian H.; Rukdee, Surangkhana; Saglia, Roberto P.; Bender, Ralf; Hopp, Ulrich; Thomas, Jens; Williams, Michael J.; Noyola, Eva; Opitsch, Michael

    2014-06-01

    Most Milky Way globular clusters (GCs) exhibit measurable flattening, even if on a very low level. Both cluster rotation and tidal fields are thought to cause this flattening. Nevertheless, rotation has only been confirmed in a handful of GCs, based mostly on individual radial velocities at large radii. We are conducting a survey of the central kinematics of Galactic GCs using the new Integral Field Unit instrument VIRUS-W. We detect rotation in all 11 GCs that we have observed so far, rendering it likely that a large majority of the Milky Way GCs rotate. We use published catalogs of GCs to derive central ellipticities and position angles. We show that in all cases where the central ellipticity permits an accurate measurement of the position angle, those angles are in excellent agreement with the kinematic position angles that we derive from the VIRUS-W velocity fields. We find an unexpected tight correlation between central rotation and outer ellipticity, indicating that rotation drives flattening for the objects in our sample. We also find a tight correlation between central rotation and published values for the central velocity dispersion, most likely due to rotation impacting the old dispersion measurements.

  2. Central Rotations of Milky Way Globular Clusters

    NASA Astrophysics Data System (ADS)

    Fabricius, Maximilian H.; Noyola, Eva; Rukdee, Surangkhana; Saglia, Roberto P.; Bender, Ralf; Hopp, Ulrich; Thomas, Jens; Opitsch, Michael; Williams, Michael J.

    2014-06-01

    Most Milky Way globular clusters (GCs) exhibit measurable flattening, even if on a very low level. Both cluster rotation and tidal fields are thought to cause this flattening. Nevertheless, rotation has only been confirmed in a handful of GCs, based mostly on individual radial velocities at large radii. We are conducting a survey of the central kinematics of Galactic GCs using the new Integral Field Unit instrument VIRUS-W. We detect rotation in all 11 GCs that we have observed so far, rendering it likely that a large majority of the Milky Way GCs rotate. We use published catalogs of GCs to derive central ellipticities and position angles. We show that in all cases where the central ellipticity permits an accurate measurement of the position angle, those angles are in excellent agreement with the kinematic position angles that we derive from the VIRUS-W velocity fields. We find an unexpected tight correlation between central rotation and outer ellipticity, indicating that rotation drives flattening for the objects in our sample. We also find a tight correlation between central rotation and published values for the central velocity dispersion, most likely due to rotation impacting the old dispersion measurements. This Letter includes data taken at The McDonald Observatory of The University of Texas at Austin.

  3. Soar adaptive optics observations of the globular cluster NGC 6496

    SciTech Connect

    Fraga, Luciano; Kunder, Andrea; Tokovinin, Andrei E-mail: lfraga@lna.br

    2013-06-01

    We present high-quality BVRI photometric data in the field of globular cluster NGC 6496 obtained with the SOAR Telescope Adaptive Module (SAM). Our observations were collected as part of the ongoing SAM commissioning. The distance modulus and cluster color excess as found from the red clump are (m – M) {sub V} = 15.71 ± 0.02 mag and E(V – I) = 0.28 ± 0.02 mag. An age of 10.5 ± 0.5 Gyr is determined from the difference in magnitude between the red clump and the subgiant branch. These parameters are in excellent agreement with the values derived from isochrone fitting. From the color-magnitude diagram we find a metallicity of [Fe/H] = –0.65 dex and hence support a disk classification for NGC 6496. The complete BVRI data set for NGC 6469 is made available in the electronic edition of the Journal.

  4. Early nucleosynthesis and chemical abundances of stars in globular clusters.

    NASA Astrophysics Data System (ADS)

    Gratton, R. G.

    This cycle of lectures presents a self consistent sketch of current understanding about chemcial composition of globular clusters and its aftermaths. The first two lectures give basic about nucleosynthesis, chemical models, and abundance determinations. Main results for globular clusters are presented in the next two lectures. In the final lecture the author reviews various indices used to derive abundances from photometry and low dispersion spectroscopy.

  5. Dynamical evolution of globular-cluster systems in clusters of galaxies

    SciTech Connect

    Muzzio, J.C.

    1987-04-01

    The dynamical processes that affect globular-cluster systems in clusters of galaxies are analyzed. Two-body and impulsive approximations are utilized to study dynamical friction, drag force, tidal stripping, tidal radii, globular-cluster swapping, tidal accretion, and galactic cannibalism. The evolution of galaxies and the collision of galaxies are simulated numerically; the steps involved in the simulation are described. The simulated data are compared with observations. Consideration is given to the number of galaxies, halo extension, location of the galaxies, distribution of the missing mass, nonequilibrium initial conditions, mass dependence, massive central galaxies, globular-cluster distribution, and lost globular clusters. 116 references.

  6. A COMPARISON BETWEEN THE HALF-LIGHT RADII, LUMINOSITIES, AND UBV COLORS OF GLOBULAR CLUSTERS IN M31 AND THE GALAXY

    SciTech Connect

    Van den Bergh, Sidney

    2010-10-15

    The Milky Way system and the Andromeda galaxy experienced radically different evolutionary histories. Nevertheless, it is found that these two galaxies ended up with globular cluster systems in which individual clusters have indistinguishable distributions of half-light radii. Furthermore, globulars in both M31 and the Galaxy are found to have radii that are independent of their luminosities. In this respect, globular clusters differ drastically from early-type galaxies in which half-light radius and luminosity are tightly correlated. Metal-rich globular clusters in M31 occupy a slightly larger volume than do those in the Galaxy. The specific globular cluster frequency in the Andromeda galaxy is found to be significantly higher than it is in the Milky Way system. The present discussion is based on the 107 Galactic globular clusters, and 200 putative globulars in M31, for which UBV photometry was available.

  7. FORS2/VLT survey of Milky Way globular clusters. II. Fe and Mg abundances of 51 Milky Way globular clusters on a homogeneous scale

    NASA Astrophysics Data System (ADS)

    Dias, B.; Barbuy, B.; Saviane, I.; Held, E. V.; Da Costa, G. S.; Ortolani, S.; Gullieuszik, M.; Vásquez, S.

    2016-05-01

    Context. Globular clusters trace the formation and evolution of the Milky Way and surrounding galaxies, and outline their chemical enrichment history. To accomplish these tasks it is important to have large samples of clusters with homogeneous data and analysis to derive kinematics, chemical abundances, ages and locations. Aims: We obtain homogeneous metallicities and α-element enhancement for 51 Galactic bulge, disc, and halo globular clusters that are among the most distant and/or highly reddened in the Galaxy's globular cluster system. We also provide membership selection based on stellar radial velocities and atmospheric parameters. The implications of our results are discussed. Methods: We observed R ~ 2000 spectra in the wavelength interval 456-586 nm for over 800 red giant stars in 51 Galactic globular clusters. We applied full spectrum fitting with the code ETOILE together with libraries of observed and synthetic spectra. We compared the mean abundances of all clusters with previous work and with field stars. We used the relation between mean metallicity and horizontal branch morphology defined by all clusters to select outliers for discussion. Results: [Fe/H], [Mg/Fe], and [α/Fe] were derived in a consistent way for almost one-third of all Galactic globular clusters. We find our metallicities are comparable to those derived from high-resolution data to within σ = 0.08 dex over the interval -2.5< [Fe/H] < 0.0. Furthermore, a comparison of previous metallicity scales with our values yields σ< 0.16 dex. We also find that the distribution of [Mg/Fe] and [α/Fe] with [Fe/H] for the 51 clusters follows the general trend exhibited by field stars. It is the first time that the following clusters have been included in a large sample of homogeneous stellar spectroscopic observations and metallicity derivation: BH 176, Djorg 2, Pal 10, NGC 6426, Lynga 7, and Terzan 8. In particular, only photometric metallicities were available previously for the first three

  8. THE SIZE DIFFERENCE BETWEEN RED AND BLUE GLOBULAR CLUSTERS IS NOT DUE TO PROJECTION EFFECTS

    SciTech Connect

    Webb, Jeremy J.; Harris, William E.; Sills, Alison

    2012-11-10

    Metal-rich (red) globular clusters in massive galaxies are, on average, smaller than metal-poor (blue) globular clusters. One of the possible explanations for this phenomenon is that the two populations of clusters have different spatial distributions. We test this idea by comparing clusters observed in unusually deep, high signal-to-noise images of M87 with a simulated globular cluster population in which the red and blue clusters have different spatial distributions, matching the observations. We compare the overall distribution of cluster effective radii as well as the relationship between effective radius and galactocentric distance for both the observed and simulated red and blue sub-populations. We find that the different spatial distributions does not produce a significant size difference between the red and blue sub-populations as a whole or at a given galactocentric distance. These results suggest that the size difference between red and blue globular clusters is likely due to differences during formation or later evolution.

  9. Impact of the Low Solar Abundance on the Ages of Globular Clusters

    NASA Astrophysics Data System (ADS)

    Yi, Sukyoung K.; Kim, Yong-Cheol

    2010-08-01

    We present the result of our investigation on the impact of the low Solar abundance of Asplund and collaborators (2004) on the derived ages for the oldest star clusters based on isochrone fittings. We have constructed new stellar models and corresponding isochrones using this new solar mixture with a proper Solar calibration. We have found that the use of the Asplund et al. (2004) metallicity causes the typical ages for old globular clusters in the Milky Way to be increased roughly by 10%. Although this may appear small, it has a significant impact on the interpretation for the formation epoch of Milky Way globular clusters.The tet{asp04} abundance may not necessarily threaten the current concordance cosmology but would suggest that Milky Way globular clusters formed before the reionization epoch and before the main galaxy body starts to build up. This is in contrast to the current understanding on the galaxy formation.

  10. Globular clusters in the halo of M31

    SciTech Connect

    Racine, R. Canada-France-Hawaii Telescope Corp., Kamuela, HI )

    1991-03-01

    The CFHT was used to obtain high-resolution CCD images of 82 cluster candidates in the halo of M31. These data, combined with radial velocities which cover an additional 27 candidates, are used to compile a catalog of 51 bona fide M31 halo globulars. The other candidates are found to be background galaxies (54) and field stars (4). The cluster sample appears to be incomplete for V greater than 18. The projected distribution of globulars follows an 1/r-squared law for r(kpc) between values of 6 and 22 and then drops faster, suggesting a cutoff at about 40 kpc. These trends are similar to those for globular clusters in the Milky Way halo. The total populaton of globulars in M31 is estimated to be larger than in the Milky Way by a factor of 1.8 + or - 0.3. 30 refs.

  11. Chemical abundances in the old LMC globular cluster Hodge 11

    NASA Astrophysics Data System (ADS)

    Mateluna, R.; Geisler, D.; Villanova, S.; Carraro, G.; Grocholski, A.; Sarajedini, A.; Cole, A.; Smith, V.

    2012-12-01

    Context. The study of globular clusters is one of the most powerful ways to learn about a galaxy's chemical evolution and star formation history. They preserve a record of chemical abundances at the time of their formation and are relatively easy to age date. The most detailed knowledge of the chemistry of a star is given by high resolution spectroscopy, which provides accurate abundances for a wide variety of elements, yielding a wealth of information on the various processes involved in the cluster's chemical evolution. Aims: We studied red giant branch (RGB) stars in an old, metal-poor globular cluster of the Large Magellanic Cloud (LMC), Hodge 11 (H11), in order to measure as many elements as possible. The goal is to compare its chemical trends to those in the Milky Way halo and dwarf spheroidal galaxies in order to help understand the formation history of the LMC and our own Galaxy. Methods: We have obtained high resolution VLT/FLAMES spectra of eight RGB stars in H11. The spectral range allowed us to measure a variety of elements, including Fe, Mg, Ca, Ti, Si, Na, O, Ni, Cr, Sc, Mn, Co, Zn, Ba, La, Eu and Y. Results: We derived a mean [Fe/H] = -2.00 ± 0.04, in the middle of previous determinations. We found low [α/Fe] abundances for our targets, more comparable to values found in dwarf spheroidal galaxies than in the Galactic halo, suggesting that if H11 is representative of its ancient populations then the LMC does not represent a good halo building block. Our [Ca/Fe] value is about 0.3 dex less than that of halo stars used to calibrate the Ca IR triplet technique for deriving metallicity. A hint of a Na abundance spread is observed. Its stars lie at the extreme high O, low Na end of the Na:O anti-correlation displayed by Galactic and LMC globular clusters. Based on observations collected at the European Organisation for Astronomical Research in the Southern Hemisphere, Chile (proposal ID 082.B-0458).Table 4 is only available in electronic form at http://www.aanda.org

  12. CCD photometry of the globular cluster NGC 5897 - Morphology of the color-magnitude diagram

    NASA Technical Reports Server (NTRS)

    Sarajedini, Ata

    1992-01-01

    The paper presents CCD photometry in the B and V bands of the Galactic globular cluster NGC 5897. The color-magnitude diagram (CMD) obtained for this cluster is used to examine the properties of the cluster and to compare the NGC 5897 to the well-known globular cluster M3. It was found that the metallicity of the NGC 5897 is in the range of the metallicity of M3 and that the age of NGC 5897 is about 2 Gyr greater than that of M3. The CMD for NGC 5897 also reveals a significant population of blue straggler stars (BSS) more massive than the cluster subgiant branch stars. A pseudomain sequence is constructed for NGC 5897 and the previously studied (Sarajedini and Da Costa, 1991) global cluster 6101, which includes the BSS and extends to the faintest regions of the unevolved main sequence.

  13. THE TIMING OF NINE GLOBULAR CLUSTER PULSARS

    SciTech Connect

    Lynch, Ryan S.; Freire, Paulo C. C.; Ransom, Scott M.; Jacoby, Bryan A. E-mail: pfreire@mpifr-bonn.mpg.de E-mail: bryan.jacoby@gmail.com

    2012-02-01

    We have used the Robert C. Byrd Green Bank Telescope to time nine previously known pulsars without published timing solutions in the globular clusters (GCs) M62, NGC 6544, and NGC 6624. We have full timing solutions that measure the spin, astrometric, and (where applicable) binary parameters for six of these pulsars. The remaining three pulsars (reported here for the first time) were not detected enough to establish solutions. We also report our timing solutions for five pulsars with previously published solutions, and find good agreement with other authors, except for PSR J1701-3006B in M62. Gas in this system is probably responsible for the discrepancy in orbital parameters, and we have been able to measure a change in the orbital period over the course of our observations. Among the pulsars with new solutions we find several binary pulsars with very low mass companions (members of the so-called 'black widow' class) and we are able to place constraints on the mass-to-light ratio in two clusters. We confirm that one of the pulsars in NGC 6624 is indeed a member of the rare class of non-recycled pulsars found in GCs. We have also measured the orbital precession and Shapiro delay for a relativistic binary in NGC 6544. If we assume that the orbital precession can be described entirely by general relativity, which is likely, we are able to measure the total system mass (2.57190(73) M{sub Sun }) and companion mass (1.2064(20) M{sub Sun }), from which we derive the orbital inclination (sin i = 0.9956(14)) and the pulsar mass (1.3655(21) M{sub Sun }), the most precise such measurement ever obtained for a millisecond pulsar. The companion is the most massive known around a fully recycled pulsar.

  14. Galactic globular cluster 47 Tucanae: new ties between the chemical and dynamical evolution of globular clusters?

    NASA Astrophysics Data System (ADS)

    Kučinskas, A.; Dobrovolskas, V.; Bonifacio, P.

    2014-08-01

    Context. It is generally accepted today that Galactic globular clusters (GGCs) consist of at least two generations of stars that are different in their chemical composition and perhaps age. However, knowledge about the kinematical properties of these stellar generations, which may provide important information for constraining evolutionary scenarios of the GGCs, is still limited. Aims: We study the connections between chemical and kinematical properties of different stellar generations in the Galactic globular cluster 47 Tuc. Methods: To achieve this goal, we used abundances of Li, O, and Na determined in 101 main sequence turn-off (TO) stars with the aid of 3D hydrodynamical model atmospheres and NLTE abundance analysis methodology. We divided our sample TO stars into three groups according to their position in the [Li/Na] - [Na/O] plane to study their spatial distribution and kinematical properties. Results: We find that there are statistically significant radial dependencies of lithium and oxygen abundances, A(Li) and A(O), as well as that of [Li/Na] abundance ratio. Our results show that first-generation stars are less centrally concentrated and dynamically hotter than stars belonging to subsequent generations. We also find a significant correlation between the velocity dispersion and O and Na abundance, and between the velocity dispersion and the [Na/O] abundance ratio.

  15. Globular clusters in the inner regions of NGC 5128 (CENTAURUS A)

    SciTech Connect

    Minniti, D. |; Alonso, M.V.; Goudfrooij, P.; Jablonka, P.; Meylan, G.

    1996-08-01

    We have identified 26 new globular cluster candidates in the inner 3 kpc of NGC 5128 (Centaurus A), the nearest known large galaxy that is the probable product of a merger. The clusters are selected on the basis of their structural parameters (observed core diameters and ellipticities), as measured from archival Wide Field Planetary Camera (WFPC) {ital Hubble} {ital Space} {ital Telescope} ({ital HST}) images. IR photometry obtained with IRAC2B at the ESO/MPI 2.2 m telescope is combined with the optical HST photometry. Most of these clusters have normal colors typical of old globular clusters like those found in the Milky Way and M31. We estimate their metal abundances based on the {ital R}{minus}{ital K}{sub 0} color, confirming the existence of a metallicity gradient in the inner regions of NGC 5128. The presence of metal-rich globular clusters suggests that one of the colliding galaxies was a bulge-dominated galaxy ({ital E} or early {ital S}). A few clusters have colors and magnitudes similar to intermediate-age clusters containing carbon stars in the Magellanic Clouds. If the intermediate-age clusters were formed during a merger, then this episode must have occurred a few gigayears ago. Alternatively, we are looking at the cluster members of one of the colliding galaxies, which would then have been a late-type disk galaxy. {copyright} {ital 1996 The American Astronomical Society.}

  16. NO HEAVY-ELEMENT DISPERSION IN THE GLOBULAR CLUSTER M92

    SciTech Connect

    Cohen, Judith G.

    2011-10-20

    Although there have been recent claims that there is a large dispersion in the abundances of the heavy neutron capture elements in the old Galactic globular cluster M92, we show that the measured dispersion for the absolute abundances of four of the rare earth elements within a sample of 12 luminous red giants in M92 ({<=}0.07 dex) does not exceed the relevant sources of uncertainty. As expected from previous studies, the heavy elements show the signature of the r-process. Their abundance ratios are essentially identical to those of M30, another nearby globular cluster of similar metallicity.

  17. THE GLOBULAR CLUSTER MASS FUNCTION AS A REMNANT OF VIOLENT BIRTH

    SciTech Connect

    Elmegreen, Bruce G.

    2010-04-01

    The log-normal shape of the mass function for metal-poor halo globular clusters is proposed to result from an initial M {sup -2} power law modified rapidly by evaporation, collisions with clouds, and mutual cluster interactions in the dense environment of a redshift z {approx} 5-15 disk galaxy. Galaxy interactions subsequently spray these clusters into the galaxy group environment, where they fall into other growing galaxies and populate their halos. Clusters forming later in z {approx} 2-5 galaxies, and those formed during major mergers, produce metal-rich globulars. Monte Carlo models of evolving cluster populations demonstrate the early formation of a log-normal mass function for typical conditions in high-redshift galaxies.

  18. MANGANESE ABUNDANCES IN THE GLOBULAR CLUSTER {omega} CENTAURI

    SciTech Connect

    Cunha, Katia; Smith, Verne V.; Bergemann, Maria; Suntzeff, Nicholas B.; Lambert, David L.

    2010-07-01

    We present manganese abundances in 10 red giant members of the globular cluster {omega} Centauri; eight stars are from the most metal-poor population (RGB MP and RGB MInt1) while two targets are members of the more metal-rich groups (RGB MInt2 and MInt3). This is the first time Mn abundances have been studied in this peculiar stellar system. The LTE values of [Mn/Fe] in {omega} Cen overlap those of Milky Way stars in the metal-poor {omega} Cen populations ([Fe/H] {approx}-1.5 to -1.8), however unlike what is observed in Milky Way halo and disk stars, [Mn/Fe] declines in the two more metal-rich RGB MInt2 and MInt3 targets. Non-LTE calculations were carried out in order to derive corrections to the LTE Mn abundances. The non-LTE results for {omega} Cen in comparison with the non-LTE [Mn/Fe] versus [Fe/H] trend obtained for the Milky Way confirm and strengthen the conclusion that the manganese behavior in {omega} Cen is distinct. These results suggest that low-metallicity supernovae (with metallicities {<=} -2) of either Type II or Type Ia dominated the enrichment of the more metal-rich stars in {omega} Cen. The dominance of low-metallicity stars in the chemical evolution of {omega} Cen has been noted previously in the s-process elements where enrichment from metal-poor asymptotic giant branch stars is indicated. In addition, copper, which also has metallicity-dependent yields, exhibits lower values of [Cu/Fe] in the RGB MInt2 and MInt3 {omega} Cen populations.

  19. APOGEE chemical abundances of globular cluster giants in the inner Galaxy

    NASA Astrophysics Data System (ADS)

    Schiavon, Ricardo P.; Johnson, Jennifer A.; Frinchaboy, Peter M.; Zasowski, Gail; Mészáros, Szabolcs; García-Hernández, D. A.; Cohen, Roger E.; Tang, Baitian; Villanova, Sandro; Geisler, Douglas; Beers, Timothy C.; Fernández-Trincado, J. G.; García Pérez, Ana E.; Lucatello, Sara; Majewski, Steven R.; Martell, Sarah L.; O'Connell, Robert W.; Prieto, Carlos Allende; Bizyaev, Dmitry; Carrera, Ricardo; Lane, Richard R.; Malanushenko, Elena; Malanushenko, Viktor; Muñoz, Ricardo R.; Nitschelm, Christian; Oravetz, Daniel; Pan, Kaike; Roman-Lopes, Alexandre; Schultheis, Matthias; Simmons, Audrey

    2017-04-01

    We report chemical abundances obtained by Sloan Digital Sky Survey (SDSS)-III/Apache Point Observatory Galactic Evolution Experiment for giant stars in five globular clusters located within 2.2 kpc of the Galactic Centre. We detect the presence of multiple stellar populations in four of those clusters (NGC 6553, NGC 6528, Terzan 5 and Palomar 6) and find strong evidence for their presence in NGC 6522. All clusters with a large enough sample present a significant spread in the abundances of N, C, Na and Al, with the usual correlations and anticorrelations between various abundances seen in other globular clusters. Our results provide important quantitative constraints on theoretical models for self-enrichment of globular clusters, by testing their predictions for the dependence of yields of elements such as Na, N, C and Al on metallicity. They also confirm that, under the assumption that field N-rich stars originate from globular cluster destruction, they can be used as tracers of their parental systems in the high-metallicity regime.

  20. Astronomers Ponder Lack of Planets in Globular Cluster

    NASA Technical Reports Server (NTRS)

    2000-01-01

    This videotape has seven segments, discussing and showing the evidence for the proposition that the galactic clusters do not have many planets. Specifically the segments show: (1) Dr. Ron Gilliland discussing the process of looking for "Hot Jupiters" (i.e., planets about the size of Jupiter, which are hotter than Jupiter) in the globular clusters, (2) a zoom into 47 Tucanae globular cluster, (3) an animation of a planet passing between the host star and the earth with a brightness graph, (4) the same animation as before without the graph, (5) Ron Gilliland of the Space Telescope Science Institute (STScI) discussing possible interpretations of his findings in the 47 Tucanae globular cluster, (6) Ron Gilliland examining the images of 47 Tucanae, and (7) images of 47 Tucanae watching for variations in brightness.

  1. Pulsar-irradiated stars in dense globular clusters

    NASA Technical Reports Server (NTRS)

    Tavani, Marco

    1992-01-01

    We discuss the properties of stars irradiated by millisecond pulsars in 'hard' binaries of dense globular clusters. Irradiation by a relativistic pulsar wind as in the case of the eclipsing millisecond pulsar PSR 1957+20 alter both the magnitude and color of the companion star. Some of the blue stragglers (BSs) recently discovered in dense globular clusters can be irradiated stars in binaries containing powerful millisecond pulsars. The discovery of pulsar-driven orbital modulations of BS brightness and color with periods of a few hours together with evidence for radio and/or gamma-ray emission from BS binaries would valuably contribute to the understanding of the evolution of collapsed stars in globular clusters. Pulsar-driven optical modulation of cluster stars might be the only observable effect of a new class of binary pulsars, i.e., hidden millisecond pulsars enshrouded in the evaporated material lifted off from the irradiated companion star.

  2. RETENTION OF STELLAR-MASS BLACK HOLES IN GLOBULAR CLUSTERS

    SciTech Connect

    Morscher, Meagan; Umbreit, Stefan; Farr, Will M.; Rasio, Frederic A. E-mail: s-umbreit@northwestern.edu E-mail: rasio@northwestern.edu

    2013-01-20

    Globular clusters should be born with significant numbers of stellar-mass black holes (BHs). It has been thought for two decades that very few of these BHs could be retained through the cluster lifetime. With masses {approx}10 M{sub Sun }, BHs are {approx}20 times more massive than an average cluster star. They segregate into the cluster core, where they may eventually decouple from the remainder of the cluster. The small-N core then evaporates on a short timescale. This is the so-called Spitzer instability. Here we present the results of a full dynamical simulation of a globular cluster containing many stellar-mass BHs with a realistic mass spectrum. Our Monte Carlo simulation code includes detailed treatments of all relevant stellar evolution and dynamical processes. Our main finding is that old globular clusters could still contain many BHs at present. In our simulation, we find no evidence for the Spitzer instability. Instead, most of the BHs remain well mixed with the rest of the cluster, with only the innermost few tens of BHs segregating significantly. Over the 12 Gyr evolution, fewer than half of the BHs are dynamically ejected through strong binary interactions in the cluster core. The presence of BHs leads to long-term heating of the cluster, ultimately producing a core radius on the high end of the distribution for Milky Way globular clusters (and those of other galaxies). A crude extrapolation from our model suggests that the BH-BH merger rate from globular clusters could be comparable to the rate in the field.

  3. The SLUGGS survey: globular cluster stellar population trends from weak absorption lines in stacked spectra

    NASA Astrophysics Data System (ADS)

    Usher, Christopher; Forbes, Duncan A.; Brodie, Jean P.; Romanowsky, Aaron J.; Strader, Jay; Conroy, Charlie; Foster, Caroline; Pastorello, Nicola; Pota, Vincenzo; Arnold, Jacob A.

    2015-01-01

    As part of the SAGES Legacy Unifying Globulars and GalaxieS (SLUGGS) survey, we stack 1137 Keck DEIMOS (Deep Imaging Multi-Object Spectrograph) spectra of globular clusters from 10 galaxies to study their stellar populations in detail. The stacked spectra have median signal-to-noise ratios of ˜90 Å-1. Besides the calcium triplet, we study weaker sodium, magnesium, titanium and iron lines as well as the Hα and higher order Paschen hydrogen lines. In general, the stacked spectra are consistent with old ages and a Milky Way-like initial mass function. However, we see different metal line index strengths at fixed colour and magnitude, and differences in the calcium triplet-colour relation from galaxy to galaxy. We interpret this as strong evidence for variations in the globular cluster colour-metallicity relation between galaxies. Two possible explanations for the colour-metallicity relation variations are that the average ages of globular clusters vary from galaxy to galaxy or that the average abundances of light elements (i.e. He, C, N and O) differ between galaxies. Stacking spectra by magnitude, we see that the colours become redder and metal line indices stronger with brighter magnitudes. These trends are consistent with the previously reported `blue tilts' being mass-metallicity relations.

  4. Structural and Dynamical Properties of 29 Galactic Globular Clusters

    NASA Astrophysics Data System (ADS)

    Sohn, Young-Jong; Chun, Mun-Suk; Yim, Hong-Suh; Byun, Yong-Ik

    1997-12-01

    We use B band CCD images to investigate the surface brightness distributions and dynamical properties of 29 Galactic globular clusters. Model fits suggest that 22 clusters show King type surface brightness profiles, while 7 clusters are characterized by power law cusp profiles. For the King type clusters, concentration parameters (c = log(rt =rc)) range from 1.20 to 2.10, and core radii are 0.4 to 1.9 pc. The mean value of power law slopes of 7 cuspy clusters was estimated as ¥á = 1.011 +/- 0.065. Total masses of King type globular clusters are in the range of 1.7 x 104M to 1.0 x 106M with a mean of 1.7 x 105M . A significant positive correlation between mass and mass-to-light ratio of King type globular clusters has been confirmed with a Pearson's correlation coefficient r = 0.52 and a confidence level of 99%. Our data also confirm a linear relation between total mass and absolute magnitude of King type globular clusters.

  5. Modeling the formation of globular cluster systems in the Virgo cluster

    SciTech Connect

    Li, Hui; Gnedin, Oleg Y. E-mail: ognedin@umich.edu

    2014-11-20

    The mass distribution and chemical composition of globular cluster (GC) systems preserve fossil record of the early stages of galaxy formation. The observed distribution of GC colors within massive early-type galaxies in the ACS Virgo Cluster Survey (ACSVCS) reveals a multi-modal shape, which likely corresponds to a multi-modal metallicity distribution. We present a simple model for the formation and disruption of GCs that aims to match the ACSVCS data. This model tests the hypothesis that GCs are formed during major mergers of gas-rich galaxies and inherit the metallicity of their hosts. To trace merger events, we use halo merger trees extracted from a large cosmological N-body simulation. We select 20 halos in the mass range of 2 × 10{sup 12} to 7 × 10{sup 13} M {sub ☉} and match them to 19 Virgo galaxies with K-band luminosity between 3 × 10{sup 10} and 3 × 10{sup 11} L {sub ☉}. To set the [Fe/H] abundances, we use an empirical galaxy mass-metallicity relation. We find that a minimal merger ratio of 1:3 best matches the observed cluster metallicity distribution. A characteristic bimodal shape appears because metal-rich GCs are produced by late mergers between massive halos, while metal-poor GCs are produced by collective merger activities of less massive hosts at early times. The model outcome is robust to alternative prescriptions for cluster formation rate throughout cosmic time, but a gradual evolution of the mass-metallicity relation with redshift appears to be necessary to match the observed cluster metallicities. We also affirm the age-metallicity relation, predicted by an earlier model, in which metal-rich clusters are systematically several billion younger than their metal-poor counterparts.

  6. Chemical Compositions of Stars in Globular Cluster NGC 2419

    NASA Astrophysics Data System (ADS)

    Kadakia, Shimonee; Smecker-Hane, T.; Bosler, T.

    2007-05-01

    We determine the chemical abundances of 19 red giant branch stars in the Galactic globular cluster NGC 2419. Lying at a distance of 84.2 kpc and a galactocentric distance of 91.5 kpc, NGC 2419 is the fourth brightest globular cluster in the Milky Way with a total magnitude of M_V = -9.6 mag, which is significantly brighter than M_V = -7.5 mag, the typical peak of the globular cluster luminosity functions in external galaxies. Our results will give an insight of whether NGC 2419 is in fact a globular cluster or a core of a disrupted galaxy that merged with the Milky Way. We have used IRAF to reduce spectra we have taken with the DEIMOS spectrograph on the the Keck I 10-meter telescope. Using the strengths of the Ca II triplet absorption lines at approximately 8600 Angstrom, we will determine the chemical abundance of each star. If the chemical abundances differ by significantly more than the observational errors would predict then we can conclude the cluster is a remnant of the core of a galaxy that merged with the Milky Way and not a normal globular cluster, because most globular clusters formed quickly from a well mixed gas cloud, and thus their stars have nearly identical ages and chemical compositions. We gratefully acknowledge financial support from a UROP grant to SK and NSF grant AST-0307863 to TSH. These data were obtained at the Keck Observatory, operated by the California Inst. of Technology, Univ. of California and NASA and made possible by generous financial support from the W.M. Keck Foundation.

  7. An updated survey of globular clusters in M 31. II. Newly discovered bright and remote clusters

    NASA Astrophysics Data System (ADS)

    Galleti, S.; Bellazzini, M.; Federici, L.; Buzzoni, A.; Fusi Pecci, F.

    2007-08-01

    Aims:We present the first results of a large spectroscopic survey of candidate globular clusters located in the extreme outskirts of the nearby M 31 galaxy. The survey is aimed at ascertaining the nature of the selected candidates to increase the sample of confirmed M 31 clusters lying more that 2° away from the center of the galaxy. Methods: We obtained low resolution spectra (λ/Δλ ≃ 800-1300) of 48 targets selected from the Extended Source Catalogue of 2MASS, as in Galleti et al. (2005, A&A, 436, 535). The observed candidates have been robustly classified according to their radial velocity and by verifying their extended/point-source nature from ground-based optical images. We have also obtained a spectrum and a radial velocity estimate for the remote M 31 globular discovered by Martin et al. (2006b, MNRAS, 371, 1983). Results: Among the 48 observed candidates clusters we found: 35 background galaxies, 8 foreground Galactic stars, and 5 genuine remote globular clusters. One of them has been already identified independently by Mackey et al. (2007, ApJ, 655, L85), their GC1; the other four are completely new discoveries: B516, B517, B518, B519. The newly discovered clusters lie at projected distance 40 kpc ≲ R_p≲ 100 kpc from the center of M 31, and have absolute integrated magnitude -9.5 ≲ MV ≲ -7.5. For all the observed clusters we have measured the strongest Lick indices and we have obtained spectroscopic metallicity estimates. Mackey-GC1, Martin-GC1, B517 and B518 have spectra typical of old and metal poor globular clusters ([Fe/H] ≲ -1.3); B519 appears old but quite metal-rich ([Fe/H]~≃ -0.5); B516 presents very strong Balmer absorption lines: if this is indeed a cluster it should have a relatively young age (likely < 2 Gyr). Conclusions: The present analysis nearly doubles the number of M 31 globulars at R_p≥ 40 kpc. At odds with the Milky Way, M 31 appears to have a significant population of very bright globular clusters in its extreme

  8. Disk and Halo Globular Clusters in the Edge-On Spiral Galaxy NGC 5170

    NASA Astrophysics Data System (ADS)

    Van Der Kruit, Pieter

    1991-07-01

    The system of globular clusters of our Galaxy is known to consist of two sub-systems, the disk and halo sub-systems. The halo sub-system has metal-poor globular clusters, is at most moderately flattened and and is slowly rotating. Ths disk sub-system has more metal-rich globulars, is much flatter and has significant rotation. The latter resembles the ``thick disk' of Gilmore and Wyse. These sub-systems relate to different phases in the formation of the Galaxy; the halo sub-system to the very early phases of Population II formation and the disk-system probably to a stage much later related to disk formation or satellite capture. The structure of the globular cluster system thus contains much information about disk galaxy formation. In this project we will determine how common this phenomenon is. By mapping with WPC the distribution in an edge-on spiral we can uniquely determine the spatial relation of any disk sub-system to the thin disk, which is not possible in our Galaxy or moderately inclined systems (e.g. M31). We will use colors to discriminate between the two sub-systems, since metallicity differences predict a color-index difference in our proposed system of at least 0.6 mag. We will make parallel observations with the FOC to search for outlying clusters and dwarf companions.

  9. CHEMICAL ABUNDANCE ANTICORRELATIONS IN GLOBULAR CLUSTER STARS: THE EFFECT ON CLUSTER INTEGRATED SPECTRA

    SciTech Connect

    Coelho, P.; Percival, S. M.; Salaris, M. E-mail: smp@astro.livjm.ac.uk

    2011-06-10

    It is widely accepted that individual Galactic globular clusters harbor two coeval generations of stars, the first one born with the 'standard' {alpha}-enhanced metal mixture observed in field halo objects and the second one characterized by an anticorrelated CNONa abundance pattern overimposed on the first generation, {alpha}-enhanced metal mixture. We have investigated with appropriate stellar population synthesis models how this second generation of stars affects the integrated spectrum of a typical metal-rich Galactic globular cluster, like 47 Tuc, focusing our analysis on the widely used Lick-type indices. We find that the only indices appreciably affected by the abundance anticorrelations are Ca4227, G4300, CN{sub 1}, CN{sub 2}, and NaD. The age-sensitive Balmer line, Fe line, and the [MgFe] indices widely used to determine age, Fe, and total metallicity of extragalactic systems are largely insensitive to the second generation population. Enhanced He in second generation stars affects also the Balmer line indices of the integrated spectra, through the change of the turnoff temperature and-with the assumption that the mass-loss history of both stellar generations is the same-the horizontal branch morphology of the underlying isochrones.

  10. The Extended Globular Cluster System of NGC3923

    NASA Astrophysics Data System (ADS)

    Ahumada, Tomás; Miller, Bryan; Candlish, Graeme; McGaugh, Stacy S.; Mihos, Chris; Smith, Rory; Puzia, Thomas H.; Taylor, Matthew

    2017-01-01

    In the LambdaCMD paradigm of galaxy formation galaxy halos and their globular clusters systems build up over time by the accretion of small satellites. We can learn about this process in detail by observing systems with ongoing accretion events and comparing the data with simulations. Elliptical shell galaxies are systems that are thought to be due to ongoing or recent minor mergers. We present preliminary results of an investigation of the entire globular cluster system of the shell galaxy NGC3923 from deep DECam g and i-band imaging. Cluster candidates are selected using Principal Component Analysis of Sextractor/PSFEx parameters. We will present the 2D and radial distributions of the globular cluster candidates out to a projected radius of about 130kpc, or 26Re, making this one of the most extended cluster systems studied. We find that the bluer globular cluster candidates have a shallower radial distribution than the red cluster candidates, in agreement with many previous studies.

  11. Globular clusters as tracers of stellar bimodality in elliptical galaxies: the case of NGC 1399

    NASA Astrophysics Data System (ADS)

    Forte, Juan C.; Faifer, Favio; Geisler, Doug

    2005-02-01

    Globular cluster systems (GCSs) frequently show a bimodal distribution of cluster integrated colours. This work explores the arguments to support the idea that the same feature is shared by the diffuse stellar population of the galaxy they are associated with. The particular case of NGC 1399, one of the dominant central galaxies in the Fornax cluster, for which a new B surface brightness profile and (B-RKC) colours are presented, is discussed taking advantage of a recently published wide-field study of its GCS. The results show that the galaxy brightness profile and colour gradient, as well as the behaviour of the cumulative globular cluster specific frequency, are compatible with the presence of two dominant stellar populations, associated with the so-called `blue' and `red' globular cluster families. These globular families are characterized by different intrinsic specific frequencies (defined in terms of each stellar population): Sn= 3.3 +/- 0.3 in the case of the red globulars and Sn= 14.3 +/- 2.5 for the blue ones. We stress that this result does not necessarily conflict with recent works that point out a clear difference between the metallicity distribution of (resolved) halo stars and globulars when comparing their number statistics. The region within 0.5arcmin of the centre shows a deviation from the model profile (in both surface brightness and colour) that may be explained in terms of the presence of a bulge-like high-metallicity component. Otherwise, the model gives an excellent fit up to 12arcmin (or 66.5Kpc) from the centre, the galactocentric limit of our blue brightness profile. The inferred specific frequencies imply that, in terms of their associated stellar populations, the formation of the blue globulars took place with an efficiency about six times higher than that corresponding to their red counterparts. The similarity of the spatial distribution of the blue globulars with that inferred for dark matter, as well as with that of the X

  12. The RR Lyrae variables in the globular cluster M68

    NASA Technical Reports Server (NTRS)

    Clement, Christine M.; Ferance, Stephen; Simon, Norman R.

    1993-01-01

    New observations, made with the Helen Sawyer Hogg telescope at Las Campanas, have been analyzed in a search for double-mode pulsators (RRd stars) in the metal-poor globular cluster, Messier 68. Of the 30 stars studied, nine have been identified as RRd stars; V33, which exhibited the characteristics of an RRd star in 1950, now appears to be an RRc star. Reliable periods and period ratios have been determined for six of the RRd stars. Masses for these RRd stars, calculated from fitting formulas given by Kovacs et al. (1991), range from 0.75 to 0.90 solar mass, depending on the assumed luminosity and metal abundance. These masses are in the same range as those for the RRd stars in M 15, whose RRd sample resembles that of M68 very closely. Fourier parameters determined for the light curves of the M68 variables show that the RRc stars in the two clusters are also very similar. In particular, on the plot of phase parameter phi sub 31 with period, the M15 and M68 RRc samples are virtually indistinguishable. A comparison of the new M68 observations with observations made 40 yr ago shows that the periods of some of the stars have changed, but the 40 yr interval is too short for detecting period changes caused by evolutionary effects.

  13. Study of Remote Globular Cluster Satellites of M87

    NASA Astrophysics Data System (ADS)

    Sahai, Arushi; Shao, Andrew; Toloba, Elisa; Guhathakurta, Puragra; Peng, Eric W.; Zhang, Hao

    2017-01-01

    We present a sample of “orphan” globular clusters (GCs) with previously unknown parent galaxies, which we determine to be remote satellites of M87, a massive elliptical galaxy at the center of the Virgo Cluster of Galaxies. Because GCs were formed in the early universe along with their original parent galaxies, which were cannibalized by massive galaxies such as M87, they share similar age and chemical properties. In this study, we first confirm that M87 is the adoptive parent galaxy of our orphan GCs using photometric and spectroscopic data to analyze spatial and velocity distributions. Next, we increase the signal-to-noise ratio of our samples’ spectra through a process known as coaddition. We utilize spectroscopic absorption lines to determine the age and metallicity of our orphan GCs through comparison to stellar population synthesis models, which we then relate to the GCs’ original parent galaxies using a mass-metallicity relation. Our finding that remote GCs of M87 likely developed in galaxies with ~1010 solar masses implies that M87’s outer halo is formed of relatively massive galaxies, serving as important parameters for developing theories about the formation and evolution of massive galaxies.This research was funded in part by NASA/STScI and the National Science Foundation. Most of this work was carried out by high school students working under the auspices of the Science Internship Program at UC Santa Cruz.

  14. HST Imaging of the Globular Clusters in the Formax Cluster: Color and Luminosity Distributions

    NASA Technical Reports Server (NTRS)

    Grillmair, C. J.; Forbes, D. A.; Brodie, J.; Elson, R.

    1998-01-01

    We examine the luminosity and B - I color distribution of globular clusters for three early-type galaxies in the Fornax cluster using imaging data from the Wide Field/Planetary Camera 2 on the Hubble Space Telescope.

  15. Co-evolution of galactic nuclei and globular cluster systems

    SciTech Connect

    Gnedin, Oleg Y.; Ostriker, Jeremiah P.; Tremaine, Scott

    2014-04-10

    We revisit the hypothesis that dense galactic nuclei are formed from inspiraling globular clusters. Recent advances in the understanding of the continuous formation of globular clusters over cosmic time and the concurrent evolution of the galaxy stellar distribution allow us to construct a simple model that matches the observed spatial and mass distributions of clusters in the Galaxy and the giant elliptical galaxy M87. In order to compare with observations, we model the effects of dynamical friction and dynamical evolution, including stellar mass loss, tidal stripping of stars, and tidal disruption of clusters by the growing galactic nucleus. We find that inspiraling globular clusters form a dense central structure, with mass and radius comparable to the typical values in observed nuclear star clusters (NSCs) in late-type and low-mass early-type galaxies. The density contrast associated with the NSC is less pronounced in giant elliptical galaxies. Our results indicate that the NSC mass as a fraction of mass of the galaxy stellar spheroid scales as M{sub NSC}/M{sub ∗}≈0.0025 M{sub ∗,11}{sup −0.5}. Thus disrupted globular clusters could contribute most of the mass of NSCs in galaxies with stellar mass below 10{sup 11} M {sub ☉}. The inner part of the accumulated cluster may seed the growth of a central black hole via stellar dynamical core collapse, thereby relieving the problem of how to form luminous quasars at high redshift. The seed black hole may reach ∼10{sup 5} M {sub ☉} within ≲ 1 Gyr of the beginning of globular cluster formation.

  16. MOCK OBSERVATIONS OF BLUE STRAGGLERS IN GLOBULAR CLUSTER MODELS

    SciTech Connect

    Sills, Alison; Glebbeek, Evert; Chatterjee, Sourav; Rasio, Frederic A. E-mail: e.glebbeek@astro.ru.nl E-mail: rasio@northwestern.edu

    2013-11-10

    We created artificial color-magnitude diagrams of Monte Carlo dynamical models of globular clusters and then used observational methods to determine the number of blue stragglers in those clusters. We compared these blue stragglers to various cluster properties, mimicking work that has been done for blue stragglers in Milky Way globular clusters to determine the dominant formation mechanism(s) of this unusual stellar population. We find that a mass-based prescription for selecting blue stragglers will select approximately twice as many blue stragglers than a selection criterion that was developed for observations of real clusters. However, the two numbers of blue stragglers are well-correlated, so either selection criterion can be used to characterize the blue straggler population of a cluster. We confirm previous results that the simplified prescription for the evolution of a collision or merger product in the BSE code overestimates their lifetimes. We show that our model blue stragglers follow similar trends with cluster properties (core mass, binary fraction, total mass, collision rate) as the true Milky Way blue stragglers as long as we restrict ourselves to model clusters with an initial binary fraction higher than 5%. We also show that, in contrast to earlier work, the number of blue stragglers in the cluster core does have a weak dependence on the collisional parameter Γ in both our models and in Milky Way globular clusters.

  17. POTASSIUM IN GLOBULAR CLUSTER STARS: COMPARING NORMAL CLUSTERS TO THE PECULIAR CLUSTER NGC 2419

    SciTech Connect

    Carretta, E.; Bragaglia, A.; Sollima, A.; Gratton, R. G.; Lucatello, S.; D'Orazi, V.; Sneden, C. E-mail: angela.bragaglia@oabo.inaf.it E-mail: raffaele.gratton@oapd.inaf.it E-mail: valentina.dorazi@mq.edu.au

    2013-05-20

    Two independent studies recently uncovered two distinct populations among giants in the distant, massive globular cluster (GC) NGC 2419. One of these populations has normal magnesium (Mg) and potassium (K) abundances for halo stars: enhanced Mg and roughly solar K. The other population has extremely depleted Mg and very enhanced K. To better anchor the peculiar NGC 2419 chemical composition, we have investigated the behavior of K in a few red giant branch stars in NGC 6752, NGC 6121, NGC 1904, and {omega} Cen. To verify that the high K abundances are intrinsic and not due to some atmospheric features in giants, we also derived K abundances in less evolved turn-off and subgiant stars of clusters 47 Tuc, NGC 6752, NGC 6397, and NGC 7099. We normalized the K abundance as a function of the cluster metallicity using 21 field stars analyzed in a homogeneous manner. For all GCs of our sample, the stars lie in the K-Mg abundance plane on the same locus occupied by the Mg-normal population in NGC 2419 and by field stars. This holds for both giants and less-evolved stars. At present, NGC 2419 seems unique among GCs.

  18. SUPERNOVAE AND THEIR EXPANDING BLAST WAVES DURING THE EARLY EVOLUTION OF GALACTIC GLOBULAR CLUSTERS

    SciTech Connect

    Tenorio-Tagle, Guillermo; Silich, Sergiy; Muñoz-Tuñón, Casiana; Cassisi, Santi E-mail: cmt@iac.es

    2015-11-20

    Our arguments deal with the early evolution of Galactic globular clusters and show why only a few of the supernovae (SNe) products were retained within globular clusters and only in the most massive cases (M ≥ 10{sup 6} M{sub ⊙}), while less massive clusters were not contaminated at all by SNe. Here, we show that SN blast waves evolving in a steep density gradient undergo blowout and end up discharging their energy and metals into the medium surrounding the clusters. This inhibits the dispersal and the contamination of the gas left over from a first stellar generation. Only the ejecta from well-centered SNe that evolve into a high-density medium available for a second stellar generation (2SG) in the most massive clusters would be retained. These are likely to mix their products with the remaining gas, eventually leading in these cases to an Fe-contaminated 2SG.

  19. DISCOVERY OF THE MOST ISOLATED GLOBULAR CLUSTER IN THE LOCAL UNIVERSE

    SciTech Connect

    Jang, In Sung; Lim, Sungsoon; Park, Hong Soo; Lee, Myung Gyoon E-mail: slim@astro.snu.ac.kr E-mail: mglee@astro.snu.ac.kr

    2012-05-20

    We report the discovery of two new globular clusters in the remote halos of M81 and M82 in the M81 Group based on Hubble Space Telescope archive images. They are brighter than typical globular clusters (M{sub V} = -9.34 mag for GC-1 and M{sub V} = -10.51 mag for GC-2), and much larger than known globular clusters with similar luminosity in the Milky Way Galaxy and M81. Radial surface brightness profiles for GC-1 and GC-2 do not show any features of tidal truncation in the outer part. They are located much farther from both M81 and M82 in the sky, compared with previously known star clusters in these galaxies. Color-magnitude diagrams of resolved stars in each cluster show a well-defined red giant branch (RGB), indicating that they are metal-poor and old. We derive a low metallicity with [Fe/H] Almost-Equal-To -2.3 and an old age {approx}14 Gyr for GC-2 from the analysis of the absorption lines in its spectrum in the Sloan Digital Sky Survey in comparison with the simple stellar population models. The I-band magnitude of the tip of the RGB for GC-2 is 0.26 mag fainter than that for the halo stars in the same field, showing that GC-2 is {approx}400 kpc behind the M81 halo along our line of sight. The deprojected distance to GC-2 from M81 is much larger than any other known globular clusters in the local universe. This shows that GC-2 is the most isolated globular cluster in the local universe.

  20. Globular Clusters at the Centre of the Fornax Cluster: Tracing Interactions Between Galaxies

    NASA Astrophysics Data System (ADS)

    Bassino, Lilia P.; Richtler, Tom; Faifer, Favio R.; Forte, Juan C.; Dirsch, Boris; Geisler, Doug; Schuberth, Ylva

    We present the combined results of two investigations: a large-scale study of the globular cluster system (GCS) around NGC 1399, the central galaxy of the Fornax cluster, and a study of the GCSs around NGC 1374, NGC 1379 and NGC 1387, three low-luminosity early-type galaxies located close to the centre of the same cluster. In both cases, the data consist of images from the wide-field MOSAIC Imager of the CTIO 4-m telescope, obtained with Washington C and Kron-Cousins R filters, which provide good metallicity resolution. The colour distributions and radial projected densities of the GCSs are analyzed. We focus on the properties of the GCSs that trace possible interaction processes between the galaxies, such as tidal stripping of globular clusters (GCs). For the blue GCs, we find tails between NGC 1399 and neighbouring galaxies in the azimuthal projected distribution, and the three low-luminosity galaxies show low specific frequencies and a low proportion of blue GCs.

  1. Understanding the Variability of the First Globular Cluster Black Hole

    NASA Astrophysics Data System (ADS)

    Maccarone, Thomas; Kundu, Arunav; Zepf, Stephen; Rhode, Katherine; Steele, Matthew

    2011-02-01

    We proposed in the most recent Chandra round for a 20 kilosecond observation of the globular cluster RZ2109 in NGC 4472, along with a Gemini spectrum of 7.2 hours in duration. This proposal is for banding of the Gemini time awarded by the Chandra TAC. This globular cluster hosts the first black hole X-ray source to be umambiguosly identified in a globular cluster. While other similarly bright globular cluster X-ray sources have been seen, this is the first with strong enough variability to rule out a superposition of bright neutron star X-ray binaries. In the past Chandra cycle, we were awarded time in Feb 2010 to observe the central region of NGC 4472, and did not detect this source which had previously been bright since at least the mid 1990s. On the other hand, our recent Gemini spectra from March 2009 indicate that the cluster was still extremely bright in emission line flux at that time. Our proposed observations with Chandra and Gemini should determine whether this source has truly turned off, in which case the optical emission should fade, or merely went through an episode of very high absorption, in which case the optical emission should change little.

  2. What has happened in the cores of globular clusters

    NASA Astrophysics Data System (ADS)

    Lightman, A. P.

    1982-12-01

    It is found that some aspects of the observed data for globular cluster cores cannot be easily explained in terms of the existing theory of dynamical evolution. It is noted that globular clusters span only a factor of 40 in core mass, while ranging over a factor of 10 to the 6th in central density, an observation that cannot be explained as a selection effect. A strong correlation is found between the central density and the distance of a cluster from the galactic center. In addition, when cluster cores are evolved backward in time in their initial conditions, using the available theory of dynamical evolution, evidence emerges that many clusters have already undergone core collapse, for which no evolutionary theory exists. It is concluded that these results indicate the incompleteness of the theory of dynamical evolution.

  3. Globular Clusters: Chemical Abundance - Integrated Colour calibration

    NASA Astrophysics Data System (ADS)

    Moyano Loyola, G.; Faifer, F. R.; Forte, J. C.

    In this work, we improve the chemical abundance - integrated colour cali- bration presented in Forte, Faifer & Geisler, 2007 (FFG07 hereafter) using a new (g-i) vs. (C-T1) colours calibration obtained from M87. Using this calibration and better values of the reddening for the galactic globulars, we found that a quadratic calibration is still enough to represent the observa- tional data, as in FFG07.

  4. Compact binaries in the globular cluster 47 Tucanae

    NASA Astrophysics Data System (ADS)

    Rivera Sandoval, Lilliana; Van Den Berg, Maureen; Heinke, Craig O.; Cohn, Haldan N.; Lugger, Phyllis M.; Freire, Paulo; Anderson, Jay; Cool, Adrienne; Grindlay, Jonanthan; Edmonds, Peter; Wijnands, Rudy; Ivanova, Natalia

    2017-01-01

    The high stellar interaction rates in globular clusters are ideal for studying the formation and evolution of compact binary stars. For this purpose, we have carried out a study of the cataclysmic variables (CVs) and millisecond pulsar (MSP) companions in the non core collapsed globular cluster 47 Tucanae. We used near-ultraviolet and optical (including H-alpha) images of the cluster obtained with the Hubble Space Telescope (HST), in combination with Chandra X-ray data.From this study we obtained the deepest measurements of the cluster CV luminosity function. We found that this luminosity function is different from those of core collapsed clusters. This result will help understanding how the stellar interactions affect the creation and destruction of CVs. I will discuss our results with respect to the models of formation and evolution of CVs, focusing on the predicted number of these binaries and their radial distribution in the cluster.I will also present the discovery of 2 likely He white dwarf (WD) companions to MSPs in the same cluster, as well as the confirmation of 2 tentative identifications. This represents a significant contribution to the total number of optical counterparts known in Galactic globular clusters so far. Based on our UV photometry and He WD cooling models we derived the ages, the masses and the bolometric luminosities for all the He WD companions. I will discuss these results and their implications in the context of the standard MSP formation scenario.

  5. SOAR Adaptive Optics Observations of the Globular Cluster NGC 6496

    NASA Astrophysics Data System (ADS)

    Fraga, Luciano; Kunder, Andrea; Tokovinin, Andrei

    2013-06-01

    We present high-quality BVRI photometric data in the field of globular cluster NGC 6496 obtained with the SOAR Telescope Adaptive Module (SAM). Our observations were collected as part of the ongoing SAM commissioning. The distance modulus and cluster color excess as found from the red clump are (m - M) V = 15.71 ± 0.02 mag and E(V - I) = 0.28 ± 0.02 mag. An age of 10.5 ± 0.5 Gyr is determined from the difference in magnitude between the red clump and the subgiant branch. These parameters are in excellent agreement with the values derived from isochrone fitting. From the color-magnitude diagram we find a metallicity of [Fe/H] = -0.65 dex and hence support a disk classification for NGC 6496. The complete BVRI data set for NGC 6469 is made available in the electronic edition of the Journal. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  6. DARK MATTER HALOS IN GALAXIES AND GLOBULAR CLUSTER POPULATIONS

    SciTech Connect

    Hudson, Michael J.; Harris, Gretchen L.; Harris, William E.

    2014-05-20

    We combine a new, comprehensive database for globular cluster populations in all types of galaxies with a new calibration of galaxy halo masses based entirely on weak lensing. Correlating these two sets of data, we find that the mass ratio η ≡ M {sub GCS}/M {sub h} (total mass in globular clusters, divided by halo mass) is essentially constant at (η) ∼ 4 × 10{sup –5}, strongly confirming earlier suggestions in the literature. Globular clusters are the only known stellar population that formed in essentially direct proportion to host galaxy halo mass. The intrinsic scatter in η appears to be at most 0.2 dex; we argue that some of this scatter is due to differing degrees of tidal stripping of the globular cluster systems between central and satellite galaxies. We suggest that this correlation can be understood if most globular clusters form at very early stages in galaxy evolution, largely avoiding the feedback processes that inhibited the bulk of field-star formation in their host galaxies. The actual mean value of η also suggests that about one-fourth of the initial gas mass present in protogalaxies collected into giant molecular clouds large enough to form massive, dense star clusters. Finally, our calibration of (η) indicates that the halo masses of the Milky Way and M31 are (1.2 ± 0.5) × 10{sup 12} M {sub ☉} and (3.9 ± 1.8) × 10{sup 12} M {sub ☉}, respectively.

  7. Possible systematic decreases in the age of globular clusters

    SciTech Connect

    Shi, X.; Schramm, D. N.; Dearborn, D. S.P.; Truran, J. W.

    1994-03-01

    The ages of globular clusters inferred from observations depends sensitively on assumptions like the initial helium abundance and the mass loss rate. A high helium abundance (e.g., Y\\approx0.28) or a mass loss rate of \\sim10^{-11}M_\\odot yr^{-1} near the main sequence turn-off region lowers the current age estimate from 14 Gyr to about 10--12 Gyr, significantly relaxing the constraints on the Hubble constant, allowing values as high as 60km/sec/Mpc for a universe with the critical density and 90km/sec/Mpc for a baryon-only universe. Possible mechanisms for the helium enhancement in globular clusters are discussed, as are arguments for an instability strip induced mass loss near the turn-off. Ages lower than 10 Gyr are not possible even with the operation of both of these mechanisms unless the initial helium abundance in globular clusters is >0.30, which would conflict with indirect measurements of helium abundances in globular clusters.

  8. BVRI CCD photometry of the globular cluster NGC 2808

    SciTech Connect

    Alcaino, G.; Liller, W.; Alvarado, F.; Wenderoth, E. )

    1990-03-01

    As a part of a continuing program, CCD color-magnitude diagrams are presented for the bright globular cluster NGC 2808 in the four colors comprising BVRI. From a comparison of four different CMDs with theoretical isochrones, an age of 16 + or - 2 Gyr is obtained, assuming a value for Fe/H near -1.3. 28 refs.

  9. Globular Cluster Candidates for Hosting a Central Black Hole

    NASA Astrophysics Data System (ADS)

    Noyola, Eva

    2009-07-01

    We are continuing our study of the dynamical properties of globular clusters and we propose to obtain surface brightness profiles for high concentration clusters. Our results to date show that the distribution of central surface brightness slopes do not conform to standard models. This has important implications for how they form and evolve, and suggest the possible presence of central intermediate-mass black holes. From our previous archival proposals {AR-9542 and AR-10315}, we find that many high concentration globular clusters do not have flat cores or steep central cusps, instead they show weak cusps. Numerical simulations suggest that clusters with weak cusps may harbor intermediate-mass black holes and we have one confirmation of this connection with omega Centauri. This cluster shows a shallow cusp in its surface brightness profile, while kinematical measurements suggest the presence of a black hole in its center. Our goal is to extend these studies to a sample containing 85% of the Galactic globular clusters with concentrations higher than 1.7 and look for objects departing from isothermal behavior. The ACS globular cluster survey {GO-10775} provides enough objects to have an excellent coverage of a wide range of galactic clusters, but it contains only a couple of the ones with high concentration. The proposed sample consists of clusters whose light profile can only be adequately measured from space-based imaging. This would take us close to completeness for the high concentration cases and therefore provide a more complete list of candidates for containing a central black hole. The dataset will also be combined with our existing kinematic measurements and enhanced with future kinematic studies to perform detailed dynamical modeling.

  10. Multiple populations in globular clusters: a theoretical point of view

    NASA Astrophysics Data System (ADS)

    Decressin, T.

    2010-12-01

    Globular clusters exhibit peculiar chemical patterns where Fe and heavy elements are constant inside a given cluster while light elements (Li to Al) show strong star-to-star variations. Besides precise photometric studies reveal that numerous globular clusters display multiple or broad main sequences, subgiant or giant branches. This peculiar chemical pattern can be explained by self-pollution of the intracluster gas occurring in the early evolution of clusters. Here the possible strong impact of fast rotating massive stars is reviewed. First providing they rotate initially fast enough they can reach the break-up velocity during the main sequence and a mechanical mass-loss will eject matter from the equator at low velocity. Rotation-induced mixing will also bring matter from the convective core to the surface. From this ejected matter loaded in H-burning material a second generation of stars will born. The chemical pattern of these second generation stars are similar to the one observed for stars in globular cluster with abundance anomalies in light elements. Then during the explosion as supernovae the massive stars will also clear the cluster of the remaining gas. If this gas expulsion process acts on short timescale it can strongly modify the dynamical properties of clusters by ejecting preferentially first generation stars.

  11. Blue Stragglers in Globular Clusters: Observations, Statistics and Physics

    NASA Astrophysics Data System (ADS)

    Knigge, Christian

    This chapter explores how we might use the observed statistics of blue stragglers in globular clusters to shed light on their formation. This means we will touch on topics also discussed elsewhere in this book, such as the discovery and implications of bimodal radial distributions and the "double sequences" of blue stragglers that have recently been found in some clusters. However, we will focus particularly on the search for a "smoking gun" correlation between the number of blue stragglers in a given globular cluster and a physical cluster parameter that would point towards a particular formation channel. As we shall see, there is little evidence for an intrinsic correlation between blue straggler numbers and stellar collision rates, even in dense cluster cores. On the other hand, there is a clear correlation between blue straggler numbers and the total (core) mass of the cluster. This would seem to point towards a formation channel involving binaries, rather than dynamical encounters. However, the correlation between blue straggler numbers and actual binary numbers—which relies on recently determined empirical binary fractions—is actually weaker than that with core mass. We explain how this surprising result may be reconciled with a binary formation channel if binary fractions depend almost uniquely on core mass. If this is actually the case, it would have significant implications for globular cluster dynamics more generally.

  12. Globular Clusters and Spur Clusters in NGC 4921, the Brightest Spiral Galaxy in the Coma Cluster

    NASA Astrophysics Data System (ADS)

    Lee, Myung Gyoon; Jang, In Sung

    2016-03-01

    We resolve a significant fraction of globular clusters (GCs) in NGC 4921, the brightest spiral galaxy in the Coma cluster. We also find a number of extended bright star clusters (star complexes) in the spur region of the arms. The latter are much brighter and bluer than those in the normal star-forming region, being as massive as 3 × 105 M⊙. The color distribution of the GCs in this galaxy is found to be bimodal. The turnover magnitudes of the luminosity functions of the blue (metal-poor) GCs (0.70 < (V - I) ≤ 1.05) in the halo are estimated V(max) = 27.11 ± 0.09 mag and I(max) = 26.21 ± 0.11 mag. We obtain similar values for NGC 4923, a companion S0 galaxy, and two Coma cD galaxies (NGC 4874 and NGC 4889). The mean value for the turnover magnitudes of these four galaxies is I(max) = 26.25 ± 0.03 mag. Adopting MI (max) = -8.56 ± 0.09 mag for the metal-poor GCs, we determine the mean distance to the four Coma galaxies to be 91 ± 4 Mpc. Combining this with the Coma radial velocity, we derive a value of the Hubble constant, H0 = 77.9 ± 3.6 km s-1 Mpc-1. We estimate the GC specific frequency of NGC 4921 to be SN = 1.29 ± 0.25, close to the values for early-type galaxies. This indicates that NGC 4921 is in the transition phase to S0s.

  13. Predictions of a population of cataclysmic variables in globular clusters

    NASA Technical Reports Server (NTRS)

    Di Stefano, R.; Rappaport, S.

    1994-01-01

    We have studied the number of cataclysmic variables (CVs) that should be active in globular clusters during the present epoch as a result of binary formation via two-body tidal capture. We predict the orbital period and luminosity distributions of CVs in globular clusters. The results arebased on Monte Carlo simulations combined with evolution calculations appropriate to each system formed during the lifetime of two specific globular clusters, omega Cen and 47 Tuc. From our study of these two clusters, which represent the range of core densities and states of mass segregation that are likely to be interesting, we extrapolate our results to the Galactic globlular cluster system. Although there is at present little direct observational evidence of CVs in globular clusters, we find that there should be a large number of active systems. We predict that there should be more than approximately 100 CVs in both 47 Tuc and omega Cen and several thousand in the Galactic globular cluster system. These numbers are based on two-body processes alone and represent a lower bound on the number of systems that may have been formed as a result of stellar interaction within globular clusters. The relation between these calculations and the paucity of optically detected CVs in globular clusters is discussed. Should future observations fail to find convincing evidence of a substantial population of cluster CVs, then the two-body tidal capture scenario is likely to be seriously constrained. Of the CVs we espect in 47 Tuc and omega Cen, approximately 45 and 20, respectively, should have accretion luminosities above 10(exp 33) ergs/s. If one utilizes a relation for converting accretion luminosity to hard X-ray luminosity that is based on observations of Galactic plane CVs, even these sources will not exhibit X-ray luminosities above 10(exp 33) ergs/s. While we cannot account directly for the most luminous subset of the low-luminosity globular cluster X-ray sources without assuming an

  14. Mass functions for globular cluster main sequences based on CCD photometry and stellar models

    NASA Astrophysics Data System (ADS)

    McClure, Robert D.; Vandenberg, Don A.; Smith, Graeme H.; Fahlman, Gregory G.; Richer, Harvey B.; Hesser, James E.; Harris, William E.; Stetson, Peter B.; Bell, R. A.

    1986-08-01

    Main-sequence luminosity functions constructed from CCD observations of globular clusters reveal a strong trend in slope with metal abundance. Theoretical luminosity functions constructed from VandenBerg and Bell's (1985) isochrones have been fitted to the observations and reveal a trend between x, the power-law index of the mass function, and metal abundance. The most metal-poor clusters require an index of about x = 2.5, whereas the most metal-rich clusters exhibit an index of x of roughly -0.5. The luminosity functions for two sparse clusters, E3 and Pal 5, are distinct from those of the more massive clusters, in that they show a turndown which is possibly a result of mass loss or tidal disruption.

  15. ACS Photometry of the Remote M31 Globular Cluster B514

    NASA Astrophysics Data System (ADS)

    Galleti, S.; Federici, L.; Bellazzini, M.; Buzzoni, A.; Pecci, F. Fusi

    2006-10-01

    We present deep F606W, F814W ACS photometry of the recently discovered globular cluster B514, the outermost known globular in the M31 galaxy. The cluster appears quite extended, and member stars are unequivocally identified out to ~200 pc from the center. The color-magnitude diagram reveals a steep red giant branch (RGB), and a horizontal branch extending blueward of the instability strip, indicating that B514 is a classical old metal-poor globular cluster. The RGB locus and the position of the RGB bump are both consistent with a metallicity [Fe/H]~-1.8, in excellent agreement with spectroscopic estimates. A preliminary estimate of the integrated absolute V magnitude (MV<~-9.1) suggests that B514 is among the brightest globulars of M31. Based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute (STScI), which is operated by AURA, Inc., under NASA contract NAS 5-26555.

  16. On the Globular Cluster Initial Mass Function below 1 Msolar

    NASA Astrophysics Data System (ADS)

    Paresce, Francesco; De Marchi, Guido

    2000-05-01

    Accurate luminosity functions (LFs) for a dozen globular clusters have now been measured at or just beyond their half-light radius using HST. They span almost the entire cluster main sequence (MS) below 0.75 Msolar. All these clusters exhibit LFs that rise continuously from an absolute I magnitude MI~=6 to a peak at MI~=8.5-9 and then drop with increasing MI. Transformation of the LFs into mass functions (MFs) by means of mass-luminosity (ML) relations that are consistent with all presently available data on the physical properties of low-mass, low-metallicity stars shows that all the LFs observed so far can be obtained from MFs having the shape of a lognormal distribution with characteristic mass mc=0.33+/-0.03 Msolar and standard deviation σ=0.34+/-0.04. In particular, the LFs of the four clusters in the sample that extend well beyond the peak luminosity down to close to the hydrogen-burning limit (NGC 6341, NGC 6397, NGC 6752, and NGC 6809) can only be reproduced by such distributions and not by a single power law in the 0.1-0.6 Msolar range. After correction for the effects of mass segregation, the variation of the ratio of the number of higher to lower mass stars with cluster mass or any simple orbital parameter or the expected time to disruption recently computed for these clusters shows no statistically significant trend over a range of this last parameter of more than a factor of ~100. We conclude that the global MFs of these clusters have not been measurably modified by evaporation and tidal interactions with the Galaxy and, thus, should reflect the initial distribution of stellar masses. Since the lognormal function that we find is also very similar to the one obtained independently for much younger clusters and to the form expected theoretically, the implication seems to be unavoidable that it represents the true stellar initial mass function for this type of star in this mass range. Based on observations with the NASA/ESA Hubble Space Telescope

  17. Catalogue of Galactic globular-cluster surface-brightness profiles

    NASA Technical Reports Server (NTRS)

    Trager, S. C.; King, Ivan R.; Djorgovski, S.

    1995-01-01

    We present a catalogue of surface-brightness profiles (SBPs) of 125 Galactic globular clusters, the largest such collection ever gathered. The SPBs are constructed from generally inhomogeneous data, but are based heavily on the Berkeley Global Cluster Survey of Djorgovski & King. All but four of the SBPs have photometric zero points. We derive central surface brightness, King-model concentrations, core radii, half-light, and other fraction-of-light radii where data permit, and we briefly discuss their use.

  18. A SURVEY FOR PLANETARY NEBULAE IN M31 GLOBULAR CLUSTERS

    SciTech Connect

    Jacoby, George H.; De Marco, Orsola; Lee, Myung Gyoon; Herrmann, Kimberly A.; Hwang, Ho Seong; Davies, James E.; Kaplan, Evan E-mail: rbc@astro.psu.edu E-mail: mglee@astrog.snu.ac.kr E-mail: hhwang@cfa.harvard.edu E-mail: evanskaplan@gmail.com

    2013-05-20

    We report the results of an [O III] {lambda}5007 spectroscopic survey for planetary nebulae (PNe) located within the star clusters of M31. By examining R {approx} 5000 spectra taken with the WIYN+Hydra spectrograph, we identify 3 PN candidates in a sample of 274 likely globular clusters, 2 candidates in objects which may be globular clusters, and 5 candidates in a set of 85 younger systems. The possible PNe are all faint, between {approx}2.5 and {approx}6.8 mag down the PN luminosity function, and, partly as a consequence of our selection criteria, have high excitation, with [O III] {lambda}5007 to H{beta} ratios ranging from 2 to {approx}> 12. We discuss the individual candidates, their likelihood of cluster membership, and the possibility that they were formed via binary interactions within the clusters. Our data are consistent with the suggestion that PN formation within globular clusters correlates with binary encounter frequency, though, due to the small numbers and large uncertainties in the candidate list, this study does not provide sufficient evidence to confirm the hypothesis.

  19. Bayesian Analysis of Two Stellar Populations in Galactic Globular Clusters. I. Statistical and Computational Methods

    NASA Astrophysics Data System (ADS)

    Stenning, D. C.; Wagner-Kaiser, R.; Robinson, E.; van Dyk, D. A.; von Hippel, T.; Sarajedini, A.; Stein, N.

    2016-07-01

    We develop a Bayesian model for globular clusters composed of multiple stellar populations, extending earlier statistical models for open clusters composed of simple (single) stellar populations. Specifically, we model globular clusters with two populations that differ in helium abundance. Our model assumes a hierarchical structuring of the parameters in which physical properties—age, metallicity, helium abundance, distance, absorption, and initial mass—are common to (i) the cluster as a whole or to (ii) individual populations within a cluster, or are unique to (iii) individual stars. An adaptive Markov chain Monte Carlo (MCMC) algorithm is devised for model fitting that greatly improves convergence relative to its precursor non-adaptive MCMC algorithm. Our model and computational tools are incorporated into an open-source software suite known as BASE-9. We use numerical studies to demonstrate that our method can recover parameters of two-population clusters, and also show how model misspecification can potentially be identified. As a proof of concept, we analyze the two stellar populations of globular cluster NGC 5272 using our model and methods. (BASE-9 is available from GitHub: https://github.com/argiopetech/base/releases).

  20. New cluster members and halo stars of the Galactic globular cluster NGC 1851

    NASA Astrophysics Data System (ADS)

    Navin, Colin A.; Martell, Sarah L.; Zucker, Daniel B.

    2015-10-01

    NGC 1851 is an intriguing Galactic globular cluster, with multiple stellar evolutionary sequences, light and heavy element abundance variations and indications of a surrounding stellar halo. We present the first results of a spectroscopic study of red giant stars within and outside of the tidal radius of this cluster. Our results identify nine probable new cluster members (inside the tidal radius) with heliocentric radial velocities consistent with that of NGC 1851. We also identify, based on their radial velocities, four probable extratidal cluster halo stars at distances up to ˜3.1 times the tidal radius, which are supportive of previous findings that NGC 1851 is surrounded by an extended stellar halo. Proper motions were available for 12 of these 13 stars and all are consistent with that of NGC 1851. Apart from the cluster members and cluster halo stars, our observed radial velocity distribution agrees with the expected distribution from a Besançon disc/N-body stellar halo Milky Way model generated by the GALAXIA code, suggesting that no other structures at different radial velocities are present in our field. The metallicities of these stars are estimated using equivalent width measurements of the near-infrared calcium triplet absorption lines and are found, within the limitations of this method, to be consistent with that of NGC 1851. In addition we recover 110 red giant cluster members from previous studies based on their radial velocities and identify three stars with unusually high radial velocities.

  1. Formation of Globular Clusters in Hierarchical Cosmology: ART and Science

    NASA Astrophysics Data System (ADS)

    Gnedin, Oleg Y.; Prieto, José L.

    We test the hypothesis that globular clusters form in supergiant molecular clouds within high-redshift galaxies. Numerical simulations demonstrate that such large, dense, and cold gas clouds assemble naturally in current hierarchical models of galaxy formation. These clouds are enriched with heavy elements from earlier stars and could produce star clusters in a similar way to nearby molecular clouds. The masses and sizes of the model clusters are in excellent agreement with the observations of young massive clusters. Do these model clusters evolve into globular clusters that we see in our and external galaxies? In order to study their dynamical evolution, we calculate the orbits of model clusters using the outputs of the cosmological simulation of a Milky Way-sized galaxy. We find that at present the orbits are isotropic in the inner 50 kpc of the Galaxy and preferentially radial at larger distances. All clusters located outside 10 kpc from the center formed in the now-disrupted satellite galaxies. The spatial distribution of model clusters is spheroidal, with a power-law density profile consistent with observations. The combination of two-body scattering, tidal shocks, and stellar evolution results in the evolution of the cluster mass function from an initial power law to the observed log-normal distribution. However, not all initial conditions and not all evolution scenarios are consistent with the observed mass function.

  2. M31 GLOBULAR CLUSTER STRUCTURES AND THE PRESENCE OF X-RAY BINARIES

    SciTech Connect

    Agar, J. R. R.; Barmby, P.

    2013-11-01

    The Andromeda galaxy, M31, has several times the number of globular clusters found in the Milky Way. It contains a correspondingly larger number of low-mass X-ray binaries (LMXBs) associated with globular clusters, and as such can be used to investigate the cluster properties that lead to X-ray binary formation. The best tracer of the spatial structure of M31 globulars is the high-resolution imaging available from the Hubble Space Telescope (HST), and we have used HST data to derive structural parameters for 29 LMXB-hosting M31 globular clusters. These measurements are combined with structural parameters from the literature for a total of 41 (of 50 known) LMXB clusters and a comparison sample of 65 non-LMXB clusters. Structural parameters measured in blue bandpasses are found to be slightly different (smaller core radii and higher concentrations) than those measured in red bandpasses; this difference is enhanced in LMXB clusters and could be related to stellar population differences. Clusters with LMXBs show higher collision rates for their mass compared to clusters without LMXBs, and collision rates estimated at the core radius show larger offsets than rates estimated at the half-light radius. These results are consistent with the dynamical formation scenario for LMXBs. A logistic regression analysis finds that, as expected, the probability of a cluster hosting an LMXB increases with increasing collision rate and proximity to the galaxy center. The same analysis finds that probability of a cluster hosting an LMXB decreases with increasing cluster mass at a fixed collision rate, although we caution that this could be due to sample selection effects. Metallicity is found to be a less important predictor of LMXB probability than collision rate, mass, or distance, even though LMXB clusters have a higher metallicity on average. This may be due to the interaction of location and metallicity: a sample of M31 LMXBs with a greater range in galactocentric distance would

  3. Variable stars in large Magellanic cloud globular clusters. III. Reticulum

    SciTech Connect

    Kuehn, Charles A.; Dame, Kyra; Smith, Horace A.; De Lee, Nathan E-mail: damekyra@msu.edu E-mail: nathan.delee@vanderbilt.edu; and others

    2013-06-01

    This is the third in a series of papers studying the variable stars in old globular clusters in the Large Magellanic Cloud. The primary goal of this series is to look at how the characteristics and behavior of RR Lyrae stars in Oosterhoff-intermediate systems compare to those of their counterparts in Oosterhoff-I/II systems. In this paper we present the results of our new time-series BVI photometric study of the globular cluster Reticulum. We found a total of 32 variables stars (22 RRab, 4 RRc, and 6 RRd stars) in our field of view. We present photometric parameters and light curves for these stars. We also present physical properties, derived from Fourier analysis of light curves, for some of the RR Lyrae stars. We discuss the Oosterhoff classification of Reticulum and use our results to re-derive the distance modulus and age of the cluster.

  4. Rates of collapse and evaporation of globular clusters

    NASA Technical Reports Server (NTRS)

    Hut, Piet; Djorgovski, S.

    1992-01-01

    Observational estimates of the dynamical relaxation times of Galactic globular clusters are used here to estimate the present rate at which core collapse and evaporation are occurring in them. A core collapse rate of 2 +/- 1 per Gyr is found, which for a Galactic age of about 12 Gyr agrees well with the fact that 27 clusters have surface brightness profiles with the morphology expected for the postcollapse phase. A destruction and evaporation rate of 5 +/- 3 per Gyr is found, suggesting that a significant fraction of the Galaxy's original complement of globular clusters have perished through the combined effects of mechanisms such as relaxation-driven evaporation and shocking due to interaction with the Galactic disk and bulge.

  5. New SX Phe variables in the globular cluster NGC 288

    NASA Astrophysics Data System (ADS)

    Martinazzi, E.; Kepler, S. O.; Costa, J. E. S.; Pieres, A.; Bonatto, C.; Bica, E.; Fraga, L.

    2015-03-01

    We report the discovery of two new variable stars in the metal-poor globular cluster NGC 288, found by means of time series CCD photometry. We classified the new variables as SX Phoenicis (SX Phe) due to their characteristic fundamental mode periods (1.02 ± 0.01 and 0.69 ± 0.01 h), and refine the period estimates for other six known variables. SX Phe stars are known to follow a well-defined period-luminosity (P-L) relation and, thus, can be used for determining distances; they are more numerous than RR Lyraes in NGC 288. We obtain the P-L relation for the fundamental mode MV = (-2.59 ± 0.18) log P0(d) + (-0.34 ± 0.24) and for the first-overtone mode MV = (-2.59 ± 0.18) log P1(d) + (0.50 ± 0.25). Multichromatic isochrone fits to our UBV colour-magnitude diagrams, based on the Dartmouth Stellar Evolution Database, provide <[Fe/H]> = -1.3 ± 0.1, E(B - V) = 0.02 ± 0.01 and absolute distance modulus (m - M)0 = 14.72 ± 0.01 for NGC 288.

  6. RR Lyrae stars and color-magnitude diagram of the globular cluster NGC 6388

    NASA Technical Reports Server (NTRS)

    Silbermann, N. A.; Smith, Horace A.; Bolte, Michael; Hazen, Martha L.

    1994-01-01

    We present new V, B-V, and V, V-R color-magnitude diagrams for the bulge globular cluster NGC 6388. These diagrams indicate that NGC 6388 is a metal-rich globular cluster with color-magnitude morphology similar to that of 47 Tucanae. We have conducted a search for new variable stars close to NGC 6388, finding three new RR Lyrae stars. The membership of these and previously discovered RR Lyrae stars near NGC 6388 is discussed. There is reason for believing that some of these variables are nonmembers. Others, however, may belong to the cluster and may be similar to the RR Lyrae star V9 in 47 Tuc.

  7. NONLINEAR COLOR-METALLICITY RELATIONS OF GLOBULAR CLUSTERS. IV. TESTING THE NONLINEARITY SCENARIO FOR COLOR BIMODALITY VIA HST/WFC3 u-BAND PHOTOMETRY OF M84 (NGC 4374)

    SciTech Connect

    Yoon, Suk-Jin; Kim, Hak-Sub; Chung, Chul; Cho, Jaeil; Lee, Sang-Yoon; Sohn, Sangmo T.; Blakeslee, John P.

    2013-05-10

    Color distributions of globular clusters (GCs) in most massive galaxies are bimodal. Assuming linear color-to-metallicity conversions, bimodality is viewed as the presence of merely two GC subsystems with distinct metallicities, which serves as a critical backbone of various galaxy formation theories. Recent studies, however, revealed that the color-metallicity relations (CMRs) often used to derive GC metallicities (e.g., CMRs of g - z, V - I, and C - T{sub 1}) are in fact inflected. Such inflection can create bimodal color distributions if the underlying GC metallicity spread is simply broad as expected from the hierarchical merging paradigm of galaxy formation. In order to test the nonlinear-CMR scenario for GC color bimodality, the u-band photometry is proposed because the u-related CMRs (e.g., CMRs of u - g and u - z) are theoretically predicted to be least inflected and most distinctive among commonly used optical CMRs. Here, we present Hubble Space Telescope (HST)/WFC3 F336W (u-band) photometry of the GC system in M84, a giant elliptical in the Virgo galaxy cluster. Combining the u data with the existing HST ACS/WFC g and z data, we find that the u - z and u - g color distributions are different from the g - z distribution in a very systematic manner and remarkably consistent with our model predictions based on the nonlinear-CMR hypothesis. The results lend further confidence to the validity of the nonlinear-CMR scenario as an explanation for GC color bimodality. There are some GC systems showing bimodal spectroscopic metallicity, and in such systems the inflected CMRs often create stronger bimodality in the color domain.

  8. The chemical composition of the low-mass Galactic globular cluster NGC 6362★

    NASA Astrophysics Data System (ADS)

    Massari, D.; Mucciarelli, A.; Dalessandro, E.; Bellazzini, M.; Cassisi, S.; Fiorentino, G.; Ibata, R. A.; Lardo, C.; Salaris, M.

    2017-03-01

    We present chemical abundances for 17 elements in a sample of 11 red giant branch stars in NGC 6362 from UVES spectra. NGC 6362 is one of the least massive globulars where multiple populations have been detected, yet its detailed chemical composition has not been investigated so far. NGC 6362 turns out to be a metal-intermediate ([Fe/H] = -1.07 ± 0.01 dex) cluster, with its α-peak and Fe-peak elements content compatible with that observed in clusters with similar metallicity. It also displays an enhancement in its s-process element abundances. Among the light elements involved in the multiple populations phenomenon, only [Na/Fe] shows star-to-star variations, while [Al/Fe] and [Mg/Fe] do not show any evidence for abundance spreads. A differential comparison with M4, a globular cluster with similar mass and metallicity, reveals that the two clusters share the same chemical composition. This finding suggests that NGC 6362 is indeed a regular cluster, formed from gas that has experienced the same chemical enrichment of other clusters with similar metallicity.

  9. Near-Infrared Photometric Parameters of Bulge Globular Clusters from the VVV Survey

    NASA Astrophysics Data System (ADS)

    Cohen, R. E.

    2015-05-01

    Despite spanning a remarkable variety of properties (e.g., mass, metallicity and horizontal branch morphology), severe and variable extinction has often thwarted detailed analyses of the globular clusters of the Milky Way bulge. We present results from recent and ongoing investigations of these clusters using deep, wide-field near-infrared photometry independently, and also in combination with, the plethora of existing photometry and spectroscopy. The results and their homogeneity facilitate not only the characterization of relations between cluster photometric properties and abundances and comparison to evolutionary models, but can also corroborate and further constrain recent results regarding the extinction law of the inner Milky Way.

  10. GLOBULAR CLUSTER FORMATION EFFICIENCIES FROM BLACK HOLE X-RAY BINARY FEEDBACK

    SciTech Connect

    Justham, Stephen; Peng, Eric W.; Schawinski, Kevin

    2015-08-10

    We investigate a scenario in which feedback from black hole X-ray binaries (BHXBs) sometimes begins inside young star clusters before strong supernova (SN) feedback. Those BHXBs could reduce the gas fraction inside embedded young clusters while maintaining virial equilibrium, which may help globular clusters (GCs) to stay bound when SN-driven gas ejection subsequently occurs. Adopting a simple toy model with parameters guided by BHXB population models, we produce GC formation efficiencies consistent with empirically inferred values. The metallicity dependence of BHXB formation could naturally explain why GC formation efficiency is higher at lower metallicity. For reasonable assumptions about that metallicity dependence, our toy model can produce a GC metallicity bimodality in some galaxies without a bimodality in the field-star metallicity distribution.

  11. HUBBLE SPACE TELESCOPE Photometry of the Globular Cluster M4

    NASA Astrophysics Data System (ADS)

    Ibata, Rodrigo A.; Richer, Harvey B.; Fahlman, Gregory G.; Bolte, Michael; Bond, Howard E.; Hesser, James E.; Pryor, Carlton; Stetson, Peter B.

    1999-02-01

    This paper presents a detailed description of the acquisition and processing of a large body of imaging data for three fields in the globular cluster M4 taken with the Wide Field and Planetary Camera 2 aboard the Hubble Space Telescope. Analysis with the ALLFRAME package yielded the deepest photometry yet obtained for this cluster. The resulting data set for 4708 stars (positions and calibrated photometry in V, I, and, in two fields, U) spanning approximately six cluster core radii is presented. The scientific analysis is deferred to three companion papers, which investigate the significant white dwarf population discovered and the main-sequence population.

  12. A Search for Intracluster Dust of Globular Clusters

    NASA Astrophysics Data System (ADS)

    Matsunaga, N.; Mito, H.; Nakada, Y.; Fukushi, H.; Tanabé, T.; Ita, Y.; Izumiura, H.; Matsuura, M.; Ueta, T.; Yamamura, I.

    2009-12-01

    We report far-IR observations with AKARI to search for intracluster dust (ICD, hereafter) from globular clusters. We observed 12 clusters and detected both diffuse and point-like sources through our Mission Program (MP) survey. However, it is found that most of them are not associated with clusters, leaving one possible candidate of ICD cloud (Matsunaga et al. 2008). We also searched the β-1 Bright Source Catalogue of the AKARI All-Sky Survey for ICD but no likely candidate was found. This paucity suggests that the dust disappears within a lifetime shorter than 5-50 Myr depending on the dust temperature.

  13. Ultraviolet fluxes for globular clusters in M31 - A rediscussion

    SciTech Connect

    Crotts, A.P.S.; Kron, R.G.; Cacciari, C.; Fusi-Pecci, F. McDonald Observatory, Austin, TX Yerkes Observatory, Williams Bay, WI Osservatorio Astronomico, Bologna Bologna Universita )

    1990-07-01

    Long-exposure observations of three bright globular clusters in M31 obtained with both the short- and long-wavelength low-resolution cameras of the International Ultraviolet Explorer satellite are discussed. All of the clusters are seen at the longer wavelengths, but only one of the clusters is seen at short wavelengths, and this detection is marginal. The ultraviolet fluxes are in fact known with only poor precision, and previous conclusions concerning the stellar population are weakened accordingly. Discrepancies between the ultraviolet fluxes obtained here and in other published work are described. 16 refs.

  14. Kinematics of the Globular Cluster System of the Sombrero Galaxy

    NASA Astrophysics Data System (ADS)

    Windschitl, Jessica L.; Rhode, K. L.; Bridges, T. J.; Zepf, S. E.; Gebhardt, K.; Freeman, K. C.

    2013-06-01

    Using spectra from the Hydra spectrograph on the 3.5m WIYN telescope and from the AAOmega spectrograph on the 3.9m Anglo-Australian Telescope, we have measured heliocentric radial velocities for >50 globular clusters in the Sombrero Galaxy (M104). We combine these new measurements with those from previous studies to construct and analyze a total sample of >360 globular cluster velocities in M104. We use the line-of-sight velocity dispersion to determine the mass and mass-to-light ratio profiles for the galaxy using a spherical, isotropic Jeans mass model. In addition to the increased sample size, our data provide a significant expansion in radial coverage compared to previous spectroscopic studies. This allows us to reliably compute the mass profile of M104 out to ~43 kpc, nearly 14 kpc farther into the halo than previous work. We find that the mass-to-light ratio profile increases from the center to a value of ~20 at 43 kpc. We also look for the presence of rotation in the globular cluster system as a whole and within the red and blue subpopulations. Despite the large number of clusters and better radial sampling, we do not find strong evidence of rotation.

  15. In search of massive single-population globular clusters

    NASA Astrophysics Data System (ADS)

    Caloi, Vittoria; D'Antona, Francesca

    2011-10-01

    The vast majority of globular clusters so far examined shows the chemical signatures of hosting (at least) two stellar populations. According to recent ideas, this feature requires a two-step process, in which the nuclearly processed matter from a 'first generation' (FG) of stars gives birth to a 'second generation' (SG), bearing the fingerprint of a fully carbon-nitrogen-oxygen (CNO) cycled matter. Since, as observed, the present population of most globular clusters is made up largely of SG stars, a substantial fraction of the FG (≳90 per cent) must be lost. Nevertheless, two types of clusters dominated by a simple stellar population (FG clusters) should exist: clusters initially too small to be able to retain a cooling flow and form a second generation (FG-only clusters) and massive clusters that could retain the CNO-processed ejecta and form an SG, but were unable to lose a significant fraction of their FG (mainly-FG clusters). Identification of mainly-FG clusters may provide an estimate of the fraction of the initial mass involved in the formation of the SG. We attempt a first classification of FG clusters, based on the morphology of their horizontal branches (HBs), as displayed in the published catalogues of photometric data for 106 clusters. We select, as FG candidates, the clusters in which the HB can be reproduced by the evolution of an almost unique mass. We find that less than 20 per cent of clusters with [Fe/H] < -0.8 appear to be FG, but only ˜10 per cent probably had a mass sufficient to form at all an SG. This small percentage confirms on a wider data base the spectroscopic result that the SG is a dominant constituent of today's clusters, suggesting that its formation is an ingredient necessary for the survival of globular clusters during their dynamical evolution in the Galactic tidal field. In more detail we show that Pal 3 turns out to be a good example of FG-only cluster. Instead, HB simulations and space distribution of its components indicate

  16. The globular cluster system of NGC 1316. III. Kinematic complexity

    NASA Astrophysics Data System (ADS)

    Richtler, T.; Hilker, M.; Kumar, B.; Bassino, L. P.; Gómez, M.; Dirsch, B.

    2014-09-01

    Context. The merger remnant NGC 1316 (Fornax A) is one of the most important objects regarding the investigation of and thus an important object to study merger-related processes. A recent photometric study used globular clusters in NGC 1316 to constrain its star formation history, but without the knowledge of individual radial velocities. The kinematical properties of the globular cluster system in comparison with the diffuse stellar light might give more insight into the formation of NGC 1316. Of particular interest is the dark matter content. Planetary nebulae in NGC 1316 indicate a massive dark halo, and globular cluster velocities provide independent evidence. Aims: We aim at measuring radial velocities of globular clusters in NGC 1316. We use these kinematical data to investigate the global structure of NGC 1316 and to constrain the dark matter content. Methods: We perform multiobject spectroscopy with VLT/FORS2 and MXU. Out of 562 slits, we extract radial velocities for 177 globular clusters. Moreover, we measure radial velocities of the integrated galaxy light, using slits with a sufficiently bright sky. To these data, we add 20 cluster velocities from the literature. In an appendix, we identify new morphological features of NGC 1316 and its companion galaxy NGC 1317. Results: The GC sample based on radial velocities confirms the colour peaks already found in our photometric study. The bright clusters, which probably have their origin in a 2 Gyr old starburst and younger star formation events, avoid the systemic velocity. A Gaussian velocity distribution is found only for clusters fainter than about mR = 22 mag. The velocity distribution of clusters shows a pronounced peak at 1600 km s-1. These clusters populate a wide area in the south-western region which we suspect to be a disk population. Globular clusters or subsamples of them do not show a clear rotation signal. This is different from the galaxy light, where rotation along the major axis is

  17. GALEX Grism Spectroscopy of the Globular Cluster Omega Centauri

    NASA Astrophysics Data System (ADS)

    Sweigart, Allen

    We propose to obtain GALEX FUV-only grism spectroscopy of the hot stars in omega Centauri, the most massive globular cluster in our Galaxy. Previous UIT imagery of omega Cen showed that it contains about 2000 hot horizontal branch (HB) stars, and we estimate that GALEX spectra can be obtained for about 500 of these stars in the outer regions of the cluster, including about 50 of the hot ``blue hook'' stars discovered with UIT. The blue hook stars appear to be both hotter (35,000 K) and less luminous in the UIT color-magnitude diagram than predicted by canonical HB models and, indeed, are unexplained by standard evolutionary theory. Brown et al. (2001) have suggested that the blue hook stars are the progeny of stars which mixed their surface hydrogen into their hot He-burning interior during a delayed helium flash subsequent to leaving the red giant branch. This ``flash-mixing'' results in a hot hydrogen-deficient star with a typical surface abundance of 96% He and 4% C by mass. The GALEX spectral region includes the strong lines of C III 1426, 1578 A, C IV 1550 A, and He II 1640 A which will allow this predicted carbon and helium enrichment to be detected. These observations will therefore provide a crucial test of the Brown et al. flash-mixing hypothesis and will determine if flash mixing represents a new evolutionary channel for populating the hot HB. The GALEX spectra will also address other questions concerning the hot HB in omega Cen including (1) the metallicity distribution of HB stars with 9,000 K < Teff < 11,000 K, (2) the effect of radiative levitation on the UV spectra of stars with Teff > 11,000 K, and (3) the origin of the subluminous HB stars found in the UIT photometry with 15,000K < Teff < 30,000 K.

  18. The Distance to the Galactic Globular Cluster, 47 Tuc

    NASA Astrophysics Data System (ADS)

    Woodley, Kristin; Goldsbury, R.; Kalirai, J.; Richer, H.; Tremblay, P.; Anderson, J.; Bergeron, P.; Dotter, A.; Esteves, L.; Fahlman, G.; Hansen, B.; Heyl, J.; Hurley, J.; Rich, R.; Shara, M.; Stetson, P.

    2012-01-01

    We present a new distance determination to the Galactic globular cluster 47 Tucanae by fitting the spectral energy distributions of its white dwarfs to pure hydrogen atmosphere white dwarf models. Our photometric data set is obtained from a 121 orbit Hubble Space Telescope program using the Wide Field Camera 3 UVIS/IR channels, capturing F390W, F606W, F110W, and F160W images. These images cover more than 60 arcmin2 and extend over a radial range of 5-13.7 arcmin (6.5-17.9 pc) within the globular cluster. Here, we present our best fitting distance modulus using a likelihood analysis. We also search the white dwarf photometry for infrared excess in the F160W filter, indicative of protoplanetary disks or low mass companions, and find no convincing cases within our sample.

  19. GLOBULAR CLUSTERS AND DARK SATELLITE GALAXIES THROUGH THE STREAM VELOCITY

    SciTech Connect

    Naoz, Smadar; Narayan, Ramesh

    2014-08-10

    The formation of purely baryonic globular clusters with no gravitationally bound dark matter is still a theoretical challenge. We show that these objects might form naturally whenever there is a relative stream velocity between baryons and dark matter. The stream velocity causes a phase shift between linear modes of baryonic and dark matter perturbations, which translates to a spatial offset between the two components when they collapse. For a 2σ (3σ) density fluctuation, baryonic clumps with masses in the range 10{sup 5}-2.5 × 10{sup 6} M {sub ☉} (10{sup 5}-4 × 10{sup 6} M {sub ☉}) collapse outside the virial radii of their counterpart dark matter halos. These objects could survive as long-lived, dark-matter-free objects and might conceivably become globular clusters. In addition, their dark matter counterparts, which were deprived of gas, might become dark satellite galaxies.

  20. Globular cluster systems in nearby dwarf galaxies - III. Formation efficiencies of old globular clusters

    NASA Astrophysics Data System (ADS)

    Georgiev, Iskren Y.; Puzia, Thomas H.; Goudfrooij, Paul; Hilker, Michael

    2010-08-01

    We investigate the origin of the shape of the globular cluster (GC) system scaling parameters as a function of galaxy mass, i.e. specific frequency (SN), specific luminosity (SL), specific mass (SM) and specific number () of GCs. In the low-mass galaxy regime (MV >~ -16 mag), our analysis is based on Hubble Space Telescope/Advanced Camera for Surveys observations of GC populations of faint, mainly late-type dwarf galaxies in low-density environments. In order to sample the entire range in galaxy mass (MV = -11 to -23mag =106- 1011Lsolar), environment and morphology we augment our sample with data of spiral and elliptical galaxies from the literature, in which old GCs are reliably detected. This large data set confirms (irrespective of the galaxy type) the increase in the specific frequencies of GCs above and below a galaxy magnitude of MV ~= -20mag. Over the full mass range, the SL value of early-type galaxies is, on average, twice that of late types. To investigate the observed trends, we derive theoretical predictions of GC system scaling parameters as a function of host galaxy mass based on the models of Dekel and Birnboim in which star formation processes are regulated by stellar and supernova feedback below a stellar mass of 3 × 1010Msolar and by virial shocks above it. We find that the analytical model describes remarkably well the shape of the GC system scaling parameter distributions with a universal specific GC formation efficiency, η, which relates the total mass in GCs to the total galaxy halo mass. Early-type and late-type galaxies show a similar mean value of η = 5.5 × 10-5, with an increasing scatter towards lower galaxy masses. This can be due to the enhanced stochastic nature of the star and star-cluster formation processes for such systems. Some massive galaxies have excess η values compared to what is expected from the mean model prediction for galaxies more luminous than MV ~= -20mag (LV >~ 1010Lsolar). This may be attributed to a very

  1. The kinematics of globular clusters in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Freeman, K. C.; Illingworth, G.; Oemler, A., Jr.

    1983-09-01

    Velocities have been determined for 35 globular clusters in the LMC. These data have been combined with data from other sources to give velocities for 59 clusters ranging in age from ≡108 to ≡1010 yr. Clusters younger than ≡109 yr form a flattened system having a low line-of-sight velocity dispersion (≡15 km s-1), an amplitude for their rotation of 37±5 km s-1, a galactocentric systemic velocity of 40±3 km s-1, and a line of nodes in position angle 1°±5°. The older clusters are also flattened to a disklike system with an intrinsic line-of-sight dispersion of only 17 km s-1, and a rotation amplitude of 41±4 km s-1. Surprisingly both the systemic velocity at 26±2 km s-1, and the position angle of the line of nodes at 41°±5 are very significantly different for these older clusters. This enigmatic situation resisted all attempts at a solution. The data for the oldest clusters suggest that there is no evidence for a kinematic halo population among the globular clusters in the LMC.

  2. Results from HST Observations of Six LMC Globular Cluster Fields

    NASA Astrophysics Data System (ADS)

    Olsen, K. A. G.; Hodge, P. W.; Mateo, M.; Olszewski, E. W.; Schommer, R. A.; Suntzeff, N. B.; Walker, A. R.

    We present deep HST color-magnitude diagrams of fields centered on the six old LMC globular clusters NGC 1754, NGC 1835, NGC 1898, NGC 1916, NGC 2005, and NGC 2019. Separate cluster and field star CMDs are shown. The time of formation of the LMC is studied from an analysis of the cluster CMDs. Based on a comparison of the CMDs with sequences of the Milky Way clusters M3, M5, and M55, we suggest that the LMC formed its first stars at the same time as the Milky Way to within 1 Gyr. We derive abundances and reddenings of the clusters that agree roughly with published values. Adopting our measured abundances, we find additional evidence that these LMC globular clusters are as old as the oldest Milky Way clusters through a comparison of our data with the horizontal branch evolutionary models of Lee, Demarque, and Zinn (1994). The evolution of the LMC following its formation is studied through an analysis of the field star CMDs. Through an automated comparison with stellar evolution models, we extract the star formation histories implied by the CMDs and luminosity functions. We explore the effects of varying the reddening, distance modulus, and IMF of the field stars on the derived star formation histories. We discuss the evidence for different star formation histories among the six fields.

  3. Radial velocities of remote globular clusters - stalking the missing mass

    SciTech Connect

    Peterson, R.C.

    1985-10-01

    Measurements good to 25 km/s are presented of radial velocities of five remote galactic globular clusters, based on aperture-plate spectra of individual stars at 3.0 A resolution. Velocities with respect to the galactic rest-frame of two individual systems, Eridanus and Palomar 14, are large enough to suggest a total mass for the Galaxy of 1 trillion solar masses. A similar mass is inferred from the average of the galactocentric distance times velocity squared. 36 references.

  4. Formation and evolution of clumpy tidal tails in globular clusters

    NASA Astrophysics Data System (ADS)

    Di Matteo, P.; Miocchi, P.; Capuzzo Dolcetta, R.

    2004-05-01

    Numerical simulations of a globular cluster orbiting in the central region of a triaxial galaxy have been performed, in order to study the formation and subsequent evolution of tidal tails and their main features. Tails begin to form after about a quarter of the cluster orbital period and tend to lie along its orbit, with a leading tail that precedes the cluster and an outer tail that trails behind it. Tails show clumpy substructures; the most prominent ones (for a globular cluster moving on a quasi-circular orbit around the galaxy) are located at a distance from the cluster center between 50 pc and 80 pc and, after 3 orbital periods, contain about 10% of the cluster mass at that epoch. The morphology of tails and clumps will be compared with available observational data, in particular with that concerning Palomar 5, for which evident clumps in the tails have been detected. Kinematical properties of stars in the tails (line-of-sight velocities and velocity dispersion profiles) will be presented and compared to kinematical data of M15 and ω Centauri, two galactic globular clusters for which there is evidence that the velocity dispersion remains constant at large radii. All the simulations have been performed with our own implementation of a tree-code, that uses a multipolar expansion of the potential truncated at the quadrupole moment and that ran on high performance computers employing an original parallelization approach implemented via MPI routines. The time-integration of the `particles' trajectories is performed by a 2nd order leap-frog algorithm, using individual and variable time-steps. Part of this work has been done using the IBM SP4 platform located at CINECA (Bologna, Italy) thanks to the grant inarm007 obtained in the framework of INAF-CINECA agreements.

  5. Identification of globular cluster stars in RAVE data - I. Application to stellar parameter calibration

    NASA Astrophysics Data System (ADS)

    Anguiano, B.; Zucker, D. B.; Scholz, R.-D.; Grebel, E. K.; Seabroke, G.; Kunder, A.; Binney, J.; McMillan, P. J.; Zwitter, T.; Wyse, R. F. G.; Kordopatis, G.; Bienaymé, O.; Bland-Hawthorn, J.; Boeche, C.; Freeman, K. C.; Gibson, B. K.; Gilmore, G.; Munari, U.; Navarro, J.; Parker, Q.; Reid, W.; Siebert, A.; Siviero, A.; Steinmetz, M.; Watson, F.

    2015-08-01

    We present the identification of potential members of nearby Galactic globular clusters using radial velocities from the RAdial Velocity Experiment Data Release 4 (RAVE-DR4) survey data base. Our identifications are based on three globular clusters - NGC 3201, NGC 5139 (ω Cen) and NGC 362 - all of which are shown to have ∣RV∣ > 100 km s-1. The high radial velocity of cluster members compared to the bulk of surrounding disc stars enables us to identify members using their measured radial velocities, supplemented by proper motion information and location relative to the tidal radius of each cluster. The identification of globular cluster stars in RAVE DR4 data offers a unique opportunity to test the precision and accuracy of the stellar parameters determined with the currently available Stellar Parameter Pipelines used in the survey, as globular clusters are ideal test-beds for the validation of stellar atmospheric parameters, abundances, distances and ages. For both NGC 3201 and ω Cen, there is compelling evidence for numerous members (>10) in the RAVE data base; in the case of NGC 362 the evidence is more ambiguous, and there may be significant foreground and/or background contamination in our kinematically selected sample. A comparison of the RAVE-derived stellar parameters and abundances with published values for each cluster and with BASTI isochrones for ages and metallicities from the literature reveals overall good agreement, with the exception of the apparent underestimation of surface gravities for giants, in particular for the most metal-poor stars. Moreover, if the selected members are part of the main body of each cluster our results would also suggest that the distances from Binney et al., where only isochrones more metal rich than -0.9 dex were used, are typically underestimated by ˜40 per cent with respect to the published distances for the clusters, while the distances from Zwitter et al. show stars ranging from 1 to ˜6.5 kpc - with

  6. Would a Galactic bar destroy the globular cluster system?

    NASA Technical Reports Server (NTRS)

    Long, Kevin; Ostriker, Jeremiah P.; Aguilar, Luis

    1992-01-01

    Five different dynamical Galaxy models are presented for the Galactic potential which satisfy the observed rotation curve but contain a central bar so that the 3-kpc nonintersecting streamlines have a radial velocity of 50 km/s when viewed at 45 deg to the bar axis. The effect of the central bars on the destruction rates of globular clusters in the Galaxy is investigated. The method of Aguilar et al. (1988) is applied to these barred Galaxy models. The unknown tangential velocity components of each observed cluster are drawn randomly from an assumed distribution function. The cluster's orbit is integrated, and the bulge shocking rate is calculated. The median destruction rate of the cluster is computed by sampling a large number of such orbits. The addition of the rotating bar does not strongly affect the destruction rates of globular clusters. There is a small increase in the destruction rate for those clusters within about 2.5 kpc. Thus it is not possible to rule out the existence of a rotating bar on these grounds.

  7. Luminosity Function of Faint Globular Clusters in M87

    SciTech Connect

    Waters, Christopher Z.; Zepf, Stephen E.; Lauer, Tod R.; Baltz, Edward A.; Silk, Joseph; /Oxford U.

    2006-07-14

    We present the luminosity function to very faint magnitudes for the globular clusters in M87, based on a 30 orbit Hubble Space Telescope (HST) WFPC2 imaging program. The very deep images and corresponding improved false source rejection allow us to probe the mass function further beyond the turnover than has been done before. We compare our luminosity function to those that have been observed in the past, and confirm the similarity of the turnover luminosity between M87 and the Milky Way. We also find with high statistical significance that the M87 luminosity function is broader than that of the Milky Way. We discuss how determining the mass function of the cluster system to low masses can constrain theoretical models of the dynamical evolution of globular cluster systems. Our mass function is consistent with the dependence of mass loss on the initial cluster mass given by classical evaporation, and somewhat inconsistent with newer proposals that have a shallower mass dependence. In addition, the rate of mass loss is consistent with standard evaporation models, and not with the much higher rates proposed by some recent studies of very young cluster systems. We also find that the mass-size relation has very little slope, indicating that there is almost no increase in the size of a cluster with increasing mass.

  8. On the Absolute Age of the Globular Cluster M92

    NASA Astrophysics Data System (ADS)

    Di Cecco, A.; Becucci, R.; Bono, G.; Monelli, M.; Stetson, P. B.; Degl’Innocenti, S.; Prada Moroni, P. G.; Nonino, M.; Weiss, A.; Buonanno, R.; Calamida, A.; Caputo, F.; Corsi, C. E.; Ferraro, I.; Iannicola, G.; Pulone, L.; Romaniello, M.; Walker, A. R.

    2010-09-01

    We present precise and deep optical photometry of the globular M92. Data were collected in three different photometric systems: Sloan Digital Sky Survey (g‧, r‧, i‧, and z‧ MegaCam at CFHT), Johnson-Kron-Cousins (B, V, and I; various ground-based telescopes), and Advanced Camera for Surveys (ACS) Vegamag (F475W, F555W, and F814W; Hubble Space Telescope). Special attention was given to the photometric calibration, and the precision of the ground-based data is generally better than 0.01 mag. We computed a new set of α-enhanced evolutionary models accounting for the gravitational settling of heavy elements at fixed chemical composition ([α/Fe] = +0.3, [Fe/H] = -2.32 dex, and Y = 0.248). The isochrones—assuming the same true distance modulus (μ = 14.74 mag), the same reddening [E(B - V) = 0.025 ± 0.010 mag], and the same reddening law—account for the stellar distribution along the main sequence and the red giant branch in different color-magnitude diagrams (i‧, g‧ - i‧ i‧, and g‧ - r‧ i‧, g‧ - z‧ I, and B - I and F814W and F475W–F814W). The same outcome applies to the comparison between the predicted zero-age horizontal-branch (ZAHB) and the HB stars. We also found a cluster age of 11 ± 1.5 Gyr, in good agreement with previous estimates. The error budget accounts for uncertainties in the input physics and the photometry. To test the possible occurrence of CNO-enhanced stars, we also computed two sets of α- and CNO-enhanced (by a factor of 3) models, both at fixed total metallicity ([M/H] = -2.10 dex) and at fixed iron abundance. We found that the isochrones based on the former set give the same cluster age (11 ± 1.5 Gyr) as the canonical α-enhanced isochrones. The isochrones based on the latter set also give a similar cluster age (10 ± 1.5 Gyr). These findings support previous results concerning the weak sensitivity of cluster isochrones to CNO-enhanced chemical mixtures. This paper makes use of data obtained from the Isaac

  9. GLOBULAR CLUSTERS AND SPUR CLUSTERS IN NGC 4921, THE BRIGHTEST SPIRAL GALAXY IN THE COMA CLUSTER

    SciTech Connect

    Lee, Myung Gyoon; Jang, In Sung E-mail: isjang@astro.snu.ac.kr

    2016-03-01

    We resolve a significant fraction of globular clusters (GCs) in NGC 4921, the brightest spiral galaxy in the Coma cluster. We also find a number of extended bright star clusters (star complexes) in the spur region of the arms. The latter are much brighter and bluer than those in the normal star-forming region, being as massive as 3 × 10{sup 5} M{sub ⊙}. The color distribution of the GCs in this galaxy is found to be bimodal. The turnover magnitudes of the luminosity functions of the blue (metal-poor) GCs (0.70 < (V − I) ≤ 1.05) in the halo are estimated V(max) = 27.11 ± 0.09 mag and I(max) = 26.21 ± 0.11 mag. We obtain similar values for NGC 4923, a companion S0 galaxy, and two Coma cD galaxies (NGC 4874 and NGC 4889). The mean value for the turnover magnitudes of these four galaxies is I(max) = 26.25 ± 0.03 mag. Adopting M{sub I} (max) = −8.56 ± 0.09 mag for the metal-poor GCs, we determine the mean distance to the four Coma galaxies to be 91 ± 4 Mpc. Combining this with the Coma radial velocity, we derive a value of the Hubble constant, H{sub 0} = 77.9 ± 3.6 km s{sup −1} Mpc{sup −1}. We estimate the GC specific frequency of NGC 4921 to be S{sub N} = 1.29 ± 0.25, close to the values for early-type galaxies. This indicates that NGC 4921 is in the transition phase to S0s.

  10. The Trigonometric Parallax of the Globular Cluster M4

    NASA Astrophysics Data System (ADS)

    Rees, Richard F.; Cudworth, Kyle M.

    2017-01-01

    We have identified five stars from the Tycho-Gaia Astrometric Solution catalog as highly probable members of the globular cluster M4 (NGC 6121). A weighted average of the parallax of these five stars results in a cluster parallax of 0.55 ± 0.14 mas, corresponding to a distance of 1.82 ± 0.46 kpc and an absolute distance modulus of 11.30 ± 0.55. Examination of the Gaia DR1 astrometric validation maps of Lindegren et al. (2016) suggests that the systematic errors they identify are likely to be less than 0.1 mas for the immediate region near M4. The reddest of the five stars is also the most distant from the cluster center. This star is somewhat discrepant in both parallax and proper motion compared to the other four. Excluding this star gives a cluster parallax of 0.50 ± 0.15 mas, corresponding to a distance of 2.01 ± 0.62 kpc and an absolute distance modulus of 11.52 ± 0.67. The good agreement with previous measurements of the distance to M4 indicates that either the systematic errors are small or that diverse distance measurement techniques are seriously flawed. While the uncertainties at this point are too large to decide between the differing ground-based distance determinations, the results at this early stage bode well for future globular cluster parallaxes from Gaia. To our knowledge, this is the first measurement of the trigonometric parallax of a globular cluster.

  11. Distances, Ages, and Epoch of Formation of Globular Clusters

    NASA Astrophysics Data System (ADS)

    Carretta, Eugenio; Gratton, Raffaele G.; Clementini, Gisella; Fusi Pecci, Flavio

    2000-04-01

    We review the results on distances and absolute ages of Galactic globular clusters (GCs) obtained after the release of the Hipparcos catalog. Several methods aimed at the definition of the Population II local distance scale are discussed, and their results compared, exploiting new results for RR Lyraes in the Large Magellanic Cloud (LMC). We find that the so-called short distance and long distance scales may be reconciled whether or not a consistent reddening scale is adopted for Cepheids and RR Lyrae variables in the LMC. Emphasis is given in the paper to the discussion of distances and ages of GCs derived using Hipparcos parallaxes of local subdwarfs. We find that the selection criteria adopted to choose the local subdwarfs, as well as the size of the corrections applied to existing systematic biases, are the main culprit for the differences found among the various independent studies that first used Hipparcos parallaxes and the subdwarf fitting technique. We also caution that the absolute age of M92 (usually considered one of the oldest clusters) still remains uncertain due to the lack of subdwarfs of comparable metallicity with accurate parallaxes. Distances and ages for the nine clusters discussed in a previous paper by Gratton et al. are rederived using an enlarged sample of local subdwarfs, which includes about 90% of the metal-poor dwarfs with accurate parallaxes (Δπ/π<=0.12) in the whole Hipparcos catalog. On average, our revised distance moduli are decreased by 0.04 mag with respect to Gratton et al. The corresponding age of the GCs is t=11.5+/-2.6 Gyr, where the error bars refer to the 95% confidence range. The relation between the zero-age horizontal branch (ZAHB) absolute magnitude and metallicity for the nine program clusters turns out to be MV(ZAHB)=(0.18+/-0.09)([Fe/H]+1.5)+(0.53+/-0.12) Thanks to Hipparcos the major contribution to the total error budget associated with the subdwarf fitting technique has been moved from parallaxes to photometric

  12. NONLINEAR COLOR-METALLICITY RELATIONS OF GLOBULAR CLUSTERS. II. A TEST ON THE NONLINEARITY SCENARIO FOR COLOR BIMODALITY USING THE u-BAND COLORS: THE CASE OF M87 (NGC 4486)

    SciTech Connect

    Yoon, Suk-Jin; Lee, Sang-Yoon; Kim, Hak-Sub; Cho, Jaeil; Chung, Chul; Sohn, Sangmo T.; Blakeslee, John P.

    2011-12-20

    The optical color distributions of globular clusters (GCs) in most large elliptical galaxies are bimodal. Based on the assumed linear relationship between GC colors and their metallicities, the bimodality has been taken as evidence of two GC subsystems with different metallicities in each galaxy and has led to a number of theories in the context of galaxy formation. More recent observations and modeling of GCs, however, suggests that the color-metallicity relations (CMRs) are inflected, and thus colors likely trace metallicities in a nonlinear manner. The nonlinearity could produce bimodal color distributions from a broad underlying metallicity spread, even if it is unimodal. Despite the far-reaching implications, whether CMRs are nonlinear and whether the nonlinearity indeed causes the color bimodality are still open questions. Given that the spectroscopic refinement of CMRs is still very challenging, we here propose a new photometric technique to probe the possible nonlinear nature of CMRs. In essence, a color distribution of GCs is a 'projected' distribution of their metallicities. Since the form of CMRs hinges on which color is used, the shape of color distributions varies depending significantly on the colors. Among other optical colors, the u-band related colors (e.g., u - g and u - z) are theoretically predicted to exhibit significantly less inflected CMRs than other preferred CMRs (e.g., for g - z). As a case study, we performed the Hubble Space Telescope (HST)/WFPC2 archival u-band photometry for the M87 (NGC 4486) GC system with confirmed color bimodality. We show that the u-band color distributions are significantly different from that of g - z and consistent with our model predictions. With more u-band measurements, this method will support or rule out the nonlinear CMR scenario for the origin of GC color bimodality with high confidence. The HST/WFC3 observations in F336W for nearby large elliptical galaxies are highly anticipated in this regard.

  13. Effects of cosmic string velocities and the origin of globular clusters

    SciTech Connect

    Lin, Ling; Yamanouchi, Shoma; Brandenberger, Robert E-mail: shoma.yamanouchi@mail.mcgill.ca

    2015-12-01

    With the hypothesis that cosmic string loops act as seeds for globular clusters in mind, we study the role that velocities of these strings will play in determining the mass distribution of globular clusters. Loops with high enough velocities will not form compact and roughly spherical objects and can hence not be the seeds for globular clusters. We compute the expected number density and mass function of globular clusters as a function of both the string tension and the peak loop velocity, and compare the results with the observational data on the mass distribution of globular clusters in our Milky Way. We determine the critical peak string loop velocity above which the agreement between the string loop model for the origin of globular clusters (neglecting loop velocities) and observational data is lost.

  14. HST high-precision proper motions of globular clusters

    NASA Astrophysics Data System (ADS)

    Bellini, Andrea; Anderson, Jay; van der marel, roeland p.; piotto, gianpaolo; Watkins, Laura l.; Vesperini, Enrico; Milone, Antonino; Bedin, Luigi R.

    2015-08-01

    The stable environment of space makes HST an excellent astrometric tool. Its diffraction-limited resolution allows it to distinguish and measure positions and fluxes for stars all the way to the center of most globular clusters. There are now many clusters that have observations in the archive that span 13 years or more, and more observations are being taken all the time. We constructed high-precision proper-motion catalogs for over 20 clusters for which there exist two or more well-separated epochs in the archive, and we are extending the list to over 60 objects, thanks to the new observations taken within the ``HST UV Legacy Survey of Galactic Globular Clusters’’ treasury program. Each catalog contains astrometry and photometry for thousands of stars within two arcmin of the center. The catalogs are focused on the many stars within a few magnitudes of the turnoff and have typical proper-motion errors of 0.1 mas/yr, which translates to 2 km/s for the typical cluster. We are using proper motions to directly measure the clusters' anisotropy, equipartition and rotation on the plane of the sky, as well as to study internal kinematics of the different subpopulations and to probe the presence of an IMBH in their core.

  15. Dynamical Evolution of Outer-Halo Globular Clusters

    NASA Astrophysics Data System (ADS)

    Küpper, Andreas H. W.; Zonoozi, Akram H.; Haghi, Hosein; Lützgendorf, Nora; Mieske, Steffen; Frank, Matthias; Baumgardt, Holger; Kroupa, Pavel

    2017-03-01

    Outer-halo globular clusters show large half-light radii and flat stellar mass functions, depleted in low-mass stars. Using N-body simulations of globular clusters on eccentric orbits within a Milky Way-like potential, we show how a cluster's half-mass radius and its mass function develop over time. The slope of the central mass function flattens proportionally to the amount of mass a cluster has lost, and the half-mass radius grows to a size proportional to the average strength of the tidal field. The main driver of these processes is mass segregation of dark remnants. We conclude that the extended, depleted clusters observed in the Milky Way must have had small half-mass radii in the past, and that they expanded due to the weak tidal field they spend most of their lifetime in. Moreover, their mass functions must have been steeper in the past but flattened significantly as a cause of mass segregation and tidal mass loss.

  16. An AO-assisted Variability Study of Four Globular Clusters

    NASA Astrophysics Data System (ADS)

    Salinas, R.; Contreras Ramos, R.; Strader, J.; Hakala, P.; Catelan, M.; Peacock, M. B.; Simunovic, M.

    2016-09-01

    The image-subtraction technique applied to study variable stars in globular clusters represented a leap in the number of new detections, with the drawback that many of these new light curves could not be transformed to magnitudes due to severe crowding. In this paper, we present observations of four Galactic globular clusters, M 2 (NGC 7089), M 10 (NGC 6254), M 80 (NGC 6093), and NGC 1261, taken with the ground-layer adaptive optics module at the SOAR Telescope, SAM. We show that the higher image quality provided by SAM allows for the calibration of the light curves of the great majority of the variables near the cores of these clusters as well as the detection of new variables, even in clusters where image-subtraction searches were already conducted. We report the discovery of 15 new variables in M 2 (12 RR Lyrae stars and 3 SX Phe stars), 12 new variables in M 10 (11 SX Phe and 1 long-period variable), and 1 new W UMa-type variable in NGC 1261. No new detections are found in M 80, but previous uncertain detections are confirmed and the corresponding light curves are calibrated into magnitudes. Additionally, based on the number of detected variables and new Hubble Space Telescope/UVIS photometry, we revisit a previous suggestion that M 80 may be the globular cluster with the richest population of blue stragglers in our Galaxy. Based on observations obtained at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  17. Kinematics of a globular cluster with an extended profile: NGC 5694

    NASA Astrophysics Data System (ADS)

    Bellazzini, M.; Mucciarelli, A.; Sollima, A.; Catelan, M.; Dalessandro, E.; Correnti, M.; D'Orazi, V.; Cortés, C.; Amigo, P.

    2015-01-01

    We present a study of the kinematics of the remote globular cluster NGC 5694 based on GIRAFFE@VLT medium-resolution spectra. A sample of 165 individual stars selected to lie on the red giant branch in the cluster colour-magnitude diagram was considered. Using radial velocity and metallicity from Calcium triplet, we were able to select 83 bona fide cluster members. The addition of six previously known members leads to a total sample of 89 cluster giants with typical uncertainties ≤1.0 km s-1 in their radial velocity estimates. The sample covers a wide range of projected distances from the cluster centre, from ˜0.2 arcmin to 6.5 arcmin ≃ 23 half-light radii (rh). We find only very weak rotation, as typical of metal-poor globular clusters. The velocity dispersion gently declines from a central value of σ = 6.1 km s-1 to σ ≃ 2.5 km s-1 at ˜2 arcmin ≃ 7.1rh, then it remains flat out to the next (and last) measured point of the dispersion profile, at ˜4 arcmin ≃ 14.0rh, at odds with the predictions of isotropic King models. We show that both isotropic single-mass non-collisional models and multimass anisotropic models can reproduce the observed surface brightness and velocity dispersion profiles.

  18. Integrated Light Chemical Abundance Analyses of 7 M31 Outer Halo Globular Clusters from the Pan-Andromeda Archaeological Survey

    NASA Astrophysics Data System (ADS)

    Sakari, Charli; Venn, Kim; Mackey, Dougal; Shetrone, Matthew D.; Dotter, Aaron L.; Wallerstein, George

    2015-01-01

    Detailed chemical abundances of globular clusters provide insight into the formation and evolution of galaxies and their globular cluster systems. This talk presents detailed chemical abundances for seven M31 outer halo globular clusters (with projected radii greater than 30 kpc), as derived from high resolution integrated light spectra. Five of these clusters were recently discovered in the Pan-Andromeda Archaeological Survey (PAndAS). The integrated abundances show that 4 of these clusters are metal-poor ([Fe/H] < -1.5) while the other 3 are more metal-rich. The most metal-poor globular clusters are α-enhanced, though 3 of the 4 are possibly less α-enhanced than MW stars (at the 1σ level). Other chemical abundance ratios ([Ba/Eu], [Eu/Ca], and [Ni/Fe]) are consistent with origins in low mass dwarf galaxies (similar to Fornax). The most metal-rich cluster ([Fe/H] ~ -1) stands out as being chemically distinct from Milky Way field stars of the same metallicity---its chemical abundance ratios agree best with the stars and clusters in the Large Magellanic Cloud (LMC) and the Sagittarius dwarf spheroidal (Sgr) than with the Milky Way field stars. The other metal-rich clusters, H10 and H23, look similar to the LMC and Milky Way field stars in all abundance ratios. These results indicate that M31's outer halo is being at least partially built up by the accretion of dwarf satellites, in agreement with previous observations.

  19. The age of the LMC globular cluster NGC 1783

    SciTech Connect

    Mould, J.; Kristian, J.; Nemec, J.; Jensen, J.; Aaronson, M.

    1989-04-01

    The age of the LMC red globular cluster NGC 1783 is estimated as 0.9 + or - 0.4 billion yr by photometry of the main-sequence turnoff. The accuracy of the estimate is limited chiefly by the uncertainty in the distance modulus of the cluster. At (m - M)0 = 18.2 the cluster is aged 1.1 + or - 0.2 Gyr; at (m - M)0 = 18.7 it is 0.7 + or - 0.2 Gyr. NGC 1783 is a sufficiently rich cluster that one can see the full development of red giants on the asymptotic giant branch from the M type, through S, to carbon-rich atmospheres. 31 refs.

  20. SEARCH FOR RED DWARF STARS IN GLOBULAR CLUSTER NGC 6397

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Left A NASA Hubble Space Telescope image of a small region (1.4 light-years across) in the globular star cluster NGC 6397. Simulated stars (diamonds) have been added to this view of the same region of the cluster to illustrate what astronomers would have expected to see if faint red dwarf stars were abundant in the Milky Way Galaxy. The field would then contain 500 stars, according to theoretical calculations. Right The unmodified HST image shows far fewer stars than would be expected, according to popular theories of star formation. HST resolves about 200 stars. The stellar density is so low that HST can literally see right through the cluster and resolve far more distant background galaxies. From this observation, scientists have identified the surprising cutoff point below which nature apparently doesn't make many stars smaller that 1/5 the mass of our Sun. These HST findings provide new insights into star formation in our Galaxy. Technical detail:The globular cluster NGC 6397, one of the nearest and densest agglomerations of stars, is located 7,200 light-years away in the southern constellation Ara. This visible-light picture was taken on March 3, 1994 with the Wide Field Planetary Camera 2, as part the HST parallel observing program. Credit: F. Paresce, ST ScI and ESA and NASA

  1. Tidal Densities of Globular Clusters and the Galactic Mass Distribution

    NASA Astrophysics Data System (ADS)

    Lee, Hyung Mok

    1990-12-01

    The tidal radii of globular clusters reflect the tidal field of the Galaxy. The mass distribution of the Galaxy thus may be obtained if the tidal fields of clusters are well known. Although large amounts of uncertainties in the determination of tidal radii have been obstacles in utilizing this method, analysis of tidal density could give independent check for the Galactic mass distribution. Recent theoretical modeling of dynamical evolution including steady Galactic tidal field shows that the observationally determined tidal radii could be systematically larger by about a factor of 1.5 compared to the theoretical values. From the analysis of entire sample of 148 globular clusters and 7 dwarf spheroidal systems compiled by Webbink(1985), we find that such reduction from observed values would make the tidal density(the mean density within the tidal radius) distribution consistent with the flat rotation curve of our Galaxy out to large distances if the velocity distribution of clusters and dwarf spheroidals with respect to the Galactic center is isotropic.

  2. SPACE VELOCITIES OF SOUTHERN GLOBULAR CLUSTERS. VI. NINE CLUSTERS IN THE INNER MILKY WAY

    SciTech Connect

    Casetti-Dinescu, Dana I.; Girard, Terrence M.; Korchagin, Vladimir I.; Van Altena, William F.; Lopez, Carlos E.

    2010-11-15

    We have measured the absolute proper motions of nine low-latitude, inner Galaxy globular clusters, namely, NGC 6273 (M 19), NGC 6284, NGC 6287, NGC 6293, NGC 6333 (M 9), NGC 6342, NGC 6356, NGC 6388, and NGC 6441. These are the first determinations ever made for these clusters. The proper motions are on the International Celestial Reference System via Hipparcos. The proper-motion errors range between 0.4 and 0.9 mas yr{sup -1} and are dominated by the number of measurable cluster members in these regions which are very crowded by the bulge/bar and the thick disk. This sample contains five metal-poor ([Fe/H] < -1.0) and four metal-rich ([Fe/H] {>=} -1.0) clusters; seven clusters are located within {approx}4 kpc from the Galactic center, while the remaining two, namely NGC 6356 and NGC 6284, are in the background of the bulge at {approx}7.5 kpc from the Galactic center. By combining proper motions with radial velocities and distances from the literature we derive three-dimensional velocities. In a number of cases, distance uncertainties make the kinematical classification ambiguous. For the metal-poor group of clusters, we find that three clusters, namely NGC 6273, NGC 6287, and NGC 6293 are members of a kinematically hot system, the inner halo. As for the remaining two metal-poor clusters, NGC 6284 is located at {approx}7.5 kpc from the Galactic center and kinematically belongs to the thick disk, while NGC 6333, located in the inner {approx}2 kpc, has an uncertain membership (between halo and thick disk) due to the distance uncertainty. Within the metal-rich group of clusters, NGC 6356 and NGC 6342 have velocities compatible with membership in the thick disk; however, velocity uncertainties do not allow us to rule out their belonging to a hotter system. NGC 6342 is within {approx}2 kpc from the Galactic center, and thus it may belong to the bulge. NGC 6356 is at {approx}7.5 kpc from the Galactic center and thus its metallicity, kinematics, and location argue

  3. STRUCTURAL PARAMETERS FOR GLOBULAR CLUSTERS IN M31

    SciTech Connect

    Wang Song; Ma Jun

    2013-08-01

    In this paper, we present surface brightness profiles for 79 globular clusters in M31, using images observed with the Hubble Space Telescope, some of which are from new observations. The structural and dynamical parameters are derived from fitting the profiles to several different models for the first time. The results show that in the majority of cases, King models fit the M31 clusters just as well as Wilson models and better than Sersic models. However, there are 11 clusters best fitted by Sersic models with the Sersic index n > 2, meaning that they have cuspy central density profiles. These clusters may be the well-known core-collapsed candidates. There is a bimodality in the size distribution of M31 clusters at large radii, which is different from their Galactic counterparts. In general, the properties of clusters in M31 and the Milky Way fall in the same regions of parameter spaces. The tight correlations of cluster properties indicate a ''fundamental plane'' for clusters, which reflects some universal physical conditions and processes operating at the epoch of cluster formation.

  4. THE ORIGIN OF THE SPURIOUS IRON SPREAD IN THE GLOBULAR CLUSTER NGC 3201

    SciTech Connect

    Mucciarelli, A.; Lapenna, E.; Massari, D.; Ferraro, F. R.; Lanzoni, B.

    2015-03-01

    NGC 3201 is a globular cluster suspected to have an intrinsic spread in the iron content. We re-analyzed a sample of 21 cluster stars observed with UVES-FLAMES at the Very Large Telescope and for which Simmerer et al. found a 0.4 dex wide [Fe/H] distribution with a metal-poor tail. We confirmed that when spectroscopic gravities are adopted, the derived [Fe/H] distribution spans ∼0.4 dex. On the other hand, when photometric gravities are used, the metallicity distribution from Fe I lines remains large, while that derived from Fe II lines is narrow and compatible with no iron spread. We demonstrate that the metal-poor component claimed by Simmerer et al. is composed by asymptotic giant branch stars that could be affected by non-local thermodynamical equilibrium effects driven by iron overionization. This leads to a decrease of the Fe I abundance, while leaving the Fe II abundance unaltered. A similar finding has been already found in asymptotic giant branch stars of the globular clusters M5 and 47 Tucanae. We conclude that NGC 3201 is a normal cluster, with no evidence of intrinsic iron spread.

  5. A spectroscopic study of the globular cluster M28 (NGC 6626)

    NASA Astrophysics Data System (ADS)

    Villanova, S.; Moni Bidin, C.; Mauro, F.; Munoz, C.; Monaco, L.

    2017-01-01

    We present the abundance analysis for a sample of 17 red giant branch stars in the metal-poor globular cluster M28 based on high-resolution spectra. This is the first extensive spectroscopic study of this cluster. We derive abundances of O, Na, Mg, Al, Si, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Ba, La, Ce, and Eu. We find a metallicity of [Fe/H] = -1.29 ± 0.01 and an α-enhancement of +0.34 ± 0.01 (errors on the mean), typical of halo globular clusters in this metallicity regime. A large spread is observed in the abundances of light elements O, Na, and Al. Mg also shows an anti-correlation with Al with a significance of 3σ. The cluster shows a Na-O anti-correlation and a Na-Al correlation. This correlation is not linear but `segmented' and that the stars are not distributed continuously, but form at least three well-separated sub-populations. In this aspect, M28 resembles NGC 2808 that was found to host at least five sub-populations. The presence of a Mg-Al anti-correlation favour massive AGB stars as the main polluters responsible for the multiple-population phenomenon.

  6. HST Snapshot Study of Variable Stars in Globular Clusters: Inner Region of NGC 6441

    NASA Technical Reports Server (NTRS)

    Pritzl, Barton J.; Smith, Horace A.; Stetson, Peter B.; Catelan, Marcio; Sweigart, Allen V.; Layden, Andrew C.; Rich, R. Michael

    2003-01-01

    We present the results of a Hubble Space Telescope snapshot program to survey the inner region of the metal-rich globular cluster NGC 6441 for its variable stars. A total of 57 variable stars was found including 38 RR Lyrae stars, 6 Population II Cepheids, and 12 long period variables. Twenty-four of the RR Lyrae stars and all of the Population II Cepheids were previously undiscovered in ground-based surveys. Of the RR Lyrae stars observed in h s survey, 26 are pulsating in the fundamental mode with a mean period of 0.753 d and 12 are first-overtone mode pulsators with a mean period of 0.365 d. These values match up very well with those found in ground-based surveys. Combining all the available data for NGC 6441, we find mean periods of 0.759 d and 0.375 d for the RRab and RRc stars, respectively. We also find that the RR Lyrae in this survey are located in the same regions of a period-amplitude diagram as those found in ground-based surveys. The overall ratio of RRc to total RR Lyrae is 0.33. Although NGC 6441 is a metal-rich globular cluster and would, on that ground, be expected either to have few RR Lyrae stars, or to be an Oosterhoff type I system, its RR Lyrae more closely resemble those in Oosterhoff type II globular clusters. However, even compared to typical Oosterhoff type II systems, the mean period of its RRab stars is unusually long. We also derived I-band period-luminosity relations for the RR Lyrae stars. Of the six Population II Cepheids, five are of W Virginis type and one is a BL Herculis variable star. This makes NGC 6441, along with NGC 6388, the most metal-rich globular cluster known to contain these types of variable stars. Another variable, V118, may also be a Population II Cepheid given its long period and its separation in magnitude from the RR Lyrae stars. We examine the period-luminosity relation for these Population II Cepheids and compare it to those in other globular clusters and in the Large Magellanic Cloud. We argue that there does

  7. Gaseous models of globular clusters with stellar evolution

    NASA Astrophysics Data System (ADS)

    Deiters, S.; Spurzem, R.

    Comparing different approaches for modelling the evolution of star clusters, gaseous models have the advantage of high "particle numbers" but --- until now --- the disadvantage of a lack of realism (Giersz & Spurzem 1994, MNRAS 269, 24 1). To improve gaseous models towards a more realistic description of globular clusters one has to take the effects of stellar evolution and many (primordial) binaries into account and add a consistent treatment of the tidal field of the galaxy (Chernoff & Weinberg 1990, ApJ 351, 121; Portegies Zwart 1998, AA in press). We want to present the first steps on our way towards more realistic gaseous models: We show results of the first implementation of stellar evolution in a spherically symmetric anisotropic gaseous model. We subdivide our model in several dynamical components, each with different stellar mass, whose stellar evolution is followed in a parameterized way. Thus we can simulate the effects of the evolution of stars of different masses in the cluster: During their evolution the stars lose a significant amount of their initial mass, which can easily escape from the cluster. Hence the binding energy of the cluster is reduced. We show several models with different initial conditions with and without the effects of stellar evolution. Their evolution is followed into core bounce and during the post-collapse phase. Dynamical properties of the clusters for the different initial conditions are compared. If time allows we will focus briefly on the treatment of a (time-independent) tidal boundary, modelling the gravitational field of the mother galaxy in our models and give an outlook on the next steps towards more realism in our models of globular clusters, e.g. the inclusion of stochastic binaries (Spurzem & Giersz 1996, MNRAS 283, 805) and stellar finite-size effects.

  8. Formation of the Galaxy: Clues from Globular Cluster Ages and Abundances

    NASA Astrophysics Data System (ADS)

    Fullton, Laura Kellar

    1996-06-01

    wavelength coverage was from 5000-7800A. The spectra were extracted in the normal manner using standard IRAF routines. Using photometrically derived stellar parameters and preliminary metallicity estimates for the cluster, model atmospheres were computed using ATLAS9 and abundances were derived using WIDTH9 (Kurucz 1993, Model Atmospheres CD-ROM). Mean derived [Fe/H] and [alpha/Fe] ratios from all three stars were [Fe/H] = -1.26 +- 0.09~dex, [Si/Fe] = +0.68 +- 0.13~dex, [Ca/Fe] = +0.33 +- 0.13 dex, and [Ti/Fe] = +0.24 +- 0.15~dex. The inner halo cluster NGC 6723 was originally chosen for study because its estimated metallicity ([Fe/H] = - 1.09, Zinn & West 1984, ApJS, 55, 45) and richness in RR Lyraes made it a good "template" cluster for the Baade's Window (BW) RR Lyraes. However, this analysis showed that NGC 6723 is more metal-poor than previously thought, in keeping with its blue horizontal branch morphology. The lower metallicity weakens the association of NGC 6723 with the bulge RR Lyraes. The latter were used by Lee (1992, AJ, 104, 1780) to infer that bulge formation began 1-2 Gyr before formation of the outer halo. My age derivation demonstrated that NGC 6723 is comparable in age to other (old halo) globular clusters that have similar metallicities. The age differences between NGC~6723 and the oldest, most metal-poor globulars suggest that if NGC~6723 is representative, formation of the inner halo began between 1-3 Gyr later than the onset of halo formation, but occurred more or less simultaneously with the bulk of halo star formation. The ages determined for the metal-rich (thick) disk globular clusters NGC 5927 and NGC 6352 increase by half again the number of disk globulars for which accurate ages are known. NGC 6352 ([Fe/H] = -0.63 +- 0.04) was found to be comparable in age to other disk globulars with known ages. If these clusters are representative, then it appears that the thick disk began to form not long after the halo, in agreement with previous findings of

  9. Image-Subtraction Photometry of Variable Stars in the Globular Clusters NGC 6388 and NGC 6441

    NASA Technical Reports Server (NTRS)

    Corwin, Michael T.; Sumerel, Andrew N.; Pritzl, Barton J.; Smith, Horace A.; Catelan, M.; Sweigart, Allen V.; Stetson, Peter B.

    2006-01-01

    We have applied Alard's image subtraction method (ISIS v2.1) to the observations of the globular clusters NGC 6388 and NGC 6441 previously analyzed using standard photometric techniques (DAOPHOT, ALLFRAME). In this reanalysis of observations obtained at CTIO, besides recovering the variables previously detected on the basis of our ground-based images, we have also been able to recover most of the RR Lyrae variables previously detected only in the analysis of Hubble Space Telescope WFPC2 observations of the inner region of NGC 6441. In addition, we report five possible new variables not found in the analysis of the EST observations of NGC 6441. This dramatically illustrates the capabilities of image subtraction techniques applied to ground-based data to recover variables in extremely crowded fields. We have also detected twelve new variables and six possible variables in NGC 6388 not found in our previous groundbased studies. Revised mean periods for RRab stars in NGC 6388 and NGC 6441 are 0.676 day and 0.756 day, respectively. These values are among the largest known for any galactic globular cluster. Additional probable type II Cepheids were identified in NGC 6388, confirming its status as a metal-rich globular cluster rich in Cepheids.

  10. The richness of the globular cluster system of NGC 3923: Clues to elliptical galaxy formation

    NASA Technical Reports Server (NTRS)

    Zepf, Stephen E.; Geisler, Doug; Ashman, Keith M.

    1994-01-01

    We present new data on the globular cluster system of the elliptical galaxy NGC 3923 which show that it has the most globular clusters per unit luminosity of any noncluster elliptical yet observed, with S(sub N) = 6.4 +/- 1.4. NGC 3923 is also among the brightest ellipticals outside of a galaxy cluster for which the number of globular clusters has been determined. Our observation of a large number of clusters per unit luminosity (high S(sub N)-value) for a bright elliptical in a sparse environment is consistent with the suggestion of Djorgovski and Santiago that the number of globular clusters is a power-law function of the luminosity with an exponent greater than 1. We relate this higher specific frequency of globular clusters in more luminous galaxies to other observations which indicate that the physical conditions within elliptical galaxies at the time of their formation were dependent on galaxy mass.

  11. THE OUTSKIRTS OF GLOBULAR CLUSTERS AS MODIFIED GRAVITY PROBES

    SciTech Connect

    Hernandez, X.; Jimenez, M. A.

    2012-05-01

    In the context of theories of gravity modified to account for the observed dynamics of galactic systems without the need to invoke the existence of dark matter, a prediction often appears regarding low-acceleration systems: wherever a falls below a{sub 0}, one should expect a transition from the classical to the modified gravity regime. This modified gravity regime will be characterized by equilibrium velocities that become independent of distance and that scale with the fourth root of the total baryonic mass, V{sup 4}{proportional_to}M. The two conditions above are the well-known flat rotation curves and Tully-Fisher relations of the galactic regime. Recently, however, a similar phenomenology has been hinted at, at the outskirts of Galactic globular clusters, precisely in the region where a < a{sub 0}. Radial profiles of the projected velocity dispersion have been observed to stop decreasing along Keplerian expectations and to level off at constant values beyond the radii where a < a{sub 0}. We have constructed gravitational equilibrium dynamical models for a number of globular clusters for which the above gravitational anomaly has been reported, using a modified Newtonian force law that yields equilibrium velocities equivalent to modified Newtonian dynamics. We find models having an inner Newtonian region and an outer modified gravity regime, which reproduce all observational constraints, surface brightness profiles, total masses, and line-of-sight velocity dispersion profiles, can be easily constructed. Through the use of detailed single stellar population models tuned individually to each of the globular clusters in question, we derive estimates of the total masses for these systems. Interestingly, we find that the asymptotic values of the velocity dispersion profiles are consistent with scaling with the fourth root of the total masses, as expected under modified gravity scenarios.

  12. Dynamical Evolution of Rotating Globular Clusters with Embedded Black Holes

    NASA Astrophysics Data System (ADS)

    Fiestas, J.; Porth, O.; Spurzem, R.

    2008-05-01

    Evolution of self-gravitating rotating dense stellar systems (e.g. globular clusters) with embedded black holes is investigated. The interplay between velocity diffusion due to relaxation and black hole star accretion is followed together with cluster differential rotation using 2D+1 Fokker Planck numerical methods. The models can reproduce the Bahcall-Wolf f E1/4 ( r-7/4) cusp inside the zone of influence of the black hole. Angular momentum transport and star accretion processes support the development of central rotation in relaxation time scales, before re-expansion and cluster dissolution due to mass loss in the tidal field of a parent galaxy. Gravogyro and gravothermal instabilities conduce the system to a faster evolution leading to shorter collapse times with respect to models without black hole.

  13. The nonthermal stellar dynamics of the globular cluster M15

    SciTech Connect

    Peterson, R.C.; Seitzer, P.; Cudworth, K.M. Space Telescope Science Institute, Baltimore, MD Yerkes Observatory, Williams Bay, WI )

    1989-12-01

    The velocity dispersion as a function of radius in the globular cluster M15 is derived from measurements of 120 individual stars between 0.1 and 4.6 arcmin of the cluster center, and from the integrated light of the central cusp. The stellar measurements, with an individual accuracy of 1 km/s, indicate a mean cluster velocity of -107.1 + or - 0.9 km/s and a mean velocity dispersion of 9.0 + or - 0.6 km/s. The velocity dispersion inside 12 arcmin varies with radius. Except for its greater velocity gradient, the spectrum of the integrated light of the cusp is indistinguishable from that formed by superposition of the individual M15 giant spectra, demonstrating that the excess light at the center is due primarily to a normal M15 population. The findings indicate a nonthermal energy distribution with substantial heating in the central regions. 54 refs.

  14. MUSE crowded field 3D spectroscopy of over 12 000 stars in the globular cluster NGC 6397. I. The first comprehensive HRD of a globular cluster

    NASA Astrophysics Data System (ADS)

    Husser, Tim-Oliver; Kamann, Sebastian; Dreizler, Stefan; Wendt, Martin; Wulff, Nina; Bacon, Roland; Wisotzki, Lutz; Brinchmann, Jarle; Weilbacher, Peter M.; Roth, Martin M.; Monreal-Ibero, Ana

    2016-04-01

    Aims: We demonstrate the high multiplex advantage of crowded field 3D spectroscopy with the new integral field spectrograph MUSE by means of a spectroscopic analysis of more than 12 000 individual stars in the globular cluster NGC 6397. Methods: The stars are deblended with a point spread function fitting technique, using a photometric reference catalogue from HST as prior, including relative positions and brightnesses. This catalogue is also used for a first analysis of the extracted spectra, followed by an automatic in-depth analysis via a full-spectrum fitting method based on a large grid of PHOENIX spectra. Results: We analysed the largest sample so far available for a single globular cluster of 18 932 spectra from 12 307 stars in NGC 6397. We derived a mean radial velocity of vrad = 17.84 ± 0.07 km s-1 and a mean metallicity of [Fe/H] = -2.120 ± 0.002, with the latter seemingly varying with temperature for stars on the red giant branch (RGB). We determine Teff and [Fe/H] from the spectra, and log g from HST photometry. This is the first very comprehensive Hertzsprung-Russell diagram (HRD) for a globular cluster based on the analysis of several thousands of stellar spectra, ranging from the main sequence to the tip of the RGB. Furthermore, two interesting objects were identified; one is a post-AGB star and the other is a possible millisecond-pulsar companion. Data products are available at http://muse-vlt.eu/scienceBased on observations obtained at the Very Large Telescope (VLT) of the European Southern Observatory, Paranal, Chile (ESO Programme ID 60.A-9100(C)).

  15. Wide-Field Survey of Globular Clusters in M31. II. Kinematics of the Globular Cluster System

    NASA Astrophysics Data System (ADS)

    Lee, Myung Gyoon; Hwang, Ho Seong; Kim, Sang Chul; Park, Hong Soo; Geisler, Doug; Sarajedini, Ata; Harris, William E.

    2008-02-01

    We present a kinematic analysis of the globular cluster (GC) system in M31, using the velocity data for 504 GCs including those for 150 GCs in our wide-field survey. The all GC system shows strong rotation, with rotation amplitude of vrot ~ 190 km s-1, and weak rotation persists even for the outermost samples at | Y| >= 5 kpc, where Y represents the projected distance from the major axis. The rotation-corrected velocity dispersion for the GC system is estimated to be σp,r ~ 130 km s-1, and it increases from σp,r ~ 120 km s-1 at | Y| < 1 kpc to σp,r ~ 150 km s-1 at | Y| >= 5 kpc. These results are very similar to those for the metal-poor GCs. This shows that there is a dynamically hot halo in M31 that is rotating but primarily pressure-supported. We have identified 50 "friendless" GCs, and they appear to rotate around the major axis of M31. Both metal-rich GCs and metal-poor GCs show strong rotation in the inner region. The rotation for the faint GCs is stronger than that for the bright GCs. We have identified 56 GCs and GC candidates with X-ray detection including 39 GCs with measured velocities. The majority of X-ray-emitting GCs follow the disk rotation. We have derived a rotation curve of M31 using the GCs at | Y| <= 0.6 kpc. We have estimated the dynamical mass of M31 using "Projected Mass Estimator (PME)" and "Tracer Mass Estimator (TME)" as MPME = 5.5+ 0.4-0.3 × 1011 M⊙ out to a radius of ~55 kpc and MTME = 19.2+ 1.4-1.3 × 1011 M⊙ for a radius of ~100 kpc, respectively. We finally discuss the implication of these results and compare the kinematics of GCs with that of planetary nebulae in M31. Based on observations with the Kitt Peak National Observatory, National Optical Astronomy Observatory, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under cooperative agreement with the National Science Foundation.

  16. Variable Stars in Large Magellanic Cloud Globular Clusters. III. Reticulum

    NASA Astrophysics Data System (ADS)

    Kuehn, Charles A.; Dame, Kyra; Smith, Horace A.; Catelan, Márcio; Jeon, Young-Beom; Nemec, James M.; Walker, Alistair R.; Kunder, Andrea; Pritzl, Barton J.; De Lee, Nathan; Borissova, Jura

    2013-06-01

    This is the third in a series of papers studying the variable stars in old globular clusters in the Large Magellanic Cloud. The primary goal of this series is to look at how the characteristics and behavior of RR Lyrae stars in Oosterhoff-intermediate systems compare to those of their counterparts in Oosterhoff-I/II systems. In this paper we present the results of our new time-series BVI photometric study of the globular cluster Reticulum. We found a total of 32 variables stars (22 RRab, 4 RRc, and 6 RRd stars) in our field of view. We present photometric parameters and light curves for these stars. We also present physical properties, derived from Fourier analysis of light curves, for some of the RR Lyrae stars. We discuss the Oosterhoff classification of Reticulum and use our results to re-derive the distance modulus and age of the cluster. Based on observations taken with the SMARTS 1.3 m telescope operated by the SMARTS Consortium and observations taken at the Southern Astrophysical Research (SOAR) telescope, which is a joint project of the Ministério da Ciência, Tecnologia, e Inovação (MCTI) da República Federativa do Brasil, the U.S. National Optical Astronomy Observatory (NOAO), the University of North Carolina at Chapel Hill (UNC), and Michigan State University (MSU).

  17. A SPECTROSCOPIC ANALYSIS OF THE GALACTIC GLOBULAR CLUSTER NGC 6273 (M19)

    SciTech Connect

    Johnson, Christian I.; Caldwell, Nelson; Rich, R. Michael; Pilachowski, Catherine A.; Mateo, Mario; Bailey, John I. III; Crane, Jeffrey D. E-mail: ncaldwell@cfa.harvard.edu E-mail: catyp@astro.indiana.edu E-mail: baileyji@umich.edu

    2015-08-15

    A combined effort utilizing spectroscopy and photometry has revealed the existence of a new globular cluster class. These “anomalous” clusters, which we refer to as “iron-complex” clusters, are differentiated from normal clusters by exhibiting large (≳0.10 dex) intrinsic metallicity dispersions, complex sub-giant branches, and correlated [Fe/H] and s-process enhancements. In order to further investigate this phenomenon, we have measured radial velocities and chemical abundances for red giant branch stars in the massive, but scarcely studied, globular cluster NGC 6273. The velocities and abundances were determined using high resolution (R ∼ 27,000) spectra obtained with the Michigan/Magellan Fiber System (M2FS) and MSpec spectrograph on the Magellan–Clay 6.5 m telescope at Las Campanas Observatory. We find that NGC 6273 has an average heliocentric radial velocity of +144.49 km s{sup −1} (σ = 9.64 km s{sup −1}) and an extended metallicity distribution ([Fe/H] = −1.80 to −1.30) composed of at least two distinct stellar populations. Although the two dominant populations have similar [Na/Fe], [Al/Fe], and [α/Fe] abundance patterns, the more metal-rich stars exhibit significant [La/Fe] enhancements. The [La/Eu] data indicate that the increase in [La/Fe] is due to almost pure s-process enrichment. A third more metal-rich population with low [X/Fe] ratios may also be present. Therefore, NGC 6273 joins clusters such as ω Centauri, M2, M22, and NGC 5286 as a new class of iron-complex clusters exhibiting complicated star formation histories.

  18. A Spectroscopic Analysis of the Galactic Globular Cluster NGC 6273 (M19)

    NASA Astrophysics Data System (ADS)

    Johnson, Christian I.; Rich, R. Michael; Pilachowski, Catherine A.; Caldwell, Nelson; Mateo, Mario; Bailey, John I., III; Crane, Jeffrey D.

    2015-08-01

    A combined effort utilizing spectroscopy and photometry has revealed the existence of a new globular cluster class. These “anomalous” clusters, which we refer to as “iron-complex” clusters, are differentiated from normal clusters by exhibiting large (≳0.10 dex) intrinsic metallicity dispersions, complex sub-giant branches, and correlated [Fe/H] and s-process enhancements. In order to further investigate this phenomenon, we have measured radial velocities and chemical abundances for red giant branch stars in the massive, but scarcely studied, globular cluster NGC 6273. The velocities and abundances were determined using high resolution (R ˜ 27,000) spectra obtained with the Michigan/Magellan Fiber System (M2FS) and MSpec spectrograph on the Magellan-Clay 6.5 m telescope at Las Campanas Observatory. We find that NGC 6273 has an average heliocentric radial velocity of +144.49 km s-1 (σ = 9.64 km s-1) and an extended metallicity distribution ([Fe/H] = -1.80 to -1.30) composed of at least two distinct stellar populations. Although the two dominant populations have similar [Na/Fe], [Al/Fe], and [α/Fe] abundance patterns, the more metal-rich stars exhibit significant [La/Fe] enhancements. The [La/Eu] data indicate that the increase in [La/Fe] is due to almost pure s-process enrichment. A third more metal-rich population with low [X/Fe] ratios may also be present. Therefore, NGC 6273 joins clusters such as ω Centauri, M2, M22, and NGC 5286 as a new class of iron-complex clusters exhibiting complicated star formation histories. This paper includes data gathered with the 6.5 m Magellan Telescopes located at Las Campanas Observatory, Chile.

  19. Intrinsic integrated UBVRI colors of Galactic globular clusters

    NASA Technical Reports Server (NTRS)

    Reed, B. Cameron; Hesser, James E.; Shawl, Stephen J.

    1988-01-01

    Published observational data on 50 Galactic globular clusters, including spectral classifications, homogenized colors, and color excesses, are compiled in extensive tables, graphs, and diagrams and analyzed to determine the intrinsic-color/integrated-spectral-type relationship in the UBVRI system. These relationships are found to exhibit significant slopes, although the RI colors do not contribute substantially to the intrinsic-color determination. The values of a(B-V) for the northern and southern Galactic hemispheres are found to be 0.068 + or - 0.006 and 0.039 + or - 0.003 mag, respectively.

  20. High-resolution imaging of globular cluster cores

    NASA Technical Reports Server (NTRS)

    Weir, N.; Piotto, G.; Djorgovski, S.

    1990-01-01

    An approach based on the maximum entropy method aimed at increasing angular resolution to study globular cluster cores is presented. To perform the image restoration the Gull-Skilling (1989) MEMSYS-3 code for maximum entropy reconstruction of arbitrary data sets was used. This software was recently applied to restoration of ESO images of the R136 object in the core of the 30 Doradus nebula. It was demonstrated that the software made it possible to restore an image at subpixel spatial scales which facilitates the detection of very high-resolution structure in the restored image.

  1. Photometric and Kinematic Studies of Extragalactic Globular Cluster Systems

    NASA Astrophysics Data System (ADS)

    Windschitl-Dowell, Jessica L.

    2015-01-01

    Globular clusters (GCs) are compact, luminous collections of stars created during the early stages of galaxy formation. As a result, the properties of GC systems provide important clues about the formation, merger history, and structure of their host galaxies. In particular, kinematic studies of GCs can be used to investigate the dark matter distribution in galaxy halos and provide observational evidence that can be used to constrain models of galaxy formation. I will present our study of the GC systems of two spiral galaxies, NGC 891 and NGC 1055, and show how we used wide-field BVR imaging from the WIYN 3.5-m telescope to detect the GC population and measure the global properties of the system. We quantified the radial distribution of the GC system and total number of GCs in these galaxies and compared the results to those of other galaxies.I will also present the results of spectroscopic follow-up for two giant galaxies: the S0 galaxy NGC 4594 (M104), and the elliptical galaxy NGC 3379 (M105). Using spectra taken with AAT/AAOmega, WIYN/HYDRA, and MMT/Hectospec, I measured the radial velocities of GCs, and combined them with published results to determine the mass distribution and V-band mass-to-light (M/LV) ratio profile for each galaxy out to large effective radius (7-9 Re). I compared our results to mass estimates from other kinematic tracers and also considered them in the context of galaxy formation models. For both galaxies, I found that the M/LV profiles increase with radius and do not flatten, which suggests that the dark matter halos in these galaxies extend to the edge of our data. I also looked for evidence of rotation within the GC systems, and found that neither system exhibits significant rotation around the host galaxy. Finally, I examined the velocity dispersion of each GC system as a function of radius and found kinematic differences between the red, metal-rich and blue, metal-poor GC subpopulations.

  2. A Proper Motions Study of the Globular Cluster NGC 3201

    NASA Astrophysics Data System (ADS)

    Sariya, Devesh P.; Jiang, Ing-Guey; Yadav, R. K. S.

    2017-03-01

    With a high value of heliocentric radial velocity, a retrograde orbit, and suspected to have an extragalactic origin, NGC 3201 is an interesting globular cluster for kinematical studies. Our purpose is to calculate the relative proper motions (PMs) and membership probability for the stars in the wide region of globular cluster NGC 3201. PM based membership probabilities are used to isolate the cluster sample from the field stars. The membership catalog will help address the question of chemical inhomogeneity in the cluster. Archive CCD data taken with a wide-field imager (WFI) mounted on the ESO 2.2 m telescope are reduced using the high-precision astrometric software developed by Anderson et al. for the WFI images. The epoch gap between the two observational runs is ∼14.3 years. To standardize the BVI photometry, Stetson’s secondary standard stars are used. The CCD data with an epoch gap of ∼14.3 years enables us to decontaminate the cluster stars from field stars efficiently. The median precision of PMs is better than ∼0.8 mas yr‑1 for stars having V< 18 mag that increases up to ∼1.5 mas yr‑1 for stars with 18< V< 20 mag. Kinematic membership probabilities are calculated using PMs for stars brighter than V∼ 20 mag. An electronic catalog of positions, relative PMs, BVI magnitudes, and membership probabilities in the ∼19.7 × 17 arcmin2 region of NGC 3201 is presented. We use our membership catalog to identify probable cluster members among the known variables and X-ray sources in the direction of NGC 3201. Based on observations with the MPG/ESO 2.2 m and ESO/VLT telescopes, located at La Silla and Paranal Observatory, Chile, under DDT programs 164.O-0561(F), 093.A-9028(A), and the archive material.

  3. High resolution spectroscopic analysis of seven giants in the bulge globular cluster NGC 6723

    NASA Astrophysics Data System (ADS)

    Rojas-Arriagada, A.; Zoccali, M.; Vásquez, S.; Ripepi, V.; Musella, I.; Marconi, M.; Grado, A.; Limatola, L.

    2016-03-01

    Context. Globular clusters associated with the Galactic bulge are important tracers of stellar populations in the inner Galaxy. High resolution analysis of stars in these clusters allows us to characterize them in terms of kinematics, metallicity, and individual abundances, and to compare these fingerprints with those characterizing field populations. Aims: We present iron and element ratios for seven red giant stars in the globular cluster NGC 6723, based on high resolution spectroscopy. Methods: High resolution spectra (R ~ 48 000) of seven K giants belonging to NGC 6723 were obtained with the FEROS spectrograph at the MPG/ESO 2.2 m telescope. Photospheric parameters were derived from ~130 Fe i and Fe ii transitions. Abundance ratios were obtained from line-to-line spectrum synthesis calculations on clean selected features. Results: An intermediate metallicity of [Fe/H] = -0.98 ± 0.08 dex and a heliocentric radial velocity of vhel = -96.6 ± 1.3 km s-1 were found for NGC 6723. Alpha-element abundances present enhancements of [O/Fe] = 0.29 ± 0.18 dex, [Mg/Fe] = 0.23 ± 0.10 dex, [Si/Fe] = 0.36 ± 0.05 dex, and [Ca/Fe] = 0.30 ± 0.07 dex. Similar overabundance is found for the iron-peak Ti with [Ti/Fe] = 0.24 ± 0.09 dex. Odd-Z elements Na and Al present abundances of [Na/Fe] = 0.00 ± 0.21 dex and [Al/Fe] = 0.31 ± 0.21 dex, respectively. Finally, the s-element Ba is also enhanced by [Ba/Fe] = 0.22 ± 0.21 dex. Conclusions: The enhancement levels of NGC 6723 are comparable to those of other metal-intermediate bulge globular clusters. In turn, these enhancement levels are compatible with the abundance profiles displayed by bulge field stars at that metallicity. This hints at a possible similar chemical evolution with globular clusters and the metal-poor of the bulge going through an early prompt chemical enrichment.

  4. Confirming the intrinsic abundance spread in the globular cluster NGC 6273 (M19) with calcium triplet spectroscopy

    NASA Astrophysics Data System (ADS)

    Yong, David; Da Costa, Gary S.; Norris, John E.

    2016-08-01

    We present metallicities for red giant stars in the globular cluster NGC 6273 based on intermediate resolution GMOS-S spectra of the calcium triplet region. For the 42 radial velocity members with reliable calcium triplet line strength measurements, we obtain metallicities, [Fe/H], using calibrations established from standard globular clusters. We confirm the presence of an intrinsic abundance dispersion identified by Johnson et al. The total range in [Fe/H] is ˜1.0 dex and after taking into account the measurement errors, the intrinsic abundance dispersion is σint[Fe/H] = 0.17 dex. Among the Galactic globular clusters, the abundance dispersion in NGC 6273 is only exceeded by ω Cen, which is regarded as the remnant of a disrupted dwarf galaxy, and M54, which is the nuclear star cluster of the Sagittarius dwarf galaxy. If these three globular clusters share the same formation mechanism, then NGC 6273 may also be the remnant nucleus of a disrupted dwarf galaxy.

  5. FSR 1716: A New Milky Way Globular Cluster Confirmed Using VVV RR Lyrae Stars

    NASA Astrophysics Data System (ADS)

    Minniti, Dante; Palma, Tali; Dékány, Istvan; Hempel, Maren; Rejkuba, Marina; Pullen, Joyce; Alonso-García, Javier; Barbá, Rodolfo; Barbuy, Beatriz; Bica, Eduardo; Bonatto, Charles; Borissova, Jura; Catelan, Marcio; Carballo-Bello, Julio A.; Chene, Andre Nicolas; José Clariá, Juan; Cohen, Roger E.; Contreras Ramos, Rodrigo; Dias, Bruno; Emerson, Jim; Froebrich, Dirk; Buckner, Anne S. M.; Geisler, Douglas; Gonzalez, Oscar A.; Gran, Felipe; Hagdu, Gergely; Irwin, Mike; Ivanov, Valentin D.; Kurtev, Radostin; Lucas, Philip W.; Majaess, Daniel; Mauro, Francesco; Moni-Bidin, Christian; Navarrete, Camila; Ramírez Alegría, Sebastian; Saito, Roberto K.; Valenti, Elena; Zoccali, Manuela

    2017-03-01

    We use deep multi-epoch near-IR images of the VISTA Variables in the Vía Láctea (VVV) Survey to search for RR Lyrae stars toward the Southern Galactic plane. Here, we report the discovery of a group of RR Lyrae stars close together in VVV tile d025. Inspection of the VVV images and PSF photometry reveals that most of these stars are likely to belong to a globular cluster that matches the position of the previously known star cluster FSR 1716. The stellar density map of the field yields a >100σ detection for this candidate globular cluster that is centered at equatorial coordinates R.A. J2000 = 16:10:30.0, decl. J2000 = ‑53:44:56 and galactic coordinates l = 329.77812, b = ‑1.59227. The color–magnitude diagram of this object reveals a well-populated red giant branch, with a prominent red clump at K s = 13.35 ± 0.05, and J ‑ K s = 1.30 ± 0.05. We present the cluster RR Lyrae positions, magnitudes, colors, periods, and amplitudes. The presence of RR Lyrae indicates an old globular cluster, with an age >10 Gyr. We classify this object as an Oosterhoff type I globular cluster, based on the mean period of its RR Lyrae type ab, < P> =0.540 days, and argue that this is a relatively metal-poor cluster with [Fe/H] = ‑1.5 ± 0.4 dex. The mean extinction and reddening for this cluster are {A}{Ks}=0.38+/- 0.02 and E(J ‑ K s ) = 0.72 ± 0.02 mag, respectively, as measured from the RR Lyrae colors and the near-IR color–magnitude diagram. We also measure the cluster distance using the RR Lyrae type ab stars. The cluster mean distance modulus is (m ‑ M)0 = 14.38 ± 0.03 mag, implying a distance D = 7.5 ± 0.2 kpc and a Galactocentric distance R G = 4.3 kpc.

  6. Abundance anomalies in hot horizontal-branch stars of the globular cluster NGC 6752

    SciTech Connect

    Glaspey, J.W.; Michaud, G.; Moffat, A.F.J.; Demers, S.

    1989-04-01

    High-resolution spectra of two blue stars on the horizontal branch of the metal-poor globular cluster NGC 6752 have been obtained with an echelle spectrograph and a CCD detector on the CTIO 4 m telescope. A helium underabundance is confirmed in the blue star CL 1083 (Teff = 16,000 K). An overabundance of iron by a factor of 50 compared to the cluster metallicity is also obtained. No abundance anomaly is measured in the cooler star CL 1007 (Teff = 10,000 K). Presumably all stars of this cluster had the same original abundances; hence, the anomalies must be explained by the different properties of individual stars. These results are discussed in the context of the diffusion model originally developed to explain the He underabundance in horizontal-branch stars. 47 refs.

  7. The Counterparts of the Luminous, Bursting X-ray Sources in Globular Clusters-LTSA98

    NASA Technical Reports Server (NTRS)

    Anderson, Scott F.

    2003-01-01

    Under the fifth year of the LTSA, we have extended our HST and Chandra work to a number of additional globular clusters. The remarkable sensitivity and positional accuracy of the Chandra observations are enabling us to maximally exploit HST for UV/optical identifications for X-ray binaries in the cores of multiple globular clusters. The dozens of lower-luminosity X-ray sources in each globular cluster deeply examined thus far have moved us firmly into the era of studies which encompass populations of close; the large range of cluster properties we are studying have, for the first tine, established a firm empirical confirmation of the (long-suspected theoretically) high importance that close binaries play in the dynamical stability and evolution of globular clusters. The LTSA support has been a cornerstone of our success over the past 5 years in studies of globular cluster X-ray sources and their counterparts.

  8. Chemical Abundances of Two Stars in the Large Magellanic Cloud Globular Cluster NGC 1718

    NASA Astrophysics Data System (ADS)

    Sakari, Charli M.; McWilliam, Andrew; Wallerstein, George

    2017-01-01

    Detailed chemical abundances of two stars in the intermediate-age Large Magellanic Cloud (LMC) globular cluster NGC 1718 are presented, based on high resolution spectroscopic observations with the MIKE spectrograph. The detailed abundances confirm NGC 1718 to be a fairly metal-rich cluster, with an average [{Fe/H}] ˜ -0.55± 0.01. The two red giants appear to have primordial O, Na, Mg, and Al abundances, with no convincing signs of a composition difference between the two stars-hence, based on these two stars, NGC 1718 shows no evidence for hosting multiple populations. The Mg abundance is lower than Milky Way field stars, but is similar to LMC field stars at the same metallicity. The previous claims of very low [Mg/Fe] in NGC 1718 are therefore not supported in this study. Other abundances (Si, Ca, Ti, V, Mn, Ni, Cu, Rb, Y, Zr, La, and Eu) all follow the LMC field star trend, demonstrating yet again that (for most elements) globular clusters trace the abundances of their host galaxy's field stars. Similar to the field stars, NGC 1718 is found to be mildly deficient in explosive α-elements, but moderately to strongly deficient in O, Na, Mg, Al, and Cu, elements which form during hydrostatic burning in massive stars. NGC 1718 is also enhanced in La, suggesting that it was enriched in ejecta from metal-poor AGB stars.

  9. Main Sequence Binary Fraction in Globular Cluster NGC 6397

    NASA Astrophysics Data System (ADS)

    Srinath, Srikar; Cool, A. M.; Anderson, J.

    2011-01-01

    We report preliminary results from a study of main-sequence binaries (MSBs) in the core-collapsed globular cluster NGC 6397 using the Hubble Space Telescope (HST) Advanced Camera for Surveys. We analyze images of the central regions of the cluster extending out to approximately one half-mass radius (rhm = 2.33') taken with the Wide Field Channel in the F435W and F625W filters. After removing non-members using proper motions, we construct a color-magnitude diagram (CMD) containing 15578 cluster stars. Model cluster CMDs indicate that in the range 16 < R < 22, MSBs with mass ratio (q=M2/M1) > 0.6 appear sufficiently far above and redward of the main sequence ridge line to be distinguishable from the single-star sequence. Out of 10835 stars in this magnitude range, we identify an initial set of 137 stars (with primary masses in the range 0.4-0.7 Msun) whose offset from the single-star sequence is statistically significant. A check of quality of fit to the PSF combined with close visual inspection of the images shows that 85 of these stars are well measured and unresolved and are thus good MSB candidates. The resulting upper limit on the fraction of MSBs with q > 0.6 and primaries in the range 0.4-0.7 Msun is 0.8%. We compare our measured fraction and the radial distribution of the MSB candidates to earlier findings based on HST/WFPC2 imaging and explore the significance of the results for the total binary population in NGC 6397. Keywords: binaries: general - globular clusters: individual(NGC 6397) - binary fraction - stars: main sequence binary

  10. DUST PRODUCTION AND MASS LOSS IN THE GALACTIC GLOBULAR CLUSTER 47 TUCANAE

    SciTech Connect

    McDonald, I.; Zijlstra, A. A.; Boyer, M. L.; Van Loon, J. Th.

    2011-04-01

    Dust production among post-main-sequence stars is investigated in the Galactic globular cluster 47 Tucanae (NGC 104) based on infrared photometry and spectroscopy. We identify metallic iron grains as the probable dominant opacity source in these winds. Typical evolutionary timescales of asymptotic giant branch stars suggest the mass-loss rates we report are too high. We suggest that this is because the iron grains are small or elongated and/or that iron condenses more efficiently than at solar metallicity. Comparison to other works suggests metallic iron is observed to be more prevalent toward lower metallicities. The reasons for this are explored, but remain unclear. Meanwhile, the luminosity at which dusty mass loss begins is largely invariant with metallicity, but its presence correlates strongly with long-period variability. This suggests that the winds of low-mass stars have a significant driver that is not radiation pressure, but may be acoustic driving by pulsations.

  11. Dynamical evolution effects on the hot stellar populations in globular clusters

    NASA Technical Reports Server (NTRS)

    Djorgovski, S.; Piotto, Giampaolo

    1992-01-01

    Results of a study of FUV properties of Galactic globular clusters are presented. The spatially resolved spectra measured with the IUE satellite are used to find indications of color gradients in two clusters with the postcore-collapse (PCC) morphology, NGC 6752 and NGC 7099, but not in the case of NTGC 6093, a cluster with the classical King-model-type morphology. These FUV color gradients may be caused by the presence of a highly concentrated population of hot objects, such as the extreme BHB stars, blue stragglers, etc. This result extends to the FUV regime the trends seen in the ground-based data in the visible regime. PCC or highly concentrated small-core lusters are found to have bluer HB morphologies and bluer FUV colors, and the bluest FUV colors at a given metallicity. These trends indicate that dynamical evolution of clusters played some role in determining the net abundance and the spatial distribution of their hot stellar populations.

  12. Dynamical evolution effects on the hot stellar populations in globular clusters

    NASA Astrophysics Data System (ADS)

    Djorgovski, S.; Piotto, Giampaolo

    1992-12-01

    Results of a study of FUV properties of Galactic globular clusters are presented. The spatially resolved spectra measured with the IUE satellite are used to find indications of color gradients in two clusters with the postcore-collapse (PCC) morphology, NGC 6752 and NGC 7099, but not in the case of NTGC 6093, a cluster with the classical King-model-type morphology. These FUV color gradients may be caused by the presence of a highly concentrated population of hot objects, such as the extreme BHB stars, blue stragglers, etc. This result extends to the FUV regime the trends seen in the ground-based data in the visible regime. PCC or highly concentrated small-core lusters are found to have bluer HB morphologies and bluer FUV colors, and the bluest FUV colors at a given metallicity. These trends indicate that dynamical evolution of clusters played some role in determining the net abundance and the spatial distribution of their hot stellar populations.

  13. THE FIRST CONFIRMED MICROLENS IN A GLOBULAR CLUSTER

    SciTech Connect

    Pietrukowicz, P.; Udalski, A.; Minniti, D.; Alonso-Garcia, J.; Jetzer, Ph.

    2012-01-10

    In 2000 July/August a microlensing event occurred at a distance of 2.'33 from the center of the globular cluster M22 (NGC 6656), observed against the dense stellar field of the Milky Way bulge. We have used the adaptive optics system NACO at the ESO Very Large Telescope to resolve the two objects that participated in the event: the lens and the source. The position of the objects measured in 2011 July is in agreement with the observed relative proper motion of M22 with respect to the background bulge stars. Based on the brightness of the microlens components we find that the source is a solar-type star located at a distance of 6.0 {+-} 1.5 kpc in the bulge, while the lens is a 0.18 {+-} 0.01 M{sub Sun} dwarf member of the globular cluster located at the known distance of 3.2 {+-} 0.2 kpc from the Sun.

  14. Globular clusters and the evolution of their multiple stellar populations

    NASA Astrophysics Data System (ADS)

    Chantereau, W.; Charbonnel, C.; Meynet, G.

    2017-03-01

    Our knowledge of the formation and early evolution of globular clusters (GCs) has been totally shaken with the discovery of the peculiar chemical properties of their long-lived host stars. Therefore, the interpretation of the observed Colour Magnitude Diagrams (CMD) and of the properties of the GC stellar populations requires the use of new stellar models computed with relevant chemical compositions. In this paper we use the grid of evolution models for low-mass stars computed by Chantereau et al. (2015) with the initial compositions of second-generation stars as predicted by the fast rotating massive stars scenario to build synthesis models of GCs. We discuss the implications of the assumed initial chemical distribution on 13 Gyr isochrones. We build population synthesis models to predict the fraction of stars born with various helium abundances in present day globular clusters (assuming an age of 13 Gyr). With the current assumptions, 61 % of stars on the main sequence are predicted to be born with a helium abundance in mass fraction, Yini, smaller than 0.3 and only 11 % have a Yini larger than 0.4. Along the horizontal branch, the fraction of stars with Yini inferior to 0.3 is similar to that obtained along the main sequence band (63 %), while the fraction of very He-enriched stars is significantly decreased (only 3 % with Yini larger than 0.38).

  15. Integrated light chemical tagging analyses of seven M31 outer halo globular clusters from the Pan-Andromeda Archaeological Survey

    NASA Astrophysics Data System (ADS)

    Sakari, Charli M.; Venn, Kim A.; Mackey, Dougal; Shetrone, Matthew D.; Dotter, Aaron; Ferguson, Annette M. N.; Huxor, Avon

    2015-04-01

    Detailed chemical abundances are presented for seven M31 outer halo globular clusters (with projected distances from M31 greater than 30 kpc), as derived from high-resolution integrated light spectra taken with the Hobby-Eberly Telescope. Five of these clusters were recently discovered in the Pan-Andromeda Archaeological Survey (PAndAS) - this paper presents the first determinations of integrated Fe, Na, Mg, Ca, Ti, Ni, Ba, and Eu abundances for these clusters. Four of the target clusters (PA06, PA53, PA54, and PA56) are metal poor ([Fe/H] < -1.5), α-enhanced (though they are possibly less α-enhanced than Milky Way stars at the 1σ level), and show signs of star-to-star Na and Mg variations. The other three globular clusters (H10, H23, and PA17) are more metal rich, with metallicities ranging from [Fe/H] = -1.4 to -0.9. While H23 is chemically similar to Milky Way field stars, Milky Way globular clusters, and other M31 clusters, H10 and PA17, have moderately low [Ca/Fe], compared to Milky Way field stars and clusters. Additionally, PA17's high [Mg/Ca] and [Ba/Eu] ratios are distinct from Milky Way stars, and are in better agreement with the stars and clusters in the Large Magellanic Cloud. None of the clusters studied here can be conclusively linked to any of the identified streams from PAndAS; however, based on their locations, kinematics, metallicities, and detailed abundances, the most metal-rich PAndAS clusters H23 and PA17 may be associated with the progenitor of the Giant Stellar Stream, H10 may be associated with the SW cloud, and PA53 and PA56 may be associated with the eastern cloud.

  16. STRUCTURAL PARAMETERS FOR 10 HALO GLOBULAR CLUSTERS IN M33

    SciTech Connect

    Ma, Jun

    2015-05-15

    In this paper, we present the properties of 10 halo globular clusters (GCs) with luminosities L ≃ 5–7 × 10{sup 5} L{sub ⊙} in the Local Group galaxy M33 using images from the Hubble Space Telescope WFPC2 in the F555W and F814W bands. We obtained the ellipticities, position angles, and surface brightness profiles for each GC. In general, the ellipticities of the M33 sample clusters are similar to those of the M31 clusters. The structural and dynamical parameters are derived by fitting the profiles to three different models combined with mass-to-light ratios (M/L values) from population-synthesis models. The structural parameters include core radii, concentration, half-light radii, and central surface brightness. The dynamical parameters include the integrated cluster mass, integrated binding energy, central surface mass density, and predicted line of sight velocity dispersion at the cluster center. The velocity dispersions of the four clusters predicted here agree well with the observed dispersions by Larsen et al. The results here showed that the majority of the sample halo GCs are better fitted by both the King model and the Wilson model than the Sérsic model. In general, the properties of the clusters in M33, M31, and the Milky Way fall in the same regions of parameter spaces. The tight correlations of cluster properties indicate a “fundamental plane” for clusters, which reflects some universal physical conditions and processes operating at the epoch of cluster formation.

  17. SPITZER SPECTROSCOPY OF MASS-LOSS AND DUST PRODUCTION BY EVOLVED STARS IN GLOBULAR CLUSTERS

    SciTech Connect

    Sloan, G. C.; Bernard-Salas, J.; Houck, J. R.; Matsunaga, N.; Matsuura, M.; Zijlstra, A. A.; Kraemer, K. E.; Wood, P. R.; Nieusma, J.; Devost, D. E-mail: jbs@isc.astro.cornell.ed E-mail: matsunaga@ioa.s.u-tokyo.ac.j E-mail: albert.zijlstra@manchester.ac.u E-mail: judaniel@umich.ed

    2010-08-20

    We have observed a sample of 35 long-period variables (LPVs) and four Cepheid variables in the vicinity of 23 Galactic globular clusters using the Infrared Spectrograph on the Spitzer Space Telescope. The LPVs in the sample cover a range of metallicities from near solar to about 1/40th solar. The dust mass-loss rate (MLR) from the stars increases with pulsation period and bolometric luminosity. Higher MLRs are associated with greater contributions from silicate grains. The dust MLR also depends on metallicity. The dependence is most clear when segregating the sample by dust composition, less clear when segregating by bolometric magnitude, and absent when segregating by period. The spectra are rich in solid-state and molecular features. Emission from alumina dust is apparent across the range of metallicities. Spectra with a 13 {mu}m dust emission feature, as well as an associated feature at 20 {mu}m, also appear at most metallicities. Molecular features in the spectra include H{sub 2}O bands at 6.4-6.8 {mu}m, seen in both emission and absorption, SO{sub 2} absorption at 7.3-7.5 {mu}m, and narrow emission bands from CO{sub 2} from 13.5 to 16.8 {mu}m. The star Lyngaa 7 V1 has an infrared spectrum revealing it to be a carbon star, adding to the small number of carbon stars associated with Galactic globular clusters.

  18. The orbital eccentricities of binary millisecond pulsars in globular clusters

    NASA Technical Reports Server (NTRS)

    Rasio, Frederic A.; Heggie, Douglas C.

    1995-01-01

    Low-mass binary millisecond pulsars (LMBPs) are born with very small orbital eccentricities, typically of order e(sub i) approximately 10(exp -6) to 10(exp -3). In globular clusters, however, higher eccentricities e(sub f) much greater than e(sub i) can be induced by dynamical interactions with passing stars. Here we show that the cross section for this process is much larger than previously estimated. This is becuse, even for initially circular binaries, the induced eccentricity e(sub f) for an encounter with pericenter separation r(sub p) beyond a few times the binary semimajor axis a declines only as a power law (e(sub f) varies as (r(sub p)/a)(exp -5/2), and not as an exponential. We find that all currently known LMBPs in clusters were probably affected by interactions, with their current eccentricities typically greater than at birth by an order of magnitude or more.

  19. The Double Cooling Sequence of the Globular Cluster ω Centauri

    NASA Astrophysics Data System (ADS)

    García-Berro, E.; Sendra, L.; Torres, S.; Althaus, L. G.

    2017-03-01

    ω Centauri is a massive, old, globular cluster that has been extensively studied over the years because of its peculiar color-magnitude diagram. Specifically, the color-magnitude diagram of this cluster has evident signs of the existence of multiple populations, which are clearly seen in the morphologies of both the main sequence and of the degenerate sequence. Considerable theoretical efforts have been done so far to model the main sequence, which have led to discover several stellar populations. However, the degenerate sequence has not been hitherto modeled with sufficient detail. Here we present a population synthesis study of the white dwarf cooling sequence, and compare the properties of the modeled stellar populations with those derived from the analysis of the main-sequence number counts.

  20. Binary interactions and multiple stellar populations in globular clusters

    NASA Astrophysics Data System (ADS)

    Jiang, Dengkai

    2015-08-01

    Observations revealed the presence of multiple stellar populations in globular clusters (GCs) that exhibit wide abundance variations and multiple sequences in Hertzsprung-Russell diagram. We present a scenario for the formation of multiple stellar populations in GCs. In this scenario, initial GCs are single-generation clusters, and our model predicts that the abundance anomalous stars observed in GCs are the merged stars and the accretor stars produced by binary interactions, which are rapidly rotating stars at the moment of their formation. The stellar population with binaries can reproduce two important observational evidences of multiple stellar populations, the Na-O anticorrelation and the multiple sequences in HR diagram. This suggests that binary interactions may be a possible scenario for the formation of multiple stellar populations in GCs.

  1. A DOUBLE MAIN SEQUENCE IN THE GLOBULAR CLUSTER NGC 6397

    SciTech Connect

    Milone, A. P.; Aparicio, A.; Marino, A. F.; Piotto, G.; Bedin, L. R.; Anderson, J.; Cassisi, S.; Rich, R. M. E-mail: aparicio@iac.es E-mail: giampaolo.piotto@unipd.it E-mail: bedin@stsci.edu E-mail: rmr@astro.ucla.edu

    2012-01-20

    High-precision multi-band Hubble Space Telescope (HST) photometry reveals that the main sequence of the globular cluster NGC 6397 splits into two components, containing {approx}30% and {approx}70% of the stars. This double sequence is consistent with the idea that the cluster hosts two stellar populations: (1) a primordial population that has a composition similar to field stars, containing {approx}30% of the stars, and (2) a second generation with enhanced sodium and nitrogen, depleted carbon and oxygen, and a slightly enhanced helium abundance ({Delta}Y {approx} 0.01). We examine the color difference between the two sequences across a variety of color baselines and find that the second sequence is anomalously faint in m{sub F336W}. Theoretical isochrones indicate that this could be due to NH depletion.

  2. Binary interactions and multiple stellar populations in globular clusters

    NASA Astrophysics Data System (ADS)

    Jiang, Dengkai; Han, Zhanwen; Li, Lifang

    2017-03-01

    Globular clusters (GCs) have multiple stellar populations, which show star-to-star abundance variations and multiple sequences (or spreads) in the Hertzsprung-Russell diagrams. It is explained by multiple generations of star-formation in GCs. However, the observed evidence of ongoing star-formation was not found within any clusters. Here we present a binary interactions scenario for the formation of multiple stellar populations in GCs, where GC stars were born in a single burst of star formation, but some of them are members of binary systems. Binary interactions can produce peculiar stars, e.g. the merged stars and the accretor stars. They are more massive than normal single stars in the same evolutionary stage, and they are rapidly rotating stars at the moment of their formation. Rotationally induced mixing can cause the variations of their surface chemical composition. This results in the single-generation GCs showing abundance anomalies.

  3. Dynamical evolution and spatial mixing of multiple population globular clusters

    NASA Astrophysics Data System (ADS)

    Vesperini, Enrico; McMillan, Stephen L. W.; D'Antona, Francesca; D'Ercole, Annibale

    2013-03-01

    Numerous spectroscopic and photometric observational studies have provided strong evidence for the widespread presence of multiple stellar populations in globular clusters. In this paper, we study the long-term dynamical evolution of multiple population clusters, focusing on the evolution of the spatial distributions of the first- (FG) and second-generation (SG) stars. In previous studies, we have suggested that SG stars formed from the ejecta of FG AGB stars are expected initially to be concentrated in the cluster inner regions. Here, by means of N-body simulations, we explore the time-scales and the dynamics of the spatial mixing of the FG and the SG populations and their dependence on the SG initial concentration. Our simulations show that, as the evolution proceeds, the radial profile of the SG/FG number ratio, NSG/NFG, is characterized by three regions: (1) a flat inner part; (2) a declining part in which FG stars are increasingly dominant and (3) an outer region where the NSG/NFG profile flattens again (the NSG/NFG profile may rise slightly again in the outermost cluster regions). Until mixing is complete and the NSG/NFG profile is flat over the entire cluster, the radial variation of NSG/NFG implies that the fraction of SG stars determined by observations covering a limited range of radial distances is not, in general, equal to the SG global fraction, (NSG/NFG)glob. The distance at which NSG/NFG equals (NSG/NFG)glob is approximately between 1 and 2 cluster half-mass radii. The time-scale for complete mixing depends on the SG initial concentration, but in all cases complete mixing is expected only for clusters in advanced evolutionary phases, having lost at least 60-70 per cent of their mass due to two-body relaxation (in addition to the early FG loss due to the cluster expansion triggered by SNII ejecta and gas expulsion).The results of our simulations suggest that in many Galactic globular clusters the SG should still be more spatially concentrated than the

  4. GeMS MCAO observations of the Galactic globular cluster NGC 2808: the absolute age

    NASA Astrophysics Data System (ADS)

    Massari, D.; Fiorentino, G.; McConnachie, A.; Bono, G.; Dall'Ora, M.; Ferraro, I.; Iannicola, G.; Stetson, P. B.; Turri, P.; Tolstoy, E.

    2016-02-01

    Context. Globular clusters are the oldest stellar systems in the Milky Way, and they probe the early epoch of the Galaxy formation. However, the uncertainties on their absolute age are still too large to soundly constrain how the Galactic structures have assembled. Aims: The aim of this work is to obtain an accurate estimate of the absolute age of the globular cluster NGC 2808 using deep IR data obtained with the multi-conjugate adaptive optics system operating at the Gemini South telescope (GeMS). Methods: This exquisite photometry, combined with that obtained in V and I-bands with HST, allowed us to detect the faint Main Sequence Knee feature in NGC 2808 colour magnitude diagram. The difference between this point and the main sequence turn-off is a good age estimator that provides ages with unprecedented accuracy. Results: We find that NGC 2808 has an age of t = 10.9 ± 0.7 (intrinsic) ±0.45 (metallicity term) Gyr. A possible contamination by He-enhanced population could make the cluster up to 0.25 Gyr older. Although this age estimate agrees with the age coming from the classical turn-off method (t = 11.0 Gyr), its uncertainty is a factor ~3 better, since it avoids systematics in reddening, distance assumptions, and photometric zero point determination. The final absolute age indicates that NGC 2808 is slightly younger than other Galactic globular clusters with similar metallicity. Tables of the photometry are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/586/A51

  5. Dynamical friction in multi-component evolving globular clusters

    SciTech Connect

    Alessandrini, Emiliano; Lanzoni, Barbara; Miocchi, Paolo; Ciotti, Luca; Ferraro, Francesco R.

    2014-11-10

    We use the Chandrasekhar formalism and direct N-body simulations to study the effect of dynamical friction on a test object only slightly more massive than the field stars, orbiting a spherically symmetric background of particles with a mass spectrum. The main goal is to verify whether the dynamical friction time (t {sub DF}) develops a non-monotonic radial dependence that could explain the bimodality of the blue straggler radial distributions observed in globular clusters. In these systems, in fact, relaxation effects lead to a mass and velocity radial segregation of the different mass components, so that mass-spectrum effects on t {sub DF} are expected to be dependent on radius. We find that in spite of the presence of different masses, t {sub DF} is always a monotonic function of radius, at all evolutionary times and independently of the initial concentration of the simulated cluster. This is because the radial dependence of t {sub DF} is largely dominated by the total mass density profile of the background stars (which is monotonically decreasing with radius). Hence, a progressive temporal erosion of the blue straggler star (BSS) population at larger and larger distances from the cluster center remains the simplest and the most likely explanation of the shape of the observed BSS radial distributions, as suggested in previous works. We also confirm the theoretical expectation that approximating a multi-mass globular cluster as made of (averaged) equal-mass stars can lead to significant overestimations of t {sub DF} within the half-mass radius.

  6. The Frequency of Lithium-Rich Giants in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Kirby, Evan N.; Guhathakurta, Puragra; Zhang, Andrew J.; Hong, Jerry; Guo, Michelle; Guo, Rachel; Cohen, Judith G.; Cunha, Katia M. L.

    2016-01-01

    Although red giants destroy lithium, some giants are Li-rich. Intermediate-mass asymptotic giant branch (AGB) stars can generate Li through the Cameron-Fowler conveyor, but the existence of Li-rich, low-mass red giant branch (RGB) stars is puzzling. Globular clusters are the best sites to examine this phenomenon because it is straightforward to determine membership in the cluster and to identify the evolutionary state of each star. In 72 hours of Keck/DEIMOS exposures in 25 clusters, we found four Li-rich RGB and two Li-rich AGB stars. There were 1696 RGB and 125 AGB stars with measurements or upper limits consistent with normal abundances of Li. Hence, the frequency of Li-richness in globular clusters is (0.2 ± 0.1)% for the RGB, (1.6 ± 1.1)% for the AGB, and (0.3 ± 0.1)% for all giants. Because the Li-rich RGB stars are on the lower RGB, Li self-generation mechanisms proposed to occur at the luminosity function bump or He core flash cannot explain these four lower RGB stars. We propose the following origin for Li enrichment: (1) All luminous giants experience a brief phase of Li enrichment at the He core flash. (2) All post-RGB stars with binary companions on the lower RGB will engage in mass transfer. This scenario predicts that 0.1% of lower RGB stars will appear Li-rich due to mass transfer from a recently Li-enhanced companion. This frequency is at the lower end of our confidence interval.

  7. CN ANOMALIES IN THE HALO SYSTEM AND THE ORIGIN OF GLOBULAR CLUSTERS IN THE MILKY WAY

    SciTech Connect

    Carollo, Daniela; Martell, Sarah L.; Beers, Timothy C.; Freeman, Ken C. E-mail: smartell@aao.gov.au E-mail: kcf@mso.anu.edu.au

    2013-06-01

    We explore the kinematics and orbital properties of a sample of red giants in the halo system of the Milky Way that are thought to have formed in globular clusters based on their anomalously strong UV/blue CN bands. The orbital parameters of the CN-strong halo stars are compared to those of the inner- and outer-halo populations as described by Carollo et al., and to the orbital parameters of globular clusters with well-studied Galactic orbits. The CN-strong field stars and the globular clusters both exhibit kinematics and orbital properties similar to the inner-halo population, indicating that stripped or destroyed globular clusters could be a significant source of inner-halo field stars, and suggesting that both the CN-strong stars and the majority of globular clusters are primarily associated with this population.

  8. The SEGUE Stellar Parameter Pipeline. II. Validation with Galactic Globular and Open Clusters

    SciTech Connect

    Lee, Y.S.; Beers, T.C.; Sivarani, T.; Johnson, J.A.; An, D.; Wilhelm, R.; Prieto, C.Allende; Koesterke, L.; Re Fiorentin, P.; Bailer-Jones, C.A.L.; Norris, J.E.

    2007-10-01

    The authors validate the performance and accuracy of the current SEGUE (Sloan Extension for Galactic Understanding and Exploration) Stellar Parameter Pipeline (SSPP), which determines stellar atmospheric parameters (effective temperature, surface gravity, and metallicity) by comparing derived overall metallicities and radial velocities from selected likely members of three globular clusters (M 13, M 15, and M 2) and two open clusters (NGC 2420 and M 67) to the literature values. Spectroscopic and photometric data obtained during the course of the original Sloan Digital Sky Survey (SDSS-1) and its first extension (SDSS-II/SEGUE) are used to determine stellar radial velocities and atmospheric parameter estimates for stars in these clusters. Based on the scatter in the metallicities derived for the members of each cluster, they quantify the typical uncertainty of the SSPP values, {sigma}([Fe/H]) = 0.13 dex for stars in the range of 4500 K {le} T{sub eff} {le} 7500 K and 2.0 {le} log g {le} 5.0, at least over the metallicity interval spanned by the clusters studied (-2.3 {le} [Fe/H] < 0). The surface gravities and effective temperatures derived by the SSPP are also compared with those estimated from the comparison of the color-magnitude diagrams with stellar evolution models; they find satisfactory agreement. At present, the SSPP underestimates [Fe/H] for near-solar-metallicity stars, represented by members of M 67 in this study, by {approx} 0.3 dex.

  9. Galactic evolution of sulphur as traced by globular clusters

    NASA Astrophysics Data System (ADS)

    Kacharov, N.; Koch, A.; Caffau, E.; Sbordone, L.

    2015-05-01

    Context. Sulphur is an important volatile α element, but its role in the Galactic chemical evolution is still uncertain, and more observations constraining the sulphur abundance in stellar photospheres are required. Aims: We derive the sulphur abundances in red giant branch (RGB) stars in three Galactic halo globular clusters (GC) that cover a wide metallicity range (-2.3 < [Fe/H] < -1.2): M 4 (NGC 6121), M 22 (NGC 6656), and M 30 (NGC 7099). The halo field stars show a large scatter in the [S/Fe] ratio in this metallicity span, which is inconsistent with canonical chemical evolution models. To date, very few measurements of [S/Fe] exist for stars in GCs, which are good tracers of the chemical enrichment of their environment. However, some light and α elements show star-to-star variations within individual GCs, and it is as yet unclear whether the α element sulphur also varies between GC stars. Methods: We used the infrared spectrograph CRIRES to obtain high-resolution (R ~ 50 000), high signal-to-noise (S/N ~ 200 per px) spectra in the region of the S I multiplet 3 at 1045 nm for 15 GC stars selected from the literature (six stars in M 4,six stars in M 22, and three stars in M 30). Multiplet 3 is better suited for S abundance derivation than the more commonly used lines of multiplet 1 at 920 nm, since its lines are not blended by telluric absorption or other stellar features at low metallicity. Results: We used spectral synthesis to derive the [S/Fe] ratio of the stars assuming local thermodynamic equilibrium (LTE). We find mean [S/Fe]LTE = 0.58 ± 0.01 ± 0.20 dex (statistical and systematic error) for M 4, [S/Fe]LTE = 0.57 ± 0.01 ± 0.19 dex for M 22, and [S/Fe]LTE = 0.55 ± 0.02 ± 0.16 dex for M 30. The negative NLTE corrections are estimated to be in the order of the systematic uncertainties. We do not detect star-to-star variations of the S abundance in any of the observed GCs, with the possible exception of two individual stars, one in M 22 and one in M

  10. New 2MASS near-infrared photometry for globular clusters in M31

    SciTech Connect

    Wang, Song; Ma, Jun; Wu, Zhenyu; Zhou, Xu

    2014-07-01

    We present Two Micron All Sky Survey JHK {sub s} photometry for 913 star clusters and candidates in the field of M31, which are selected from the latest Revised Bologna Catalog of M31 globular clusters (GCs) and candidates. The photometric measurements in this paper supplement this catalog, and provide the most comprehensive and homogeneous photometric catalog for M31 GCs in the JHK {sub s} bandpasses. In general, our photometry is consistent with previous measurements. The globular cluster luminosity function (GCLF) peaks for the confirmed GCs derived by fitting a t {sub 5} distribution using the maximum likelihood method are J{sub 0}=15.348{sub −0.208}{sup +0.206}, H{sub 0}=14.703{sub −0.180}{sup +0.176}, and K{sub s0}=14.534{sub −0.146}{sup +0.142}, all of which agree well with previous studies. The GCLFs are different between metal-rich (MR) and metal-poor (MP), and between inner and outer subpopulations, as MP clusters are fainter than their MR counterparts and the inner clusters are brighter than the outer ones, which confirm previous results. The NIR colors of the GC candidates are on average redder than those of the confirmed GCs, which leads to an obscure bimodal distribution of color indices. The relation of (V – K {sub s}){sub 0} and metallicity shows a notable departure from linearity, with a shallower slope toward the redder end. The color-magnitude diagram (CMD) and color-color diagram show that many GC candidates are located out of the evolutionary tracks, suggesting that some of them may be false M31 GC candidates. The CMD also shows that the initial mass function of M31 GCs covers a large range, and the majority of the clusters have initial masses between 10{sup 3} and 10{sup 6} M {sub ☉}.

  11. F Turnoff Distribution in the Galactic Halo Using Globular Clusters as Proxies

    NASA Astrophysics Data System (ADS)

    Newby, Matthew; Newberg, H. J.; Simones, J.; Monaco, M.; Cole, N.

    2012-01-01

    F turnoff stars are important tools for studying Galactic halo substructure because they are plentiful, luminous, and can be easily selected by their photometric colors from large surveys such as the Sloan Digital Sky Survey (SDSS). We describe the absolute magnitude distribution of color-selected F turnoff stars, as measured from SDSS data, for eleven globular clusters in the Milky Way halo. We find that the absolute magnitude distribution of turnoff stars is intrinsically the same for all clusters studied, and is well fit by two half Gaussian functions, centered at μ = 4.18, with a bright-side σ = 0.36, and with a faint-side σ = 0.76. However, the color errors and detection efficiencies cause the observed σ of the faint-side Gaussian to change with magnitude due to contamination from redder main sequence stars (40% at 21st magnitude). We present a function that will correct for this magnitude-dependent change in selected stellar populations, when calculating stellar density from color-selected turnoff stars. We also present a consistent set of distances, ages and metallicities for eleven clusters in the SDSS Data Release 7. We calculate a linear correction function to Padova isochrones so that they are consistent with SDSS globular cluster data from previous papers. We show that our cluster population falls along the theoretical Age-Metallicity Relationship (AMR), and further find that isochrones for stellar populations on the AMR have very similar turnoffs; increasing metallicity and decreasing age conspire to produce similar turnoff magnitudes and colors for all old clusters that lie on the AMR. This research was supported by NSF grant AST 10-09670 and the NASA/NY Space Grant.

  12. The CCD photometry of the globular cluster Palomar 1.

    NASA Astrophysics Data System (ADS)

    Borissova, J.; Spassova, N.

    1995-04-01

    A CCD photometry of the halo cluster Palomar 1 is presented in the Thuan-Gunn photometric system. The principal sequences of the color-magnitude diagrams are delineated in different spectral bands. The color-magnitude diagrams of the cluster show a well defined red horizontal branch, a subgiant branch and a main-sequence down to about two magnitudes below the main sequence turnoff. The giant branch is absent and the brightest stars are the horizontal branch stars. The age of the cluster determined by comparison with the isochrones of Bell & Vanden Berg (1987) is consistent with an age in the interval 12-14Gyr. A distance modulus of (m-M)_g0_=15.38+/-0.15 magnitude and E(g-r)=0.16 has been derived. An estimate of the cluster structural parameters such as core radius and concentration parameter gives r_c_=1.5pc and c=1.46. A mass estimate of 1.1 10^3^Msun_ and a mass-to-light ratio of 1.79 have been obtained using King's (1966) method. The morphology of color-magnitude diagrams allows Pal 1 to be interpreted as probably a globular cluster rather than an old open one.

  13. Radial velocities in the globular cluster ω Centauri

    NASA Astrophysics Data System (ADS)

    Reijns, R. A.; Seitzer, P.; Arnold, R.; Freeman, K. C.; Ingerson, T.; van den Bosch, R. C. E.; van de Ven, G.; de Zeeuw, P. T.

    2006-01-01

    We have used the ARGUS multi-object spectrometer at the CTIO 4 m Blanco telescope to obtain 2756 radial velocity measurements for 1966 individual stars in the globular cluster ω Centauri brighter than blue photographic magnitude of about 16.5. Of these, 1589 stars are cluster members. A comparison with two independent radial velocity studies, carried out by Suntzeff & Kraft and by Mayor et al., demonstrates that the median error of our measurements is below 2 km s-1 for the stars brighter than B-magnitude 15, which constitute the bulk of the sample. The observed velocity dispersion decreases from about 15 km s-1 in the inner few arcmin to about 6 km s-1 at a radius of 25'. The cluster shows significant rotation, with a maximum amplitude of about 6 km s-1 in the radial zone between 6' and 10'. In a companion paper by van de Ven et al., we correct these radial velocities for the perspective rotation caused by the space motion of the cluster, and combine them with the internal proper motions of nearly 8000 cluster members measured by van Leeuwen et al., to construct a detailed dynamical model of ω Centauri and to measure its distance.

  14. Discovery of Remote Globular Cluster Satellites of M87

    NASA Astrophysics Data System (ADS)

    Sparkman, Lea; Guo, Rachel; Toloba, Elisa; Guhathakurta, Puragra; Peng, Eric W.; Ferrarese, Laura; Cote, Patrick; NGVS Collaboration

    2016-01-01

    We present the discovery of several tens of globular clusters (GCs) in the outer regions of the giant elliptical M87, the brightest galaxy in the Virgo Cluster. These M87 GC satellites were discovered in the course of Keck/DEIMOS spectroscopic follow up of GC candidates that were identified in the Next Generation Virgo cluster Survey (NGVS). Specifically, the primary targets of this Keck spectroscopic campaign were GC satellites of early-type dwarf (dE) galaxies. However, we found that our sample contained a subset of GCs for which M87 is the most likely host. This subset is consistent with having an r^-1 power-law surface density distribution and a radial velocity distribution both centered on M87. The remote M87 GC satellites span the radial range 140 to 900 kpc, out to about a third of the Virgo Cluster's virial radius (for comparison, M87's effective radius is only 8 kpc). These M87 GC satellites are probably former satellites of other Virgo Cluster galaxies that have subsequently been cannibalized by M87.This research was supported by the National Science Foundation and the UC Santa Cruz Science Internship Program.

  15. THE ACS SURVEY OF GLOBULAR CLUSTERS. XIII. PHOTOMETRIC CALIBRATION IN COMPARISON WITH STETSON STANDARDS

    SciTech Connect

    Hempel, Maren; Sarajedini, Ata; Anderson, Jay; Reid, I. Neill E-mail: ata@astro.ufl.edu E-mail: inr@stsci.edu; and others

    2014-03-01

    In this study we compare the photometric data of 34 Milky Way globular clusters, observed within the Advanced Camera for Surveys (ACS) Treasury Program (PI: A. Sarajedini) with the corresponding ground-based data, provided by the Photometric Standard Field Catalogs of Stetson. We focus on the transformation between the Hubble Space Telescope/ACS F606W to V-band and F814W to I-band only. The goal is to assess the validity of the filter transformation equations by Sirianni et al. with respect to their dependence on metallicity, horizontal branch morphology, mass, and integrated (V – I) color of the various globular clusters. The transformation equations as recommended by Sirianni et al. are based on synthetic photometry, were mostly tested on NGC 2419, and may introduce additional uncertainties when applied to different stellar populations. Such a dependence is expected due to the fact that the transformation equations are based on the observations of only one globular cluster, i.e., NGC 2419. Surprisingly, the correlation between offset and metallicity is found to be weak, with a low level significance. The correlation between offset and horizontal branch structure, as well as total cluster mass is still weaker. Based on the available data we do not find the photometric offset to be linked to multiple stellar populations, e.g., as found in NGC 0288, NGC 1851, and NGC 5139. The results of this study show that there are small systematic offsets between the transformed ACS- and observed ground-based photometry, and that these are only weakly correlated, if at all, with various cluster parameters and their underlying stellar populations. As a result, investigators wishing to transform globular cluster photometry from the Sirianni et al. ground-based V, I system onto the Stetson system simply need to add –0.040 (±0.012) to the V magnitudes and –0.047 (±0.011) to the I magnitudes. This in turn means that the transformed ACS V – I colors match the ground

  16. TIME-SERIES BVI PHOTOMETRY FOR THE GLOBULAR CLUSTER NGC 6981 {sup ,} {sup ,}

    SciTech Connect

    Amigo, P.; Catelan, M.; Zoccali, M.; Stetson, P. B.; Smith, H. A. E-mail: mzoccali@astro.puc.cl E-mail: Peter.Stetson@nrc-cnrc.gc.ca

    2013-11-01

    We present new BVI photometry of the globular cluster NGC 6981, based mostly on ground-based CCD archival images. We present a new color-magnitude diagram (CMD) that reaches almost four magnitudes below the turn-off level. We performed new derivations of metallicity and morphological parameters of the evolved sequences, in good agreement with the results of previous authors, and obtain a value of [Fe/H] ≅ –1.50 in the new UVES scale. We also identify the cluster's blue straggler population. Comparing the radial distribution of these stars with the red giant branch population, we find that the blue stragglers are more centrally concentrated, as found in previous studies of blue stragglers in globular clusters. Taking advantage of the large field of view covered by our study, we analyzed the surface density profile of the cluster, and find extratidal main sequence stars out to r ≈ 14.'1, or about twice the tidal radius. We speculate that the presence of these stars may be due to tidal disruption in the course of NGC 6981's orbit, in which case tidal tails associated with the cluster may exist. We also take a fresh look at the variable stars in the cluster, recovering all previously known variables, including three SX Phoenicis stars. We also add three previously unknown RR Lyrae (one c-type and two ab-type) to the total census. Finally, comparing our CMD with unpublished data for M3 (NGC 5272), a cluster with a similar metallicity and horizontal branch morphology, we found that both objects are essentially coeval.

  17. Variable stars in the globular cluster M 13

    NASA Astrophysics Data System (ADS)

    Kopacki, G.; Kołaczkowski, Z.; Pigulski, A.

    2003-02-01

    Results of a search for variable stars in the central region of the globular cluster M 13 are presented. Prior to this study, 36 variable and suspected variable stars were known in this cluster (Osborn \\cite{osborn00}; Clement et al. \\cite{clementetal01}). Of these stars, five were not observed by us. We find v3, v4, v10, v12, and v13 to be constant in light. Surprisingly, only two out of the ten variable star candidates of Kadla et al. (\\cite{kadlaetal80}) appear to be variable. Both are RRc variables. Additionally, three RR Lyrae stars and one SX Phoenicis variable are discovered. Three close frequencies are detected for an RRc star v36. It appears that this variable is another multi-periodic RR Lyrae star pulsating in non-radial modes. Light curves of the three known BL Herculis stars and all known RR Lyrae stars are presented. The total number of known RR Lyrae stars in M 13 is now nine. Only one is an RRab star. The mean period of RRc variables amounts to 0.36+/-0.05 d, suggesting that M 13 should be included in the group of Oosterhoff type II globular clusters. Mean V magnitudes and ranges of variation are derived for seven RR Lyrae and three BL Herculis variables. Almost all observed bright giants show some degree of variability. In particular, we confirm the variability of two red giants announced to be variable by Osborn (\\cite{osborn00}) and in addition find five new cases. The observations used in the paper are available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/398/541

  18. CHEMICAL ABUNDANCES FOR 855 GIANTS IN THE GLOBULAR CLUSTER OMEGA CENTAURI (NGC 5139)

    SciTech Connect

    Johnson, Christian I.; Pilachowski, Catherine A. E-mail: catyp@astro.indiana.ed

    2010-10-20

    We present elemental abundances for 855 red giant branch (RGB) stars in the globular cluster Omega Centauri ({omega} Cen) from spectra obtained with the Blanco 4 m telescope and Hydra multifiber spectrograph. The sample includes nearly all RGB stars brighter than V = 13.5 and spans {omega} Cen's full metallicity range. The heavy {alpha} elements (Si, Ca, and Ti) are generally enhanced by {approx}+0.3 dex and exhibit a metallicity-dependent morphology that may be attributed to mass and metallicity-dependent Type II supernova (SN) yields. The heavy {alpha} and Fe-peak abundances suggest minimal contributions from Type Ia SNe. The light elements (O, Na, and Al) exhibit >0.5 dex abundance dispersions at all metallicities, and a majority of stars with [Fe/H]> - 1.6 have [O/Fe], [Na/Fe], and [Al/Fe] abundances similar to those in monometallic globular clusters, as well as O-Na, O-Al anticorrelations and the Na-Al correlation in all but the most metal-rich stars. A combination of pollution from intermediate-mass asymptotic giant branch stars and in situ mixing may explain the light element abundance patterns. A large fraction (27%) of {omega} Cen stars are O-poor ([O/Fe] < 0) and are preferentially located within 5'-10' of the cluster center. The O-poor giants are spatially similar, located in the same metallicity range, and are present in nearly equal proportions to blue main-sequence stars. This suggests that the O-poor giants and blue main-sequence stars may share a common origin. [La/Fe] increases sharply at [Fe/H] {approx}> -1.6, and the [La/Eu] ratios indicate that the increase is due to almost pure s-process production.

  19. Constraints on helium enhancement in the globular cluster M4 (NGC 6121): The horizontal branch test

    SciTech Connect

    Valcarce, A. A. R.; De Medeiros, J. R.; Catelan, M.; Alonso-García, J.; Cortés, C.

    2014-02-20

    Recent pieces of evidence have revealed that most, and possibly all, globular star clusters are composed of groups of stars that formed in multiple episodes with different chemical compositions. In this sense, it has also been argued that variations in the initial helium abundance (Y) from one population to the next are also the rule, rather than the exception. In the case of the metal-intermediate globular cluster M4 (NGC 6121), recent high-resolution spectroscopic observations of blue horizontal branch (HB) stars (i.e., HB stars hotter than the RR Lyrae instability strip) suggest that a large fraction of blue HB stars are second-generation stars formed with high helium abundances. In this paper, we test this scenario by using recent photometric and spectroscopic data together with theoretical evolutionary computations for different Y values. Comparing the photometric data with the theoretically derived color-magnitude diagrams, we find that the bulk of the blue HB stars in M4 have ΔY ≲ 0.01 with respect to the cluster's red HB stars (i.e., HB stars cooler than the RR Lyrae strip)—a result which is corroborated by comparison with spectroscopically derived gravities and temperatures, which also favor little He enhancement. However, the possible existence of a minority population on the blue HB of the cluster with a significant He enhancement level is also discussed.

  20. WHERE ARE MOST OF THE GLOBULAR CLUSTERS IN TODAY’S UNIVERSE?

    SciTech Connect

    Harris, William E.

    2016-04-15

    The total number of globular clusters (GCs) in a galaxy rises continuously with the galaxy luminosity L, while the relative number of galaxies decreases with L following the Schechter function. The product of these two very nonlinear functions gives the relative number of GCs contained by all galaxies at a given L. It is shown that GCs, in this universal sense, are most commonly found in galaxies within a narrow range around L{sub ⋆}. In addition, blue (metal-poor) GCs outnumber the red (metal-richer) ones globally by 4 to 1 when all galaxies are added, pointing to the conclusion that the earliest stages of galaxy formation were especially favorable to forming massive, dense star clusters.

  1. A New Catalog of Homogenized Absorption Line Indices for Milky Way Globular Clusters from High-resolution Integrated Spectroscopy

    NASA Astrophysics Data System (ADS)

    Kim, Hak-Sub; Cho, Jaeil; Sharples, Ray M.; Vazdekis, Alexandre; Beasley, Michael A.; Yoon, Suk-Jin

    2016-12-01

    We perform integrated spectroscopy of 24 Galactic globular clusters (GGCs). Spectra are observed from one core radius for each cluster with a high wavelength resolution of ˜2.0 Å FWHM. In combination with two existing data sets from Puzia et al. and Schiavon et al., we construct a large database of Lick spectral indices for a total of 53 GGCs with a wide range of metallicities, -2.4 ≲ [Fe/H] ≲ 0.1, and various horizontal-branch morphologies. The empirical index-to-metallicity conversion relationships are provided for the 20 Lick indices for the use of deriving metallicities for remote, unresolved stellar systems.

  2. N -body modelling of globular clusters: masses, mass-to-light ratios and intermediate-mass black holes

    NASA Astrophysics Data System (ADS)

    Baumgardt, H.

    2017-01-01

    We have determined the masses and mass-to-light ratios of 50 Galactic globular clusters by comparing their velocity dispersion and surface brightness profiles against a large grid of 900 N-body simulations of star clusters of varying initial concentration, size and central black hole mass fraction. Our models follow the evolution of the clusters under the combined effects of stellar evolution and two-body relaxation allowing us to take the effects of mass segregation and energy equipartition between stars self-consistently into account. For a subset of 16 well-observed clusters, we also derive their kinematic distances. We find an average mass-to-light ratio of Galactic globular clusters of =1.98 ± 0.03, which agrees very well with the expected M/L ratio if the initial mass function (IMF) of the clusters was a standard Kroupa or Chabrier mass function. We do not find evidence for a decrease in the average mass-to-light ratio with metallicity. The surface brightness and velocity dispersion profiles of most globular clusters are incompatible with the presence of intermediate-mass black holes (IMBHs) with more than a few thousand M⊙ in them. The only clear exception is ω Cen, where the velocity dispersion profile provides strong evidence for the presence of a ˜40 000 M⊙ IMBH in the centre of the cluster.

  3. EVIDENCE FOR AN ACCRETION ORIGIN FOR THE OUTER HALO GLOBULAR CLUSTER SYSTEM OF M31

    SciTech Connect

    Mackey, A. D.; Huxor, A. P.; Ferguson, A. M. N.; Irwin, M. J.; Chapman, S. C.; Tanvir, N. R.; McConnachie, A. W.; Ibata, R. A.; Lewis, G. F.

    2010-07-01

    We use a sample of newly discovered globular clusters from the Pan-Andromeda Archaeological Survey (PAndAS) in combination with previously cataloged objects to map the spatial distribution of globular clusters in the M31 halo. At projected radii beyond {approx}30 kpc, where large coherent stellar streams are readily distinguished in the field, there is a striking correlation between these features and the positions of the globular clusters. Adopting a simple Monte Carlo approach, we test the significance of this association by computing the probability that it could be due to the chance alignment of globular clusters smoothly distributed in the M31 halo. We find that the likelihood of this possibility is low, below 1%, and conclude that the observed spatial coincidence between globular clusters and multiple tidal debris streams in the outer halo of M31 reflects a genuine physical association. Our results imply that the majority of the remote globular cluster system of M31 has been assembled as a consequence of the accretion of cluster-bearing satellite galaxies. This constitutes the most direct evidence to date that the outer halo globular cluster populations in some galaxies are largely accreted.

  4. The gamma-ray pulsar population of globular clusters: Implications for the GeV excess

    SciTech Connect

    Hooper, Dan; Linden, Tim

    2016-08-09

    In this study, it has been suggested that the GeV excess, observed from the region surrounding the Galactic Center, might originate from a population of millisecond pulsars that formed in globular clusters. With this in mind, we employ the publicly available Fermi data to study the gamma-ray emission from 157 globular clusters, identifying a statistically significant signal from 25 of these sources (ten of which are not found in existing gamma-ray catalogs). We combine these observations with the predicted pulsar formation rate based on the stellar encounter rate of each globular cluster to constrain the gamma-ray luminosity function of millisecond pulsars in the Milky Way's globular cluster system. We find that this pulsar population exhibits a luminosity function that is quite similar to those millisecond pulsars observed in the field of the Milky Way (i.e. the thick disk). After pulsars are expelled from a globular cluster, however, they continue to lose rotational kinetic energy and become less luminous, causing their luminosity function to depart from the steady-state distribution. Using this luminosity function and a model for the globular cluster disruption rate, we show that millisecond pulsars born in globular clusters can account for only a few percent or less of the observed GeV excess. Among other challenges, scenarios in which the entire GeV excess is generated from such pulsars are in conflict with the observed mass of the Milky Way's Central Stellar Cluster.

  5. The gamma-ray pulsar population of globular clusters: implications for the GeV excess

    NASA Astrophysics Data System (ADS)

    Hooper, Dan; Linden, Tim

    2016-08-01

    It has been suggested that the GeV excess, observed from the region surrounding the Galactic Center, might originate from a population of millisecond pulsars that formed in globular clusters. With this in mind, we employ the publicly available Fermi data to study the gamma-ray emission from 157 globular clusters, identifying a statistically significant signal from 25 of these sources (ten of which are not found in existing gamma-ray catalogs). We combine these observations with the predicted pulsar formation rate based on the stellar encounter rate of each globular cluster to constrain the gamma-ray luminosity function of millisecond pulsars in the Milky Way's globular cluster system. We find that this pulsar population exhibits a luminosity function that is quite similar to those millisecond pulsars observed in the field of the Milky Way (i.e. the thick disk). After pulsars are expelled from a globular cluster, however, they continue to lose rotational kinetic energy and become less luminous, causing their luminosity function to depart from the steady-state distribution. Using this luminosity function and a model for the globular cluster disruption rate, we show that millisecond pulsars born in globular clusters can account for only a few percent or less of the observed GeV excess. Among other challenges, scenarios in which the entire GeV excess is generated from such pulsars are in conflict with the observed mass of the Milky Way's Central Stellar Cluster.

  6. The gamma-ray pulsar population of globular clusters: Implications for the GeV excess

    DOE PAGES

    Hooper, Dan; Linden, Tim

    2016-08-09

    In this study, it has been suggested that the GeV excess, observed from the region surrounding the Galactic Center, might originate from a population of millisecond pulsars that formed in globular clusters. With this in mind, we employ the publicly available Fermi data to study the gamma-ray emission from 157 globular clusters, identifying a statistically significant signal from 25 of these sources (ten of which are not found in existing gamma-ray catalogs). We combine these observations with the predicted pulsar formation rate based on the stellar encounter rate of each globular cluster to constrain the gamma-ray luminosity function of millisecondmore » pulsars in the Milky Way's globular cluster system. We find that this pulsar population exhibits a luminosity function that is quite similar to those millisecond pulsars observed in the field of the Milky Way (i.e. the thick disk). After pulsars are expelled from a globular cluster, however, they continue to lose rotational kinetic energy and become less luminous, causing their luminosity function to depart from the steady-state distribution. Using this luminosity function and a model for the globular cluster disruption rate, we show that millisecond pulsars born in globular clusters can account for only a few percent or less of the observed GeV excess. Among other challenges, scenarios in which the entire GeV excess is generated from such pulsars are in conflict with the observed mass of the Milky Way's Central Stellar Cluster.« less

  7. The horizontal branch morphology of M 31 globular clusters. Extreme second parameter effect in outer halo clusters

    NASA Astrophysics Data System (ADS)

    Perina, S.; Bellazzini, M.; Buzzoni, A.; Cacciari, C.; Federici, L.; Fusi Pecci, F.; Galleti, S.

    2012-10-01

    We use deep, high quality color magnitude diagrams obtained with the Hubble Space Telescope to compute a simplified version of the Mironov index (SMI; B/(B+R)) to parametrize the horizontal branch (HB) morphology for 23 globular clusters in the M 31 galaxy (Sample A), all located in the outer halo at projected distances between 10 kpc and 100 kpc. This allows us to compare them with their Galactic counterparts, for which we estimated the SMI exactly in the same way, in the SMI vs. [Fe/H] plane. We find that the majority of the considered M 31 clusters lie in a significantly different locus, in this plane, with respect to Galactic clusters lying at any distance from the center of the Milky Way. In particular they have redder HB morphologies at a given metallicity, or, in other words, clusters with the same SMI value are ≈ 0.4 dex more metal rich in the Milky Way than in M 31. We discuss the possible origin of this difference and we conclude that the most likely explanation is that many globular clusters in the outer halo of M 31 formed ≈1-2 Gyr later than their counterparts in the outer halo of the Milky Way, while differences in the cluster-to-cluster distribution of He abundance of individual stars may also play a role. The analysis of another sample of 25 bright M 31 clusters (eighteen of them with MV ≤ -9.0, Sample B), whose SMI estimates are much more uncertain as they are computed on shallow color magnitude diagrams, suggests that extended blue HB tails can be relatively frequent among the most massive M 31 globular clusters, possibly hinting at the presence of multiple populations. Based on observations made with the NASA/ESA Hubble Space Telescope, obtained from the Hubble Legacy Archive, which is a collaboration between the Space Telescope Science Institute (STScI/NASA), the Space Telescope European Coordinating Facility (ST-ECF/ESA) and the Canadian Astronomy Data Centre (CADC/NRC/CSA). STScI is operated by the Association of Universities for

  8. A FOSSIL BULGE GLOBULAR CLUSTER REVEALED BY VERY LARGE TELESCOPE MULTI-CONJUGATE ADAPTIVE OPTICS

    SciTech Connect

    Ortolani, Sergio; Barbuy, Beatriz; Momany, Yazan; Saviane, Ivo; Jilkova, Lucie; Bica, Eduardo; Salerno, Gustavo M.; Jungwiert, Bruno E-mail: barbuy@astro.iag.usp.br E-mail: isaviane@eso.org E-mail: bica@if.ufrgs.br

    2011-08-10

    The globular cluster HP 1 is projected on the bulge, very close to the Galactic center. The Multi-Conjugate Adaptive Optics Demonstrator on the Very Large Telescope allowed us to acquire high-resolution deep images that, combined with first epoch New Technology Telescope data, enabled us to derive accurate proper motions. The cluster and bulge fields' stellar contents were disentangled through this process and produced an unprecedented definition in color-magnitude diagrams of this cluster. The metallicity of [Fe/H] {approx} -1.0 from previous spectroscopic analysis is confirmed, which together with an extended blue horizontal branch imply an age older than the halo average. Orbit reconstruction results suggest that HP 1 is spatially confined within the bulge.

  9. BVRI main-sequence photometry of the globular cluster M4

    SciTech Connect

    Alcaino, G.; Liller, W.

    1984-09-01

    We present BV and RI photographic photometry of 1421 and 189 stars, respectively, in the intermediate metallicity globular cluster M4 (NGC 6121). This investigation includes the first results of RI main-sequence photometry of a globular cluster. The use of longer wavelengths and longer color baselines provides the potential of improved isochrone fittings and underscores the urgent need for calculations of RI synthetic isochrones to be compared with observations. The Pickering-Racine wedge was used with the ESO 3.6 m telescope, the Las Campanas 2.5 m du Pont telescope, and the CTIO 1 m Yale telescope to extend the photoelectric limit from Vroughly-equal16.1 to Vroughly-equal19.1. We have determined the position of the main-sequence turnoff to lie at V = 16.6 +- 0.2 (m.e.) and B-V = 0.80 +- 0.03 (m.e.). A comparison of our BV observations with the CCD data of Richer and Fahlman shows excellent agreement: the two fifucial main sequences agree at all points to within 0.025 mag and, on average, to 0.013 mag. For the cluster we derive a distance modulus (m-M)/sub V/ = 12.52 +- 0.2 and reddening E(B-V) = 0.44 +- 0.03, results which confirm that at a distance of 2 kpc, M4 is the closest globular clusters to the Sun. Using the isochrones of VandenBerg, we deduce an age 13 +- 2 Gyr. As noted in several other investigations, there is a striking deficiency of stars in certain parts of the color-magnitude diagram; in M4 we find a pronounced gap over approx.0.6 mag at the base of the subgiant branch.

  10. SHRINKING THE BRANEWORLD: BLACK HOLE IN A GLOBULAR CLUSTER

    SciTech Connect

    Gnedin, Oleg Y.; Maccarone, Thomas J.; Psaltis, Dimitrios; Zepf, Stephen E. E-mail: tjm@astro.soton.ac.u E-mail: zepf@pa.msu.ed

    2009-11-10

    Large extra dimensions have been proposed as a possible solution to the hierarchy problem in physics. In one of the suggested models, the RS2 braneworld model, black holes may evaporate by Hawking radiation faster than in general relativity, on a timescale that depends on the black hole mass and on the asymptotic radius of curvature of the extra dimensions. Thus the size of the extra dimensions can be constrained by astrophysical observations. Here we point out that the black hole, recently discovered in an extragalactic globular cluster, places the strongest upper limit on the size of the extra dimensions in the RS2 model, L approx< 0.003 mm. This black hole has the virtues of old age and relatively small mass. The derived upper limit is within an order of magnitude of the absolute limit afforded by astrophysical observations of black holes.

  11. Long-Term Timing of Globular Cluster Pulsars

    NASA Astrophysics Data System (ADS)

    Roi Smith, Sergio; Lynch, Ryan S.

    2017-01-01

    Pulsar timing is a powerful astrophysical tool that allows us to study both pulsars and their environment. Timing models provide information about the pulsar itself, including mass, position, and orbital parameters for pulsars in binary systems. Timing models also provide information about the pulsar’s neighborhood and about the interstellar medium (ISM) between the pulsar and the Earth. We present the results of timing two millisecond globular cluster pulsars over five years, as well as steps involved in preparing the data for use in the timing model. Data was obtained using the Robert C. Byrd Green Bank Telescope (GBT) observing at 1.5 GHz between 2011 and 2015. Here, a description of the data processing procedure is given, and timing results including dispersion measure and higher order rotational period derivatives are discussed.

  12. FAST ROTATING BLUE STRAGGLERS IN THE GLOBULAR CLUSTER M4

    SciTech Connect

    Lovisi, L.; Mucciarelli, A.; Ferraro, F. R.; Lanzoni, B.; Dalessandro, E.; Lucatello, S.; Gratton, R.; Beccari, G.; Rood, R. T.; Sills, A.; Fusi Pecci, F.; Piotto, G.

    2010-08-20

    We have used high-resolution spectra obtained with the spectrograph FLAMES at the European Southern Observatory Very Large Telescope to determine the kinematical properties and the abundance patterns of 20 blue straggler stars (BSSs) in the globular cluster (GC) M4. We found that {approx}40% of the measured BSSs are fast rotators (with rotational velocities >50 km s{sup -1}). This is the largest frequency of rapidly rotating BSSs ever detected in a GC. In addition, at odds with what has been found in 47 Tucanae, no evidence of carbon and/or oxygen depletion has been revealed in the sample of 11 BSSs for which we were able to measure the abundances. This could be due to either low statistics, or a different BSS formation process acting in M4.

  13. Accretion onto Protoplanetary Discs: Implications for Globular Cluster Evolution

    NASA Astrophysics Data System (ADS)

    Wijnen, T. P. G.; Pols, O. R.; Pelupessy, F. I.; Zwart, S. Portegies

    2017-03-01

    In the past decade, observational evidence that Globular Clusters (GCs) harbour multiple stellar populations has grown steadily. These observations are hard to reconcile with the classical picture of star formation in GCs, which approximates them as a single generation of stars. Bastian et al. recently suggested an evolutionary scenario in which a second, chemically distinct, population is formed by the accretion of chemically enriched material onto the protoplanetary disc of low-mass stars in the initial GC population. Using assumptions that represent the (dynamical) conditions in a typical GC, we investigate whether a low-mass star surrounded by a protoplanetary disc can accrete sufficient enriched material to account for the observed abundances in `second generation' stars. We compare the outcome of two different smoothed particle hydrodynamics codes and focus on the lifetime and stability of the disc and on the gas accretion rate onto both the star and the disc.

  14. DO INTERMEDIATE-MASS BLACK HOLES EXIST IN GLOBULAR CLUSTERS?

    SciTech Connect

    Sun, Mou-Yuan; Jin, Ya-Ling; Gu, Wei-Min; Liu, Tong; Lin, Da-Bin; Lu, Ju-Fu

    2013-10-20

    The existence of intermediate-mass black holes (IMBHs) in globular clusters (GCs) remains a crucial problem. Searching for IMBHs in GCs reveals a discrepancy between radio observations and dynamical modelings: the upper mass limits constrained by radio observations are systematically lower than that of dynamical modelings. One possibility for such a discrepancy is that, as we suggest in this work, there exist outflows in accretion flows. Our results indicate that, for most sources, current radio observations cannot rule out the possibility that IMBHs may exist in GCs. In addition, we adopt an M-dot -L{sub R} relation to revisit this issue, which confirms the results obtained by the fundamental plane relation.

  15. Dynamics of the NGC 4636 globular cluster system. An extremely dark matter dominated galaxy?

    NASA Astrophysics Data System (ADS)

    Schuberth, Y.; Richtler, T.; Dirsch, B.; Hilker, M.; Larsen, S. S.; Kissler-Patig, M.; Mebold, U.

    2006-11-01

    Context: .We present the first dynamical study of the globular cluster system of NGC 4636. It is the southernmost giant elliptical galaxy of the Virgo cluster and is claimed to be extremely dark matter dominated, according to X-ray observations. Aims: .Globular clusters are used as dynamical tracers to investigate, by stellar dynamical means, the dark matter content of this galaxy. Methods: .Several hundred medium resolution spectra were acquired at the VLT with FORS 2/MXU. We obtained velocities for 174 globular clusters in the radial range 0.90 arcmin < R < 15.5 arcmin, or 0.5-9~Re in units of effective radius. Assuming a distance of 15 Mpc, the clusters are found at projected galactocentric distances in the range 4 to 70 kpc, the overwhelming majority within 30 kpc. The measured line-of-sight velocity dispersions are compared to Jeans-models. Results: .We find some indication of a rotation of the red (metal-rich) clusters about the minor axis. Out to a radius of 30 kpc, we find a roughly constant projected velocity dispersion for the blue clusters of σ ≈ 200~km s-1. The red clusters are found to have a distinctly different behavior: at a radius of about 3', the velocity dispersion drops by ~50~km s-1 to about 170~km s-1, which then remains constant out to a radius of 7'. The cause might be the steepening of the number density profile at ~3' observed for the red clusters. Using only the blue clusters as dynamical tracers, we perform Jeans-analyses for different assumptions of the orbital anisotropy. Enforcing the model dark halos to be of the NFW type, we determine their structural parameters. Depending on the anisotropy and the adopted M/L-values, we find that the dark matter fraction within one effective radius can vary between 20% and 50%, with most a probable range between 20% and 30%. The ambiguity of the velocity dispersion in the outermost bin is a main source of uncertainty. A comparison with cosmological N-body simulations reveals no striking

  16. Where are the Dozens of Predicted Cataclysmic Variables in Globular Clusters?

    NASA Astrophysics Data System (ADS)

    Shara, Michael

    1996-07-01

    WFPC2 imaging of globular cluster cores provides us with a unique opportunity to detect erupting cataclysmic variables {CVs} because they should be relatively common in the core. Two body tidal capture theory predicts that all binary systems should be relatively common in globular clusters, up to several orders of magnitude greater in relative number than in the Galactic field. Among the most common binaries should be CVs because of the high presumed abundance of white dwarfs in globular cores. However, only a handful of confirmed CVs have been discovered in globular clusters to date. This paucity brings into question the dynamical theories which predict great numbers of CVs. We propose to image the cores of two globular clusters with WFPC2 at five epochs to detect outbursting CVs - dwarf novae {DN}. We also propose to retrieve from the archive globular cluster WFPC2 data, cycles 4 & 5, that were taken over multiple epochs to search for erupting DN. At any given time 15 to find 30 two epochs. Clusters for which we have three or more epochs should yield > 50 DN exist in the cores of globular clusters will either support present dynamical theories or strongly constrain new theories that can adequately explain these results.

  17. The state of globular clusters at birth - II. Primordial binaries

    NASA Astrophysics Data System (ADS)

    Leigh, Nathan W. C.; Giersz, Mirek; Marks, Michael; Webb, Jeremy J.; Hypki, Arkadiusz; Heinke, Craig O.; Kroupa, Pavel; Sills, Alison

    2015-01-01

    In this paper, we constrain the properties of primordial binary populations in Galactic globular clusters. Using the MOCCA Monte Carlo code for cluster evolution, our simulations cover three decades in present-day total cluster mass. Our results are compared to the observations of Milone et al. using the photometric binary populations as proxies for the true underlying distributions, in order to test the hypothesis that the data are consistent with a universal initial binary fraction near unity and the binary orbital parameter distributions of Kroupa. With the exception of a few possible outliers, we find that the data are to first-order consistent with the universality hypothesis. Specifically, the present-day binary fractions inside the half-mass radius can be reproduced assuming either high initial binary fractions near unity with a dominant soft binary component as in the Kroupa distribution combined with high initial densities (104-106 M⊙ pc-3), or low initial binary fractions (˜5-10 per cent) with a dominant hard binary component combined with moderate initial densities near their present-day values (102-103 M⊙ pc-3). This apparent degeneracy can potentially be broken using the binary fractions outside the half-mass radius - only high initial binary fractions with a significant soft component combined with high initial densities can reproduce the observed anticorrelation between the binary fractions outside the half-mass radius and the total cluster mass. We further illustrate using the simulated present-day binary orbital parameter distributions and the technique first introduced in Leigh et al. that the relative fractions of hard and soft binaries can be used to further constrain both the initial cluster density and the initial mass-density relation. Our results favour an initial mass-density relation of the form r_h ∝ M_clus^{α } with α < 1/3, corresponding to an initial correlation between cluster mass and density.

  18. X-ray illumination of globular cluster puzzles. [globular cluster X ray sources as clues to Milky Way Galaxy age and evolution

    NASA Technical Reports Server (NTRS)

    Lightman, A. P.; Grindlay, J. E.

    1982-01-01

    Globular clusters are thought to be among the oldest objects in the Galaxy, and provide, in this connection, important clues for determining the age and process of formation of the Galaxy. The present investigation is concerned with puzzles relating to the X-ray emission of globular clusters, taking into account questions regarding the location of X-ray emitting clusters (XEGC) unusually near the galactic plane and/or galactic center. An adopted model is discussed for the nature, formation, and lifetime of X-ray sources in globular clusters. An analysis of the available data is conducted in connection with a search for correlations between binary formation time scales, central relaxation times, galactic locations, and X-ray emission. The positive correlation found between distance from galactic center and two-body binary formation time for globular clusters, explanations for this correlation, and the hypothesis that X-ray sources in globular clusters require binary star systems provide a possible explanation of the considered puzzles.

  19. LITHIUM AND PROTON-CAPTURE ELEMENTS IN GLOBULAR CLUSTER DWARFS: THE CASE OF 47 TUC

    SciTech Connect

    D'Orazi, Valentina; Lucatello, Sara; Gratton, Raffaele; Zaggia, Simone; Bragaglia, Angela; Carretta, Eugenio; Shen, Zhixia E-mail: sara.lucatello@oapd.inaf.it E-mail: simone.zaggia@oapd.inaf.it E-mail: eugenio.carretta@oabo.inaf.it

    2010-04-10

    Previous surveys in a few metal-poor globular clusters (GCs) showed that the determination of abundances for Li and proton-capture elements offers a key tool to address the intracluster pollution scenario. In this Letter, we present Na, O, and Li abundances in a large sample of dwarf stars in the metal-rich GC 47 Tucanae. We found a clear Na-O anticorrelation, in good agreement with what obtained for giant members by Carretta et al. While lithium and oxygen abundances appear to be positively correlated with each other, there is a large scatter, well exceeding observational errors, and no anticorrelation with sodium. These findings suggest that Li depletion, due to mechanisms internal to the stars (which are cooler and more metal-rich than those on the Spite plateau), combines with the usual pollution scenario responsible for the Na-O anticorrelation.

  20. The interaction between supermassive black holes and globular clusters

    NASA Astrophysics Data System (ADS)

    Spera, Mario; Arca-Sedda, Manuel; Capuzzo-Dolcetta, Roberto

    2016-02-01

    Almost all galaxies along the Hubble sequence host a compact massive object (CMO) in their center. The CMO can be either a supermassive black hole (SMBH) or a very dense stellar cluster, also known as nuclear star cluster (NSC). Generally, heavier galaxies (mass >~ 1011 M⊙) host a central SMBH while lighter show a central NSC. Intermediate mass hosts, instead, contain both a NSC and a SMBH. One possible formation mechanisms of a NSC relies on the dry-merger (migratory) scenario, in which globular clusters (GCs) decay toward the center of the host galaxy and merge. In this framework, the absence of NSCs in high-mass galaxies can be imputed to destruction of the infalling GCs by the intense tidal field of the central SMBH. In this work, we report preliminary results of N-body simulations performed using our high-resolution, direct, code HiGPUs, to investigate the effects of a central SMBH on a single GC orbiting around it. By varying either the mass of the SMBH and the mass of the host galaxy, we derived an upper limit to the mass of the central SMBH, and thus to the mass of the host, above which the formation of a NSC is suppressed.

  1. AN ECLIPSING BLUE STRAGGLER IN THE GLOBULAR CLUSTER {omega} CENTAURI

    SciTech Connect

    Li Kai; Qian Shengbang

    2012-12-01

    {omega} Centauri is the largest globular cluster in the Milky Way and hence contains the largest number of variable stars within a single cluster. The results of photometric solutions are presented for the EA-type binary V239 in this cluster. According to our analysis, V239 is a typical Algol-type binary. We obtain M = 1.20 {+-} 0.10 M{sub Sun }, R = 1.21 {+-} 0.03 R{sub Sun }, and L = 13.68 {+-} 0.63 L{sub Sun} for the primary component. The secondary component has M = 0.07 {+-} 0.02 M{sub Sun }, R = 0.90 {+-} 0.03 R{sub Sun }, and L = 2.17 {+-} 0.14 L{sub Sun }. The binary system is located in the blue straggler region on the color-magnitude diagram of {omega} Centauri and the mass of the primary component exceeds the mass of a turnoff star. Therefore, we think that V239 is a blue straggler and that V239 was formed by mass transfer from the present secondary component to the present primary.

  2. Dynamical formation of cataclysmic variables in globular clusters

    NASA Astrophysics Data System (ADS)

    Hong, Jongsuk; Vesperini, Enrico; Belloni, Diogo; Giersz, Mirek

    2017-01-01

    The formation and evolution of X-ray sources in globular clusters is likely to be affected by the cluster internal dynamics and the stellar interactions in the cluster dense environment. Several observational studies have revealed a correlation between the number of X-ray sources and the stellar encounter rate, and provided evidence of the role of dynamics in the formation of X-ray binaries. We have performed a survey of Monte Carlo simulations aimed at exploring the connection between the dynamics and formation of cataclysmic variables (CVs) and the origin of the observed correlation between the number of these objects, Ncv, and the stellar encounter rate, Γ. The results of our simulations show a correlation between Ncv and Γ, as found in observational data, illustrate the essential role played by the dynamics, and shed light on the dynamical history behind this correlation. CVs in our simulations are more centrally concentrated than single stars with masses close to those of turn-off stars, although this trend is stronger for CVs formed from primordial binaries undergoing exchange encounters, which include a population of more massive CVs absent in the group of CVs formed from binaries not suffering any component exchange.

  3. The Chemical Evolution of Heavy Elements in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Shingles, Luke J.; Karakas, Amanda I.; Hirschi, Raphael

    2014-01-01

    We present preliminary results from a chemical evolution model that tracks the composition of heavy elements beyond iron in a globular cluster. The heavy elements can be used as tracers of the nucleosynthetic events that defined the formation and evolution of star clusters in the early Universe. In particular, the chemical evolution model focuses on the hypothesis that rapidly-rotating massive stars produced the heavy elements via the slow neutron-capture process and seeded the proto-cluster while the stars we see today were still forming. We compare our model with heavy element abundances in M4 and M5, and M22. Our results are strongly dependent on the highly uncertain rate of the 17O(α,γ)21Ne reaction, which determines the strength of 16O as a neutron poison. We find that the [Pb/Ba] ratio is too low to match the empirical value, which might suggest that a contribution from AGB stars is required.

  4. Probing the faintest stars in a globular star cluster.

    PubMed

    Richer, Harvey B; Anderson, Jay; Brewer, James; Davis, Saul; Fahlman, Gregory G; Hansen, Brad M S; Hurley, Jarrod; Kalirai, Jasonjot S; King, Ivan R; Reitzel, David; Rich, R Michael; Shara, Michael M; Stetson, Peter B

    2006-08-18

    NGC 6397 is the second closest globular star cluster to the Sun. Using 5 days of time on the Hubble Space Telescope, we have constructed an ultradeep color-magnitude diagram for this cluster. We see a clear truncation in each of its two major stellar sequences. Faint red main-sequence stars run out well above our observational limit and near to the theoretical prediction for the lowest mass stars capable of stable hydrogen burning in their cores. We also see a truncation in the number counts of faint blue stars, namely white dwarfs. This reflects the limit to which the bulk of the white dwarfs can cool over the lifetime of the cluster. There is also a turn toward bluer colors in the least luminous of these objects. This was predicted for the very coolest white dwarfs with hydrogen-rich atmospheres as the formation of H(2) and the resultant collision-induced absorption cause their atmospheres to become largely opaque to infrared radiation.

  5. Dynamical evolution of rotating globular clusters with embedded black holes

    NASA Astrophysics Data System (ADS)

    Fiestas, José

    2006-02-01

    In this dissertation evolution of self-gravitating dense stellar systems (e.g. globular clusters, galactic nuclei) with embedded black holes is investigated, motivated by observational evidences of the existence of central dark objects in these systems. The interaction between the stellar and black hole component is followed in a way, different from most other investigations in this field, as flattening of the system due to differential rotation is allowed. The axisymmetric system is modelled using 2-dimensional, in energy and z-component of angular momentum, Fokker Planck numerical methods. The interplay between velocity diffusion due to relaxation and black hole star accretion is followed together with cluster rotation. The results show how angular momentum transport and star accretion support the development of central rotation in relaxation time scales. Gravogyro and gravothermal instabilities conduce the system to a faster evolution leading to shorter collapse times with respect to models without black hole, and a faster cluster dissolution in the galactic tidal field of a parent galaxy. As a further application, two-dimensional distribution (in the meridional plane) of kinematical and structural parameters (density, dispersions, rotation) are reproduced, covering a wide range of ages, rotation, concentrations and ellipticities, with the aim to enable the use of set of models for comparison with observational data.

  6. High-resolution CCD spectra of stars in globular clusters. I - Oxygen in M13

    NASA Technical Reports Server (NTRS)

    Leep, E. M.; Wallerstein, G.; Oke, J. B.

    1986-01-01

    High-resolution (0.3 A) CCD spectra obtained at the 200 in. coude spectrograph have been analyzed for the abundances of O, Sc, Fe, and La in four stars in the globular cluster M13. Fe/H abundance is found to be = -1.6, as found by many other observers of this cluster. For three stars O/Fe abundance is found to be = +0.3 + or - 0.1, which is similar to O/Fe ratios in other globular clusters and metal-poor field stars. For star II-67, no oxygen line is visible at 6300 A and O/Fe abundance is found to be not greater than -0.4 (for a high carbon content) and not greater than -0.7 (for a low carbon content). The latter is more likely to be correct. Two possible explanations of the oxygen deficiency in II-67 are discussed: primordial deficiency, and CNO cycling at or above a temperature of 25,000,000 K.

  7. Ultraviolet properties of individual hot stars in globular cluster cores. I - NGC 1904 (M79)

    NASA Technical Reports Server (NTRS)

    Altner, B.; Matilsky, T. A.

    1993-01-01

    As part of an observing program using the IUE satellite to investigate the properties of stars within the cores of Galactic globular clusters, we have obtained three spectra of the cluster NGC 1904 (M79). All three were long-integration-time, short-wavelength (SWP) spectra obtained at the so-called 'center-of-light', and all three showed evidence of multiple sources within the IUE large aperture. We describe the analysis of these spectra and present evidence that the UV sources represent individual hot stars in the post-horizontal-branch stage of evolution. We see more UV-bright objects in the core of this cluster than expected from surveys of similar objects discovered in the outer regions of other globulars, leading us to conclude that dynamical effects in the core may significantly alter the path of evolution off the horizontal branch. The spectra also appear to be fitted more closely by models using Population I metal abundances than by Population II abundance models.

  8. WFPC2 observations of the globular cluster M30

    NASA Technical Reports Server (NTRS)

    Yanny, Brian; Guhathakurta, Puragra; Schneider, Donald P.; Bachall, John N.

    1994-01-01

    We describe images of the center of the dense globular cluster M30 (NGC 7099) obtained with the Hubble Space Telescope Wide Field/Planetary Camera 2 (HST WFPC2). Data taken in the F336W, F439W, and F555W filters (approximately U, B, and V) yield a color-magnitude diagram with photometric errors of 1 sigma = 0.05 mag for stars with V less than 17.5, and 1 sigma approximately 0.1 mag at V = 20, which is 1.5 mag fainter than the main-sequence turnoff. Simulations show that the star identifications are essentially complete for stars with V less than 19.5, even in the densest regions of the cluster. The projected radial distribution of stars can be represented by a power law distribution: N(r) approximately r(exp alpha), with slope alpha = -0.4 +/- 0.15, into radii less than 0.4 sec (0.015 pc). The radial profile is also consistent with a flat core of any radius smaller than approximately 1.5 sec (0.05 pc), but inconsistent with any core radius larger than 2.5 sec (0.09 pc). A total of 30 blue straggler candidates within 20 sec of the cluster center have been identified from the three-color data. Their radial distribution is strongly centrally concentrated when compared to the horizontal branch, red giant branch, or main-sequence stars in the cluster. The abundance of blue stragglers (relative to red giants and subgiants) within r approximately less than 20 sec of the center of M30 is f(sub BS) = 0.19 =/- 0.04, about twice as high as in other dense clusters.

  9. A novel look at energy equipartition in globular clusters

    NASA Astrophysics Data System (ADS)

    Bianchini, P.; van de Ven, G.; Norris, M. A.; Schinnerer, E.; Varri, A. L.

    2016-06-01

    Two-body interactions play a major role in shaping the structural and dynamical properties of globular clusters (GCs) over their long-term evolution. In particular, GCs evolve towards a state of partial energy equipartition that induces a mass dependence in their kinematics. By using a set of Monte Carlo cluster simulations evolved in quasi-isolation, we show that the stellar mass dependence of the velocity dispersion σ(m) can be described by an exponential function σ2 ∝ exp (-m/meq), with the parameter meq quantifying the degree of partial energy equipartition of the systems. This simple parametrization successfully captures the behaviour of the velocity dispersion at lower as well as higher stellar masses, that is, the regime where the system is expected to approach full equipartition. We find a tight correlation between the degree of equipartition reached by a GC and its dynamical state, indicating that clusters that are more than about 20 core relaxation times old, have reached a maximum degree of equipartition. This equipartition-dynamical state relation can be used as a tool to characterize the relaxation condition of a cluster with a kinematic measure of the meq parameter. Vice versa, the mass dependence of the kinematics can be predicted knowing the relaxation time solely on the basis of photometric measurements. Moreover, any deviations from this tight relation could be used as a probe of a peculiar dynamical history of a cluster. Finally, our novel approach is important for the interpretation of state-of-the-art Hubble Space Telescope proper motion data, for which the mass dependence of kinematics can now be measured, and for the application of modelling techniques which take into consideration multimass components and mass segregation.

  10. Discovery of an obscured globular cluster associated with GX 354+0 /=4U/MXB 1728-34/

    NASA Astrophysics Data System (ADS)

    Grindlay, J. E.; Hertz, P.

    1981-07-01

    A diffuse infrared source identified as the most heavily obscured globular cluster yet found, was observed using the NASA 3m infrared telescope facility and Einstein positions for the X-ray source GX 354+0 (=4U/MXB 1728-34). Color excesses were measured to 1.4 + or - 0.3 for E(J-H) and 0.63 + or - 0.07 for E(H-K), and the visual extinction was determined at 10.6 + or - 1.3. The magnitude of several giant branch stars imply the cluster to be at a distance of 10.0 + or - 3.9 kpc, if metal rich, or 5.2 + or - 1.4 kpc, if metal poor. A single burst from MXB 1728-34 was observed with a blackbody temperature and cluster distance that indicated the luminosity to be not less than 10 times the Eddington limit for a neutron star model. This identification brings to 11 the number of compact X-ray sources in globular clusters, and reinforces the connection between GX sources, bursters, and globular clusters.

  11. High resolution infrared spectra of Bulge Globular Clusters: Liller 1, NGC 6553, and Ter 5

    NASA Astrophysics Data System (ADS)

    Origlia, L.; Rich, R. M.; Castro, S. M.

    2001-12-01

    Using the NIRSPEC spectrograph at Keck II, we have obtained echelle spectra covering the range 1.5-1.8μ m for 2 of the brightest giants in Liller 1 and NGC 6553, old metal rich globular clusters in the Galactic bulge. We also report a preliminary analysis for two giants in the obscured bulge globular cluster Ter 5. We use spectrum synthesis for the abundance analysis, and find [Fe/H]=-0.3+/-0.2 and [O/H]=+0.3+/- 0.1 (from the OH lines) for the giants in Liller 1 and NGC 6553. We measure strong lines for the alpha elements Mg, Ca, and Si, but the lower sensitivity of these lines to abundance permits us to only state a general [α /Fe]=+0.3+/-0.2 dex. The composition of the clusters is similar to that of field stars in the bulge and is consistent with a scenario in which the clusters formed early, with rapid enrichment. Our iron abundance for NGC 6553 is poorly consistent with either the low or the high values recently reported in the literature, unless unusally large, or no α -element enhancements are adopted, respectively. We will also present an abundance analsyis for 2 giants in the highly reddened bulge cluster Ter 5, which appears to be near the Solar metallicity. R. Michael Rich acknowledges finacial support from grant AST-0098739, from the National Science Foundation. Data presented herein were obtained at the W.M.Keck Observatory, which is operated as a scientific partnership among the California Institute of Technology, the University of California, and the National Aeronautics and Space Administration. The Observatory was made possible by the generous financial support of the W.M. Keck Foundation. The authors gratefully acknowledge those of Hawaiian ancestry on whose sacred mountain we are privileged to be guests. Without their generous hospitality, none of the observations presented would have been possible.

  12. The Hubble Space Telescope UV Legacy Survey of Galactic Globular Clusters. VIII. Preliminary Public Catalog Release

    NASA Astrophysics Data System (ADS)

    Soto, M.; Bellini, A.; Anderson, J.; Piotto, G.; Bedin, L. R.; van der Marel, R. P.; Milone, A. P.; Brown, T. M.; Cool, A. M.; King, I. R.; Sarajedini, A.; Granata, V.; Cassisi, S.; Aparicio, A.; Hidalgo, S.; Ortolani, S.; Nardiello, D.

    2017-01-01

    The Hubble Space Telescope (HST) UV Legacy Survey of Galactic Globular Clusters (GO-13297) has been specifically designed to complement the existing F606W and F814W observations of the Advanced Camera for Surveys (ACS) Globular Cluster Survey (GO-10775) by observing the most accessible 47 of the previous survey’s 65 clusters in three WFC3/UVIS filters F275W, F336W, and F438W. The new survey also adds super-solar metallicity open cluster NGC 6791 to increase the metallicity diversity. The combined survey provides a homogeneous 5-band data set that can be used to pursue a broad range of scientific investigations. In particular, the chosen UV filters allow the identification of multiple stellar populations by targeting the regions of the spectrum that are sensitive to abundance variations in C, N, and O. In order to provide the community with uniform preliminary catalogs, we have devised an automated procedure that performs high-quality photometry on the new UV observations (along with similar observations of seven other programs in the archive). This procedure finds and measures the potential sources on each individual exposure using library point-spread functions and cross-correlates these observations with the original ACS-Survey catalog. The catalog of 57 clusters we publish here will be useful to identify stars in the different stellar populations, in particular for spectroscopic follow-up. Eventually, we will construct a more sophisticated catalog and artificial-star tests based on an optimal reduction of the UV survey data, but the catalogs presented here give the community the chance to make early use of this HST Treasury survey.

  13. Composition of an emission line system in black hole host globular cluster RZ2109

    SciTech Connect

    Steele, Matthew M.; Zepf, Stephen E.; Maccarone, Thomas J.; Kundu, Arunav; Rhode, Katherine L.; Salzer, John J.

    2014-04-20

    We present an analysis of optical spectra from the globular cluster RZ2109 in NGC 4472, which hosts the first unambiguous globular cluster black hole. We use these spectra to determine the elemental composition of the emission line system associated with this source, and to constrain the age and metallicity of the host globular cluster. For the emission line system of RZ2109, our analysis indicates the [O III] λ5007 equivalent width is 33.82 ± 0.39 Å and the Hβ equivalent width is 0.32 ± 0.32 Å, producing a formal [O III] λ5007/Hβ emission line ratio of 106 for a 3200 km s{sup –1} measurement aperture covering the full velocity width of the [O III] λ5007 line. Within a narrower 600 km s{sup –1} aperture covering the highest luminosity velocity structure in the line complex, we find [O III] λ5007/Hβ = 62. The measured [O III] λ5007/Hβ ratios are significantly higher than can be produced in radiative models of the emission line region with solar composition, and the confidence interval limits exclude all but models which have gas masses much larger than those for a single star. Therefore, we conclude that the region from which the [O III] λ5007 emission originates is hydrogen-depleted relative to solar composition gas. This finding is consistent with emission from an accretion-powered outflow driven by a hydrogen-depleted donor star, such as a white dwarf, being accreted onto a black hole.

  14. Globular clusters, satellite galaxies and stellar haloes from early dark matter peaks

    NASA Astrophysics Data System (ADS)

    Moore, Ben; Diemand, Juerg; Madau, Piero; Zemp, Marcel; Stadel, Joachim

    2006-05-01

    The Milky Way contains several distinct old stellar components that provide a fossil record of its formation. We can understand their spatial distribution and kinematics in a hierarchical formation scenario by associating the protogalactic fragments envisaged by Searle & Zinn (1978) with the rare peaks able to cool gas in the cold dark matter density field collapsing at redshift z > 10. We use hierarchical structure formation simulations to explore the kinematics and spatial distribution of these early star-forming structures in galaxy haloes today. Most of the protogalaxies rapidly merge, their stellar contents and dark matter becoming smoothly distributed and forming the inner Galactic halo. The metal-poor globular clusters and old halo stars become tracers of this early evolutionary phase, centrally biased and naturally reproducing the observed steep fall off with radius. The most outlying peaks fall in late and survive to the present day as satellite galaxies. The observed radial velocity dispersion profile and the local radial velocity anisotropy of Milky Way halo stars are successfully reproduced in this model. If this epoch of structure formation coincides with a suppression of further cooling into lower sigma peaks then we can reproduce the rarity, kinematics and spatial distribution of satellite galaxies as suggested by Bullock, Kravtsov & Weinberg (2000). Reionization at z= 12 +/- 2 provides a natural solution to the missing satellites problem. Measuring the distribution of globular clusters and halo light on scales from galaxies to clusters could be used to constrain global versus local reionization models. If reionization occurs contemporary, our model predicts a constant frequency of blue globulars relative to the host halo mass, except for dwarf galaxies where the average relative frequencies become smaller.

  15. The next generation Virgo cluster survey. VIII. The spatial distribution of globular clusters in the Virgo cluster

    SciTech Connect

    Durrell, Patrick R.; Accetta, Katharine; Côté, Patrick; Blakeslee, John P.; Ferrarese, Laura; McConnachie, Alan; Gwyn, Stephen; Peng, Eric W.; Zhang, Hongxin; Mihos, J. Christopher; Puzia, Thomas H.; Jordán, Andrés; Lançon, Ariane; Liu, Chengze; Cuillandre, Jean-Charles; Boissier, Samuel; Boselli, Alessandro; Courteau, Stéphane; Duc, Pierre-Alain; and others

    2014-10-20

    We report on a large-scale study of the distribution of globular clusters (GCs) throughout the Virgo cluster, based on photometry from the Next Generation Virgo Cluster Survey (NGVS), a large imaging survey covering Virgo's primary subclusters (Virgo A = M87 and Virgo B = M49) out to their virial radii. Using the g{sub o}{sup ′}, (g' – i') {sub o} color-magnitude diagram of unresolved and marginally resolved sources within the NGVS, we have constructed two-dimensional maps of the (irregular) GC distribution over 100 deg{sup 2} to a depth of g{sub o}{sup ′} = 24. We present the clearest evidence to date showing the difference in concentration between red and blue GCs over the full extent of the cluster, where the red (more metal-rich) GCs are largely located around the massive early-type galaxies in Virgo, while the blue (metal-poor) GCs have a much more extended spatial distribution with significant populations still present beyond 83' (∼215 kpc) along the major axes of both M49 and M87. A comparison of our GC maps to the diffuse light in the outermost regions of M49 and M87 show remarkable agreement in the shape, ellipticity, and boxiness of both luminous systems. We also find evidence for spatial enhancements of GCs surrounding M87 that may be indicative of recent interactions or an ongoing merger history. We compare the GC map to that of the locations of Virgo galaxies and the X-ray intracluster gas, and find generally good agreement between these various baryonic structures. We calculate the Virgo cluster contains a total population of N {sub GC} = 67, 300 ± 14, 400, of which 35% are located in M87 and M49 alone. For the first time, we compute a cluster-wide specific frequency S {sub N,} {sub CL} = 2.8 ± 0.7, after correcting for Virgo's diffuse light. We also find a GC-to-baryonic mass fraction ε {sub b} = 5.7 ± 1.1 × 10{sup –4} and a GC-to-total cluster mass formation efficiency ε {sub t} = 2.9 ± 0.5 × 10{sup –5}, the latter values

  16. THE HELIUM CONTENT OF GLOBULAR CLUSTERS: NGC 6121 (M4)

    SciTech Connect

    Villanova, S.; Geisler, D.; Piotto, G.; Gratton, R. G. E-mail: dgeisler@astro-udec.cl E-mail: raffaele.gratton@oapd.inaf.it

    2012-03-20

    In the context of the multiple stellar population scenario in globular clusters, helium (He) has been proposed as a key element to interpret the observed multiple main sequences, subgiant branches, and red giant branches, as well as the complex horizontal branch (HB) morphology. In particular, second-generation stars belonging to the bluer part of the HB are thought to be more He-rich ({Delta}Y = 0.03 or more) but also more Na-rich/O-poor than those located in the redder part that should have Y equal to the cosmological value. Up to now this hypothesis was only partially confirmed in NGC 6752, where stars of the redder zero-age HB showed an He content of Y = 0.25 {+-} 0.01, fully compatible with the primordial He content of the universe, and were all Na-poor/O-rich. Here we study hot blue horizontal branch (BHB) stars in the GC NGC 6121 (M4) to measure their He plus O/Na content. Our goal is to complete the partial results obtained for NGC 6752, focusing our attention on targets located on the bluer part of the HB of M4. We observed six BHB stars using the VLT2/UVES spectroscopic facility. Spectra of signal-to-noise ratio {approx} 150 were obtained and the very weak He line at 5875 A measured for all our targets. We compared this feature with synthetic spectra to obtain He abundances. In addition O, Na, and Fe abundances were estimated. Stars turned out to be all Na-rich and O-poor and to have a homogeneous He content with a mean value of Y = 0.29 {+-} 0.01(random) {+-} 0.01(systematic), which is enhanced by {Delta}Y {approx} 0.04 with respect to the most recent measurements of the primordial He content of the universe (Y {approx} 0.24/0.25). The high He content of blue HB stars in M4 is also confirmed by the fact that they are brighter than red HB stars (RHB). Theoretical models suggest the BHB stars are He-enhanced by {Delta}(Y) = 0.02/0.03 with respect to the RHB stars. The whole sample of stars has a metallicity of [Fe/H] = -1.06 {+-} 0.02 (internal error), in

  17. The Helium Content of Globular Clusters: NGC 6121 (M4)

    NASA Astrophysics Data System (ADS)

    Villanova, S.; Geisler, D.; Piotto, G.; Gratton, R. G.

    2012-03-01

    In the context of the multiple stellar population scenario in globular clusters, helium (He) has been proposed as a key element to interpret the observed multiple main sequences, subgiant branches, and red giant branches, as well as the complex horizontal branch (HB) morphology. In particular, second-generation stars belonging to the bluer part of the HB are thought to be more He-rich (ΔY = 0.03 or more) but also more Na-rich/O-poor than those located in the redder part that should have Y equal to the cosmological value. Up to now this hypothesis was only partially confirmed in NGC 6752, where stars of the redder zero-age HB showed an He content of Y = 0.25 ± 0.01, fully compatible with the primordial He content of the universe, and were all Na-poor/O-rich. Here we study hot blue horizontal branch (BHB) stars in the GC NGC 6121 (M4) to measure their He plus O/Na content. Our goal is to complete the partial results obtained for NGC 6752, focusing our attention on targets located on the bluer part of the HB of M4. We observed six BHB stars using the VLT2/UVES spectroscopic facility. Spectra of signal-to-noise ratio ~ 150 were obtained and the very weak He line at 5875 Å measured for all our targets. We compared this feature with synthetic spectra to obtain He abundances. In addition O, Na, and Fe abundances were estimated. Stars turned out to be all Na-rich and O-poor and to have a homogeneous He content with a mean value of Y = 0.29 ± 0.01(random) ± 0.01(systematic), which is enhanced by ΔY ~ 0.04 with respect to the most recent measurements of the primordial He content of the universe (Y ~ 0.24/0.25). The high He content of blue HB stars in M4 is also confirmed by the fact that they are brighter than red HB stars (RHB). Theoretical models suggest the BHB stars are He-enhanced by Δ(Y) = 0.02/0.03 with respect to the RHB stars. The whole sample of stars has a metallicity of [Fe/H] = -1.06 ± 0.02 (internal error), in agreement with other studies available in

  18. Proper motions and membership probabilities of stars in the region of globular cluster NGC 6366

    NASA Astrophysics Data System (ADS)

    Sariya, Devesh P.; Yadav, R. K. S.

    2015-12-01

    Context. NGC 6366 is a metal-rich globular cluster that is relatively unstudied. It is a kinematically interesting cluster, reported as belonging to the slowly rotating halo system, which is unusual given its metallicity and spatial location in the Galaxy. Aims: The purpose of this research is to determine the relative proper motion and membership probability of the stars in the region of globular cluster NGC 6366. To target cluster members reliably during spectroscopic surveys without including field stars, a good proper motion and membership probability catalogue of NGC 6366 is needed. Methods: To derive relative proper motions, the archival data from the Wide Field Imager mounted on the ESO 2.2 m telescope have been reduced using a high precision astrometric software. The images used are in the B,V, and I photometric bands with an epoch gap of ~3.2 yr. The calibrated BVI magnitudes have been determined using recent data for secondary standard stars. Results: We determined relative proper motions and cluster membership probabilities for 2530 stars in the field of globular cluster NGC 6366. The median proper motion rms errors for stars brighter than V ~ 18 mag is ~2 mas yr-1, which gradually increases to ~5 mas yr-1 for stars having magnitudes V ~ 20 mag. Based on the membership catalogue, we checked the membership status of the X-ray sources and variable stars of NGC 6366 mentioned in the literature. We also provide the astronomical community with an electronic catalogue that includes B, V, and I magnitudes; relative proper motions; and membership probabilities of the stars in the region of NGC 6366. Based on observations with the MPG/ESO 2.2 m and ESO/VLT telescopes, located at La Silla and Paranal Observatory, Chile, under DDT programs 164.O-0561(F), 71.D-0220(A) and the archive material.Full Table 4 is only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/584/A59

  19. The Evolution of Globular Cluster Systems In Early-Type Galaxies

    NASA Astrophysics Data System (ADS)

    Grillmair, Carl

    1999-07-01

    We will measure structural parameters {core radii and concentrations} of globular clusters in three early-type galaxies using deep, four-point dithered observations. We have chosen globular cluster systems which have young, medium-age and old cluster populations, as indicated by cluster colors and luminosities. Our primary goal is to test the hypothesis that globular cluster luminosity functions evolve towards a ``universal'' form. Previous observations have shown that young cluster systems have exponential luminosity functions rather than the characteristic log-normal luminosity function of old cluster systems. We will test to see whether such young system exhibits a wider range of structural parameters than an old systems, and whether and at what rate plausible disruption mechanisms will cause the luminosity function to evolve towards a log-normal form. A simple observational comparison of structural parameters between different age cluster populations and between diff er ent sub-populations within the same galaxy will also provide clues concerning both the formation and destruction mechanisms of star clusters, the distinction between open and globular clusters, and the advisability of using globular cluster luminosity functions as distance indicators.

  20. The VMC survey. XI. Radial stellar population gradients in the galactic globular cluster 47 Tucanae

    SciTech Connect

    Li, Chengyuan; De Grijs, Richard; Deng, Licai; Rubele, Stefano; Girardi, Leo; Gullieuszik, Marco; Wang, Chuchu; Bekki, Kenji; For, Bi-Qing; Cioni, Maria-Rosa L.; Clementini, Gisella; Emerson, Jim; Groenewegen, Martin A. T.; Guandalini, Roald; Marconi, Marcella; Ripepi, Vincenzo; Piatti, Andrés E.; Van Loon, Jacco Th. E-mail: grijs@pku.edu.cn

    2014-07-20

    We present a deep near-infrared color-magnitude diagram of the Galactic globular cluster 47 Tucanae, obtained with the Visible and Infrared Survey Telescope for Astronomy (VISTA) as part of the VISTA near-infrared Y, J, K{sub s} survey of the Magellanic System (VMC). The cluster stars comprising both the subgiant and red giant branches exhibit apparent, continuous variations in color-magnitude space as a function of radius. Subgiant branch stars at larger radii are systematically brighter than their counterparts closer to the cluster core; similarly, red-giant-branch stars in the cluster's periphery are bluer than their more centrally located cousins. The observations can very well be described by adopting an age spread of ∼0.5 Gyr as well as radial gradients in both the cluster's helium abundance (Y) and metallicity (Z), which change gradually from (Y = 0.28, Z = 0.005) in the cluster core to (Y = 0.25, Z = 0.003) in its periphery. We conclude that the cluster's inner regions host a significant fraction of second-generation stars, which decreases with increasing radius; the stellar population in the 47 Tuc periphery is well approximated by a simple stellar population.

  1. STELLAR COLLISIONS AND BLUE STRAGGLER STARS IN DENSE GLOBULAR CLUSTERS

    SciTech Connect

    Chatterjee, Sourav; Rasio, Frederic A.; Sills, Alison; Glebbeek, Evert

    2013-11-10

    Blue straggler stars (BSSs) are abundantly observed in all Galactic globular clusters (GGCs) where data exist. However, observations alone cannot reveal the relative importance of various formation channels or the typical formation times for this well-studied population of anomalous stars. Using a state-of-the-art Hénon-type Monte Carlo code that includes all relevant physical processes, we create 128 models with properties typical of the observed GGCs. These models include realistic numbers of single and binary stars, use observationally motivated initial conditions, and span large ranges in central density, concentration, binary fraction, and mass. Their properties can be directly compared with those of observed GGCs. We can easily identify the BSSs in our models and determine their formation channels and birth times. We find that for central densities above ∼10{sup 3} M{sub ☉} pc{sup –3}, the dominant formation channel is stellar collisions, while for lower density clusters, mass transfer in binaries provides a significant contribution (up to 60% in our models). The majority of these collisions are binary-mediated, occurring during three-body and four-body interactions. As a result, a strong correlation between the specific frequency of BSSs and the binary fraction in a cluster can be seen in our models. We find that the number of BSSs in the core shows only a weak correlation with the collision rate estimator Γ traditionally used by observers, in agreement with the latest Hubble Space Telescope Advanced Camera for Surveys data. Using an idealized 'full mixing' prescription for collision products, our models indicate that the BSSs observed today may have formed several Gyr ago. However, denser clusters tend to have younger (∼1 Gyr) BSSs.

  2. Stellar Collisions and Blue Straggler Stars in Dense Globular Clusters

    NASA Astrophysics Data System (ADS)

    Chatterjee, Sourav; Rasio, Frederic A.; Sills, Alison; Glebbeek, Evert

    2013-11-01

    Blue straggler stars (BSSs) are abundantly observed in all Galactic globular clusters (GGCs) where data exist. However, observations alone cannot reveal the relative importance of various formation channels or the typical formation times for this well-studied population of anomalous stars. Using a state-of-the-art Hénon-type Monte Carlo code that includes all relevant physical processes, we create 128 models with properties typical of the observed GGCs. These models include realistic numbers of single and binary stars, use observationally motivated initial conditions, and span large ranges in central density, concentration, binary fraction, and mass. Their properties can be directly compared with those of observed GGCs. We can easily identify the BSSs in our models and determine their formation channels and birth times. We find that for central densities above ~103 M ⊙ pc-3, the dominant formation channel is stellar collisions, while for lower density clusters, mass transfer in binaries provides a significant contribution (up to 60% in our models). The majority of these collisions are binary-mediated, occurring during three-body and four-body interactions. As a result, a strong correlation between the specific frequency of BSSs and the binary fraction in a cluster can be seen in our models. We find that the number of BSSs in the core shows only a weak correlation with the collision rate estimator Γ traditionally used by observers, in agreement with the latest Hubble Space Telescope Advanced Camera for Surveys data. Using an idealized "full mixing" prescription for collision products, our models indicate that the BSSs observed today may have formed several Gyr ago. However, denser clusters tend to have younger (~1 Gyr) BSSs.

  3. Accretion onto Protoplanetary Discs: Implications for Globular Cluster Evolution

    NASA Astrophysics Data System (ADS)

    Wijnen, Thomas; Pols, Onno; Portegies Zwart, Simon

    2015-08-01

    In the past decade, observational evidence that Globular Clusters (GCs) harbour multiple stellar populations has grown steadily. These observations are hard to reconcile with the classic picture of star formation in GCs, which approximates them as a single generation of stars. However, Bastian et al. recently suggested an evolutionary scenario in which a second (and higher order) population is formed by the accretion of chemically enriched material onto the low-mass stars in the initial GC population. In this early disc accretion scenario the low-mass, pre-main sequence stars sweep up gas expelled by the more massive stars of the same generation into their protoplanetary disc as they move through the cluster centre.Using assumptions that represent the (dynamical) conditions in a typical GC, we investigate whether a low-mass star surrounded by a protoplanetary disc can indeed accrete sufficient enriched material to account for the observed abundances in 'second generation' stars. We compare the outcome of two different smoothed particle hydrodynamics codes and check for consistency. In particular, we focus on the lifetime and stability of the disc and on the gas accretion rate onto both the star and the disc.

  4. Formation of Short-Period Binary Pulsars in Globular Clusters.

    PubMed

    Rasio; Pfahl; Rappaport

    2000-03-20

    We present a new dynamical scenario for the formation of short-period binary millisecond pulsars in globular clusters. Our work is motivated by the recent observations of 20 radio pulsars in 47 Tuc. In a dense cluster such as 47 Tuc, most neutron stars acquire binary companions through exchange interactions with primordial binaries. The resulting systems have semimajor axes in the range approximately 0.1-1 AU and neutron star companion masses approximately 1-3 M middle dot in circle. For many of these systems, we find that when the companion evolves off the main sequence and fills its Roche lobe, the subsequent mass transfer is dynamically unstable. This leads to a common envelope phase and the formation of short-period neutron star-white dwarf binaries. For a significant fraction of these binaries, the decay of the orbit due to gravitational radiation will be followed by a period of stable mass transfer driven by a combination of gravitational radiation and tidal heating of the companion. The properties of the resulting short-period binaries match well those of observed binary pulsars in 47 Tuc.

  5. Integrated K-band spectra of old and intermediate-age globular clusters in the Large Magellanic Cloud

    NASA Astrophysics Data System (ADS)

    Lyubenova, M.; Kuntschner, H.; Rejkuba, M.; Silva, D. R.; Kissler-Patig, M.; Tacconi-Garman, L. E.; Larsen, S. S.

    2010-02-01

    Current stellar population models have arguably the largest uncertainties in the near-IR wavelength range, partly due to a lack of large and well calibrated empirical spectral libraries. In this paper we present a project whose aim it is to provide the first library of luminosity weighted integrated near-IR spectra of globular clusters to be used to test the current stellar population models and serve as calibrators for future ones. Our pilot study presents spatially integrated K-band spectra of three old (≥10 Gyr) and metal poor ([Fe/H] ~ -1.4), and three intermediate age (1-2 Gyr) and more metal rich ([Fe/H] ~ - 0.4) globular clusters in the LMC. We measured the line strengths of the Na I, Ca I and 12CO (2-0) absorption features. The Na I index decreases with increasing age and decreasing metallicity of the clusters. The DCO index, used to measure the 12CO (2-0) line strength, is significantly reduced by the presence of carbon-rich TP-AGB stars in the globular clusters with age ~1 Gyr. This is in contradiction to the predictions of the stellar population models of Maraston (2005, MNRAS, 362, 799). We find that this disagreement is due to the different CO absorption strength of carbon-rich Milky Way TP-AGB stars used in the models and the LMC carbon stars in our sample. For globular clusters with age ≥ 2 Gyr we find DCO index measurements consistent with the model predictions. Based on observation collected at the ESO Paranal La Silla Observatory, Chile, Prog. ID 078.B-0205.Spectra in FITS format are only available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?J/A+A/510/A19

  6. Spectroscopy of Blue Horizontal Branch Stars in the Globular Cluster NGC 6752

    NASA Astrophysics Data System (ADS)

    Cote, P.; Bolte, M.; Wilson, C. D.; Patel, K.

    1993-12-01

    Optical spectra (at 0.9 Angstroms /pixel dispersion) for 24 candidate blue horizontal branch stars in the globular cluster NGC 6752 have been obtained with ARGUS, the multi-object spectrograph on the CTIO 4.0m telescope. In addition to strong hydrogen lines, ten of the stars exhibit the 4471 Angstroms line of neutral helium. The equivalent widths of this line, the full widths of H_γ and H_δ at the 20% absorption level and BV CCD photometry have been used to derive effective temperatures, surface gravities and surface helium abundances for our program objects. With the exception of one star which has an exceptionally strong 4471 Angstroms line, all of the objects with detected helium are consistent with the rather low value of N(He)/N(H) =~ 0.008, suggesting that neither enhanced atmospheric helium nor increased stellar rotation is responsible for the extremely blue horizontal branch observed in this intermediate metallicity cluster.

  7. Abundance inhomogeneities and atmospheric structure in CN-bimodal globular cluster giants

    NASA Technical Reports Server (NTRS)

    Drake, Jeremy J.; Plez, Bertrand; Smith, Verne V.

    1993-01-01

    It has been suggested by several authors that the sodium and aluminum abundance variations correlating with CN-band strength, frequently observed in CN-bimodal globular cluster giants, could be spurious manifestations of different temperature structures in the 'CN-strong' and 'CN-weak' stars, caused by different molecular line blanketing related to the C, N, and O trio. For stellar parameters generally appropriate to giants in the intermediate metallicity CN-bimodal cluster M4, we demonstrate through new model atmosphere calculations, employing opacity sampling and spherical geometry, that the observed abundance anomalies cannot be the result of atmospheric temperature structure. Our results using spherical geometry are compared to identical calculations performed with plane-parallel geometry: the effects of atmospheric extension on derived abundances for all lines considered amount to less than 0.1 dex.

  8. EVIDENCE FOR ENRICHMENT BY SUPERNOVAE IN THE GLOBULAR CLUSTER NGC 6273

    SciTech Connect

    Han, Sang-Il; Lim, Dongwook; Seo, Hyunju; Lee, Young-Wook

    2015-11-10

    In our recent investigation, we showed that narrowband photometry can be combined with low-resolution spectroscopy to effectively search for globular clusters (GCs) with supernova (SN) enrichments. Here we apply this technique to the metal-poor bulge GC NGC 6273 and find that the red giant branch stars in this GC are clearly divided into two distinct subpopulations with different calcium abundances. The Ca rich subpopulation in this GC is also enhanced in CN and CH, showing a positive correlation between them. This trend is identical to the result we found in M22, suggesting that this might be a ubiquitous nature of GCs more strongly affected by SNe in their chemical evolution. Our results suggest that NGC 6273 was massive enough to retain SN ejecta, which would place this cluster in the growing group of GCs with Galactic building block characteristics, such as ω Centauri and Terzan 5.

  9. The merger remnant NGC 3610 and its globular cluster system: a large-scale study

    NASA Astrophysics Data System (ADS)

    Bassino, Lilia P.; Caso, Juan P.

    2017-01-01

    We present a photometric study of the prototype merger remnant NGC 3610 and its globular cluster (GC) system, based on new GEMINI/GMOS and ACS/HST archival images. Thanks to the large FOV of our GMOS data, larger than previous studies, we are able to detect a `classical' bimodal GC colour distribution, correponding metal-poor and metal-rich GCs, at intermediate radii and a small subsample of likely young clusters of intermediate colours, mainly located in the outskirts. The extent of the whole GC system is settled as about 40 kpc. The GC population is quite poor, about 500 ± 110 members that corresponds to a low total specific frequency SN ˜ 0.8. The effective radii of a cluster sample are determined, including those of two spectroscopically confirmed young and metal-rich clusters, that are in the limit between GC and UCD sizes and brightness. The large-scale galaxy surface-brightness profile can be decomposed as an inner embedded disc and an outer spheroid, determining for both larger extents than earlier research (10 kpc and 30 kpc, respectively). We detect boxy isophotes, expected in merger remnants, and show a wealth of fine-structure in the surface-brightness distribution with unprecedented detail, coincident with the outer spheroid. The lack of symmetry in the galaxy colour map adds a new piece of evidence to the recent merger scenario of NGC 3610.

  10. On the kinematic separation of field and cluster stars across the bulge globular NGC 6528

    SciTech Connect

    Lagioia, E. P.; Bono, G.; Buonanno, R.; Milone, A. P.; Stetson, P. B.; Prada Moroni, P. G.; Dall'Ora, M.; Aparicio, A.; Monelli, M.; Calamida, A.; Ferraro, I.; Iannicola, G.; Gilmozzi, R.; Matsunaga, N.; Walker, A.

    2014-02-10

    We present deep and precise multi-band photometry of the Galactic bulge globular cluster NGC 6528. The current data set includes optical and near-infrared images collected with ACS/WFC, WFC3/UVIS, and WFC3/IR on board the Hubble Space Telescope. The images cover a time interval of almost 10 yr, and we have been able to carry out a proper-motion separation between cluster and field stars. We performed a detailed comparison in the m {sub F814W}, m {sub F606W} – m {sub F814W} color-magnitude diagram with two empirical calibrators observed in the same bands. We found that NGC 6528 is coeval with and more metal-rich than 47 Tuc. Moreover, it appears older and more metal-poor than the super-metal-rich open cluster NGC 6791. The current evidence is supported by several diagnostics (red horizontal branch, red giant branch bump, shape of the sub-giant branch, slope of the main sequence) that are minimally affected by uncertainties in reddening and distance. We fit the optical observations with theoretical isochrones based on a scaled-solar chemical mixture and found an age of 11 ± 1 Gyr and an iron abundance slightly above solar ([Fe/H] = +0.20). The iron abundance and the old cluster age further support the recent spectroscopic findings suggesting a rapid chemical enrichment of the Galactic bulge.

  11. Deep WIYN Imaging of the Globular Cluster System of the Lenticular Galaxy NGC 3607

    NASA Astrophysics Data System (ADS)

    Carr, Derrick; Rhode, Katherine L.; Jorgenson, Regina

    2017-01-01

    Globular clusters serve as relics of a galaxy’s past history, because they are thought to be among the first objects to form in a galaxy. Measuring the properties of the globular cluster population of a galaxy — in particular the total number, spatial distribution, and color distribution of the clusters — can provide important clues about the formation and evolution of that galaxy. Here we present results from the analysis of the globular cluster population of NGC 3607, an S0 galaxy with M_V = -21.9 that is ~23 Mpc away and is the brightest member of the Leo II group. We used images from the Minimosaic camera on the WIYN 3.5-m telescope with total exposure times of 6300, 6000, and 5400 seconds in the B, V, and R filters, respectively, to image the globular cluster system of NGC 3607 well past its apparent radial extent of 6.3’ (41 kpc). Point-source globular clusters are selected with three-filter photometry to help eliminate foreground stars and background galaxies. The excellent seeing in our WIYN images (0.6” to 0.9”) also helped reduce contamination in the globular cluster candidate sample. Artificial star tests yielded 50% completeness levels of B = 25.4, V=25.2, and R=24.1 and we observed approximately 41% of the galaxy’s Globular Cluster Luminosity Function. We estimate the total number of globular clusters in NGC 3607 is 1000+/-50, which translates to specific frequency values of S_N = 1.7+/-0.3 and T = 2.6+/-0.3 for this galaxy’s luminosity and stellar mass. This research was supported in part by NSF REU grant AST-1358980 and the Nantucket Maria Mitchell Association.

  12. COMPARING MID-INFRARED GLOBULAR CLUSTER COLORS WITH POPULATION SYNTHESIS MODELS

    SciTech Connect

    Barmby, P.; Jalilian, F. F.

    2012-04-15

    Several population synthesis models now predict integrated colors of simple stellar populations in the mid-infrared bands. To date, the models have not been extensively tested in this wavelength range. In a comparison of the predictions of several recent population synthesis models, the integrated colors are found to cover approximately the same range but to disagree in detail, for example, on the effects of metallicity. To test against observational data, globular clusters (GCs) are used as the closest objects to idealized groups of stars with a single age and single metallicity. Using recent mass estimates, we have compiled a sample of massive, old GCs in M31 which contain enough stars to guard against the stochastic effects of small-number statistics, and measured their integrated colors in the Spitzer/IRAC bands. Comparison of the cluster photometry in the IRAC bands with the model predictions shows that the models reproduce the cluster colors reasonably well, except for a small (not statistically significant) offset in [4.5] - [5.8]. In this color, models without circumstellar dust emission predict bluer values than are observed. Model predictions of colors formed from the V band and the IRAC 3.6 and 4.5 {mu}m bands are redder than the observed data at high metallicities and we discuss several possible explanations. In agreement with model predictions, V - [3.6] and V - [4.5] colors are found to have metallicity sensitivity similar to or slightly better than V - K{sub s}.

  13. Probing the link between dynamics and stellar evolution: Blue Straggler Stars in Globular clusters

    NASA Astrophysics Data System (ADS)

    Ferraro, F. R.; Lanzoni, B.

    2009-11-01

    In this contribution we review the main observational properties of Blue Straggler Stars (BSS) in Galactic Globular Clusters. A flower of results on the BSS frequency, radial distribution, and chemical composition are presented and discussed.

  14. Photometric binary stars in Praesepe and the search for globular cluster binaries

    NASA Technical Reports Server (NTRS)

    Bolte, Michael

    1991-01-01

    A radial velocity study of the stars which are located on a second sequence above the single-star zero-age main sequence at a given color in the color-magnitude diagram of the open cluster Praesepe, (NGC 2632) shows that 10, and possibly 11, of 17 are binary systems. Of the binary systems, five have full amplitudes for their velocity variations that are greater than 50 km/s. To the extent that they can be applied to globular clusters, these results suggests that (1) observations of 'second-sequence' stars in globular clusters would be an efficient way of finding main-sequence binary systems in globulars, and (2) current instrumentation on large telescopes is sufficient for establishing unambiguously the existence of main-sequence binary systems in nearby globular clusters.

  15. Bayesian analysis of two stellar populations in Galactic globular clusters- III. Analysis of 30 clusters

    NASA Astrophysics Data System (ADS)

    Wagner-Kaiser, R.; Stenning, D. C.; Sarajedini, A.; von Hippel, T.; van Dyk, D. A.; Robinson, E.; Stein, N.; Jefferys, W. H.

    2016-12-01

    We use Cycle 21 Hubble Space Telescope (HST) observations and HST archival ACS Treasury observations of 30 Galactic globular clusters to characterize two distinct stellar populations. A sophisticated Bayesian technique is employed to simultaneously sample the joint posterior distribution of age, distance, and extinction for each cluster, as well as unique helium values for two populations within each cluster and the relative proportion of those populations. We find the helium differences among the two populations in the clusters fall in the range of ˜0.04 to 0.11. Because adequate models varying in carbon, nitrogen, and oxygen are not presently available, we view these spreads as upper limits and present them with statistical rather than observational uncertainties. Evidence supports previous studies suggesting an increase in helium content concurrent with increasing mass of the cluster and we also find that the proportion of the first population of stars increases with mass as well. Our results are examined in the context of proposed globular cluster formation scenarios. Additionally, we leverage our Bayesian technique to shed light on the inconsistencies between the theoretical models and the observed data.

  16. The onset of gravothermal oscillations in globular cluster evolution

    NASA Technical Reports Server (NTRS)

    Breeden, Joseph L.; Cohn, Haldan N.; Hut, Piet

    1994-01-01

    We have carried out an extensive set of Fokker-Planck simulations of the evolution of globular clusters on very long timescales, up to 600 times the initial core collapse time t(sub cc). We consider an idealized equal mass star cluster, with a wide range of values for the total number of stars, 7000 less than N less than 2 x 10(exp 6). Our models include the heating effect of compact binaries formed in three-body encounters, which halts the initial core collapse and drives a core reexpansion. Postcollapse gravothermal oscillations of the cluster core are found to occur for all N approximately greater than or equal to 8000. For 8000 approximately less than or equal to N approximately less than or equal to 11,000, the oscillation has a simple, regular waveform with a single, well-defined period. For N approximately equals 12,000, the oscillations become nonlinear in a process resembling a period doubling. For N approximately greater than or equal to 14,000, the waveform of the oscillations becomes increasingly more irregular with increasing N, resembling chaotic behavior for N approximately greater than or equal to 15,000. During the oscillations, the core radius and core mass vary dramatically: by more than a factor of 10 for N greater than 15,000, by more than a factor of 100 for N greater than 5 x 10(exp 4), and by more than a factor of 1000 for N greater than 5 x 10(exp 5). However, even during the times of maximum expansion, the core contains only a small fraction of the cluster mass. For most N values, the maximum core mass at any time after core collapse is less than 1% of the cluster mass. The exceptions lie in the range 5 x 10(exp 4) approximately less than or equal to N approximately equal to or less than 2 x 10(exp 5), where the maximum post-collapse core mass reaches approximately 2% of the cluster mass. We discuss the observational implications of these predictions.

  17. THE DYNAMICAL EVOLUTION OF STELLAR BLACK HOLES IN GLOBULAR CLUSTERS

    SciTech Connect

    Morscher, Meagan; Pattabiraman, Bharath; Rodriguez, Carl; Rasio, Frederic A.; Umbreit, Stefan

    2015-02-10

    Our current understanding of the stellar initial mass function and massive star evolution suggests that young globular clusters (GCs) may have formed hundreds to thousands of stellar-mass black holes (BHs), the remnants of stars with initial masses from ∼20-100 M {sub ☉}. Birth kicks from supernova explosions may eject some BHs from their birth clusters, but most should be retained. Using a Monte Carlo method we investigate the long-term dynamical evolution of GCs containing large numbers of stellar BHs. We describe numerical results for 42 models, covering a broad range of realistic initial conditions, including up to 1.6 × 10{sup 6} stars. In almost all models we find that significant numbers of BHs (up to ∼10{sup 3}) are retained all the way to the present. This is in contrast to previous theoretical expectations that most BHs should be ejected dynamically within a few gigayears The main reason for this difference is that core collapse driven by BHs (through the Spitzer {sup m}ass segregation instability{sup )} is easily reverted through three-body processes, and involves only a small number of the most massive BHs, while lower-mass BHs remain well-mixed with ordinary stars far from the central cusp. Thus the rapid segregation of stellar BHs does not lead to a long-term physical separation of most BHs into a dynamically decoupled inner core, as often assumed previously. Combined with the recent detections of several BH X-ray binary candidates in Galactic GCs, our results suggest that stellar BHs could still be present in large numbers in many GCs today, and that they may play a significant role in shaping the long-term dynamical evolution and the present-day dynamical structure of many clusters.

  18. Ruprecht 106: The First Single Population Globular Cluster?

    NASA Astrophysics Data System (ADS)

    Villanova, S.; Geisler, D.; Carraro, G.; Moni Bidin, C.; Muñoz, C.

    2013-12-01

    All old Galactic globular clusters (GCs) studied in detail to date host at least two generations of stars, where the second is formed from gas polluted by processed material produced by massive stars of the first. This process can happen if the initial mass of the cluster exceeds a threshold above which ejecta are retained and a second generation is formed. A determination of this mass threshold is mandatory in order to understand how GCs form. We analyzed nine red giant branch stars belonging to the cluster Ruprecht 106. Targets were observed with the UVES@VLT2 spectrograph. Spectra cover a wide range and allowed us to measure abundances for light (O, Na, Mg, Al), α (Si, Ca, Ti), iron-peak (Sc, V, Cr, Mn, Fe, Co, Ni, Cu, Zn), and neutron-capture (Y, Zr, Ba, La, Ce, Pr, Nd, Sm, Eu, Dy, Pb) elements. Based on these abundances, we show that Ruprecht 106 is the first convincing example of a single-population GC (i.e., a true simple stellar population), although the sample is relatively small. This result is supported also by an independent photometric test and by the horizontal branch morphology and the dynamical state. It is old (~12 Gyr) and, at odds with other GCs, has no α-enhancement. The material it formed from was contaminated by both s- and r-process elements. The abundance pattern points toward an extragalactic origin. Its present-day mass (M = 104.83 M ⊙) can be assumed as a strong lower limit for the initial mass threshold below which no second generation is formed. Clearly, its initial mass must have been significantly greater, but we have no current constraints on the amount of mass loss during its evolution.

  19. AAOmega spectroscopy of 29 351 stars in fields centered on ten Galactic globular clusters

    NASA Astrophysics Data System (ADS)

    Lane, R. R.; Kiss, L. L.; Lewis, G. F.; Ibata, R. A.; Siebert, A.; Bedding, T. R.; Székely, P.; Szabó, G. M.

    2011-06-01

    Galactic globular clusters have been pivotal in our understanding of many astrophysical phenomena. Here we publish the extracted stellar parameters from a recent large spectroscopic survey of ten globular clusters. A brief review of the project is also presented. Stellar parameters have been extracted from individual stellar spectra using both a modified version of the RAdial Velocity Experiment (RAVE) pipeline and a pipeline based on the parameter estimation method of RAVE. We publish here all parameters extracted from both pipelines. We calibrate the metallicity and convert this to [Fe/H] for each star and, furthermore, we compare the velocities and velocity dispersions of the Galactic stars in each field to the Besançon Galaxy model. We find that the model does not correspond well with the data, indicating that the model is probably of little use for comparisons with pencil beam survey data such as this. The data described in Tables 1-3 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/530/A31

  20. Detailed Chemical Abundances of Four Stars in the Unusual Globular Cluster Palomar 1

    NASA Astrophysics Data System (ADS)

    Sakari, Charli M.; Venn, Kim A.; Irwin, Mike; Aoki, Wako; Arimoto, Nobuo; Dotter, Aaron

    2011-10-01

    Detailed chemical abundances for 21 elements are presented for four red giants in the anomalous outer halo globular cluster Palomar 1 (R GC = 17.2 kpc, Z = 3.6 kpc) using high-resolution (R = 36, 000) spectra from the High Dispersion Spectrograph on the Subaru Telescope. Pal 1 has long been considered unusual because of its low surface brightness, sparse red giant branch, young age, and its possible association with two extragalactic streams of stars. This paper shows that its chemistry further confirms its unusual nature. The mean metallicity of the four stars, [Fe/H] = -0.60 ± 0.01, is high for a globular cluster so far from the Galactic center, but is low for a typical open cluster. The [α/Fe] ratios, though in agreement with the Galactic stars within the 1σ errors, agree best with the lower values in dwarf galaxies. No signs of the Na/O anticorrelation are detected in Pal 1, though Na appears to be marginally high in all four stars. Pal 1's neutron-capture elements are also unusual: its high [Ba/Y] ratio agrees best with dwarf galaxies, implying an excess of second-peak over first-peak s-process elements, while its [Eu/α] and [Ba/Eu] ratios show that Pal 1's contributions from the r-process must have differed in some way from normal Galactic stars. Therefore, Pal 1 is unusual chemically, as well in its other properties. Pal 1 shares some of its unusual abundance characteristics with the young clusters associated with the Sagittarius dwarf galaxy remnant and the intermediate-age LMC clusters, and could be chemically associated with the Canis Majoris overdensity; however, it does not seem to be similar to the Monoceros/Galactic Anticenter Stellar Stream.

  1. A Spitzer Space Telescope/IRAC Database of Globular Clusters: Calibration of population synthesis models in the mid-IR

    NASA Astrophysics Data System (ADS)

    Goudfrooij, Paul; Chandar, Rupali; Puzia, Thomas

    2004-09-01

    Globular clusters are simple stellar populations which provide fundamental age/metallicity templates for the interpretation of galaxy properties. We are collecting a large, multi-wavelength dataset for a number of Galactic globular clusters and intermediate-age (> 0.5 Gyr), populous clusters in the Large Magellanic Cloud. The dataset will include UV (GALEX), optical (SDSS), and near-IR (2MASS) imaging as well as ground-based spectroscopy from 3800-9000 A. All of the targets have high-quality age and metallicity determinations available. To complete this comprehensive dataset (which will be made available to the community), we propose to obtain high-quality mid-IR IRAC photometry of 24 Galactic and LMC clusters. Our immediate goals are to: (1) use the IRAC measurements of the clusters' integrated light to obtain a unique color-metallicity relation for integrated light measurements in the 2-8 micron region; (2) use the 2MASS and IRAC images to create color-magnitude and color-color diagrams of the bright RGB and AGB stars to quantify the relative contributions of photospheric and circumstellar dust excess emission in the 8-micron passband as a function of metallicity. These data will provide an important empirical baseline for the interpretation of galaxy colors in the mid-IR, as well as a sanity check for synthetic colors produced by population synthesis models.

  2. Photometry of the globular cluster system of the Sagittarius dwarf galaxy

    NASA Astrophysics Data System (ADS)

    Ibata, Rodrigo

    1996-07-01

    We propose to use the WFPC2 to obtain deep V {F555W} and I {F814W} band images of the globular clusters of the Sagittarius dwarf galaxy: M54 {NGC 6715}, Ter 7, Ter 8 and Arp 2. Isochrone fits to these data will yield the accurate ages of M54, Ter 8 and the Sagittarius dwarf galaxy {Sgr}. These age estimates are needed to model the dynamics and evolution of the Sgr system and its interaction with the Milky Way. Sgr is in the final stages of tidal disruption {Velazquez & White 1995}, so its globular clusters will drift away from their parent galaxy and soon disperse into the Galactic halo. Therefore at least some of the globular clusters of giant spiral galaxies like the Milky Way will have been captured from tidally destroyed dwarf galaxies. This statement has fundamental and wide ranging implications for the formation and evolution of globular clusters and spiral galaxies. It is therefore essential to conduct a detailed and accurate comparative study of the stellar populations of the Sgr and Galactic globular clusters, as we propose here. This, in turn, will allow detailed modeling of the chemical and dynamical evolution of Sgr and its globular clusters.

  3. Galactic bulge X-ray burst sources from disrupted globular clusters?

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.; Hertz, P.

    1985-01-01

    The origin of the bright galactic bulge X-ray sources, or GX sources, is unclear despite intensive study for the past 15 years. It is suggested that the fact that many (or most) of the GX sources are X-ray burst sources (GXRBS) and are otherwise apparently identical to the luminous X-ray sources found in globular cluster cores implies that they too may have a globular cluster origin. The possibility that the compact X-ray binaries found in globulars are ejected is constrained by observations of CVs in and out of clusters. The GXRBS are instead hypothesized to have been formed by capture processes in globular clusters which have now largely been disrupted by repeated tidal stripping and shocking in the galactic plane. A statistical analysis of the 12 GXRBS which have precise positions from Einstein and/or optical (or radio) observations indicate that it is probably significant that a bright, of less than about 19, G or K star is found within the error circle (3 arcmin radius) in four cases. These may be surviving giants in a disrupted globular cluster core. Implications for globular cluster evolution and the GXRBS themselves are discussed.

  4. The old globular cluster system of the dIrr galaxy NGC 1427A in the Fornax cluster

    NASA Astrophysics Data System (ADS)

    Georgiev, I. Y.; Hilker, M.; Puzia, T. H.; Chanamé, J.; Mieske, S.; Goudfrooij, P.; Reisenegger, A.; Infante, L.

    2006-06-01

    We present a study of the old globular cluster (GC) population of the dwarf irregular galaxy NGC 1427A using multi-wavelength VLT observations in U,B,V,I, Hα and J bands under excellent observing conditions. We applied color and size selection criteria to select old GC candidates and made use of archival ACS images taken with the Hubble Space Telescope to reject contaminating background sources and blended objects from the GC candidates' list. The Hα observations were used to check for contamination due to compact, highly reddened young star clusters whose colors and sizes could mimic those of old GCs. After accounting for contamination we obtain a total number of 38±8 GC candidates with colors consistent with an old (~10 Gyr) and metal-poor (Z<0.4× Z⊙) population as judged by simple stellar population models. Our contamination analysis indicates that the density distribution of GCs in the outskirts of the Fornax central cD galaxy NGC 1399 may not be spherically symmetric. We derive a present-day specific frequency SN of 1.6 for NGC 1427A, a value significantly larger than what is observed in the Local Group dwarf irregular galaxies and comparable with the values found for the same galaxy types in the Virgo and Fornax clusters. Assuming a universal globular cluster luminosity function turnover magnitude, we derive a distance modulus to NGC 1427A of 31.01±0.21 mag which places it ˜3.2±2.5 (statistic)±1.6 (systematic) Mpc in front of the Fornax central cD galaxy NGC 1399. The implications of this result for the relationship between NGC 1427A and the cluster environment are briefly discussed.

  5. GLOBULAR CLUSTER SYSTEMS IN BRIGHTEST CLUSTER GALAXIES: A NEAR-UNIVERSAL LUMINOSITY FUNCTION?

    SciTech Connect

    Harris, William E.; O'Halloran, Heather; Cockcroft, Robert E-mail: ohallohm@mcmaster.ca; and others

    2014-12-20

    We present the first results from our Hubble Space Telescope brightest cluster galaxy (BCG) survey of seven central supergiant cluster galaxies and their globular cluster (GC) systems. We measure a total of 48,000 GCs in all seven galaxies, representing the largest single GC database. We find that a log-normal shape accurately matches the observed the luminosity function (LF) of the GCs down to the globular cluster luminosity function turnover point, which is near our photometric limit. In addition, the LF has a virtually identical shape in all seven galaxies. Our data underscore the similarity in the formation mechanism of massive star clusters in diverse galactic environments. At the highest luminosities (L ≳ 10{sup 7} L {sub ☉}), we find small numbers of ''superluminous'' objects in five of the galaxies; their luminosity and color ranges are at least partly consistent with those of ultra-compact dwarfs. Last, we find preliminary evidence that in the outer halo (R ≳ 20 kpc), the LF turnover point shows a weak dependence on projected distance, scaling as L {sub 0} ∼ R {sup –0.2}, while the LF dispersion remains nearly constant.

  6. THE ACS VIRGO CLUSTER SURVEY. XVII. THE SPATIAL ALIGNMENT OF GLOBULAR CLUSTER SYSTEMS WITH EARLY-TYPE HOST GALAXIES

    SciTech Connect

    Wang Qiushi; Peng, Eric W.; Blakeslee, John P.; Cote, Patrick; Ferrarese, Laura; Jordan, Andres; Mei, Simona; West, Michael J.

    2013-06-01

    We study the azimuthal distribution of globular clusters (GCs) in early-type galaxies and compare them to their host galaxies using data from the ACS Virgo Cluster Survey. We find that in host galaxies with visible elongation ({epsilon} > 0.2) and intermediate to high luminosities (M{sub z} < -19), the GCs are preferentially aligned along the major axis of the stellar light. The red (metal-rich) GC subpopulations show strong alignment with the major axis of the host galaxy, which supports the notion that these GCs are associated with metal-rich field stars. The metal-rich GCs in lenticular galaxies show signs of being more strongly associated with disks rather than bulges. Surprisingly, we also find that the blue (metal-poor) GCs can also show the same correlation. If the metal-poor GCs are part of the early formation of the halo and built up through mergers, then our results support a picture where halo formation and merging occur anisotropically, and that the present-day major axis is an indicator of the preferred merging axis.

  7. Spectroscopy of chromospheric lines of giants in the globular cluster

    NASA Technical Reports Server (NTRS)

    Dupree, A. K.; Hartmann, Lee; Smith, Graeme H.; Rodgers, A. W.; Roberts, W. H.; Zucker, D. B.

    1994-01-01

    Spectroscopic observations of chromospheric transitions (Mg II, H-alpha, and Ca II K) from two red giants (A31 and A59) in the globular cluster NGC 6572 were made with the Goddard High Resolution Spectrograph on the Hubble Space Telescope and the coude spectrograph of the 1.9 m telescope at the Mount Stromlo Observatory. These measurements give evidence for chromospheric activity and outward motions within the atmospheres. The surface flux of the Mg II emission is comparable to that in disk population giants of similar (B-V) color. The Mg II profiles are asymmetric, which is most likely caused by absorption in an expanding stellar atmosphere and/or by possible interstellar features. Notches are found in the core of the H-alpha line of A59, which are similar to those found in Cepheids. This suggests that shocks are present in the atmosphere of A59 and indicates that hydrodynamic phenomena are influencing the levvel of chromospheric emission and producing upper atmospheric motions which may lead to mass loss.

  8. The X-Ray Globular Cluster Population in NGC 1399

    NASA Technical Reports Server (NTRS)

    Angelini, Lorella; Loewenstein, Michael; Mushotzky, Richard F.; White, Nicholas E. (Technical Monitor)

    2001-01-01

    We report on X-ray sources detected in the Chandra images of the elliptical galaxy NGC 1399 and identified with globular clusters (GCs). The 8'x 8' Chandra image shows that a large fraction of the 2-10 keV X-ray emission is resolved into point sources, with a luminosity threshold of 5 x 10 (exp 37) ergs s-1. These sources are most likely Low Mass X-ray Binaries (LMXBs). More than 70% of the X-ray sources, in a region imaged by Hubble Space Telescope (HST), are located within GCs. Many of these sources have super-Eddington luminosity (for an accreting neutron star) and their average luminosity is higher than the remaining sources. This association suggests that, in giant elliptical galaxies, luminous X-ray binaries preferentially form in GCs. The spectral properties of the GC and non-GC sources are in most cases similar to those of LMXBs in our galaxy. Two of the brightest sources, one of which is in GC, have a much softer spectra as seen in the high state black hole. The "apparent" super-Eddington luminosity in many cases may be due to multiple LMXB systems within individual GC, but with some of the most extreme luminous systems containing massive black holes.

  9. Parameters of radio pulsars in binary systems and globular clusters

    NASA Astrophysics Data System (ADS)

    Loginov, A. A.; Malov, I. F.

    2017-02-01

    The parameters of radio pulsars in binary systems and globular clusters are investigated. It is shown that such pulsars tend to have short periods (of the order of several milliseconds). Themagnetic fields of most of the pulsars considered are weak (surface fields of the order of 108-109 G). This corresponds to the generally accepted view that short-period neutron stars are spun up by angular momentum associated with the stellar wind from a companion. However, the fields at the light cylinders in these objects are two to three orders of magnitude higher than for the main population of single neutron stars. The dependence of the pulse width on the period does not differ from the corresponding dependences for single pulsars, assuming the emission is generated inside the polar cap, at moderate distances from the surface or near the light cylinder. The radio luminosities of pulsars in binary systems do not show the correlation with the rate of loss of rotational energy that is characteristic for single pulsars, probably due to the influence of accreting matter from a companion. Moreover, accretion apparently decreases the power of the emergent radiation, and can explain the observed systematic excess of the radio luminosity of single pulsars compared to pulsars in binary systems. The distributions and dependences presented in the article support generally accepted concepts concerning the processes occurring in binary systems containing neutron stars.

  10. LIMITS ON [O III] 5007 EMISSION FROM NGC 4472'S GLOBULAR CLUSTERS: CONSTRAINTS ON PLANETARY NEBULAE AND ULTRALUMINOUS BLACK HOLE X-RAY BINARIES IN GLOBULAR CLUSTERS

    SciTech Connect

    Peacock, Mark B.; Zepf, Stephen E.; Maccarone, Thomas J.

    2012-06-20

    We have searched for [O III] 5007 emission in high-resolution spectroscopic data from FLAMES/GIRAFFE Very Large Telescope observations of 174 massive globular clusters (GCs) in NGC 4472. No planetary nebulae (PNe) are observed in these clusters, constraining the number of PNe per bolometric luminosity, {alpha} < 0.8 Multiplication-Sign 10{sup -7} PN/L{sub Sun }. This is significantly lower than the rate predicted from stellar evolution, if all stars produce PNe. Comparing our results to populations of PNe in galaxies, we find most galaxies have a higher {alpha} than these GCs (more PNe per bolometric luminosity-though some massive early-type galaxies do have similarly low {alpha}). The low {alpha} required in these GCs suggests that the number of PNe per bolometric luminosity does not increase strongly with decreasing mass or metallicity of the stellar population. We find no evidence for correlations between the presence of known GC PNe and either the presence of low-mass X-ray binaries (LMXBs) or the stellar interaction rates in the GCs. This, and the low {alpha} observed, suggests that the formation of PNe may not be enhanced in tight binary systems. These data do identify one [O III] emission feature, this is the (previously published) broad [O III] emission from the cluster RZ 2109. This emission is thought to originate from the LMXB in this cluster, which is accreting at super-Eddington rates. The absence of any similar [O III] emission from the other clusters favors the hypothesis that this source is a black hole LMXB, rather than a neutron star LMXB with significant geometric beaming of its X-ray emission.

  11. THE OBSERVATIONAL AND THEORETICAL TIDAL RADII OF GLOBULAR CLUSTERS IN M87

    SciTech Connect

    Webb, Jeremy J.; Sills, Alison; Harris, William E.

    2012-02-10

    Globular clusters have linear sizes (tidal radii) which theory tells us are determined by their masses and by the gravitational potential of their host galaxy. To explore the relationship between observed and expected radii, we utilize the globular cluster population of the Virgo giant M87. Unusually deep, high signal-to-noise images of M87 are used to measure the effective and limiting radii of approximately 2000 globular clusters. To compare with these observations, we simulate a globular cluster population that has the same characteristics as the observed M87 cluster population. Placing these simulated clusters in the well-studied tidal field of M87, the orbit of each cluster is solved and the theoretical tidal radius of each cluster is determined. We compare the predicted relationship between cluster size and projected galactocentric distance to observations. We find that for an isotropic distribution of cluster velocities, theoretical tidal radii are approximately equal to observed limiting radii for R{sub gc} < 10 kpc. However, the isotropic simulation predicts a steep increase in cluster size at larger radii, which is not observed in large galaxies beyond the Milky Way. To minimize the discrepancy between theory and observations, we explore the effects of orbital anisotropy on cluster sizes, and suggest a possible orbital anisotropy profile for M87 which yields a better match between theory and observations. Finally, we suggest future studies which will establish a stronger link between theoretical tidal radii and observed radii.

  12. A NEW CENSUS OF THE VARIABLE STAR POPULATION IN THE GLOBULAR CLUSTER NGC 2419

    SciTech Connect

    Di Criscienzo, M.; Greco, C.; Ripepi, V.; Dall' Ora, M.; Marconi, M.; Musella, I.; Clementini, G.; Federici, L.; Di Fabrizio, L.

    2011-03-15

    We present B, V, and I CCD light curves for 101 variable stars belonging to the globular cluster NGC 2419, 60 of which are new discoveries, based on data sets obtained at the Telescopio Nazionale Galileo, the Subaru telescope, and the Hubble Space Telescope. The sample includes 75 RR Lyrae stars (38 RRab, 36 RRc, and one RRd), one Population II Cepheid, 12 SX Phoenicis variables, two {delta} Scuti stars, three binary systems, five long-period variables, and three variables of uncertain classification. The pulsation properties of the RR Lyrae variables are close to those of Oosterhoff type II clusters, consistent with the low metal abundance and the cluster horizontal branch morphology, disfavoring (but not totally ruling out) an extragalactic hypothesis for the origin of NGC 2419. The observed properties of RR Lyrae and SX Phoenicis stars are used to estimate the cluster reddening and distance, using a number of different methods. Our final value is {mu}{sub 0} (NGC 2419) = 19.71 {+-} 0.08 mag (D = 87.5 {+-} 3.3 kpc), with E(B - V) = 0.08 {+-} 0.01 mag, [Fe/H] = -2.1 dex on the Zinn and West metallicity scale, and a value of M{sub V} that sets {mu}{sub 0} (LMC) = 18.52 mag. This value is in good agreement with the most recent literature estimates of the distance to NGC 2419.

  13. PEERING INTO THE CORE OF A GLOBULAR CLUSTER

    NASA Technical Reports Server (NTRS)

    2002-01-01

    Astronomers have used NASA's Hubble Space Telescope to peer into the center of a dense swarm of stars called Omega Centauri. Located some 17,000 light-years from Earth, Omega Centauri is a massive globular star cluster, containing several million stars swirling in locked orbits around a common center of gravity. The stars are packed so densely in the cluster's core that it is difficult for ground-based telescopes to make out individual stars. Hubble's high resolution is able to pick up where ground-based telescopes leave off, capturing distinct points of light from stars at the very center of the cluster. Omega Centauri is so large in our sky that only a small part of it fits within the field of view of the Wide Field and Planetary Camera 2 (WFPC2) on the Hubble Space Telescope. Yet even this tiny patch contains some 50,000 stars, all packed into a region only about 13 light-years wide. For comparison, a similarly sized region centered on the Sun would contain about a half dozen stars. The vast majority of stars in this Hubble image are faint, yellow-white dwarf stars similar to our Sun. The handful of bright yellow-orange stars are red giants that have begun to exhaust their nuclear fuel and have expanded to diameters about a hundred times that of the Sun. A number of faint blue stars are also visible in the image. These are in a brief phase of evolution between the dwarf stage and the red-giant stage, during which the surface temperature is high. The stars in Omega Centauri are all very old, about 12 billion years. Stars with a mass as high as that of our Sun have already completed their evolution and have faded away as white dwarfs, too faint to be seen even in the Hubble image. The stars in the core of Omega Centauri are so densely packed that occasionally one of them will actually collide with another one. Even in the dense center of Omega Centauri, stellar collisions will be infrequent. But the cluster is so old that many thousands of collisions have occurred

  14. THE RICH GLOBULAR CLUSTER SYSTEM OF ABELL 1689 AND THE RADIAL DEPENDENCE OF THE GLOBULAR CLUSTER FORMATION EFFICIENCY

    SciTech Connect

    Alamo-Martínez, K. A.; González-Lópezlira, R. A.; Blakeslee, J. P.; Côté, P.; Ferrarese, L.; Jee, M. J.; Jordán, A.; Meurer, G. R.; Peng, E. W.; West, M. J.

    2013-09-20

    We study the rich globular cluster (GC) system in the center of the massive cluster of galaxies Abell 1689 (z = 0.18), one of the most powerful gravitational lenses known. With 28 Hubble Space Telescope/Advanced Camera for Surveys orbits in the F814W bandpass, we reach a magnitude I{sub 814} = 29 with ∼>90% completeness and sample the brightest ∼5% of the GC system. Assuming the well-known Gaussian form of the GC luminosity function (GCLF), we estimate a total population of N{sup total}{sub GC}= 162,850{sup +75,450}{sub -51,310} GCs within a projected radius of 400 kpc. As many as half of the GCs may comprise an intracluster component. Even with the sizable uncertainties, which mainly result from the uncertain GCLF parameters, this system is by far the largest GC population studied to date. The specific frequency S{sub N} is high, but not uncommon for central galaxies in massive clusters, rising from S{sub N} ≈ 5 near the center to ∼12 at large radii. Passive galaxy fading would increase S{sub N} by ∼20% at z = 0. We construct the radial mass profiles of the GCs, stars, intracluster gas, and lensing-derived total mass, and we compare the mass fractions as a function of radius. The estimated mass in GCs, M{sub GC}{sup total} = 3.9 × 10{sup 10} M{sub ☉}, is comparable to ∼80% of the total stellar mass of the Milky Way. The shape of the GC mass profile appears intermediate between those of the stellar light and total cluster mass. Despite the extreme nature of this system, the ratios of the GC mass to the baryonic and total masses, and thus the GC formation efficiency, are typical of those in other rich clusters when comparing at the same physical radii. The GC formation efficiency is not constant, but varies with radius, in a manner that appears similar for different clusters; we speculate on the reasons for this similarity in profile.

  15. Bayesian Analysis and Characterization of Multiple Populations in Galactic Globular Clusters

    NASA Astrophysics Data System (ADS)

    Wagner-Kaiser, Rachel A.; Stenning, David; Sarajedini, Ata; von Hippel, Ted; van Dyk, David A.; Robinson, Elliot; Stein, Nathan; Jefferys, William H.; BASE-9, HST UVIS Globular Cluster Treasury Program

    2017-01-01

    Globular clusters have long been important tools to unlock the early history of galaxies. Thus, it is crucial we understand the formation and characteristics of the globular clusters (GCs) themselves. Historically, GCs were thought to be simple and largely homogeneous populations, formed via collapse of a single molecular cloud. However, this classical view has been overwhelmingly invalidated by recent work. It is now clear that the vast majority of globular clusters in our Galaxy host two or more chemically distinct populations of stars, with variations in helium and light elements at discrete abundance levels. No coherent story has arisen that is able to fully explain the formation of multiple populations in globular clusters nor the mechanisms that drive stochastic variations from cluster to cluster.We use Cycle 21 Hubble Space Telescope (HST) observations and HST archival ACS Treasury observations of 30 Galactic Globular Clusters to characterize two distinct stellar populations. A sophisticated Bayesian technique is employed to simultaneously sample the joint posterior distribution of age, distance, and extinction for each cluster, as well as unique helium values for two populations within each cluster and the relative proportion of those populations. We find the helium differences among the two populations in the clusters fall in the range of 0.04 to 0.11. Because adequate models varying in CNO are not presently available, we view these spreads as upper limits and present them with statistical rather than observational uncertainties. Evidence supports previous studies suggesting an increase in helium content concurrent with increasing mass of the cluster. We also find that the proportion of the first population of stars increases with mass. Our results are examined in the context of proposed globular cluster formation scenarios.

  16. Globular Clusters Indicate That Ultra-diffuse Galaxies Are Dwarfs

    NASA Astrophysics Data System (ADS)

    Beasley, Michael A.; Trujillo, Ignacio

    2016-10-01

    We present an analysis of archival HST/ACS imaging in the F475W (g 475), F606W (V 606), and F814W (I 814) bands of the globular cluster (GC) system of a large (3.4 kpc effective radius) ultra-diffuse galaxy (DF17) believed to be located in the Coma Cluster of galaxies. We detect 11 GCs down to the 5σ completeness limit of the imaging (I 814 = 27 mag). Correcting for background and our detection limits yields a total population of GCs in this galaxy of 27 ± 5 and a V-band specific frequency S N = 28 ± 5. Based on comparisons to the GC systems of local galaxies, we show that both the absolute number and the colors of the GC system of DF17 are consistent with the GC system of a dark-matter-dominated dwarf galaxy with virial mass ˜9.0 × 1010 M ⊙ and a dark-to-stellar mass ratio M vir/M star ˜ 1000. Based on the stellar mass growth of the Milky Way, we show that DF17 cannot be understood as a failed Milky-Way-like system, but is more similar to quenched Large-Magellanic-Cloud-like systems. We find that the mean color of the GC population, g 475-I 814 = 0.91 ± 0.05 mag, coincides with the peak of the color distribution of intracluster GCs and is also similar to those of the blue GCs in the outer regions of massive galaxies. We suggest that both the intracluster GC population in Coma and the blue peak in the GC populations of massive galaxies may be fed—at least in part—by the disrupted equivalents of systems such as DF17.

  17. The DRAGON simulations: globular cluster evolution with a million stars

    NASA Astrophysics Data System (ADS)

    Wang, Long; Spurzem, Rainer; Aarseth, Sverre; Giersz, Mirek; Askar, Abbas; Berczik, Peter; Naab, Thorsten; Schadow, Riko; Kouwenhoven, M. B. N.

    2016-05-01

    Introducing the DRAGON simulation project, we present direct N-body simulations of four massive globular clusters (GCs) with 106 stars and 5 per cent primordial binaries at a high level of accuracy and realism. The GC evolution is computed with NBODY6++GPU and follows the dynamical and stellar evolution of individual stars and binaries, kicks of neutron stars and black holes (BHs), and the effect of a tidal field. We investigate the evolution of the luminous (stellar) and dark (faint stars and stellar remnants) GC components and create mock observations of the simulations (i.e. photometry, colour-magnitude diagrams, surface brightness and velocity dispersion profiles). By connecting internal processes to observable features, we highlight the formation of a long-lived `dark' nuclear subsystem made of BHs, which results in a two-component structure. The inner core is dominated by the BH subsystem and experiences a core-collapse phase within the first Gyr. It can be detected in the stellar (luminous) line-of-sight velocity dispersion profiles. The outer extended core - commonly observed in the (luminous) surface brightness profiles - shows no collapse features and is continuously expanding. We demonstrate how a King model fit to observed clusters might help identify the presence of post core-collapse BH subsystems. For global observables like core and half-mass radii, the direct simulations agree well with Monte Carlo models. Variations in the initial mass function can result in significantly different GC properties (e.g. density distributions) driven by varying amounts of early mass-loss and the number of forming BHs.

  18. Hunting for Optical Companions to Binary Msps in Globular Clusters

    NASA Astrophysics Data System (ADS)

    Ferraro, Francesco

    2009-07-01

    Here we present a proposal which exploits the re-newed potential of HST after the Service Mission 4 for probing the population of binary Millisecond Pulsars {MSPs} in Globular Clusters. In particular we intend to: {1} extend the search for optical counterparts in Terzan 5, by pushing the performance of the WFC3 IR channel to sample the entire MS extension down to M=0.1 Mo; {2} perform a deep multi-band search of MSP companions with the WFC3, in 3 clusters {namely NGC6440, M28 and M5}, where recent radio observations have found particularly interesting objects; {3} derive an accurate radial velocity {with STIS} of the puzzling optical companion COM6266B recently discovered by our group, to firmly assess its cluster membership.This program is the result of a large collaboration among the three major groups {lead by Freire, Ransom and Possenti} which are performing extensive MSP search in GCs in the radio bands, and our group which has a large experience in performing accurate stellar photometry in crowded environments. This collaboration has produced a number of outstanding discoveries. In fact, three of the 6 optical counterparts to binary MSP companions known to date in GCs have been discovered by our group. The observations here proposed would easily double/triple the existing sample of known MSP companions, allowing the first meaningful approach to the study of the formation, evolution and recycling process of pulsar in GCs. Moreover, since most of binary MSPs in GCs are thought to form via stellar interactions in the high density core regions, the determination of the nature of the companion and the incidence of this collisionally induced population has a significant impact on our knowledge of the cluster dynamics. Even more interesting, the study of the optical companions to NSs in GCs allows one to derive tighter constraints {than those obtainable for NS binaries in the Galactic field} on the system properties. This has, in turn, an intrisic importance for

  19. The normal chemistry of multiple stellar populations in the dense globular cluster NGC 6093 (M 80)

    NASA Astrophysics Data System (ADS)

    Carretta, E.; Bragaglia, A.; Gratton, R. G.; D'Orazi, V.; Lucatello, S.; Sollima, A.; Momany, Y.; Catanzaro, G.; Leone, F.

    2015-06-01

    We present the abundance analysis of 82 red giant branch stars in the dense, metal-poor globular cluster NGC 6093 (M 80), the largest sample of stars analysed in this way for this cluster. From high-resolution UVES spectra of 14 stars and intermediate resolution GIRAFFE spectra for the other stars we derived abundances of O, Na, Mg, Al, Si, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Y, Zr, Ba, La, Ce, Pr, Nd, Sm, Eu. On our UVES metallicity scale the mean metal abundance of M 80 is [Fe/H] = -1.791 ± 0.006 ± 0.076 (±statistical ±systematic error) with σ = 0.023 (14 stars). M 80 shows star-to-star variations in proton-capture elements, and the extension of the Na-O anti-correlation perfectly fit the relations with (i) total cluster mass; (ii) horizontal branch morphology; and (iii) cluster concentration previously found by our group. The chemistry of multiple stellar populations in M 80 does not look extreme. The cluster is also a representative of halo globular clusters concerning the pattern of α-capture and Fe-group elements. However we found that a significant contribution from the s-process is required to account for the distribution of neutron-capture elements. A minority of stars in M 80 seem to exhibit slightly enhanced abundances of s-process species, compatible with those observed in M 22 and NGC 1851, although further confirmation from larger samples is required. Based on observations collected at ESO telescopes under programme 083.D-0208.Full Tables 2, 3, 5-9 are only available at the CDS via anonymous ftp to http://cdsarc.u-strasbg.fr (ftp://130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/578/A116Appendix A is available in electronic form at http://www.aanda.org

  20. The Impact of Enhanced He and CNONa Abundances on Globular Cluster Relative Age-Dating Methods

    NASA Astrophysics Data System (ADS)

    Marín-Franch, Antonio; Cassisi, Santi; Aparicio, Antonio; Pietrinferni, Adriano

    2010-05-01

    The impact that unrecognized differences in the chemical patterns of Galactic globular clusters (GGCs) have on their relative age determinations is studied. The two most widely used relative age-dating methods, horizontal and vertical, together with the more recent relative MS-fitting method, were carefully analyzed on a purely theoretical basis. The BaSTI library was adopted to perform the present analysis. We find that relative ages derived using the horizontal and vertical methods are largely dependent on the initial He content and heavy element distribution. Unrecognized cluster-to-cluster chemical abundance differences can lead to an error in the derived relative ages as large as ~0.5 (or ~6 Gyr if an age of 12.8 Gyr is adopted for normalization) and even larger for some extreme cases. It is shown that the relative MS-fitting method is by far the age-dating technique for which undetected cluster-to-cluster differences in the He abundance have less impact. Present results are used in order to pose constraints on the maximum possible spread in the He and CNONa elements abundances on the basis of the estimates—taken from the literature—of the GGCs relative age dispersion obtained with the various relative age-dating techniques. Finally, it is shown that the age-metallicity relation found for young GGCs by the GC Treasury program is a real age sequence and cannot be produced by variations in the He and/or heavy element distribution.

  1. Bayesian Analysis of Two Stellar Populations in Galactic Globular Clusters. II. NGC 5024, NGC 5272, and NGC 6352

    NASA Astrophysics Data System (ADS)

    Wagner-Kaiser, R.; Stenning, D. C.; Robinson, E.; von Hippel, T.; Sarajedini, A.; van Dyk, D. A.; Stein, N.; Jefferys, W. H.

    2016-07-01

    We use Cycle 21 Hubble Space Telescope (HST) observations and HST archival Advanced Camera for Surveys Treasury observations of Galactic Globular Clusters to find and characterize two stellar populations in NGC 5024 (M53), NGC 5272 (M3), and NGC 6352. For these three clusters, both single and double-population analyses are used to determine a best fit isochrone(s). We employ a sophisticated Bayesian analysis technique to simultaneously fit the cluster parameters (age, distance, absorption, and metallicity) that characterize each cluster. For the two-population analysis, unique population level helium values are also fit to each distinct population of the cluster and the relative proportions of the populations are determined. We find differences in helium ranging from ˜0.05 to 0.11 for these three clusters. Model grids with solar α-element abundances ([α/Fe] = 0.0) and enhanced α-elements ([α/Fe] = 0.4) are adopted.

  2. Multiple Populations in M31 Globular Clusters: Clues from Infrared High Resolution Integrated Light Spectroscopy

    NASA Astrophysics Data System (ADS)

    Sakari, Charli; APOGEE Team

    2017-01-01

    Abundance variations are a common feature of Milky Way globular clusters. The globular clusters in M31 are too distant for detailed abundance studies of their individual stars; however, cluster abundances can be determined through high resolution, integrated light (IL) spectroscopy. In this talk, I discuss how IL abundances can be interpreted in the context of multiple populations. In particular, I will present new infrared abudances of 25 M31 globular clusters, derived from IL spectra from the Apache Point Observatory Galactic Evolution Experiment (APOGEE). These H band spectra allow determinations of C, N, and O from molecular features, and Fe, Na, Mg, Al, Si, Ca, Ti, and K from atomic features. The integrated abundance ratios are then investigated with cluster [Fe/H] and mass.

  3. Evolution of X-ray Binary Populations of Globular Clusters: A Boltzmann study

    NASA Astrophysics Data System (ADS)

    Ghosh, Pranab; Banerjee, S.

    2008-03-01

    We present a Boltzmann scheme for studying evolution of compact-binary populations of globular clusters, including dynamical formation and destruction processes, and binary hardening processes. For those processes which are stochastic (e.g., tidal formation, collisional destruction, and collisional hardening), we study the continuous limit first. We then introduce our stochastic model, showing that the continuous limit is an excellent representation of the average of many "realizations" of stochastic processes. We explore the scaling of the number of X-ray binaries in a globular cluster with two essential cluster parameters measuring star-star and star-binary encounter rates, which we call Verbunt parameters. We show that our computed scalings are in good agreement with CHANDRA data on Galactic globular cluster X-ray binaries. We discuss ways of extending our scheme, and of handling evolution of the cluster background.

  4. Globular cluster formation with multiple stellar populations from hierarchical star cluster complexes

    NASA Astrophysics Data System (ADS)

    Bekki, Kenji

    2017-01-01

    Most old globular clusters (GCs) in the Galaxy are observed to have internal chemical abundance spreads in light elements. We discuss a new GC formation scenario based on hierarchical star formation within fractal molecular clouds. In the new scenario, a cluster of bound and unbound star clusters (`star cluster complex', SCC) that have a power-law cluster mass function with a slope (β) of 2 is first formed from a massive gas clump developed in a dwarf galaxy. Such cluster complexes and β = 2 are observed and expected from hierarchical star formation. The most massive star cluster (`main cluster'), which is the progenitor of a GC, can accrete gas ejected from asymptotic giant branch (AGB) stars initially in the cluster and other low-mass clusters before the clusters are tidally stripped or destroyed to become field stars in the dwarf. The SCC is initially embedded in a giant gas hole created by numerous supernovae of the SCC so that cold gas outside the hole can be accreted onto the main cluster later. New stars formed from the accreted gas have chemical abundances that are different from those of the original SCC. Using hydrodynamical simulations of GC formation based on this scenario, we show that the main cluster with the initial mass as large as [2 - 5] × 105M⊙ can accrete more than 105M⊙ gas from AGB stars of the SCC. We suggest that merging of hierarchical star cluster complexes can play key roles in stellar halo formation around GCs and self-enrichment processes in the early phase of GC formation.

  5. The iron dispersion of the globular cluster M2, revised.

    PubMed

    Lardo, C; Mucciarelli, A; Bastian, N

    2016-03-21

    M2 has been claimed to possess three distinct stellar components that are enhanced in iron relative to each other. We use equivalent width measurements from 14 red giant branch stars from which Yong et al. detect a ∼0.8 dex wide, trimodal iron distribution to redetermine the metallicity of the cluster. In contrast to Yong et al., which derive atmospheric parameters following only the classical spectroscopic approach, we perform the chemical analysis using three different methods to constrain effective temperatures and surface gravities. When atmospheric parameters are derived spectroscopically, we measure a trimodal metallicity distribution, that well resembles that by Yong et al. We find that the metallicity distribution from Fe ii lines strongly differs from the distribution obtained from Fe i features when photometric gravities are adopted. The Fe i distribution mimics the metallicity distribution obtained using spectroscopic parameters, while the Fe ii shows the presence of only two stellar groups with metallicity [Fe/H] ≃ -1.5 and -1.1 dex, which are internally homogeneous in iron. This finding, when coupled with the high-resolution photometric evidence, demonstrates that M2 is composed by a dominant population (∼99 per cent) homogeneous in iron and a minority component (∼1 per cent) enriched in iron with respect to the main cluster population.

  6. EXPLORING ANTICORRELATIONS AND LIGHT ELEMENT VARIATIONS IN NORTHERN GLOBULAR CLUSTERS OBSERVED BY THE APOGEE SURVEY

    SciTech Connect

    Mészáros, Szabolcs; Martell, Sarah L.; Shetrone, Matthew; Lucatello, Sara; Troup, Nicholas W.; Pérez, Ana E. García; Majewski, Steven R.; Bovy, Jo; Cunha, Katia; García-Hernández, Domingo A.; Prieto, Carlos Allende; Overbeek, Jamie C.; Beers, Timothy C.; Frinchaboy, Peter M.; Hearty, Fred R.; Schneider, Donald P.; Holtzman, Jon; Nidever, David L.; Schiavon, Ricardo P.; and others

    2015-05-15

    We investigate the light-element behavior of red giant stars in northern globular clusters (GCs) observed by the SDSS-III Apache Point Observatory Galactic Evolution Experiment. We derive abundances of 9 elements (Fe, C, N, O, Mg, Al, Si, Ca, and Ti) for 428 red giant stars in 10 GCs. The intrinsic abundance range relative to measurement errors is examined, and the well-known C–N and Mg–Al anticorrelations are explored using an extreme-deconvolution code for the first time in a consistent way. We find that Mg and Al drive the population membership in most clusters, except in M107 and M71, the two most metal-rich clusters in our study, where the grouping is most sensitive to N. We also find a diversity in the abundance distributions, with some clusters exhibiting clear abundance bimodalities (for example M3 and M53) while others show extended distributions. The spread of Al abundances increases significantly as cluster average metallicity decreases as previously found by other works, which we take as evidence that low metallicity, intermediate mass AGB polluters were more common in the more metal-poor clusters. The statistically significant correlation of [Al/Fe] with [Si/Fe] in M15 suggests that {sup 28}Si leakage has occurred in this cluster. We also present C, N, and O abundances for stars cooler than 4500 K and examine the behavior of A(C+N+O) in each cluster as a function of temperature and [Al/Fe]. The scatter of A(C+N+O) is close to its estimated uncertainty in all clusters and independent of stellar temperature. A(C+N+O) exhibits small correlations and anticorrelations with [Al/Fe] in M3 and M13, but we cannot be certain about these relations given the size of our abundance uncertainties. Star-to-star variations of α-element (Si, Ca, Ti) abundances are comparable to our estimated errors in all clusters.

  7. ON THE BIRTH MASSES OF THE ANCIENT GLOBULAR CLUSTERS

    SciTech Connect

    Conroy, Charlie

    2012-10-10

    All globular clusters (GCs) studied to date show evidence for internal (star-to-star) variation in their light-element abundances (including Li, C, N, O, F, Na, Mg, Al, and probably He). These variations have been interpreted as evidence for multiple star formation episodes within GCs, with secondary episodes fueled, at least in part, by the ejecta of asymptotic giant branch (AGB) stars from a first generation of stars. A major puzzle emerging from this otherwise plausible scenario is that the fraction of stars associated with the second episode of star formation is observed to be much larger than expected for a standard initial mass function. The present work investigates this tension by modeling the observed anti-correlation between [Na/Fe] and [O/Fe] for 20 Galactic GCs. If the abundance pattern of the retained AGB ejecta does not depend on GC mass at fixed [Fe/H], then a strong correlation is found between the fraction of current GC stellar mass composed of pure AGB ejecta, f{sub p} , and GC mass. This fraction varies from 0.20 at low masses (10{sup 4.5} M{sub Sun }) to 0.45 at high masses (10{sup 6.5} M{sub Sun }). The fraction of mass associated with pure AGB ejecta is directly related to the total mass of the cluster at birth; the ratio between the initial and present mass in stars can therefore be derived. Assuming a star formation efficiency of 50%, the observed Na-O anti-correlations imply that GCs were at least 10-20 times more massive at birth, a conclusion that is in qualitative agreement with previous work. These factors are lower limits because any mass-loss mechanism that removes first- and second-generation stars equally will leave f{sub p} unchanged. The mass dependence of f{sub p} probably arises because lower mass GCs are unable to retain all of the AGB ejecta from the first stellar generation. Recent observations of elemental abundances in intermediate-age Large Magellanic Cloud clusters are re-interpreted and shown to be consistent with this

  8. Competition of supermassive black holes and galactic spheroids in the destruction of globular clusters

    NASA Technical Reports Server (NTRS)

    Charlton, Jane C.; Laguna, Pablo

    1995-01-01

    The globular clusters that we observe in galaxies may be only a fraction of the initial population. Among the evolutionary influences on the population is the destruction of globular clusters by tidal forces as the cluster moves through the field of influence of a disk, a bulge, and/or a putative nuclear component (black hole). We have conducted a series of N-body simulations of globular clusters on bound and marginally bound orbits through poetentials that include black hole and speroidal components. The degree of concentration of the spheroidal component can have a considerable impact on the extent to which a globular cluster is disrupted. If half the mass of a 10(exp 10) solar mass spheroid is concentrated within 800 pc, then only black holes with masses greater than 10(exp 9) solar mass can have a significant tidal influence over that already exerted by the bulge. However, if the matter in the spheroidal component is not so strongly concentrated toward the center of the galaxy, a more modest central black hole (down to 10(exp 8) solar mass) could have a dominant influence on the globular cluster distribution, particularly if many of the clusters were initially on highly radial orbits. Our simulations show that the stars that are stripped from a globular cluster follow orbits with roughly the same eccentricity as the initial cluster orbit, spreading out along the orbit like a 'string of pearls.' Since only clusters on close to radial orbits will suffer substantial disruption, the population of stripped stars will be on orbits of high eccentricity.

  9. NLTE Effects in Globular Cluster Integrated Light Spectra and Photometric Colors

    NASA Astrophysics Data System (ADS)

    Young, Mitchell; Short, C. Ian

    2017-01-01

    Our overall goal is to investigate the effect that modelling the atmospheres and spectra of Galactic globular cluster (GGCs) members in non-local thermodynamic equilibrium (NLTE) has on the integrated light (IL) spectrum, and the derivation of GGC ages and metallicities ([Fe/H] values) from IL photometric color and spectrum fitting. We create synthetic GGC populations and associated colour-magnitude diagrams (CMDs) using the Kroupa initial mass function (Kroupa, P., 2001, MNRAS, 322, 231-246) and the Teramo isochrones (Pietrinferni, A. et al, 2004, ApJ, 612, 168-190) with ages ranging from 9 to 15 Gyr, and [Fe/H] = -1.49 to -0.66 with α = +0.4. We investigate the dependence of predicted LTE and NLTE colors on the method and resolution of CMD discretization, and on the definition of representative stellar parameters in a discretized CMD.

  10. STAR-TO-STAR IRON ABUNDANCE VARIATIONS IN RED GIANT BRANCH STARS IN THE GALACTIC GLOBULAR CLUSTER NGC 3201

    SciTech Connect

    Simmerer, Jennifer; Ivans, Inese I.; Filler, Dan; Francois, Patrick; Charbonnel, Corinne; Monier, Richard; James, Gaeel E-mail: iii@physics.utah.edu E-mail: patrick.francois@obspm.fr E-mail: richard.monier@unice.fr

    2013-02-10

    We present the metallicity as traced by the abundance of iron in the retrograde globular cluster NGC 3201, measured from high-resolution, high signal-to-noise spectra of 24 red giant branch stars. A spectroscopic analysis reveals a spread in [Fe/H] in the cluster stars at least as large as 0.4 dex. Star-to-star metallicity variations are supported both through photometry and through a detailed examination of spectra. We find no correlation between iron abundance and distance from the cluster core, as might be inferred from recent photometric studies. NGC 3201 is the lowest mass halo cluster to date to contain stars with significantly different [Fe/H] values.

  11. Two stellar-mass black holes in the globular cluster M22.

    PubMed

    Strader, Jay; Chomiuk, Laura; Maccarone, Thomas J; Miller-Jones, James C A; Seth, Anil C

    2012-10-04

    Hundreds of stellar-mass black holes probably form in a typical globular star cluster, with all but one predicted to be ejected through dynamical interactions. Some observational support for this idea is provided by the lack of X-ray-emitting binary stars comprising one black hole and one other star ('black-hole/X-ray binaries') in Milky Way globular clusters, even though many neutron-star/X-ray binaries are known. Although a few black holes have been seen in globular clusters around other galaxies, the masses of these cannot be determined, and some may be intermediate-mass black holes that form through exotic mechanisms. Here we report the presence of two flat-spectrum radio sources in the Milky Way globular cluster M22, and we argue that these objects are black holes of stellar mass (each ∼10-20 times more massive than the Sun) that are accreting matter. We find a high ratio of radio-to-X-ray flux for these black holes, consistent with the larger predicted masses of black holes in globular clusters compared to those outside. The identification of two black holes in one cluster shows that ejection of black holes is not as efficient as predicted by most models, and we argue that M22 may contain a total population of ∼5-100 black holes. The large core radius of M22 could arise from heating produced by the black holes.

  12. Identification of Hard X-ray Sources in Galactic Globular Clusters: Simbol-X Simulations

    NASA Astrophysics Data System (ADS)

    Servillat, M.

    2009-05-01

    Globular clusters harbour an excess of X-ray sources compared to the number of X-ray sources in the Galactic plane. It has been proposed that many of these X-ray sources are cataclysmic variables that have an intermediate magnetic field, i.e. intermediate polars, which remains to be confirmed and understood. We present here several methods to identify intermediate polars in globular clusters from multiwavelength analysis. First, we report on XMM-Newton, Chandra and HST observations of the very dense Galactic globular cluster NGC 2808. By comparing UV and X-ray properties of the cataclysmic variable candidates, the fraction of intermediate polars in this cluster can be estimated. We also present the optical spectra of two cataclysmic variables in the globular cluster M 22. The HeII (4868 Å) emission line in these spectra could be related to the presence of a magnetic field in these objects. Simulations of Simbol-X observations indicate that the angular resolution is sufficient to study X-ray sources in the core of close, less dense globular clusters, such as M 22. The sensitivity of Simbol-X in an extended energy band up to 80 keV will allow us to discriminate between hard X-ray sources (such as magnetic cataclysmic variables) and soft X-ray sources (such as chromospherically active binaries).

  13. Abundance analysis of the outer halo globular cluster Palomar 14

    NASA Astrophysics Data System (ADS)

    Çalışkan, Ş.; Christlieb, N.; Grebel, E. K.

    2012-01-01

    We determine the elemental abundances of nine red giant stars belonging to Palomar 14 (Pal 14). Pal 14 is an outer halo globular cluster (GC) at a distance of ~70 kpc. Our abundance analysis is based on high-resolution spectra and one-dimensional stellar model atmospheres. We derived the abundances for the iron peak elements Sc, V, Cr, Mn, Co, Ni, the α-elements O, Mg, Si, Ca, Ti, the light odd element Na, and the neutron-capture elements Y, Zr, Ba, La, Ce, Nd, Eu, Dy, and Cu. Our data do not permit us to investigate light element (i.e., O to Mg) abundance variations. The neutron-capture elements show an r-process signature. We compare our measurements with the abundance ratios of inner and other outer halo GCs, halo field stars, GCs of recognized extragalactic origin, and stars in dwarf spheroidal galaxies (dSphs). The abundance pattern of Pal 14 is almost identical to those of Pal 3 and Pal 4, the next distant members of the outer halo GC population after Pal 14. The abundance pattern of Pal 14 is also similar to those of the inner halo GCs, halo field stars, and GCs of recognized extragalactic origin, but differs from what is customarily found in dSphs field stars. The abundance properties of Pal 14, as well as those of the other outer halo GCs, are thus compatible with an accretion origin from dSphs. Whether or not GC accretion played a role, it seems that the formation conditions of outer halo GCs and GCs in dSphs were similar. Based on observations collected at the European Southern Observatory, Chile (Program IDs 077.B-0769).Tables A.1 and A.2 are only available at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsarc.u-strasbg.fr/viz-bin/qcat?J/A+A/537/A83

  14. Far-ultraviolet photometry of the globular cluster omega Cen

    NASA Technical Reports Server (NTRS)

    Whitney, Jonathan H.; O'Connell, Robert W.; Rood, Robert T.; Dorman, Ben; Landsman, Wayne B.; Cheng, K.-P.; Bohlin, Ralph C.; Hintzen, Paul M. N.; Roberts, Morton S.; Smith, Andrew M.

    1994-01-01

    We present far-ultraviolet images of the globular cluster omega Centauri obtained with the Ultraviolet Imaging Telescope (UIT) during the 1990 December Astro-1 mission. A total of 1957 sources are detected at 1620 A to a limiting ultraviolet (UV) magnitude of 16.4 in the central 24 min diameter region of the field and a limit of 15.6 over the remainder of the 40 min diameter field. Over 1400 of these sources are matched with stars on a Stroemgren u band charge coupled devices (CCD) frame obtained with the Cerro Tololo Inter-American Observatory (CTIO) 0.9 m telescope to produce a (far-UV, u) color-magnitude diagram (CMD). Completeness of the sample and error estimates are determined by photometry of artificial stars added to the images. The horizontal branch (HB) of the CMD is heavily populated hotter than 9000 K. A large number of 'extreme HB' stars are found hotter than a conspicuous break in the HB at T(sub e) approximately 16000 K. There is also a significant population of stars above the HB, the brightest of which is 4 mag brighter than the HB. Most of the hotter of these appear to be 'AGB-manque' or 'Post-Early Asymptotic Giant Branch' stars. We compare the observations to recent theoretical evolutionary tracks for the zero-age HB and subsequent phases. The tracks match the data well, with the exception of the hotter HB stars, many of which fall below the zero-age horizontal branch. It is unclear as yet whether these are a special population or an artifact of errors in the models or photometry. We identify 33 stars with T(sub e) greater than or approximately = 50000 K, which are hotter than zero-age HB stars with envelope masses of 0.003 solar mass.

  15. Photometric and kinematic studies of extragalactic globular cluster systems

    NASA Astrophysics Data System (ADS)

    Dowell, Jessica

    Globular clusters (GCs) are old, luminous, compact collections of stars found in galaxy halos that formed during the early stages of galaxy formation. Because of this, GCs serve as excellent tracers of the formation, structure, and merger history of their host galaxies. My dissertation will examine both the photometric and kinematic properties of GC systems and their relationship to their host galaxies. In the first section, I will present the analysis of the GC systems of two spiral galaxies, NGC 891 and NGC 1055. I will discuss the photometric methods used to detect GCs using wide-field BVR imaging and to quantify the global properties of the system such as the total number of GCs and their radial distribution. My results for these two GC systems were compared to those of other galaxies. I will also present the results of spectroscopic follow-up for two giant galaxies: the S0 galaxy NGC 4594 (M104), and the elliptical galaxy NGC 3379 (M105). I measured the radial velocities of GCs in these two galaxies, and combined them with published results to determine the mass distribution and mass-to-light (M/L) ratio profile for each galaxy out to large effective radius (7-9 Re). For both galaxies, I found that the M/L profiles increase with radius and do not flatten, which suggests that the dark matter halos in these galaxies extend to the edge of my data. I also looked for evidence of rotation in the GC systems, and found that neither system exhibits significant rotation around the host galaxy. I examined the velocity dispersion profile of each GC system and found kinematic differences between the red and blue GC subpopulations. Finally, I compared my results to mass estimates for these galaxies from other kinematic tracers and considered them in the context of galaxy formation models.

  16. THE VARIABLE STAR POPULATION OF THE GLOBULAR CLUSTER B514 IN THE ANDROMEDA GALAXY

    SciTech Connect

    Clementini, Gisella; Contreras, Rodrigo; Federici, Luciana; Cacciari, Carla; Merighi, Roberto; Fusi Pecci, Flavio; Smith, Horace A.; Catelan, Marcio; Marconi, Marcella; Kinemuchi, Karen; Pritzl, Barton J. E-mail: kuehncha@msu.ed E-mail: beers@pa.msu.ed E-mail: marcella@na.astro.i E-mail: kinemuchi@astro.ufl.ed

    2009-10-20

    A rich harvest of RR Lyrae stars has been identified for the first time in B514, a metal-poor ([Fe/H] approx- 1.95 +- 0.10 dex) globular cluster (GC) of the Andromeda galaxy (M31), based on Hubble Space Telescope Wide Field Planetary Camera 2 and Advanced Camera for Surveys time-series observations. We have detected and derived periods for 89 RR Lyrae stars (82 fundamental-mode, RRab, and 7 first-overtone, RRc, pulsators, respectively) among 161 candidate variables identified in the cluster. The average period of the RR Lyrae variables ((Pab) = 0.58 days and (Pc) = 0.35 days, for RRab and RRc pulsators, respectively) and the position in the period-amplitude diagram both suggest that B514 is likely an Oosterhoff type I cluster. This appears to be in disagreement with the general behavior of the metal-poor GCs in the Milky Way, which show instead Oosterhoff type II pulsation properties. The average apparent magnitude of the RR Lyrae stars sets the mean level of the cluster horizontal branch at (V(RR)) = 25.18 +- 0.02 (sigma = 0.16 mag, on 81 stars). By adopting a reddening E(B - V) = 0.07 +- 0.02 mag, the above metallicity and M {sub V} = 0.44 +- 0.05 mag for the RR Lyrae variables of this metallicity, we derive a distance modulus of mu{sub 0} = 24.52 +- 0.08 mag, corresponding to a distance of about 800 +- 30 kpc, based on a value of M {sub V} that sets mu{sub 0}(LMC)=18.52 mag.

  17. The Variable Star Population of the Globular Cluster B514 in the Andromeda Galaxy

    NASA Astrophysics Data System (ADS)

    Clementini, Gisella; Contreras, Rodrigo; Federici, Luciana; Cacciari, Carla; Merighi, Roberto; Smith, Horace A.; Catelan, Márcio; Fusi Pecci, Flavio; Marconi, Marcella; Kinemuchi, Karen; Pritzl, Barton J.

    2009-10-01

    A rich harvest of RR Lyrae stars has been identified for the first time in B514, a metal-poor ([Fe/H] ~- 1.95 ± 0.10 dex) globular cluster (GC) of the Andromeda galaxy (M31), based on Hubble Space Telescope Wide Field Planetary Camera 2 and Advanced Camera for Surveys time-series observations. We have detected and derived periods for 89 RR Lyrae stars (82 fundamental-mode, RRab, and 7 first-overtone, RRc, pulsators, respectively) among 161 candidate variables identified in the cluster. The average period of the RR Lyrae variables (langPabrang = 0.58 days and langPcrang = 0.35 days, for RRab and RRc pulsators, respectively) and the position in the period-amplitude diagram both suggest that B514 is likely an Oosterhoff type I cluster. This appears to be in disagreement with the general behavior of the metal-poor GCs in the Milky Way, which show instead Oosterhoff type II pulsation properties. The average apparent magnitude of the RR Lyrae stars sets the mean level of the cluster horizontal branch at langV(RR)rang = 25.18 ± 0.02 (σ = 0.16 mag, on 81 stars). By adopting a reddening E(B - V) = 0.07 ± 0.02 mag, the above metallicity and M V = 0.44 ± 0.05 mag for the RR Lyrae variables of this metallicity, we derive a distance modulus of μ0 = 24.52 ± 0.08 mag, corresponding to a distance of about 800 ± 30 kpc, based on a value of M V that sets μ0(LMC)=18.52 mag. Based on data collected with the Wide Field Planetary Camera 2 onboard the Hubble Space Telescope (HST) and Advanced Camera for Surveys HST archive data.

  18. RUBIDIUM ABUNDANCES IN THE GLOBULAR CLUSTERS NGC 6752, NGC 1904, AND NGC 104 (47 Tuc)

    SciTech Connect

    D'Orazi, Valentina; Lugaro, Maria; Campbell, Simon W.; Bragaglia, Angela; Carretta, Eugenio; Gratton, Raffaele G.; Lucatello, Sara; D'Antona, Francesca

    2013-10-10

    Large star-to-star variations of the abundances of proton-capture elements, such as Na and O, in globular clusters (GCs) are interpreted as the effect of internal pollution resulting from the presence of multiple stellar populations. To better constrain this scenario, we investigate the abundance distribution of the heavy element rubidium (Rb) in NGC 6752, NGC 1904, and NGC 104 (47 Tuc). Combining the results from our sample with those in the literature, we found that Rb exhibits no star-to-star variations, regardless of cluster metallicity, with the possible intriguing, although very uncertain, exception of the metal-rich bulge cluster NGC 6388. If no star-to-star variations can be confirmed for all GCs, this finding implies that the stellar source of the proton-capture element variations must not have produced significant amounts of Rb. This element is observed to be enhanced at extremely high levels in intermediate-mass asymptotic giant branch (IM-AGB) stars in the Magellanic Clouds (i.e., at a metallicity similar to 47 Tuc and NGC 6388). This fact may present a challenge to this popular candidate polluter, unless the mass range of the observed IM-AGB stars does not participate in the formation of the second-generation stars in GCs. A number of possible solutions are available to resolve this conundrum, including the fact that the Magellanic Cloud observations are very uncertain and may need to be revised. The fast rotating massive stars scenario would not face this potential problem as the slow mechanical winds of these stars during their main-sequence phase do not carry any Rb enhancements; however, these candidates face even bigger issues such as the production of Li and the close overlap with core-collapse supernova timescales. Observations of Sr, Rb, and Zr in metal-rich clusters such as NGC 6388 and NGC 6441 are sorely needed to clarify the situation.

  19. Abundances of lithium, oxygen, and sodium in the turn-off stars of Galactic globular cluster 47 Tucanae

    NASA Astrophysics Data System (ADS)

    Dobrovolskas, V.; Kučinskas, A.; Bonifacio, P.; Korotin, S. A.; Steffen, M.; Sbordone, L.; Caffau, E.; Ludwig, H.-G.; Royer, F.; Prakapavičius, D.

    2014-05-01

    Context. The cluster 47 Tuc is among the most metal-rich Galactic globular clusters and its metallicity is similar to that of metal-poor disc stars and open clusters. Like other globular clusters, it displays variations in the abundances of elements lighter than Si, which is generally interpreted as evidence of the presence of multiple stellar populations. Aims: We aim to determine abundances of Li, O, and Na in a sample of of 110 turn-off (TO) stars, in order to study the evolution of light elements in this cluster and to put our results in perspective with observations of other globular and open clusters, as well as with field stars. Methods: We use medium resolution spectra obtained with the GIRAFFE spectrograph at the ESO 8.2 m Kueyen VLT telescope and use state of the art 1D model atmospheres and NLTE line transfer to determine the abundances. We also employ CO5BOLD hydrodynamical simulations to assess the impact of stellar granulation on the line formation and inferred abundances. Results: Our results confirm the existence of Na-O abundance anti-correlation and hint towards a possible Li-O anti-correlation in the TO stars of 47 Tuc. At the same time, we find no convincing evidence supporting the existence of Li-Na correlation. The obtained 3D NLTE mean lithium abundance in a sample of 94 TO stars where Li lines were detected reliably, ⟨A(Li)3D NLTE⟩ = 1.78 ± 0.18 dex, appears to be significantly lower than what is observed in other globular clusters. At the same time, star-to-star spread in Li abundance is also larger than seen in other clusters. The highest Li abundance observed in 47 Tuc is about 0.1 dex lower than the lowest Li abundance observed among the un-depleted stars of the metal-poor open cluster NGC 2243. Conclusions: The correlations/anti-correlations among light element abundances confirm that chemical enrichment history of 47 Tuc was similar to that of other globular clusters, despite the higher metallicity of 47 Tuc. The lithium

  20. THE GLOBULAR CLUSTER NGC 6402 (M14). I. A NEW BV COLOR-MAGNITUDE DIAGRAM

    SciTech Connect

    Contreras Pena, C.; Catelan, M.; Grundahl, F.; Stephens, A. W.; Smith, H. A. E-mail: c.contreras@herts.ac.uk

    2013-09-15

    We present BV photometry of the Galactic globular cluster NGC 6402 (M14), based on 65 V frames and 67 B frames, reaching two magnitudes below the turnoff level. This represents, to the best of our knowledge, the deepest color-magnitude diagram (CMD) of NGC 6402 available in the literature. Statistical decontamination of field stars as well as differential reddening corrections are performed in order to derive a precise ridgeline and hence physical parameters of the cluster. We discuss previous attempts at deriving a reddening value for the cluster, and argue in favor of a value E(B - V) = 0.57 {+-} 0.02, which is significantly higher than indicated by either the Burstein and Heiles or Schlegel et al. (corrected according to Bonifacio et al.) interstellar dust maps. Differential reddening across the face of the cluster, which we find to be present at the level of {Delta}E(B - V) Almost-Equal-To 0.17 mag, is taken into account in our analysis. We measure several metallicity indicators based on the position of the red giant branch (RGB) in the cluster CMD. These give a metallicity of [Fe/H] = -1.38 {+-} 0.07 on the Zinn and West scale and [Fe/H] = -1.28 {+-} 0.08 on the new Carretta et al. (UVES) scale. We also provide measurements of other important photometric parameters for this cluster, including the position of the RGB luminosity function ''bump'' and the horizontal branch morphology. We compare the NGC 6402 ridgeline with that of NGC 5904 (M5) derived by Sandquist et al., and find evidence that NGC 6402 and M5 have approximately the same age to within the uncertainties, although the possibility that M14 may be slightly older cannot be ruled out.

  1. Inverting the dynamical evolution of globular clusters: clues to their origin

    NASA Astrophysics Data System (ADS)

    Gieles, Mark; Alexander, Poul

    2017-03-01

    Scaling relations for globular clusters (GC) differ from the scaling relations for pressure supported (elliptical) galaxies. In this contribution we discuss the relative importance of nature and nurture in the establishment of the scaling between cluster density (or radius), mass and Galactocentric distance for the Milky Way GCs. We show that energy diffusion by stellar encounters (i.e. two-body relaxation) is the dominant mechanism in shaping the bivariate dependence of density on mass and Galactocentric distance for GCs with masses <~ 106 M ⊙, and it can not be excluded that GCs formed with similar scaling relations as the more massive ultra-compact dwarf galaxies (UCDs). To explore the initial properties that give rise to the distributions of these quantities, we developed a fast cluster evolution model (Evolve Me A Cluster of StarS, emacss) and use it in a hierarchical Bayesian framework to fit a parameterised model for the initial properties of Milky Way GCs to the observed present-day properties. The best-fit cluster initial mass function is substantially flatter (power-law with index - 0.6 +/- 0.2) than what is observed for young massive clusters (YMCs) forming in the nearby Universe (power-law with index - 2). This result is driven by the metal-poor GCs, a slightly steeper CIMF is allowed when considering the metal-rich GCs separately (α ~= -1.2 +/- 0.4). If stellar mass loss and two-body relaxation in the Milky Way tidal field are the dominant disruption mechanisms, then GCs formed differently from YMCs.

  2. The Globular Cluster NGC 6402 (M14). I. A New BV Color-Magnitude Diagram

    NASA Astrophysics Data System (ADS)

    Contreras Peña, C.; Catelan, M.; Grundahl, F.; Stephens, A. W.; Smith, H. A.

    2013-09-01

    We present BV photometry of the Galactic globular cluster NGC 6402 (M14), based on 65 V frames and 67 B frames, reaching two magnitudes below the turnoff level. This represents, to the best of our knowledge, the deepest color-magnitude diagram (CMD) of NGC 6402 available in the literature. Statistical decontamination of field stars as well as differential reddening corrections are performed in order to derive a precise ridgeline and hence physical parameters of the cluster. We discuss previous attempts at deriving a reddening value for the cluster, and argue in favor of a value E(B - V) = 0.57 ± 0.02, which is significantly higher than indicated by either the Burstein & Heiles or Schlegel et al. (corrected according to Bonifacio et al.) interstellar dust maps. Differential reddening across the face of the cluster, which we find to be present at the level of ΔE(B - V) ≈ 0.17 mag, is taken into account in our analysis. We measure several metallicity indicators based on the position of the red giant branch (RGB) in the cluster CMD. These give a metallicity of [Fe/H] = -1.38 ± 0.07 on the Zinn & West scale and [Fe/H] = -1.28 ± 0.08 on the new Carretta et al. (UVES) scale. We also provide measurements of other important photometric parameters for this cluster, including the position of the RGB luminosity function "bump" and the horizontal branch morphology. We compare the NGC 6402 ridgeline with that of NGC 5904 (M5) derived by Sandquist et al., and find evidence that NGC 6402 and M5 have approximately the same age to within the uncertainties, although the possibility that M14 may be slightly older cannot be ruled out. Based on observations obtained with the 0.9 m telescope at the Cerro Tololo Inter-American Observatory, Chile, operated by the SMARTS consortium.

  3. LIGHT-ELEMENT ABUNDANCES OF GIANT STARS IN THE GLOBULAR CLUSTER M71 (NGC 6838)

    SciTech Connect

    Cordero, M. J.; Pilachowski, C. A.; Vesperini, E.; Johnson, C. I. E-mail: catyp@astro.indiana.edu E-mail: cjohnson@cfa.harvard.edu

    2015-02-10

    Aluminum is the heaviest light element displaying large star-to-star variations in Galactic globular clusters (GCs). This element may provide additional insight into the origin of the multiple populations, now known to be common place in GCs, and also the nature of the first-generation stars responsible for a cluster's chemical inhomogeneities. In a previous analysis, we found that unlike more metal-poor GCs, 47 Tuc did not exhibit a strong Na-Al correlation, which motivates a careful study of the similar metallicity but less massive GC M71. We present chemical abundances of O, Na, Al, and Fe for 33 giants in M71 using spectra obtained with the WIYN-Hydra spectrograph. Our spectroscopic analysis finds that similar to 47 Tuc and in contrast with more metal-poor GCs, M71 stars do not exhibit a strong Na-Al correlation and span a relatively narrow range in [Al/Fe], which are characteristics that GC formation models must reproduce.

  4. DDO 216-A1: A Central Globular Cluster in a Low-luminosity Transition-type Galaxy

    NASA Astrophysics Data System (ADS)

    Cole, Andrew A.; Weisz, Daniel R.; Skillman, Evan D.; Leaman, Ryan; Williams, Benjamin F.; Dolphin, Andrew E.; Johnson, L. Clifton; McConnachie, Alan W.; Boylan-Kolchin, Michael; Dalcanton, Julianne; Governato, Fabio; Madau, Piero; Shen, Sijing; Vogelsberger, Mark

    2017-03-01

    We confirm that the object DDO 216-A1 is a substantial globular cluster at the center of Local Group galaxy DDO 216 (the Pegasus dwarf irregular), using Hubble Space Telescope ACS imaging. By fitting isochrones, we find the cluster metallicity [M/H] = ‑1.6 ± 0.2, for reddening E(B–V) = 0.16 ± 0.02 the best-fit age is 12.3 ± 0.8 Gyr. There are ≈ 30 RR Lyrae variables in the cluster; the magnitude of the fundamental mode pulsators gives a distance modulus of 24.77 ± 0.08—identical to the host galaxy. The ratio of overtone to fundamental mode variables and their mean periods make DDO 216-A1 an Oosterhoff Type I cluster. We find a central surface brightness of 20.85 ± 0.17 F814W mag arcsec‑2, a half-light radius of 3\\buildrel{\\prime\\prime}\\over{.} 1 (13.4 pc), and an absolute magnitude M814 = ‑7.90 ± 0.16 (M/{M}ȯ ≈ 105). King models fit to the cluster give the core radius and concentration index, r c = 2\\buildrel{\\prime\\prime}\\over{.} 1 ± 0\\buildrel{\\prime\\prime}\\over{.} 9 and c = 1.24 ± 0.39. The cluster is an “extended” cluster somewhat typical of some dwarf galaxies and the outer halo of the Milky Way. The cluster is projected ≲30 pc south of the center of DDO 216, unusually central compared to most dwarf galaxy globular clusters. Analytical models of dynamical friction and tidal destruction suggest that it probably formed at a larger distance, up to ∼1 kpc, and migrated inward. DDO 216 has an unexceptional specific cluster frequency, S N = 10. DDO 216 is the lowest-luminosity Local Group galaxy to host a 105 {M}ȯ globular cluster and the only transition-type (dSph/dIrr) galaxy in the Local Group with a globular cluster. Based on observations made with the NASA/ESA Hubble Space Telesope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy, Inc., under NASA contract NAS5-26555. These observations were obtained under program GO-13768.

  5. Binary Black Hole Mergers from Globular Clusters: Implications for Advanced LIGO.

    PubMed

    Rodriguez, Carl L; Morscher, Meagan; Pattabiraman, Bharath; Chatterjee, Sourav; Haster, Carl-Johan; Rasio, Frederic A

    2015-07-31

    The predicted rate of binary black hole mergers from galactic fields can vary over several orders of magnitude and is extremely sensitive to the assumptions of stellar evolution. But in dense stellar environments such as globular clusters, binary black holes form by well-understood gravitational interactions. In this Letter, we study the formation of black hole binaries in an extensive collection of realistic globular cluster models. By comparing these models to observed Milky Way and extragalactic globular clusters, we find that the mergers of dynamically formed binaries could be detected at a rate of ∼100 per year, potentially dominating the binary black hole merger rate. We also find that a majority of cluster-formed binaries are more massive than their field-formed counterparts, suggesting that Advanced LIGO could identify certain binaries as originating from dense stellar environments.

  6. A NEW DISTANT MILKY WAY GLOBULAR CLUSTER IN THE PAN-STARRS1 3π SURVEY

    SciTech Connect

    Laevens, Benjamin P. M.; Martin, Nicolas F.; Sesar, Branimir; Rix, Hans-Walter; Schlafly, Edward F.; Bernard, Edouard J.; Ferguson, Annette M. N.; Slater, Colin T.; Bell, Eric F.; Burgett, William S.; Chambers, Kenneth C.; Denneau, Larry; Kaiser, Nicholas; Kudritzki, Rolf-Peter; Magnier, Eugene A.; Morgan, Jeffrey S.; Sweeney, William E.; Draper, Peter W.; Metcalfe, Nigel; Price, Paul A.; and others

    2014-05-01

    We present a new satellite in the outer halo of the Galaxy, the first Milky Way satellite found in the stacked photometric catalog of the Panoramic Survey Telescope and Rapid Response System 1 (Pan-STARRS1) Survey. From follow-up photometry obtained with WFI on the MPG/ESO 2.2 m telescope, we argue that the object, located at a heliocentric distance of 145 ± 17 kpc, is the most distant Milky Way globular cluster yet known. With a total magnitude of M{sub V} = –4.3 ± 0.2 and a half-light radius of 20 ± 2 pc, it shares the properties of extended globular clusters found in the outer halo of our Galaxy and the Andromeda galaxy. The discovery of this distant cluster shows that the full spatial extent of the Milky Way globular cluster system has not yet been fully explored.

  7. NO EVIDENCE FOR INTERMEDIATE-MASS BLACK HOLES IN GLOBULAR CLUSTERS: STRONG CONSTRAINTS FROM THE JVLA

    SciTech Connect

    Strader, Jay; Chomiuk, Laura; Maccarone, Thomas J.; Miller-Jones, James C. A.; Seth, Anil C.; Heinke, Craig O.; Sivakoff, Gregory R.

    2012-05-10

    With a goal of searching for accreting intermediate-mass black holes (IMBHs), we report the results of ultra-deep Jansky Very Large Array radio continuum observations of the cores of three Galactic globular clusters: M15, M19, and M22. We reach rms noise levels of 1.5-2.1 {mu}Jy beam{sup -1} at an average frequency of 6 GHz. No sources are observed at the center of any of the clusters. For a conservative set of assumptions about the properties of the accretion, we set 3{sigma} upper limits on IMBHs from 360 to 980 M{sub Sun }. These limits are among the most stringent obtained for any globular cluster. They add to a growing body of work that suggests either (1) IMBHs {approx}> 1000 M{sub Sun} are rare in globular clusters or (2) when present, IMBHs accrete in an extraordinarily inefficient manner.

  8. Radial velocities of stars in the globular cluster M4 and the cluster distance

    NASA Technical Reports Server (NTRS)

    Peterson, R. C.; Rees, Richard F.; Cudworth, Kyle M.

    1995-01-01

    The internal stellar velocity distribution of the globular cluster M4 is evaluated from nearly 200 new radial velocity measurements good to 1 km/s and a rederivation of existing proper motions. The mean radial velocity of the cluster is 70.9 +/- 0.6 km/s. The velocity dispersion is 3.5 +/- 0.3 km/s at the core, dropping marginally towards the outskirts. Such a low internal dispersion is somewhat at odds with the cluster's orbit, for which the perigalacticon is sufficiently close to the galactic center that the probability of cluster disruption is high; a tidal radius two-thirds the currently accepted value would eliminate the discrepancy. The cluster mass-to-light ratio is also small, M/L(sub V) = 1.0 +/- 0.4 in solar units. M4 thus joins M22 as a cluster of moderate and concentration with a mass-to-light ratio among the lowest known. The astrometric distance to the cluster is also smaller than expected, 1.72 +/- 0.14 kpc. This is only consistent with conventional estimates of the luminosity of horizontal branch stars provided an extinction law R = A(sub V)/E(B-V) approximately 4 is adopted, as has been suggested recently by several authors.

  9. HST observations of globular clusters in M 31. 1: Surface photometry of 13 objects

    NASA Technical Reports Server (NTRS)

    Pecci, F. Fusi; Battistini, P.; Bendinelli, O.; Bonoli, F.; Cacciari, C.; Djorgovski, S.; Federici, L.; Ferraro, F. R.; Parmeggiani, G.; Weir, N.

    1994-01-01

    We present the initial results of a study of globular clusters in M 31, using the Faint Object Camera (FOC) on the Hubble Space Telescope (HST). The sample of objects consists of 13 clusters spanning a range of properties. Three independent image deconvolution techniques were used in order to compensate for the optical problems of the HST, leading to mutually fully consistent results. We present detailed tests and comparisons to determine the reliability and limits of these deconvolution methods, and conclude that high-quality surface photometry of M 31 globulars is possible with the HST data. Surface brightness profiles have been extracted, and core radii, half-light radii, and central surface brightness values have been measured for all of the clusters in the sample. Their comparison with the values from ground-based observations indicates the later to be systematically and strongly biased by the seeing effects, as it may be expected. A comparison of the structural parameters with those of the Galactic globulars shows that the structural properties of the M 31 globulars are very similar to those of their Galactic counterparts. A candidate for a post-core-collapse cluster, Bo 343 = G 105, has been already identified from these data; this is the first such detection in the M 31 globular cluster system.

  10. Observing globular cluster RR Lyraes with the BYU West Mountain Observatory

    NASA Astrophysics Data System (ADS)

    Jeffery, E. J.; Joner, M. D.; Walton, R. S.

    2016-05-01

    We have utilized the 0.9-meter telescope of the Brigham Young University West Mountain Observatory to secure data on six northern hemi- sphere globular clusters. Here we present observations of RR Lyrae stars located in these clusters. We compare light curves produced using both DAOPHOT and ISIS software packages. Light curve fitting is done with FITLC.

  11. RR Lyrae stars as a tracer of multiple stellar populations in globular clusters

    NASA Astrophysics Data System (ADS)

    Jang, Sohee; Lee, Young-Wook

    2017-01-01

    In the multiple stellar population paradigm, we suggest that the observed period-shift of RR Lyrae variables between the two Oosterhoff groups is due to the “population-shift” within the instability strip (IS) with increasing metallicity. In the metal-poor group II globular clusters (GCs), the IS is populated by second generation stars with enhanced helium and CNO abundances, while the RR Lyrae stars in the metal-rich group I GCs are produced mostly by first-generation stars without these enhancements. When these models are extended to all metallicity regimes, the observed Oosterhoff dichotomies in the inner and outer halo GCs can be naturally reproduced. In order to achieve this, however, specific star formation histories are required for the inner and outer halos, which is consistent with the dual origin of the Milky Way halo. We further show that two sequences of RR Lyrae stars recently discovered in the Milky Way bulge can also be reproduced by our multiple population models.

  12. Optical, X-ray and gamma-ray observations of compact objects in globular clusters

    NASA Technical Reports Server (NTRS)

    Grindlay, J. E.

    1993-01-01

    In the past three years, a new era of study of globular clusters has begun with multiwavelength observations from the current generation of astronomical telescopes in space. We review the recent results obtained from our studies of compact binaries and x-ray sources in globulars with ROSAT and Hubble Space Telescope (HST) as well as our balloon-borne hard x-ray telescope EXITE (Energetic X-ray Imaging Telescope Experiment) and ground-based observations (CTIO). With ROSAT, we have obtained the most sensitive high resolution soft x-ray images of clusters which show multiple low luminosity sources in cluster cores that are likely indicative of the long-sought population of cataclysmic variables (CVs). We have obtained deep H-alpha images of two clusters with HST and found CV candiates for 3 of the ROSAT sources in the core of NGC 6397. New CTIO imaging and spectroscopy of two 'dim source' fields in omega-Cen are also described. With EXITE we carried out the first hard x-ray imaging observations of the cluster 47 Tuc; such studies can ultimately limit the populations of millisecond pulsars and pulsar emission mechanisms. A long ROSAT exposure on 47 Tuc also shows probable cluster diffuse emission, possibly due to hot gas from ablating millisecond pulsars. Multiwavelength studies of globular clusters may provide new constraints on problems as diverse as the origin of CVs and low mass X-ray binaries (LMXBs) and the origin of hot gas in globulars.

  13. THE GLOBULAR CLUSTER SYSTEM OF THE VIRGO GIANT ELLIPTICAL GALAXY NGC 4636. II. KINEMATICS OF THE GLOBULAR CLUSTER SYSTEM

    SciTech Connect

    Lee, Myung Gyoon; Park, Hong Soo; Hwang, Ho Seong; Arimoto, Nobuo; Tamura, Naoyuki; Onodera, Masato E-mail: hspark@astro.snu.ac.k E-mail: masato.onodera@cea.f E-mail: naoyuki@subaru.naoj.or

    2010-02-01

    We present a kinematic analysis of the globular cluster (GC) system in the giant elliptical galaxy (gE) NGC 4636 in the Virgo cluster. Using the photometric and spectroscopic database of 238 GCs (108 blue GCs and 130 red GCs) at the galactocentric radius 0.'39 < R < 15.'43, we have investigated the kinematics of the GC system. The NGC 4636 GC system shows weak overall rotation, which is dominated by the red GCs. However, both the blue GCs and red GCs show some rotation in the inner region at R < 4.'3 (=2.9R{sub eff} = 18.5 kpc). The velocity dispersion for all the GCs is derived to be sigma{sub p} = 225{sup +12}{sub -9} km s{sup -1}. The velocity dispersion for the blue GCs (sigma{sub p} = 251{sup +18}{sub -12} km s{sup -1}) is slightly larger than that for the red GCs (sigma{sub p} = 205{sup +11}{sub -13} km s{sup -1}). The velocity dispersions for the blue GCs about the mean velocity and about the best-fit rotation curve have a significant variation depending on the galactocentric radius. Comparison of observed stellar and GC velocity dispersion profiles (VDPs) with the VDPs calculated from the stellar mass profile shows that the mass-to-light ratio should increase as the galactocentric distance increases, indicating the existence of an extended dark matter halo. From the comparison of the observed GC VDPs and the VDPs calculated for the X-ray mass profiles in the literature, we find that the orbit of the GC system is tangential, and that the orbit of the red GCs is slightly more tangential than that of the blue GCs. We compare the GC kinematics of NGC 4636 with those of other six gEs, finding that the kinematic properties of the GCs are diverse among gEs. We find several correlations between the kinematics of the GCs and the global parameters of their host galaxies. We discuss the implication of the results for the formation models of the GC system in gEs, and suggest a mixture scenario for the origin of the GCs in gEs.

  14. Color-magnitude relations within globular cluster systems of giant elliptical galaxies: The effects of globular cluster mass loss and the stellar initial mass function

    SciTech Connect

    Goudfrooij, Paul; Kruijssen, J. M. Diederik E-mail: kruijssen@mpa-garching.mpg.de

    2014-01-01

    Several recent studies have provided evidence for a 'bottom-heavy' stellar initial mass function (IMF) in massive elliptical galaxies. Here we investigate the influence of the IMF shape on the recently discovered color-magnitude relation (CMR) among globular clusters (GCs) in such galaxies. To this end we use calculations of GC mass loss due to stellar and dynamical evolution to evaluate (1) the shapes of stellar mass functions in GCs after 12 Gyr of evolution as a function of current GC mass along with their effects on integrated-light colors and mass-to-light ratios, and (2) their impact on the effects of GC self-enrichment using the 2009 'reference' model of Bailin and Harris. As to the class of metal-poor GCs, we find the observed shape of the CMR (often referred to as the 'blue tilt') to be very well reproduced by Bailin and Harris's reference self-enrichment model once 12 Gyr of GC mass loss is taken into account. The influence of the IMF on this result is found to be insignificant. However, we find that the observed CMR among the class of metal-rich GCs (the 'red tilt') can only be adequately reproduced if the IMF was bottom-heavy (–3.0 ≲ α ≲ –2.3 in dN/dM∝M{sup α}), which causes the stellar mass function at subsolar masses to depend relatively strongly on GC mass. This constitutes additional evidence that the metal-rich stellar populations in giant elliptical galaxies were formed with a bottom-heavy IMF.

  15. Strömgren uvby photometry of the peculiar globular cluster NGC 2419

    NASA Astrophysics Data System (ADS)

    Frank, Matthias J.; Koch, Andreas; Feltzing, Sofia; Kacharov, Nikolay; Wilkinson, Mark I.; Irwin, Mike

    2015-09-01

    NGC 2419 is a peculiar Galactic globular cluster offset from the others in the size-luminosity diagram, and showing several chemical abundance anomalies. Here, we present Strömgren uvby photometry of the cluster. Using the gravity- and metallicity-sensitive c1 and m1 indices, we identify a sample of likely cluster members extending well beyond the formal tidal radius. The estimated contamination by cluster non-members is only one per cent, making our catalogue ideally suited for spectroscopic follow-up. We derive photometric [Fe/H] of red giants, and depending on which metallicity calibration from the literature we use, we find reasonable to excellent agreement with spectroscopic [Fe/H], both for the cluster mean metallicity and for individual stars. We demonstrate explicitly that the photometric uncertainties are not Gaussian and this must be accounted for in any analysis of the metallicity distribution function. Using a realistic, non-Gaussian model for the photometric uncertainties, we find a formal internal [Fe/H] spread of σ=0.11+0.02-0.01 dex. This is an upper limit to the cluster's true [Fe/H] spread and may partially, and possibly entirely, reflect the limited precision of the photometric metallicity estimation and systematic effects. The lack of correlation between spectroscopic and photometric [Fe/H] of individual stars is further evidence against a [Fe/H] spread on the 0.1 dex level. Finally, the CN-sensitive δ4, among other colour indices, anti-correlates strongly with magnesium abundance, indicating that the second-generation stars are nitrogen enriched. The absence of similar correlations in some other CN-sensitive indices supports the second generation being enriched in He, which in these indices approximately compensates the shift due to CN. Compared to a single continuous distribution with finite dispersion, the observed δ4 distribution of red giants is slightly better fit by two distinct populations with no internal spread, with the nitrogen

  16. Implications of intermediate mass black hole in globular cluster G1 on dark matter detection.

    SciTech Connect

    Zaharijas, G.; High Energy Physics

    2008-07-01

    Recently there has been growing evidence in favor of the presence of an intermediate mass black hole in the globular cluster G1, in Andromeda Galaxy. Under the assumption that formation of this globular cluster occurred within a dark matter halo, we explore whether the presence of a black hole could result in an observable gamma ray signal due to dark matter annihilation in this globular cluster. Starting from an initial Navarro-Frenk-White matter profile, with density parameters consistent with G1 observations, we find that indeed, if the spike in the density has been formed and has survived until the present, the signal could be observed by GLAST and current atmospheric Cerenkov telescope detectors.

  17. POSSIBLE SUBGROUPS OF GLOBULAR CLUSTERS AND PLANETARY NEBULAE IN NGC 5128

    SciTech Connect

    Woodley, Kristin A.; Harris, William E. E-mail: harris@physics.mcmaster.ca

    2011-01-15

    We use recently compiled position and velocity data for the globular cluster and planetary nebula subsystems in NGC 5128, the nearby giant elliptical, to search for evidence of past dwarf-satellite accretion events. Beyond a 10' ({approx}11 kpc) radius in galactocentric distance, we find tentative evidence for four subgroups of globular clusters and four subgroups of planetary nebulae. These each have more than four members within a search radius of 2' and internal velocity dispersion of {approx}<40 km s{sup -1}, typical parameters for a dwarf galaxy. In addition, two of the globular cluster groupings overlap with two of the planetary nebulae groupings, and two subgroupings also appear to overlap with previously known arc and shell features in the halo light. Simulation tests of our procedure indicate that the probability of finding false groups due to chance is <1%.

  18. ULTRAVIOLET PROPERTIES OF GALACTIC GLOBULAR CLUSTERS WITH GALEX. II. INTEGRATED COLORS

    SciTech Connect

    Dalessandro, Emanuele; Ferraro, Francesco R.; Lanzoni, Barbara; Schiavon, Ricardo P.; Rood, Robert T.; O'Connell, Robert W.; Sohn, Sangmo T.

    2012-11-01

    We present ultraviolet (UV) integrated colors of 44 Galactic globular clusters (GGCs) observed with the Galaxy Evolution Explorer (GALEX) in both FUV and NUV bands. This database is the largest homogeneous catalog of UV colors ever published for stellar systems in our Galaxy. The proximity of GGCs makes it possible to resolve many individual stars even with the somewhat low spatial resolution of GALEX. This allows us to determine how the integrated UV colors are driven by hot stellar populations, primarily horizontal branch stars and their progeny. The UV colors are found to be correlated with various parameters commonly used to define the horizontal branch morphology. We also investigate how the UV colors vary with parameters like metallicity, age, helium abundance, and concentration. We find for the first time that GCs associated with the Sagittarius dwarf galaxy have (FUV - V) colors systematically redder than GGCs with the same metallicity. Finally, we speculate about the presence of an interesting trend, suggesting that the UV color of GCs may be correlated with the mass of the host galaxy, in the sense that more massive galaxies possess bluer clusters.

  19. HST Observations of New Horizontal Branch Structures in the Globular Cluster w Centauri

    NASA Technical Reports Server (NTRS)

    Stecher, Theodore

    1999-01-01

    The globular cluster omega Centauri contains the largest known population of very hot horizontal branch (HB) stars. We have used the Hubble Space Telescope to obtain a far-UV/optical color-magnitude diagram of three fields in omega Cen. We find that over 30% of the HB objects are "extreme" HB or hot post-HB stars. A wide gap in the color distribution of the hot HB stars may correspond to gaps found earlier in several other clusters, which argues for a common mass loss mechanism. The diagram contains a significant population of hot sub-HB stars, which we interpret as the "blue-hook" objects predicted by D'Cruz (1996a). These are produced by late He-flashes in stars which have undergone unusually large giant branch mass loss. Omega Cen has a well-known spread of metal abundance, and the diagram is consistent with a giant branch mass loss efficiency which increases with metallicity. There is no evidence for a dynamical origin of the hot HB stars.

  20. FEEDBACK FROM MASSIVE STARS AND GAS EXPULSION FROM PROTO-GLOBULAR CLUSTERS

    SciTech Connect

    Calura, F.; Romano, D.; D’Ercole, A.; Few, C. G.

    2015-11-20

    Globular clusters (GCs) are considerably more complex structures than previously thought, harboring at least two stellar generations that present clearly distinct chemical abundances. Scenarios explaining the abundance patterns in GCs mostly assume that originally the clusters had to be much more massive than today, and that the second generation of stars origina